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Abstract Discrete approximations such as binomial and trinomial lattices have been1

developed to model the intertemporal dynamics of variables in a way that also allows2

contingent decisions to be included at the appropriate increments in time. In this paper3

we present an approach for developing these types of models based on copulas. In4

addition to ease of implementation, a primary benefit of this approach is its gener-5

ality, and we show that various binomial and trinomial approximation methods for6

valuing contingent claim securities in the literature are special cases of this approach,7

each based on a choice of a particular set of probability and/or branching parame-8

ters. Because this approach encompasses these and other cases as feasible solutions,9

we also show how it can be used to optimize the construction of lattices so that dis-10

cretization error is minimized, and we demonstrate its application for an option pricing11

example. 112
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1 Introduction14

Many types of dynamic optimization problems are constructed over an underlying15

model of an uncertain state variable stochastic process, such as problems related to16

the valuation of financial options. Various approaches to modeling stochastic process in17

continuous time have been developed and implemented, such as the partial differential18

equation approach based on extensions of the classic work of Black and Scholes19

(1973). Our focus in this paper, however, is on lattice- or tree-based methods that20

provide a discrete approximation of the stochastic process. Lattice-based methods are21

well established as a tool for option valuation and other applications because of their22

robustness to a wide variety of contingent decisions, their ease of implementation and23

their intuitive appeal.24

Several approaches have been developed for constructing a discrete approximation25

of an underlying stochastic process. The first example of this approach was a bino-26

mial lattice model that converges weakly to a geometric Brownian motion diffusion27

process, or GBM (Cox et al. 1979) (hereafter, CRR). This binomial model can be used28

to accurately approximate solutions from the Black–Scholes–Merton (hereafter, BSM)29

continuous-time option valuation model, but it can also be used to solve for the value30

of early-exercise American options, whereas the BSM model can only value European31

options. Various extensions to the original CRR binomial model have been proposed,32

including contributions by Jarrow and Rudd (1983), Tian (1993, 1999), Chen and Yang33

(1999), Hilliard and Schwartz (2005), and Chung and Shih (2007). The motivations for34

these subsequent lattice models are improving the rate of convergence or generalizing35

the model for more complex stochastic processes or pricing more complex derivatives.36

Trinomial lattice methods have also been proposed as a generalization of binomial37

lattice models, and to improve approximation accuracy. Examples include models38

proposed by Boyle (1988), Omberg (1988), Parkinson (1977), Derman et al. (1996),39

Clewlow and Strickland (1998), Figlewski and Gao (1999), and Hull (2006). Some40

recent articles that include applications of lattice models are Baule and Wilkens (2004),41

Broadie and Kaya (2007), Ji and Brorsen (2011), Costabile et al. (2011), and Ji and42

Brorsen (2011).43

While binomial lattices are generally considered to be simpler conceptually, trino-44

mial lattices are computationally more flexible because the asset price in a trinomial45

tree moves in three directions compared with only two for a binomial lattice. As a46

result the number of time-steps in the time horizon can be reduced in a trinomial lat-47

tice to attain the same accuracy obtained by a binomial lattice (Widdicks et al. 2002).48

Furthermore, trinomial lattice methods can also be viewed as an explicit finite differ-49

ence method, which offers considerable flexibility in the choices of grids for the time50

and space dimensions, and is useful for dealing with discrete dividends, barriers, and51

other common features (Hull 2006; Broadie and Detemple 2004; Barone-Adesi et al.52

2008). Recent articles that include applications of lattice models for contingent claim53

asset pricing are Bizid and Jouini (2005), Chambers and Lu (2007), Jabbour et al.54

(2010), and Dumas and Lyasoff (2012).55

The basic objective of a lattice- or tree-based method is to use discrete-time and56

discrete-state increments to approximate a continuous stochastic differential equation,57

with the accuracy of the approximation governed by the length of the time increment58
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and with convergence to the continuous process guaranteed as the time increment59

in the discrete model approaches zero. Convergence is typically established through60

the use of a specification of state space increments and branching probabilities in the61

discrete model that is derived by matching the moments of the discrete process with62

the moments of the continuous process. The literature has focused on discretization63

of the underlying variable, such as an asset price or the log-transformed underlying64

variable, to construct the binomial or trinomial model.65

Our framework is in the same spirit; however, we break down the approximation66

a step further and focus on the discretization of the Wiener process, or the standard67

Brownian motion component, of the underlying GBM stochastic process. We believe68

that this new approach to the construction of lattices provides an important synthe-69

sis of previous work that offers conceptual and practical value regarding increased70

transparency for this important family of computational tools. The approach leads to71

contributions in three areas. First, this is the first work to construct a binomial or trino-72

mial lattice model based on copulas, a technique which allows a GBM to be represented73

as a series of dependent discrete probability distributions (Wang and Dyer 2012) so that74

lattices can be constructed in a more flexible manner than with the existing methods.75

Second, we show that this flexible approach is very general, and that it encompasses76

many of the various binomial and trinomial tree methods in the literature as special77

cases determined by the choices of particular sets of parameters. Third, we demon-78

strate how the generality of this approach allows lattice construction to be optimized,79

which expands the modeling possibilities beyond the discrete set of existing methods,80

including those mentioned above. This eliminates the need for an a-priori choice or81

a trial-and-error selection of a modeling method, and also supports improved compu-82

tational efficiency, because tree or lattice construction can be specified under defined83

criteria, such as fit to the continuous distribution implied by the stochastic process.84

We do acknowledge that there may be other motivations for choosing the parameters85

of a trinomial tree or lattice that are not included within this framework, and do not86

claim that every useful approximation will be a special case of our general approach.87

Nevertheless, this framework does provide a unifying theory that includes many of88

the most popular trinomial trees in the literature, that can be made into a standard89

algorithm which is intuitive and easy to program, and that may also enhance the90

abilities of students and practitioners to understand the common threads among many91

of the different models that have been proposed and implemented.92

The rest of this paper is organized as follows: In Sect. 2, we review the two basic93

types of discrete approximations, both of which we will generalize in this paper.94

In Sect. 3, we present the general copulas-based lattice framework and discuss its95

relationship with various binomial and trinomial tree methods in the literature. In96

Sect. 4 we present numerical examples to illustrate the generality of the proposed97

lattice method and show how it can be optimized under two different criteria. In98

Sect. 5 we conclude the paper and discuss future research.99

2 Basic types of discrete approximations100

For a given probability space (�,F , P), we consider an asset with price S (t) that101

follows a GBM:102
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d S(t)

S(t)
= (r − δ)dt + σdW (t),103

where r is the interest rate, δ is the dividend yield, σ is the volatility of the asset price104

process, and dW (t) represents a Wiener process, W (t) ∼ N (0, t), at time t . Given105

this process, there are generally two choices for constructing a discrete approximation:106

(1) model S(t) directly, and (2) model the log of S(t).107

2.1 Discretization of GBM for S (t)108

The approximation developed by Boyle (1988) is an example of a discretized descrip-109

tion of a GBM for the asset price S (t). This method uses a trinomial framework,110

which was intended to improve upon binomial approaches, to model an underlying111

asset price as a recombining tree, where the price at each node has three possible paths:112

up, down or a stationary middle path.113

The endpoint values for each path are found by multiplying the starting value in the114

node by the appropriate factor: u, d or m. Given the common assumption that m =1,115

the endpoint values are Su = Su, Sm = S, Sd = Sd. The corresponding probabilities116

of reaching those endpoints are derived by matching the first two moments of the117

continuous distribution of the given GBM and requiring that they sum to one:118

p1 + p2 + p3 = 1119

p1Sd + p2S + p3Su = Se(r−δ)�t
120

p1(Sd)2 + p2S2 + p3(Su)2 = S2e(r−δ)2�t
2 (

eσ 2�t − 1
)

.121

Letting u = eλσ
√

�t , m = 1, and d = e−λσ
√

�t = 1
u

so that the structure is recom-122

bining, and solving the above system of three equations yields the three branching123

probabilities:124

p1 =
1

2λ2
−

ν
√

�t

2λσ
; p2 = 1 −

1

λ2
; p3 =

1

2λ2
+

ν
√

�t

2λσ
,125

where ν = r − δ − 1
2σ 2 and λ is greater than 1. By using different values of λ, a range126

of values of u may be obtained. The parameter λ can be used to adjust a particular127

asset node to a convenient level; e.g., to coincide with a strike or barrier in an option128

valuation problem. As an example, Hull (2006) specifies a value λ =
√

3 so that129

u = eσ
√

3�t , m = 1, d = e−σ
√

3�t = 1
u

and130

p1 = −
√

�t

12σ 2
ν +

1

6
; p2 =

2

3
; p3 =

√

�t

12σ 2
ν +

1

6
.131

2.2 Discretization of ln(S (t))132

If S (t) follows the GBM described above, Ito’s lemma can be applied to obtain the133

process for x (t) = ln(S (t)): dx(t)
x(t)

= νdt + σdW (t). Therefore, the natural log-134
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arithm of S (t) is normally distributed with the following parameters: ln (S (t)) ∼135

N (ln (S (0)) + νt, σ 2t).136

As an alternative to the approximation scheme discussed above, a trinomial approx-137

imation to n(S (t)) can be constructed. An example of this approach is the trinomial138

lattice model proposed by Clewlow and Strickland (1998). In this model, over a small139

time increment �t , the log of asset price can go down by �x (the state variable incre-140

ment), stay the same, or go up by �x , with probabilities p1, p2,and p3 respectively.141

The drift and volatility parameters of the continuous time process in this devel-142

opment are captured by �x, p1, p2, and p3. The increment �x cannot be chosen143

independently and was specified in this case as �x = σ
√

3�t . As in the previous144

example, the relationship between the parameters of the continuous time process and145

the discrete trinomial approximation are obtained by matching the first two moments146

of x and requiring that the probabilities sum to one. Solving these equations yields:147

p1 =
1

2

(

σ 2�t + ν2�t2

�x2
−

ν�t

�x

)

; p2 = 1 −
σ 2�t + ν2�t2

�x2
;148

p3 =
1

2

(

σ 2�t + ν2�t2

�x2
+

ν�t

�x

)

.149

3 A general trinomial discretization approach150

Given these two types of basic discretization approaches, we propose a general dis-151

cretization scheme for modeling a GBM process. We will show that this scheme152

includes various binomial and trinomial tree methods in the literature as special cases153

with particular specifications of the parameters of this model.154

Our approach to modeling the process for a variable S (t) can use the form S (t) =155

S (0) eνt+σ W (t) or the form x (t) = ln (S (t)) = ln (S (0)) + νt + σ W (t), and starts156

with the Wiener process term W (t) ∼ N (0, t). This approach is justified by the157

following Theorem.158

Theorem 1 A trinomial lattice constructed by moment matching of the GBM or log159

transformed GBM is equivalent to moment matching of the underlying Wiener process.160

a. The moments of the asset price S (t) are a function of the corresponding moments161

of the Wiener process:162

E
(

S (t)n
)

= S (0)neνtn ×
(

MW (t) (z)
)σ 2

,163

where MW (t) (z) is the moment generating function of W (t).164

b. The moments of the log transformed asset price x (t) = ln (S (t)) are a function165

of the corresponding moments of the Wiener process:166

E
(

x (t)n
)

= [ln (S (0)) + νt]n + σ n E
(

(W (t))n
)

.167

The proof of this Theorem is provided in “Appendix 1”.168
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This theorem suggests the following strategy for constructing a trinomial lattice.169

If the discrete approximation of the Wiener process is constructed so that the first170

n moments are matched in a trinomial lattice, then a trinomial lattice can be con-171

structed to match the corresponding first n moments for the process for S (t) or the172

log-transformed process x (t) = ln (S (t)).173

We now discuss the details of how to construct a trinomial lattice for a Wiener174

process which we represent by
(

Wt1 , . . . , Wtn

)

where Wti , i ∈ (1, . . . , n) represents175

the lattice representation of the distribution of the Weiner process in period i. Since176

this process is auto-correlated, the covariance matrix for any discrete times ti and177

t j , 0 < ti < t j < T is Cov
(

Wti , Wt j

)

= ti . As shown by Glasserman (2003), the2 178

covariance matrix C of
(

Wt1 , . . . , Wtn

)

is then defined by Ci, j = min(ti , t j ). The179

correlation matrix Σ of
(

Wt1, . . . , Wtn

)

is therefore Σi, j = min(ti ,t j )√
ti
√

t j
.180

The vector
(

Wt1 , . . . , Wtn

)

has the distributionN (0, C), so the Wiener process can181

be constructed as a multivariate normal distribution. We do this by utilizing multi-182

variate normal copulas, CN (u1, . . . , un) = 	Σ

(

	−1 (u1) , . . . , 	−1 (un)
)

, where183

u1, . . . , un are simple uniform variables on [0,1] and 	 is the Cumulative Distribution184

Function (CDF) of a standard normal distribution. These copulas are convenient, since185

they define the underlying dependency structure of the multivariate normal distribution186

in terms of a Pearson product moment correlation matrix Σ .187

This approach can be implemented through the normal-copula based dependent188

tree method (Wang and Dyer 2012) which uses the unified underlying normal copula189

with the uniform variables as an auxiliary step for transforming arbitrary marginal190

distributions, and then transforms the underlying copulas into a desired decision tree191

model. The uniform variables associated with the normal copula based dependent tree192

are:193

ui=	

(

Ai1	
−1 (α1) + · · · + Ai(i−1)	

−1 (αi−1) + Ai(i)	
−1 (αi )

)

,194

where Ai j is the element of the Cholesky factorization that decomposes the covariance195

matrix Σ as Σ = AAT to give the lower triangular matrix A = (Ai j )
n
i, j=1 and αi is196

the percentile of the conditional distribution X i |X1, . . . , X i−1.197

For Σi, j = min(ti ,t j )√
ti
√

t j
, the Cholesky factor is given by198

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√
t1√
t1

0 . . . 0
√

t1√
t2
...

√
t2−t1√

t2
. . .

...
. . .

0
...

√
t1√
tn

√
t2−t1√

tn
. . .

√
tn−tn−1√

tn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

199

Using the same time increment in the trinomial tree structure,
√

t1 =
√

ti − ti−1 =200 √
t j − t j−1 = �t for all i,j, the Cholesky decomposition A of the Wiener process has201

a special structure: the decomposition factor will be a constant
√

t1√
ti

for each row. This202

special feature can be used in constructing the trinomial lattice of the Wiener process.203
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Fig. 1 Two step discretization of Wiener process

Implementing the Cholesky decomposition using the uniform variables formula204

gives the following expression for the underlying uniform variables:205

ui=	

(√
t1√
ti

	−1 (α1) + · · · +
√

t1√
ti

	−1 (αi−1) +
√

t1√
ti

	−1 (αi )

)

.206

Applying the marginal transformation (Wti ∼ N (0, ti )) to the underlying uniform207

variables ui results in the following representation of the Wiener process:208

Wti =
√

ti	
−1 (ui ) =

√
ti

√
t1√
ti

(

	−1 (α1) + · · · + 	−1 (αi−1) + 	−1 (αi )

)

209

=
√

t1

(

	−1 (α1) + · · · + 	−1 (αi−1) + 	−1 (αi )

)

.210

This discretization is illustrated in Fig. 1.211

In this structure, p1 + p2 + p3 = 1, and the combination of α1, α2, α3 and p1, p2,212

p3 should be selected to represent a good discretization of a normal distribution by213

matching the first two moments for example.214

This tree structure could be naturally extended to include Wt2 , the Wiener process215

for time increment 2, as shown in Fig. 1. Because the dependent tree structure is a216

sequence of conditional probability distributions of Wt1 and Wt2 , it grows in a non-217

recombining manner with 3 branches of Wt2 for each realization of Wt1 . Therefore,218

there are a total of 9 branches for Wt2 with the endpoint values calculated as shown219

in Equations (1) to (9) in Fig. 1. However, because of the special structure of the220

Cholesky decomposition of the Wiener process, some of the branches are automat-221

ically recombining; i.e. (2)=(4), (3)=(7), and (6)=(8). Thus, the tree structure will222

become a trinomial lattice if the missing link is also connected, (3)=(5)=(7), as shown223
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in the following equation
√

t1(	
−1 (α1)+

(

	−1 (α3)
)

=
√

t1(	
−1 (α2)+

(

	−1 (α2)
)

224

which implies that:225

2	−1 (α2) = 	−1 (α1) + 	−1 (α3) . (10)226

The conditional distribution of Wt2 is just a normal distribution conditional on the227

realization of Wt1 . The combination of α1, α2, α3 and p1, p2, p3 are selected for Wt2 to228

provide a good discretization of a standard normal distribution, which is the same229

requirement for Wt1 , namely:230

p1 + p2 + p3 = 1 (11)231

p1	
−1 (α1) + p2	

−1 (α2) + p3	
−1 (α3) = 0 (12)232

p1

(

	−1 (α1)

)2
+ p2

(

	−1 (α2)

)2
+ p3

(

	−1 (α3)

)2
= 1 (13)233

2	−1 (α2) = 	−1 (α1) + 	−1 (α3) . (14)234

This specification includes four equations and six variables, which leaves two235

degrees of freedom for choosing the parameters. This also implies that there are infi-236

nitely many choices of six parameters to approximate the Wiener process using the237

trinomial lattice model. It is possible to make a unique choice from six parameters if238

restrictions are added. Many existing trinomial lattice approaches are specific cases239

of this general framework distinguished by the strategies for imposing restrictions on240

the values of these parameters.241

While the approach in this paper is built on Wang and Dyer (2012) and both242

approaches are based on the use of copulas to capture dependence, it is important243

to highlight the differences between these two methods. First, the approach in Wang244

and Dyer (2012) is developed in a non-recombining tree structure for dependent con-245

tinuous uncertainties and therefore is subject to the curse of dimensionality, as the tree246

size will grow exponentially with the number of uncertainties. In this paper, we develop247

and prove certain conditions for constructing a recombining tree/lattice which signif-248

icantly extends the Wang and Dyer (2012) approach and improves its efficiency when249

the underlying uncertainty follows a GBM stochastic process. Second, the approach250

in Wang and Dyer (2012) relies on the arbitrary choice of a discretization method for251

each continuous uncertainty, such as extended Pearson–Tukey (EPT) method (Keefer252

and Bodily 1983), to choose the conditional percentile and conditional probabilities. In253

this work we develop the functional relationships between the conditioning percentiles254

and the conditional probabilities to match the moments of the underlying uncertainties.255

Finally, the Wang and Dyer (2012) approach was not developed to choose among alter-256

native discretization models, whereas in this paper we demonstrate how our approach257

allows a lattice construction to be optimized to minimize the error in both the option258

price and the Greeks, which enhances the modeling possibilities.259

3.1 Symmetric Wiener lattice260

If we impose the restriction that the tree structure for the Wiener process is symmetric,261

since the normal distribution is symmetric, then262
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	−1 (α1) = −	−1 (α3) . (15)263

In that case, 2	−1 (α2) = 	−1 (α1) + 	−1 (α3) = 0, therefore264

α1 = 1 − α3 and α2 = 0.5. (16)265

Substituting these values into Eqs. (12) and (13) gives the following branching prob-266

abilities:267

p1 = p3, and p1 =
1

2(	−1 (α1))
2
. (17)268

Since p2 ≥ 0, p1 = p3 = 1
2(	−1(α1))

2 ≤ 0.5, which implies α1 ≤ 	(−1) = 0.1587269

to guarantee positive probabilities. Using these parameters, the constructed trinomial270

tree for a Weiner process is recombining, symmetric and centered at 0, and could be271

written as a recombining trinomial lattice.272

Now, let Wi, j denote the value of the Wiener process in period (column) i and273

state (row) j , i = 0, . . . , n, j = 0, . . . , 2i + 1, ( j = 0 is the lowest state). Then274

Wi,1 = iW1,1, and275

Wi, j =

⎧

⎨

⎩

Wi, j−1 j ≤ 2i

0 j = 2i + 1
−Wi,2(i+1)− j j > 2i + 1

276

As a result, the calculations in the trinomial tree or lattice are greatly simplified,277

because only W1,1 the first node in period 1 of the tree, must be calculated, and the rest278

of the tree is simply some multiple of this value. This approach has the computational279

advantage of maintaining a symmetric structure for the Wiener tree through time, so280

the number of distinct Wiener process levels is linear in the number of time increments,281

t . This is due to the up and down moves leading back to the same level. The two period282

case is illustrated in Fig. 2.283

Equations (16) and (17) imply that there is a unique solution for all six parameters284

given the specification of either α1 or p1. This symmetric Wiener tree has the advantage285

that the probabilities are always constant regardless of the values of the drift and the286

volatility and the number of time increments.287

We now show some popular discretizations from the literature that are special288

cases of this general framework in Table 1. The first two cases (3.1.1 and 3.1.2) are289

simple three-point discretizations of the normal distribution that have appeared in the290

literature. These two discretizations follow immediately from specifying α1 and from291

the use of Eqs. (16) and (17).292

However, neither of these two discrete approximation methods was developed to293

match higher (i.e., beyond first and second) moments of the normal distribution. If294

the following two restrictions are added to match the third and fourth moments of the295

normal distribution;296
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Fig. 2 Symmetric discretization
as a function of W1,1

p1

(

	−1 (α1)

)3
+ p2

(

	−1 (α2)

)3
+ p3

(

	−1 (α3)

)3
= 0 (18)297

p1

(

	−1 (α1)

)4
+ p2

(

	−1 (α2)

)4
+ p3

(

	−1 (α3)

)4
= 3, (19)298

then there is a unique solution set for the parameters in case 3.1.3 in Table 1:299

α1 = 	

(

−
√

3
)

, α2 = 0.5, α3 = 	

(√
3
)

, p1 = p3 = 1
6 , and p2 = 2

3 . These300

parameter values are used for the trinomial lattice methods proposed by Omberg301

(1988), Figlewski and Gao (1999) and Derman et al. (1996). Subsequently, Bickel302

et al. (2011) have shown that this approximation will match the first six moments of303

the normal distribution. The additional cases 3.1.4 through 3.1.8 were developed in304

a similar manner, as summarized in Table 1. It is important to emphasize that this305

ability to represent these familiar models as special cases of a general formulation is306

an important and unique benefit of the copula-based approach to developing lattice307

models.308

In addition to showing that these discretization methods are a special case of our309

general framework, since it also matches higher moments we can illustrate how The-310

orem 1 applies to the trinomial lattice developed in Case 3.1.3. That is, we will show311

how discretizations of W (t) using this special case lead to two popular discretization312

approaches for ln(S(t)) in the literature, in accordance with the Theorem.313

First, we show that the first four moments of the underlying Wiener process are314

matched in the Wiener lattice structure. It is easy to see that the first moment is matched315

because of the symmetry:316

p1
√

t	−1 (α1) + p2
√

t	
−1

(α2) + p3
√

t	
−1

(α3) = 0.317

123

Journal: 11147-REDR Article No.: 9111 TYPESET DISK LE CP Disp.:2015/6/19 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

A copula-based approach for generating lattices

T
a

b
le

1
S

um
m

ar
y

of
tr

in
om

ia
l/

bi
no

m
ia

l
la

tt
ic

es
ba

se
d

on
th

e
sy

m
m

et
ri

c
W

ie
ne

r
la

tt
ic

e

C
as

e
α

1
p

1
=

p
3

=
1

2(

	
−

1
(α

1
))

2
O

bs
er

va
ti

on
s

Id
en

ti
fy

th
e

va
lu

e
o

f
α

1

3.
1.

1
0.

05
0.

18
5

P
ea

rs
on

an
d

T
uk

ey
(1

96
5)

th
re

e-
po

in
t

di
sc

re
ti

za
ti

on
.

p
1

=
p

3
=

0.
18

5,
p

2
=

0.
63

0
as

si
gn

ed
to

th
e

5t
h,

50
th

an
d

95
th

pe
rc

en
ti

le
s

re
sp

ec
ti

ve
ly

us
in

g
( 1

6)
an

d
(1

7)
,b

y
sp

ec
if

yi
ng

α
1

=
0.

05
w

e
ob

ta
in

th
is

re
su

lt

3.
1.

2
0.

1
0.

30
4

S
w

an
so

n
( M

eg
il

l
19

84
)

th
re

e-
po

in
t

di
sc

re
ti

za
ti

on
.

p
1

=
p

3
=

0.
3,

p
2

=
0.

4
as

si
gn

ed
to

th
e

10
th

,5
0t

h
an

d
90

th
pe

rc
en

ti
le

s.
E

qu
at

io
n

(1
7)

pr
ov

id
es

th
e

ex
ac

t
pr

ob
ab

il
it

ie
s

im
pl

ie
d

by
th

e
ch

oi
ce

of
α

1
=

0.
1

as
p

1
=

p
3

=
1

2(

	
−

1
(α

1
))

2
=

0.
30

4,
an

d
p

2
=

0.
39

1

3.
1.

3
	

(

−
√

3)

1 6
O

m
be

rg
(1

98
8)

,F
ig

le
w

sk
i

an
d

G
ao

(1
99

9)
an

d
D

er
m

an
et

al
.(

19
96

).
M

at
ch

in
g

th
e

th
ir

d
an

d
fo

ur
th

m
om

en
ts

of

th
e

no
rm

al
di

st
ri

bu
ti

on
w

e
ha

ve
th

e
un

iq
ue

so
lu

ti
on

α
1

=
	

(

−
√

3)

=
0.

04
16

,
α

2
=

0.
5,

α
3

=
	

(

√
3)

=

0.
95

84
,

p
1

=
p

3
=

1 6
,

p
2

=
2 3

Id
en

ti
fy

th
e

va
lu

e
o

f
p

1

3.
1.

4
	

(

−
√

3/
2)

1 3
H

e
(1

99
0)

eq
ua

l
pr

ob
ab

il
it

y
tr

in
om

ia
l

la
tt

ic
e.

A
dd

in
g

th
e

re
st

ri
ct

io
n

th
at

p
1

=
p

3
=

1 3
im

pl
ie

s
th

e
un

iq
ue

so
lu

ti
on

α
1

=
	

(

−
√

3/
2)

,
α

2
=

0.
5,

α
3

=
	

(
√

3/
2)

,a
nd

p
1

=
p

2
=

p
3

=
1/

3

3.
1.

5
	

(

−
√

3)

1 6
S

am
e

as
C

as
e

3.
1.

3

3.
1.

6
	

(

−
√

π
/
2)

1 π
O

m
be

rg
(1

98
8)

S
ha

rp
en

ed
tr

in
om

ia
l

la
tt

ic
e

m
et

ho
d.

p
1

=
p

3
=

1 π
im

pl
ie

s
th

e
un

iq
ue

so
lu

ti
on

α
1

=
	

(

−
√

π
/
2)

,
α

2
=

0.
5,

α
3

=
	

(
√

π
/
2)

,
p

1
=

p
3

=
1 π

,
p

2
=

1
−

2 π

3.
1.

7
	

(−
1 )

1 2
Ja

rr
ow

an
d

R
ud

d
(1

98
3)

bi
no

m
ia

l
la

tt
ic

e.
A

dd
th

e
re

st
ri

ct
io

ns
p

1
=

p
3

=
1 2

.T
he

n
p

2
=

0
an

d
tr

in
om

ia
l

la
tt

ic
e

de
ge

ne
ra

te
s

in
to

a
bi

no
m

ia
l

la
tt

ic
e:

α
1

=
	

(−
1 )

,
α

3
=

	
(1

)
,

p
1

=
p

3
=

1 2
,

p
2

=
0

3.
1.

8
	

(

−
√

2)

1 4
P

ar
ki

ns
on

(1
97

7)
tr

in
om

ia
l

la
tt

ic
e.

R
es

ul
ts

fr
om

th
e

co
m

bi
na

ti
on

of
a

tw
o-

st
ep

bi
no

m
ia

l
la

tt
ic

e.
S

pe
ci

fy

p
1

=
p

3
=

1 4
w

hi
ch

im
pl

ie
s

th
e

un
iq

ue
so

lu
ti

on
α

1
=

	

(

−
√

2)

,
α

2
=

0.
5,

α
3

=
	

(

√
2)

,
p

1
=

p
3

=
1 4

,

p
2

=
1 2

123

Journal: 11147-REDR Article No.: 9111 TYPESET DISK LE CP Disp.:2015/6/19 Pages: 27 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



un
co

rr
ec

te
d

pr
oo

f

T. Wang et al.

The second moment is matched by substituting the respective values for αi and pi as318

follows:319

p1

(√
t	−1 (α1)

)2
+ p2

(√
t	−1 (α2)

)2
+ p3

(√
t	

−1
(α3)

)2
320

= p1t
(

	−1
(

	

(

−
√

3
)))2

+ p2t
(

	−1 (0.5)

)2
+ p3t

(

	−1
(

	

(√
3
)))2

321

= (p1 + p3) t
(

	−1
(

	

(

−
√

3
)))2

=
(

1

6
+

1

6

)

t
(√

3
)2

= t.322

The third and forth moments are matched from the constraint Eqs. (18) and (19)323

p1

(√
t	

−1
(α1)

)3
+ p2

(√
t	−1 (α2)

)3
+ p3

(√
t	−1 (α3)

)3
= 0324

p1

(√
t	−1 (α1)

)4
+ p2

(√
t	−1 (α2)

)4
+ p3

(√
t	

−1
(α3)

)4
= 3t2.325

Therefore, according to Theorem 1, the first four moments of the log transformed asset326

price are also matched in the lattice structure, as shown in each of the following four327

expressions:328

E (x (t)) = [ln(S (0)) + νt] + σ E ((W (t))) = [ln(S (0)) + νt] + 0329

E
(

x (t)2
)

= [ln (S (0)) + νt]2 + σ 2 E
(

(W (t))2
)

= [ln (S (0)) + νt]2 + σ 2t330

E
(

x (t)3
)

= [ln(S (0)) + νt]3 + σ n E
(

(W (t))3
)

= [ln(S (0)) + νt]3 + 0331

E
(

x (t)4
)

= [ln(S (0)) + νt]4 + σ 2 E
(

(W (t))4
)

= [ln(S (0)) + νt]4 + 3σ 2t2.332

Similarly, according to Theorem 1, we can show that the first four moments of the333

underlying variables are also matched. These results can be observed in both the Hull334

(2006) and Clewlow and Strickland (1998) trinomial lattice approaches for discretizing335

ln(S(t)). In both cases, we show that the branching probabilities converge to the same336

set as above when the time increment goes to zero:337

First, for Hull (2006),338

lim
�t→0

p1 =
√

�t

12σ 2
ν +

1

6
=

1

6
; lim

�t→0
p3 = −

√

�t

12σ 2
ν+

1

6
=

1

6
; p2 =

2

3
.339

For Clewlow and Strickland (1998), the drift and volatility parameters of the contin-340

uous time process are captured by �x, p1, p2, and p3. The state space increment �x341

cannot be chosen independently, and was suggested to be �x = σ
√

3�t . This choice342

of �x leads to probabilities which converge to p1 = p3 = 1
6 , and p2 = 2

3 when the343

time increment goes to zero:344
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A copula-based approach for generating lattices

Fig. 3 Asymmetric
discretization as a function of
W1,1

lim
�t→0

p1 = lim
�t→0

1

2

(

σ 2�t + ν2 �t2

�x2
−

ν�t

�x

)

=
1

6
345

lim
�t→0

p2 = lim
�t→0

1 −
σ 2�t + ν2 �t2

�x2
=

2

3
346

lim
�t→0

p3 = lim
�t→0

1

2

(

σ 2�t + ν2�t2

�x2
+

ν�t

�x

)

=
1

6
.347

3.2 Asymmetric Wiener lattice348

If an asymmetric Wiener tree is assumed and additional restrictions are specified to349

reach a unique solution, then the general framework will also include some other350

popular trinomial lattice approaches in the literature. The differences in the structures351

can be seen by comparing the endpoint values in Fig. 3 with those in Fig. 2.352

Although not as simple as the case where the Wiener process approximation is353

symmetric, the asymmetric case still only requires the three levels of the Wiener354

process calculated in period one. The subsequent Wiener process levels will then be355

a linear function of these three levels. Again, there is a system of four equations356

(Eqs. 11–14) and six variables chosen to match the first two moments of the Wiener357

process, which leaves two degrees of freedom for choosing the parameters. This also358

implies that there are infinitely many choices for the six parameters to approximate359

the Wiener process.360

Again, using Theorem 1, by constructing the discrete approximation of a Wiener361

process matching the first n moments, an asymmetric trinomial lattice can be con-362
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structed to match the corresponding first n moments for the process for S (t) or the363

log-transformed process x (t) = ln (S (t)).364

In some cases, it may be desirable to set a stationary middle path instead of specify-365

ing a symmetric Wiener process lattice. As before, a combination of α1, α2, α3 and p1,366

p2, p3 should be selected to represent an accurate discretization of a standard normal367

distribution, which is the same condition as W1. The system of matching equations in368

this case is:369

p1 + p2 + p3 = 1 (20)370

p1

(

ν�t + σ
√

�t	−1 (α1)

)

+ p2

(

ν�t + σ
√

�t	−1 (α2)

)

+ · · ·371

· · · + p3(ν�t + σ
√

�t	−1 (α3)) = ν�t (21)372

p1

(

[

ν�t + σ
√

�t	−1 (α1)

]2
)

+ p2

(

[

ν�t + σ
√

�t	−1 (α2)

]2
)

+ · · ·373

· · · + p3

[

ν�t + σ
√

�t	−1 (α3)

]2
= σ 2�t + ν

2
�t2 (22)374

2
[

ν�t + σ
√

�t	−1 (α2)

]

=
[

ν�t + σ
√

�t	−1 (α1)

]

+ · · ·375

· · · +
[

ν�t + σ
√

�t	−1 (α3)

]

(23)376

ν�t + σ
√

�t	−1 (α2) = 0. (24)377

After some algebra, Eqs. (21), (22) and (23) can be reduced to the same form of Eqs.378

(12–14). Equation (24) specifies the stationary middle path which leads directly to379

the expression α2 = 	(− ν
√

�t
σ

). This leaves one degree of freedom, which can be380

utilized in the following ways:381

Case 3.2.1: Matching the log-transformed moments382

If the step size �x for the log of S(t) or the factor u for S(t) is chosen, then since383

�x = ln u,384

[ν�t + σ
√

�t	−1 (α1)] − [ν�t + σ
√

�t	−1 (α2)]] = �x = ln(u), which385

simplifies to σ
√

�t[	−1 (α1) − 	−1 (α2)] = �x = ln(u). This leads to the386

following expressions for the percentiles: α1 = 	

(

− ν
√

�t
σ

− �x

σ
√

�t

)

, α3 =387

	

(

− ν
√

�t
σ

+ �x

σ
√

�t

)

, and for the branching probabilities:388

p1 =
1

2

(

σ 2�t + ν2�t2

�x2
−

ν�t

�x

)

; p2 = 1 −
σ 2�t + ν2�t2

�x2
; p3389

=
1

2

(

σ 2�t + ν2�t2

�x2
+

ν�t

�x

)

.390

This set of specifications is equivalent to the Clewlow and Strickland trinomial lattice391

method (Clewlow and Strickland (1998), pp. 52–53) discussed in Sect. 3.1.392
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Case 3.2.2: Matching the first moments of the underlying asset393

If p2 = 0, u = eλσ
√

�t and only the first moment of the underlying asset is matched,394

then the trinomial lattice degenerates to the Generalized Cox-Ross-Rubinstein bino-395

mial model. Making these substitutions into Eqs. (20) to (24) and simplifying yields the396

following expressions for α1 and α3: α1 = 	

(

−λ − ν
√

�t
σ

)

, α3 = 	

(

λ − ν
√

�t
σ

)

.397

The branching probabilities are then implied by Eqs. (20) and (21):398

p1 =
e(r−δ)�t − u

d − u
; p3 =

e(r−δ)�t − d

u − d
.399

This is the Generalized Cox-Ross-Rubinstein Binomial Model (Chung and Shih 2007).400

If λ = 1, then this simplifies to the well-known CRR binomial model as a special case.401

Case 3.2.3: Matching the first log-transformed moments402

Our general framework can also lead to some new lattice methods. We next present403

such an example, which follows logic similar to the CRR model. If the same conditions404

as in the previous model (p2 = 0, u = eσ
√

�t ) are imposed, but the first moment of405

the log transformed underlying asset is matched instead, then the trinomial lattice406

decomposes to a binomial lattice which is analogous to the CRR tree. Substituting407

into Eqs. (20) to (24) gives: α1 = 	

(

−1 − ν
√

�t
σ

)

, α3 = 	

(

1 − ν
√

�t
σ

)

and the408

branching probabilities are: p1 = 1
2

[

	−1 (α3)
]

, p3 = − 1
2 [	−1 (α1)].409

Case 3.2.4: Matching the first two log-transformed moments410

We conclude with another example of a new approximation scheme. In this411

case, instead of only matching the first moment of the log transformed underlying412

asset as in the previous case, p2 is chosen to be zero and the first two moments413

of the log transformed underlying asset are matched. This might be expected to414

result in a more accurate fit to the continuous distribution to be approximated.415

Starting with the system of matching equations and applying some algebra to Eqs.416

(22) and (23) leads to these expressions for the percentiles and branching proba-417

bilities: α1 = 	

(

− ln(u)+ν�t

σ
√

�t

)

, α3 = 	

(

ln(u)−ν�t

σ
√

�t

)

, p1 = 	−1(α3)

	−1(α3)−	−1(α1)
and418

p3 = −	−1(α1)

	−1(α3)−	−1(α1)
, where ln (u) =

√

(ν�t)2 + (σ
√

�t)
2
.419

4 Numerical examples of Wiener process lattice models420

To illustrate the application of our general discrete approximation based on the Wiener421

process, we consider the common problem of valuing financial options on underlying422

assets which follow GBM price processes. First, we consider a relatively simple option423

pricing example. This example provides an illustration of the calculations used by424

this approach and allows the validation of our solutions using the BSM formula.425

In addition, this example will be used to illustrate how this general approximation426

scheme facilitates the optimal construction of lattice models for specific option pricing427

problems and for continuous distribution fitting.428
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Table 2 Correlation matrix
Σi, j t1 = 0.33 t2 = 0.67 t3 = 1.00

t1 = 0.33 1 0.7071 0.5774

t2 = 0.67 0.7071 1 0.8165

t3 = 1.00 0.5774 0.8165 1

Table 3 Cholesky
decomposition

Ai j t1 = 0.33 t2 = 0.67 t3 = 1.00

t1 = 0.33 1 0 0

t2 = 0.67 0.7071 0.7071 0

t3 = 1.00 0.5774 0.5774 0.5774

4.1 Calibration of Wiener process lattice models429

We begin by considering a one-year maturity at the money European call option with430

the current underlying asset price S0 of $100. To illustrate the computational approach,431

we assume that we will construct a trinomial tree that has three time steps, so T = 1,432

N = 3 and �t = 1/3. We also assume that the continuously compounded risk-free433

discount rate is 6 % per annum, that the asset pays a continuous dividend yield of 3434

% per annum, and that the volatility of the asset price, σ , is 20 %.435

The techniques for estimating the parameters in the Black–Scholes framework have436

been extensively examined in the literature (e.g. Steele 2010; Hull 2006; Khaled and437

Samia 2010). Volatility is the only parameter required in the Black–Scholes framework438

which is not directly observable in the market and substantial effort has been devoted439

to the search for reliable volatility forecasting models (c.f. Grundy 1991; Britten-Johne440

and Neuberer 2000; Poon 2005; Hansen and Lunde 2006; Andersen and Bondarenko441

2007). For this illustrative problem, we assume that at least one of these approaches442

has been applied to obtain the 20 % estimate for the volatility.443

4.2 Application of the Wiener process lattice model and demonstration of444

convergence445

The first step in applying our approach of constructing a lattice is to calculate the corre-446

lation matrix for the Wiener Process
(

Wt1 , . . . , Wtn

)

and the corresponding Cholesky447

decomposition as discussed in Sect. 3. The results are shown below in Tables 2 and 3.448

Notice that the non-zero row values are constants in Table 2, so the Cholesky decom-449

position only requires the simple calculations in column 1.450

To demonstrate the construction of a symmetric Wiener process tree, we arbitrarily451

set α1 = 0.05 which implies that α2 = 0.50, α3 = 0.95, p1 = p3 = 1

2(	−1(α1))
2 =452

0.185, and p3 = 0.63. The trinomial tree structure generates the resulting values for453

the Wiener process at each of 33 endpoints. For example, the lower value for Wt1 in454

the first node is:455

√
t1

(

	−1 (α1)

)

=
√

1

3

(

	−1(0.05)

)

= −0.95.456
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1.90

147.68

47.68

2.85

178.57

78.57

0.00

101.01

1.01

0.95

122.13

22.13

0.95

83.53

0.00

2.85

57.13

0.00

1.90

69.08

0.00

0.95

121.73

22.49

1.90

147.19

47.70

0.00

100.67

4.63

1.90

68.85

0.00

0.95

83.25

0.18

0.00

100.33

6.97

0.95

121.32

23.38

0.95

82.98

0.95

0.00

100.00

8.71

t=0 t=1 t=3t=2

Wt

St

Ct

Fig. 4 Lattice for Wiener process, underlying asset price, and option price

However, this tree is symmetric and some values are recurring, so it can be recon-457

structed as a simple recombining lattice as shown in Fig. 4. As indicated by the key458

shown at the upper left of the figure, the top numbers in the outcome nodes in the459

lattice represent the Wiener process values, Wt .460

The value of the underlying asset St is then calculated as a function of the Wiener461

process values, using the relationship S (t) = S (0) eυt+σ W (t). Finally, the call option462

values at maturity are calculated and then the current option value is obtained by463

working backward through the structure in Fig. 4, taking discounted expectations at464

each node. As shown in Fig. 4 using the bottom numbers in each outcome node, the465

resulting European call option price is $8.71. For comparison, the analytic solution466

from the BSM formula is $9.135, where the difference is due to the relatively large467

time steps (�t = 1/3 year) which were used for simplicity in this approximation.468

This model converges to the BSM price as the time increments are reduced; at monthly469

(�t = 1/12 year) increments, the difference between prices is less than five cents.470
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4.3 Optimization of the Wiener process lattice models471

There are many approaches for constructing binomial/trinomial approximations of472

GBM stochastic processes. It is natural to ask “Which of these approaches is the best473

one under certain conditions?” While the literature has shown that these lattice meth-474

ods are asymptotically equivalent to the Black–Sholes model when pricing European475

options, and all trinomial lattices are found to be more accurate than binomial lattices476

(Tian 1993), there has been little discussion of the selection of a lattice approach due477

to the lack of a unified framework that could be used for the analysis. An important478

contribution of this work is that we can optimize the tree/lattice construction in a con-479

venient manner. Furthermore, rather than being bound by the existing alternatives, we480

can find the exact specifications of state-space increments and branching probabilities481

that optimize the trinomial approximation for a specific application.482

To establish the framework for the optimization of the tree/lattice construction, we483

first determine the decision variable. For a symmetric tree, as noted in Sect. 3.1 we484

can fully specify the tree/lattice structure by choosing α1, and it is thus our decision485

variable. There is a single constraint for this optimization, 0 ≤ α1 ≤ 	(−1) =486

0.1587.487

We now consider two criteria that might be used for the optimization of a trinomial488

lattice approximation, although we recognize that there may be other criteria that would489

be appropriate in specific applications. The first criterion we consider is minimization490

of the overall distribution fit, as measured by the root mean squared error. We then491

consider minimization of the option pricing and/or Greek approximation error.492

4.3.1 Selection of Wiener process lattice model by root mean square error (RMSE)493

We use root mean square error (RMSE) as a goodness-of-fit measure for the Cumula-494

tive Distribution Function (CDF) of the constructed trinomial lattice at the final stage495

in comparison to the theoretical underlying distribution. We define the optimal lattice496

as the lattice approximation with the minimum RMSE between the discrete approxi-497

mation provided by the lattice and the continuous distribution available in analytical498

form from the stochastic process for the underlying asset in the final time period T.499

As we state more formally below, we can show that for an overall distribution fit500

based on optimization of RMSE, the optimal α1 and therefore the lattice structure501

is independent of parameters of the underlying GBM process. The intuition is based502

on the following observations. The lattice is constructed based upon the underlying503

Wiener process which is independent of parameters of the GBM process The optimal504

lattice structure is therefore independent of parameters of the underlying GBM process.505

Theorem 2 The optimal RMSE fit for the CDF of the constructed lattice structure is506

independent of the parameters of the underlying GBM process.507

The proof is provided in “Appendix 2”.508

Figure 5 shows the results of optimizing the lattice construction by minimizing the509

RMSE between the discrete approximation and the continuous distribution given in510

analytic form by the stochastic process for the underlying asset, using the example511

from Sect. 4.2.512
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Fig. 5 Overall distribution fit optimization

As expected, as the number of time steps, N, increases, the accuracy of the approx-513

imation improves, as shown in Fig. 5 by the downward progression of the curves in514

the figure. We also observe that as N increases and more endpoints are modeled along515

the distribution, it is less important to extend the up and down branches of the trino-516

mial approximation in each step out into the tails of the distribution. This results in517

optimized α1 values progressing toward the maximum end of the range.518

4.3.2 Selection of Wiener process lattice model by Greek approximation error519

The second criterion is the minimization of the error in approximating a particular520

value or price which can be calculated by other means, so that a benchmark can521

be established for optimizing the lattice construction. For example, benchmarks for522

simple option prices and basic option price sensitivities (‘Greeks’) could be calculated523

using the BSM option pricing model or Monte Carlo simulation. One could then apply524

the optimized trinomial lattice to more complex problems than the simple ones used525

for benchmarking.526

As we state more formally in Theorem 3, the RMSE fit for the option price and527

the Greeks of a simple option depends on the parameters of the underlying GBM528

process, as well as the choice of the parameters for the lattice approximation. This is529

intuitive since the benchmark option price or option price sensitivities are functions of530

the parameters of the underlying GBM process. Therefore the optimal lattice structure531

is also dependent on the parameters of the underlying GBM.532

Theorem 3 The optimal RMSE approximation for option price or option price sensi-533

tivity (‘Greeks’) from the constructed trinomial lattice is dependent on the parameters534

of the underlying GBM process.535

The proof is provided in “Appendix 3”.536
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Fig. 6 Percent error in approximating option price error minimization (left), � (right)

Again using the example from Sect. 4.1, for a given volatility we can show numer-537

ically that the value of α1 that minimizes the error in both the option price and the538

Greeks varies with the relation of the current price to the strike price. The optimal539

value α∗
1 versus the strike price for Delta, as well as Gamma (second-order sensitivity540

to underlying asset price) and the option price itself, are shown on the left panel of the541

Fig. 6. The shapes of the curves for α1 in this panel can be explained in the context542

of fitting the distribution for the underlying asset. Intuitively, the explanation for the543

curve showing the optimal value of α1 for approximating option price is based on544

the observation that option prices are best approximated when the distribution of the545

underlying is most accurately modeled in the tails of the distribution, especially when546

there is some distance between the current value and the exercise price, as demon-547

strated by the lower values for α∗
1 at the right and left extremes of the dotted curve.548

The solid curve showing the optimal α1 for approximating Delta illustrates Delta’s549

dependence on the values of both the option price and the underlying asset value at the550

upper and lower boundaries of the discrete approximation. Specifically, as the option551

becomes deeper into the money, the difference between the boundary values for the552

option increase, while the difference between boundary values for the underlying asset553

do not change significantly, and the result is that Delta values increase. Because this is554

primarily caused by changes in the option price, the effect on α1 is similar to the effect555

of the option price on the in-the-money side of the plot (left side where strike price556

is below current price). However for out of the money cases, the differences between557

boundary values for the option are smaller, while the underlying asset boundary values558

are again similar, so the optimal values of α1 in those cases indicate that it is less559

important to place discrete points in the extreme regions of the distribution.560

We can infer from the dashed curve showing the optimal α1 for approximating561

Gamma that it is most important to model values in the tails of the distribution of the562

underlying asset value when the value is near the strike price. This result is somewhat563

intuitive, since the magnitude of Gamma is highest for an at the money option.564

The right panel of Fig. 6 shows the values for α1 that minimize the percent error in565

estimating the option price sensitivity to the underlying asset price (the Greek Delta),566
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Fig. 7 Effects of volatility and number of periods on α∗
1

as also shown in the solid blue curve in the left panel, but this panel also shows the567

percent error in estimating Delta with non-optimal values for α1, by tracing up or down568

each curve from the dot at the zero percent error point and reading the corresponding569

values on the left axis. These errors could be resolved by increasing the number of time570

periods, but this graphic illustrates how a modeler could instead choose to optimize571

construction of the lattice to improve accuracy.572

We also might expect there to be some dependence of the optimal tree construction573

based on the volatility of the underlying process and the number of time increments574

used in the model. These two relationships, for in, at, and out of the money option575

cases, are shown in the left and right panels of Fig. 7, respectively.576

The volatility curves in the left panel have similar starting points for low (10 %)577

volatility, but then vary widely and differently for the three cases. The optimal value578

of α1 is least sensitive to volatility for an out of the money option, where lower579

α1 values and more accurate modeling of values in the tails of the distribution are580

optimal over the entire range of volatility values. The curves for the number of periods581

modeled again begin from similar points for N = 1 time periods, but for in- and582

out-of the money cases, as N increases, it is optimal to reduce α1 and increase the583

number of lattice endpoints in the tails. This result is due to option value being most584

significantly affected in those cases by asset value realizations on the opposite sides585

of the distribution, such as high price realizations for an out of the money option.586

5 Conclusions587

In this paper, we have developed a general discrete approximation method based on588

copulas. In order to construct trinomial trees or lattices using this method, we first589

develop a trinomial model of the underlying Wiener process, W (t). In this approach,590

the specifications for this model are derived by simultaneously solving for a set of591

six parameters for the underlying Wiener process tree. We show that this procedure592

provides a very general trinomial method for modeling variables S(t) or ln(S(t)), and593

that various binomial and trinomial tree methods in the literature are special cases of594

this approach obtained simply by the choice of the particular values of the parame-595

ters. This procedure has the potential benefit of significantly reducing computational596
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costs, since it decomposes the lattice structure in such a way that all future time steps597

are simple multiples of values in the first time increment. This property also makes598

our approach very easy to implement. We have illustrated these properties and their599

practical implications through a set of numerical examples.600

The Black–Scholes differential equation for option pricing and the previously dis-601

cussed literature of parametric binomial/trinomial lattice approaches assume that the602

log-returns are normally distributed under the underlying GBM stochastic process.603

Future research in this area might include a further generalization of this framework604

to include other types of stochastic processes. For example, empirical studies have605

shown that stock returns often have fat tails and that t-distributions fit these returns606

better than normal distributions (e.g., Fama 1965; Praetz 1972; Zhu and Galbraith607

2010). Therefore, it would be useful to extend the copula-based approach to model608

the stock returns as a Lévy-Student process, as discussed in Petroni et al. (2006) and609

Grigelionis (2013),610

d S(t)

S(t)
= (r − δ)dt + σd L(t)611

where d L(t) represents a Lévy-Student process.612

To model the process for a variable S (t) as a tree structure, parallel to our613

previous discussion on normal copulas, we could focus on the Lévy-Student614

process L (t) as a multivariate t-distribution with underlying multivariate t-copulas.615

More specifically, we could utilize the multivariate t-copulas, CT (u1, . . . , un) =616

tΣ,ν(t
−1
ν (u1) , . . . ,t−1

ν (un)) where tν is the univariate student’s t distribution func-617

tion, with ν degrees of freedom, and tΣ,ν the multivariate distribution corresponding618

to tν . The t-copula based dependent tree method can be used to construct the general619

tree structure for the Lévy-Student process following the steps discussed in details620

in Wang and Dyer (2012). Unlike the normal copulas case for the GBM process,621

however, there is no analytical solution to make this tree structure recombining by622

choosing values for a subset of the parameters. Future research in this area might also623

include further generalization of this framework to include path dependent stochas-624

tic processes such as mean reverting processes, jump diffusion processes, stochastic625

volatility processes, and multivariate stochastic processes.626

Appendix 1627

For convenience, we will prove Part b of Theorem 1 first:628

We can show the moments of x (t) = ln (S (t)) are a function of the moments629

of W (t) by using moment generating functions. The moment generating function of630

the normal distribution X ∼ N
(

µ, σ 2
)

is given as MX (z) = exp(µz + 1
2σ 2z2). If631

W (t) ∼ N (0, t), then σ W (t) ∼ N (0, σ 2t), and therefore, MW (t) (z) = exp
(

1
2 t z2

)

,632

and Mσ W (t) (z) = exp( 1
2σ 2t z2)633

We now focus on the log-transformed asset price. For x (t) = ln (S (t)) ∼634

N (ln (S (0)) + νt, σ 2t), we will provide the derivation of its moment generating func-635

tion.636
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Mx(t) (z) = e(ln(S(0))+νt)z+ 1
2 σ 2t z2

= e(ln(S(0))+ν)ze
1
2 σ 2t z2

637

= e(ln(S(0))+ν)ze

(

1
2 t z2

)

σ 2

= e(ln(S(0))+ν)z
(

MW (t) (z)
)σ 2

638

= e(ln(S(0))+ν)z Mσ W (t) (z)639

The following equation can be obtained using the Taylor expansion operation on640

e[ln (S(0))+νt]z :641

e(ln(S(0))+ν)z = 1 + (ln (S (0)) + ν)z +
((ln (S (0)) + ν)z)2

2!
+ · · ·642

which simplifies to643

Mx(t) (z) =

[

1 + (ln (S (0)) + νt)z +
(ln (S (0)) + νt)2z2

2!
+ · · ·

]

×Mσ W (t) (z)644

If the moment generating function exists on an open interval around t = 0, then it is645

the exponential generating function of the moments of the probability distribution:646

E
(

Xn
)

= M
(n)
X (0) =

dn MX

dzn
(0)647

Performing the nth derivatives on the moment generating function of x (t)648

E
(

x (t)n
)

= M
(n)
x(t) (0)649

=
dn

[

1 + (ln (S (0)) + νt) z + (ln (S(0))+νt)2z2

2! + · · ·
]

dzn
∗ Mσ W (t) (z) |z=0650

+ · · · · · · +

[

1 + (ln (S (0)) + νt)z +
(ln (S (0)) + νt)2z2

2!
+ · · ·

]

|z=0651

× M
(n)
σ W (t) (0)652

= cE
(

(σ W (t))n
)

653

= (ln (S (0)) + νt)n + [1 + (ln (S (0)) + νt)z654

+
(ln (S (0)) + νt)2z2

2!
+ · · ·

]

|z=0655

× M
(n)
σ W (t) (0) = (ln (S (0)) + νt)n + E

(

(σ W (t))n
)

656

= (ln (S (0)) + νt)n + σ n E
(

(W (t))n
)

657

Notice that the Taylor expansion only serves as an auxiliary step in the proof. The658

equation is exact and no approximation is required.659

Proof of Part a: By the definition of a moment generating function, Mx(t) (z) =660

E
(

ex(t)z
)

. Since x (t) = ln (S (t)), Mx(t) (z) = E
(

ex(t)z
)

= E
(

eln(S(t))z
)

=661
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E(S (t)z). Therefore, E
(

S (t)n
)

= Mx(t) (n). From the proof of Part b, we know662

that663

E
(

S (t)n
)

= Mx(t) (n) = e(ln (S(0))+νt)n Mσ W (t) (n) = S (0)neνtn× Mσ W (t) (n)664

= S (0)neνtn ×
(

MW (t) (z)
)σ 2

665

⊓⊔666

Appendix 2667

RMSE is used as a goodness-of-fit measure for the CDF of the constructed trinomial668

lattice at the final stage in comparison to the theoretical underlying distributions. In669

this case, it can be shown that for overall distribution fit based on optimization of670

RMSE, the optimal α1 and thence the lattice structure is independent of parameters of671

the underlying GBM process.672

RMSE = (MSE)
1
2673

MSE =
∑

j

pT, j

(

C DF lattice
(

ST, j

)

− C DF theoretical
(

ST, j

)

)2
, j = 0, . . . , 2T674

Since the lattice of the GBM process is transferred from the underlying Wiener process,675

C DF lattice(ST, j ) = C DF lattice(W T, j ) =
∑WT,i ≤WT, j

i pT,i .676

Therefore, either pT, j or C DF lattice(ST, j ) is a function of parameters of the under-677

lying GBM process. If C DF theoretical(ST, j ) is also independent of parameters of the678

underlying GBM process, then MSE hence RMSE is independent of parameters of679

the underlying GBM process.680

Since the CDF of the lognormal distribution is the same as the CDF of the normal681

distribution, with log x substituted for x ,682

CDFlognormal(x) = CDFnormal(logx)683

C DF theoretical(ST, j ) = C DF theoretical(ln(ST, j ))684

ln (S (T )) ∼ N (ln (S (0)) + νT, σ 2T ), and685

ln(ST, j ) = S (0) + νT + σ
√

T WT, j686

C DF theoretical(ST, j ) = C DF theoretical(ln(ST, j ))687

= C DF theoretical

(

S (0) + νT + σ
√

T WT, j − (S (0) + νT )

σ
√

T

)

688

= C DF theoretical(WT, j ).689

Therefore, RMSE of the CDF of the constructed trinomial lattice at the final stage690

in comparison to the theoretical underlying distributions is independent of parame-691

ters of the underlying GBM process, so is the optimal α1 for overall distribution fit692

optimization of RMSE.693
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Appendix 3694

If RMSE is used as a goodness-of-fit measure for option price (e.g, call option price)695

from the constructed trinomial lattice at the final stage in comparison to the theoret-696

ical BSM model, the optimal lattice structure is dependent on the parameters of the697

underlying GBM process.698

RMSE = (MSE)
1
2699

MSE =
∑

j
pT, j

(

Max(0, ST, j − K ) − BS(S0, K , r, δ, σ, T )
)2

, j = 0, . . . , 2T,700

and,701

ST, j = eS(0)+νT +σ
√

T WT, j
702

Similarly, if RMSE� is used as a goodness-of-fit measure for Greeks of option price703

(e.g, Delta) from the constructed trinomial lattice at the final stage in comparison to the704

theoretical BSM model, the optimal lattice structure is dependent on the parameters705

of the underlying GBM process.706

RMSE� = (MSE�)
1
2707

MSE� =
CT,2T − CT,0

ST,2T − ST,0
− e−δT N (d1)708

=

(

Max
(

0, ST,2T − K
)

−Max
(

0, ST,0 − K
)

ST,2T − ST,0
−�BS (S0, K , r, δ, σ, T )

)2

709

and,710

d1 =
ln

(

S0
K

)

+ vT

σ
√

T
, ST, j = eS(0)+νT +σ

√
T WT, j , j = 0, . . . , 2T,711

Therefore, we know that RMSE (RMSE�) will be a function of the parameters of the712

underlying GBM process. The relationship between the optimal RMSE (RMSE�) and713

the parameters of the underlying GBM process are complex as illustrated in Sect. 4.714
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