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ABSTRACT

IMPACT OF ACTUAL AND SELF-PERCEIVED BODY TYPE

ON VISUAL PERCEPTION OF DISTANCES

We investigate several questions regarding the proposition that physical body size and one’s

image of their own body type affect the ability to make accurate judgements of distances. Data

collected include subjects’ guesses of distances of four cones set 10, 15, 20, and 25 meters away

and the weight, BMI, and self-perception of body image for each of 67 subjects. Interest lies

in determining the covariates that are most important in explaining one’s ability to accurately

judge distances and whether weight or BMI is the better explainer among the physical body size

predictors. We utilize linear mixed models to account for correlation among each subjects’ own

distance guesses and to allow for flexible modeling of subject-specific effects. Flexibility is further

promoted through use of model averaging techniques to account for model selection uncertainty

inherent in typical approaches in which an analyst selects only one model from which inferences

are made. A generalization of the coefficient of determination from ordinary linear models is made

to the linear mixed model setting (R2
LMM ) in order to provide an additional goodness measure for

fixed effects and for individual fixed effects themselves.

Baseline differences among subjects’ ability to accurately judge distances are so vast that ex-

tracting the importance of the fixed effects becomes difficult. It is found that body size is a signif-

icant predictor of subjects’ ability to accurately judge distances but body image is not at the 0.05

significance level. We recommend choosing weight over BMI as a predictor of guessing behavior

based on information criteria, model averaging, and the generalized R2
LMM . Specifically, heavier

individuals tend to guess more accurately.
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1 BACKGROUND

1.1 SCIENTIFIC QUESTIONS OF INTEREST

A question surfacing in psychological investigations is the following: how does one’s percep-

tion of reality differ based on one’s perception of the self? Dr. Witt has pursued this question in

several applications including determining if baseball players with higher batting averages tend to

see the baseball as being larger than do other players [34]. Other, related studies carried out by Dr.

Witt include determining if parkour athletes with more favorable views of their own abilities saw

walls as being shorter than less confident athletes [30] and if subjects suffering chronic pain tended

to perceive distances as being longer [33].

In this application, we attempt to investigate the question: does one’s physical size or one’s

perception of such affect their ability to judge distances? Say that a subject views themselves as

having a certain body type and they perceive a cone that is placed near to them as being far away.

This could serve as evidence of perceived pessimism that associates with learned hopelessness for

those folks who are uncomfortable in their own bodies. In a related manner, this investigation can

be used to identify whether physical limits of one’s body size affects their ability to judge distances.

For example, we might expect folks who are heavier to be taller, and those taller subjects to be able

to judge distances more accurately due to their favorable visual vantage point higher from the

ground than their shorter counterparts.

In our present problem, we would like to investigate the relationship between a subject’s ac-

curacy at judging distances and their real and perceived body types. To construct her set of data,

Dr. Witt collected 67 subjects. Subjects were shown four cones that were placed at 10, 15, 20, and

25 meters away and they were asked to judge the distances between themselves and each of the

four cones, in turn. In our analysis, we took these guessed distances as our response vectors in the

subsequent analyses.
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In addition to the four responses, the additional measurements made on each subject included

their weight in pounds (denoted by W, where necessary), body mass index (BMI), and slef-perceived

body type (I for image). In order to assess this last measurement, Dr. Witt presented a placard dis-

playing silhouettes of varying body types (skinny and tall, short and stout, tall and stout, etc.) and

individuals were asked to indicate the body type they believed to describe them best. Lastly, we

denote the physical distances being guessed D.

It is important to note that the inclusion of subjects was carried out on a voluntary basis and

no randomization scheme was employed. Inherent to this effect, any conclusions that we reach

in our analysis are not validly generalizable to an overarching population. Instead, they will only

be directly applicable to the sampled subjects. However, if considered with a liberal mindset and

a healthy amount of caution, the results could very well serve as preliminary conclusions about a

population or sub-population of interest in future studies (e.g., CSU students or CSU psychology

majors).

In accordance with her data collection, Dr. Witt has expressed interest in the following ques-

tions.

(I) Does actual body type (as measured by weight or BMI) or perceived body type affect one’s

ability to accurately judge distances?

(II) Is weight or BMI a better predictor of accurate distance guesses?

Our analysis of the sample data will primarily focus on the pursuit of answers to questions (I)

and (II), while making sure that our analysis uses appropriate approaches and modeling techniques.

Confounding a straightforward analysis involving a multiple linear regression model is the fact

that the four repeated measurements made on each subject are correlated amongst themselves,

violating the crucial, canonical assumption of independent responses found among ordinary re-

gression models. To cope with this complication, we first investigated the literature on repeated

measures analysis.
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1.2 REPEATED MEASURES ANALYSIS

One aspect of this study that we must take into account when delving into our data is that

multiple measurements are made on each subject. Studies with this type of structure are typically

called repeated measures studies and these have a particularly unique characteristic: responses on

the same individual tend to be correlated amongst themselves.

Take a simple example. Suppose a researcher is measuring subjects’ blood pressure before

drinking coffee and again after drinking coffee, we expect for the two measurements to be related

in some way because the the two measurements are made on the same individual and we expect

that any particular individual has some baseline blood pressure about which any instantaneous

measurement will simply be a deviation. In fact, if the correlation among responses made by the

same subjects is ignored, we pay the price by making inference that is often too conservative (e.g.,

confidence intervals that are too wide) and end up wasting information embedded in our data’s

special structure.

To see this, consider the simple, paired, setup in whichX1 is the blood pressure of an individual

before drinking coffee and X2 is the blood pressure of the same individual after drinking coffee.

Then, we can take a look at the variance of the difference between these two measurements.

VarpX1 ´X2q “ VarpX1q ` VarpX2q ´ 2 CovpX1, X2q

“ VarpX1q ` VarpX2q ´ 2
a

VarpX1qVarpX2qCorrpX1, X2q

“ σ2
1 ` σ

2
2 ´ 2σ1σ2ρ12

Compare this to the situation in which we treat the two measurements as independent, as we

might naı̈vely do if we were to apply standard methods to repeated measures data.

VarpX1 ´X2q “ VarpX1q ` VarpX2q ´ 2 CovpX1, X2q

indep
“ VarpX1q ` VarpX2q ´ 0

“ σ2
1 ` σ

2
2

3



Thus, if the pair of observations on the same subject are positively correlated such that ρ12 ą 0

then we will see a decrease in the variance of the difference in the measurements if we do happen

to account for their correlation. This yields narrower confidence intervals and more powerful

tests when compared to the situation in which we ignore this aspect of the data. By this very

simple example, we see value in accounting for correlation among measurements made on the

same subject and an extension to more than 2 measurements per subject and to more than one

subject results in similar revelations.

Historically, there have been several approaches to handling the correlation among subject’s

responses. These include models such as the repeated measures ANOVA, the use of summary

measures, and the linear mixed model formulation. The repeated measures ANOVA took advan-

tage of Fisher’s analysis of variance approaches popularized in the early 20th century. In this

approach, the response vector of k response measurements for the ith subject (Yi) is supposed to

be a function of a matrix of categorical predictor variables (Xi), a random, subject-specific variable

(ui), and random error (εi):

Yi “ Xiβ ` 1ui ` εi

where i “ 1, . . . , n indexes subject. As is typical of ANOVA-type analyses, the researcher may

then partition the various sources of variability and use overall F tests (or multiple comparisons

procedures) to test for differences among groups of a treatment factor, among measurement occa-

sions, or an interaction of the two.

The inherent problems associated with using a repeated measures ANOVA approach to re-

peated measures data include the following: (1) the restriction of having categorical predictor

variables can hamper investigations in which continuous predictor variables are hypothesized to

be related to the response, (2) it is difficult to manipulate the model to take into account messy

data forms such as those with missing measurements or unequal time spacing between measure-

ments, and (3) the model makes stringent assumptions about the covariance structure of the re-

4



sponse vectors. Namely, it is assumed that the variance of the jth measurement on the ith subject,

VarpYijq “ σ2
u ` σ2

ε and the covariance between any two measurements on the same subject,

CovpYij, Yikq “ σ2
u for j ‰ k – this covariance structure is called compound symmetry.

Verbeke and Molenberghs (1997) [32] describe the historic use of summary measures to re-

duce the dimensionality of the response vectors. In this approach, summary measurements are

obtained by, for example, taking the mean of the vector of responses or by fitting a polynomial

curve to the responses for a subject and calculating the area under this curve. The k responses

for the n subjects are then reduced to one response per subject and ordinary regression, ANOVA,

or other ordinary statistical analysis methods can be applied directly to the now one-dimensional

responses. Although computationally attractive, a problem with this approach is that missing data

or measurements made at unequal times between subjects is difficult to rectify. In addition, the

summarization of the k responses with one value sacrifices information and eliminates the salient

and often information-rich feature of these types of studies: the correlation among a subject’s

responses.

To avoid the problems posed above, we next look to a more flexible approach reminiscent of

the well-documented linear model by examining the linear mixed model (LMM).

1.3 LINEAR MIXED MODEL FRAMEWORK

Correlation amongst responses violates the ordinary multiple regression assumptions of inde-

pendent observations. In order to cope with this, Fitzmaurice, Laird, and Ware [11] propose the use

of a linear mixed model. In this model, assume that we collect ki response measurements (across

ki occasions which could be across time, space, or even a simple series of measurements, but here

we will simply call them occasions) on each of n subjects – note that we could have taken different

numbers of measurements on each subject but our data are balanced and so we consider only the

case in which ki “ k for all i “ 1, . . . , n. We propose that the vector of responses from each

subject is some linear combination of a set of p fixed predictor variables and q random predictor

5



variables. That is,

Yi “ Xiβ ` Ziui ` εi (1)

Where

Yi : vector of k responses for subject i

Xi : matrix of covariates for subject i (for p fixed effects)

β : vector of fixed effects parameters

Zi : matrix of covariates for subject i (for q random effects)

ui : vector of random effects parameters for subject i

εi : vector of random errors for subject i

Traditionally, the random effects and the random errors are assumed mutually independent and

normal

ui
indep
„ Nqp0,Gq

εi
indep
„ Nkp0,Riq

where G is a covariance matrix for the random effects and Ri are covariance matrices for the

random errors for subject i, each taking on user-specified structures. Furthermore, Varpεq “ R

is assumed to be a block-diagonal matrix with matrices R1, . . . ,Rn along the diagonal and zeros

elsewhere to reflect the independence of random errors between subjects.

In this framework, the vectors of k response measurements are referred to as response pro-

files. The population is assumed to have a mean response profile that is averaged across all of the

subjects, unconditional (or marginal) on subject-specific effects:

EpYiq “ EpXiβ ` Ziui ` εiq
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“ Xiβ ` ZiEpuiq ` Epεiq

“ Xiβ (2)

Not only can we average across the population, but we can also average across individual

subject responses, conditional on subject-specific effects:

EpYi|uiq “ EpXiβ ` Ziui ` εi|uiq

“ Xiβ ` ZiEpui|uiq ` Epεi|uiq

“ Xiβ ` Ziui (3)

which denotes the mean response profile for subject i. Each individual subject, then, is modeled as

having their own mean response profile being a normal deviate about the population mean response

profile and each individual response is a normal deviate about that subject’s own mean profile. In

this way, we can naturally model the between-subject variability and within-subject variability as

a direct consequence of the model formulation.

Using these main ideas, we can employ a special case of the above linear mixed model called

the random coefficients model. In this special case, the matrices Z1, . . . ,Zn contain coefficients

of best-fitting polynomials (lines, if each subject’s matrix contains only the identity and another

predictor) to the subject’s responses. Within the special case, we can test for the population-wide

fixed effects and their influence on the response as well as the effect of the uniqueness of subjects

themselves and can visualize these via spaghetti plots. This idea is a simplification that offers itself

to convenient, intuitive interpretations as one can imagine a population curve about which subject-

specific curves vary randomly. Even though it is a special case intended to ease implementation by

practitioners, the theoretical and computational conveniences inherent in the more general linear

mixed model carry over directly.
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1.4 LINEAR MIXED MODEL ESTIMATION

With a model formulation in mind, the problem now becomes one of estimation; how might

one estimate the components and the variances of the model in Equation (1). In our treatment, we

will consider the model from a frequentist standpoint. In this way, we only attribute randomness

to the error terms (which is propagated through to the responses) and the effects that we call ran-

dom, the ui’s. A historically popular approach involves likelihood methods. Within the likelihood

paradigm, there are two main methods of estimation in the linear mixed model: maximum likeli-

hood (ML) and restricted maximum likelihood (REML). These two estimation procedures differ

in their implementation and intended use and we visit each briefly.

In maximum likelihood estimation, we seek to maximize the likelihood of the unconditional

responses with respect to both the regression coefficients, β0, . . . , βp, and the variance terms,

VarpYiq “ VarpXiβ ` Ziui ` εiq

“ VarpZiuiq ` Varpεiq

“ ZGZT
`Ri (4)

” Vi

simultaneously. That is, we maximize:

Lpβ,Vi|Yiq “ p2πq
´k{2

¨ |Vi|´1{2
¨ exp

"

´
1

2
pYi ´Xiβq

TV´1
i pYi ´Xiβq

*

ùñ Lpβ,V|Yq “ p2πq´nk{2 ¨
n
ź

i“1

|Vi|´1{2
¨ exp

#

´
1

2

n
ÿ

i“1

pYi ´Xiβq
TV´1

i pYi ´Xiβq

+

ùñ `pβ,V|Yq “ ´
nk

2
logp2πq ´

1

2

n
ÿ

i“1

log|Vi|´
1

2

n
ÿ

i“1

pYi ´Xiβq
TV´1

i pYi ´Xiβq

where Lp¨q and `p¨q denote likelihoods and log likelihoods, respectively, Y1, . . . ,Yk are concate-

nated column-wise to construct Y, X1, . . . ,Xk are concatenated column-wise to construct X, and

V1, . . . ,Vk are aligned in a block-diagonal matrix V.
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The maximization leads to estimators pβML and pVML. Note that the estimator for the regression

coefficients is derived similarly and take the same form as weighted least squares estimates [18].

In general, we have,

pβML “

´

XT
pV´1X

¯´

XT
pV´1Y (5)

VarppβMLq “ Var

ˆ

´

XT
pV´1X

¯´

XT
pV´1Y

˙

“

„

´

XT
pV´1X

¯´

XT
pV´1



pV

„

pV´1X
´

XT
pV´1X

¯´


“

´

XT
pV´1X

¯´ ´

XT
pV´1X

¯´

XT
pV´1X

¯´

“

´

XT
pV´1X

¯´

(6)

The estimator pβML takes a normal distribution with the above mean and variance assuming

the model assumptions hold. The estimator derived from the same maximization for the covari-

ance matrix contains the true regression coefficients, β, and one typically uses ’hat estimation’ by

plugging in the maximum likelihood estimates into the equation during computation. Estimation

such as this does not take into account the extra uncertainty inherent in using an estimator in the

place of true parameter values. This is one of the several disadvantages of the ML estimator for the

variance components. Another disadvantage is the fact that the elements of pV are typically biased,

especially when the number of regressors, p, is near the overall sample size, nk [15].

In order to overcome these, while retaining the advantages of maximum likelihood estima-

tors of asymptotic normality and efficiency, and hence consistency [7], another likelihood-based

method is often used to derive an estimator for the covariance components of the model, REML.

The goal behind REML estimation is to achieve an unbiased estimator for V by transforming the

data so that the distribution of the transformed data is independent of the regression coefficients, β.

Harville (1977) demonstrates how to perform this transformation by taking linear combinations of

the responses by multiplying KTY such that XTK “ 0. Rao (1962) [25] showed that the general

solution to this system of equations takes the form,
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K “ pI´ pXT
q
´XT

qA

“ pI´XpXTXq´XT
qA

“ pI´HqA

ùñ KTY “ AT
pI´HqY

“ ATe (7)

where X´ denotes a generalized inverse of the matrix X, A is some arbitrary matrix, H denotes

the so-called hat-matrix from linear regression, and e is a matrix of regression residuals. From

Equation (7), we see that the transformed data are really a subset of the residuals, revealing the

meaning of another form of the acronym REML: residual maximum likelihood. Also, we can see

from both Equation (7) and from the fact that the transformed responses now have a mean of zero

(inherited from properties of the residuals) that the influence of the regression coefficients has been

nullified by this transformation since the original responses’ distribution only depended upon the

regression coefficients through the mean response. The resulting likelihood for the new data was

shown by Harville (1974) [14] to be:

Lpβ,V|KTYq “ p2πq´pn´pq{2 ¨
n
ź

i“1

|Vi|´1{2
¨ exp

#

´
1

2

n
ÿ

i“1

pYi ´Xiβq
TV´1

i pYi ´Xiβq

+

¨

∣∣∣∣∣ nÿ
i“1

XT
i Xi

∣∣∣∣∣
1{2

¨

∣∣∣∣∣ nÿ
i“1

XT
i V´1

i Xi

∣∣∣∣∣
´1{2

ùñ `pβ,V|KTYq “ ´
n´ p

2
logp2πq ´

1

2

n
ÿ

i“1

log |Vi|´
1

2

n
ÿ

i“1

pYi ´Xiβq
TV´1

i pYi ´Xiβq

`
1

2
log

∣∣∣∣∣ nÿ
i“1

XT
i Xi

∣∣∣∣∣´ 1

2
log

∣∣∣∣∣ nÿ
i“1

XT
i V´1

i Xi

∣∣∣∣∣
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The above likelihood can be maximized to find pVREML, which will no longer have the disad-

vantage of being biased as under ML estimation. Maximization of the log likelihood is not trivial

and is often done numerically.

We next turn briefly to the problem of ’estimating’ the random coefficients, ui for i “ 1, . . . , k.

Instead of observing this estimation as an ordinary estimation problem, we can instead think of it

as a prediction problem. Referencing Equation (3), we see that the subject-specific portion of the

LMM, Ziui is simply the additive effect of that particular subject’s random effect on the overall

mean response. Thus, estimating ui is akin to predicting the portion of the ith subject’s mean

response profile that is attributable to that subject and not the overall population.

Taking from ordinary, Gaussian multivariate linear models [17], we know that we can construct

the best linear unbiased predictor (BLUP) for the subject-specific random effects with methods

similar to predicting the expected value of a set of future responses based on those we have already

observed. If we consider the column-wise concatenation of the response vectors and random coef-

ficients for all k subjects following a bivariate normal distribution as elicited by the ordinary LMM

assumptions,

»

—

—

–

Y

u

fi

ffi

ffi

fl

„ N

¨

˚

˚

˝

»

—

—

–

Xβ

0

fi

ffi

ffi

fl

,

»

—

—

–

ZGZT `R ZG

GZT G

fi

ffi

ffi

fl

˛

‹

‹

‚

we can obtain the BLUP for the random effects by estimating the conditional mean of the random

effects given the observed data. This estimation follows directly from the construction of the

conditional distribution of u|Y.

u|Y „ N
´

GZT
`

ZGZT
`R

˘´1
pY ´Xβq ,G´GZT

`

ZGZT
`R

˘´1
ZG

¯

Therefore, if we employ ’hat estimation’ by substituting the estimated fixed effects in for their

true counterparts, then the estimated mean random effects given the observed data can be expressed
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as,

pu “ Epu|Yq “ pGZT
´

ZpGZT
` pR

¯´1 ´

Y ´Xpβ
¯

(8)

which is referred to as the empirical best linear unbiased predictor (EBLUP) due to our using the

estimated vector of fixed effects parameters and estimated covariance matrices using the user’s

estimation method of choice.

Now that we have estimation procedures for all three major components of the LMM, we can

return to the issue of identifying the proper estimation procedure. There are two main situations in

which we will use our estimation methods: in choosing among models and estimating both fixed

effects (β terms) and covariance terms (parameters composing V).

Consider the problem of choosing among competing models first. At the behest of many au-

thors [11, 20, 21, 32, 35] one should use ML to compare models with the same covariance structure

but differing fixed effects. When choosing among models with differing covariance structures but

the same fixed effects one should use REML-based likelihoods. The reasons for the heavy hand

are many.

First, even if we are comparing non-nested mean models with information criteria, one must be

aware of differences among the ML-based and REML-based information criteria as specified by

the software used by the analyst. For example, in SAS 9.4 [26] the information criteria under ML

penalize on p ` q˚ (the total number of fixed effects and covariance parameters estimated in the

model) but the REML model size penalty is q˚ (the number of covariance parameters estimated).

Thus, REML comparisons with information criteria don’t even take into account the number of

fixed effects, further demonstrating the invariance of REML estimates to changes in the model

for the mean and the need for comparing mean structures via ML estimation. We prefer REML

for comparing covariance structures, given a set of fixed effects, since we yield the advantages

discussed above.
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When we turn to the problem of estimation, we must take into account that in this applica-

tion, we intend to perform model averaging. We plan to use weights that depend on the type of

estimation procedure being utilized. We plan to rank models using criteria derived from ML esti-

mation. If we were to use REML to construct model averaging weights, this might be considered

improper because if we compare models with different fixed effects using this procedure, we are

comparing models fit to completely different sets of data – this stems from the fact that in REML,

the transformation of the responses to get rid of the dependence on the fixed effects relies on the

fixed effects whose influence we are eliminating. Therefore, to retain the original set of data and

maintain a cohesive picture of the information contained in those data, we will use ML estimation

to construct our weights.

What method should we now use to estimate the models to be ranked by such weights? We

could use REML to avoid the bias imposed on the covariance estimators, but again, this would

be disingenuous because we have constructed weights based on ML techniques in order to avoid

comparing models based on entirely different transformations of the data. Therefore, the most

appropriate estimation method left to us is ML. Even though this produces biased covariance pa-

rameter estimates, this can be defended by our moderate sample size and the opinion that we should

remain consistent in our approach.

We do note, however, that there has been some opposition to the staunch stance against using

REML-based methods to choose among models with differing fixed effects. Notably, Gurka (2006)

[13] recently performed several simulation studies in which he attempted to select what he knew to

be a true underlying model using ML and REML-based information criteria. In his investigation,

he varied only the true mean model in some simulations and varied both the true mean and covari-

ance structures in others and showed that the REML information criteria were able to choose the

true model for the mean a comparable proportion of the time as ML-based methods. Even with

this enlightening counter-example, however, we stick with the suggestions discussed above due to

conventional reasoning and because the situation described by Gurka has not been investigated in

more general settings as of yet.
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1.5 LINEAR MIXED MODEL DIAGNOSTICS

In order to assess the fit of the models, we appeal to standard residual diagnostics. Histori-

cally, residual diagnostics have been well documented in the case of the ordinary linear model,

but the literature is more sparse in terms of diagnostic tools applicable to the linear mixed model

specifically. As a result, many of the diagnostic tools have been adopted from the ordinary linear

regression and the multiple linear regression settings.

One of the features of the linear mixed model that complicates the diagnosis adequate model fit

issues is that there are the two separate, but related, structures for the covariance and the mean that

make up the model as a whole. In the same thread, there are two separate, but related, formulations

of what we might call residuals of the LMM. These directly relate to the between-subject (popula-

tion averaged) and within-subject (subject-specific) effects from Equations (2) and (3). That is, we

can have either of,

ei,marg “ Yi ´Xi
pβ (marginal)

ei,cond “ Yi ´Xi
pβ ´ Zipui (conditional)

The marginal residuals measure the deviations of the observed responses about the overall

mean response profile while the conditional residuals measure the deviations of the observed re-

sponses for specific subjects about that subject’s own mean response profile. These two types of

residuals measure slightly different aspects of the model. Firstly, both types can be used to judge

the adequacy of the mean structure. The former measure the ability of the chosen between-subject

(i.e., fixed) effects to describe the data and the latter are aimed at measuring how well the choices

of both between- and within-subject (i.e., fixed and random) effects model the mean structure of

the data. Secondly, the marginal residuals focus more on the contribution of the within-subjects

covariance matrices R1, . . . ,Rn while the conditional residuals can be used to pinpoint the conse-

quences of imposing certain forms on the entire response covariance structure induced by V. That

is, both can be used to diagnose whether these covariance structures adequately model the sources
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of variance in the data (subject-specific variance across occasion and the variance of he random

coefficients) [27].

Of course, just as in ordinary regression settings, there are problems with using the raw resid-

uals. The most egregious characteristic of the raw residuals stems from the fact that they are

but predictions of the true error terms. As such, they are random variables and typically inherit

heteroskedasticity from the fact that predictions made further from the bulk of the data are more

imprecise. As such, we might spuriously declare a point far from the bulk of the data, in the di-

rections of the covariates, an outlier when, really, we expect points far out in the directions of the

covariates to vary much more than those closer to the bulk of the data. To mitigate this characteris-

tic of the raw residuals, one may standardize them according to their estimated variances – which

are functions of the covariates. This way, we may more accurately judge points as being out-

liers. We accomplish this by first deriving the estimated variances of the marginal and conditional

residuals. For the following, let Pi “ Xi

´

XT
i
pV´1
i Xi

¯

XT
i . Notice that Pi “ PT

i and,

Pi
pV´1
i Pi “ Xi

´

XT
i
pV´1
i Xi

¯´

XT
i
pV´1
i Xi

¯´

XT
i
pV´1
i Xi

¯

XT
i

“ Xi

´

XT
i
pV´1
i Xi

¯

XT
i

“ Pi

Then, we can derive,

yVarpei,margq “yVar
´

Yi ´Xi
pβ
¯

“yVar
”´

I´Pi
pV´1
i

¯

Yi

ı

(from Equation (5))

“

´

I´Pi
pV´1
i

¯

yVarpYiq

´

I´Pi
pV´1
i

¯T

“

´

I´Pi
pV´1
i

¯

pVi

´

I´ pV´1
i Pi

¯

“ pVi ´Pi ´Pi `Pi
pV´1
i Pi
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“ pVi ´Pi

Similarly, we can find the variance of the conditional residuals. For the following, let Qi “

ZiGZT
i V´1

i .

yVarpei,condq “yVar
´

Yi ´Xi
pβ ´ Zipui

¯

“yVar
”´

I´Pi
pV´1
i

¯

Yi ´

´

QipYi ´Xi
pβq
¯ı

(from Equation (8))

“yVar
”´

I´Pi
pV´1
i

¯

Yi ´

´

QipI´Pi
pV´1
i qYi

¯ı

“yVar
”

pI´Qiq

´

I´Pi
pV´1
i

¯

Yi

ı

“ pI´Qiq

´

pVi ´Pi

¯

pI´Qiq
T

Therefore, to calculate the studentized marginal and conditional residuals, we can simply di-

vide the raw residuals by their variances, as derived above. To do so, we can let, for example,

eij,marg be the jth element of the ith subject’s marginal residual vector and yVarpei,margqj denote

the jth diagonal element of the covariance matrix of the marginal residuals for the ith subject. Our

studentized residuals will then take the following form.

esij,marg “
eij,marg

b

yVarpei,margqj

(studentized marginal)

esij,cond “
eij,cond

b

yVarpei,condqj

(studentized conditional)

Another problem with the raw residuals – specifically for the marginal residuals – from repeated

measures problems is that they can be correlated and are typically heteroskedastic, a common trait

seen in these types of data. This confounds the ability of some of the standard residual diagnostic

tools one might ordinarily use. Therefore, it has been proposed [11, 26, 32] that one should scale

the residuals by a Cholesky decomposition of the covariance matrix of the responses for each
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individual as shown below.

yVarpYiq “ pVi

pVi “ pLi
pLT
i

The second equality is the result of a Cholesky decomposition and Li is a lower triangular

matrix. Then, when the residuals are scaled by the inverse the Cholesky lower triangular matrix,

e˚i “
pL´1
i ei, we will, theoretically, be left with residuals that are uncorrelated and have a standard-

ized variance.

Once a choice of one or more types of residuals is made for use in a certain application, one can

construct the usual residual diagnostic plots. A plot of the residuals versus the fitted values can be

used to check for the lack of fit of both the mean and covariance structures simultaneously. If there

is some sort of systematic trend in the plot then one should be aware of the possibility that there

is likely some pattern inherent in the data that is not picked up by one or both components of the

model. One may also check if there is heteroskedasticity, which might be indicative of an inappro-

priate covariance structure either in the specification of the forms of the two covariance matrices or

in the random effects themselves. One should recall that we typically expect such behavior in the

raw residuals in repeated measures data and so we might want to check this particular assumption

using the scaled residuals instead.

Another canonical plot that may be used in the LMM context is the normal quantile-quantile

(QQ) plot of the residuals. This plot is constructed by plotting the quantiles of the standardized

residuals chosen by the user against the quantiles of the standard normal distribution. It allows

one to observe the adherence of the specified model to the normality assumptions applied to the

random effects and the errors. If there is evidence of deviation from a straight line in this plot then

there is likely to be a violation of the normality assumptions, which indicates a misspecification of

the distributional assumptions of the random components of the model.
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The last characteristic one should investigate in the repeated measures setting is whether there

are outlying observations. Again, just like there are two types of residuals that one may construct,

there are also two types of outliers to check. The first are outliers with respect to the population

averaged response profile. These include subjects whose entire mean response profile deviates

from the response profile that has been averaged across all subjects. The second type of outlier

include individual responses by specific subjects which deviate from that subject’s mean response

profile.

Occasion

R
es

po
ns

e

1 2 3 4

Population Mean Profile
Between−subject Outlier Profile
Between−subject Outlier Mean Profile
Within−subject Outlier Profile
Within−subject Outlier Mean Profile

Figure 1.1: Illustration of the two different types of outliers in our repeated measures setting. The blue lines illustrate
the between-subject outlier’s raw response profile and their mean response profile while the green lines illustrate the
same for the within-subject outlier. The population averaged response profile is included for reference as the red line.

The two types of outliers are illustrated in Figure 1.1. We assume that we have four mea-

surement occasions and we measure some response on each subject for the four occasions. The

between-subject outlier’s raw responses are connected by the solid blue line and the mean response
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profile for this subject is the dashed blue line. Notice that this subject’s entire mean response pro-

file exceeds the population averaged profile and this deviation is visually sufficient to judge that

this subject’s response behavior is likely different from the average at every measurement occa-

sion. The within-subject outlier is made by the subject whose raw and mean response profiles are

plotted in green. This subject’s response at the third measurement occasion seems to deviate from

their own (and the overall) average response while the rest of the occasion measurements seem to

align well with the average. This indicates that we likely have a within-subject outlier at the third

occasion for this subject and that their response behavior may be different at that occasion only.

Besides visually inspecting for outlying values in the two residual plots mentioned above, a

more direct way to detect outlying values is to employ leave-one-out methods. In leave-one-out

methods, statistics are calculated after deleting one observation or subject at a time. If an observa-

tion or a subject are very influential in the construction of the quantities of interest, then we will

see statistics that greatly change in value in a plot of those leave-one-out statistics.

One such statistic is Cook’s distance [18, 26]. Cook’s distance measures the influence of an

observation or subject on the parameter estimates from the model. If we let pβ denote the vector of

estimated fixed effects using all of the data and pβp´iq denote the same estimated parameters using

all of the data except the ith observation (or subject) then we would compute Cook’s distances as

follows.

Di “

´

pβ
T
´ pβ

T

p´iq

¯´

XT
pV´1X

¯´ ´

pβ ´ pβp´iq

¯

rank pXq

Where these are computed for i “ 1, . . . , n if looking at raw observations and i “ 1, . . . , k

if looking at the influence of subjects. The similarity of the form of the Cook’s distances to F-

test statistics (see Equation (13) below) has prompted many to compare them to quantiles of an

F distribution in order to judge the influence of observations on the estimated parameters. Such

an F distribution typically has numerator and denominator degrees of freedom equal to rank pXq

and either n ´ rank pXq (for observations) or k ´ rank pXq (for subjects), respectively. The
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percentile against which one compares can be chosen by the user but is canonically the 25th to

judge borderline influential or the 50th to judge influential points. These choices of percentiles

mean that outliers are those points which result in standardized, absolute changes in the estimated

parameters upon their exclusion that occur less than 50% of the time among repeated experiments.

This statement assumes that the Cook’s distances really are distributed as F random variables.

Since this distributional assumption is not exact, the lenient cutoff of 50% is used rather than a

more strict cutoff of, say, 90%.

Using these diagnostic tools, one can determine whether the model being fit is appropriate or

not. If the fit happens to be questionable, one may implement a number of remedial measures

including changing the forms of the covariance matrices or changing the random effects included

in the model. The mean structure can be similarly changed by including more or deleting existing

fixed effects from the model. Also, one can change the distributional assumptions of either the

random effects, the random errors, or both simultaneously. Once the model fit seems adequate,

one may then proceed to model selection and inference.
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2 METHODS

2.1 AKAIKE’S INFORMATION CRITERION (AIC) AND MODEL AVERAGING

In 1974, Hirotugu Akaike expanded on his proposal of an information criterion that married

the two foundational frameworks of information theory and likelihood theory [1]. In his paper,

Akaike was looking to develop a criterion that would allow quantitative selection amongst several

competing probability distributions in modeling the true nature of some real phenomenon. His

contention with the hypothesis testing framework solidified by Neyman and Pearson was that the

true nature of reality does not conform to the false dichotomy imposed by a choice among one

null and one alternative hypothesis. Akaike might have agreed with George Box in saying that

”all models are wrong, but some are useful” [4]. In other words, reality is more complex than the

models that we propose and those models that we do put forth are only approximations for the true

nature of reality – and, we hope, at least some of those approximations are representative enough

to produce meaningful conclusions and decisions.

The basis of the Akaike’s information criterion (AIC) is derived from information theory, signal

processing, and the quantification of entropy via the Kullback-Leibler difference in information.

Consider a true data-generating process, t, which we attempt to approximate with some probability

model based on a set of parameters, fpx|θq. The difference in the true amount of information

contained in t and our own model, on average, can be expressed as,

Ipt, fpx|θqq “

ż

tpxq logptpxqqdx´

ż

tpxq logpfpx|θqqdx

This represents the amount of information contained in full reality, t, that is lost by our approx-

imation of such with the probability model fpx|θq. Since t is unobserved, we cannot compute this

quantity directly, but it can be estimated up to a constant. By several asymptotic approximations

21



and distributional asymptotic theory, we end up with an information criterion [1],

AIC “ ´2`pθ|xq ` 2k

One issue with the ordinary AIC is that it is based on asymptotic theory and hence requires,

much like an appeal to the central limit theorem, a large sample size in order to retain any optimality

qualities supported by likelihood theory. However, Burnham and Anderson have supported another

approximation to the Kullback-Leibler distance measure by using a second-order bias correction

(akin to the second-order delta method) in the case of small to modest sample sizes. Their measure

is called the corrected AIC1,

AICc “ ´2`pθ|xq ` 2k `
2kpk ` 1q

n´ k ´ 1

“ AIC`
2kpk ` 1q

n´ k ´ 1

Presently, AIC is used in a couple of distinct ways. In one way, the AIC is used as a static

model selection criterion. Say that we use AICc for model selection. Each model in a set would

be assigned a value of AICc and that model with the most attractive value (that is, the lowest) is

chosen as the ’best model’ and is then used for inference procedures as if this model was divined

before the study began, ignoring all other models. Other criteria can be used in similar contexts,

such as the Bayesian information criterion (BIC), Takeuchi’s information criterion (TIC), deviance

information criterion (DIC).

Like Akaike and Box before them, Burnham and Anderson support the view that reality is not

embodied by one or any number of models but is instead only approximated by such [5]. Due to

their belief, the two have proposed performing mulitmodel inference with the help of information

criteria. Instead of ranking models among a set of candidates, choosing one out of the set, and bas-

ing all inference on that single model, one should somehow incorporate the information contained

1In the coming analysis, we chose to employ the small-sample corrected Akaike information criterion and so focus
our discussion for the remainder of this report on AICc.
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in an entire set of candidate models and base inference on that collection of models, thereby ac-

counting for the uncertainty embedded in the model selection process and avoiding model selection

bias.

One method to accomplish this is to average estimates across models. Model averaging is

prevalent in the literature and is practiced in a wide variety of applications including frequentist

linear mixed models by Chen et al. (2013) [8], Bayesian models by Hoeting et al. (1999) [16],

and, even though it is not stated explicitly by the authors, in a genetic optimization algorithm by

Zhu et al. (2006) [36]. In essence, model averaging is an exciting prospect because it accomplishes

two important tasks. First, it gives one a method to account for the uncertainty induced by model

selection. Traditionally, one would typically select one model and ignore the uncertainty intro-

duced by the choosing of that one model among all others. Second, model averaging, in regression

especially, allows for an investigator to identify key covariates in their model without forcefully

excluding those deemed unimportant by a likelihood ratio test or a similar approach. That is, all

of the covariates that were considered to be important scientifically before analysis are retained

in the model averaging approach, avoiding the problem of choosing a parsimonious model that

eliminates information contained in those variables entirely – referred to as model selection bias.

The idea behind model averaging is simple. Before an analysis is begun – or, preferably, in

the planning stages of the study – a set of possible models that explain the phenomenon under

observation is constructed. For example, if one were conducting a study on disease dynamics,

investigators might list important covariates such as genetic factors, health and nutrition of the

specimens, and environmental conditions. A sequence of possible models explaining dynamics of

the disease would then be constructed by taking either all subsets of those variables (if feasible) or

at least a representative subset that are supported by scientific or logical reasoning.

The models chosen are then estimated and, in the case of information criteria-based model

averaging, ranked according to the AICc. Model averaged estimates are then constructed by tak-

ing weighted averages of parameter estimates. The weighting scheme is based on AICc and the

weighted averages are typically constrained to be convex combinations of the parameter estimates.
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In deriving weights to be used in model averaging, we follow the logic of Burnham and An-

derson (2004) [5]. Let us suppose that it has been predetermined that there are A models under

consideration denoted by M1, . . . ,MA. Using an estimation method (e.g., ML or REML) we es-

timate the parameters of the models and compute AICc values for each, AICc1, . . . , AICcA. We

may denote the ranked set of AICc values from the least to the greatest by AICcp1q, . . . , AICcpAq.

Then, we may derive model weights based on the information criterion by first considering the dif-

ferences between each model’s information value and that from the model with the lowest AICc,

∆AICci “ AICci ´ AICcp1q, i “ 1, . . . , A

Recall that since these AICc values are estimates of expected Kullback-Leibler distances, tak-

ing the difference of AICc values eliminates the unobservable constant term, `pfpx|θ˚qq. These

give us an idea of the amount of information that is given up when we use modelMi in inference as

opposed to the model with AICcp1q and leaves us with quantities that are immediately comparable

to one another. Then, we can find a likelihood ratio comparing modelMi and the best model, Mp1q,

scaled by a factor related to the difference in the number of estimable parameters under each model

by exponentiating,

ηi ” exp

"

´
1

2
∆AICci

*

“ exp

"

´
1

2

„

´2`ippθ|xq `
2nki

n´ ki ´ 1



´

„

´2`p1qppθ|xq `
2nkp1q

n´ kp1q ´ 1

*

“
Lippθ|xq

Lp1qppθ|xq
¨ exp

"

nkp1q
n´ kp1q ´ 1

´
nki

n´ ki ´ 1

*

The quantity ηi can be seen as the likelihood of modelMi given the sample data and conditioned

on the set of models under investigation – in particular, the model Mp1q [6, 2]. To derive AICc

weights, we can transform the model likelihoods so that they sum to one,
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wi ”
ηi

řA
i“1 ηi

(9)

If interpreted in terms of model likelihoods given the data, wi can be seen as the probability

that model Mi is optimal by the Kullback-Leibler distance measure within the set of A models

considered. The weights allow direct computation of model averaged estimates of our parameters

and subsequent model averaged inference, utilizing information aggregated across all of the mod-

els. Say that we are interested in generating a model averaged estimate of a particular parameter

that is estimated in a model, pθj . An intuitive model averaged estimator for θj is then,

pθMA
j “

A
ÿ

i“1

wipθij (10)

The construction of the estimator now includes two sources of uncertainty. Within each model,

there is uncertainty in estimating θij , as we would encounter in a traditional analysis, but now there

is quantifiable uncertainty in the model selection procedure. An estimator of the variance can be

derived,

yVarppθMA
j q “

˜

A
ÿ

i“1

wi

b

yVarppθijq ` ppθij ´ pθMA
j q2

¸2

(11)

A relation between this estimator and mean squares in the ANOVA framework is made by

relating within-group variability to the term yVarppθijq and between-group variability to the term

ppθij ´ pθMA
j q2. The major addendum here is that we are weighting the variances by the estimated

model information content.

The estimator in Equation (11) is commonly referred to as an unconditional estimator of the

variance of a particular parameter. This is due to the fact that we are averaging across models and

are thus performing estimation without conditioning on a single model alone. Contrast this with the

traditional method of estimation in which the variance of a parameter estimate is estimated using
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some single best model, which depends upon the model selected and would produce inference that

would be too liberal since it ignored the uncertainty inherent in choosing that best model.

One item that we have not addressed yet is the situation in which not every model includes

the jth effect. Two common approaches deemed simple and full model averaging by Symonds et

al. (2011) [29]. In the simple approach, one would recompute the AICc weights for the models

containing the jth effect and average over those model estimates only. In full model averaging,

every model that does not contain parameter θj would simply be assumed to have restricted its

estimate to exactly zero. In our treatment in the analysis to come, we employ the full model

averaging approach since the weights are not dependent on the inclusion of specific effects in the

various models and thus the weights are more reflective of the entire picture uncertainty contained

in model selection, and implementation is straightforward.

Multimodel inference concerning model parameters may be carried out by using the estimators

presented above. For example, say that one wished to estimate the effect of the first covariate in

a linear model. A point estimate for the change in the response while holding other covariates at

their respective levels could be computed by pβMA
1 “

řA
i“1wi

pβi1. A p1 ´ α{2q100% confidence

interval could be constructed by using a Wald interval [7]:

pβMA
1 ˘ zp1´α{2q ¨

b

yVarppβMA
1 q

where the variance is computed in Equation (11) and zp1´α{2q is the value in the standard normal

distribution such that P pZ ď zp1´α{2qq “ α{2. The use of a Wald interval is justified by noting that

estimation is carried out under the likelihood framework and thus the sampling distributions of the

estimated regression coefficients are asymptotically normal. Since the model averaged estimators

are linear combinations of asymptotically normal estimators then pβMA
1 should have a normal sam-

pling distribution assuming sufficiently large sample sizes. Conclusions from inference can then

be carried out in the conventional manner.
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2.2 R2 FOR FIXED EFFECTS

We next consider a coefficient of determination (R2) for linear mixed models. In the ordinary

linear regression (OLR) context, R2 is a natural statistic computed by considering the proportion

of variability in the response that is explained by its linear relationship with the covariates. In this

simple setting, the proportion is computed as the ratio between measurements of the variability in

the response explained by the model (SSM) and the total variability in the response (SST) – or an

equivalent ratio involving the sum of squared residuals (SSR).

R2
OLR “

SSM

SST
“ 1´

SSR

SST
“ 1´

řn
i“1pyi ´ pyiq

2

řn
i“1pyi ´ syq2

where yi is the ith observed response, sy is the mean response, and pyi is the ith predicted response

from the model. Another interpretation involves the comparison of the above value to the overall

F-test for model fit by considering a ratio of R2
OLR quantities,

FOLR “

SSM
dfM
SSR
dfR

“

SSM
dfM ¨SST

SSR
dfR¨SST

“

R2
OLR

dfM

1´R2
OLR

dfR

where dfM and dfR are the degrees of freedom for the model and residuals, respectively. In this

light, R2
OLR gives the ratio of the deviations of the responses from their predicted values from the

intercept-only, or null, model and from the model in under observation – sy being the predicted

value for every observation in the intercept-only model.

This value is often used as a goodness criterion for a particular set of covariates answering

the practical question: does this set of covariates explain an adequate amount of variability in the

response? Such a use is different from information criteria with which we are only provided a

relative quantification of model goodness – that is, information criteria answer the question: does

this model result in smaller information loss than some other model? When we use AICc values,

we cannot blindly interpret the raw values alone since they natively include a model-independent

constant. Instead, we can take differences or a ratio of logarithms of information criteria to mitigate
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the influence of the constant. Thus, AICc is only interpreted in the context of comparing two or

more models to one another. Contrarily, the coefficient of determination is a more direct measure

of goodness of fit of a particular model and can be interpreted free of comparison with another

model, if the user so wishes. In OLR, R2 is popularly reported as a summary measure of a given

model and is a comfort to practitioners. The search for a similar statistic in the LMM framework

is what motivates this section.

When we move to the linear mixed model framework, there is no immediately obvious ana-

logue to a coefficient of determination. There are many differences in model formulations as we

move from an ordinary linear model to the linear mixed model. Douglas Bates (2008) [3] warns

that one should be wary when making a generalization such as this by carefully thinking about

what features of the ordinary coefficient of determination that we would like to carry over to the

linear mixed model.

If we are attempting to develop a proportion of variation in the response explained by the set

of covariates chosen, how should we define a residual? Should we consider the unconditional

residuals or should we use the conditional residuals? Similarly, should we consider comparing

fixed effects using the coefficient of determination, comparing the random effects, or should we

be comparing the entire set of covariates included in any given model? Speaking of which, what

is the intercept-only model? We could include a fixed intercept only (Yi “ 1iβ ` εi), a random

intercept only (Yi “ 1iui ` εi), or both of them (Yi “ 1iβ ` 1iui ` εi).

A few of the approaches to generalize an R2 statistic have included pseudo R2 values proposed

for general linear models (especially in the case of binary response regression). Several of these

involve taking a function of the likelihood ratio between the model of interest and the intercept-

only model while others involve functions of variance terms from the model under study and the

null model. We focus on one of the more recent attempts at implementing an R2-like statistic in a

linear mixed model context.

Edwards et al. (2008) [9] propose an R2 statistic extending that from OLR by appealing to

the interpretation of R2
OLR as being a function of the F-test statistic comparing the model at hand
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to a null model. The proposed statistic compares models in which fixed effects are varied among

models containing the same covariance structure. Also, the null model specified is one which

contains an intercept for the fixed effects and retains the same structure as the model of interest in

the random effects. We are effectively conducting a test of the hypotheses regarding which is the

better of the two models: Yi “ 1iβ ` Ziui ` εi or Yi “ Xiβ ` Ziui ` εi for i “ 1, . . . , n.

A natural way to test the above hypotheses is through a multivariate version of the overall F-test

from OLR. That is, we can test the set of hypotheses H0 : β1 “ . . . “ βp “ 0 versus Ha : Dβi ‰ 0

for i in 1, . . . , p. Hypotheses such as these are special cases of the general overall F-test which can

be conducted by considering a full column rank matrix of contrasts, C, with rank c ” rankpCq.

We effectively assume that the fixed effects are equal to zero,

H0 : Cβ “ 0

Ha : Cβ ‰ 0 (12)

An F-test statistic can be constructed by taking the squared distances between the contrasts

of the fixed effects and the zero vector, weighted by their variance – recall Equation (6) for the

variance of the estimator of the fixed effects [21].

FLMM “

pβ
T
CT

„

C
´

XT
pV´1X

¯´

CT



Cpβ

c
(13)

Just like in the OLR case, one may assume that the above F-statistic is a function of some R2

value in the same manner presented above. Thus, we should equate and solve,

FLMM “

R2
LMM

dfM

1´R2
LMM

dfR

dfM
dfR

FLMM “
R2
LMM

1´R2
LMM

dfM
dfR

FLMM “
dfM
dfR

FLMMR
2
LMM `R

2
LMM
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R2
LMM “

dfM
dfR

FLMM

1` dfM
dfR

FLMM

(14)

In the LMM context, dfM “ p´ 1 for p the number of fixed effects in the model under investi-

gation and dfR could be approximated using various methods, most popularly the Satterthwaite or

Kenward-Roger methods2. This R2
LMM statistic is then easily derived using the output of standard

statistical software for the model of interest.

This statistic measures the ability of the set of fixed effects in the model to explain the vari-

ability of the response, which varies in a multivariate space. Practically, it can be used to assess

the goodness of a given set of fixed effects immediately without a need to reference other models,

though eventually we would like to perform those very comparisons in order to determine which

sets of covariates are most valuable to us in a particular context.

Just as we can perform an F-test to measure the adequacy of entire subsets of variables, we can

also obtain F-tests measuring the adequacy of individual predictors within each model of interest.

That is, instead of testing the multivariate hypotheses in Equation (12) that all of the fixed effect

parameters are equal to zero simultaneously, we can test if each of the parameters is equal to

zero individually. Specifically, we will focus on the Type III F-tests of individual fixed effects

parameters. These test for the ability of the individual effect in question to predict the response

given that all other effects in the model have been accounted for – i.e., all the other effects are put

into the model before the effect is tested.

If we are given a model to work with that has p fixed effects, the hypotheses being tested are,

H0,j : β1|βp´jq “ 0

Ha,j : β1|βp´jq ‰ 0

2In our application, we use the Kenward-Roger approximation for F-test denominator degrees of freedom where
applicable.

30



Where the notation ¨|βp´jq means given the all variables other than βj are already in the model.

The F-test statistic that could be used to test each of the above hypotheses is a special case of

Equation (13) in which we set the matrix of contrasts, C, equal to a vector, call it C˚, in which

the ith component is 1 and the rest are set equal to zero. Note also that the rank of C˚ is now

one, which simplifies the test statistic even further by allowing us to ignore the denominator. If

we denote this special case of our F-test statistic by FLMM,partial, then we can construct a partial

R2
LMM value for each variable in a model given that all the others are already included. That is,

R2
LMM,partial “

dfM
dfR

FLMM,partial

1` dfM
dfR

FLMM,partial

(15)

This partial R2
LMM measures the amount of multivariate association between the fixed effect in

question and the response, given that we have accounted for the other variables in the model. In

other words, it looks to address the question: what additional proportion of explanatory power can

be attributed to this one fixed effect? This is similar to the partial correlation coefficient and partial

coefficient of determination in the ordinary multiple regression context [18].

2.3 t-BASED LINEAR MIXED MODEL

The ordinary linear mixed model assumes that both the random effects and the random errors

are normal random variables. However, in practice, one might be exposed to data which do not ad-

here to these assumptions. If one were to perform residual diagnostics and find that there might be

more-than-normal variability in a certain type of LMM residual, they might contemplate relaxing

the normality assumptions. Here, we consider fitting a model in which we assume that the random

effects (e.g., intercepts and slopes) and the errors are distributed as Student’s t random variables.

Pinheiro et al. (2001) [24] propose the following hierarchical model

Yi|bi, τi
indep
„ Nk

ˆ

Xiβ ` Ziui,
1

τi
Ri

˙

ui|τi
indep
„ Nq

ˆ

0,
1

τi
G

˙
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τi
indep
„ Gamma

´νi
2
,
νi
2

¯

Where the new parameters τi for i “ 1, . . . , n serve to scale the covariances of both the random

effects and the random errors in order to capture any inflated variability due, perhaps, to outlying

data points. Under this hierarchy, the LMM can be re-derived to state

Yi “ Xiβ ` Ziui ` εi

Where

ui
indep
„ tqp0,G, νiq

εi
indep
„ tkp0,Ri, νiq

Now, we may model the random effects and errors as being vectors drawn from multivariate

Student t distributions with degrees of freedom, νi, which can be different for any subsets of subject

we would like to specify3. With this in mind, we turn to the question of how to actually fit this

model.

There are two suggested ways to fit this t-based LMM: Expectation Conditional Maximization

Either (ECME) and Parameter Expanded Expectation Maximization (PXEM). Both are accelerated

versions of the canonical Expectation Maximization (EM) algorithm [12].

In ECME, we split the maximization step into several steps, each of which maximizes a subset

of parameters while holding all other parameters fixed at their current values. Let Y denote the

complete data, X denote the observed data, and Z denote the missing data. Also, let θ denote our

vector of parameters. Take, for example, the case in which we split the parameter set into two

separate pieces. Then we would iterate the following two steps.

• E-step: Find Q
´

θ|θptq
¯

“ EY

´

`pθ|Yq|x,θptq
¯

3In our calculations, we consider the case in which we have a common degrees of freedom parameter for all 66
subjects.
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• M-step:

– Split the parameter vector into a number of bits (say, two of them): θ “ rθ1,θ2s

– Find θ
pt`1q
1 “ arg maxθ1 Q

´

θ|θ
ptq
1 ,θ

ptq
2

¯

– Next, find θ
pt`1q
2 “ arg maxθ2 Q

´

θ|θ
pt`1q
1 ,θ

ptq
2

¯

In the PXEM algorithm Van Dyk (2000) [31] suggests that we consider an expanded parameter

space, Θ “ rθ, αs such that a mapping reduces this expanded space to the parameters in which we

are immediately interested, RpΘ “ rθ, αsq “ θ. This idea is similar in spirit to the idea in ordinary

EM that we have a complete data space and a mapping that reduces this space to the observed

data, MpY “ rX,Zsq “ X. In the PXEM algorithm, we introduce the augmented data, Z, and

parameters, α, over which we may induce whatever convenient properties we like. Then, iteration

of the following steps allows us to find the modes of our likelihood (or, as Van Dyk (2000) points

out, a posterior in the Bayesian setting).

• E-step: Find Q
´

θ, α|θptq, αptq
¯

“ Q
´

Θ|Θptq
¯

“ EY

´

`pΘ|Yq|x,Θptq
¯

• M-step: Find the maximizer of Q w.r.t. Θ: Θpt`1q
“ arg maxΘQ

´

Θ|Θptq
¯

• Use the mapping R
´

Θpt`1q
¯

“ θptq to eliminate the latent variable α

In our LMM, we introduce the latent variable γ:

τi
γ

indep
„ Gamma

´νi
2
,
νi
2

¯

pγ “

řn
i“1 νiτi

řn
i“1 νi

so that this new parameter scales the parameters τi – which, in turn, scales the original covariance

matrices of the random effects and errors. The new parameter uses information concerning the

variability of τi (in the form of the degrees of freedom parameters νi) to, in theory, speed con-

vergence. Once the maximization steps have been derived for the ECME algorithm, the PXEM
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algorithm uses this new parameter to scale the maximizations in each direction in the parameter

space and so is a very natural extension in the context of our LMM problem – e.g., the ECME up-

date for the covariance matrix for the random effects, pG “ pGupdated now becomes pG “ 1
pγ
pGupdated

in PXEM.

2.4 SPECIFICATION OF a priori MODELS

In order to properly generate a set of models in which we could invest our attention, we began

our analysis by considering all of the valid permutations of our predictors. To begin, ”valid” was

defined by setting a few restrictions:

(a) The intercept-only (null) model includes only a fixed intercept, random intercept, and a

random effect for distance guessed (i.e., the random coefficients for linear subject-specific

response profiles)

(b) All models, except the intercept only model, will include the distance variable as a fixed

effect and a random effect

(c) No models can include both the weight and BMI fixed effects simultaneously

(d) No models can include interactions between the image effect and one of weight or BMI

effects

Restriction (a) was enforced because we wanted to model each subject as responding linearly

across distance guessing occasions. Also, we wished to preserve the covariance structure for every

model so that we could directly compare models via an R2 criterion and because we wished to

retain the ability to interpret the subjects’ own response profiles as varying about an overall aver-

age profile, as in the effects parameterization in ANOVA. Restriction (b) was made because this

specification allowed the population average response profile to vary across distances rather than

remaining constant. Restriction (c) was made on the knowledge that, since BMI is a linear trans-

formation of weight, BMI and weight would contain the same information and including them in
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the same model would only serve to introduce unneeded multicollinearity issues. Finally, restric-

tion (d) was chosen because these interactions were declared a priori unimportant practically and

would, if included, introduce unnecessary model selection uncertainty.

See Table 2.1 for the full set of models specified.

Table 2.1: All sixteen restricted permutations of the seven fixed effects of interest. M1 is the intercept-only model with
a fixed intercept, random intercept, and a random slope term for distance included. W denotes the weight variable,
BMI the body mass index, I the body image variable, D the distance, and all variables with ˆ are interaction terms.

Model W BMI I D WˆD BMIˆD IˆD

M1
M2 �

M3 � �

M4 � �

M5 � �

M6 � � �

M7 � � �

M8 � � �

M9 � � �

M10 � � �

M11 � � � �

M12 � � � �

M13 � � � � �

M14 � � � �

M15 � � � �

M16 � � � � �

To construct this set of models: we were interested in the distance, weight, BMI, and body

image main effects the former three effects’ interactions with distance. Enforcing the restrictions

(a)-(d) reduced the number of possible models from 1,024 to 130 and imposing the canonical

restriction that interactions can only appear in models in which the main effects appear further

reduced the possible model set to 16 models. Collaboration confirmed that this set of models

contained the models of scientific meaning and interest for the purpose of answering our questions

of interest.
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3 RESULTS

3.1 EXPLORATORY DATA ANALYSIS

To begin our analysis of the distance guessing sample data, we delve into the structure of the

sample data via exploratory plots and summaries. First, we include an occasion plot (sometimes

called a time plot in repeated measures analyses) in which guesses are plotted against the distance

at which the guess was made. In the plot, subjects are represented by one line connecting their

guesses at each of the four distances.

The plot is included in Figure 3.1. Panel 3.1a contains a plot of signed error against distance

and panel 3.1b plots the actual guesses made by the subjects against distance. These two plots

tell us a couple of things straight away. The errors among subjects tend to group near to zero at

closer distances and tend to spread out as the cones are moved further away from the subjects. If

we take the average error (colored in red in both plots), we would state that the guesses tend to

underestimate distances, on average, as cones are moved further away. The last major observation

is that there appears to be at least one subject who deviates from the rest by their giving guesses

that are far above (about 15 meters above) the actual distances during the 20m and 25m guessing

occasions.

This last observation led to a discussion in which it was decided that subject 49 (colored in

blue in 3.1) was an anomaly. This subject guessed a very large distance at distance 20m but

achieved very little absolute error for all the other distances (possibly a within-subject outlier). It

was decided that this subject’s data could safely be omitted from the analysis. All other subjects

were retained, leaving a total of 66 under investigation.

Next, we observe the relationships between the errors in guesses and each of the predictors

individually, depicted in Figure 3.2. Below, ”Total Absolute Error” is equal to the sum of the

absolute errors for each subject at every distance to give a one number summary of the overall

error that a subject makes. Notice that both weight and BMI appear to be negatively correlated with
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Figure 3.1: Occasion plot for errors in guessed distances (panel 3.1a) and guessed distances (panel 3.1b) for each
subject. Each black line connects responses for a single subject and the red line connects the sample average at each
distance. The blue line represents subject 49.

total absolute error. More specifically, it appears that weight is a better predictor of total absolute

error by the shape of the LOWESS smooth curve in that it has a steep, consistently downward

sloping trend throughout the plot. Contrast this with the LOWESS curve in panel 3.2b in which the

curve is positively sloped until BMI is about 26 and decreases from there, though more shallowly

than for weight. This indicates to us that BMI weakly explains total absolute error in guesses in

comparison to weight. In panel 3.2c, we see that body image seems to be a very weak predictor of

total absolute error by the near negligible slope of the simple linear regression line and the overall

horizontal trend of the LOWESS smooth curve.

In panel 3.2d, we have side-by-side boxplots of guesses made by all subjects for each distance.

The evidence here strengthens our opinions that as distance increases, the guesses decrease relative

to the actual distances. We observe that median guesses tend to fall below the actual distances

being guessed, prompting us to believe that subjects tend to underestimate with increasingly higher

margins of error at further distances. We also observe that variability in guesses increases as we

increase distance. We can consult Equation (4) to help realize that we should manipulate the
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Figure 3.2: Plots of weight, BMI, and image against absolute guessing errors in panels 3.2a, 3.2b, and 3.2c, respec-
tively. The red lines are simple linear regression lines and the green lines are LOWESS smoothers on the two variables.
The last panel includes boxplots of guesses by distance.

within-subject covariance matrices R1, . . . ,Rn, the variance matrix of the random effects G, or

both in order to model the heteroskedastic [22] errors across distance guessing occasions.

Lastly, we look at an occasion plot that attempts illustrate the effect of weight and its interaction

with distance. We present this in Figure 3.3. Weight was discretized by naming those who fall
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Figure 3.3: Occasion plot for average errors by dichotomized weight over all four distance guessing occasions. The
endpoints of the bars at each distance represent the 25% and 75% quantiles of guesses made in the respective weight
classes on that distance guessing task.

below the average weight low and naming those who fall above the average weight high.4 We

then took the average of the guesses made by all subjects falling in each of the weight classes at

each of the four distance guessing occasions. Included in the plot are bars denoting the upper and

lower quartiles for convenience of comparison. We see that there could be an interaction between

weight and distance on guesses made because the average response profiles for the dichotomized

weight classes do not change at the same rates across guessing occasions. In fact, it appears as

if low weight individuals tend to underestimate the distances more so than do the higher weight

4The average weight of the 66 subjects was about 192 lb. The discretization made is done just for convenience of
displaying the results and is not carried into the model building stages.
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individuals at any distance and the schism between the two groups’ average guessing behavior

grows as distances get larger.

3.2 COVARIANCE STRUCTURE

When constructing a linear mixed model there are two basic components that must be specified:

the mean structure (i.e., fixed effects) and the covariance structure (i.e., the random effects and the

form of the covariance matrices). One faces a dilemma akin to the chicken and the egg upon the

imposition of the choice of which to model first. We choose to model the covariance structure first

since our scientific questions of interest focus mainly on the fixed effects in their relations with

the response, because an appropriate choice for the covariance structure allows for more precise

inference with respect to fixed effects [11], and because model selection focusing on the fixed

effects (such as with AICc or R2
LMM ) requires a proper covariance structure specification [9].

As for choosing proper random effects before analysis, we have actually already began this

iterative process. By our a priori model selection, we have decided to employ a linear random

coefficients model with random intercepts and random slopes for each subject with respect to

distance. What this means in a practical sense is that each subject has some baseline distance

guessing behavior unique to themselves (the random intercepts) and we also allow their behavior

to change at future guessing occasions (the random slopes).

Our next choice turns us to consider the possible forms of the covariance matrices G and

R1, . . . ,Rn. To go about our decision-making, we will make use of two approaches. The first

will involve an information-based procedure in which we will use AICc to choose among proper

forms the G matrix, then among proper forms of the Ri matrices, and finally among the two

simultaneously. To bolster any final decisions, we will rely on likelihood ratio tests, with an eye

towards caution before testing non-nested covariance structures.

By our discussion among the estimation methods, ML and REML, in Section 1.4 we choose

to use the REML estimation method and hold all of the fixed effects constant while we are testing

different forms of the covariance matrices. This begets our choice of fixed effects to include while

40



we are making these comparisons. Our comparisons of covariance structures are made with the

best AICc model, M11, from Table 2.1. In addition, we impose a variance components (VC) form

– that is, Ri “ σ2
ε I – on the within-subject covariance matrices for these initial derivations.

First, we consider the G matrix, or the covariance matrix of the random coefficients. Using

SAS 9.4, we recover the information as presented in Table 3.1. We point the reader to the SAS 9.2

manual [26], Fitzmaurice et al. (2011) [11], or another book with a dedicated linear mixed model

section for a full review of the various covariance matrix forms presented in the table. The default

form of variance components was ranked fourth in terms of AICc and so we should specify a better

form in order to reap the benefits of precision gains in inference. The top two competing forms

by AICc alone are the unstructured – allowing a different covariance parameter for every element

of the matrix – and the heterogeneous compound symmetry – specifying one parameter for each

diagonal element.

Table 3.1: Variance forms imposed on the covariance matrix of the random coefficients using the fixed effects from
model 11 in Table 2.1. Parameters denotes the number of covariance parameters that must be estimated in the model.
´2` refers to twice the negative log likelihood derived from the model. Italicized entries denote model fits that result
in non-positive-definite covariance matrices.

Form of G AICc Parameters ´2`

Heterogenous Compound Symmetry (CSH) 1,366 3 1,360
Unstructured (UN) 1,369 4 1,360
Toeplitz (TOE) 1,393 3 1,387
Variance Components (VC) 1,393 3 1,387
Compound Symmetry (CS) 1,431 2 1,427
Lag-1 Autoregressive (AR(1)) 1,431 2 1,427

If were to naı̈vely perform a likelihood ratio test among forms of the G matrix, we could appeal

to the asymptotic chi-squared distribution of the deviance among the two models. However, this

would overlook a glaring problem: the model fits that are italicized in Table 3.1 result in covariance

matrices that are not positive-definite. That is, all but the variance component form of G resulted

in model fits that were unstable and did not give reliable results within which we could place

our confidence. Even after a series of workarounds, the problems persisted. These complications

41



could be due to the moderate sample sizes (66 subjects to estimate between-subject effects and

4 observations per subject to estimate within-subject effects). We therefore ended up declaring

the only reasonable choice to be the VC form and proceeded to check for alternative forms of the

within-subjects covariance matrices.

We again use the fixed effects from M11 from Table 2.1 and use REML estimation methods,

and we now set G as a VC matrix. The results are listed in Table 3.2 and the reader will notice

that we have omitted the CS and TOE forms, which is due to non-convergence of the estimation

procedures. With these two eliminated, our top two competitors in terms of AICc are again CSH

and UN. Also, again, we see that both these forms resulted in fits that were not stable and resulted

in non-positive-definite covariance matrices. Therefore, we opted to choose a VC form for the

within-subject matrices as well due to the apparent instability.

Table 3.2: Variance forms imposed on the within-subject covariance matrices using the fixed effects from model 11
in Table 2.1. Parameters denotes the number of covariance parameters that must be estimated in the model and ´2`
refers to twice the negative log likelihood derived from the model. Italicized entries denote model fits that result in
non-positive-definite covariance matrices.

Form of Ri AICc Parameters ´2`

UN 1,365 12 1,340
CSH 1,368 6 1,356
VC 1,393 3 1,387
AR(1) 1,393 6 1,385

In the end, we have decided upon modeling G as a variance components matrix,

G “

»

—

—

–

σ2
1 0

0 σ2
2

fi

ffi

ffi

fl
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And the within-subject matrices as variance component matrices as well,

Ri “ σ2
ε I “

»

—

—

—

—

—

—

—

—

—

—

–

σ2
ε 0 0 0

0 σ2
ε 0 0

0 0 σ2
ε 0

0 0 0 σ2
ε

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

In all, these specifications require 3 variance parameters to be estimated, which we believe is a

reasonable choice given the moderate size of the data set. In our search for proper forms of both

types of covariance matrices simultaneously, we arrive at the same conclusion: VC structures are

the most appropriate for both given our sample data.

3.3 MEAN STRUCTURE

We now focus on the mean structure of the linear mixed model that we plan to fit to our sample

data. Recall that our inference will be based on model averaged estimates and so we do not need to

choose a single mean structure, but are only required to rank them in terms of relative information

content. Chen, et al. (2013) [8] beautifully stated that model averaging ”can be thought as a

continuous extension of model selection” in that we will not be assigning discrete, binary values to

models based on their worth. Instead, we will assign values that may range continuously between

zero and one – restricted to sum to one – to each model so that multiple data sources may be used

in inference.

To begin, we rank the sixteen models chosen a priori from Table 2.1 according to their AICc

taking the methods from Section 2.1. The results for our sixteen chosen models are included in

Table 3.3. All of our models were estimated using ML estimation in SAS 9.4 (see the discussion

in Section 1.4).

The results in Table 3.3 illuminate much about the problem at hand. The first thing that we

notice is that M11 has the lowest AICc value and includes the fixed intercept, the main effects for
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Table 3.3: Values used to compute AICc model weights w. Unique model numbers are included on the left, followed
by the terms included in the model. Raw AICc values (lower is better) lie to the right of the model terms. The ∆AICc
terms are the difference in AICc between each model’s measurement and the lowest AICc in the a priori set.

Model Model Terms AICc ∆AICc w

M11 (Intercept)+W+I+D+WˆD 1,380 0.00 0.43
M8 (Intercept)+W+D+WˆD 1,381 0.75 0.29
M15 (Intercept)+W+I+D+WˆD+IˆD 1,382 1.98 0.16
M6 (Intercept)+W+I+D 1,385 4.93 0.04
M13 (Intercept)+W+I+D+IˆD 1,385 5.04 0.03
M3 (Intercept)+W+D 1,386 5.73 0.02
M9 (Intercept)+BMI+D+BMIˆD 1,388 8.16 0.01
M12 (Intercept)+BMI+I+D+BMIˆD 1,388 8.56 0.01
M4 (Intercept)+BMI+D 1,389 9.29 0.00
M7 (Intercept)+BMI+I+D 1,389 9.65 0.00
M14 (Intercept)+BMI+I+D+IˆD 1,390 9.79 0.00
M2 (Intercept)+D 1,390 10.33 0.00
M16 (Intercept)+BMI+I+D+BMIˆD+IˆD 1,390 10.69 0.00
M5 (Intercept)+I+D 1,392 12.22 0.00
M10 (Intercept)+I+D+IˆD 1,392 12.34 0.00
M1 (Intercept) 1,490 110.20 0.00

distance, weight, and image, and an interaction effect between distance and weight. With proba-

bility 0.43, this is the best model in the a priori set using our sample data in terms of information

retained. The second best model, M8, has all of the same effects as M11 except for the main effect

for image and has an Akaike weight of 0.29. Collectively, the top five models by AICc have weight

about 0.95, indicating that the remaining eleven models will have relatively little say in terms of

the model averaged point estimates – though their inclusion is crucial in accounting for model

selection uncertainty. Also, all five top models include weight as a predictor while the first model

with BMI as a predictor is ranked number seven in terms of AICc, which demonstrates substantial

evidence for weight being a more appropriate predictor of guessed distance.

In addition to ranking the models by corrected Akaike weights, we also chose to rank our

models by the generalized R2 criterion for linear mixed models reported in Equation (14). Recall
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that the R2
LMM values are dependent upon the overall F-test for the set of fixed effects included

in the models and also upon the denominator degrees of freedom used in constructing the F-test

statistics. In this situation, we have chosen to use the Kenward-Roger estimates for the denominator

degrees of freedom. The results are included in Table 3.45.

Table 3.4: R2
LMM terms for the explanatory ability of sets of fixed effects in the fifteen non-null a priori models. Also

included are the model terms and each model’s rank by AICc for comparison with Table 3.3.

Model Model Terms R2
LMM Rank by AICc

M2 (Intercept)+D 0.79 12
M8 (Intercept)+W+D+WˆD 0.76 2
M9 (Intercept)+BMI+D+BMIˆD 0.74 7
M11 (Intercept)+W+I+D+WˆD 0.74 1
M3 (Intercept)+W+D 0.74 6
M6 (Intercept)+W+I+D 0.73 4
M15 (Intercept)+W+I+D+WˆD+IˆD 0.73 3
M10 (Intercept)+I+D+IˆD 0.73 15
M4 (Intercept)+BMI+D 0.73 9
M7 (Intercept)+BMI+I+D 0.73 10
M5 (Intercept)+I+D 0.73 14
M13 (Intercept)+W+I+D+IˆD 0.72 5
M12 (Intercept)+BMI+I+D+BMIˆD 0.72 8
M16 (Intercept)+BMI+I+D+BMIˆD+IˆD 0.71 13
M14 (Intercept)+BMI+I+D+IˆD 0.71 6

We see that the model with the main effect for distance as the only covariate, M2, has the

highest R2
LMM of about 0.79. This means that distance explains about 79% of the multivariate

variability in the response. Any additions of covariates only serve to decrease the overall explana-

tory power of the fixed effects. For example, the best AICc model, M11, is ranked fourth with

respect to this measure of goodness.

Since both the AICc and R2
LMM values are to be used to compare among models, we include

a column of ranks by AICc in Table 3.4. When we consider the patterns in the R2
LMM values, we

5Note that the fixed intercept-only model, M1, is not included because the null model is that which has no fixed
effects of immediate interest to us and serves as the reference model against which all others are tested.
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observe that, barring M2, four of the top five models include weight as a predictor and one includes

BMI. This bolsters our observation from before that weight tends to explain more of the variability

in the response over BMI. In addition, it appears that body image is scattered about the models and

so gives little to no indication of its worth as a predictor of distance guessing ability.

To take our analysis of the R2
LMM statistic even further, we turn our attention to the partial

measures of multivariate explanatory power from Equation (15). The complicating factor in inves-

tigating these partial measures is that we can calculate one R2
LMM,partial for every variable from

every model. This leaves, for example, fifteen values for the distance variable alone. We simplify

these measures by taking the simple mean of the R2
LMM,partial across all sixteen models for each

of the non-intercept fixed effects and include the results in Table 3.5.

It is important to note that taking averages of these statistics across models complicates their

interpretations since they are no longer estimates of the explanatory power of the variables given

the others included in the model. Since we have averaged over several models, and every model

contains a different set of fixed effects, the ”given the others” interpretation varies from model to

model. In an attempt to find common ground between rigor and parsimony, we urge the reader to

think of these values as rough measures of the explanatory ability attributable to individual fixed

effects, accounting for the other variables declared important a priori.

Taking a look at the results, we see that the distance variable has an averaged partial coefficient

of determination of sR2
LMM ;partial « 0.34. We will take this to mean that about 34% of the multi-

variate variability in the response tends to be explained by the distance variable once we take all

the other fixed effects into account (since distance appears in models including all six other fixed

effects). Also, weight tends to explain about 4% of the variability in the response given all the

other variables except BMI (since weight appears in models with all other variables save for BMI).

Measures such as these will be instrumental in interpreting the worth of specific fixed effects.
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Table 3.5: Simple averages of partial R2
LMM values for each of the non-intercept fixed effects taken with respect to all

other variables in each of the respective models.

Effect Partial sR2
LMM

Distance 0.34
Weight 0.04
BMI 0.02
Image 0.02
WeightˆDistance 0.02
BMIˆDistance 0.01
ImageˆDistance 0.01

3.4 MODEL DIAGNOSTICS

We now turn to check the model assumptions via the diagnostic tools discussed in Section 1.5.

The complicating factor in our model diagnostics is that we do not eliminate all but one model with

which we plan to perform inference. Instead, we retain all sixteen models decided to be a priori

important. Thus, we have sixteen models on which we should perform diagnostics. This has been

done, but for our purposes in this report, we restrict ourselves to discussing any diagnostic results

with respect to one model and that model is the best-by-AICc model, M11.

We choose to do this because, if we were performing an ordinary analysis rather than adhering

to the model averaging framework, then this would be the model on which we would be per-

forming diagnostics. In addition, M11 is one of the more saturated models and we believe that

it is representative of the forms of models we are considering. In fact, after checking all of the

model diagnostic plots, we notice that all sixteen models’ diagnostic plots take similar forms and

are almost indistinguishable amongst themselves, which adds credence to both the model building

process and to the diagnostics to come.

To begin, we consider the marginal residuals, which can be used to check for the adequacy

of the mean structure induced by the fixed effects and for analyzing our choice of within-subject

covariance matrices. We use the scaled marginal residuals in the two plots included in Figure 3.4.

In panel 3.4a, we see that there is no trend apparent in the residuals, which supports the hypothesis
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Figure 3.4: Residual diagnostic plots using the scaled marginal residuals from M11. Panel 3.4a contains the scaled
residuals plotted against the fitted values. The black line is the horizontal line at zero and the red line is a LOWESS
smooth line of the residuals, both for visual reference. Panel 3.4b is a normal QQ plot of the residuals.

that our choice of fixed effects is adequate in describing the sample data. There is little evidence of

heteroskedasticity and so our model seems to account for within-subject variability well enough.

One observation, with a scaled residual above 4.5, appears to deviate from the rest and could be

considered an outlying value with respect to the overall mean response profile (we will return to

this below). In panel 3.4b, we have a normal QQ plot of the scaled marginal residuals. Other than

some deviant behavior about the upper tail, promoted by the previously mentioned observation,

nothing seems to strongly indicate any lack of normality of the marginal residuals.

Similar plots of the studentized conditional residuals are included in Figure 3.5. Recall that the

conditional residuals can be useful in diagnosing issues in the choice of the overall mean structure

as well as the choice for the structure of the response covariance matrix, V. In panel 3.5a, we do

not notice any obvious trend and this is supported by the slope of zero in the LOWESS smooth

curve. However, there seems to be increasing error variance as the fitted values increase and there

appear to be potential outliers for higher fitted values. Panel 3.5b shows that the distribution of

the conditional residuals have heavier tails than the normal distribution, which leads us to question

this assumption.
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Figure 3.5: Residual diagnostic plots using the studentized conditional residuals from M11. The plotting aspects of
these plots are the same as in 3.4.

Influence diagnostics are performed using Cook’s distances for both observations and for sub-

jects in Figure 3.6. As expected, we have a couple of individual observations that have Cook’s

distances that are relatively far above the rest (the pair of points at Cook’s distances around 0.015).

These observations are to be noted as potentially influential points. But, if we are to adhere to the

general rule that values above either of the 25th or 50th F quantiles then we would not consider any

of the observations to be influential to the estimation of the fixed effects and could attribute their

large Cook’s distances to sampling variability..

In panel 3.6b we have influence measures for entire response profiles of subjects. We see the

same sort of pattern here in which we have one potentially influential subject, though when we

consider the F percentiles then none of the subjects appear to significantly influence our estimation

of the fixed effects6.

Taking the observations from Figures 3.4, 3.5, and 3.6, we would be confident in saying that

our choice of mean structure is adequate. However, we see some problems in the apparent het-

eroskedasticity among the conditional residuals. That is, after accounting for the fixed effects and

6F percentiles for outlying observations are Fp0.25;5,264´5q « 0.53 and Fp0.50;5,264´5q « 0.87 and are
Fp0.25;5,66´5q « 0.53 and Fp0.50;5,66´5q « 0.88 for outlying subjects.
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Figure 3.6: Cook’s distances for individual observations, 3.6a, and for subjects themselves, 3.6b.

the random slopes and intercepts, we still have guessing errors that vary more about their respec-

tive means at increased distances. In addition, the distributions of the conditional residuals don’t

seem to have strong evidence of being normal. The presence of the potentially influential obser-

vations also spurs us to consider the fact that our sample data might not support our distributional

assumptions.

3.5 REMEDIAL MEASURES

3.5.1 POWER OF X

In order to reconcile the possible heteroskedasticity seen in Figure 3.5, we implement a power

of X model. This model is recommended by Littell et al. (2006) [20] as a way to account for

variability of errors being functions of one or more covariates. In effect, this model makes a single

adjustment to the error variance.

Instead of defining the random errors Varpεiq “ Ri “ σ2
ε I for i “ 1, . . . , k, we instead define

Varpεiq “ Ri “ σ2
ε exp tγxjiu I. Here, the exponential function acts component-wise along

the vector of the jth covariate for the ith subject, xji. This operation results in within-subject
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covariance matrices that explicitly allow for scaling of the variability of the response when moving

along the direction of a covariate of the user’s choice. In addition, this scaling is additionally

controlled by the parameter γ.

In application of this new model to our sample data using M11, we naturally chose the ”X” in

the power of X to be distance. This is because such a choice was suggested by the diagnostic plots

given above and because it is the only variable to vary within subject in this example. The estimated

dispersion parameter pγ « 0.03 with variance about 0.03. A Wald-based normal p-value for the test

of this parameter equalling zero was about 0.2. However, since this is a test on the boundary of

the parameter space then the regularity conditions required by normal-based likelihood tests are

violated and so the Wald test is not valid in this case.

Instead, we can use an augmented likelihood ratio test for the hypotheses H0 : γ “ 0 versus

Ha : γ ‰ 0. Some authors approach the problem as follows. While attempting to derive the sam-

pling distribution of pγ under the null hypothesis, we can think of two cases. By natural variability

in the data, we can think of pγ being estimated at some non-zero number by random chance alone.

In this case, there is one additional parameter to be estimated in the power of X model compared

to the model without the power of X covariance structure. On the other hand, one may think of

a situation where pγ is really being estimated at exactly zero. In this second case, there would be

no additional parameters being estimated under the model. Then, if we think of these two cases

as being equally probable, the sampling distribution of pγ can be thought of as taking on the form

of a mixture of a χ2 distribution with one degree of freedom half of the time and a χ2 distribution

with zero degrees of freedom the other half of the time [11]. Therefore, our likelihood ratio test

statistic should then be compared to the quantiles of this mixture distribution instead of the χ2
p1q

distribution.

Since the difference in twice the negative log likelihoods for the ordinary M11 and for the

power of X M11 was,

1, 363.2´ 1, 359.6 « 3.6
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and since the 0.025 and 0.05 quantiles of the 0-1 mixture of χ2 distributions are about 3.84 and 2.71

then our likelihood ratio test 0.025 ď p-value ď 0.05. Therefore, at the 0.05 significance level, one

would reject the null hypothesis and would prefer the power of X version of M11 over the ordinary

version. That is, the added term for adjusting the covariance based on measurement occasion is

significantly different from zero (if only marginally). This significance is borderline and because

residual plots for the power of X model show very much the same heterskedastic patterns as seen

in Figure 3.5, we would not have gained much at all by adopting this new model. Because the

power of X model would only serve to complicate the model while not mending the issue we set

out to address in the first place, we continue to utilize the models without the exponential structure

in our analysis in order to preserve parsimony and interpretability in this context.

3.5.2 t-BASED LINEAR MIXED MODEL

For our distance-guessing data, we attempted to fit M11 in three ways: (1) the ordinary, normal-

based LMM using the MIXED procedure in SAS 9.4, (2) the t-based LMM using ECME, and (3)

the t-based LMM using PXEM. For the t-based model fits, we were forced to code everything by

hand, but were able to use derivations from the Pinheiro, Liu, and Wu (2001) paper to aid in our

coding.

Table 3.6: Fixed effects estimates using the estimation procedures employed by SAS under the normal LMM and
using ECME and PXEM under the t-based LMM. The PE values are point estimates for the fixed effects and the
StDev values are their estimated standard deviations.

SAS ECME PXEM
Effect PE StDev PE StDev PE StDev

(Intercept) 5.56 1.99 4.16 1.58 4.16 1.58

Distance 0.21 0.20 0.22 0.16 0.22 0.16

Weight 0.03 0.01 0.03 0.01 0.03 0.01

Image ´0.60 0.35 ´0.46 0.26 ´0.46 0.26

WeightˆDistance 0.003 0.001 0.002 0.001 0.002 0.001
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Table 3.7: Covariance parameter estimates using the estimation procedures employed by SAS under the normal LMM
and using ECME and PXEM under the t-based LMM.

Effect SAS EMCE PXEM

G Matrix

«

8.00 0

0 0.11

ff «

3.87 0.41

0.41 0.05

ff «

3.87 0.41

0.41 0.05

ff

Ri Matrices 3.94 ¨ I4 3.96 ¨ I4 3.96 ¨ I4

Results for the fixed-effects parameter estimates can be found in Table 3.6. The largest differ-

ences between the two model fits are the estimates for the intercept and the body image effect. The

other point estimates are almost identical to one another across the normal- and t-based models. It

appears that under the t-based model the standard errors have been reduced, indicating that using

the new model allows us to have slightly more precise estimation. Take, for example, the distance

effect. Under the normal LMM, the point estimate was about 0.21 with standard error about 0.20

while under the t LMM, the estimate has changed to about 0.22 with decreased standard error 0.16.

The ECME and PXME fits agree on all of the estimates.

Comparisons of the estimates for the covariance parameters using the various model fitting

procedures can be found in Table 3.7. It appears as if the error variances are comparable among

the ordinary and rubust model fits. However, we find some notable differences in the between-

subject matrices. First of all, the variability of the subject-specific baseline guesses decreases from

8.00 to about 3.87. Also, the variability of the subject-specific slopes changes from about 0.11 to

about 0.05. These two variances are essentially halved, so why might this be? Reason number

one includes the non-zero off-diagonal entry. In the SAS fit, we restrict the covariance between

the random intercepts and slopes to be zero due to unstable fits in SAS. However, the data-driven

robust fitting procedures allow for non-zero covariances among the random coefficients and this

small change allows for changes to the variance estimates as well. The second reason harks back to

the decreased standard deviations we saw when considering the fixed effects. We tend to see these

decreases because the t-based model seems to fit the sample data better, which leads to increased

precision.
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In addition to the information in Tables 3.6 and 3.7, the hierarchical model can be used to diag-

nose the need for the t distributional assumptions through the estimate of the degrees of freedom,

ν. This degrees of freedom parameter is estimated in the EM algorithms using the data to tailor the

form of the t distributions. If the normal model were appropriate, we would estimate that ν ą„ 30.

However, the data-based estimates for the degrees of freedom were about 3.20 under ECME and

4.07 under PXEM, indicating a possible need for the increased variability of between-subject and

within-subject deviations allowed by the t distributions.

Figure 3.7 illustrates the speed of convergence of three of the fixed effects’ point estimates

using the ECME and PXME algorithms ran with 1,000 iterations. From these plots, we see that the

PXEM algorithm does, indeed, have a speed advantage over the other. The ECME method con-

verged to its end estimates at around 300 iterations for all of the estimates while the PXEM method

converged around 200 iterations. While this did not present a whole lot of practical difference with

respect to computing time in our relatively simple model (about 5 minutes on a 2 GHz dual-core

MacBook running OSX v10.6.8 on 3 GB of RAM for 1,000 iterations), we could see the potential

advantages in saving 100 or so iterations of computing time elsewhere.

Based on the output in Table 3.6, we do not foresee the outcomes of our analysis being any

different if we use the t-based models over the standard, normal-based models. Thus, even though

it is suggested that we might want to use the t-based model (recall the small estimated degrees

of freedom and the reductions in uncertainty estimates) to account for non-normal variability, we

revert to using the normal-based LMM in the rest of this report since we believe that any conclu-

sions we make will be the same no matter which model we use, because our inference is restricted

to explanation and are more concerned with parsimony and clear demonstration of the important

covariates – so we do not necessarily desire every reduction in uncertainty estimates as we might

want in an application focused on prediction.
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Figure 3.7: Convergence plots for the parameter estimates for the weight, distance, and image main effects in the
t-based M11 using ECME in panels 3.7a-3.7c and PXEM in panels 3.7d-3.7f. The red lines depict the final values
taken for each of the parameter estimates.

3.6 MODEL AVERAGED ESTIMATES AND INFERENCE

Having decided to use the normal-based LMM using ML estimation for fixed effects and using

ML estimation for covariance parameters, we fit all 16 models from Table 2.1. Then, to generate

model averaged estimates we used Equations (10) and (11) along with the model weights computed

in Table 3.3 to calculate the point estimates and standard errors for the fixed effects in Table 3.8.

The bolded entries in the table indicate fixed effects that are declared significantly different

from zero at the 95% confidence level using Wald intervals. These intervals use the variances

unconditional on the model being used and thus account for the uncertainty imbedded in the model

selection process.

Surprisingly, distance is not a significant effect with 95% confidence. As distance is increased,

we tend to see increases in guessed distances with a mean of 0.27 meters for every meter increase
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in actual distance – with 95% confidence between about -0.20 and 0.73 meters – when we change

only the distance being guessed. We would have expected distance to be a significant effect, since

as the actual distance increases we would expect guessed distances to increase as well. However, as

more covariates are included in the model, the effect of increasing cone distance gets overshadowed

by the effect of weight and others during model averaging.

Table 3.8: Model averaged estimates, their unconditional standard deviations, and Wald 95% confidence intervals for
all eight fixed effects. Bolded entries are significantly different from zero with 95% confidence.

Effect PE StDev Wald 95% CI

Intercept -5.04 2.06 (0.99, 0.91)
Distance -0.27 0.24 (-0.20, 0.73)
Weight -0.028 0.014 (0.002, 0.06)
BMI -0.0047 0.0098 (-0.0145, 0.0239)
Image -0.40 0.41 (-1.19, 0.40)
WeightˆDistance -0.0025 0.0013 (-0.0001, 0.0051)
BMIˆDistance -0.0002 0.0005 (-0.0007, 0.0012)
ImageˆDistance -0.0023 0.0042 (-0.0060, 0.0105)

Weight is the only non-intercept fixed effect that is significantly different from zero at our

chosen confidence level. One interpretation of this could be that if two subjects differ only in

weight by 100 pounds, we expect to see differences in their guessed distances by about 2.8 meters

– between about 0.2 and 6 meters with 95% confidence. Specifically, the heavier subject will tend

to guess the longer distance and the lighter subject the shorter. The confidence interval around this

estimate is relatively wide, ranging about 6 meters. Nevertheless, the effect of heavier individuals

reporting longer distance guesses regardless of distance guessing occasion persists in this sample.

The weight by distance interaction would be significant at the 90% confidence level, but cer-

tainly is not at the 95% confidence level. The meaning of this effect is that, for subjects differing

in weight by 100 pounds only, we tend to see differences in guesses of 2.8 meters at the baseline

distance and expect to see them deviate from one another by about 1.3 meters at each distance

guessing occasion – that is, an increase in cone distance of 5 meters. Although not significant at

the 0.05 significance level, we can observe the evanescent interaction effect visually.
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Figure 3.8: Illustration of the model averaged predicted response profiles for subjects differing only in their weights, in
which they differ by 100 pounds. The lower-weighted individual is depicted in blue and the higher-weighted individual
in red. The black dashed line depicts an ideal subject with perfect guesses at each distance.

Figure 3.8 depicts the model predictions from the model averaged estimates for average re-

sponse profiles for subjects that differ by 100 pounds – the subjects are the same in all other

respects including BMI and their body image and is reflective of comparing subjects 1 and 2 from

the actual study. Notice that as the actual distance is increased, we tend to see the two response

profiles deviate from one another, just like we saw in the sample data in Figure 3.3. This effect, and

main effect of weight itself, results in higher-weighted individuals making more accurate guesses

at all of the distance guessing occasions.

Using similar model averaging techniques, we include the model averaged point estimates, their

unconditional standard deviations, and Wald-based 95% confidence intervals for the covariance

parameters in Table 3.9. All of the effects are significant at the 0.05 significance level. We do note
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that the Wald-based confidence intervals presented for the covariance parameters should be taken

with a grain of salt due to the fact that proper tests of significance for covariance parameters being

different from zero should be based on likelihood methods and, in particular, the mixture of χ2

distributions should be used in these tests as done in Section 3.5.1. In either case, we derive the

following inference from the results in Table 3.9.

Table 3.9: Model averaged estimates, their unconditional standard deviations, and Wald 95% confidence intervals for
random coefficients covariance parameter estimates.

Effect PE StDev Wald 95% CI

pσ2
1 8.15 1.90 (4.43, 11.87)

pσ2
2 0.11 0.02 (0.06, 0.15)

pσ2
ε 3.94 0.45 (3.07, 4.81)

The first thing of note in the table is the sheer magnitude of the variability of the subject-

specific intercepts. In other words, the subjects come into the study with vastly different guessing

behaviors at the baseline guessing occasion. Specifically, participants differ in their guesses at

baseline by about 3 meters on average, which rivals the distance the cone is moved at the next

guessing occasion! This fact remains apparent if we consult the plot of raw response profiles in

Figure 3.1 in which we see baseline guesses at the 10 meter cone ranging from about 6 meters to

about 16.

We tend to see far less variability in the change in guessing behavior among subjects for in-

creasingly distant cones as made evident by the more modest estimate pσ2
2 « 0.11. This informs us

that the subjects tend to handle increased distances in similar manners in that when the cone dis-

tance is lengthened, the subjects tend to increase their guessed distances at similar rates no matter

what their initial guess was. The fact that this variance is significantly different from zero simply

indicates that the subjects are not identical in their behaviors (those differences can be visually

inspected in the figure of the raw response profiles as well).

Lastly, the estimated error variance, pσ2
ε « 3.94 populates our within-subject covariance matri-

ces. The size of this model-averaged point estimate tells us that our model does not exactly predict
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the sample data – as our data seem to contain a fair amount of noise – but that the variability in a

subject’s own responses is likely different from zero, as we might expect. However, this source of

variability is certainly not as influential as the variability between subjects.
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4 DISCUSSION

4.1 EFFECTS OF MODEL AVERAGING

When we made the decision to use model averaging instead of using the best-by-AICc model,

the goal was to improve inferences by accounting for the fact that we had a collection of models

deemed important before the analysis of the data began. The effect of our accounting for this

additional uncertainty can be seen as a shrinkage effect much like in other shrinkage methods such

as LASSO and ridge regression in which unimportant effects are shrunk to zero and allow us to

visualize the important covariates’ effect on the response, unclouded by effects that are non-zero

due to sampling variability and measurement error.

We have seen a portion of said shrinkage effect in the model averaged coefficients presented in

Table 3.8 above, but we can investigate the matter further. We have included a collection of plots

with one panel per fixed effect in which the vertical direction measures the estimated coefficient for

each of the effects. Each of the bubbles represent an estimated coefficient from one of the sixteen

a priori models and has radius proportional to the model’s AICc weight (wider bubbles indicate

larger model weights). We have also included 95% unconditional (on model chosen) Wald intervals

for each effect. The horizontal bar at the centers of the confidence intervals are the model averaged

point estimates for each of the effects.

Figure 4.1 clearly shows the effect of model averaging on the end-result point estimates. Take,

for instance, the weight main effect. Weight is included as a non-zero effect in six of the models un-

der consideration and the corresponding coefficient estimates are shown by the non-zero bubbles.

We see here that in the models in which weight is included as a non-zero effect, the estimated pa-

rameter ranges between about 0.02 and 0.04. Furthermore, for those six models, the model weights

are relatively large. For the other nine models, the parameter estimate was estimated at zero and

their model weights are small, as depicted by the smaller bubbles overlapping at a vertical position

of zero. We then see that the model averaged point estimate really does lie close to the center of
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Figure 4.1: Individual fixed effect coefficient estimates from all a priori models are illustrated as the vertical position
of steel blue bubbles with radius determined by model weight. The light red bars depict 95% confidence intervals
unconditional on the model.

the estimates from the top five or so models. There is a perceptible effect of the nine, less AICc

important models in that the model averaged point estimate is dragged downwards towards them,

if only slightly. The end result is a point estimate that is representative of the estimates from the

most important models and the effect is significantly different from zero – notice the confidence

interval does not cross zero.
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Contrast this with the effect of BMI. Again, BMI was included as a non-zero effect in six of the

models and set to zero in the remaining nine. However, the pattern of inclusion for BMI is different

from that of weight in that BMI is included in the less important models. In the six models in which

BMI is non-zero, the coefficient estimates take on similar roles as weight and are estimated to be

between 0.11 and 0.22. However, since those six models are relatively unimportant, the model

averaged point estimate is heavily influenced by the more important models in which BMI’s effect

is set to zero. In the end, BMI’s model averaged parameter estimate is very close to zero and is not

significantly different from such if we account for model uncertainty.

Next, consider the effect of body image. This effect is taken to be non-zero in ten of the sixteen

original models. In nine of those ten models, we estimate an effect of body image to be between

about -0.50 and -0.65. If we took any of these models to be the truth and used that model alone

in inference, we might estimate that body image is a significant effect. However, the parameter

estimates are so widely variable and are included in models with such widely varying importance

that its effect is washed out. It’s estimated coefficient in the model averaged sense is decreased

from the grouping of estimates around -0.60 to about -0.40 and the influence of the variability of

estimates due to model averaging causes the effect to be insignificant at the 0.05 level.

Through inspection of the figure, we feel further justified in saying that model averaging is

performing just as we expected it to. It allows us to see beyond the ’random noise’ introduced

by covariate inclusion amongst our models and declare only those effects which are consistently

informative to be significant. In our case, those are the main effects for weight and distance and

the weight by distance interaction. Evidence from the figure further suggests that there might be a

weak body image effect that could be teased out by additional study but we cannot be confident in

such a conclusion at this time.

4.2 RELATION BETWEEN MODEL AVERAGED AND AICC-BEST INFERENCE

Naturally, since we have taken the route of using model averaging rather than the typical ap-

proach of using the best model by AICc to perform inference, we would like to know what we
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have gained or lost by using the non-standard methods. Theoretically, we would expect that we

would be sacrificing precision because we need to account for the additional uncertainty in the

model selection process. We would also expect to be able to improve our estimates of effects that

are included in the best model and to compute estimates for fixed effects that are not included in

the best model.

Below, we have included a plot contrasting the point estimates and 95% confidence intervals

for all eight effects using both model averaging and the results from M11, which was our best

model overall using AICc. The model averaged effects depicted on the left side of each plot in

Figure 4.2 are the same as in Figure 4.1. The estimates from M11 alone are presented on the right

of each plot along with corresponding confidence intervals conditional on our choice of M11.

The first item we note is the fact that the model averaged confidence intervals are about the

same or wider than those from M11 for all of the effects included in the best model. The reason

for the decreased precision is that when we perform model averaging, we are using information

from all of the model fits instead of just one. Using the information from the entire collection of

models lets us view the effect of each of the covariates on the response from different angles of

the parameter space and lets us synthesize all of that information into a single estimate. Since we

are combining information about parameters from different models, our confidence intervals are

wider than if we had observed the effects from only one point of reference in the parameter space

– even though the point of reference for M11 can be considered the best single perspective within

our collection of models.

If one likens the technique of model selection to the selection of principal components in a

dimension reduction problem, we could make the connection between full model averaging and

one’s using all of the principal components (and thus retaining the explanatory power of all of the

components) and between using the best model alone and using the first principal component only

(and thus sacrificing the explanatory power of the rest of the components).

Another important observation is that if we had used M11 only, we would not have been able to

say anything about the effects of BMI and the BMI by distance and image by distance interactions
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Figure 4.2: Comparison of fixed effects estimates using model averaging (individual model estimates in steel blue
and unconditional confidence intervals in light red) on the left and using M11 only (individual model estimates in sea
green and conditional confidence intervals in dark red) on the right.

since they were not included in this model. With model averaging, however, we can derive point

estimates and make inference for these effects easily. That is, we do not sacrifice such information

through the arbitrary choice of any model being best in comparison to the rest.

The size of the effects by model averaging and in M11 are much the same if they are included

in M11. We can see this by comparing the midpoints of the confidence intervals to one another.
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There are only slight differences between the point estimates with the largest deviations belonging

to the main effects for weight and image. The additional information gleaned from observing all

of the models allowed us to make the small adjustments to the estimated fixed effects coefficients

to better reflect their influence on one’s ability to judge distances accurately.

A major source of disagreement between the two approaches is the fact that M11 alone predicts

a significant weight by distance interaction effect at the 0.05 significance level (point estimates are

0.0025 from model averaging and 0.0028 from M11). This lends some credence to the effect of

differing distance guessing behavior for subjects with different weights and this effect changes

among distance guessing occasions. However, once we take into account the model uncertainty,

we get a more honest view of this interaction effect and would declare it present but certainly not

significant after taking everything into consideration.

Some agreement between can be seen the two approaches in that the effect of body image

is non-significant, though there seems to be a negative effect of body image. Another source

of agreement lies in those effects not included in M11. Those three effects, despite not being

estimable in M11, are estimated as being non-different from zero in the model averaging lens,

which gives credence to the choice of M11 being best with respect to including those covariates

most important in explaining distance guessing.

4.3 IMPORTANCE OF R2
LMM VALUES

The overall and partial R2
LMM statistics are less widely used measures of model and covariate

worth when compared to information criteria. However, we believe that these statistics allow us

to make meaningful conclusions in and of themselves in that they can be used in isolation as non-

relative measures of model and covariate worth and as relative measures like AICc and others.

From Table 3.4, we can see that the model with distance as the only predictor is best by the

R2
LMM measure and M11, the best-by-AICc model, was ranked as sixth among our models. This

seems counter-intuitive at first but after some thought about the meaning of R2
LMM , it starts to

make some sense after all. What R2
LMM really measures is the ability of the covariate set in each

65



model to explain the multivariate variability of the response. So, the above observation illustrates

the fact that distance alone appears to explain about 0.79 of the variability in guessed distances.

This is unsurprising as we would ordinarily expect that distance guesses would rely upon the actual

distances being judged in some fashion.

If we were to include predictors that explained substantially more variability in the response,

then we would expect to see increased R2
LMM values as well. What we see, however, are de-

creases when we include more of our predictors. The reason for this is that additional predictors’

explanatory power does not outweigh their contribution to the estimation of the model covariance

components (pσ2
ε , pσ2

1 and pσ2
2) [9]. Take for example the comparison of M2 to M3. When we add the

main effect for weight to the model with only the distance fixed effect, we see a decrease in R2
LMM

from 0.79 to 0.74 and the estimates for the error variances increase from about 3.95 to about 3.98.

The inflation of the error variance estimate seen affects the R2
LMM value and does not exceed the

additional explanatory power of the weight variable and so we see a decrease in our goodness of

fit statistic.

What we take from this observation is that the distance variable is by far the most important in

explaining the response. The important covariates can be ranked: weight, BMI, and image (in that

order) and then the two-way interactions with distance, according to R2
LMM .

Our observations are further proliferated by inspection of the partialR2
LMM values. From Table

3.5, we can see that, if we take the average of the partial R2
LMM values across all sixteen models to

be meaningful at all, distance is by far the best explainer of distance guesses. Weight and and BMI

are the two next most important variables and explain only about 2-4% more of the variability in

distance guesses, given the other variables in models in which they appear. We take from this to

mean that, of our covariates, weight is the most important but that its effect is small in comparison

to distance increases.
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4.4 RELATION BETWEEN AICC AND R2
LMM

We have used two distinct methods to measure goodness of fit of the models and the variables

in which we have been interested. Both theR2
LMM and AICc measures as seen as goodness criteria

produced results that are different from one another so much so that we believe that it requires our

attention briefly. If we consider model ranking, the order of ranks of models by the two criteria are

clearly different. Why might this be so if they are both used to judge goodness of models?

For instance, M11 is first by AICc but sixth by R2
LMM and M2 is first by R2

LMM but seventh by

AICc. Also, there does not appear to be any strong patterns to be perceived by looking at the table

of ranks alone. Therefore, we appeal to visual clustering of the ranks. Included below is a plot of

AICc and R2
LMM values for each of the models in Figure 4.3.

We notice that the relationship between the two measures is not overwhelmingly strong. In

fact, the simple Pearson’s correlation between the two measures is about -0.17. The direction of

the relationship is as expected: as we increase AICc, we tend to see decreases in the R2
LMM values.

Said relationship is primarily driven by the three best-by-AICc models, M11, M8, and M15.

The first includes the distance only model, M2, which has a mid-range AICc value and the

highest R2
LMM . The second includes the three best-by-AICc models which have comparatively

high R2
LMM values. The third grouping includes the rest of the models which have higher AICc

values and lower R2
LMM values.

This observation leads us to notice that there are three main groups of models in the plot. In

the first group (M2), we see that distance is in a league of its own in terms of explanatory power,

but leaves lots of information loss with respect to the rest. In the second group (M8, M11, and

M15), when we add the weight and image main effects and their interactions with distance, we

decrease information loss (decreasing AICc) but lose a bit of explanatory power due to the low

explanatory power embedded in these effects failing to overcome the fluctuations in the variance

component estimates. Lastly, the third group (all the rest) consists of all models in which we do not

decrease information loss by AICc by adding predictors nor do we explain more of the response in

comparison to the model with only distance as a fixed effect.
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Figure 4.3: R2
LMM versus AICc for each of the sixteen a priori models under investigation.

If we consider ranking individual variables rather than models, we can compare the results

in Tables 3.5 and 3.8. We see that the sR2
LMM ;parital quantities rank the variables in order of im-

portance: distance then weight, and the rest are competing for explanation of natural variability.

The model averaged effects report that the only non-intercept effect that is significantly different

from zero is weight. The disagreement here is disconcerting, though it can be defended as in the

previous section. We are appreciative for both perspectives because if we had used only the IC

approach, we would not have been able to extract the information contained in the fixed effects

only and hence observe such in isolation from the information contained in the random portion of

the model.

The overall weak correspondence between the two discourages entirely replacing the information-

based criterion with the F-test based criterion as a model comparison statistic. However, in con-
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junction, the two can be used to isolate out the most influential fixed effects and we credit R2
LMM

in teasing out the overwhelming effect of distance with respect to the others, whatever we may

have thought before analysis.
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5 CONCLUSION

We return to the two questions that spurred this investigation.

(I) Does actual body type (as measured by weight or BMI) or perceived body type affect one’s

ability to accurately judge distances?

(II) Is weight or BMI a better predictor of accurate distance guesses?

Question (I) can be addressed through our results from the model averaged estimates derived

from the AICc-based aggregation of the information from the sixteen a priori models. Through

this lens, we are left with only one of the three main effects of interest that significantly explains

guessing behavior: weight. Quantitatively, we expect to see increases in guessed distances of about

2.8 meters – with 95% confidence between 0.2 and 6.0 meters – at any of the distance guessing

occasions when weight is increased by 100 pounds, if all other effects are held constant. Also, by

Figure 3.8, we visually confirm that the heavier individuals tend to make more accurate guesses of

distance compared to their lighter counterparts. This makes sense intuitively as we would expect

heavier individuals to be taller and those taller individuals would have greater vantage points from

which they may judge distances.

These conclusions also answer question (II). If given a choice between weight and BMI as a

predictor for guessing ability, we would urge the reader to choose weight. This comes from our

observation of the worth of weight over BMI as an explainer of guessing ability via the R2
LMM

statistics and through the AICc model averaged estimates. With the R2
LMM values, weight was

declared as the better explainer of guessing behavior given the other variables by explaining about

2% more of the variability in the responses than BMI. Through AICc, we saw that weight and its

interaction with distance were the only significant predictors of guessing behavior (other than

distance) and that BMI was non-significant due to its exclusion from the most informative of

models.
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The mean structure (via the fixed effects) are just one aspect of a linear mixed model, the other

being the covariance structure. Performing model averaging on the covariance parameter estimates

revealed a feature of the data all on its own. Specifically, the sheer magnitude of the variability

of subjects’ distance guesses for the 10 meter cone masked the effects of some of the other co-

variates. Practically, this means that since subjects were so different with respect to their distance

guessing abilities coming into the study, it became difficult to precisely estimate the influence of

weight, BMI, or body image. In addition, the distance guessing behavior across distance guessing

occasions do not vary as much as subjects’ initial guesses. Indeed, the variability among those be-

haviors is significantly different from zero and so we conclude that subjects differed significantly

in their guessing adjustment behaviors, though this difference is nowhere near the differences in

baseline guesses.

From a methodological point of view, the LMM proved to be an effective way to account

for the correlation among subjects’ own responses since they were measured more than once.

The ordinary model placing normal distributions on the random effects and errors seemed to fit

well for the most part, though there were some indications that our assumptions of normality

and homoskedasticity were not met. We attempted to rectify these two issues but neither of the

generalizations that we imposed substantially changed the inferences that we would have made

from those models. Since the goal of this application is for the results to be used in a practical,

consulting-type setting, we do not believe that the almost indistinguishable model fits substantiated

the far more complicated models used to fix those two issues and so we defaulted to the normal-

based model for our final inference and conclusions.

Our use of information-based model averaged inference proved to be successful as it allowed

us to make decisions regarding the importance of variables that could not populate the same model

(weight and BMI) in a comprehensive manner. Instead of basing our conclusions to question (II)

on a dichotomous decision between a model containing weight or a model containing BMI, we

were able to use a continuous extension of model selection, model averaging, on which we could
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base our decision. This act greatly expanded the robustness of the decision procedure and allowed

us to make conclusions about effects regardless of which models in which they were included.

The coefficient of determination for linear mixed models, R2
LMM and its partial version, proved

to be useful in further consolidating the information contained in our sample data. It allowed us

to view the information from another perspective and revealed a new feature that might otherwise

have been quantitatively (though, perhaps, not intuitively) hidden to us in that changes of distance

were the most influential effects on guessing behavior by an order of magnitude over the other

effects. It also confirmed our conclusions made using information-based methods and gave us a

way to directly judge the ability of predictor sets to explain guessing behavior.

In looking to the future, we would offer some areas of future research in this area to include

the practical matters of reducing between-subject variability in guessing behavior at the start of

the study through something like a training round or a practice round for the participants to reduce

the noise introduced into the data. Also, we might be interested in some other measurements

of body image by the participants as other measurements of this characteristic might shed more

light on body image’s interaction with actual body size. Methodologically, we would recommend

expanding the use of the robust linear mixed model to allow for variability that goes beyond normal

deviations. Also, we would recommend further investigating the relationship between ML and

REML estimation procedures and their interaction among estimation problems and IC-based model

ranking.
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