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Abstract 
Recent research suggests that much of the cross-firm variation in measured productivity is due to differences 
in use of advanced management practices. Many of these practices – including monitoring, goal setting, and 
the use of incentives – are mediated through employee decision-making and effort. To the extent that these 
practices are complementary with workers’ skills, better-managed firms will tend to recruit higher-ability 
workers and adopt pay practices to retain these employees. We use a unique data set that combines detailed 
survey data on the management practices of German manufacturing firms with longitudinal earnings records 
for their employees to study the relationship between productivity, management, worker ability, and pay. As 
documented by Bloom and Van Reenen (2007) there is a strong partial correlation between management 
practice scores and firm-level productivity in Germany. In our preferred TFP estimates only a small fraction 
of this correlation is explained by the higher human capital of the average employee at better-managed firms. 
A larger share (about 13%) is attributable to the human capital of the highest-paid workers, a group we 
interpret as representing the managers of the firm. And a similar amount is mediated through the pay 
premiums offered by better-managed firms. Looking at employee inflows and outflows, we confirm that 
better-managed firms systematically recruit and retain workers with higher average human capital. Overall, 
we conclude that workforce selection and positive pay premiums explain just under 30% of the measured 
impact of management practices on productivity in German manufacturing. 
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I. INTRODUCTION 

In a typical four-digit manufacturing industry in the U.S., plants at the 90th percentile of total factor 

productivity (TFP) are about twice as productive as those at the 10th percentile (Syverson, 2004, 2011). 

These very large differences in between-firm productivity are highly persistent, contributing to 

significant disparities in economic performance over time and across countries.1 They are also central to 

a growing body of theoretical research in macroeconomics, industrial organization, and trade. In labor 

economics, much empirical and theoretical work finds a strong connection between firm performance 

and average wages, which suggests firm productivity could help explain cross sectional wage inequality. 

Furthermore, many recent papers attribute a significant fraction of the growth in wage inequality across 

individuals to growing differences between establishments.2 Since wage differences between firms are 

closely correlated with performance differences, understanding what drives the dispersion in 

establishment performance could help us understand why inequality has risen so sharply in recent 

decades.  

As suggested by the seminal work of Ichniowski, Shaw and Prennushi (1997) a key correlate of plant-

level productivity is the adoption of advanced management practices, including employee monitoring, 

financial incentives, and modern inventory control and work-flow techniques. Bloom, Sadun and Van 

Reenen (2015) argue that about half of the difference in average TFP between plants in the U.S. and 

Southern EU countries is explained by an index of advanced practices that they interpret as “management 

capital”. At the very micro level, Bloom et al (2013) find a large causal role for management practices 

in a field experiment with Indian textile plants.  

While some management practices can directly impact productivity, many others – like monitoring, goal 

setting, and use of incentives – are mediated through employee decision-making and effort. If advanced 

management practices are complementary with higher-ability employees, as seems plausible, then one 

would expect firms that use these practices to systematically alter both the skill composition of their 

workforce and the structure of their pay system.3 

1  For example, Bailey, Hulten and Campbell (1992); Hsieh and Klenow (2009); Bartelsman, Haltiwanger and Scarpetta 

(2013). 
2 See Card, Heining and Kline (2013) for Germany; Song, Price, Guvenen, Bloom and Von Wachter (2015) or Barth, Bryson, 

Davis and Freeman (2014) for the US; Faggio, Salvanes and Van Reenen (2010) for the UK.  
3 Milgrom and Roberts (1990) argue that modern manufacturing processes and organizational methods are highly 

complementary, leading firms to adopt clusters of practices. 
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In this paper we formally investigate the extent to which management – as proxied by an index of 

adoption of advanced management practices - affects measured productivity through the channels of 

workforce selection and pay.  Our empirical analysis exploits a unique database of middle-sized German 

manufacturing plants included in the WMS (the World Management Survey, discussed by Bloom and 

Van Reenen, 2007 and Bloom et al., 2014), linked to employee earnings records from the Integrated 

Employment Biographies (IEB) of the Institute for Employment Research. The WMS provides detailed 

survey data on management practices and, through links to the ORBIS database, firm-level financial 

information.  The IEB provides longitudinal data on earnings of workers who were employed at these 

plants, including their pay at previous or subsequent employers, which we use to estimate a person-

specific measure of earnings capacity for each worker, and plant-specific pay premiums for each 

workplace. The worker effects allow us to measure the quality of workers’ skills at each plant as well as 

the relative quality of different employee subgroups.  The pay premiums provide a summary measure of 

the financial incentive system at each plant. 

Analyzing these data through the lens of a simple model of firm-specific productivity, we reach three 

main conclusions. First, plants with higher management scores have higher average worker skills.  Plant-

specific measures of observed skills (e.g., the fraction of workers with a college degree) and of overall 

skills (as recovered from the person effects in a two-way fixed effects model) have a strong correlation 

with measured productivity.  Nevertheless, only a limited fraction of the overall impact of management 

practices is mediated through average worker skills.  A more important channel is though the skills of 

the top quartile of employees at a plant – a group that we interpret as the managers of the plant. Higher 

average skill for this group has an independent influence on plant-level productivity (controlling for 

average worker skills at the plant) and is positively correlated with higher management practice scores. 

Overall about one-sixth of the productivity effect of higher management practices is mediated through 

the average skill level of manager.  

A second finding is that plants with higher management scores pay higher wages relative to the market 

as a whole, controlling for the quality of their workforce. Higher pay premiums account for another 13 

percent of the measured net productivity effect of better management practices. Some of this could 

reflect longer hours or higher levels of performance pay at well managed firms, features we cannot 

directly observe. 

A third finding is that better managed firms are able to build up a superior stock of employees through 

selective hiring and attrition.  In particular, examining job inflows and outflows at the plants in our 
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sample, we find that those with higher management scores are more likely to recruit higher ability 

workers (measured by the permanent component in their earnings) and are less likely to lay off or fire 

the highest skilled workers in the period between 2004 and 2009. 

 

Our paper contributes to many existing literatures. First, as noted above we contribute to the growing 

literature on firm heterogeneity and economic performance (e.g. de Loecker and Goldberg, 2014). 

Second, we try to understand the causes of the heterogeneity in management practices and the link to 

workers’ skills (e.g. Feng and Valero, 2015; Lemos and Scur, 2015). Third, we link to work on corporate 

culture by economists and management scholars (e.g. Guiso et al, 2013, 2015; O’Reilly, 1989). Finally, 

we contribute to the literature on the importance of managers for firm performance (e.g. Bertrand and 

Schoar, 2003; Bennedsen et al, 2007). 

 

The structure of the paper is as follows. Section II describes are empirical framework, Section III the 

data and Section IV the results. Some concluding comments are offered in Section V. The Online 

Appendices contain more details about the data and many additional specifications and robustness 

checks. 

 

II. EMPIRICAL MODELS 

a. Conceptual Framework 

The classical approach to understanding productivity differences across firms or plants is “reductionist”: 

after properly accounting for differences in capital and other non-labor inputs per worker, any remaining 

difference in productivity at a given point in time is by definition a measure of the quality of the 

workforce.4  Lucas (1978) offers a more sophisticated version of this approach that accounts for firm 

heterogeneity. In his span of control model, the talent of the CEO determines the productivity of the 

firm. More talented CEOs run larger (or more complex) firms, so the relationship between management 

and productivity boils down to the human capital of the CEO.  

 

Although the Lucas (1978) model is powerful and parsimonious, we view the focus on the CEO as overly 

narrow. For example, many iconic firms such as Toyota, GE, IBM and Lincoln Electric remain 

successful even after their CEO dies and/or all the original managers have left the firm.  Management 

scholars refer to this as firm “capability” or “corporate culture”.  Building on this framework, we view 

the quality of the workforce, the pay strategy of the firm, and the adoption of advanced management 

                                                 
4 Comparisons of productivity over time are also affected by differences in technology.  See Jorgenson (1991) for a brief 

history of productivity measurement and growth accounting. 
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practices as jointly endogenous choices that reflect the underlying quality of management of the firm.  

We ask to what extent the measured productivity effects of advanced management practices reflect the 

impact of higher human capital of all employees at firms that adopt these practices, or the higher human 

capital of the managers. 

 

As a framework for our empirical analysis we adopt a standard production function approach that 

incorporates variation across firms in both total factor productivity and the quality of labor. Specifically, 

suppose that value of the output of firm j in period t, 𝑌𝑗𝑡, depends on inputs of non-management labor 

𝑁𝑗𝑡, management labor 𝑀𝑗𝑡, intermediate inputs 𝐼𝑗𝑡, and capital 𝐾𝑗𝑡, through a constant returns to scale 

production function: 

𝑌𝑗𝑡 = 𝜃𝑗𝑡  𝑓(𝑄𝑁𝑗𝑡𝑁𝑗𝑡 , 𝑄𝑀𝑗𝑡𝑀𝑗𝑡 , 𝐼𝑗𝑡 , 𝐾𝑗𝑡) ,                                               (1) 

where 𝜃𝑗𝑡 represents total factor productivity (TFP) in period t, and 𝑄𝑀𝑗𝑡 and 𝑄𝑁𝑗𝑡 are the productivity 

levels of non-management workers and managers at the firm.  We think of better-managed firms as 

potentially selecting different types of managers and non-management workers and offering different 

incentive packages – both of which could raise 𝑄𝑀𝑗𝑡 and 𝑄𝑁𝑗𝑡.  We also think of these firms as adopting 

practices and management systems that directly increase 𝜃𝑗𝑡. 

 

Using a first order approximation of the function f(.) and the assumption that marginal products of the 

four inputs are equal to their factor prices, the log of output can be expressed as:  

log 𝑌𝑗𝑡 = 𝑠0 + 𝑠𝑁 log 𝑁𝑗𝑡 + 𝑠𝑀 log 𝑀𝑗𝑡 + 𝑠𝐼 log 𝐼𝑗𝑡 +  𝑠𝐾 log 𝐾𝑗𝑡   

+ 𝑠𝑁 log 𝑄𝑁𝑗𝑡 + 𝑠𝑀 log 𝑄𝑀𝑗𝑡 + log 𝜃𝑗𝑡 + 𝜖𝑗𝑡                                                (2) 

where 𝑠0 is a constant, 𝑠𝑁, 𝑠𝑀, 𝑠𝐼 ,  and 𝑠𝐾 are the cost shares of non-management labor, management 

labor, intermediate inputs, and capital, respectively, and 𝜖𝑗𝑡 is an approximation error.5 If the 

employment share of managers in the workforce is approximately constant across firms (as we implicitly 

assume in our empirical analysis below) this expression can be usefully simplified.  Letting 𝐿𝑗𝑡 = 𝑁𝑗𝑡 +

𝑀𝑗𝑡 represent total employment and 𝑠𝐿=𝑠𝑀+𝑠𝑁 represent the cost share of labor inputs, and defining 𝑄𝑗𝑡 

as the geometric average of  the productivity levels of managers and non-managers:  

𝑄𝑗𝑡 ≡  [(𝑄𝑁𝑗𝑡)𝑆𝑁(𝑄𝑀𝑗𝑡)𝑆𝑀]
1/𝑆𝐿

  ,          (3)   

equation (2) can be rewritten as: 

log 𝑌𝑗𝑡 = 𝑠′0 + 𝑠𝐿 log 𝐿𝑗𝑡 + 𝑠𝐼 log 𝐼𝑗𝑡 +  𝑠𝐾 log 𝐾𝑗𝑡 + 𝑠𝐿 log 𝑄𝑗𝑡 + log 𝜃𝑗𝑡 + 𝜖𝑗𝑡 ,     (2’) 

                                                 
5 Note that the s coefficients in this equation (including both the constant and the factor shares) potentially vary with 

characteristics of the firm such as industry and size. In our models below we control for many observed characteristics in 

recognition of this fact. 
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where 𝑠′0 = 𝑠0 + 𝑠𝑁 log(1 − 𝑚) + 𝑠𝑀 log 𝑚, and m is the employment share of managers. Notice that 

(to first order) the appropriately defined average quality measure 𝑄𝑗𝑡 fully captures variation in the 

relative productivity of both management and non-management labor inputs.  

 

b. Management and Productivity 

To assess the effects of workforce quality on firm productivity we need to measure the skill composition 

of the workforce. The standard approach to measuring labor quality, pioneered by Dennison (1962), is 

to classify workers into subgroups based on observed characteristics (e.g., by white collar/blue collar 

status or education) and control for the shares of workers in each group.  A limitation of this approach 

is that observed characteristics explain only a small share of the variation in wages across workers or 

firms, suggesting that there may be a lot of unobserved heterogeneity in the productivity of the workers 

at different firms. Moreover, the standard approach cannot address the possible impact of wage-based 

incentives on the productivity of labor.  

 

As an alternative, we build on the simple framework developed by Abowd, Kramarz and Margolis (1996, 

henceforth “AKM”), which decomposes wages into worker- and establishment-specific pay 

components. Specifically, AKM assume that the log of the wage received by worker i in period t can be 

decomposed as: 

log 𝑤𝑖𝑡 = 𝜂𝑖 + 𝜓𝑱(𝑖,𝑡) + 𝑥′𝑖𝑡𝛽 + 𝑟𝑖𝑡  ,                                                         (4) 

where 𝜂𝑖  is an individual-specific pay component, 𝑥′𝑖𝑡𝛽 is a linear index of time varying individual 

characteristics (incorporating the effects of experience and calendar time) 6, J(i,t) is an index function 

that gives the identity of the workplace of individual i in period t , 𝜓𝑗 is a time-invariant wage premium 

paid to all workers at workplace j, and 𝑟𝑖𝑡  is a residual pay component.  In this model, 𝜂𝑖 can be 

interpreted as a measure of worker i’s human capital, incorporating potentially observable factors (like 

education) as well as unobserved attributes like cognitive ability or ambition that raise or lower the 

worker’s productivity regardless of where they work.  The pay premium 𝜓𝑗 can be interpreted as a 

measure of the financial incentives associated with continued employment at the firm.  AKM show that 

under a set of orthogonality assumptions the worker-specific and plant-specific pay components in 

equation (4) can be estimated without bias using ordinary least squares.7 

                                                 
6 We normalize the index 𝑥′𝑖𝑡𝛽 to be equal to 0 for individuals of age 40, so 𝜂𝑖 measures the permanent individual component 

of wages at the roughly the peak of the lifecycle wage profile. 
7 The most controversial implication of these assumptions is that the residual component of wages is uncorrelated with the 

entire sequence of firm identifiers in a worker’s job history. As discussed by CHK, this rules out mobility based on a “match-

specific” component of pay. 
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Card, Heining and Kline (2013) (CHK) show that the AKM model provides a relatively good 

approximation to the structure of wages in Germany, with �̅�2 statistics of around 90 percent.  They also 

show that more- and less-skilled workers receive approximately the same proportional wage premiums 

at a given establishment – consistent with the simple additive structure of equation (4). Moreover, they 

argue that the assumptions needed for unbiased estimation of the worker and establishment effects in the 

AKM model appear to be roughly satisfied in Germany. In particular, the “match-specific” component 

of the wage residual 𝑟𝑖𝑡 is small in magnitude and uncorrelated with the direction of mobility between 

firms. Given these findings, and the fact that we use the same IEB wage data in our analysis, we use the 

worker and establishment effects estimated by CHK to summarize different workers’ abilities and the 

strength of the financial incentives offered at different workplaces. 8  

 

Specifically, we use the average of the estimated worker effects for full time employees at a given 

establishment (�̅̂�𝑗 ) as a simple proxy for the average human capital of workers at the plant, and the 

estimated wage premium for full time male workers at the establishment �̂�𝑗  as a proxy for the size of 

the financial incentives offered by firm. 9 We assume that the average productivity of labor inputs at the 

firm is affected by both factors, as well as by the adoption of advanced management practices (indexed 

by a measure Λ 𝑗): 

 log 𝑄𝑗𝑡 = 𝜌0 + 𝜌1 �̅̂�𝑗 +  𝜌2 �̂�𝑗 +  𝜌3Λ 𝑗 + 𝜐𝑗𝑡 .                                             (5) 

Given the scaling of the person effects in equation (4) one might expect that 𝜌1 ≈ 1.  Since these effects 

are measured with error, however, and are unavailable for part-time workers and trainees, we expect 

some attenuation in the estimated value of 𝜌1.10 The magnitude of the coefficient 𝜌2 is less clear. If a 

firm that pays a 10% higher wage premium is rewarded with 10% higher productivity, then 𝜌2 = 1.  If, 

on the other hand, higher or lower wage premiums have no effect on productivity then  𝜌2 = 0.    

 

                                                 
8 Despite the apparent empirical success of the AKM framework, we note that the estimated firm effects are at best a crude 

summary of the pay policy of a given firm. Moreover, the estimation issues may be more difficult for certain types of firms 

– e.g., those that are undergoing a management turnaround during the sample period.  
9 Since the IEB data do not include information on hours, CHK limit their estimated models to full time workers.  Over 90% 

of West German males are full time so this is not too restrictive. Among women, however, close to a third work part time.  

As a result of this fact (and the lower participation rate of females), the sample sizes underlying the CHK estimates are about 

80% larger for men than women, leading to less measurement error in the male effects.  For simplicity, we therefore use the 

establishment wage premiums for men.   
10 CHK estimate the AKM model using data for full-time workers between the ages of 20 and 60, so our average person 

effect estimates exclude part-time workers, trainees, workers in so-called “mini-jobs”, and those under 20 or over 60. 
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As suggested by Lucas (1978) TFP may be affected by the ability of the managers at a firm, as well as 

by the firm’s adoption of advanced management practices. We assume that 

log 𝜃𝑗𝑡 = 𝜆0 + 𝜆1 �̅̂�𝑀𝑗  +  𝜆2Λ 𝑗 +  𝜑𝑗𝑡 ,                                                       (6) 

where  �̅̂�𝑀𝑗  is the mean value of the estimated person effects for the highest-paid workers at the firm, 

who we assume represent the managers of the firm. Combining equations (2’), (5) and (6) leads to the 

following model for output:  

log 𝑌𝑗𝑡 = 𝑠′′
0 + 𝑠𝐿 log 𝐿𝑗𝑡 + 𝑠𝐼 log 𝐼𝑗𝑡 +  𝑠𝐾 log 𝐾𝑗𝑡   

+ 𝜋1 �̅̂�𝑗 + 𝜋2 �̂�𝑗  +  𝜋3 �̅̂�𝑀𝑗 +  𝜋4Λ 𝑗 + 𝜖′𝑗𝑡                                        (7) 

where 𝜋1 = 𝑠𝐿𝜌1,  𝜋2 = 𝑠𝐿𝜌2,  𝜋3 = 𝜆1,  𝜋4 = 𝑠𝐿𝜌3 + 𝜆2,  and 𝜖′𝑗𝑡 = 𝜖𝑗𝑡 + 𝑠𝐿 𝜐𝑗𝑡 + 𝜑𝑗𝑡. Equation (7) is 

a standard log-linear 3-factor production function, augmented with four additional productivity factors: 

(1) a measure of the average quality of the plant’s workforce; (2) a measure of the average wage premium 

received by workers at the firm; (3) a measure of the average quality of managers at the firm; and (4) a 

measure of the use of advanced management practices. 

 

Since the factor inputs are endogenous, we also estimate a log-TFP specification where we bring labor, 

capital and intermediate inputs to the left hand side of the equation:  

log 𝑇𝐹𝑃𝑗𝑡 ≡ log 𝑌𝑗𝑡 − 𝑠𝐿 log 𝐿𝑗𝑡 − 𝑠𝐼 log 𝐼𝑗𝑡 −  𝑠𝐾 log 𝐾𝑗𝑡  

= 𝑠′′
0 +  𝜋1 �̅̂�𝑗 + 𝜋2 �̂�𝑗  +  𝜋3 �̅̂�𝑀𝑗 +  𝜋4Λ 𝑗 + 𝜖′𝑗𝑡                                        (8) 

In our empirical analysis below we compare estimates of equations (7) and (8) to estimates of similar 

“reduced form” specifications that excludes the labor quality and wage premium measures and include 

only the management practices variable. If advanced management practices, higher workforce quality, 

and enhanced pay are complementary practices that tend to be adopted as a package by better-managed 

firms, then we expect the measured impact of advanced management practices to be larger in this 

alternative specification, reflecting an “omitted variable” bias.  We also consider controlling for other 

factors that may influence productivity and workforce quality in equations (7) and (8) such as firm age, 

industry, ownership type, the degree of product market competition, etc. 

 

In addition to examining how the productivity-management relationship changes after conditioning on 

worker ability and the firm-specific pay premium, we also examine directly the cross-firm relationship 

between the ability distribution and management scores. We first check whether firms with high 

management scores employ people of above average ability, especially in the upper quartile of the 

within-firm pay distribution. We then investigate the extent to which the positive correlation between 

management practices and the average ability of the workforce is due to selective recruiting and retention 
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of higher-ability workers by better-managed firms. We tackle this question by analyzing leavers and 

joiners at the firms in our data base between 2004 and 2009 (the dates when the management survey 

took place). Using estimates of worker ability based on data from the pre-2003 period we ask whether 

the better managed firms disproportionately recruit and retain those of higher ability.  

 

III. DATA  

Our empirical analysis combines data for the German firms in the World Management Management 

Survey (Bloom and Van Reenen, 2007; Bloom al, 2014) with longitudinal earnings records from the 

Institute for Employment Research (Dorner et al., 2010).  In this section we briefly describe the two 

underlying data sets and our procedure for forming the matched WMS-IEB data base. 

 

a.  The WMS Data Base 

The WMS was developed by Bloom and Van Reenen (2007) as an instrument for eliciting reliable 

information on the use of advanced management practices.  The WMS relies on an interview-based 

evaluation tool that scores participating firms from one (“worst practice”) to five (“best practice”) in 

three broad areas.11  The first is monitoring: how well does the firm track what goes on inside its plant(s) 

and use this for continuous improvement?  The second is goal setting: does the firm set appropriate 

targets, track closely aligned outcomes, and take appropriate action if the two are inconsistent? A third 

area is incentives/people management: does the firm promote and reward employees based on 

performance, and systematically try to hire and retain the best employees? 12 

 

To obtain accurate responses the WMS uses a ‘double-blind’ protocol.  Responding plant managers are 

not informed that they are being scored, or shown the scoring grid. They are only told that they are being 

“interviewed about management practices for a piece of work”. Likewise, WMS interviewers are not 

given any information about the firm. 

 

The interview script consists of open-ended questions rather than yes/no queries or checklists. For 

example, the first question on monitoring practices is “Tell me how you monitor your production 

process.” The questions continue, focusing on actual practices and examples, until the interviewer can 

                                                 
11 The survey tool used in the WMS was developed by an international management consulting company.  Not all aspects of 

management behavior are captured by the WMS.  For example, Bertrand and Schoar (2003) focus on CEO and CFO 

management style, capturing (for example) differences in strategy over mergers and acquisitions. 
12 These practices are similar to those emphasized in earlier work on management practices, by for example Ichniowski, 

Prennushi and Shaw (1997) and Black and Lynch (2001). 
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make an accurate assessment of the firm’s practices in a certain area.  The full interview script is reported 

in Appendix Table B1.  

 

The survey universe for the German component of the WMS consists of medium-sized manufacturing 

firms (employing between 50 and 5,000 workers) selected from the ORBIS data base. Firms with under 

50 workers were excluded from the universe because many small firms do not use (or need) advanced 

management practices. Large firms were excluded to ensure that the responses from a single plant 

manager are broadly representative of the firm’s overall practices. Dropping large firms also makes it 

unlikely that the WMS interviewer would have any pre-conceived impressions about the firm or its 

management practices.  

 

The WMS survey is targeted at plant managers, who are typically senior enough to have a good 

understanding of management practices but not so senior as to be detached from day-to-day operations.13 

To insure high response rates and reliable answers the WMS was conducted by MBA-type students with 

some business experience and training. German firms in the WMS were also contacted prior to the 

survey with a letter of endorsement from the Bundesbank.  Importantly, participants were informed that 

the survey was for a “piece of work on lean manufacturing”, with no mention of the words “survey” or 

“research”.  Moreover, interviewees were never asked for financial data – instead these data were 

obtained directly from the ORBIS data base. Finally, the interviewers were encouraged to be persistent,  

so they typically conducted two interviews a day lasting about 45 minutes each, and spent the rest of 

their time contacting managers to schedule interviews. These protocols helped to yield a 44% response 

rate which was uncorrelated with the (independently collected) performance measures.  

 

German firms in the WMS were interviewed in 2004, 2006, 2009 and 2014. Since the estimated worker 

and firm effects are only available for the years up to 2009, we only use the first three survey waves, 

which included 365 medium-sized manufacturing firms, some of which were interviewed two or three 

times (we cluster standard errors at the firm level to deal with this).14 

 

                                                 
13 The survey also collects information on a set of “noise controls” about the interview itself, including the time of day and 

day of the week, characteristics of the interviewee, and the identity of the interviewer. We check whether our results are 

robust to including these controls our regression analysis. 
14 We also looked at the panel dimension of firms, but the panel dimension only exists for a relatively small number of firms 

and there is not enough real time series variation (given measurement error) to identify any significant relationships. 
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Our main measure of management quality was constructed by z-scoring (normalizing to mean 0, 

standard deviation 1) the 18 individual questions in the WMS, averaging these and then z-scoring this 

average. This process yields a management index with mean zero and standard deviation one.  

 

b.  Worker-Level Data from the IEB 

The worker-level data used in our analysis come from the Integrated Employment Biographies (IEB) 

data base maintained by the IAB. For each job lasting a day or more, the IEB includes employee 

information such as age, gender and education, employer information such as industry and location, and 

job-spell-based information on characteristics such as full time or part time status, average daily wages, 

and occupation. It also includes information on benefit spells for workers who are receiving regular 

unemployment benefits or unemployment assistance.   Dorner et al. (2010) provide more information on 

the sources of data used to create the IEB data. 

 

Appendix A3 describes how we merge firms in the WMS to establishments in the IEB data, primarily 

using the firm/establishment addresses in both datasets, enabling us to link 361 of the 365 firm in the 

WMS to an establishment identifier in the IEB. We then searched the IEB data base to identify all 

individuals who had worked at one (or more) of the matched firms for at least one day between 2002 

and 2009. We located a total of 251,872 workers who met this criterion. For some of our descriptive 

correlations and for our analysis of productivity we construct a panel data set using employee rosters as 

of June 30 to define the set of workers at a given firm in a given year. 

  

To measure worker skills and the wage premiums offered by different firms we use the estimated worker 

and firm effects estimated by CHK. CHK convert the job spell information in the IEB into a longitudinal 

panel with information on a worker’s main job in each year and estimate a version of equation (4) by 

ordinary least squares.  A limitation of the IEB data is that there is no information on usual hours of 

work during a job spell. For this reason, CHK limit their analysis to full time workers: no worker effects 

are available for part time employees or those who hold so-called mini-jobs.15 Henceforth when we refer 

to “wages”, the reader should bear in mind we are referring to daily wages (rather than the hourly wage). 

Another limitation of the IEB data is that daily wage is censored for about 10% of men and 2% of 

women.  CHK use a Tobit model to allocate earnings for the censored cases. (A similar procedure was 

used by Dustmann, Ludsteck, and Schonberg, 2009, who also provide some information on the quality 

of the Tobit approximation to the upper tail of wages in Germany).  

                                                 
15 They also exclude job spells where a worker is in training, and spells worked by individuals younger than 20, older than 

60, or with less than 1 year of potential labor market experience. 
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CHK estimated separate models for full-time male and female workers age 20-60 in four overlapping 

intervals: 1985-1991, 1990-1996, 1996-2002 and 2002-2009. For our productivity models we use the 

estimates from the 2002-2009 interval, which roughly correspond to the survey years for the WMS 

(2004-2009).  For all our analysis we use the worker effects from the 1996-2002 interval, as this pre-

dates the measurement of management in 2004, except for the outflow analysis where we use the 2002-

2009 period. 

 

Overall we have estimated person effects for 88% of all workers in the matched WMS firms (98% of 

the relevant population of workers in these firms – e.g. excluding part-timers and workers at firms in 

East Germany, which were excluded by CHK). In all firm level models we control for a quadratic 

function of the coverage ratio (the proportion of workers in the firm for which we have employee fixed 

effects) to partially control for any systematic selectivity biases.  

 

For our inflow and outflow analysis we construct average information by firm on workers who join a 

sample firm or leave a sample firm in the period from 2003 to 2009. Specifically, we focus on three 

types of joiners: job-to-job joiners, who transition from some other firm to a sample firm with no more 

than 2 months between the end of the previous job and the start of the new job; joiners from 

unemployment, who transition from a spell of registered unemployment to a sample firm with no more 

than 2 months between the end of the unemployment spell and the start of the new job; and all other 

joiners.  The latter group includes new labor market entrants, recent immigrants, people who have been 

on maternity leave, people moving from self-employment or a job in the civil service,16 and people with 

longer gaps between their prior job or benefit spell. Likewise, we focus on three types of leavers: job-

to-job leavers, who move to a new firm within 2 months of leaving a sample firm; leavers to 

unemployment, who enter a spell of registered unemployment within 2 months of leaving a job at a 

sample firm; and all other leavers. 

 

We also match in several other datasets to our merged WMS-IEB sample. We use ORBIS for firm-level 

information on sales, intermediate inputs (materials) and capital. From the OECD STAN dataset we 

have industry-level average data on gross output and labor costs, which we match to the WMS plants at 

the three digit level to estimate cost shares. We use the 2000-2009 averages from the STAN data to 

approximately match the time period of the management data. 

                                                 
16 Self-employed workers and civil servants are excluded from the IEB. 
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c. Overview of the Matched WMS and IEB Dataset 

Panel A of Table 1 gives an overview of the key characteristics of the firms included in our matched 

WMS-IEB sample (exact definitions of the variables are presented in Table A1). The firms are 

distributed across 15 of the 16 German Federal states, with 13% in East Germany. On average, sample 

firms have been in business for 64 years, employ 440 workers, and pay a daily wage of just over €100. 

About a quarter of all workers at these firms are female and 12% have a university degree. 

 

The next two rows of the table show the average cost shares of intermediate inputs and labor inputs, 

based on industry-wide averages for German firms reported in the STAN data set. The input share of 

intermediate inputs is relatively large (67% on average) while the average labor share is 23%.  Thus, 

labor costs account for just over two-thirds of value added. 

 

From the WMS we also have information on ownership structure –whether the firm is family-owned, 

non-family privately owned, or institutionally owned (typically by a local government or quasi-

governmental agency).  The sample includes firms in a wide range of ownership situations, including 

about 23% family owned and 13% institutionally owned. 

 

Finally, the remaining rows of Panel A show sample statistics for the WMS management score, and for 

the average estimated worker effects and establishment-level wage premiums.  For ease of interpretation, 

we standardize the management score index and the estimated worker and firm effects to have mean 0 

and standard deviation of 1.17 We have estimated employee fixed effects for just under four-fifths of the 

workers who can be matched to a WMS firm.18  

 

 

IV. RESULTS 

a. Descriptive Analysis 

We begin our analysis of the relationship between management quality, workforce selection, and 

productivity with some simple descriptive comparisons. Figures 1 and 2 show how the distributions of 

                                                 
17 The estimated person and firm effects in an AKM model are only identified up to a linear constant. Since the male and 

female models are estimated separately, the person effects are normalized differently.  We re-center the male and female 

effects to have mean zero across all firms in our sample, then average the person effects for males and females, then 

standardize the resulting mean.  
18 The coverage is smaller in East Germany, where we can only merge an ability measure if the employee has been in a 

connected with a West German firm. We show robustness to dropping all East German firms. 
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wages and estimated person effects, respectively, differ between firms with relatively high management 

scores and other firms. To construct Figure 1 we begin by finding the quintiles of daily wages for all 

workers who are matched to a firm in the WMS sample.  We then identified the “best managed firms” – 

those with management scores in the top 10% of firms in the sample – and all other firms (i.e., those 

with management scores in the bottom 90%) and calculated the fractions of workers in each wage 

quintile at the two groups of firms.  As shown in the right-hand panel of Figure 1, the best-managed 

firms have a relatively high share of workers in the top wage quintile (26%) and a relatively low share 

in the bottom quintile (13.4%).  

 

To construct Figure 2 we followed the same procedure, but used the estimated worker effects, which 

proxy for the long run human capital of the workforce.  The differences between the best managed firms 

and all other firms are a little different using this measure. The best managed firms have more workers 

in the top 2 quintiles than other firms, but no fewer in the bottom quintile. Instead, the gap is made up 

by a shortfall in the shares of workers in quintiles 2 and 3 of the person effects – the lower-middle of the 

skill distribution.  As discussed in more detail below, Figures 1 and 2 imply that firms with more 

advanced management practices have somewhat lower dispersion in daily wages but wider dispersion 

in worker skills.19 

 

More insight into the potential complementarity between advanced management practices and the 

human capital distribution of the workforce is provided in Figures 3 and 4.  Figure 3 is a simple bin-

scatter plot of average management scores (on the y-axis) against the average human capital of all 

employees a firm, as measured by the average person effects (on the x-axis).  Figure 4 is a similar bin-

scatter using measures of management scores and mean person effects that have been residualized to 

control for the effect of firm size. The positive relationship between management quality and the average 

human capital of the workforce is particularly strong after controlling for firm size, which previous work 

has shown is very strongly correlated with management practice scores (e.g. Bloom et al, 2014). 

 

Next we examine the correlates of firm productivity. Figure 5 shows the non-parametric relationship 

between labor productivity - measured by log sales per worker - and the WMS management score. As 

noted by Bloom and Van Reenen (2007) there is a positive relationship between the two even after 

controlling for firm size. Figure 6 presents an analogous scatterplot for productivity and the average 

                                                 
19 CHK show that over the past three decades establishments in West Germany have become more specialized in terms of 

the distribution of occupations. Contrary to our expectations, Figure 2 suggests that this tendency is not more pronounced 

among middle sized manufacturing firms with higher management scores.  
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employee fixed effects. There is also a clear positive relationship here, motivating our question of 

whether the impact of management practices on productivity is mediated through employee talent. 

Interestingly the relationship is quite convex, hinting at a greater role for the skill level of managers in 

determining productivity, as specified in equation (6). 

 

b. Correlates of Management Practice Scores 

To provide more contextual information on the relationship between workforce quality and management 

practices, we estimated a series of simple regression models, summarized in Table 2, that relate the 

management z-score at each firm to measures of employee quality and other firm characteristics.  All 

the specifications also control for firm size, the share of female workers, ownership status, the number 

of competitors, firm age, three digit industry, survey year, and location in East Germany.20  Column (1) 

relates management scores to mean employee quality, and confirms the strong positive correlation 

suggested in Figures 3 and 4. Column (2) focuses on mean ability of the top quarter of employees, which 

we assume is a measure of the human capital of the firm’s managers. The coefficient on “managerial 

ability” is about 45% larger than the effect of average employee ability.  Column (3) enters both 

measures and shows that it is managerial ability that matters more – the coefficient on average employee 

ability is insignificant conditional on managerial ability. As shown in column (4), this result is robust to 

controlling for another measure of average human capital, the share of college-educated workers at the 

firm. In Table A2 we show this finding is also robust to including other measures of observable human 

capital (experience, age and tenure), none of which have a large or significant correlation with 

management scores.  

 

Overall Table 2 suggests that the management practice scores and human capital (especially managerial 

ability) are complementary, in the sense that they co-vary together. 

 

IV.B Quantifying the Channels Linking Management Practices to Productivity 

a. Analysis Based on Production Function Estimation 

We begin our analysis of productivity in Table 3 with a straightforward production function approach 

as in equation (7). The basic specifications in columns (1)-(4) control for labor inputs only, while the 

models in columns (5) and (6) include labor and capital, and those in columns (7)-(10) include labor, 

capital, and intermediate inputs.  

                                                 
20 Note that to avoid losing observations due to missing values for the control variables we set missing values to the sample 

mean and include a dummy for an imputed value.  Only a handful of firms have missing data for most control variables, but 

92 firms have missing data on capital (which is not included in Table 2 but is used in later tables).  
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Looking first at the specifications that exclude capital and intermediate inputs, the estimates in column 

(1) show that the WMS management score variable has a relatively large partial correlation with 

productivity (0.26) when there are no controls for worker ability. The magnitude of this coefficient is 

similar to the coefficient from a parallel specification fit to the overall WMS sample covering 34 

countries, reported by Bloom, Sadun and Van Reenen (2015). The coefficient on the management score 

variable falls to 0.20 when we control for average employee ability (column 2), to 0.15 when we control 

for both average worker ability and managerial ability, and to 0.13 when we add a further control for the 

share of college-educated workers.21 Thus, without taking account of variation in capital and 

intermediate inputs, one would conclude that up to about one-half of the (relatively large) effect of 

management scores on productivity is explained by the fact that firms with more advanced management 

practices hire better quality workers – particularly in the upper stratum of the skill distribution. 

 

Column (5) introduces a control for capital (measured by the book value of capital).  Despite the well-

known limitations of book value-based capital measures, this variable has a large positive coefficient 

that is relatively precisely estimated. Introducing capital into the production function leads to a relatively 

large reduction (-40%) in the coefficient on the management score, and to noticeable declines in the 

coefficients on average worker ability, managerial ability, and the fraction of college graduates.  

Nevertheless, all four remain at least marginally significant.   

 

So far we have focused on the impact of measures of worker quality on the measured effect of the 

managerial score variable.  As discussed in Section 2, however, firm-specific pay policies may also 

affect productivity if they are used by the firm to reward greater effort. Some descriptive evidence on 

this mechanism is presented in Figure 7.  Panel A shows a bin-scatter plot relating the estimated firm-

specific wage premiums to log(sales per worker).  These are positively related, as has also been 

documented in other countries (e.g. Card, Cardoso and Kline, 2015, for Portugal and Abowd et al, 1999, 

for France). Panel B presents a bin-scatter plot of the wage premiums against the WMS management 

scores. Again, there is a strong positive relationship, suggesting that firms that use advanced 

management practices tend to pay higher wages to their workers relative to the outside labor market. If 

we regress the firm fixed effect on management scores there is a significant and positive correlation with 

and without the other controls (see Table A7).  

 

                                                 
21 In this column a standard deviation increase in management scores is associated with a 13% increase in productivity which 

is similar to the findings of the Indian RCTs and non-experimental regressions across all countries (Bloom et al, 2014). 
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In column (6) of Table 3 we introduce the firm-specific wage premium as an additional control. As 

expected given the scatter plots this variable has a positive and significant effect.  Its inclusion also leads 

to a further reduction in the effect of the management score variable. 

 

Finally, columns (7)-(10) present estimates for production functions that control for labor, capital, and 

intermediate inputs.22 The baseline specification in column (7) includes only the management score 

variable and the controls for factor inputs.  Relative to the parallel specification in column (1), the effect 

of management practices is reduced by around 80%.  Evidently, more advanced management practices 

are more likely to be adopted by firms with more capital intensive production techniques that also use 

larger shares of intermediate inputs.  Controlling for these factors, the coefficient in row 1 implies that 

a 1 standard deviation unit increase in management practices is associated with a 4.3% increase in 

productivity. 

 

Column (8) adds the two worker ability measures to the 3-factor production function.  Both variables 

are marginally significant and their addition reduces the management-TFP relationship to 0.035. In 

column (9) management practices and ability remain significant even conditional on the share of college 

educated. Finally, in column 10 we add in the estimated firm-specific pay premium, which leads to a 

reduction in the point estimates for the effects of the management score and worker quality variables.  

With only 229 firms included in the analysis we have reached the limits of the data to distinguish between 

the different channels.  

 

The models in Table 3 use a simple average of the 18 management questions on the WMS survey as a 

measure of management practices. We have checked the robustness of our findings by using other ways 

of summarizing the WMS questions, such as using principal components, and by looking at subsets of 

the question-specific scores.  For example, Table A6 presents a series of models similar to ones in Table 

3, but using the first principal component of all 18 questions.  Overall, the results are qualitatively and 

quantitatively similar to those based on simple averages of the z-scores. 

 

b. Analysis Based on TFP 

In Table 4 we implement our preferred TFP specification based on equation (8). This approach has the 

advantage relative to the production approach used in Table 3 of moving the conventional factor inputs 

                                                 
22 Information on intermediate inputs is missing for a sizeable fraction of firms in ORBIS, leading to a 30% reduction in 

sample size. Unlike the case for other control variables we decided not to try and impute the value of intermediate inputs if 

it was missing. 
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(labor, capital, and materials) from the right hand side to left hand side of the regression, reducing the 

effects of measurement errors and endogeneity biases. Moreover, the coefficients on labor, capital and 

materials are allowed to vary across detailed subindustries according to their cost shares. On the other 

hand a TFP approach assumes that the output elasticities with respect to the three factor inputs are equal 

to their cost shares, an assumption which may not be strictly correct. 

 

In general the broad pattern of results in Table 4 is similar to the pattern in Table 3, but the more 

parsimonious specification allows us to estimate the key variables more precisely. The first four columns 

of the table present models where we exclude the firm size, industry, and ownership controls, whereas 

the last four columns present models with these controls included (as in Table 3).  As we move from 

column (1) to column (2) we observe that the controlling for employee quality reduces the management 

coefficient by 24% (= (0.08-0.06))/0.08). Controlling for managerial ability reduces the management 

effect by another 14% and controlling for the firm wage premium reduces it by another 16%. So 

altogether the reduced form association of TFP with management is roughly halved when we introduce 

these additional controls.  

 

We repeat the specifications of columns (1)-(4) in the last four columns of Table 4, but include more 

extensive controls. The results show a qualitatively similar pattern, although the fraction of the 

management coefficient explained by the other controls is smaller (the original management association 

of 0.048 is reduced by about 30% by the final column). Employee ability accounts for only 3%, 

managerial ability 13% and establishment fixed effects in pay a further 13%. The fraction accounted for 

by average employee ability falls compared to the first four columns because we are now controlling for 

the share of employees with a college degree throughout. This suggests that in understanding the 

productivity-management practice correlation, the unobserved human capital (recovered by the AKM 

specifications) of average workers matters less than managerial human capital. 

 

We summarize our estimation results and their implications for our simple structural model in Table 5.  

Recall that the model consists of equation (5), which relates overall workforce quality to average human 

capital (�̅̂�𝑗 ), the firm’s pay premium ( �̂�𝑗), and observed management practices (Λ 𝑗)  (with coefficients 

𝜌1, 𝜌2, and 𝜌3, respectively); equation  (6), which relates TFP to managerial human capital  �̅̂�𝑀𝑗  and 

management practices (with coefficients 𝜆1  and 𝜆2 , respectively); and equation (8), which is a log-

linearized three factor production function with coefficients equal to the cost shares of the factors.  From 
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the reduced form coefficients we can recover 𝜌1, 𝜌2, 𝜆1,  and the composite management effect  𝑠𝐿𝜌3 +

𝜆2.  

 

Table 5 shows the reduced form parameter estimates and the associated estimates of the structural 

parameters 𝜌1, and 𝜌2 from the basic TFP specification in column (4) of Table 4, the extended TFP 

specification in column (8) of Table 4, and the production function estimates in column (10) of Table 3. 

Reassuringly, the estimated reduced form and structural parameters are fairly similar across these three 

specifications.  The implied values of 𝜌1̂ (the effect of higher average human capital on labor quality) 

are between 0.4 and 0.5, the implied values of  𝜌2̂ (the effect of a higher pay premium on labor quality) 

are between 0.2 and 0.3, the implied values of 𝜆1 (the effect of a higher human capital of managers on 

TFP) are between 0.05 and 0.08, and composite effects of (standardized) management ability on TFP 

are between 0.03 and 0.04.   

 

While the estimates of the effect of workers’ average human capital on labor quality (𝜌1̂) are relatively 

large, they are still far below 1.0, which is the expected effect if a 1% increase in the average person 

effect at a firm leads to a 1% increase in labor quality.  There are three likely explanations for the gap.  

First, the worker effects are estimated with error.  Second, the firm-wide average skill measure excludes 

part-timers, trainees, and workers outside the 20-60 age range.  Third, there is some slippage introduced 

by the presence of multi-plant establishments in our sample, since we only merge firms to a single 

establishment in the IEB data base.23  We suspect that all three factors lead to some attenuation in the 

measured effect of average worker quality. 

 

Our finding that higher firm-specific wage premiums contribute to average productivity, albeit less than 

proportionally, is also interesting. Taken at face value, point estimates for  𝜌2̂ in the range of 0.20 to 0.30 

suggest that firms receive only a partial productivity offset from offering higher pay. Again, we suspect 

that the estimates could be attenuated by measurement errors in the AKM procedure, and by slippage in 

the match between firms and establishments. 

 

Finally, the finding that average managerial quality has an independent effect on TFP, holding constant 

the average quality of the workforce, provides empirical support for the channel emphasized in Lucas’s 

(1978) original span of control model and many subsequent models of the effect of managers on TFP. 

                                                 
23The establishment identified in the IEB can actually combine 2 or more plants if the plants are all in the same location and 

assigned the same narrow industry code. 
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We also conclude from the pattern of coefficients on the management practice variables (e.g., between 

columns 1 and 4 in Table 4) that the observed effect of management practices in simpler specifications 

represents a combination of direct and indirect effects via workforce selection and pay practices.  We 

turn in the next sub-section to see whether there is any direct evidence that some of the role of 

management practices operates via selection. 

 

IVC. Inflows and Outflows  

We have shown that firms with a more able workforce, and in particular more able workers in the top 

quarter of the skill distribution, tend to have better management practices and higher productivity. We 

now investigate in more detail how firms come to have higher ability employees by looking at the 

inflows and outflows of workers to our firms. 

 

As background, Panel B of Table 1 shows the total numbers of individuals we observe in the IEB data 

set who join or leave one of the matched WBS firms. In total we observe about 122,436 joiners and 

132,600 leavers (roughly 350 joiners and leavers per firm, on average). Most inflows (58%) and most 

outflows (57%) are job-to-job transitions, but substantial fractions of new hires come from 

unemployment (16%) and from other sources (27%).  Likewise many job leavers exit to unemployment 

(30%) or to other destinations (13%).24   

 

Table 6 presents an analysis of the relationship between management ability measures and the faction 

of new recruits at a firm with estimated person effects at or above various percentiles of the overall 

distribution among all new recruits.  The person effects for this analysis are those estimated by CHK for 

the period 1996-2002, prior to the start of the jobs under analysis here. Each column of the table shows 

the coefficient of the management ability index in a model for the fraction of new recruits with person 

effects at or above the percentile listed in the column heading (10th, 25th, 50th, 75th and 90th percentiles). 

In column (5) for example, the dependent variable is the proportion of workers who were in the top 

decile of the ability distribution, based on their estimated person effects in the period from 1996 to 2002.  

We present two sets of specifications: a simpler set of models (Panel A) that control for location, 

ownership, industry, female share, and production market competition; and a richer set of specifications 

(Panel B) that also control for firm size. In both specifications the coefficient on the management score 

is positive at every percentile, but particularly strong for workers in the top of the distribution. In the 

                                                 
24 Recall that the third category includes “out of the labor force” as well as employment in jobs outside the coverage of the 

IEB (self-employment and the civil service). 
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specifications without size controls the management score coefficients for the 75th and 90th percentiles 

are highly significant.  As shown in the second panel, these effects are attenuated once we control for 

firm size, but the coefficient in the 90th percentile model remains marginally significant.  Tables A3 and 

A4 repeat the analysis, fitting separate models for inflows from a previous job and from 

unemployment.25  The results are broadly robust to disaggregating in this way.  Overall, we conclude 

that better managed firms are a little more likely to recruit workers from the upper tail of the ability 

distribution. 

 

Table 7 turns to the effect of management ability on the composition of outflows to unemployment. 

These flows are particularly interesting because they arguably reflect termination decisions by the firm 

(i.e., decisions to fire or lay off a worker), rather than decisions by workers to move to another job or 

withdraw from the labor force.  The dependent variable in all the models in Table 7 is the average value 

of the person effect for leavers who move to unemployment, normalized by deviating from the mean 

person effect at the firm among all employees in the previous year.  Thus, the coefficients reflect the 

impact of higher management ability on the differential layoff/firing rate of higher or lower-ability 

workers. 

 

The results in Table 7 suggest that firms with higher management scores are significantly less likely to 

fire or lay off their relatively high-ability workers. This correlation remains robust in column (2) to more 

general controls for firm size, location, the shares of college educated and female workers, firm age, 

competition and ownership. Nevertheless, one might be concerned that the relative skill level of workers 

who are laid off or fired from a particular firm is correlated with some other characteristics of the worker. 

Consequently we also experimented with conditioning on some of the observable characteristics of the 

outflow group, such as age (in column (3)) and whether the individual was college educated (column 

(4)). Interestingly, these controls tend to increase the magnitude of the management score coefficient, 

suggesting that the “quality preference” of better-managed firms is stronger within traditionally 

measured skill groups than between groups.26  

 

                                                 
25 Haltiwanger, Hyatt and McEntarfer (2015) show that there are differential patterns by firm size (and firm wage) for job-

to-job flows compared to other type of flows. 
26 We repeated these specifications looking at outflows to jobs at other firms (see Appendix Tables A4). Although the results 

were of a similar sign they were generally weaker, which is consistent with our prior that the firm policy variables are most 

likely to be seen when looking at exits to unemployment. 

 



 21 

Tables 6 and 7 together confirm that firms with high WMS management scores select higher ability 

employees and exit lower ability employees to a greater extent than other firms. This is a clear 

mechanism through which they end up with a larger fraction of high ability incumbent employees. We 

estimate that it would take about 9 years for a firm which moved from the bottom 90% into the top decile 

of WMS management scores to converge to the average employee ability score of its peers purely 

through improving the quality of the inflows and outflows.27 

   

IVD. Management Practices and the within plant Dispersion of Wages and ability 

So far we have focused on the importance of management practices for the differences in mean levels 

of productivity and worker ability across firms.  In part, this focus is driven by the recent literature 

emphasizing the role of widening between-firm inequality in overall labor market inequality trends (e.g., 

Faggio et al., 2010; Card, Heining and Kline, 2013, Barth et al., 2014; and Song et al, 2015).  But an 

interesting question is whether advanced management practices are also related to the degree of within-

firm inequality. 

 

We investigate this issue in Table 8.  We begin in columns (1) and (2) with specifications that take the 

90-10 difference in log(wages) at each firm in our sample as the dependent variable.  As suggested by 

the pattern in Figure 1, there is a modest negative correlation between use of advanced management 

practices and within-firm wage inequality, though the effect is at best only marginally significant. In 

columns (3) and (4) we use the coefficient of variation in log daily wages as an alternative measure of 

within-firm dispersion.  With or without other controls firm wage variation is strongly negatively 

correlated with the firm’s management score. Columns (5)-(8) present a parallel set of models, taking as 

a dependent variable the corresponding measure of within-firm inequality in worker quality, as measured 

by the estimated person effects.  Again the findings are consistent with the simple graphical evidence in 

Figure 2, suggesting that better managed firms have a slightly wider distribution of worker skill.  

 

                                                 
27 If we compare firms in the top decile of management to the rest there is a difference of 0.007 (0.554 

vs. 0.547) in the average employee fixed effect. The difference in the average employee ability of joiners 

from the labor force between these two groups of firms is 0.004 (0.555 vs. 0.551), but the inflow rates 

are similar at 6.7%. Hence, improving the quality of inflows will bridge 4.5% (= 0.004*0.067/0.007) of 

the employee ability gap per year. The ability difference of outflows to unemployment is larger at 0.014, 

but the mean outflow rate is only 3.1%, which makes a contribution of 6.5% (= 0.031*0.014/0.007). 

Putting the inflows and outflows channels together implies 11% of the ability gap is closed per year.  
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Overall the conclusion from Table 8 is that firms with high management scores tend to have a little more 

dispersion in skills and a little less dispersion in overall wages. The opposite signs imply that better-

managed firms tend to implement “equalizing” pay policies that offset their more unequal skill 

distributions – a pattern that is inconsistent with the additive proportional pay premium imposed by the 

AKM specification. We believe that additional work on the relationship between within-firm inequality 

and management practices could be a fruitful area for additional research with larger samples. One 

interesting question is whether advanced management practices are related to the use of outsourcing 

practices, which in some cases at least lead to a reduction in the variation in skill levels at the firm (e.g., 

Goldschmidt and Schmieder, 2015). 

 

IVE. Extensions and Robustness  

We also investigated many other outcomes discussed in the Appendix. We examined whether there was 

faster wage growth (as a proxy for promotion) for the more able employees in better managed firms 

(Table A5). Interacting management scores and worker ability together in the wage growth equation we 

did find that better managed firms seemed to promote high ability workers more quickly, but the 

coefficient was insignificant. 

 

Another question is whether our approach of using the AKM fixed effects to proxy for employee, 

managerial and firm “quality” buys us any more information than simply conditioning on average 

wages? There is a tradition in firm-level productivity analysis to include the wage bill instead of 

employment as a measure of  “labor services” (e.g. Hsieh and Klenow, 2009). Under competitive 

markets and perfect substitutability between heterogeneous workers this seems an attractive approach as 

the wage bill is usually available in firm accounts, whereas individual wages are not.   

 

Table A8 investigates this issue, beginning in column (1) with the basic TFP specification from column 

(1) of Table 4. In column (2) we include the log of the average wage bill per employee, taken from the 

firm-wide ORBIS accounts. Consistent with existing work this suggests higher TFP in firms with higher 

average “accounting wages” as the coefficient is positive and (weakly) significant increasing the R2 from 

0.561 to 0.575. If instead of the accounting wage we include our preferred controls there is a larger 

increase in the R2 to 0.685. Furthermore, the average wage estimated from firm accounts is now 

insignificant conditional on our controls for person and firm fixed effects in column (4). In column (5) 

we include the average of the individual log(wages) from the IEB. This is much more powerful than the 

accounting measure (which probably has greater measurement error) explaining 0.679 of the variance, 

almost as much as our AKM measures in the previous column. Nevertheless, including our AKM 
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measures gives additional information over and above the simple average individual wage, with 

employee and managerial ability remaining significant (the joint F-test of the three AKM terms is 9.84 

which is significant at the 1% level). The bottom line from this is that our AKM approach adds much 

more information than simply using the wage bill, and significantly more than simply the average of 

individual wages of the workers currently in the firm.28 

 

V. CONCLUSIONS 

In this paper we have examined whether some core management practices found to be important for firm 

productivity (e.g. in Bloom and Van Reenen, 2007) are due to the higher ability of employees, especially 

managers, in these firm. We merge the near-population administrative data matched worker-firms in 

Germany (the IEB) with the WMS management data.  We estimate an overall measure of individual 

ability for each worker using the employee fixed effects from wage equations in the manner of Abowd 

et al (1999).  This approach also provides us with information on ability of the top quartile of workers, 

who we interpret as the firm’s managers, and with an estimate of the average pay premium paid by the 

firm relative to the outside labor market. 

 

We show several interesting stylized facts in our data. First, we find a strong relationship between 

average employee ability and management practices.  This is particularly strong at the top end of the 

ability distribution, suggesting that managerial ability is important in explaining why some firms have 

high management scores (over and above average worker skills).  When we estimate production 

functions we find that firms with higher worker and managerial human capital have higher productivity. 

However, the WMS management scores remain significant in production functions and TFP equations 

even after conditioning on all measures of employee ability. Including human capital reduces the 

association of productivity with management by 25 to 50 percent. Although we can never rule out the 

idea that there could be further aspects of human capital we are not accounting for, the continued 

importance of management practices in firm performance regressions is striking. 

 

Delving further into the management-ability relationship, we show that well managed firms have a 

higher stock of higher ability workers employees. They accomplish this at least in part by selection. 

                                                 
28 As with Table 2, we also considered controlling for a number of other observable measures of human capital such as 

general experience and tenure in the job or firm in the TFP regressions, but these did not make any substantial difference to 

the results. 
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They are able to recruit workers from higher points of the ability distribution and remove those from the 

lower part of the distribution. This is revealed through our analysis of inflows and outflows of workers. 

 

Taken as a whole our results suggest that human capital, especially managerial human capital is 

important for the ability to sustain successful management practices. However, there appears to be 

information in the management practice scores that predicts productivity that is not reducible to the 

atoms of human capital employed in the firm. This could be what some scholars have termed corporate 

culture - something that makes a firm more than simply its sum of parts. 

 

This is a fascinating research path to pursue as it links economics with other areas of social science. 

However, it may be that we are still not properly measuring all aspects of human capital in the firm. The 

censoring of the wage distribution may mean, for example, we underestimate the talent of senior 

managers. Combining the data we have here with richer information on the talent of top managers would 

be an important extension of our work (e.g. Bandiera et al, 2011). 
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Figure 1: Fraction of workers of different wage quintiles in low vs high managed score firms  

 
 

Figure 2: Fraction of workers of different ability quintiles (as measured by AKM individual 

fixed effect) in low vs high managed score firms 

 

Notes: “High Management Score” firms are those in the top decile of the WMS management score. 

“Low Management Score” firms are all other firms. We bin all workers into quintiles based on the overall 

distributions of wages or worker ability (as measured by worker fixed effects). Bin 1=lowest 20% and 

bin 5 = highest 20%. We then tabulate the fractions of workers in each quintile at firms in the top 10% 

of management scores and all other firms.  
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Figure 3: Correlation of Management Score and employee ability 

 
Notes: Figure shows bin scatter of management scores against vigntiles of employee ability, as measured 

by the mean firm-level average of estimated person effects from the 1996-2002 period. Management 

scores and employee ability are both standardized to have mean 0 and standard deviation 1. 

 

Figure 4: Correlation of Management Score and employee ability controlling for size 

 
 

Notes: Figure shows bin scatter of management scores against vigntiles of employee ability, as measured 

by the mean firm-level average of estimated person effects from the 1996-2002 period. Both variables 

are residualized by regressing the underlying variable on log(employment). 
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Figure 5: Positive Correlation of Ln(Labor Productivity) and WMS Management scores 

 

Notes: Figure shows bin scatter of ln(sales per worker) against vigntiles of management scores. Both 

variables are residualized by regressing the underlying variable on log(employment). 

 

Figure 6: Productivity is increasing in employee ability, especially for high levels of ability 

 

 
Notes: Figure shows bin scatter of ln(sales per worker) against vigntiles of mean worker ability, as 

measured by mean employee fixed effects. Both variables are residualized by regressing the 

underlying variable on log(employment).   
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Figure 7:  Firm Fixed effect (in wage equation) is correlated with WMS Management Practice 

Score and Productivity 

Panel A: Labor Productivity and Firm Fixed Effect 

 

 
 

Panel B: WMS Management Score and Firm Fixed Effect 

 

 
 

 

Notes:  Figures show bin scatter of log sales per worker (panel A) or management scores (panel B) 

against vigntiles of estimated firm-specific wage premium
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Table 1: Descriptive Statistics for Firms in Matched WMS-IEB Sample 

 Panel A: Firms Mean Median Min Max SD 

Firm located in East Germany (ORBIS) 0.13 0.00 0.00 100 0.34 

Firm age (WMS) 64.34 42.50 1.00 489.67 62.79 

Number of workers in IEB   440.02 238 1.00 6971 642.9 

Proportion Female Workers in IEB  0.27 0.22 0.00 0.89 0.17 

Share Employees with University degree (IEB) 0.12 0.08 0.00 0.80 0.13 

Median daily wage (IEB) 101.58 99.51 37.21 172.60 28.46 

Log of Book Value of Capital (ORBIS 9.89 10.18 2.71 13.82 1.69 

Log of Intermediate Inputs (ORBIS) 11.29 11.78 8.44 14.47 1.07 

Intermediate Input Revenue Share (OECD, Ind. Data) 0.67 0.67 0.57 0.89 0.05 

Share of Labor in Revenue (OECD, Industry Level) 0.23 0.23 0.04 0.30 0.04 

Firm has no competitors (WMS) 0.01 0.00 0.00 1.00 0.09 

Firm has less than 5 competitors (WMS) 0.41 0.00 0.00 1.00 0.49 

Firm has 5 or more competitors(WMS) 0.59 1.00 0.00 1.00 0.59 

Firm is family owned (WMS) 0.23 0.00 0.00 1.00 0.42 

Firm is founder owned (WMS) 0.05 0.00 0.00 1.00 0.21 

Firm is manager owned (WMS) 0.03 0.00 0.00 1.00 0.18 

Firm is non-family private owned (WMS) 0.22 0.00 0.00 1.00 0.42 

Firm is institutionally owned (WMS)  0.13 0.00 0.00 1.00 0.33 

Other ownership (WMS) 0.06 0.00 0.00 1.00 0.25 

Ownership unknown (WMS) 0.28 0.00 0.00 1.00 0.45 

Management Score (WMS) 0.00 0.06 -3.25 2.68 1.00 

CHK coverage (share employees with worker effects) 0.79 0.87 0.01 1.00 0.25 

Average employee ability (CHK worker effects) 0.00 -0.186 -5.56 3.40 1.00 

Average managerial ability (CHK top-paid worker effects) 0.00 -0.00 -6.24 2.71 1.00 

Firm Wage Fixed Effect (CHK pay premium) 0.00 0.080 -4.48 3.54 1.00 

Notes: Sample includes 361 firms from 2004, 2006 and 2009 waves of WMS data matched to IEB data 

on workers.  (590 firm-year surveys across all three waves).  See Table A1 for more information on data 

sources and definitions. 
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Table 1: Descriptive Statistics for Firms in Matched WMS-IEB Sample – contd. 

 

Panel B: Individuals 

 

Notes: Sample includes individuals in the IEB data who joined or exited firms in the WMS-IEB matched panel between 2004 and 2009. 

 

 

  

Variables 

 Inflows to our firms from the 

specified labor market state 

Outflows  from our firms to the 

specified labor market state 

Unemployment  19,013 40,093 

Jobs  70,675 75,023 

Non-participation  32,748 17,584 

Total  122,436 132,600 
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Table 2: Correlations of Firm Management with Average employee and managerial ability 

 

 (1) (2) (3), (4) 

Dependent Variable: Management z-Score Management z-Score Management z-Score Management z-Score 

     

Mean employee ability 0.216***  0.0289 -0.0928 

 (0.0777)  (0.0901) (0.112) 

Mean managerial ability  0.294*** 0.277*** 0.258*** 

  (0.0710) (0.0913) (0.0950) 

Ln(Number of Employees)  0.237*** 0.261*** 0.264*** 0.263*** 

 (0.0486) (0.0484) (0.0497) (0.0500) 

% Employees with college    1.022** 

    (0.452) 

     

Firms 354 354 354 354 

Observations 588 588 588 588 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by 354 firms in parentheses 

under coefficients estimated by OLS. Dependent variables and employee ability measures are z-scored. All columns include a dummy for firm 

located in East Germany, the share of female workers, ownership dummies (family, founder, private, institution, manager and other), the number 

of competitors, a cubic in the coverage rate, firm age, three digit industry dummies and time dummies. Employee ability is mean level of individual 

fixed effect measured over 1996-2002 period. Managerial ability is mean employee ability in the top quartile of the within firm distribution. 
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Table 3: Production Functions 

 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

 

Dependent Variable: Ln(sales) 

 

Ln(sales) 

 

Ln(sales) 

 

Ln(sales) 

 

Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) 

Management Score 0.264*** 0.199*** 0.150*** 0.129*** 0.0743* 0.0655* 0.0434** 0.0348** 0.0325* 0.0294 

 (0.0519) (0.0457) (0.0421) (0.0423) (0.0378) (0.0376) (0.0195) (0.0174) (0.0174) (0.0179) 

Employee Ability   0.821*** 0.597*** 0.375*** 0.250** 0.252**  0.110* 0.0825 0.0584 

  (0.144) (0.101) (0.105) (0.0978) (0.110)  (0.0599) (0.0732) (0.0750) 

Managerial ability   0.363*** 0.329*** 0.184* 0.155  0.0819* 0.0823* 0.0819* 

   (0.107) (0.0995) (0.0994) (0.102)  (0.0483) (0.0486) (0.0489) 

% Employees with     1.873*** 1.308*** 1.308***   0.192 0.282 

College degree    (0.642) (0.465) (0.454)   (0.232) (0.226) 

Ln(Labor) 0.315*** 0.446*** 0.589*** 0.591*** 0.389*** 0.389*** 0.0547*** 0.129*** 0.130*** 0.132*** 

 (0.0697) (0.0672) (0.0712) (0.0713) (0.0622) (0.0599) (0.0188) (0.0279) (0.0292) (0.0261) 

Ln(Capital)     0.431*** 0.421*** 0.204*** 0.181*** 0.181*** 0.176*** 

     (0.0484) (0.0473) (0.0227) (0.0221) (0.0227) (0.0219) 

Ln(Materials)       0.696*** 0.667*** 0.663*** 0.661*** 

       (0.0354) (0.0323) (0.0345) (0.0337) 

Ln(firm effect-wages)      0.110**    0.0390* 

      (0.0508)    (0.0226) 

           

Firms 333 333 333 333 333 333 229 229 229 229 

Observations 560 560 560 560 560 560 378 378 378 378 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm (in parentheses 

under coefficients estimated by OLS). Management score and employee ability is standardized. All columns include a dummy for East German 

firms, the share of female workers, 5 ownership dummies, dummies for numbers of competitors, firm age, a cubic in the coverage rate, industry 

dummies and time dummies. Mean Employee ability is mean level of individual fixed effect measured over 1996-2002 period. Mean Managerial 

ability is employee ability in the top quartile of the within firm distribution. 
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Table 4: TFP Specifications 

 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variable: LnTFP LnTFP LnTFP LnTFP LnTFP LnTFP LnTFP LnTFP 

         

Management Score 0.0809*** 0.0617*** 0.0528*** 0.0440** 0.0484*** 0.0471*** 0.0411** 0.0358** 

 (0.0211) (0.0195) (0.0187) (0.0183) (0.0184) (0.0174) (0.0170) (0.0171) 

Mean Employee ability   0.176*** 0.113*** 0.103***  0.198*** 0.141** 0.113* 

  (0.0248) (0.0344) (0.0331)  (0.0595) (0.0584) (0.0600) 

Mean Managerial ability   0.0616* 0.0585*   0.0550 0.0516 

   (0.0351) (0.0335)   (0.0340) (0.0337) 

Firm effect (in wages)    0.0699***    0.0508** 

    (0.0184)    (0.0198) 

         

General Controls No No No No Yes Yes Yes Yes 

Firms 229 229 229 229 229 229 229 229 

Observations 378 378 378 378 378 378 378 378 

 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm (in parentheses 

under coefficients estimated by OLS). Management score, managerial ability and employee ability are standardized. All columns include industry 

dummies, year dummies and firm size. “General controls” are: a dummy for East German firms, the share of female workers, 5 ownership dummies, 

dummies for numbers of competitors, firm age and a cubic in the coverage rate. Mean Employee ability is mean level of individual fixed effect 

measured over 1996-2002 period. Mean Managerial ability is employee ability in the top quartile of the within firm distribution. 
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Table 5: Implied Structural Estimates 

 

 

 (1) (2) (3) (4) (5) (6) 

Variable: Symbol 

Structural  

Parameters 

Reduced form  

coefficient 

TFP basic TFP Full Production  

Function 

       

Management Score Λ 𝑗 𝑠𝐿𝜌3 + 𝜆2 𝜋4 0.044 0.036 0.029 

       

Mean Employee ability  �̅̂�𝑗  𝑠𝐿𝜌1 𝜋1 0.103 0.113 0.058 

  𝜌1̂  0.447 0.491 0.439 

       

Mean Managerial ability �̅̂�𝑀𝑗  𝜆1 𝜋3 0.058 0.052 0.082 

       

Firm effect (in wages)  �̂�𝑗 𝑠𝐿𝜌2 𝜋2 0.070 0.051 0.039 

  𝜌2̂  0.304 0.222 0.295 

       

 

Notes: These are estimates of equation (7). Column (4) uses estimates from Table 4 column (4); column (5) uses estimates from Table 4 column 

(8), column (6) uses estimates from Table 3 column (8). We use the empirical average labor share in revenues of 23% (see Table 1) for the estimates 

of the structural parameters (𝜌1̂ ) and ( 𝜌2̂) in columns (4) and (5) and the estimate of the coefficient on labor from Table 3 column (8) of 0.132 in 

column (6). 
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Table 6: Inflows from Employment and Unemployment 

 

 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses 

under coefficients estimates by OLS based on 89,688 inflows from employment and unemployment in these firms. The management score is 

standardized. All columns control for east dummy, competition, ownership, log(firm age), female share, industry.  

  

 (1) (2) (3) (4) (5) 

Dependent Variable: Percentile  of the ability of different quantiles of the inflow distribution 

Percentile 10% 25% 50% 75% 90% 

Panel A. No Size Control       

Management Score 0.003 0.003 0.006 0.016** 0.019*** 

 (0.002) (0.004) (0.005) (0.006) (0.006) 

      

% college 0.081*** 0.212*** 0.304*** 0.075 0.090 

 (0.013) (0.029) (0.052) (0.086) (0.057) 

      

Panel B. Including Size Control      

Management Score 0.003 0.004 0.005 0.007 0.010* 

 (0.002) (0.004) (0.006) (0.007) (0.006) 

      

% college 0.081*** 0.202*** 0.314*** 0.123 0.139** 

 (0.015) (0.030) (0.050) (0.088) (0.062) 

      

Firm Size: Ln(labor) 0.000 -0.005 0.005 0.026*** 0.026*** 

 (0.002) (0.004) (0.007) (0.007) (0.007) 

      

Observations 355 355 355 355 355 
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Table 7: Outflows to Unemployment 

 

 (1) (2) (3) (4) 

Dependent variable: Ln(Average ability of outflow) – ln(Average ability of incumbents) 

Management Score -0.0909* -0.115** -0.106* -0.133** 

 (0.0528) (0.0584) (0.0595) (0.0570) 

Average age of outflows   0.0478*** 0.0409*** 

   (0.0159) (0.0150) 

% college of outflows    4.887*** 

    (0.861) 

     

General Controls No Yes Yes Yes 

Firms 347 347 347 347 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses 

under coefficients estimates by OLS based on 40093 outflows to unemployment in these firms. Column (1) includes dummies for industry and 

coverage of AKM effects,  other column additional include a dummy East German firms, share of female workers, share of workers with university 

degrees, firm age, and dummies for competition and ownership. 
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Table 8: Within firm heterogeneity of wages and employee ability 
 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variable: 90-10 ln(wages) 

Coefficient of variation 

in log wages 

90-10 ln(employee 

ability) 

Coefficient of variation 

in  ln(employee ability) 

         

Management Score -0.0373* -0.0289* -0.0965*** -0.0289** 0.0272* 0.0151 0.0347** 0.0229 

 (0.0215) (0.0169) (0.0197) (0.0124) (0.0143) (0.0123) (0.0162) (0.0147) 

         

Observations 571 571 571 571 571 571 571 571 

         

Firms No Yes No Yes No Yes No Yes 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses 

under coefficients estimated by OLS based on 348 firms . “Controls” are size, industry, firm age, east dummy, cubic in coverage rate, ownership 

and competition. 
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ONLINE APPENDICES: NOT INTENDED FOR 

PUBLICATION 

APPENDIX A: DATA 
 

 

A1. Management Data 

 

We overview the WMS data here. More information on an earlier version of the dataset 

can be found in Bloom, Sadun and Van Reenen (2015). More details on the management 

survey in general (including datasets, methods and an on-line benchmarking tool) is 

available on http://worldmanagementsurvey.org/. 

 

Our sampling frame was based on the Bureau van Dijk (BVD) ORBIS dataset. This 

provided sufficient information on companies to conduct a stratified telephone survey 

(company name, address, industry and a size indicator). BVD has accounting information 

on employment, sales and (for most German firms) capital. Apart from size, we did not 

insist on having accounting information to form the sampling population. In every country, 

including Germany, the sampling frame for the management survey was all firms with a 

manufacturing primary industry code (SIC 1987 code between 2000 and 3999), with 

between 50 and 5,000 employees in the most recent year prior to the survey.  

 

Interviewers were each given a randomly selected list of firms from the sampling frame. 

This should therefore be representative of medium sized manufacturing firms. In addition 

to randomly surveying from the sampling frame described above we also resurveyed firms 

in 2006 and 2009 that we interviewed in the 2004 survey wave used in Bloom and Van 

Reenen (2007). This was a sample of 732 firms from France, Germany, the UK and the 

US. In 2009 we also resurveyed all firms interviewed in 2006.  

 

The accounting databases are used to generate our management survey. How does this 

compare to Census data? In Bloom, Sadun and Van Reenen (2012) we analyze this in more 

detail. For example, we compare the number of employees for different size bands from 

our sample with the figures for the corresponding manufacturing populations obtained from 

national Census Bureau data from each of the countries. There are several reasons for 

mismatch between Census data and firm level accounts.29 Despite these potential 

differences, the broad picture is that the sample matches up reasonably with the population 

of medium sized manufacturing firms. This suggests our sampling frame covers near to the 

population of all firms for most countries 

 

                                                 
29 First, even though we only use unconsolidated firm accounts, employment may include some jobs in 

overseas branches. Second, the time of when employment is recorded in a Census year will differ from that 

recorded in firm accounts. Third, the precise definition of “enterprise” in the Census may not correspond to 

the “firm” in company accounts. Fourth, we keep firms whose primary industry is manufacturing whereas 

Census data includes only plants whose primary industry code is manufacturing. Fifth, there may be 

duplication of employment in accounting databases due to the treatment of consolidated accounts. Finally, 

reporting of employment is not mandatory for the accounts of all firms in all countries.  
 

http://worldmanagementsurvey.org/


 42 

Of the German firms we contacted 58.6% took part in the survey: a high success rate given 

the voluntary nature of participation, which was aided by our endorsement letter from the 

Bundesbank (the German Central Bank). Of the remaining firms 27.2% refused to be 

surveyed, while the remaining 14.2% were in the process of being scheduled when the 

survey ended. In Bloom, Sadun and Van Reenen (2015) we analyze the probability of being 

interviewed. Larger firms and multinationals were more likely to agree to be interviewed, 

although the size of this effect is not large or significant – firms were about 4 percentage 

points more likely for a doubling in size. Further, the decision to be interviewed is 

uncorrelated with revenues per worker, a basic productivity measure. This is an important 

result as it suggests we are not interviewing particularly high or low performing firms. Firm 

age and  return on capital are also uncorrelated with response rates.  

 

We have firm accounting data on sales, employment, capital, intermediate inputs, profits, 

shareholder equity, long-term debt, market values (for quoted firms) and wages (where 

available). BVD have extensive information on ownership structure, so we can use this to 

identify whether the firm was part of a multinational enterprise. We also asked specific 

questions on the multinational status of the firm (whether it owned plants aboard and the 

country where the parent company is headquartered) to be able to distinguish domestic 

multinationals from foreign multinationals. We collected many variables through our 

survey including information on plant size, skills, organization, etc. as described in the 

main text.  

 

Management Practices were scored following the methodology of Bloom and Van Reenen 

(2007), with practices grouped into three areas: monitoring (eight practices), targets (five 

practices) and incentives (five practices). The monitoring section focuses on the 

introduction of lean manufacturing techniques, the documentation of processes 

improvements, the tracking of performance of individuals, reviewing performance, and 

consequence management. The targets section examines the type of targets, the realism of 

the targets, the transparency of targets and the range and interconnection of targets. Finally, 

the incentives section includes promotion criteria, pay and bonuses, and fixing or firing 

bad performers, where best practice is deemed the approach that gives strong rewards for 

those with both ability and effort. Our management measure averages the z-scores of all 

18 dimensions and then z-scores again this average. Details of all the questions are in 

Appendix B. 

 

A2. Estimating Employee and Firm Fixed Effects in the IEB 

 

We follow Card et al (2013) in estimating the worker and firm fixed effects (see their online 

appendix for more details, 

http://qje.oxfordjournals.org/content/suppl/2013/04/02/qjt006.DC1/QJEC12803_KLINE_

online_appendix_compiled.pdf) 

 

Briefly, the IEB consists of information on employment spells at a given establishment 

within a calendar-year, the average daily wage (censored at the Social Security maximum 

earnings level); information on the gender, birth date, education and occupation of the 

individual and the industry and geographical location of the firm. 

http://qje.oxfordjournals.org/content/suppl/2013/04/02/qjt006.DC1/QJEC12803_KLINE_online_appendix_compiled.pdf
http://qje.oxfordjournals.org/content/suppl/2013/04/02/qjt006.DC1/QJEC12803_KLINE_online_appendix_compiled.pdf
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We use all full-time males and females age 20-60 working for non-marginal jobs. One 

observation per person-firm-year is selected (excluding those with a daily wage under 10 

Euros). Education is coded into 5 classes.  

 

Roughly 10% of person-year observations for male workers and 1-2% of observations for 

female workers are top coded. We follow Dustmann et al (2009) and a fit a series of Tobit 

models to log daily wages. We then impute an uncensored value for each censored 

observation using the estimated parameters of these models and a random draw from the 

associated (left-censored) distribution. 500 Tobit models are estimated separately by year, 

education and 10 year age range with the following variables: age, mean log wage in other 

years, fraction of censored wages,  a dummy for individuals only observed one year 1985-

2009, and a dummy for one worker firm. Card et al (2013) report various validation 

exercises for the Tobit specifications. 

 

Estimation of equation (4) proceeded in two steps. First the model is fitted to the sample 

of movers between firms to recover the vector of establishment fixed effects along with the 

vector of coefficients on the time varying covariates. Then for each worker who stayed at 

the same establishment over the sample interval, the estimated person effect is calculated 

as a residual averaged over the time period the worker stayed at the same workplace. 

 

The main fixed effects we use in this paper rely on the period 1996-2002 (see text) prior to 

the management surveys. The only exception is the outflow analysis were we use the fixed 

effects estimated in 2002-09. 

 

A3. Merging Firms in WMS with IEB 

 

As noted in the text, the WMS sampling frame was taken from the BVD ORBIS database 

for Germany (which is the population of incorporated firms). We selected firms whose 

primary industry was manufacturing and who reported having between 50 and 5,000 

employees. Interviewers were given random lists of names and telephone numbers within 

this frame and sought to interview a plant manager in the firm. The address of the plant 

(and name of manager) was collected when a successful interview occurred.  

 

The IEB is an establishment-level database where we also know the address and name of 

the establishment. Although most firms are single plant, there can be multi-plant 

establishments and firms. We used a master list maintained by the Federal Employment 

Agency and merged using a probabilistic record linkage based on firm names and 

addresses.30 Data from both sources underwent extensive preprocessing to harmonize 

spelling and correct typing errors. For the data linkage process we were supported by the 

German Record Linkage Center and used the probabilistic Jaro algorithm (Jaro, 1989) 

implemented in the Merge-Tool-Box (Bachteler, 2011).31  To speed up the linkage process 

                                                 
30 The master list is the BA-Betriebedatei 2006 and contains information on approximately 2 million 

establishments. 
31 The Merge-Tool-Box is a free Java based record linkage program developed by Rainer Schnell (Schnell et 

al. 2005). 
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we blocked the data on three-digit postcodes, and limited the matching process to 

plants/establishments in the same three-digit postcode (with at most one match per plant). 

We then conducted manual quality checks and editing (including internet research on firm 

names and addresses) for plants in the WMS that were unmatched, or were matched with 

relative uncertainty. 

 

For the majority of the WMS data we can match to IEB straightforwardly on address and 

name. For some WMS plants belonging to multi-plant companies, we have the issue that 

IEB name may not correspond easily to the company name. We do, however, have the 

address from both IEB and WMS which usually resolved any ambiguity. When there still 

remained any ambiguity (e.g. multiple establishments in a single address, like an industrial 

park) we could use a combination of the names, whether the plant was a production plant 

(all WMS plants produce goods, whereas this is not the case in the IEB) and the number of 

employees at the plant (available in both datasets) to cleanly identify the IEB-WMS 

matches.  

 

Data at the firm level is at a higher level of aggregation than the establishment. Just as 

multiple plants can belong to a single establishment, multiple establishments can below to 

a single firm. Accounting data on sales, investment and intermediate inputs is only 

available at the firm level. Hence, when running production functions or TFP equations we 

should be aware that the accounting measures are only for firm-wide quantities. In the 

WMS, respondents were encouraged to think of the firm as a whole when answering the 

questions rather than just their plant. Nevertheless, even if the manager found his plant’s 

practices the most salient in the interview, the management score is still the best predictor 

of firm-level average practices. In the few cases when we had multiple 

plants/establishments in the same firm we averaged the responses.  
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Figure A1: Employee ability and managerial ability Distribution 

Panel A: Overall distribution 

 

 

 
Panel B: Distribution of managerial ability  split by whether the firm has a high or 

low management practices score 
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Table A1: Description and source of variables 

Variable Source Description 

Average employee  

ability  

IAB Firm average of employee ability measured 

for the period 1996 to 2002 from wage 

regressions (see text). For cross section this 

is an annual value on June 30th and for 

pooled data this is the average over the 

observation period (2003-2009) The cross 

section is used for the correlation and the 

production function. Flows are based on the 

pooled data. 

Coverage IAB-WMS 

match 

Share of workers in a firm that is covered 

by the estimated employee effects  

Average Managerial 

Ability 

IAB Average of estimated employee fixed effect 

for those in the top quartile of the ability 

distribution 

Inflow above the 75th 

percentile of ability 

IAB Fraction of total inflows in the sample 

above the 75th percentile of the ability 

distribution (in the sample as a whole) to a 

particular firm. Ability measured 1996 to 

2002.  Other percentiles defined 

analogously. Inflow pool is specific to 

flows from one of the three labor market 

states (unemployment, other jobs an d non-

employment)  

Ability of the outflows IAB This averages the ability of the outflows 

(ability measure 2002 to 2009). Calculated 

for all outflow destinations separately to the 

three labor market states (unemployment, 

other jobs an d non-employment) 

Female share IAB Share of female workers in the firm 
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College share IAB Share of workers with college or university 

degree in the firm, or among the 

inflows/outflows 

Age of 

inflows/outflows 

IAB Avg. age of the individuals entering or 

leaving the firm 

East Germany IAB Firm is located in East Germany 

Firm Age WMS How many years firm has existed  

Labour IAB Number of employees  

Capital WMS/BVD Historical value of fixed asses 

Materials WMS/BVD Cost of all intermediate inputs 

Competition WMS Categorical, 1: no competitors, 2: less than 

5 competitors, 3: 5 or more competitors 

Ownership WMS Six types: Family;  Founder; Institution; 

Manager;  Other; Private 
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Table A2: Correlations of Management with Individual Ability, additional controls for tenure and experience 

 

 (1) (2) (3) (4) (5) 

Dependent Variable: Management z-Score 

Management z-

Score 

Management z-

Score 

Management z-

Score 

Management z-

Score 

      

Mean employee ability -0.0928 -0.111 -0.0748 -0.0844 -0.110 

 (0.112) (0.109) (0.106) (0.105) (0.108) 

Mean managerial ability 0.258*** 0.248*** 0.246*** 0.243*** 0.239** 

 (0.0950) (0.0944) (0.0901) (0.0928) (0.0932) 

Ln(Number of Employees)  0.263*** 0.276*** 0.263*** 0.253*** 0.263*** 

 (0.0500) (0.0513) (0.0497) (0.0508) (0.0532) 

% Employees with college 1.022** 1.070** 0.943** 1.033** 1.129** 

 (0.452) (0.453) (0.476) (0.459) (0.532) 

Ln(labor market exp.)   -0.306  0.201 

   (0.316)  (0.669) 

Ln(Tenure with firm)  -0.114   -0.0984 

  (0.0742)   (0.0831) 

Ln(Employee age)    -0.0242 -0.0291 

    (0.0157) (0.0321) 

      

Observations 588 588 588 588 588 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm (in parentheses 

under coefficients estimated by OLS). Management score and employee ability is standardized. All columns include a dummy for East German 

firms, the share of female workers, 5 ownership dummies, dummies for numbers of competitors, firm age, a cubic in the coverage rate, industry 

dummies and time dummies. Mean Employee ability is mean level of individual fixed effect measured over 1996-2002 period. Mean Managerial 

ability is employee ability in the top quartile of the within firm distribution.  
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Table A3: Inflows from Employment 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses 

under coefficients estimates by OLS. The management score is standardized. Panel A controls for east dummy, competition, ownership, ln(firm 

age), female share and industry dummies. Panel B has additional controls for age of inflows. 

 (1) (2) (3) (4) (5) 

Dependent Variable: Percentile  of the ability of different quantiles of the inflow distribution 

Percentile 10% 25% 50% 75% 90% 

Panel A. No Size Control       

Management Score 0.00227 0.00356 0.0102* 0.0194*** 0.0201*** 

 (0.00246) (0.00423) (0.00525) (0.00694) (0.00663) 

      

% college 0.103*** 0.213*** 0.207*** -0.0317 0.0279 

 (0.0177) (0.0327) (0.0517) (0.0653) (0.0630) 

      

Panel B. Including Size Control      

Management Score 0.00160 0.00465 0.00812 0.00934 0.0106 

 (0.00254) (0.00432) (0.00541) (0.00669) (0.00651) 

      

% college 0.00178 -0.00347 0.00606 0.0298*** 0.0276*** 

 (0.00244) (0.00407) (0.00517) (0.00726) (0.00750) 

      

Firm Size: Ln(labor) 0.107*** 0.209*** 0.217*** 0.0153 0.0725 

 (0.0187) (0.0331) (0.0507) (0.0671) (0.0658) 

      

Observations 353 353 353 353 353 
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Table A4: Inflows from unemployment 

 

 

 

Notes: This is the equivalent of Table 4 except using inflows from non-participation (instead of unemployment) as the dependent variable. *** 

indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses under 

coefficients estimates by OLS based on 32,763 inflows from unemployment in these firms. The management score is standardized. Panel A controls 

for east dummy, competition, ownership, log(firm age), female share and industry dummies. Panel B has additional controls for age of inflows and 

college share of inflows.  

 (1) (2) (3) (4) (5) 

Dependent Variable: Percentile  of the ability of different quantiles of the inflow distribution 

Percentile 10% 25% 50% 75% 90% 

Panel A. No Size Control       

Management Score 0.00219 0.00328 -0.00117 0.0229*** 0.0218*** 

 (0.00246) (0.00453) (0.00709) (0.00880) (0.00838) 

      

% college 0.0313* 0.110*** 0.288*** 0.0903 0.0960 

 (0.0163) (0.0296) (0.0548) (0.0671) (0.0736) 

      

Panel B. Including Size Control      

Management Score 0.00231 0.00324 0.00000 0.0119 0.0131 

 (0.00234) (0.00471) (0.00852) (0.00945) (0.00957) 

      

% college 0.0298 0.109*** 0.283*** 0.148** 0.142* 

 (0.0182) (0.0317) (0.0518) (0.0739) (0.0801) 

      

Firm Size: Ln(labor) -0.000165 0.000606 -0.00339 0.0324*** 0.0251** 

 (0.00342) (0.00504) (0.0109) (0.0107) (0.0100) 

      

Observations 344 344 344 344 344 
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Table A5: Annual average wage growth for entries from employment and unemployment combined 

 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm in parentheses 

under coefficients estimated by OLS. Management, individual ability, management score and individual ability are standardized. All columns 

include industry dummies, a cubic in coverage, whether individual is female/ has a college degree a quadratic in individual age², firm’s share of 

women, ln(firm age), ln(firm size), and dummies for being located in East Germany, and controls for competition and ownership; column (4) 

additionally includes interactions between management (promoting high performers) and college respectively age. 

  

 (1) (2) (3) (4) (5) 

Dependent variable: wage growth wage growth wage growth wage growth wage growth 

      

Management -0.00127  -0.00104 -0.00104  

 (0.0017)  (0.0017) (0.0017)  

Promoting high performers     0.00128 

     (0.0048) 

Employee ability  -0.00728*** -0.00719*** -0.00713*** -0.00732*** 

  (0.0020) (0.0020) (0.0020) (0.0020) 

Management * Employee ability    -0.000755 -0.0000158 

    (0.00099) (0.00088) 

      

Observations 
37,499 

 
37,499 37,499 37,499 37,499 

No of firms 357 357 357 357 357 
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Table A6: Production function (Principal Component Analysis) 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by 333 firms in parentheses 

under coefficients estimates by OLS. Management score uses first principal component and employee ability is standardized. All columns include 

a dummy for East German firms, the share of female workers, 5 ownership dummies, dummies for numbers of competitors, firm age, a quadratic 

in the coverage rate, industry dummies and time dummies. Mean Employee ability is mean level of individual fixed effect measured over 1996-

2002 period. Mean Managerial ability is employee ability in the top quartile of the within firm distribution. 

  

 (1) (2) (3) (4) (5) (6) (7) (8) 

Dependent Variable: Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) Ln(sales) 

         

Management Score 0.108*** 0.0820*** 0.0618*** 0.0539*** 0.0309** 0.0170** 0.0135* 0.0126* 

 (0.0207) (0.0182) (0.0168) (0.0170) (0.0151) (0.00790) (0.00710) (0.00710) 

Mean Employee Ability   0.819*** 0.597*** 0.375*** 0.250**  0.110* 0.0823 

  (0.143) (0.101) (0.105) (0.0979)  (0.0599) (0.0731) 

Mean Managerial ability   0.361*** 0.327*** 0.183*  0.0819* 0.0823* 

   (0.107) (0.0996) (0.0995)  (0.0483) (0.0486) 

% Employees with     1.871*** 1.308***   0.194 

College degree    (0.641) (0.464)   (0.232) 

Ln(Labor) 0.313*** 0.444*** 0.587*** 0.589*** 0.389*** 0.0548*** 0.129*** 0.130*** 

 (0.0695) (0.0671) (0.0712) (0.0713) (0.0622) (0.0188) (0.0279) (0.0292) 

Ln(Capital)     0.431*** 0.204*** 0.181*** 0.182*** 

     (0.0484) (0.0227) (0.0221) (0.0227) 

Ln(Materials)      0.696*** 0.666*** 0.663*** 

      (0.0355) (0.0324) (0.0345) 

         

Observations 560 560 560 560 560 378 378 378 
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Table A7: Correlation of Firm Fixed effect in wages with the WMS management score 

 

 (1) (2) (3) (4) (5) (6) 

Dependent Variable: Firm effect Firm effect  Firm effect  Firm effect  Firm effect  Firm effect  

       

Management Score  0.201*** 0.140*** 0.124*** 0.102*** 0.101*** 0.0810** 

 (0.0450) (0.0370) (0.0397) (0.0387) (0.0387) (0.0406) 

Ln(Labor)   0.0613 0.0873* 0.0965 0.0893 

   (0.0440) (0.0472) (0.0593) (0.0543) 

% Employees with     1.012*** 0.655 0.530 

College degree    (0.348) (0.594) (0.477) 

Mean Employee Ability         0.121 -0.0553 

     (0.225) (0.241) 

Mean Managerial ability         0.291** 

      (0.139) 

General Controls No Yes Yes Yes Yes Yes 

Observations 588 588 588 588 588 588 

 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by 354 firms in parentheses 

under coefficients estimated by OLS. Dependent variable, management score and employee ability measures are z-scored. All columns include a 

dummy for firm located in East Germany, the share of female workers, ownership dummies (family, founder, private, institution, manager and 

other), the number of competitors, firm age, a quadratic in the coverage rate, three digit industry dummies and time dummies. Mean Employee 

ability is mean level of individual fixed effect measured over 1996-2002 period. Mean Managerial ability is employee ability in the top quartile of 

the within firm distribution. 
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Table A8: TFP equations with average wages on right hand side  

 

 (1) (2) (3) (4) (5) (6) 

Dependent variable: Ln(TFP) Ln(TFP) Ln(TFP) Ln(TFP) Ln(TFP) Ln(TFP) 

Ln(average accounting wage)  0.204*  0.0744   

  (0.104)  (0.0948)   

Average individual ln(wage)     0.596*** 0.454*** 

     (0.0715) (0.101) 

Mean employee ability   0.103*** 0.104***  0.0677* 

   (0.0331) (0.0331)  (0.0366) 

Mean managerial ability        0.0585* 0.0571*  0.0586* 

   (0.0335) (0.0334)  (0.0330) 

Firm fixed effect in wages        0.0699*** 0.0637***  0.00666 

   (0.0184) (0.0202)  (0.0217) 

Management Score 0.0809*** 0.0740*** 0.0440** 0.0429** 0.0375** 0.0278* 

 (0.0211) (0.0203) (0.0183) (0.0181) (0.0153) (0.0153) 

Observations 378 378 378 378 378 378 

R-squared 0.561 0.575 0.685 0.687 0.679 0.725 

 

Notes: *** indicates significance at the 1% level, ** at the 5% level and * at the 10% level. All standard errors clustered by firm (in parentheses 

under coefficients estimated by OLS). Management score, managerial ability and employee ability are standardized. All columns include industry 

dummies, a quadratic in the coverage rate, year dummies and firm size. Mean Employee ability is mean level of individual fixed effect measured 

over 1996-2002 period. Mean Managerial ability is employee ability in the top quartile of the within firm distribution. 



 55 

APPENDIX B1: MANAGEMENT PRACTICES QUESTIONNAIRE 
 

Any score from 1 to 5 can be given, but the scoring guide and examples are only provided for scores of 1, 3 and 5. The survey also includes a set of Questions that 

are asked to score each dimension, which are included in Bloom and Van Reenen (2007). 

 

(1)  Modern manufacturing, introduction 

  Score 1 Score 3 Score 5 

 Scoring grid: Other than Just-In-Time (JIT) delivery from 

suppliers few modern manufacturing 

techniques have been introduced, (or have 

been introduced in an ad-hoc manner) 

Some aspects of modern manufacturing 

techniques have been introduced, through 

informal/isolated change programs 

All major aspects of modern manufacturing have been 

introduced (Just-In-Time, autonomation, flexible 

manpower, support systems, attitudes and behaviour) in 

a formal way 

 

(2) Modern manufacturing, rationale 

  Score 1 Score 3 Score 5 

 Scoring grid: Modern manufacturing techniques were 

introduced because others were using them. 

Modern manufacturing techniques were 

introduced to reduce costs 

Modern manufacturing techniques were introduced to 

enable us to meet our business objectives (including 

costs) 

(3) Process problem documentation 
  Score 1 Score 3 Score 5 

 Scoring grid: No, process improvements are made when 

problems occur. 

Improvements are made in one week 

workshops involving all staff, to improve 

performance in their area of the plant 

Exposing problems in a structured way is integral to 

individuals’ responsibilities and resolution occurs as a 

part of normal business processes rather than by 

extraordinary effort/teams 

(4) Performance tracking 
  Score 1 Score 3 Score 5 

 Scoring grid: Measures tracked do not indicate directly if 

overall business objectives are being met. 

Tracking is an ad-hoc process (certain 

processes aren’t tracked at all) 

Most key performance indicators are tracked 

formally. Tracking is overseen by senior 

management.  

Performance is continuously tracked and communicated, 

both formally and informally, to all staff using a range of 

visual management tools. 

(5) Performance review 
  Score 1 Score 3 Score 5 

 Scoring grid: Performance is reviewed infrequently or in 

an un-meaningful way, e.g. only success or 

failure is noted. 

Performance is reviewed periodically with 

successes and failures identified.  Results are 

communicated to senior management. No 

clear follow-up plan is adopted. 

 

 

 

 

 

 

Performance is continually reviewed, based on indicators 

tracked.  All aspects are followed up ensure continuous 

improvement. Results are communicated to all staff 
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(6) Performance dialogue 
  Score 1 Score 3 Score 5 

 Scoring grid: The right data or information for a 

constructive discussion is often not present 

or conversations overly focus on data that is 

not meaningful. Clear agenda is not known 

and purpose is not stated explicitly 

Review conversations are held with the 

appropriate data and information present. 

Objectives of meetings are clear to all 

participating and a clear agenda is present. 

Conversations do not, as a matter of course, 

drive to the root causes of the problems. 

Regular review/performance conversations focus on 

problem solving and addressing root causes. Purpose, 

agenda and follow-up steps are clear to all. Meetings are 

an opportunity for constructive feedback and coaching. 

(7) Consequence management   

  Score 1 Score 3 Score 5 

 Scoring grid: Failure to achieve agreed objectives does 

not carry any consequences 

Failure to achieve agreed results is tolerated 

for a period before action is taken. 

A failure to achieve agreed targets drives retraining in 

identified areas of weakness or moving individuals to 

where their skills are appropriate 

(8) Target balance   

  Score 1 Score 3 Score 5 

 Scoring grid: Goals are exclusively financial or 

operational 

Goals include non-financial targets, which 

form part of the performance appraisal of top 

management only (they are not reinforced 

throughout the rest of organization) 

Goals are a balance of financial and non-financial 

targets. Senior managers believe the non-financial 

targets are often more inspiring and challenging than 

financials alone. 

(9)  Target interconnection   

  Score 1 Score 3 Score 5 

 Scoring grid: Goals are based purely on accounting 

figures (with no clear connection to 

shareholder value) 

Corporate goals are based on shareholder 

value but are not clearly communicated 

down to individuals 

Corporate goals focus on shareholder value. They 

increase in specificity as they cascade through business 

units ultimately defining individual performance 

expectations. 

(10) Target time horizon   

  Score 1 Score 3 Score 5 

 Scoring grid: Top management's main focus is on short 

term targets 

There are short and long-term goals for all 

levels of the organization. As they are set 

independently, they are not necessarily 

linked to each other 

Long  term goals are translated into specific short term 

targets so that short term targets become a "staircase" to 

reach long term goals 

(11) Targets are stretching   

  Score 1 Score 3 Score 5 

 Scoring grid: Goals are either too easy or impossible to 

achieve; managers provide low estimates to 

ensure easy goals 

In most areas, top management pushes for 

aggressive goals based on solid economic 

rationale. There are a few "sacred cows" that 

are not held to the same rigorous standard 

 

 

 

 

 

Goals are genuinely demanding for all divisions. They 

are grounded in solid, solid economic rationale 
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(12) Performance clarity   

  Score 1 Score 3 Score 5 

 Scoring grid: Performance measures are complex and not 

clearly understood. Individual performance 

is not made public 

Performance measures are well defined and 

communicated; performance is public in all 

levels but comparisons are discouraged 

Performance measures are well defined, strongly 

communicated and reinforced at all reviews;  

performance and rankings are made public to induce 

competition 

(13) Managing human capital   

  Score 1 Score 3 Score 5 

 Scoring grid: Senior management do not communicate 

that attracting, retaining and developing 

talent throughout the organization is a top 

priority 

Senior management believe and 

communicate that having top talent 

throughout the organization is a key way to 

win 

Senior managers are evaluated and held accountable on 

the strength of the talent pool they actively build 

(14) Rewarding high-performance   

  Score 1 Score 3 Score 5 

 Scoring grid: People within our firm are rewarded 

equally irrespective of performance level 

Our company has an evaluation system for 

the awarding of performance related rewards 

We strive to outperform the competitors by providing 

ambitious stretch targets with clear performance related 

accountability and rewards 

(15) Removing  poor performers   

  Score 1 Score 3 Score 5 

 Scoring grid: Poor performers are rarely removed from 

their positions  

Suspected poor performers stay in a position 

for a few years before action is taken 

We move poor performers out of the company or to less 

critical roles as soon as a weakness is identified 

(16) Promoting high performers   

  Score 1 Score 3 Score 5 

 Scoring grid: People are promoted primarily upon the 

basis of tenure 

People are promoted upon the basis of 

performance 

We actively identify, develop and promote our top 

performers 

(17) Attracting human capital    

  Score 1 Score 3 Score 5 

 Scoring grid: Our competitors offer stronger reasons for 

talented people to join their companies 

Our value proposition to those joining our 

company is comparable to those offered by 

others in the sector. 

We provide a unique value proposition to encourage 

talented people join our company above our competitors 

(18) Retaining human capital   

  Score 1 Score 3 Score 5 

 Scoring grid: 

 

We do little to try to keep our top talent. We usually work hard to keep our top talent. We do whatever it takes to retain our top talent. 

Source: Bloom and Van Reenen (2007) 
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