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"Truths are first clouds; then rain, then harvest andfood.", 

-- Henry Ward Beecher ("Life Thoughts," 1858) 



ABSTRACT 

UNCERTAINTIES IN SPACE-BASED ESTIMATES OF CLOUDS AND 
PRECIPITATION: IMPLICATIONS FOR DERIVING GLOBAL DIABATIC 

HEATING 

The Earth's weather and climate is driven by the exchange of energy between the sun, 
atmosphere, surface, and space and energy transport required to establish a global bal­
ance. Clouds and precipitation play an integral role in this exchange, enhancing reflection 
of solar radiation to space, trapping thermal emission from the surface, and providing a 
mechanism for the direct transfer of energy to the atmosphere through the release of latent 
heat in precipitation. As a result, there is an intimate coupling between the climate, energy 
budget, and global hydrologic cycle. The problem of establishing observational evidence 
for these connections and climate change in general, poses a significant challenge to the 
observational community. This dissertation seeks to address the components of this prob­
lem related to observing the hydrologic cycle and its role in modulating the tropical energy 
budget, from space-based measurements. 

This work reports on a new technique which makes use of cloud and precipitation infor­
mation from the Tropical Rainfall Measuring Mission to estimate the principal components 
of the tropical energy budget and to examine the mechanisms by which clouds and precip­
itation modify it. First, three distinct retrieval algorithms are employed to determine the 
three-dimensional structure of cloud and precipitation in the tropical atmosphere. The first 
retrieves cloud and precipitation profiles from passive microwave observations from the 
TRMM Microwave Imager while the second applies a different technique to the same ob­
servations in an effort to derive estimates of non-precipitating liquid cloud. Finally, the 
third algorithm makes use of infrared radiances from the Visible and Infrared Scanner to 
infer- ice cloud optical properties in non-precipitating regions. The reSUlting representation 
of the three-dimensional strucure of cloud and precipitation in the tropical atmosphere is 
then used as input to a broadband radiative transfer model to derive profiles of short- and 
longwave fluxes. These flux profiles are composited to present a TRMM-based estimate of 
the short-term tropical energy budget for oceanic regions over the month of February 1998. 

On average, over this period, the tropical atmosphere absorbs 51 Wm-2 or 13 % of the 
393 Wm-2 of solar radiation it receives. A further 112 Wm-2 is reflected by atmospheric 
particles, clouds, and the surface, leaving 230 Wm-2 to be absorbed by the ocean. At ther­
mal wavelengths, it is found that the ocean emits 436 Wm-2 of energy to the atmosphere 
while the atmosphere emits a total of 639 Wm-2 units, 407 Wm-2 downward toward the 
surface and 231 Wm-2 to space. Accounting for latent heat release which amounts to an 
exchange of 82 Wm-2 of energy between the surface and atmosphere, the results imply a 
deficit of 70 Wm-2 of energy in the atmosphere and a surplus of 121 Wm-2 at the Earth's 
surface. The implied net gain of 51 Wm-2 in the Earth-atmosphere system is consistent 
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with a difference between the incoming solar radiation and emitted thermal radiation at the 
top of the atmosphere. It is speculated that these imbalances are largely accounted for by 
sensible heating, meridional energy transport, and absorption and transport of energy in the 
ocean. Finally, on average for the month of February 1998, the tropical atmosphere cools 
at -1 Kday-l and experiences a net cloud forcing of -10 Wm-2 at TOA and -22 Wm-2 at 
the surface. 

A concerted effort has been made to rigorously characterize the uncertainties in all as­
pects of the approach. In the absence of additional tuning or constraints, the procedure 
described in the present work provides monthly-mean estimates of column radiative heat­
ing accurate to ('V 30 % and cloud radiative forcing with accuracies ranging from approx­
imately 40 % for raining pixels to 75 % in non-precipitating clouds. It is shown that the 
dominant source of uncertainty in both the retrieval and radiative transfer models is a lack 
of vertical cloud boundary information inherent in the passive measurements. These results 
highlight the need for future algorithms to look toward making use of synergies between 
active and passive observations to simultaneously retrieve cloud and precipitation optical 
properties and their vertical distribution and ensure consistency between a wider variety of 
information sources. As a first step towards this undertaking, a new method for retrieving 
profiles of rainfall from spacebome radars based on an optimal estimation technique is also 
introduced. The method is readily adapted to include information from a variety of sources 
and provides a suite of diagnostic tools with which to assess its performance. Preliminary 
results from synthetic retrievals highlight the utility of the algorithm for estimating profiles 
of precipitation up to 60 mmh- 1 at 14 GHz and up to 8 mmh-1 at 94 GHz, provided some 
form of attenuation constraint is implemented. 

The technique described herein provides a complete approach for generating tropic­
wide (and ultimately global) estimates of the components of the energy budget using ex­
plicit cloud and precipitation information from spacebome observations. The results can, 
in principle, be applied to study short term climate variability through investigations of 
perturbations to the radiation balance induced by changes in the distributions of water va­
por, cloud, and precipitation on short to moderate timescales affording us the opportunity 
to quantify important relationships between the hydrologic cycle and the Earth's energy 
budget. 
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Chapter 1 

Introduction 

Recent advances in satellite technology have afforded us the opportunity to view the atmo­

sphere in new and exciting ways. The Tropical Rainfall Measuring Mission (TRMM), for 

example, has broken new ground, providing concurrent observations of radar reflectivity, 

microwave brightness temperatures, visible and infrared radiances, longwave and short­

wave radiative fluxes, and lightening around the globe from approximately 400S to 400N. 

For the first time, we are in a position to simultaneously observe three key elements of 

the hydrological cycle; water vapor, clouds, and precipitation, and their bulk radiative and 

electrical properties over a vast area encompassing much of the tropics and sub-tropics. 

In addition, through the use of physical models, we are able to infer vertical profiles of 

cloud and rainfall and, from them, derive estimates of radiative and latent heating profiles 

on a near-global scale. This dissertation provides a framework for estimating profiles of 

radiative and latent heating using the TRMM observations, thus laying the foundation for 

long-term analyses of the principal components giving rise to energy balance in the tropics. 

1.1 Motivation: The "Big Picture" 

The Earth's weather and climate is driven by the exchange of energy between the sun, at­

mosphere, surface, and space and the transport of this energy between tropical and polar re­

gions required to establish a global balance between that which enters the earth-atmosphere 

system and that which leaves it. At the most fundamental level, the incoming radiation 

from the sun must be balanced by a combination of reflection and emission from the Earth­

atmosphere system. Small perturbations in any of the factors which govern this balance can 
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lead to significant responses in the distribution and intensity of weather systems around the 

globe and can have important implications for life on Earth. The tumultuous history of 

our planet is filled with numerous examples ranging from the catastrophic climate changes 

which accompanied the extinction of the dinosaurs millions of years ago to the so-called 

"Little Ice Age" between approximately 1550 and 1800 which impacted both agriculture 

and population growth in the northern hemisphere (Grove, 1988). There is little doubt that 

the climate will continue to evolve, not only through natural variability but also through 

the influence of human activities on the planet. If we are to adapt to such events in the 

future, it is critical that we have the ability to both predict and observe small changes in the 

global climate system. This can be accomplished through accurate global observations of 

the components which comprise the Earth's energy budget both to establish the equilibrium 

state and to refine models used to simulate climate change. 

1.1.1 The Earth's Energy Budget 

At this time, the basic components of the Earth's energy budget shown in Figure 1.1 are 

understood, but their precise magnitudes and their temporal, spatial and vertical distribu­

tions have yet to be quantified globally through observations to the accuracy required for 

early evidence of climate change. On average, the Earth intercepts rv 340 Wm-2 of solar 

energy in the form of photons mostly between the wavelengths from 0.4 to 4.0 j.lm. About 

thirty percent of this energy is reflected back to space, twenty five percent by clouds and 

the remaining five percent by the Earth's sutface. The remainder is either absorbed by 

gases, clouds and aerosol particles in the atmosphere (rv 25 %) or the Earth's surface (rv 

45 %). At the same time the Earth emits rv 350 Wm-2 of radiation at infrared wavelengths 

between 4.0 and 100.0 j.lm. Ninety five percent of this radiation is absorbed by the atmo­

sphere and re-emitted both to space (outgoing longwave radiation (OLR)) or back to the 

surface (the "greenhouse effect"). Consequently, the atmosphere loses an average of rv 100 
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Figure 1.1: Principal components of the Earth's energy budget (adapted from Trenberth, 
1992). 

Wm-2 which is absorbed at the Earth's surface. This imbalance is largely offset by latent 

heat released in precipitation (f"...I 90 Wm-2) (Schneider, 1992). 

Clouds and precipitation play an integral role in the exchange of radiation between the 

Earth's surface, the atmosphere and space. As a result, there is a strong coupling between 

the energy budget and the global hydrological cycle and changes in the temporal, spatial, 

and vertical distributions of water vapor, cloud and precipitation, whether from natural 

climatic fluctuations or anthropogenic impacts, induce corresponding changes in the energy 

budget. Accurate observations of vertical profiles of clouds and precipitation are crucial in 

determining the distribution of atmospheric heating. Due to their high spatial and temporal 

variability, however, no other component influencing the energy budget poses a greater 

challenge to the observational community. 

Ultimately profiles of radiative and latent heating from clouds and precipitation playa 
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key role in weather patterns on all scales from long-term global circulations to daily re­

gional weather patterns. The importance of diabatic heating within deep cumulus cloud 

complexes in the tropical energy budget was demonstrated in the pioneering work of Riehl 

and Malkus (1958). Since then, numerous studies using General Circulation Models (GCMs), 

cloud models, and observations, have lead to similar conclusions regarding the importance 

of profiles of radiative and latent heating in driving local and large-scale tropical and ex­

tratropical circulations. Diabatic heating establishes a link between regional and planetary 

scale weather systems and provides a proxy for observing the strength of the coupling be­

tween the atmosphere and ocean such as hydrological exchanges through evaporation and 

precipitation processes or regulation of the sea-surface temperature (SST) by cloud radia­

tive effects. 

In the years since Riehl and Malkus (1958), numerous studies have demonstrated the 

significant role that radiative and latent heating profiles play in the global climate and hy­

drological cycle. Regional and global circulations have been investigated using GCMs, the 

impact of diabatic heating initialization in numerical weather prediction models has been 

studied, and a number of hypotheses regarding the role of latent and radiative heating in 

regulating the climate have been proposed. Accurate, long-term, global-scale estimates of 

radiative and latent heating will provide useful evidence to verify the various results. The 

goal of this dissertation will not be to address each of these areas directly but to develop a 

method which, once refined, will be well-suited to such studies in the future. 

1.1.2 Heating in Cloud Models and GCMs 

The importance of diabatic heating in the generation and maintenance of regional and 

global weather systems cannot be overstated. Early results from Palmen and Riehl (1957), 

Riehl and Malkus (1961), Yanai (1961), and Miller (1962) suggested that the latent heat 

released in penetrative cumulus towers provides the dominant source of energy in tropi-
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cal cyclones. On a larger scale, Gill (1980) demonstrated the connection between diabatic 

heating and the tropical circulation using a linearized model of the tropical atmosphere. 

Slingo and Slingo (1988, 1991) investigated the impact of longwave radiative forcing by 

tropical clouds on global circulations using the National Center for Atmospheric Research 

(NCAR) Community Climate Model (CCM1). They found that the magnitude and vertical 

distribution of this forcing plays an integral role in the location and intensity of tropical pre­

cipitation, the tropical upper tropospheric and Walker circulations, and extratropical flow 

patterns. 

The effects of the vertical structure of heating on the Walker Circulation were exam­

ined by Hartmann et al. (1984). They demonstrated that an idealized heating profile for 

mature convective cloud clusters (MC) proposed by Houze (1982) significantly improved 

the structure of the circulation relative to that produced using a conventional profile (CP). In 

both simulations the total atmospheric heating was held constant suggesting their findings 

were solely a result of the fact that the heating rate maximum was higher in the MC pro­

file. Similar results have been documented regarding the sensitivity of the Madden-Julian 

Oscillation (MJO) to the vertical distribution of heating (Madden and Julian (1972), Lau 

and Peng (1987), Takahashi (1987), Miyahara (1987), and Chen and Yen (1991)). Lau and 

Peng (1987), for example, found that the phase speed of the waves that detennine the am­

plitude and duration of the MJO critically depends on the vertical placement of the diabatic 

heating maximum. The vertical distribution of heating is also expected to playa crucial 

role in teleconnections between tropical and mid-latitude circulations from which 30-50 

day oscillations are observed to manifest themselves in global phenomena such as those 

observed by Weickmann et al. (1985) and Knutson et al. (1986). 

The results from these studies demonstrate the key role that the vertical profile of di­

abatic heating plays in driving tropical circulations. Accurate estimates of radiative and 

latent heating will be invaluable in verifying these assertions. Also, provided adequate 
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continuity can be maintained in the data, longterm trends in the global distribution of ra­

diative and latent heating may be well-suited for monitoring global climate change. 

1.1.3 GeM Validation 

Given their strong sensitivity to the vertical distribution of heating within the atmospheric 

column, it is reasonable to conjecture that GCMs may incur large errors due to inexact 

parameterizations of the elements of this heating. Evidence for this can be found in Cess 

et al. (1997) who compared intraseasonal variability oflongwave (LW) and shortwave (SW) 

forcing from 18 GCMs with observations from the Earth Radiation Budget Experiment 

(ERBE). They found that many of the GCMs are unable to reproduce the intraseasonal 

variations observed in the ERBE data and that the GeMs exhibit significant variability 

among themselves. This suggests that seasonal variations in high and low cloud amounts 

are incorrectly represented in some models pointing to inconsistencies in the hydrological 

cycles and energy budgets for the ensemble of models. 

Additional evidence for the possible misrepresentation of physical processes in some 

GCMs is seen in the results of Soden (2000) who compared predicted variability in a num­

ber of atmospheric variables from the 30 Atmospheric Modeling Intercomparison Project 

(AMIP) GeMs with observations. The time series illustrated in Figure 4 of that paper indi­

cate that, although the GCMs capture interannual variations in precipitable water, 200 mb 

temperature, and OLR, variability in precipitation and surface LW radiation observations 

are not evident in the corresponding GeM fields. While these results are not conclusive 

since the observational data itself may be in error, they highlight the importance of taking 

a closer look at the parameterizations currently used in climate models. 

One way to improve the agreement between different models and to more accurately 

represent the observations, is to systematically test all possible parameterizations for the 

major physical processes in the GCMs to determine which ones best represent the obser-
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vations. Through such a "physical validation" approach, estimates of radiative and latent 

heating may help isolate possible weaknesses in the physical parameterizations and even 

select a subset of the ensemble which perform better than the others. Clearly, such a method 

will be of no use unless the accuracy of the heating profiles is known. 

1.1.4 Data Assimilation in Numerical Weather Prediction Models 

The subset of GCMs used in numerical weather prediction (NWP) exhibit equally varied 

diabatic heating profiles as is apparent in the study of Mizzi and Kasahara (1989), who 

compared diabatic heating rates in forecasts from the European Centre for Medium-Range 

Weather Forecasts (ECMWF), the Geophysical Fluid Dynamics Laboratory (GFDL) and 

Goddard Laboratory for Atmospheres (GLA) during the First GARP Global Experiment 

(FGGE). As with GeMs in general, heating information can be used to test the physical 

assumptions in the NWP models to isolate those which perform the best. Alternatively, 

the information can be assimilated directly into the models through diabatic initialization 

(DI). The results of Heckley et al. (1990), Puri and Davidson (1992) and Kasahara and 

Mizzi (1996) demonstrated that forecasts change significantly and model spin-up time is 

reduced when diabatic heating information is included in this way. Kasahara and Mizzi 

(1996) showed that DI and subsequent diabatic forcing (DF) using latent heating pro­

files derived from Special Sensor Microwavellmager (SSMII) precipitation estimates are 

required to simulate the development of hurricane Emily (1987) in their version of the 

Cooperative Institute for Meteorological Satellite Studies (CIMSS) Regional Assimilation 

System (CRAS) forecast model. 

Given the importance of diabatic heating suggested by these studies, we can conclude 

that physical validation and diabatic initialization using accurate global diabatic heating 

rate profiles offers great potential for the improvement of medium to long-range weather 

forecasts. Once again, however, the value of these profiles can only be realized provided 
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reasonable estimates of the associated uncertainties can be made. 

1.1.5 Climate Regulation Hypotheses 

In addition to model results, numerous hypotheses that may have substantial implications 

for global climate change have been made based on observational data. A good example is 

the well-known thermostat hypothesis of Ramanathan and Collins (1991) who conjecture 

that the ocean temperature is regulated by highly reflective cirrus clouds which form in 

response to increasing SST. Pierrehumbert (1995) strongly opposed this viewpoint arguing 

that since observations demonstrate that the cloud greenhouse and albedo effects are more 

or less in balance, water vapor in clear-sky regions is the dominant source of fluctuations 

the tropical climate. Instead of a cirrus cloud thermostat, he proposes that an increase in the 

spatial extent of dry "radiator fins" in regions of large-scale subsidence represents a more 

plausible mechanism for regulating SST. 

Based on observations of LW and SW cloud radiative forcing (CRF) from ERBE and 

the Clouds and the Earth's Radiant Energy System (CERES), Cess et a1. (2001) found that 

the ratio of SW to LW CRF increases substantially during the 1998 El Nino relative to 

other years. Since tropical tropopause temperatures did not increase substantially in 1998, 

the authors concluded that the increase was due to lower mean cloud heights resulting from 

a reduction in the SST gradient across the Tropical Pacific and Indian Oceans during the 

1998 El Nino event. The resulting negative net CRF would result in a net loss of energy in 

the atmosphere-ocean system relative to average conditions and act to return the climate to 

its mean state. 

Lindzen et a1. (2001) used cloud data from the Japanese Geostationary Meteorological 

Satellite-5 (GMS-5) and National Center for Environmental Prediction (NCEP) SST data 

(Reynolds and Smith, 1994) to conclude that, on average, a 1 K increase in tropical SSTs 

leads to a 15 % reduction in the areal coverage of cloudy/moist regions. This would in-
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crease outgoing longwave radiation (OLR) in regions of high SST cooling the planet as a 

result. The authors go on to suggest that this negative feedback might resist global warming 

due to increasing carbon dioxide concentrations in the atmosphere. 

These studies are just three examples from a long list of cloud-climate regulation hy­

potheses, many of which have lead to vigorous debates throughout the climate community 

(Hartmann and Michelsen (1993), Clement et al. (1996), Lau and Sui (1997), Seager and 

Murtugudde (1997), and Lagerloef et al. (1998) provide some other examples). The con­

clusions drawn from each of these studies rely heavily on the use of simple conceptual 

models focusing primarily on the radiative component of the atmosphere-ocean interaction 

and employing crude parameterizations of the exchanges in water vapor between at the air­

sea interface in the Warm Pool region of the Tropical Pacific Ocean. Large-scale dynamics 

have largely been parameterized in ad hoc ways leading to conflicting results from appar­

ently similar studies (Chou and Neelin (1999), for example, state that the areal coverage 

of cirrus increases with increasing SST, contradicting the foundation of the argument of 

Lindzen et al. (2001». The findings in many of these studies can be partially addressed 

through the use of direct inferences of radiative and latent heating profiles on the global 

scale. The use of radiative and latent heating information over larger spatial and temporal 

scales provides a means for more rigorous testing of the models used and the conclusions 

drawn as a result. 

1.2 The "State-of-the-Art" 

There is little doubt that satellite platforms represent the best opportunity to obtain global 

observations of most atmospheric parameters particularly those relating to latent and radia­

tive heating, namely precipitation and clouds. Figure 1.2, for example, presents a summary 

of all rainfall monitoring stations which participated in producing the Global Precipita­

tion Climatology Centre (GPCC) total monthly precipitation product for February, 1998. 
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Figure 1.2: Global distribution of rainfall monitoring stations supplying data for the Global 
Precipitation Climatology Centre's gridded monthly total precipitation product (courtesy 
of The Global Precipitation Climatology Centre. HTTP://www.dwd.de/research/gpcc). 

The observations are clearly biased toward densely populated, technologically advanced, 

land areas. Observations are sparse over oceanic, dessert, jungle, and mountainous regions 

since they are much less accessible to researchers than the more developed regions such as 

Europe and the United States. 

Satellites, on the other hand, provide uniform measurements around the globe and have 

been developed for a wide range of observations over the past four decades. The world's 

first weather satellite, TIROS-l, was launched in 1960 providing the atmospheric science 

community with the first ever images of synoptic-scale cloud patterns from space (Rao 



Chapter 1 Introduction 11 

et aI., 1990). In the years which followed, a continuously evolving series of Polar Or­

biting Environmental Satellites (POES) originally operated by the Environmental Science 

Services Administration (ESSA) and currently by the National Oceanic and Atmospheric 

Administration (NOAA) were put into orbit and have been providing global images of 

cloud, atmospheric dust, land/ocean/sea ice boundaries, and water vapor for nearly four 

decades. 

In 1966, the National Aeronautics and Space Administration (NASA) launched the first 

in a series of geostationary satellites, whose orbits are chosen such that the angular velocity 

of the satellite exactly matches that of the Earth's rotation to provide repetitive observa­

tions of the atmosphere over the same location at high temporal resolution in order to track 

synoptic and mesoscale weather systems. The Geostationary Operational Environmental 

Satellites (GOES), derivatives of these early geostationary satellites, have been in opera­

tion since 1974. Today, the combination of NOAA's GOES-E and GOES-W, the Japanese 

GMS, Russian Geosynchronous Meteorological Satellite (GOMS) and European Meteosat 

provides global imaging with a temporal resolution of better than three hours. 

The undeniable success of these early missions has not only lead to their continuation 

and refinement but also fueled development of many new and unique satellite missions. 

Today, many instruments that have traditionally been operated in ground-based applications 

are being modified for use on satellites including a variety of radiometers operating in all 

regions of the electromagnetic spectrum, lidars in the ultraviolet (UV), lightening sensors 

in the visible (VIS), and radars in the microwave. Selected examples of this diverse array 

of satellite-based atmospheric measurements are summarized in Table 1.1 along with their 

prim.ary scientific functions. 

While other factors such as temperature, atmospheric gases, and aerosol impact the 

ERB, clouds, precipitation and water vapor comprise its most significant and highly vari­

able components. Of those satellites which are currently in operation, TRMM represents 
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Table 1.1: Examples of the diverse array of current and future satellite-based observations 
of the atmosphere and their applications. Instruments are grouped according to whether 
they are passive (upper group) or active (lower group) and ordered by increasing wave­
length. See Appendix G for a complete explanation of all acronyms. 

Satellite Instrument Type of Measurement Primary Scientific Function 
EOSCHEM OMI 740 VIS/uV Bands 0.27-0.5 {tm Global Ozone 

Terra MISR Multi-angle VISINIR 0.4-0.87 {tm SFC, Aerosol, Vegetation, 
ADEOS POLDER i WFOV VISINIR 0.4-0.9 {tm Aerosols, Clouds, Vegetation 

and Cloud Reflection Functions 
Meteor 3M-1 SAGE m2 VIS/NIR Limb Measurements Stratospheric and Upper Tropospheric 

Aerosol, 03, H20, N02 , N03 
ACRIMSAT ACRIMIII Active Cavity Radiometer Total Solar Irradiance (TSI) 

GOES Imager VIS/IR 0.55-12.5 {tm Cloud, Pollution, Dust, Moisture 
GOES Sounder VIS/IR 0.7-14.7 {tm Temperature, Moisture, 0 3, Cloud 
POES AVHRR VIS/IR 0.S8-12.S {tm Cloud and SFC Properties 

TRMM VIRS VIS/IR 0.6-12 {tm Clouds and Aerosol 
Terra MODIS3 36 VIS/IR Bands 0.4-14 {tm Clouds, Radiative Fluxes, Aerosol, 

SFC Properties, Temperature, H2O 
Aqua AIRS 2300 VIS/IR Bands 0.4-15.4 {tm Temperature, H20, Clouds 

TRMM CERES4 Broadband Flux Measurements Earth's Radiation Budget 
TRMM TMI Microwave 10.6-85.5 GHz H20, SST, SFC Winds, Precipitation 
Aqua AMSR-E Microwave 6.9-89 GHz Clouds, Precipitation, SFC Moisture, 

SFC Winds, Sea Ice, Snow Cover 
POES AMSU Microwave 23.8-183.3 GHz Atmospheric Temperature and H2O 

EOSCHEM MLS Microwave Limb Measurements Temperature and Atmospheric Gases 
Aqua HSB VHF Sounder lS0-183 MHz Atmospheric H2O 

ESSP 3-CENA Lidar Backscatter 0.S32 & 1.064 {tm Aerosol and Cloud Boundaries 
ICES at GLAS Backscatter 0.S32 & 1.064 /lm Ice Topography, Clouds, Aerosol 
TRMM LIS Lightening Detector Lightening Location, Rate and Energy 

QuikScat SeaWinds2 SFC Backscatter at 13.4 GHz SFC Winds 
TRMM PR Reflectivities at 14 GHz Precipitation 

CloudSat CPR Reflectivities at 94 GHz Cloud, Aerosol and Precipitation 

the state-of-the art in rainfall and latent heating observations from space while providing 

limited yet useful cloud information. 

There have been numerous studies of the radiative components of the Earth's energy 

budget from satellites. An annual mean estimate of the Earth's radiation budget (ERB) and 

its variability deduced from satellite data was made by Stephens et al. (1981) who pointed 

out the importance of interannual and regional variability. The importance of regional 

i Also to be flown aboard ADEOS-II. 
2 Also to be placed on the International Space Station. 
3 Also aboard Aqua. 
4 Also aboard Terra and Aqua. 
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variations in cloudiness on the ERB and their feedback on the general circulation was 

also investigated in Hartmann and Short (1980). Results of these and a later study by 

Liebmann and Hartmann (1982) demonstrated a strong correlation between features in the 

seasonal maps of outgoing radiation and convective cloud patterns. Arking (1991) presents 

an overview of highlighting key findings from numerous ERB studies prior to 1990. Since 

then, Randel and Vonder Haar (1990), and Sohn and Smith (1992a,b,c) have explored the 

interannual variability of the top of the atmosphere radiation budget using Nimbus-7 data 

while Hartmann et al. (1992), Gupta et al. (1993), Ringer and Shine (1997), and Moore and 

Vonder Haar (2001) have combined data from the International Satellite Cloud Climatology 

Project (ISCCP) and ERBE to derive relationships between cloud types and their impact 

on theERB. 

Until recently, a lack of accurate global cloud, ice, and rainfall data has limited si­

multaneous observations of radiative and latent heating profiles to analyses from regional 

experiments such as the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean At­

mosphere Response Experiment (COARE) (eg. Frank et al. (1996), Chou et al. (1998), 

Mather et al. (1998), and Johnson and Ciesielski (2000». For this reason, quantitative 

estimates of latent heating profiles and their spatial and temporal variations throughout 

tropics, were among the principle scientific goals of the Tropical Rainfall Measuring Mis­

sion (TRMM) (Simpson et al. (1988, 1996». Among the most complete methodologies 

proposed for computing latent heating from satellite observations are those of Yang and 

Smith (1999a, 2000) who adapt aspects of Yanai et al. (1973) to derive latent heating pro­

files using SSM/I measurements and high-resolution upper-air soundings. Yang and Smith 

(1999b) use a similar procedure to derive global-scale monthly mean latent heating esti­

mates of from SSM/I measurements. Olson et al. (1999) proposed an alternative technique 

in which latent heating is retrieved quasi-directly from passive microwave measurements 

through the use of a Bayesian Monte Carlo integration technique and a database of cloud 
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profiles and associated latent heating derived from cloud resolving model simulations. A 

recent paper by Tao et al. (2001) overviews and compares both techniques and introduces 

a third technique based on surface rainfall rate and climatological mean profiles of latent 

heating for convective and stratiform rainfall. 

The majority of atmospheric heating studies in the past have suffered from at least one 

of the following limitations: 

• Budget studies only provide data on regional scales. 

• A lack of simultaneous estimates of radiative and latent heating from a single plat­

form. 

• Difficulty in assessing the relative contributions of individual cloud types and precip­

itation to total atmospheric heating. 

• The inability to provide information regarding both surface and top of the atmosphere 

energy budgets. 

• A lack of rigorous uncertainty estimates. 

By virtue of their diverse applications, the instrument complement on the TRMM satellite 

represents the most complete source of diabatic heating information in light of these three 

points. While the TRMM observations are restricted to the tropics and sub-tropics, they 

provide an opportunity to develop methods for deriving profiles of diabatic heating which 

can be readily applied to global data sets, such as that which is anticipated from the Global 

Precipitation Mission (GPM), when they become available. 

1.3 Scientific Objectives 

In the present work, the TRMM data will be used to examine some aspects governing 

our present capabilities for making quantitative observations of the ERB and its response 



Chapter 1 Introduction 15 

to changing environmental conditions. This research will concentrate on the cloud and 

precipitation components of Figure 1.1, seeking to develop a method for simultaneously 

estimating profiles of radiative and latent heating in the atmosphere using observations 

from the TRMM satellite. A preliminary comparison of the relative magnitudes of tropical 

radiative and latent heating will then be made through an estimate ofthe short-term tropical 

energy budget. In addition, we strive to determine error bounds which reflect our ability to 

measure profiles of diabatic heating globally and to suggest a direction to adopt for future 

satellite missions to meet our observational goals. To this end, an uncertainty analysis 

framework which can be applied as a whole or in part by future investigators to develop 

new, improved observing platforms and retrieval algorithms will be presented. 

The focus here will be primarily directed at determining the diabatic heating informa­

tion that can be gleaned from space-based measurements of microwave emission from the 

earth and atmosphere but some consideration will be given to supplemental information 

provided by satellite-based radar and visible and infrared observations. This approach is 

adopted for a variety of reasons. First, spaceborne platforms offer the best opportunity to 

make observations on the global scale which are required to make inferences regarding the 

radiation budget, hydrologic cycle, and climate system as a whole. From the list of current 

space-based observations (Table 1.1), the subset of microwave measurements (both active 

and passive) represent the most complete source of rainfall profile information presently 

available. Techniques for retrieving rainfall and cloud profiles based on passive microwave 

observations have been operational since the 1970's and, as a result, have been studied and 

refined in greater depth than spaceborne radar techniques which were first implemented op­

erationally after the comparatively recent launch of the TRMM Precipitation Radar (PR). 

In addition, the swath of the TRMM Microwave Imager (TMI) is substantially broader than 

that of the PR providing a greater volume of data with greater spatial coverage resulting in 

better sampling of cloud, rainfall and resulting radiative and latent heating components of 
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theERB. 

The problem of developing a method for simultaneous global estimates of radiative and 

latent heating and the task of assessing the most complete sources of such information en 

route to determining an optimal satellite instrument complement for this purpose is large 

in scope and can not be exhaustively investigated by a single researcher in a single piece 

of work. Rather by touching on a number of areas of relevance, I hope to provide starting 

points for further study and open avenues for future work while furnishing the atmospheric 

science community with useful baseline estimates of radiative and latent heating in the 

tropics and the uncertainties associated with each. Preliminary results from a number of 

somewhat diverse aspects of the problem are presented in the hopes of detailing a complete 

course of action for resolving the problem as a whole, leaving much needed refinements as 

an exercise for the future. It is with these goals in mind that I present the remainder of this 

work. 

1.4 Dissertation Blueprint 

Prior to presenting the body of a work it is customary for the author(s) to provide a road­

map outlining the structure of the remaining sections. Before offering a description of what 

is to follow, it is appropriate to diagram the master plan from the eyes of my supervisor. 

An outline developed in an early research meeting is presented in Figure 1.3. They say a 

picture says a thousand words and Figure 1.3 only serves to advance this notion but allow 

me to do my best to briefly summarize the details for those who are less accustomed to 

deciphering Dr. Stephens' insightful yet perhaps somewhat haphazard graffiti. 

A semi-quantitative assessment of the information contained in the TMI measurements 

as a whole will be presented in Chapter 2 in an effort to establish a basic understanding of 

the physics which give rise to microwave radiances at the top of the atmosphere. Then, in 

Chapter 3, it will be demonstrated how this information and a degree of non-uniqueness 
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Figure 1.3: Schematic outline of the dissertation (from a personal communication with Dr. 
Graeme Stephens, early 1998). 

inherent in all passive microwave-based rainfall retrievals lead to uncertainties in the TMI­

based GPROF cloud and precipitation retrieval algorithm. A sophisticated new approach to 

determining the uncertainties in Bayesian Monte Carlo retrieval algorithms is introduced 

and applied to GPROF. For the first time, rigorous estimates of the uncertainties in all 

hydrometeor classes at each model level are determined, providing information desper­

ately needed in data assimilation and model validation exercises (Hou et al. (2000a,b) and 

Marecal and Mahfouf (2000)). This information is also critical for evaluating uncertainties 

in estimates of radiative and latent heating in Chapter 5. 
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Since the GPROF algorithm only provides meaningful results in rainfall, supplemental 

cloud information from a VIRS-based retrieval of ice cloud optical properties and a TMI­

based retrieval of liquid water path in low-level clouds is introduced in Chapter 4. While 

neither method is particularly accurate, each provides critical information needed in the 

radiative heating calculations which follow. The combination of these three retrievals rep­

resents the first attempt to quantify the complete three-dimensional structure of clouds and 

precIpitation over the tropical region from TRMM. The results not only provide informa­

tion necessary to derive flux and heating rate profiles in the present study but also furnish 

the community with the first crude breakdown of the spatial and temporal distributions of 

liquid cloud, thick and thin ice clouds, and precipitation over the complete region sampled 

byTRMM. 

Results from Chapters 2-4 are then combined and used as input to a broadband radia­

tive transfer model to derive profiles of radiative heating in the tropics for one month of 

TRMM data in Chapter 5. Concurrent estimates of latent heating profiles estimated using 

the GPROF algorithm are also presented and the results used to derive a short-term en­

ergy budget for the tropics as a whole. Uncertainty estimates are assigned to both forms 

of heating based on the accuracies of the component cloud and precipitation fields. In 

combination with the retrieval methodology outlined in the preceding chapter, the meth­

ods presented in Chapter 5 form a multi-sensor "algorithm" for determining atmospheric 

diabatic heating from the TRMM observations. With additional processing of data from 

the complete TRMM period, this novel approach provide benchmark tropical ERB esti­

mates and associated uncertainties by which future refinements and improvements to the 

model can be judged. Although uncertainties estimated in Chapter 5 are understandably 

large considering the difficulties incurred in deriving cloud and precipitation profile infor­

mation from passive sensors, the radiative flux estimates which emerge provide one of the 

most complete sets of such data available to date including TOA and SFC fluxes and cloud 
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forcing, column heating rates, and a breakdown of each into components owing to cloudy, 

precipitating, and clear skies. 

Finally, the uncertainty estimates highlight key areas of deficiency in the method and an 

effort is made to suggest means for improving these estimates in the future. Appendix D in­

vestigates one possible improvement: the idea of utilizing the complementary information 

provided by spaceborne radars to improve both cloud and precipitation profile information 

required to make useful estimates of diabatic heating. A powerful new technique for esti­

mating profiles of precipitation from spaceborne radars is presented and used to examine 

their capacity to profile rainfall through the use of synthetic retrievals from a large database 

of tropical cloud profiles. Here we take the somewhat novel point of view that such mea­

surements provide complementary rather than alternative information to those from passive 

instruments. 

Chapter 6 highlights relevant findings from this study and provides a detailed list of 

studies that are expected to evolve from this research in the near future. In many ways the 

conclusions drawn from this work should be viewed as a beginning rather than a termina­

tion as we now enter an age where the solutions to many problems which have plagued 

the climate community as a whole, are slowly materializing through the advent of new ad­

vances in satellite technology. As is the nature of science, with every solution, a multitude 

of new doors are opened offering numerous opportunities for future exploration. 





Chapter 2 

Information Content of the TMI 

To address the issue of retrieval accuracy and its impact in climate study, it is important 

to understand the underlying principles of the remote sensing problem. In many regards, 

atmospheric remote sensing is analogous to the problem faced by a detective trying to solve 

a crime. The detective is presented with a crime scene containing various clues which 

provide varying degrees information concerning the perpetrator of the crime. His job is to 

compile as much relevent information as possible from the evidence to formulate a short 

list of suspects from which the perpetrator must ultimately be determined. Two factors are 

required to successfully solve the crime: the evidence must be related in some way to the 

perpetrator and enough evidence must be available to narrow the list of suspects to a single 

person by ruling out all other possibilities. 

The same principles apply to the problem of retrieving cloud and precipitation profiles 

from passive microwave radiances. In this case, the atmosphere may be regarded as the 

"crime scene", observed radiances provide the "evidence", and the cloud and precipitation 

profiles are the "perpetrators". Once again, two factors are required to obtain reasonable 

results from the retrieval: the observations must reflect the hydrometeor profiles being in­

ferred and a sufficient number of measurements must be available to constrain the problem. 

Our first objective will be to characterize the cloud and rainfall information available from 

passive microwave radiance measurements. In particular we will focus on the TMI since 

data derived from its measurements will be employed in subsequent chapters. 

Many algorithms have been developed and are currently being employed which use 

passive microwave measurements from the TMI to estimate rainfall and retrieve vertical 
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profiles of liquid and frozen hydrometeors. The Goddard Profiling Algorithm (GPROF) 

(Kummerow et aI., 1996), for example, uses products derived from the TMI observations 

to retrieve the TRMM instantaneous surface rainrate, windspeed and cloud hydrometeor 

profile product (2a12). All passive microwave algorithms, including GPROF, rely on the 

sensitivity of observed radiances to changes in the atmospheric properties they seek to re­

trieve. Furthermore, instruments are designed with a number of different channels spanning 

the range of frequencies between 5 and 100 GHz or higher, such that the optical thickness 

of the atmosphere is different for each channel. Passive microwave algorithms make use of 

the fact that the height from which any measurement originates increases with increasing 

atmospheric optical depth to estimate vertical structure in the atmosphere. It is, therefore, 

of utmost importance to determine the range of observable scenes to which the TMI mea­

surements are sensitive and to determine the degree to which the altitude sensed by each 

channel is independent of the others. Retrievals over scenes to which the TMI measure­

ments are largely insensitive or excessively redundant have poor accuracy and are of limited 

value in other applications. 

The method adopted here is to quantify the information in the TMI measurements 

through a principal component analysis (PCA) described in Twomey (1977) and a later 

study by Engelen and Stephens (2000). Details of the theory are described in Section 2.1. 

A brief description of the TMI instrument and products derived from its measurements is 

provided in Section 2.2. In Section 2.3 a simplified model of a precipitating cloud is con­

structed. An estimate of the minimum rainrate detectable by each TMI channel individually 

is made in Section 2.4 prior to discussing the results of the application of the PCA method 

which are presented in Section 2.5. Finally a short discussion of non-uniqueness issues is 

presented in Section 2.6 and relevant conclusions are highlighted in Section 2.7. This exer­

cise not only introduces the Twomey method to the problem of passive microwave rainfall 

retrievals, but also provides a forum to overview the principles behind passive microwave 
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techniques which are well-known to the passive microwave remote sensing community but 

may be less intuitive to the casual reader. Excerpts from this chapter have been submit­

ted to The Journal of Applied Meteorology in a paper entitled "A Characterization of the 

Information Content of the TMI for Rainfall and Cloud Profile Retrievals". 

2.1 Theory 

In general the interaction of electromagnetic radiation with the Earth's atmosphere can 

be posed in the following way: the outgoing radiation at the top of the atmosphere, I, 

depends on the properties of the atmosphere, represented by the state vector, x, through 

some physical model, F 

I = F(x) (2.1) 

Without specifying the details of F Equation (2.1) can be expanded in a Taylor series 

(2.2) 

Second and higher order terms can be neglected provided the reference state, x a, is close to 

the true state of the atmosphere, x. Here 'close' requires that the model be approximately 

linear in the region between x and Xa. Following Twomey (1977), Equation (2.2) can be 

rewritten as 

I = lab K(x)f(x)dx (2.3) 

defining the kernel or weighting function, K = ~~, which represents the sensitivity of the 

radiance measurement to the atmospheric state, x. f(x) represents the distibution of atmo­

spheric parameters being sought. Cast in this form, it is clear that any two measurements, 

Ii and I j , will be identical if their weighting functions, Ki and K j , are equal. Furthermore, 

any measurement for which the weighting function can be expressed as a linear combina-
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tion of the weighting functions of the other measurements in an observing system, i.e. 

K/(x) = L ajKj(x) 
#/ 

(2.4) 

provides only redundant information. In reality this relation is seldom exactly satisfied 

but, since all measurements have some uncertainty, the measurement 1/ can be "lost in the 

noise" of the other measurements when the difference 

6j = 1/ - LajIj 
#/ 

is less than the accuracy to which the observations can be made. 

(2.5) 

Assuming at least one measurement in the system can be written as a linear combination 

of the others, it is possible to determine an expression for the aj in Equation (2.4). To avoid 

the trivial solution in which all aj = 0 we further impose the constraint l:i a; = 1 and 

minimize the square norm J [l:i aiKi(x)]2 dx subject to this constraint. Using the method 

of Lagrange multipliers a minimum must satisfy 

(2.6) 

where a is a vector consisting of the weights ai, the matrix C = K{x)TK(x) is the covari­

ance matrix of the weighting functions and A is a Lagrange multiplier also to be determined. 

Rearranging terms and differentiating yeilds the eigenvalue problem 

Ca=Aa (2.7) 

Vanishing eigenvalues represent weighting functions which can completely be expressed 

as a linear combination of the others. 

Most useful is the case where one weighting function can be expressed in terms of the 
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others to within some small error c5(x) given by 

c5(x) 

N 

- all L ajKj(x) 
j=l 

Returning to Equation (2.3) and assuming a measurement uncertainty of El we have 

So, 

Il + El - f Kl(X)f(x)dx 

f (c5(X) - L aj Kj(X)) f(x)dx 
#lal 

Il - - L aj f Kj(x)f(x)dx + f c5(x)f(x)dx - El 
#l al 
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(2.8) 

(2.9) 

(2.10) 

Any measurement, h can be written in this form. The first term represents the portion of 

the lth measurement that can be reconstructed from the other observations, the second is 

the portion of Il which constitutes new information not present in the other measurements, 

and the third accounts for the combined error resulting from uncertainties in the measuring 

system as a whole including errors in the kernels themselves. New information is obtained 

from Il only if the second term is larger than the third term, i.e. if the new information 

brought into the system by the lth measurement exceeds the collective noise in the other 

observations. Making use of the mean value theorem the magnitude of the second term in 
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Eqn. (2.10) can be approximated as 

If b(x)f(x)dxI
2 

= f~ If b(x)dxl ~ f~ f [b(X)]2 dx (2.11) 

where fm represents the mean value of f(x) over the interval of integration. Combining 

Eqns. (2.7) and (2.8) we obtain 

N 

Ib(x)1 = lalll LajKj(x) = lalllAt 
j=l 

(2.12) 

Substituting this result into the preceeding equation and noting that, for most practical 

applications, al is on the order of unity yields 

If c5(x)f(x)dx I
2 

~ f~A (2.13) 

for the new information contained in the lth measurement. 

In estimating the magnitude of the error term, note that 12: ajEjl2 is the length of the 

projection of the random error vector E onto the unit vector a. Provided these vectors 

are uncorrelated, the resultant projection has length equal to the mean square error in the 

measurements, iE12. A new radiance measurement, h therefore, will contribute distinct 

new information to the existing set of measurements provided 

(2.14) 

By virtue of the inherent ambiguities in the quantities in this equation, we conclude that a 

measurement brings new information into a system provided eigenvalues are much greater 

in magnitude than the average squared relative error in the measurements. 

In addition to determining the number of independent pieces of information in the mea­

surement set, it is also possible to determine which atmospheric levels dominate the TMI 
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signal as a whole. Making use of the fact that the weighting functions measure the sen­

sitivity of a given measurement to the various parameters in the atmospheric state vector 

we define the following orthonormal set of functions as linear combinations of the original 

weighting functions 

(2.15) 

where the b i are the eigenvectors of the covariance matrix C. Any atmospheric parameter 

retrieved via inversion of Equation (2.3) must result from a linear combination of these 

orthonormal functions. Peaks in the numerically significant CPi directly correspond to alti­

tudes of the primary atmospheric components influencing the set of measurements. Thus 

we can immediately determine which levels in the atmosphere are sampled by the data and 

which are not. 

2.2 The TMI Instrument 

The TMI has been operational aboard the TRMM satellite for more than three and a half 

years. For a detailed description of the characteristics of the TMI instrument, the reader 

is directed to Kummerow et al. (1998) but a brief overview of its salient features will be 

given here for completeness. Similar to the SSMII which has been flying on Defense Mete­

orological Satellite Program (DMSP) satellites for more than a decade, the TMI possesses 

dual-polarization channels at 19.35, 37.0, and 85.5 GHz as well as a vertically polarized 

channel in the low frequency water vapor absorption band. As opposed to the SSMII, how­

ever, the water vapor absorption channel has been set slightly off the peak of the center of 

this band at 21.3 as opposed to 22.3 GHz to accomodate extremely moist regions in the 

tropical atmosphere. Also, the TMI features a dual-polarized, low frequency channel at 

10.65 GHz to provide better estimates of liquid water path in heavy rainfall. Finally, due 

to TRMM's lower orbit relative to the DMSP satellites, the TMI channels exhibit superior 

spatial resolution to those of the SSMII. 
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The TMI antenna scans at 49° off nadir making one complete (i.e. 360°) rotation every 

1.9 seconds. By virtue of this geometry, the TMI views the surface with an incident angle 

of 52.8° resulting in elliptical footprints (see Fig. 1 of Kummerow et al. (1998». The cross­

track effective field of view (EFOV) is 9.1 km for all channels except 85.5 GHz where it is 

a factor of two smaller. In the along-track direction, the EFOV ranges from 63 km at 10.6 

GHz to 7.2 km at 85.5 GHz. TMI data is is taken in the ±65° region about the ground track 

direction resulting in a swath width of 758.5 km. The remainder of the scan is used for 

onboard calibration which is conducted in every scan to provide instantaneous calibration 

for all TMI data in an effort to avoid potential biases due to antenna gain fluctuations. 

At these frequencies the TMI channels are sensitive to absorption by atmospheric gases 

and absorption and scattering due to cloud and precipitation hydrometeors. Atmospheric 

absorption at microwave frequencies is dominated by molecular oxygen, O2 , and water 

vapor, H20 as illustrated in Figure 2.1. The TMI is sensitive to the H20 absorption band at 

22.235 GHz and to the complex series of O2 absorption lines around 60 GHz. 

Absorption, scattering and extinction coefficients for monodispersed distributions of 

liquid and ice spheres are presented in Figures 2.2 and 2.3. Liquid water contents were 

all fixed at 1 gm-1 and radii of 50, 250, 500, and 1000 lLm are shown to illustrate the 

differences between typical cloud and precipitation particles, represented by the two ex­

tremes, respectively, as well as some intermediate particles. At all frequencies, extinction 

by liquid hydrometeors is primarily due to absorption. Scattering by liquid hydrometeors 

becomes important only for large particles at high frequency. For frozen particles the op­

posite is true. Scattering dominates at all frequencies except 10 GHz. Total extinction due 

to ice particles is negligible at 10, 19, and 21 GHz compared to liquid droplets. Significant 

scattering by ice particles greater than 500 j.Lm, on the other hand, results in total extinction 

comparable in magnitude to that of liquid droplets at 37 and 85 GHz. These results merely 

reflect the dependence of scattering and absorption efficiency on size parameter, X = 2~r 
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Figure 2.1: Microwave absorption of water vapor and Oxygen (adapted from Ulaby et al. 
(1981)). 

in the RayJiegh regime 

Qabs ex X (2. 16a) 

(2.16b) 

In addition, they illustrate the physical processes essential to any passive microwave precip­

itation retrieval algorithm, namely the combination of strong ice scattering signals in high 



Chapter 2 

,-... .. 
E 

..Y 0.010 
.......... 

'+­
Q) 

o 
U 

..... 
~ 0.001 

TMI Information Content 

Extinction 
1 
I' /_0; ... 

• I.' 
.' 1"­

.' 1"­.' 1..-.... -.~ /~ ... , 
1 .' 

10 19 21 37 85 

Scattering 
~~."~~,.,..".,.,,~...,,..c;:.....,..,-:;::,..,.......-~ 

."'_'~·T 
.,,; " 0° 

".,._._. ;,," ...... . 
". ., .0-". ,,- -- .... 
,," ......... . 

,-

...... 

10 19 21 37 85 
TMI Frequency (GHz) 

,-... .. 
E 0.010 

..Y .......... 

'+-
Q) 

o 
U 

(f) 

~ 0.001 

50 urn 

250 urn 

500 urn 

1000 um 

Absorption 
. .......,...,.............., 

1 
I.' 

._1 .. ' 
.' 1..-

1 I" 
/ 1"­

./ 1/ _ .......... /~ .. 

10 19 21 37 85 
TMI Frequency (GHz) 

29 

Figure 2.2: Extinction, scattering and absorption coefficients for liquid spheres at each TMI 
channel. 

frequency channels and strong liquid water emission signals in low frequency channels. 

2.3 "Cloud" Model 

The primary objective of this chapter is to establish how much information the TMI ra­

diances, or, equivalent blackbody brightness temperatures, TB , yield in rainfall and cloud 

profile estimation as a function of near-surface rainrate. Furthermore, we wish to determine 

how this information is distributed in the atmosphere. To this end a simple cloud model is 

adopted in which the rainrate at the surface is used to prescribe ice and liquid water con-



Chapter 2 

] 10-4 
u 

>< 10-5 .. 
w 

TMI Information Content 

Extinction 
I 

/ 
/ I 

/ , 
/ , 

;" , 
/. , ...-

" , : .-.-. " .: 
,.- ,/.0" . ,,: 

,,// -- -" ...... : 
. ..... . 

10 19 21 37 85 

50 um 

250 um 

500 um 

1000 um 

10-2 
Scattering 

,...................,.....,~,........,...~,..~ . ...".,..;:~/,..................., 

Absorption 
• i 

,,-... ., 
E 

10-4 ~ 
"-' 

~ 
Q) 

10-6 0 
u 
ci 
l> 10-8 (f) 

.~. ,/ 

.,,~ ,/ 

"," / 0° 

_._.",0 ,,/ ..... 
,.-' ",' ..... 

"." '" - --., .0° 

., '" ........ . 
...... 

... 

10 19 21 37 85 
TMI Frequency (GHz) 

10 19 21 37 85 
TMI Frequency (GHz) 

Figure 2.3: As in Figure 2.2 but for ice spheres. 
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tents at all atmospheric levels in a conceptually similar manner to the models employed in 

earlier studies by Wilheit et al. (1977) and Petty (1994a). A Marshall-Palmer distribution 

(Marshall and Palmer (1948), hereafter denoted MP) of spherical hydrometeors is assumed 

in which the liquid water content (LWC) is related to the rainrate at the surface, R, through 

LWC = 47rNor(4) 
3b4 p (2.17) 

where the number density No = 8xl06m-4 and b = 8200R-o.21 m-1. p is the mean density 

ofthe hydrometeors taken to be l.Oxl06gm-3 for liquid and reduced to O.lxl06gm-3 for ice 

to avoid unreasonably large brightness temperature depressions at 85 GHz in accordance 
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with Petty (1994a). Only precipitating particles are considered explicitly although the small 

particle region of the MP distribution (i.e. less than 20 fLm or so) behave like cloud particles 

by virtue of their low fall velocities. This is the reason for the quotation marks around the 

word £loud in the heading for this section. In what follows, the term "cloud" should be 

taken to represent the full range of particles described by the MP size distribution. 

The model is depicted in Figure 2.4. The atmosphere is divided into 28 layers from the 
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Figure 2.4: Schematic diagram of the cloud model. 

surface to 18km. Below the melting layer, Tm = 273.16K, all hydrometeors are assumed 

to be liquid with constant LWC defined as in Equation (2.17). Above the freezing level, 

Tf = 250.16K, all hydrometeors are assumed to be frozen with ice water content (IWC) 

given by Equation (2.17). Between these levels we allow for a mixed-phase layer following 
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Tiedke (1993) in which the water content is defined in tenns of the LW C and IW C as 

we = f * LW C + (1 - f) * IW C (2.18) 

where f is the liquid water fraction in the layer given by 

f = [T - Tf ]2 
Tm-Tf 

(2.19) 

The atmosphere above To = 225.0K is assumed cloud free. All other parameters such as 

temperature and relative humidity profiles, layer heights, freezing level and melting level 

are held constant. Profiles of temperature, humidity, and liquid and ice water using this 

model are displayed for three rainrates in Figure 2.5. 

Both land and ocean background conditions are modeled. The ocean is modeled as 

a Fresnel surface with a temperature of 296K and overlying wind speed of v = Oms-1 to 

avoid the unnecessary complications introduced by ocean surface roughening which merely 

introduce an additional source of uncertainty in the results. The land surface is assumed to 

be Lambertian with a unifonn emissivity of 0.9 and a temperature of 296K. Again, no topo­

graphical, vegetation or soil moisture effects are included to avoid introducing unnecessary 

uncertainties in the results. 

Despite being a somewhat crude representation of real-world precipitating clouds, this 

simple model provides a great deal of insight into the physical processes within the atmo­

sphere which give rise to the radiances observed at the TRMM satellite. Specifically the 

two dominant processes, absorption and re-emission of low frequency microwave radia­

tion by liquid hydrometeors and scattering of higher frequency microwave radiation by ice 

hydrometeors, have been modeled. In principle it is possible to use more realistic clouds 

obtained from CRM simulations or observations but in practice the weighting functions 

obtained using such clouds are extremely complex and obscure the physical interpretation 
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Figure 2.5: Profiles of (a) temperature, (b) relative humidity, (c) cloud liquid water, and (d) 
cloud ice water for selected rainrates. 

of the results. It is encouraging to note that this model yields brightness temperature de­

pressions at 85 GHz which increase by approximately 4K per mmh-1 increase in rainrate in 

good agreement with current theoretical and empirical evidence (Adler et aI., 1991). This 

suggests that model sensitivities to changes in rainrate are of the right order of magnitude. 

2.4 TMI Sensitivity to Rainfall Rate 

Liquid water associated with rainfall is one of the more basic parameters to retrieve using 

passive microwave radiances. Numerous algorithms of varying complexity exist for this 
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purpose (eg. Wilheit et al. (1977), Spencer et al. (1989), Liu and Curry (1992), Smith 

et al. (1994b), and Sheu et al. (1996) to name but a few). It is instructive to determine the 

minimum rainrate required to give rise to a detectable difference in brightness temperature 

from clear conditions relative to the sensitivity of the TMI instrument, prior to conducting 

a more detailed study of its information content. Furthermore, this analysis serves as a test 

of the physical assumptions made in the cloud model. 

Since numerous radiative transfer calculations were required throughout this analysis, 

we used an implementation of the Eddington approximation to the radiative transfer equa­

tion described in Kummerow (1993). Uncertainties in this approximation are likely to be 

small and the increase in speed afforded by using this model far outweighs the uncertainties 

it introduces in the analysis. 

Brightness temperature signatures characteristic of scenes with rainrates varying from 

o to 100 mmh-1 are presented in Figure 2.6. Over ocean, the T BS exhibit the characteristic 

sharp increase with increasing rainrate due to emission from liquid water followed by a 

slow decrease at very high rainrate due to ice scattering in accord with theory. The 19.3 

GHz T BS, for example, are in excellent agreement with those presented in Wilheit et al. 

(1977). Conversely, the warm land background masks emission from the rain and the TB 

remains approximately constant with increasing rainrate until scattering effects become 

significant at which point they begin to decrease at a similar rate to those over ocean. It 

is interesting to note that at every frequency there is a rainrate at which the T B over the 

land and ocean backgrounds converge. Physically this is the rainrate where the atmosphere 

becomes so opaque that it effectively masks the surface and the radiance measurement 

originates from some level within the rain column itself. Above this rainrate any rainfall 

retrieval, regardless of the specific method used, will no longer be sensitive to surface 

properties. 

Figure 2.7 shows corresponding cloudy minus clear-sky T B differences as a function of 
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Figure 2.6: TB as a function of rainrate for each TMI channel over both ocean and land 
backgrounds. 

rainrate. A rainrate is considered detectable at frequency i only if 

ITBi,raining - TBi,clear I > O'i (2.20) 

where O'i is the sensitivity of the ith TMI channel. The values assumed for the O'i, repre­

sented by the dot-dashed lines on Figure 2.7, correspond to TMI instrument specifications 

given in Kummerow et al. (1998) and are summarized in column 2 of Table 2.1. Mini­

mum detectable rainrates for all channels, summarized in columns 3 and 4 of this table, 

emphasize the greater sensitivity of the TMI over ocean than over land. 
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Figure 2.7: T B difference between raining and clear sky scenes as a function of rainrate 
for each TMI channel. The horizontal dashed lines indicate the corresponding instrument 
sensitivity from Table 2.1. 

According to Table 2.1 and under the simplifying assumptions imposed by the cloud 

model, rainfall less than about 1.0 mmh-1 is not detected over land, except for the weak ice 

scattering signature at 85_5 GHz. At 35 GHz, emission from warm rainfall near the surface 

increases brightness temperatures in very light rainfall while brightness temperatures are 

reduced at rainrates exceeding 0.5 mmh-l. This feature, which appears as the bump at 

low rainrates in Figure 2.7, is extremely weak, however, and cannot be distinguished from 

measurement noise. In addition, due to the more Lambertian nature of dry land surfaces 

relative to ocean over the large field of view (FOV) the TMI (Ulaby et aI., 1986), there 
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Table 2 1· T B sensitivities and minimum detectable rainrates for each TMI channel. .. 
Channel 0" (K) Ocean Rmin (mmh-1) Land Rmin (mmh 1) 

1O.6GHzH 0.54 0.12 1.30 
10.6 GHz V 0.63 0.24 1.50 
19.3 GHzH 0.47 0.04 0.64 
19.3 GHz V 0.50 0.08 0.70 
21.3 GHz V 0.71 0.18 3.50 
37.0GHzH 0.31 0.02 0.86 
37.0GHzV 0.36 0.02 0.90 
85.5 GHzH 0.93 0.03 0.06 
85.5 GHz V 0.52 0.12 0.04 

is very little difference between vertically and horizontally polarized T BS over land. This 

effectively reduces the number of available pieces of distinct information from 9 to 5. By 

contrast, the results are more encouraging for rainfall over the ocean. Table 2.1 suggests 

that rainrates exceeding 0.25 mmh-1 exhibit discernable signals in all the TMI channels. 

Recall that these results have been obtained using a very simple model which does not 

account for differences between convective and stratiform rainfall or in the microphysi­

cal processes governing rainfall development over land and oceanic backgrounds. Fur­

thermore, no effort has been made to simulate non-precipitating clouds which can also 

be distinguished from clear-sky conditions but are indistinguishable from extremely light 

precipitation. Instead of rigorous estimates of minimum detectable rainrates, the results 

represent ball-park estimates which primarily provide initial evidence for differences be­

tween land and ocean based retrievals. From this preliminary observation we launch into a 

more quantitative analysis of the different information used in TMI rainfall retrievals over 

land and ocean. 
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2.5 Information Content of the TMI Measurements 

2.5.1 TMI Weighting Functions 

The results of the preceeding section suggest a rainrate threshold exists below which the 

TMI T BS cannot be distinguished from instrument noise even if its value remains uncertain. 

We now apply the peA described in Section 2 to estimate the information content of the 

TMI measurements over the range of 0 - lOOmmh-1
, typical of rainrates observed by 

the TRMM satellite in the tropics. The weighting functions defined in Eqn. (2.3) were 

constructed for each cloud profile by first computing the upwelling T BS at the top of the 

atmosphere (TOA) for the nine TMI channels for the unperturbed cloud and then perturbing 

each parameter at every level in the atmosphere and computing the change in TOA brightess 

temperatures corresponding to each perturbation. The value of the channel i weighting 

function for parameter Xj at level Zk is approximated as 

(2.21) 

where TBi is the brightness temperature in channel i and 6 is the magnitude of the pertur­

bation taken to be I'V 1 % in these simulations. 

In the microwave region of the electromagnetic spectrum the strongest contributions 

to the observed TOA T BS are liquid and ice water, temperature, and, to a lesser degree, 

relative humidity. As a result the analysis focuses exclusively on these parameters. Fig­

ures 2.8 and 2.9 compare the temperature weighting functions for each vertically polarized 

channel of the TMI at a variety of near-surface rainrates. Low frequency microwave radi­

ation penetrates the cloudy atmosphere even under moderately intense rain as indicated by 

the weighting functions at 10, 19, and 21 GHz which all peak at the surface for rainrates 
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Figure 2.8: Temperature weighting functions for each vertically polarized TMI channel as 
a function of rainrate over an ocean background. 
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Table 2.2: Optical depths at each TMI frequency for selected rainrates. 
Rainrate 10.6 GHz 19.3 GHz 21.3 GHz 37.0 GHz 85.5 GHz 

0.5 mmh-1 0.0238 0.1494 0.3179 0.2242 0.9204 
2.0 mmh-1 0.0356 0.2024 0.3840 0.4517 1.8742 
5.0 mmh-1 0.0634 0.3243 0.5348 0.9417 3.4550 
10.0 mmh-1 0.1175 0.5481 0.8094 1.7811 5.6845 
20.0 mmh- 1 0.2442 1.0291 1.3947 3.4360 9.3870 
50.0 mmh-1 0.6927 2.5611 3.2378 8.0811 18.0769 

less than 10 mmh-l. At higher frequency, however, attenuation within the rainlice column 

causes the surface signal to vanish at much lower rainrates. In all cases as rainrate in­

creases the sensitivity to temperature near the surface decreases at the expense of enhanced 

sensitivity within the rain column itself. 

Temperature weighting functions over a land background exhibit very similar trends to 

those over ocean. Weighting functions which peak above the surface are nearly identical 

regardless of the surface properties. Those which peak at the surface, however, exhibit 

dramatically reduced absolute sensitivities to temperature over the land background. 

These results demonstrate the principle reason for selecting the channels used on the 

TMI and are consistent with those expected for an optically thin medium (Stephens, 1994). 

To illustrate this, total column optical depths, derived using the simple cloud model, are 

plotted as a function of rainrate in Figure 2.10 for the five TMI frequencies. To facilitate 

comparisons, optical depths at selected rainrates for each TMI frequency are summarized 

in Table 2.2. Regardless of rainfall rate the atmosphere appears much "thicker" to high 

frequency microwave radiation than to that at lower frequencies. 

The effective level of emission, defined as the altitude at which the temperature weight­

ing function peaks, emphasizes this point. Figures 2.11 and 2.12 show the effective level of 

emission over ocean and land backgrounds, respectively. At all rainrates below 1 mmh-1 

all TMI channels are primarily sensitive to the surface and beyond 18 mmh-1 over land and 

25 mmh- 1 ocean, the surface signal is completely obscured. At intermediate rainrates low 
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Figure 2.9: Temperature weighting functions for each vertically polarized TMI channel as 
a function of rainrate over a land background. 
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frequency channels sample the surface while high frequency channels sample levels higher 

up in the atmosphere. Based on these results, we conclude that the ideal range of rainrates 

for both surface rainfall estimation and some degree of cloud profiling is 4.5 to 18 mmh-1 

over land and 6 to 25 mmh-1 over ocean since the TMI provides information from a wide 

range of different levels in the rain column in this range. 

Figures 2.13-2.16 focus on the sensitivity of each TMI channel to liquid and ice water 

in the atmospheric column. While the temperature weighting functions indicate the levels 

in the atmosphere at which the TMI provides the best sampling, these figures quantify the 

instrument's sensitivity to the specific parameters we wish to retrieve. The liquid water 

weighting functions demonstrate the fact that entirely different physical processes give rise 

to the TMI rainfall signature over land and oceand backgrounds. Over ocean, positive per­

turbations in the liquid water content give rise to increases in all but the 85 GHz T B, a 

direct result of the higher emissivity of raindrops relative to ocean backgrounds, particu­

larly in the warm layers near the surface. This effect increases with increasing rainrate until 

the amount of ice at upper levels increases to a point where scattering becomes important. 
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Figure 2.11: TMI effective levels of emission as a function of rainrate over an ocean back­
ground. 

At this point the effects of enhanced emission diminish and eventually increasing rainrate 

results in a decrease in T B. This is particularly evident at 85 GHz. Note that scattering 

effects are most prominent near the top of the rain column as opposed to emission effects 

which are always greatest near the surface where raindrops are the warmest. 

The comparitively warm land background masks emission from raindrops and only the 

much weaker scattering signal of the larger raindrops remains in the T B signature. As a 

result sensitivities to liquid water at 10, 19 and 21 GHz channels are much weaker over land 

than over ocean. These results emphasize the difficulties incurred when trying to retrieve 

atmospheric properties near the surface over land. For moderate rainrates at 19 GHz, for 

example, the T B is nearly an order of magnitude more sensitive to perturbations in liquid 

water near the surface over ocean than land. 

At all microwave frequencies ice water signatures are dominated by the scattering pro­

cess. As a result the ice water weighting functions show no sensitivity to surface properties. 

At 10 GHz the scattering signature is negligible due to the long wavelength relative to the 
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Figure 2.12: TMI effective levels of emission as a function of rainrate over a land back­
ground. 

size of the ice particles. Sensitivity to scattering increases with increasing frequency, how­

ever, and the weighting functions show pronounced negative peaks at 37 and especially 85 

GHz at high rainrate. 

2.5.2 Eigenvalue Analysis 

Using these weighting functions, principal component analyses have been conducted for 

each variable at each rainrate. An estimate of the mean uncertainty in the TMI measure­

ments was obtained by averaging the sensitivities of each TMI channel. We find (j = O.55K 

provides a suitable order-of-magnitude estimate for the mean error in the measurements. 

Results of the eigenvalue analysis are summarized in Figure 2.17 which shows the num­

ber of independent pieces of information as a function of rainrate for each atmospheric pa­

rameter. Under cloud-free conditions, the TMI channels provide three independent pieces 

of temperature information, two regarding relative humidity profiles, and no information 
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Figure 2.13: Liquid water weighting functions for each vertically polarized TMI channel 
as a function of rainrate over an ocean background. 
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Figure 2.15: Ice water weighting functions for each vertically polarized TMI channel as a 
function of rainrate over an ocean background. 
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Figure 2.16: Ice water weighting functions for each vertically polarized TMI channel as a 
function of rainrate over a land background. 
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Figure 2.17: TMI information content as a function of rainrate for retrieving (a) tempera­
ture, (b) relative humidity, (c) liquid water and (d) ice water profiles over both ocean and 
land backgrounds. 

regarding ice and liquid water content. As rainrate increases the effective levels of emis­

sion at each frequency spread in altitude reducing the redundancy of information between 

the channels. Over an ocean background the number of independent pieces of temperature 

information increases to five for rainrates above 40 mmh-l. The warm land background, 

however, masks perturbations in temperature and the TMI provides far fewer independent 

pieces of temperature profile information over land than ocean in light rainfall. As rain­

rate increases T BS become less sensitive to the surface properties and more sensitive to the 

atmosphere yielding similar information contents over both land and ocean. 
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Water vapor is relatively transparent to microwave radiation compared with the effects 

of cloud liquid water. Only the 19 and 21 GHz channels are sensitive to perturbations in 

relative humidity by virtue of their proximity to the 22.3 GHz water vapor absorption line. 

At moderate rainrates the effective level of emission for these two channels differs enough 

to provide two independent pieces of water vapor information. 

At rainrates below 1.5 mmh- 1 cloud ice fails to change the T B in any channel above 

the numerical accuracy of the radiative transfer model. Above 2 mmh-1
, the ice signature 

at 85.5 GHz is strong enough to provide a single piece of information. The weighting 

functions eventually show weak ice signatures at all frequencies except 10 GHz but all 

weighting functions overlap and therefore do not add any independent information to the 

measurements. It is clear from the width of the weighting functions in Figures 2.15 and 2.16 

that this information originates almost equally from the entire ice column indicating the 

possibility for retrieving column-integrated ice water path (lWP) but very little information 

regarding its vertical distribution. 

Liquid water weighting functions show distinct differences among the TMI channels 

and this is reflected in the information they provide. As rainrate increases and the effec­

tive levels of emission at different TMI frequencies become more disparate, the number 

of independent pieces of information increases. The information content over land differs 

from that over ocean at very low rainrates where the effective level of emission is near 

the surface and the rainfall emission signature is negligible compared with the warm land 

background. At rainrates greater than 2.5 mmh-1, the TMI T BS contain information from 

three or more independent levels within the rain column regardless of the underlying sur­

face. Consequently, the TMI is both well-suited for cloud profile estimation over this range 

of rainrate but also susceptible to erroneous cloud profile assumptions in less sophisticated 

surface rainrate retrievals. 

These results are put into perspective in Figure 2.18 which provides the probability 
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Figure 2.18: (a) and (b) PDF and nonnalized CDF of rainrate from the GPROF algorithm. 
(c) and (d) Shaded CDF indicating the number of independent pieces of infonnation the 
TMI measurements contribute to temperature and ice water retrievals over an ocean back­
ground, respectively. Similar results over a land background are presented in (e) and (f). 
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density function (PDF) of surface rainrate from the cloud database used in the GPROF 

algorithm, highlighting the regions where the TMI observations contain the most informa­

tion. The database consists of an amalgamation of a number of distinct cloud resolving 

model simulations of a wide range of tropical systems using the Goddard Cumulus Ensem­

ble (GCE) model. Details of the specific cloud cases can be found in Olson et al. (1996) 

and Tao and Simpson (1993) provide an overview of the GCE model. 

Figure 2.18 indicates that approximately half of the cloud profiles in the database have 

surface rainrates less than about 1.5 mmh-1. This region corresponds to rainrates for which 

the TMI observations contain very little to no ice water profile information and at most 

two independent pieces of liquid water profile information. Most of the TMI information 

for retrieving both liquid water profiles lies in the region greater than 2.5 mmh-1 which 

accounts for only about 30 percent of the profiles in the database. This points to a potential 

inadequacy of TMI measurements alone when used to retrieve cloud profiles in the tropics 

in that they will be bereft of information in the significant number very light rain scenes 

which the TRMM satellite encounters. Recalling the results of Section 2.4, it should also 

be pointed out that surface rainfall detection may be difficult for about 40 percent of the 

cloud profiles in the database over a land background by virtue of the lack of a significant 

T B deviation from clear-sky conditions. At mid-latitudes light rain may be even more 

prevelant. Thus in order to capture a complete spectrum of global rainfall in the future, it 

will be necessary to combine information from other sensors to account accurately for light 

rain. 

2.5.3 Orthonormal Weighting Function Analysis 

Eigenvectors corresponding to the principal eigenvalues have been used to construct a set of 

orthonormal weighting functions following Equation (2.15). As opposed to the weighting 

functions which indicate the levels from which the T BS of individual channels originate, the 
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orthonormal weighting functions show where the information from the entire measurement 

system as a whole originates. They represent weighting functions for the TMI instrument 

as a whole rather than each individual channel. 

Orthonormal liquid water weighting functions over an oceanic background are plotted 

for three different rainrates in Figures 2.19-2.21. At low rainrate there are two domi-
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Figure 2.19: Statistically significant orthonormal weighting functions for retrieving liquid 
water profiles at a rainrate of 0.5 mmh-1 over an ocean background. 
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Figure 2.20: As in Figure 2.19 but at a rainrate of 5 mmh-1• 

nant orthonormal weighting functions. The first has a broad peak between 4 km and the 

surface while the second has a peak at 5 km. The structure of these weighting functions 

suggests that aU liquid water below 5 km has some influence on the radiation measured by 

the TMI. As rainrate increases the number of significant orthonormal weighting functions 

increases and the individual peaks in the weighting functions become sharper indicative of 

the increased sensitivity of specific channels to specific levels in the atmosphere. In gen­

eral, more levels contribute to the overall TMI T B signature and the levels with the most 
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Figure 2.21: As in Figure 2.19 but at a rainrate of 20 mmh-1. 

influence rise in the atmosphere as rainrate increases consistent with the trends in both the 

information content, Figure 2.17, and the effective level of emission, Figure 2.11. 

Corresponding weighting functions over a land background are plotted in Figures 2.22-

2.24. At all rainrates the dominant weighting function exhibits a negative sensitivity to the 
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Figure 2.22: Significant orthonormal weighting functions for retrieving liquid water pro­
files at a rainrate of 0.5 mmh- 1 over a land background. 

liquid water content which sharpens and shifts slightly towards cloud top with increasing 

rainrate highlighting the fact that scattering is the dominant mechanism influencing the 

TMI T B signature over land. At very low rainrate scattering uniquely provides the entire 
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Figure 2.23: As in Figure 2.22 but at a rainrate of 5 mmh-1• 
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Figure 2.24: As in Figure 2.22 but at a rainrate of 20 mmh-1. 
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signal but at higher rainrates positive sensitivity peaks are evident resulting from saturation 

of the higher frequency channels. At very high rainrate all TMI channels are primarily 

sensitive to the cloud column itself masking surface characteristics as is evidenced by the 

fact that the orthonormal weighting functions over land and ocean backgrounds are more 

or less identical at a rainrate of 20 mmh-1. 

Conclusions can also be made regarding ice water retrievals based on orthonormal 

weighting functions presented in Figures 2.25 and 2.26. Regardless of the surface rainfall 

rate, the ice information in the TMI comes from a broad layer between 5 and l1km with 
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Figure 2.25: Statistically significant orthonormal weighting functions for retrieving ice 
water profiles at a rainrate of 2.0 mmh-1 over an ocean background. 
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Figure 2.26: As in Figure 2.25 but at a rainrate of 20 mmh-l. 

a peak at lOkm. The only exception is below 1.5 mmh-1 where there the TMI contributes 

no statistically significant ice water content information to the retrieval. The shape of the 

weighting function is independent of surface rainrate, confirming the fact that the TMI pri­

marily provides a single piece of ice information related to the ice water path through the 

cloud. 

These results highlight the important fact that, at most rainrates, the TMI exhibits some 

sensitivity to cloud water throughout the atmospheric column rather than just the rainfall 

near the surface. For rainrates less than 1 mmh-1 the TMI channels are strongly influ­

enced by the emission properties of the surface. At higher rainrates, however, the cloud at 

higher levels of the atmosphere significantly impacts observed T BS emphasizing the need 

for explicit cloud profile information in passive microwave rainfall retrievals, a fact which 

is overlooked in many empirical algorithms. 
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2.6 The Issue of Non-uniqueness 

Many retrievals are predicated on a quasi-unique relationship between measured T BS and 

the quantities to be retrieved. This is true of most rainfall and cloud/ice water content 

retrievals and is one of the key assumptions made in the preceeding sections. Unlike quan­

titative retrievals, the results of this chapter are primarily of a qualitative nature and we 

believe are still useful but we would be remiss if we didn't acknowledge the potentially 

far-reaching consequences of this assumption. 

Figure 2.27 presents a scatter plot of TMI T BS as a function of rainrate for all cloud 

profiles in the database used in the GPROF surface rainrate and cloud profile retrieval for 

the TRMM mission. A cursory glance at this figure immediately reveals that, although 

the points exhibit the same general trend with increasing rainrate, the smooth T B-rainrate 

relationship implied by Figure 2.6 is a highly idealized assumption. In reality TMI T BS 

result from the interaction of radiation with extremely complex and diverse cloud structures 

which depend on the specific atmospheric conditions under which the cloud was formed 

and evolved. This diversity results in a non-unique relationship between T B signatures and 

near-surface rainrate, a problem inherent in all rainrate retrievals regardless of their level of 

sophistication. 

The results presented here represent an idealized scenario and provide an upper bound 

on the information provided by the TMI instrument. Some rainfall systems, for example, 

are dominated by warm-rain microphysics in which rainfall is primarily created through 

collision and coalescence of liquid droplets rather than through the melting of ice. In this 

case information from ice scattering is lost reducing the number of independent pieces of 

information in the retrieval. Also, by virtue of its large footprint, the TMI instrument is 

susceptible to the effects of non-uniform beamfilling (NUB F) (Kummerow, 1998). The 

different cloud structures implied in Figure 2.6 will introduce similar scatter in the weight­

ing functions of each TMI channel. Operationally, the TMI weighting functions will be 
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Figure 2.27: Scatter plots of TMI T BS as a function of rainrate for the entire GPROF 
database. 

broader and weaker than those used in this chapter due to spatial averaging over the foot­

prints in each channel. The increased overlap which results further reduces the amount of 

independent information contained in the TMI measurements. 

The approach that has been adopted by Kummerow et al. (1996) in the GPROF algo­

rithm to resolve this problem is to perform a weighted average of all cloud profiles in the 

database whose T B signatures resemble those observed. While recognizing and attempt­

ing to account for indistinguishability between cloud profiles, this approach runs the risk 

of incurring large uncertainties resulting from the averaging process as we will see in the 

next chapter. We suggest that a more direct approach to resolving the non-uniqueness is-
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sue might be to use radar reflectivities from the PR or a cloud profiling radar such as that 

which will be launched on CloudSat in the future to constrain the cloud profile. Since the 

TMI channels are quite sensitive to the cloud constituents at a variety of atmospheric lev­

els over a wide range of surface rainrates, it is reasonable to conjecture that cloud profile 

information represents a strong candidate for significantly reducing indistinguishability. 

2.7 Discussion 

Through the use of a conceptually simple analysis of the principal components of the TMI 

measurements, the number of independent pieces of information contained in the data has 

been determined as a function of rainrate. The retrievable range of rainrates can be broken 

down into three regions: 

• Low rainrates between 0.25 and 6 mmh-1 (1.5 and 4.5 mmh- 1 over land). Here 

the instrument is most sensitive to the rain nearest the surface but exhibits slight 

sensitivity to the cloud above it. 

• Moderate rainrates between 6 and 25 mmh-1 (4.5 and 18 mmh-1 over land). This 

is the ideal range of rainfall for algorithms which estimate surface rainfall and cloud 

profiles simultaneously since the instrument is sensitive to both the surface as well 

as a number of layers within the cloud. 

• High rainrates above 25 mmh-1 (18 mmh-1 over land). Intense rainfall and the 

copious amount of ice which often overly it prevent all TMI channels from viewing 

the surface. At these rainrates, limited cloud profiling is possible but the surface 

rainrate must be inferred from the liquid and ice water at upper levels. 

In the low rainrate region, cloud profiles impact the retrieval but the TMI instrument is 

likely not sensitive enough to retrieve profiles of cloud-sized liquid and ice particles with­

out the aid of additional information. This is the region in which all TMI-only rainfall 
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retrieval algorithms will suffer the largest uncertainties due to cloud profile effects regard­

less of whether or not they attempt to retrieve cloud structure. At moderate rainrates more 

sophisticated algorithms should perform more accurately since the TMI channels carry in­

formation necessary to retrieve a full rainfall profile as well as an estimate of the column ice 

water content in addition to the surface rainrate. Finally, in heavy rain, the TMI does not di­

rectly sense the lowest levels of the atmosphere or surface at all. Surface rainfall estimates 

under such conditions require an explicit relationship between hydrometeor concentration 

and size within the cloud and rainfall at the surface. 

It is important to note that in addition to the TMI, the TRMM satellite carries both 

the PR and the visible/infrared sounder (VIRS). Both instruments offer additional, possi­

bly complementary information to the TMI. It may be possible, for example, to use the 

VIRS measurements to help overcome some of the difficulties encountered when using 

TMI measurements alone at low rainrates. At higher rainrates the PR will undoubtedly 

add additional information regarding near-surface rainrates and hydrometeor profiles but 

exactly how much information remains a topic for future study. Also, in the near future 

the combination of the Advanced Microwave Scanning Radiometer (AMSR-E) onboard 

the Earth Observing System (EOS) Aqua satellite and the 94 GHz Cloud Profiling Radar 

(CPR) flown on the CloudS at satellite will provide an opportunity to examine the possi­

bility of constraining passive microwave retrievals with explicit cloud profile information. 

The method described here provides a useful diagnostic tool to study these and alternate 

combinations of instruments and channels to assess the best possible set for future rainfall 

estimation applications. 

While we have determined the extent to which the TMI measurements provide liq­

uid and ice profile information, it is still unclear exactly how this information (or lack­

thereof) impacts uncertainties in retrievals and, in tum, applications which make use of 

their products. The next chapter seeks to address these questions through detailed analy-
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sis of quantitative estimates of the uncertainty in GPROF cloud and precipitation profiles. 

Once established, these uncertainties provide a foundation to scrutinize the capability of 

current passive microwave observing systems for determining atmospheric heating as well 

as infering alternative sources of information to improve upon them. 



Chapter 3 

Uncertainties in the GPROF Precipitation and Cloud 

Profile Retrieval Algorithm 

In principle one can infer any physical parameter(s) from any observation(s) as long as a 

model exists which describes the "mapping" of the parameter space into the observation 

space. Provided the model can be "inverted" to describe the reverse mapping from the 

observation space to the parameter space, it is possible to estimate the parameter(s) which 

gave rise to any given set of observation(s). The quality of the estimate depends on a 

number of factors including the quality of both the model and the method used to invert 

it. In a good retrieval the observations should be strongly dependent on the parameters 

being retrieved, should contain sufficient information to unambiguously categorize them, 

and must be suitably mapped into the retrieval parameter space by the model. 

As an example, consider two techniques for determining the mass of an automobile. 

The first uses a spring scale and is based on a relation between the car's mass and the 

compression of four springs, 8x. If the springs are characterized by spring constant k 

the mass can be determined through direct inversion of mg = 4k8x. The second uses a 

model based on a detailed compilation of statistics relating a car's mass to the color of the 

fuzzy dice hanging from its mirror. While there may be some evidence from a long-lost 

psychological experiment that the owners of smaller cars are in some way predisposed to 

hang blue dice, one would probably be more inclined to trust the result obtained by the first 

method than that of the second. 

Our simple example illustrates the following crucial yet frequently overlooked fact: 

often the result is not as difficult to obtain as a complete understanding of its significance 
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since a detailed knowledge of all sources of uncertainty are required for the latter. In this 

case, the uncertainty in the first method can be directly estimated as it depends only upon 

the accuracy with which we can determine the spring constant, the compression distance of 

the springs, and the acceleration due to gravity, g. Besides our common sense, however, we 

have no way of determining the validity of the estimate produced using the second method 

without additional information such as the size of the sample used in deriving the model 

and the variance of its distribution about the mean. 

Passive microwave retrievals of rainfall fall somewhere between these two extremes. 

Microwave brightness temperatures are more sensitive to the profiles of rainfall than the 

color of fuzzy dice is to the mass of a car but the relationship is not as well defined as that 

between the compression of a spring and the force that was exerted upon it. While sensi­

tivity to the profile of liquid and frozen hydrometeors throughout the atmospheric column 

is useful in profiling applications, the complex physical processes involved in the exchange 

of radiation between its various levels invariably leads to a high degree of non-uniqueness 

in retrieval algorithms since, in principle, an infinite number of different combinations of 

rain, cloud liquid, cloud ice, hail, graupel and snow hydrometeors can give rise to very 

similar brightness temperature signatures. In this chapter our goal will be to quantify the 

uncertainty of passive microwave precipitation and cloud profile retrievals, explicitly ac­

counting for the effects of non-uniqueness, through a detailed analysis of the TMI-based 

GPROF algorithm. The preceding chapter has furnished us with an understanding of the 

information contained in the TMI radiances, the next step is to determine how well the 

GPROF algorithm makes use of this information in estimating rainfall. An abridged ver­

sion of this chapter has been summarized in a paper entitled "An Uncertainty Model for 

Bayesian Monte Carlo Retrieval Algorithms: Application to the TRMM Observing Sys­

tem" submitted to The Quarterly Journal o/the Royal Meteorological Society. 
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,I 3.1 Why GPROF? 

Numerous algorithms for retrieving rainfall from passive microwave radiances have been 

introduced and employed with varying degrees of success in the past 25 years. Early results 

from Wilheit et al. (1977), Wilheit and Chang (1980), Spencer et al. (1983), and Wilheit 

(1986), for example, provided clear evidence for the existence of a rainfall signature in 

passive microwave radiances. Since then a variety of algorithms of varying complexity have 

been proposed to make use of this signature to estimate rainfall. All of these techniques are 

based on the same physical principles and all suffer from some degree of non-uniqueness 

even though very distinct models employing different information are used by each. 

Researchers have classified these algorithms according to a variety of criteria such as 

one proposed by Petty (1994b) which defines all algorithms as statistical, empirical, or 

physically-based. For our purposes it is instructive to classify all algorithms into two cat­

egories depending on whether they implicitly or explicitly account for cloud profile infor­

mation. Statistical and empirical algorithms such as those proposed by Spencer (1986), 

Spencer et al. (1989), Petty and Katsaros (1990), Grody (1991), Prabhakara et al. (1992), 

Liu and Curry (1992), Ferriday and Avery (1994), Li et al. (1996), Kidd (1998), and Prab­

hakara et al. (1998) fall into the first category. Despite being diverse in their approaches, 

each is fundamentally based on a relationship between surface rainfall and one or more 

microwave brightness temperatures or parameters derived from them. Implicit in these 

algorithms is some assumption of the vertical profiles of scattering and emission from liq­

uid and ice hydrometeors above the surface. While they provide computationally simple 

methods for determining surface rainfall rate which can be quite useful on regional scales, 

these algorithms can seldom be applied globally without modifications to the coefficients 

to reflect regional changes in the microphysical processes responsible for the rainfall. 

Despite using a more sophisticated iterative inversion scheme, the algorithm presented 

in the afore mentioned paper by Petty (1994b) is classified the same way as the statistical 
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and empirical algorithms. It relies on simple analytical relations involving total cloud op­

tical depth which are computationally efficient but lack the rigor of full radiative transfer 

calculations and are still, therefore, susceptible to biases incurred as a result of incorrect 

microphysics. Through the use of polarization and scattering indices (described below), 

however, Petty's algorithm significantly reduces errors associated with modeling surface 

emission and, as such, should be considered as an improvement over the other algorithms. 

To overcome the difficulties faced by the first class of algorithms, there has been a shift 

towards more sophisticated algorithms which explicitly account for the effects of different 

microphysics in the last decade or so. Algorithms such as those by Kummerow and Giglio 

(l994a,b), Smith et al. (l994a,b) and Aonashi et al. (1996), for example, perform radia­

tive transfer calculations through explicitly defined profiles of cloud and precipitation to 

develop more complete ensembles of passive microwave brightness temperatures to better 

represent the variety of microphysical processes present on global scales. As we found 

in the previous chapter all passive microwave sensors are limited in the number of inde­

pendent pieces of information they provide with regards to cloud and precipitation profiles 

so these algorithms only partially resolve the problems inherent in the simpler ones, still 

suffering from non-uniqueness caused by the inability to adequately distinguish all profiles 

using passive microwave radiances alone. 

Since our focus has been the TRMM platform, it is logical to examine the GPROF algo­

rithm. Furthermore, as stated above, GPROF and similar algorithms by Smith et al. (1994b) 

and Haddad et al. (1997)1, use a Bayesian Monte Carlo (BMC) retrieval technique which 

explicitly accounts for the physical interactions between microwave radiation and realistic 

profiles of cloud and precipitation generated using a CRM. These algorithms are represen­

tative of the current "state-of-the-art" in passive microwave retrievals and will likely be 

used in future missions such as the EOS Aqua satellite or the proposed GPM. Also, its 

'The algorithm of Haddad et al. (1997) makes use of a combination of radar and passive microwave 
data and is not, therefore, strictly a passive microwave algorithm but it employs a very similar technique for 
inversion and deserves to be acknowledged in this class of retrieval. 



Chapter 3 GPROF Uncertainty 66 

Bayesian formulation allows for rigorous uncertainty analyses of all retrieved parameters. 

Finally, the TRMM data provide the most comprehensive set of tropical cloud and 

precipitation information available to date. As a result they have been used in a number of 

preliminary data assimilation studies (eg. Hou et al. (2000a,b) and Marecal and Mahfouf 

(2000» and will be used in estimating profiles of radiative and latent heating in Chapter 5. 

Rigorous uncertainty estimates in the GPROF products are, therefore, of critical importance 

to the data assimilation community as well as in establishing error bounds on estimates of 

radiative and latent heating profiles. 

Below, the underlying theoretical and practical considerations which form the basis of 

a comprehensive yet conceptually lucid technique for evaluating the overall uncertainty 

in the GPROF precipitation/cloud profile retrieval algorithm are presented. From these 

arguments, a method will be constructed to assess the accuracy of the GPROF retrieval 

scheme. Uncertainties associated with the individual elements of the retrieval process will 

be examined in detail as well as the way in which these components mix, through the 

retrieval process, to produce errors in the resulting precipitation and cloud profile estimates. 

3.2 The Goddard Profiling Algorithm 

The Goddard Profiling Algorithm (GPROF), outlined in Kummerow and Giglio (1994a) is 

performed in three steps. First, a large number of cloud profiles are simulated using the 

GCE CRM (for a description of the GCE model see Tao and Simpson (1993); Simpson and 

Tao (1993». These profiles are then used as input to a radiative transfer model and a set of 

simulated observations are computed for each TMl channel. 

All profiles and their corresponding simulated observations are then combined to form a 

very large database of scenes which the TRMM satellite may observe as it orbits the globe. 

The retrieval proceeds by assigning a weight to each profile in the database depending on 

how closely the modeled or simulated measurements match those observed by the satellite 
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at a given location. The final retrieved profile is a weighted sum of all the profiles in the 

database. This procedure is illustrated in the flow-chart in Figure 3.1. 

Forward Model 

Simulate a variety of cloud 
profiles and surface rainrates 

using the GCE CRM 

• 
Compute TMI brightness 

temperatures for each profile 
in the resulting a priori database 

Compute the probability that each profile 
in the database is the observed profile 

Weight each profile and sum them 
to obtain the retrieved profile 

End; Output Normalized 
Average Profile 

Figure 3.1: Flow chart representation of the 2A12 retrieval algorithm. 

Let x be a vector of all physical quantities to be retrieved including vertical profiles of 

cloud particles and precipitation and let Yo be a vector of satellite observations. The 'best 

estimate' of x for a given set of measurements is found by evaluating 

E(x) = J J ... J xpdf(x)dx (3.1) 

Following Olson et al. (1996), the probability density function, pdf (x), is proportional to 
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the probability that x is the true profile, Xtrue, given that y, the simulated observation vector 

corresponding to profile x, is equal to the observed Yo, 

pdf(x) ex P (x = Xtrue I y = Yo) (3.2) 

Employing Bayes' theorem, the probability P(x = Xtrue I y = Yo) can be re-cast as a 

product of the probability that the set of simulated observations, Ys, deviate from the TMI 

observations, Yo, by a given amount, Pos(y - Ys), and the a priori probability that x is the 

true cloud profile, Pa(x) = P(x = Xtrue). Provided the uncertainties in the observed and 

simulated measurements are Gaussian and uncorrelated, then 

(3.3) 

where 0 is the error covariance matrix of the observations and S is the error covariance 

matrix of the simulated observations which includes uncertainties due to both the cloud 

model and the radiative transfer model. The representation for the simulated observations, 

Ys(x), denotes all model calculations necessary to "map" a realization into the vector space 

of the observations. Substitution of Eqn. (3.3) into Eqn. (3.1) yields the following equation 

for the expected value of x 

where A is a normalization factor given by 

(3.5) 

In general, all retrieval algorithms which derive from the application of Bayes' theorem in 

this way can be referred to as "Bayesian". 
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One method of evaluating Eqn. (3.4) is that of Rodgers (1976,1990) in which Pa is re­

expressed in terms of the probability that x deviates from some initial guess Xi, Pi (X - Xi). 

One can then show that, provided Pi(x - Xi) is Gaussian, the maximum likelihood and 

minimum variance solutions are identically given by the profile, X, which minimizes the 

cost function 

where [I] is the error covariance matrix of the initial guess Xi (Daley, 1991). The minimum 

is then found using an iterative minimization approach such as the steepest descent method. 

This method is often referred to as "optimal estimation". 

In atmospheric applications, the vector of retrieved parameters can be extremely large 

(in cloud and rainfall profile retrievals, for example, a hundred or more variables is not 

uncommon and in operational data assimilation the vector can approach 107 variables). 

Under these circumstances, methods which solve Eqn. (3.4) through the minimization of 

a cost function can be impractical since they require an enormous amount of computation 

and suffer from the fact that numerous minima exist due to non-linearities in the problem. 

Finally, the assumption that Pi(x - Xi) is Gaussian may be suspect since the vector X is 

composed of hydrometeor water contents which generally follow a log-normal distribution 

Kedem et al. (1994). 

As a result a significantly different approach to the problem of determining the best­

estimate profile is adopted for the GPROF retrieval. This approach, still rooted in Bayes 

Theorem, utilizes a Monte Carlo integration scheme in which the integral in Eqn. (3.4) is 

approximated by a weighted summation over a large number of cloud profiles computed in 

advance using the GCE model. The surface precipitation rate, vertical cloud hydrometeor 
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profiles, surface wind speed, etc. are estimated by evaluating 

where 

A. = L e-~[Yo-Ys(Xj)f(o+S)-l[Yo-Ys(xj)l 
j 
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(3.7) 

(3.8) 

is a normalization constant. Eqn. (3.7) represents a series of equations for each parameter 

in x. After appropriate weights have been determined for each profile, all desired cloud 

parameters are estimated by computing the weighted sum. We refer to this approach as the 

Bayesian Monte Carlo (BMC) approach to the retrieval problem. 

Implicit in this method of inversion is the assumption that the cloud profile database 

represents, with some accuracy, the actual probability density function of clouds in nature. 

Under this assumption the a priori probability, Pa, is replaced by the number of occurances 

of the given cloud profile in the database. Determining the validity of this assumption is 

a complicated issue but clearly extremely important since it is the foundation upon which 

the retrieval is based. 

Until now no requirements have been made regarding the vector of observations, y. 

The output from the forward radiative transfer model and the instruments on the satellite is 

generally cast in the form of upwelling radiances or brightness temperatures at the top of 

the atmosphere. It is possible to use these T BS directly in the retrieval but such an approach 

suffers from the fact that T BS do not vary monotonically with rainrate and are complicated 

by the effects of surface emission and water vapor emission within the atmospheric col­

umn. In an effort to reduce these problems, the GPROF algorithm adopts the emission and 

scattering indices introduced by Petty and Katsaros (1990) and Petty (1994a) 

P - TBV - TBH 

TBV,Q - TBH,Q 
(3.9) 
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s PTBV,o + (1 - P)Tc - TBv (3.10) 

where Tc = 273K. TBv and TBH are the horizontally and vertically polarized brightness 

temperatures and TBv,o and TBH,o are the corresponding brightness temperatures in the ab­

sence of cloud or precipitation. In addition to effectively separating out the effects of emis­

sion, which dominates P, and scattering, which dominates S, P monotonically decreases 

from 1 to 0 as rainrate increases and the influence of surface emission and column water 

vapor are significantly reduced by the presence of the ratio. In determining the weights, 

GPROF uses emission indices for all four dual polarization TMI channels and scattering 

indices at 37 and 85 GHz since the effects of scattering are generally small at low fre­

quency. The uncertainty analysis which follows will assume this basis and the results will 

be compared to those obtained using raw T BS to quantify the differences in accuracy in 

using each method. 

3.3 Overall Uncertainty 

Rodgers (1976, 1990) and Marks and Rodgers (1993) have presented an elegant approach 

to the analysis of uncertainty associated with optimal estimation retrievals. As noted in the 

previous section, however, the method used here deviates substantially from that outlined 

by Rodgers and, as a result, an entirely different approach to the error analysis problem 

must be adopted to estimate the uncertainty associated with the GPROF product. Thacker 

(1989) demonstrates how the inverse of the Hessian matrix can be viewed as the covariance 

matrix provided a least-squares approach is used in the retrieval and Gaussian statistics have 

been assumed. The BMC algorithm, however, does not involve minimizing a cost function 

and does not assume Gaussian statistics so the Hessian does not provide a complete repre­

sentation of the uncertainty in the retrieved quantities. The complete forward model in a 
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BMC approach must be thought of as consisting of both the radiative transfer model and 

the cloud database itself. To characterize the overall uncertainty in the retrieved quantities 

one must consider the impact of uncertainties in both of these elements as well as the obser­

vations themselves. In this section we seek to develop such a characterization by returning 

to the definition of the solution E(x). 

Consider Eqn. (3.7) in the form 

E(x) = Lj Xj Wj 

"·W· ~J J 

(3.11) 

Ignoring the specific elements which go into the computation of the Wj , E(x) is composed 

of two distinct quantities, the profile vectors Xj and their weights, W j . Assuming the 

uncertainties associated with these quantities can be estimated, standard error combination 

theory2 can be used to show that the uncertainty in the product of profile Xj with it's weight 

Wj is 

(3.12) 

where 6xj Wj is the estimated error covariance of the 'measurements' Xj and W j . Similarly, 

following Section A.l, the uncertainty associated with the summation of j such products is 

jma",-l jma", 

L [(Wj 6Xj)2 + (Xj6Wj)2 + X j W j 6xj Wj] + L L 6jk (3.13) 
j j k=j+1 

where 6jk represents the error covariance of (Xj W j ) and (Xk W k ) and jmax is the total num­

ber of profiles in the summations of Eqn. (3.11). Finally, the uncertainty associated with 

2 Appendix A discusses standard methods for the estimation of the combined uncertainty associated with 
various combinations of variables. 
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the denominator of Eqn. (3.11) is 

jma:c-1 jma:c 
L (c5Wj)2 + L L c5WjWk (3.14) 
j j k=j+l 

where c5wj Wk is the error covariance of the weights Wj and Wk. 

Making use of the uncertainty in a quotient evaluated in Section A.3, the overall uncer­

tainty in E(x) is 

c5E(x) 
E(x) 

Lj [(Wjc5Xj)2 + (Xjc5Wj)2 + xjWjc5xjwj] + L;ma:c-l L{:j+l c5jk 

(LjXjWj )2 

(3.15) 

where the correlation in errors between the numerator and denominator is represented by 

c5nd · 

Although, Equation (3.15) is the most general expression of the uncertainty in E(x), it 

is complicated and difficult to apply in practice. In fact it is rendered completely useless 

if one is unable to estimate the somewhat abstract covariances needed. In light of these 

problems it is instructive to look at a special case of Eqn. (3.15) in which all uncertainties 

are assumed uncorrelated. In this case c5nd , c5xj Wj' c5wj Wk' and c5jk vanish yielding: 

c5E(x) 
-

E(x) 
(3.16) 

This result represents a first-order approximation to the overall uncertainty in E(x). 

Equation (3.16) demonstrates that the overall uncertainty in a BMC retrieval consists 
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of two factors. The first component, 

Lj (Xj 8Wj )2 + Lj (8Wj)2 

(LjXjWj )2 (Lj Wj )2 
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(3.17) 

derives from uncertainty in computing the weights assigned to each realization while the 

second 
Lj (Wj 8Xj)2 

(LjXjWj)2 
(3.18) 

accounts for the impact of the finite cloud database and the non-uniqueness of the con­

stituent realizations on the retrieval error. Eqn. (3.16), therefore, establishes a means of 

determining the dominant source of uncertainty in the retrieval as well as the value of the 

uncertainty itself. This error breakdown is depicted graphically in Figure 3.2. 

GPROF Error Breakdown 

Database 
Uncertainty 

8E(x) 
E(x) 

Weight Uncertainty 

Figure 3.2: Reconstruction of the retrieval error from it's two components, the uncertainty 
associated with calculating the weights and that due to the cloud database. 

Whether or not Eqn. (3.16) provides a reasonable estimate of the uncertainty in the 

retrieved profile is a point which requires careful consideration. Omitted from the math-
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ematical details above is the physics behind the creation of the cloud profiles themselves. 

It turns out that all profiles originate from results of only a handful of separate runs of the 

GeE model. Three dimensional cloud profiles are extracted at different times during each 

run. This inevitably results in the errors introduced within the cloud model being propa­

gated along in time from one profile to the next therefore introducing a correlation between 

the uncertainties in profiles taken from different times in the simulation. Also, since the 

profiles are spatially linked, i.e. the profile at horizontal grid point (x, y) shares bound­

aries with eight neighboring profiles, we expect correlations amongst the uncertainties of 

all neighboring cloud profiles extracted at a given time. In addition, for each profile a num­

ber of T B profiles are generated by varying the properties of the underlying surface. The 

uncertainties in these T B profiles must, therefore, also be correlated. 

At first these considerations seem somewhat discouraging. As we will see shortly, 

however, due to the nature of the retrieval itself, uncertainties associated with the cloud 

model are actually not really important to the accuracy of the retrieval. In preparing a 

cloud database, the issue of primary importance concerns how weB the database represents 

the distribution of clouds in nature. Whether or not the cloud model accurately reproduces 

the cloud profiles for the case being simulated is actually quite irrelevant as far as the 

retrieval is concerned. We merely require that it produce a variety of physically reasonable 

cloud structures, the distribution of which resembles the observed distribution of clouds in 

nature. As a result, it seems reasonable to neglect the uncertainty associated with the cloud 

model itself and assume that the covariance matrix S arises solely from errors associated 

with the radiative transfer model. Biases introduced as a result of incorrect representations 

of microphysics in the CRM may still exist, however, and such errors are accounted for in 

the formulation which is developed below. 

In summary, will assume that the uncertainties associated with the cloud profiles, Xj, 

are solely due to inadequacies in the database as a whole and neglect cloud model uncer-
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tainties. Similarly, we will assume that the uncertainties in the weights, Wj, are due to a 

combination of errors introduced in the simulated T BS by the radiative transfer model and 

errors introduced in the observations by the instrument itself. No uncertainty is introduced 

due to the cloud model itself at any point in the analyses which follow. 

3.4 Weight Uncertainty 

The preceding analysis was predicated on the assumption that we know, or at least have 

a means of estimating, the uncertainties in the Xj and their weights, the W j • Through 

comparison of Eqns. (3.7) and (3.11) we deduce that the weights, Wj, are given by 

(3.19) 

When expanded, it is clear that the term [Yo - Ys(Xj)]T (0 + S)-l [Yo - Ys(Xj)] results in 

the coupling of all observed and simulated 'measurements' (i.e. all elements of both Yo 

and Ys(Xj» through products and sums so that the uncertainties in all quantities inevitably 

combine to yield an uncertainty in W j • Also, if correlations exist amongst the uncertainties 

in these quantities, they must be taken into account when determining the overall uncer­

tainty in the Wj' Thus we again return to Appendix A and apply Eqn. (A.I) in its most 

general form. 

There are no uncertainties associated with the error covariance matrices, 0 and S, as 

they are themselves error estimates, but we expect uncertainties in all other variables in 

Eqn. (3.19). To apply Equation (A.I) we evaluate the derivatives of Wj with respect to 

each of these variables. Consider the first element of Yo, 
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Now, noting that, 

GPROF Uncertainty 

YOl -Ysl(Xj) 

Y02 - YS2 (Xj) 

where N is the total number of measurements, it is clear that, 

1 

a 0 a ([Yo - Ys(Xj)]) = 
YOl 

Note also that in general aE; = (~) T so that we have 

1 

1 0 

2 

o 

T 

o 

1 

o 

o 
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(3.20) 

(3.21) 

(3.22) 

(3.23) 
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Following similar arguments all derivatives of Wj can be evaluated. Defining Vi as 

o 
o 

o 

i.e. a unit vector in the ith direction, all required derivatives can be summarized by: 

- Wj x ( -~ [Yo - Ys(xj)f (0 + S)-1 Vi 

-~vr (0 + S)-l [Yo - Ys(Xj)]) 

(
1 T 1 

Wj x 2: [Yo - Ys(Xj)] (0 + S)- Vi 

+~ur (0 + SrI [Yo - YS(Xj)l) 

(3.24) 

(3.25) 

(3.26) 

Notice that the derivatives with respect to the simulated observations only differ by a sign 

from those with respect to the observations. 

Applying Eqn. (A.I) and making use of these derivatives, the (somewhat unsightly) 

uncertainty in a Wj is 

t ~ [[Yo - Ys(Xj)]T (0 + S)-1 Vi + Vr (0 + S)-1 [Yo - YS(Xj)lr x Oii 
i=1 

+ t ~ [[Yo - Ys(Xj)f (0 + srl Vi + vr (0 + S)-1 [Yo - Ys(Xj)]]
2 

x Sii 
i=1 
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N-1 N 1 
+ L L 4 ([Yo - Ys(xj)f (0 + 8)-1 Vi + vr (0 + 8)-1 [Yo - Ys(Xj)]) 

i=1 k=i+1 

x ([Yo - Ys(Xj)]T (0 + 8)-1 V k + Vr (0 + 8)-1 [Yo - Ys(Xj)]) x Oik 

N-1 N 1 
+ L L 4 ([Yo - Ys(xj)f (0 + 8)-1 Vi + vr (0 + 8)-1 [Yo - Ys(Xj)]) 

i=l k=i+1 
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where N is the total number of measurements and Oik and Sik represent the elements of 

the 0 and 8 covariance matrices, respectively. Contributions from the uncertainties in the 

observed and simulated measurements are represented by the first two tenns in Eqn. (3.27). 

The third and fourth tenns account for the existence of correlations in the uncertainties 

between observations and simulations, respectively. We have made the assumption that 

there are no correlations between measured and simulated quantities. This is almost certain 

to be a good assumption since no measurements of any kind (eg. radiosonde data, sea 

surface temperature (SST), etc.) from the scenes observed by the satellite ever come to be 

used in the generation of the cloud profile database due to the fact that they are generated 

in advance based on simulations of conditions observed in past field studies (eg. TOGA 

COARE). If such correlations did exist, a fifth tenn representing the cross-correlations 

between the uncertainties in the measured and the simulated observations would be present. 

Recombining these tenns, Eqn. (3.27) can be recast more simply as 

(3.28) 

Allowing for completely arbitrary 0 and 8 matrices, Eqn. (3.28) is in its simplest 

possible fonn. A significant reduction in computation time can be realized, however, if 

correlations in the errors between measurements or between simulated observations of dif-
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ferent channels are neglected. This represents the simplest case which is of any practical 

use but, in many cases, this may be the best we can do in making an uncertainty estimate 

since it can be extremely difficult in practice to determine the off-diagonal elements of the 

covariance matrices. Two dramatic simplifications arise if we set the off-diagonal elements 

of the covariance matrices to zero: 

1. The third and fourth terms of Equation (3.27) completely vanish since Oik and Sik 

both vanish for i # k. 

2. The matrix (0 + S)-l becomes diagonal eliminating all coupling of measurements 

or simulated observations for different channels. 

It is easy to show that the second point allows the two terms in the derivatives of Eqns. 

(3.25) and (3.26) combine to yield 

(3.29) 

(3.30) 

where 0 Sfrv = (Oii + Sii) -1 is the (i, i) element of the matrix (0 + S) -1. Substitution of 

these equations into Eqn. (A.l) yields: 

£5Wj 

W· J 

N ( )2 YO i - YSi I: (0.. S .. ) X (Oii + Sii) = 
i=l zz + zz 

(3.31) 

where di = YOi - Ysi • The uncertainty estimation has been reduced to the estimation of 

the diagonal elements of the covariance matrices and the calculation as a whole has been 

reduced to a single sum over the N channels in the system. 

Due to its relative simplicity, Eqn. (3.31) is convenient for estimating weight uncer­

tainties in situations where it is either too time-consuming to apply a more complete result 
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or simply impossible to estimate the off-diagonal elements of the covariance matrices with 

sufficient accuracy. For these reasons, the operational version of the GPROF algorithm 

ignores correlations between variables. The impact of this assumption on retrieved rainfall 

and its uncertainty will be investigated below. 

3.5 Database Uncertainty 

In this section a novel approach to estimating the uncertainty associated with the profiles, 

Xj, is introduced. A considerable effort has been made to develop an approach that is 

mathematically consistent with the development that has been outlined so far. 

Consider the physics of the retrieval process for a moment. We can think of each 

cloud in the database as a point in the multidimensional space defined by the variables in 

our observation system. Together the entire database forms a surface in this space. The 

algorithm proceeds by finding the point in this multidimensional space which most closely 

corresponds to the observations and assigns the largest weight to that profile. The weights 

then fall off exponentially in all directions around this point with the width of the resulting 

Gaussian defined by the model and observation uncertainties. All profiles are summed with 

the appropriate weights to produce the retrieved profile. 

Figure 3.3 graphically represents this process for a hypothetical cloud parameter, x. The 

histogram represents a hypothetical cloud profile database and the dashed curves represent 

weights assigned to parameters based on a particular set of measurements. Two distinct 

cases emerge. Figure 3.3(a) corresponds to the case where the cloud profiles in the database 

can be distinguished from one another, i.e. they each yield a unique set of measurements. In 

this case, x varies only moderately over the range of measurements for which the weights 

are significant. As a result the measurements primarily drive the retrieval toward the correct 

result as opposed to the shape of the cloud database. Figure 3.3(b) displays a scenario where 

two profiles with significantly different values of x yield the same measurement profile. 
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Figure 3.3: Graphical representation of retrieval process. 
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Under these circumstances, the shape of the cloud database is critical in determining the 

relative heights of the two weight curves which in tum drive the retrieval to the correct 

average profile. 

The main issue regarding the "completeness" of the cloud database is, therefore, one 

of non-uniqueness. Do pairs of cloud profiles exist which, despite having significantly 

different hydrometeor and/or rainrate profiles, yield measurement vectors which cannot be 

distinguished from one another within the uncertainty limits of the observing system and 

mapping function? If no such pairs exist one can assume that the retrieval will weight 

the correct profile more strongly than the others by virtue of their dissimilar measurement 
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signatures and the resulting profile will indeed be the best estimate from the database. If, 

on the other hand, a number of different profiles yield similar measurement vectors, the 

relative frequency with which they occur in the database will be critical in detennining 

how they are weighted to produce the retrieved profile. Finally, if the database does not 

contain a realization which matches the observations, many will be assigned very low but 

comparable weights and will, therefore, be indistinguishable from one another as far as the 

retrieval is concerned. 

To address the question of non-uniqueness we must define a criterion for deciding 

whether or not any pair of cloud profiles can be distinguished by the retrieval system. 

There are four requirements we should impose on this criterion in advance that will ensure 

its effectiveness in the analysis which follows: 

1. It should be as simple as possible so that the results of its application can be easily 

understood in tenns of the fundamental properties of the retrieval algorithm. 

2. It should naturally lead to a method for quantitatively estimating the uncertainty as­

sociated with the cloud profiles. 

3. Its origins should be rooted in the analysis that has been carried out so far to facil­

, itate direct comparison between the uncertainties associated with the cloud profile 

database and the other sources of error in the retrieval. 

4. It should be flexible enough to allow modifications such as the addition or removal 

of channels to be useful when considering the infonnation content of specific mea­

surements. 

Since the measurements enter into the retrieval through the exponential weights, a good 

candidate for a uniqueness criterion is the expression for the uncertainty in the weights. In 

particular Eqn. (3.31), which applies to the case where the uncertainties between different 

channels are uncorrelated, satisfies our requirements of simplicity and flexibility. Not only 
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does the expression lend itself well to the comparison of two profiles through the di , but it 

also provides a direct means of relating the difference in two cloud profiles to the combined 

uncertainty in the observation and computation systems. Replacing di ---t bYi = (yf - yr) 
where Yi represents the ith simulated measurement, the difference between any two cloud 

structures, X and Y, is defined as: 

,6,XY = (3.32) 

0:; is a natural threshold for determining the "likeness" of any two profiles as it represents 
J 

the combined uncertainty from both model and observations. If ,6, XY is less than O:i then 
J 

we must say that the resolution of the retrieval is not adequate to distinguish the cloud 

profiles X and Y. In that case their relative frequency in the cloud database becomes the 

sole factor determining their overall weight in the retrieval. 

It is now possible to naturally extend this result to develop a straight-forward method 

for analyzing the uncertainty in the database resulting from the non-uniqueness of its con­

stituent realizations. For a given database, 0:; is computed for each realization using the 
J 

observed Yo for the pixel being viewed. The threshold is defined to be the weighted-average 

of the oWi 
. Wj' 

~. W. (i.!±i) 
UJ J w· 

Threshold = J 

"·W· UJ J 

(3.33) 

to prevent realizations whose simulated measurements differ significantly from the ob­

servations (and thereby don't impact the retrieval) from skewing the average threshold. 

Defined in this way, the thresholds provide information regarding how well the database 

represents the set of observations. If a scene is well-represented in the database, the thresh­

old will be low. If, on the other hand, no realizations in the database resemble the scene 

being observed, a high threshold will result. In general the database will represent some 

scenes better than others so this calculation must be made for every retrieval independently 
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to accurately assess its uncertainty. 

The difference between each pair of realizations within the database, evaluated using 

Eqn. (3.32), is then compared to the threshold to determine which pairs are unique. The 

uncertainty in any parameter is given by the square root of its variance over all realizations 

from which it cannot be distinguished. In this way 8xj' the uncertainty in each realization, 

can be estimated. 

The procedure for estimating the uncertainty in the GPROF retrieval product can be 

summarized as follows: 

1. Determine threshold by estimating the average uncertainty 8;i for the database. 
J 

2. For every pair of profiles, evaluate the uniqueness criterion. 

3. For each profile determine the set of profiles from which it cannot be distinguished. 

4. Compute the uncertainty in each cloud profile vector. 

5. Combine these with the values of c5Wj already computed to yield an estimate in the 

overall uncertainty in the retrieved profile via Eqn. (3.16). 

3.6 Special Cases 

Before proceeding it is instructive to investigate some aspects of the error model. Consider 

its response to two special cases: 

• Extremely large database which 'perfectly' represents the cloud probability density 

function observed in nature . 

• Meager database consisting of only one cloud profile. 

These special cases represent the perfect and most incomplete database limits, respectively. 
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In the first case the accuracy and volume of measurements determines the accuracy of 

the retrieval since all clouds are represented somewhere within the database but uncertain­

ties associated with the instruments and the radiative transfer model still lead to errors in 

the weights assigned to each profile. Comparing Equations (3.32) and (3.33) we see that 

two profiles are indistinguishable within the accuracy limits of the retrieving system if 

~·W·6Wi 
Xy UJ J W 

~ < ~.W·J 
UJ J 

(3.34) 

As the number of channels used in the retrieval increases, Equations (3.31) and (3.32) pre­

dict that both sides of this equation will increase. By virtue of the fact that the profiles 

which more closely resemble the observations are weighted more significantly in the sum­

mation performed to obtain the threshold, the left-hand side of the equation will increase 

more slowly than the right-hand side. Therefore as more channels are added to the retrieval, 

the number of indistinguishable profiles must either decrease or stay the same depending 

on the information content of each channel. Thus in the case where the database perfectly 

represents nature the retrieval is dominated by the observations. 

Now suppose the database consists of only one cloud profile. According to Eqn. (3.7) 

the retrieval must choose this profile and assign it a weight of unity as a result of the 

normalization 

(3.35) 

Following the error model described above, the uncertainty associated with the cloud profile 

must vanish since there can be no indistinguishable profiles in the cloud database. The 

quality of the retrieval will be indicated through Eqn. (3.16) which reduces to 

5E(x) 

E(x) 
2 L d;(3ii (3.36) 
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where i runs over all channels used in the retrieval. In most cases the differences between 

the observed T BS and those corresponding to the single profile in the database, di , are likely 

to be large resulting in a large uncertainty which indicates that the retrieval is weak. In this 

case, therefore, the cloud database itself dominates the retrieval. 

In reality, we expect the actual cloud database to fall somewhere between these limits. 

The databases used in the GPROF retrieval consist of t'V 10,000 cloud profiles but it is diffi­

cult to determine whether or not such databases, which are produced from a finite number 

of realizations of a cloud resolving model, accurately represent the probability distribution 

of clouds in nature. The method outlined in Section 3.5 provides a means of assigning an 

uncertainty to the cloud cloud database itself through the determination of the ranges of 

cloud parameters that give rise to indistinguishable T B profiles. 

3.7 Covariance Matrix Estimation 

Contributions to the uncertainty in the radiative transfer calculations arise both from ap­

proximations used to simplify the radiative transfer equation as well as the effects of averag­

ing profiles over the satellite field of view (see Kummerow (1998) for a detailed discussion 

of the latter). These uncertainties, of course, cannot be neglected since the retrieval relies 

on the fact that the T B profiles provide an accurate representation of the cloud structures 

to detennine the weight assigned to each in Eqn. (3.7). Here, a new method for estimating 

observation and simulation error covariance matrices for emission-based retrievals of cloud 

and rainfall is introduced. These matrices represent the most important aspect of any BMC 

retrieval scheme but are among the more difficult quantities to determine. 

For the observations, we assume a diagonal error covariance matrix and estimate the 

diagonal elements directly from the TMI instrument specifications summarized in Kum­

merow et al. (1998). Thus the assumed error covariance assumed for the TB basis is com­

puted directly from the values presented there and the corresponding matrix in the emission 
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Table 3.1: "Observation" error covariance matrix for the emission and scattering basis. The 
first four diagonal elements are dimensionless while the last two are in K2. 

PlO P19 P37 P85 S37 S85 
PlO 0.0034 0.0 0.0 0.0 0.0 0.0 
P19 0.0 0.0024 0.0 0.0 0.0 0.0 
P37 0.0 0.0 0.0011 0.0 0.0 0.0 
P85 0.0 0.0 0.0 0.0057 0.0 0.0 
S37 0.0 0.0 0.0 0.0 20.5 0.0 
S85 0.0 0.0 0.0 0.0 0.0 103.8 

and scattering index basis, obtained using Eqn. (A. 1), is presented in Table 3.1. 

Contributions to the uncertainty in simulated T BS arise from approximations used to 

simplify the radiative transfer equation, models of the external sources and sinks of ra­

diation in the system, ego the surface emissivity model, and microphysical assumptions 

regarding particle size, shape, and composition. These uncertainties cannot be neglected 

since the algorithm (BMC or otherwise) relies on the fact that the T B profiles provide an 

accurate representation of the cloud structures. The method adopted here for estimating 

the simulation covariance matrix, S, combines direct comparisons with observations and a 

model intercomparison to address the issue of radiative transfer model uncertainty. 

In general, the variance in any set of observations, (Xl, X 2 , X 3 , .•• , XN), is defined as 

(3.37) 

where fi = Xi - Xtruth and € is the average error or bias in the observational set. If 

the observations are vector quantities, this concept is easily extended to define an error 

covariance matrix with elements given by 

S - 1 ~(x 7.X)( Y ;!!J) 
XY - N LJ fi - f fi - f 

i=l 

(3.38) 

where x and y run over all elements in the observation vector. We apply these definitions 
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in two distinct analyses of the error in the GPROF radiative transfer model. In both cases 

error statistics are compiled for T BS and are subsequently converted to the emission and 

scattering basis using Eqn. (A. 1 ). 

The first study consists of a direct comparison of modeled clear-sky T BS with observa­

tions from the TMI. Under clear-sky conditions, water vapor, SST, and surface wind speed 

dominate TMI T BS observed at the TOA so this comparison provides a direct estimate 

of the uncertainty associated with the surface emissivity model used in the algorithm. A 

cloud-screen based on both the VIRS and TMI instruments is used to isolate all clear-sky 

pixels in a TRMM orbit. For each clear pixel, the TOA T BS are simulated using a radiative 

transfer model initialized with SST, surface wind speed, and column water vapor estimates 

derived from the TMI observations3. These T BS are then compared with those observed by 

the TMI and an error covariance matrix for the surface emissivity model, SSFC, is com-

puted via Eqn. (3.38). 

To account for the uncertainty introduced by errors in the radiative transfer, including 

those associated with modeling the phase function, gaseous absorption, and depolarization 

of radiation as it interacts with rainfall and cloud particles, a model intercomparison is 

employed. T BS computed using the Eddington model are compared to those obtained using 

the more accurate polarized doubling and adding model of Evans and Stephens (1991) 

(hereafter referred to as the ES model) for more than 10,000 cloud profiles from the GCE 

CRM. Taking the output of the ES model to be "truth", Eqn. (3.38) is used to determine 

error covariance matrices for each of four rainrate bins, non-raining, 0 < R < 5 mmh-1, 

5 < R < 20 mmh-l, and R > 20 mmh- 1, to account for the fact that the radiative 

transfer uncertainty varies with rainrate. The resulting covariance matrices are labeled S~T' 

Characterization of the uncertainties in radiative transfer due to microphysical assumptions 

is left for the future studies but could potentially lead to larger S~T' 

3This data is obtained through the Remote Sensing Systems (RSS) website www.ssmi.com. For details of 
the algorithm see Wentz (1997) and Wentz et al. (2000). 
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Table 3.2: Simulation standard deviations, (J (in Kelvin), for each TMI channel. 
Rainrate Bin lOV lOH 19V 19H 21 V 37V 37H 85V 85H 
Non-raining .919 0.887 1.413 1.532 1.380 2.210 1.482 4.309 7.691 

R < 5 mmh-1 .930 1.143 1.775 5.236 1.398 2.058 1.566 4.700 22.49 
5 < R < 20 1.017 3.094 3.760 11.10 1.283 2.922 3.247 11.16 22.29 

R> 20 mmh-1 1.500 5.482 6.114 12.58 1.534 5.342 5.729 12.97 18.55 

The complete simulation error covariance is formed by combining the surface emissiv­

ity and radiative transfer components. The method adopted in this work is to weight the 

surface emissivity model error deduced from the clear-sky comparisons according to the 

strength of influence of the surface emission on the observed radiances. At high rainrate, 

for instance, the TMI signal is dominated by emission from the rain column and is largely 

insensitive to the surface emission. Conversely, at low rainrate the TMI signal is dominated 

by surface emission. To account for this we define 1'f to be the ratio of the magnitude of 

the channel j weighting function at the surface to its maximum value and define the overall 

simulation error covariance matrix at a rainrate R by 

SR R ,R 
= SRT + SSFC (3.39) 

where 

(3.40) 

Finally, the observation and simulation error covariance matrices are combined to yield 

the overall error covariance matrix associated with the retrieval, O+S. Standard deviations, 

(J, derived from the diagonal elements of the resulting matrices are summarized in Tables 

3.2 and 3.3 as a function of rainfall rate. The first of these tables provides results for 

each channel of the TMI instrument while the second highlights results applicable to the 

polarization and scattering index basis derived using the error combination formula in Eqn. 

(A.1). Correlations between the variables in each basis are presented in Figures 3.4 and 3.5 
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Table 3.3: Simulation standard deviations, (J (in Kelvin), for each variable in the emission 
and scattering index basis. 

ChannellRainrate Bin PI0 P19 P37 P85 S37 S85 
Non-raining 0.059 0.049 0.034 0.083 4.578 12.57 

R < 5 mmh- 1 0.059 0.049 0.039 0.139 6.299 24.77 
5 < R < 20 mmh-1 0.059 0.050 0.0376 0.154 12.13 24.20 

R> 20 mmh- 1 0.059 0.049 0.040 0.160 14.04 20.81 

in the form of correlation matrices defined as: 

(3.41) 

These results illustrate some of the advantages of using the emission and scattering 

indices rather than the T BS themselves. First, the standard deviations for emission and 

scattering indices are considerably less sensitive to rainrate than those for the T BS them­

selves. In addition, the use of polarization and scattering indices significantly decorrelates 

the errors in different channels compared to the T B basis. Since the operational version 

of the GPROF algorithm doesn't account for either the rainrate dependence or correlation 

effects in the error covariance matrices, this appears to be the best basis choice for that ap­

plication. The results do, however, suggest that correlations can be significant particularly 

between the 37 and 85 GHz channels for both the emission and scattering indices. Cor­

relations between S37 and S85, for example, reach approximately 50 percent for rainrates 

between 5 and 20 mmh-1• The effects of neglecting these correlations in the retrieval are 

investigated in Section 3.9.3. 

3.8 Procedure 

The procedure outlined above is applied in a series of distinct steps yielding as many inter­

mediate products as possible: 
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Figure 3.4: Correlation matrix for the 9 TMI channels. 
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1. First an error covariance matrix is estimated by combining the results from a model 

intercomparison with a direct clear-sky comparison of modeled and observed mea-

surements. 

2. Equation (3.32) is then evaluated for every pair of profiles. The resulting 'delta­

matrix' is then written to a file for use in the following steps. 

3. The threshold by which the differences in two profiles are judged to be statistically 

significant is determined by applying Eqn. (3.31) to a subset of cloud profiles in the 

database. At this step values of Wj and 5Wj are also computed and stored for later 

use. Recall that the enormous variability possible in the observed scenes requires 

that a separate threshold be calculated for each pixel individually. 
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Figure 3.5: As in Figure 3.4 but for the P and S basis. 
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4. Each element of the delta-matrix is compared with the threshold and a 'flag-matrix' 

is created which consists of a '1' if X and Yare indistinguishable and '0' if they are 

unique with respect to the given threshold. 

5. All pairs of non-unique profiles are gathered and a corresponding spread in all cloud 

parameters for each cloud profile is evaluated. This step, therefore, provides the c5xj. 

6. Finally, the Wj, c5Wj, Xj, and c5xj are combined using Eqn. (3.16) to determine the 

average fractional error in all of the retrieved cloud parameters. 

Any combination of T BS, indices derived from them, or information from other instru­

ments can be analyzed in this way. To change, add, or remove variables one only needs to 



Chapter 3 GPROF Uncertainty 94 

make an estimate of the appropriate error covariance matrix and modify the expressions for 

the weights and profile differences. 

3.9 Results 

3.9.1 A Single Pixel 

e 60 

~ 
'0 ... 
0-

40 

o 20 40 60 80 100 
Profile ID 

o 5 10 15 20 
!J.~ (Dimensionless) 

Figure 3.6: Example of a typical delta matrix. The intensity represents the combined emis­
sion and scattering index "difference" for any pair of cloud profiles. 

A small section of the delta-matrix in the emission and scattering index basis is shown 

in Figure 3.6 and a corresponding flag matrix showing all non-unique pairs of profiles 
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at a threshold of 1.9843 (corresponding to a single TRMM pixel on October 5, 1999) is 

presented in Figure 3.7. It is clear that, while many profiles exhibit very different T B 

signatures (characterized by high .6,.XY), a significant number of different cloud profiles 

have similar signatures and cannot be distinguished from one another given the present 

accuracy of the measurements and radiative transfer calculations. 
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Figure 3.7: Example of a typical flag matrix illustrating all non-unique profiles using the 
emission and scattering indices (indicated in white) for a single pixel on one TRMM orbit. 

Figure 3.8 illustrates how profile non-uniqueness translates into an uncertainty in the 

retrieval parameters. Shown are the spreads in T BS, surface rainrate, liquid and frozen 

precipitation for a single cloud profile from one evaluation of the error model using the 



Chapter 3 GPROF Uncertainty 96 

PS basis. A total of 87 profiles are found to be indistinguishable from the central profile 

(plotted in black) in this particular case. These profiles are assigned imperceptibly similar 

weights in the retrieval and their frequency in the cloud database determines their overall 

significance in the BMC algorithm. TMI observations alone, therefore, result in a signifi­

cant database contribution to the retrieval uncertainty. 
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Figure 3.8: Spreads in (a) TBs, (b) surface rainrate, (c) rainrate profile, and (d) 
precipitation-sized ice particle profile, for a single profile (denoted by the heavy black line) 
contributing to the GPROF retrieval. 

The utility of the error model is demonstrated in Fig. 3.9 in which retrieved profiles 

of rainfall and precipitating ice are presented along with associated profiles of uncertainty 

which account for both measurement errors and non-uniqueness. Immediately we are able 
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to determine that in this particular scene, liquid precipitation is retrieved very accurately 

(with uncertainties of approximately 20 %) between the surface and 4 km while frozen 

precipitation is retrieved with 40 percent accuracy between 4 and 8 km. Outside these 

regions the uncertainty rapidly increases in both estimates. These results demonstrate that 

the greatest accuracy is achieved where the cloud profile sensitivity of the TMI weighting 

functions for this rainrate, 5.15 mmh-1, is the largest (see Chapter 2). 
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Figure 3.9: Example of retrieved rainfall and precipitation-sized ice hydrometeors and the 
resulting error profile estimated using our error model for a single pixel of a TRMM orbit. 



Chapter 3 GPROF Uncertainty 98 

3.9.2 Uncertainty Statistics 

The preceding examples demonstrate the application of the model and results for a single 

pixel of one TRMM orbit. To determine the accuracy of the GPROF algorithm over the 

tropics as a whole, the model is applied to a more general sample of data from the TRMM 

mission. 

Figure 3.10 shows surface rainrate estimates for a single TRMM orbit. The middle 

and lower panels highlight the retrieved surface rainrate and corresponding uncertainty 

for a rain system in the south Atlantic. The power of the method outlined here is that it 

allows explicit uncertainty estimates to be made for each pixel individually. In this way 

we account for the fact that some scenes are better represented by the cloud database than 

others, providing quantitative error bounds critical in climate change, data assimilation, and 

model validation studies. 

Another powerful feature of this method is that it allows the overall uncertainty to be 

decomposed into separate cloud database and weight components. These components are 

plotted as a function of rainrate in Fig. 3.11 where statistics have been compiled for all rain­

ing pixels over ten TRMM orbits. Recall that the overall error is the sum of the squares of 

the individual components. The component associated with the database of cloud profiles 

dominates the uncertainty in retrieved surface rainrate below 4 mmh-1• Between 4 and 10 

mmh- 1 both components are approximately equal while modeling and measurement un­

certainties dominate the overall error in heavy rain. It must be noted, however, that neither 

component is negligible at any rainrate. This suggests that the database may be incomplete 

and cannot represent many of the cases being encountered by the satellite or, more likely, 

that a large number of profiles exist which are indistinguishable from one another through 

the TMI T BS alone. 

Figure 3.11 also summarizes the overall rainfall uncertainty as a function of rainrate 

averaged over ten TRMM orbits. Uncertainties range from 40 to 60 % for rainrates up to 
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Figure 3.10: Surface rainrate for a single TRMM orbit (top), a small raining region (mid­
dIe), and the corresponding uncertainty in the rainfall estimate for that region (bottom). 
Rainfall is presented in mmh-1 while errors are expressed in percent. 
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Figure 3.11: Cloud database and weight components to total uncertainty as a function of 
rainrate. 

20 mmh-1 but increase rapidly in heavier rain consistent of the findings of Chapter 2 where 

it was shown that the TMI instrument does not directly sense the surface in heavy rainfall. 

In applications such as precipitation data assimilation experiments where rigorous pixel­

by-pixel analyses of the TMI rainfall uncertainties are unavailable or too time-consuming, 

these results offer the potential for parameterizing uncertainty as a function of rainrate 

providing the most reliable estimates available to date. The third order polynomial 

6: = 0.534 - 0.0423R + 0.0031R2 
- 0.000033R3 (3.42) 
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for example, provides a reasonable representation for the fractional uncertainty in surface 

rainrate in terms of its value. Analytical expressions of this type could significantly reduce 

computational effort in an operational assimilation while providing reasonable estimates of 

the required uncertainties. Assuming uncertainties are random, for example, the average 

uncertainty over a GCM grid box can be obtained through averaging via 

6R z:.1'!raining 6Rj / Rj _ 1 

R < R > J Nraining 

(3.43) 

where Nraining is the total number of raining pixels in the grid box. 

The GPROF algorithm provides considerably more information than just surface rain­

rate. Vertical profiles of hydrometeors in four classes, cloud liquid droplets, raindrops, 

cloud ice particles, and precipitating ice particles at 14 atmospheric levels are also re-

trieved. Uncertainty statistics for each class at all model levels along with the breakdown 

of these errors into database and weight components are presented in Figures 3.12-3.15. 

Liquid precipitation is retrieved most accurately with uncertainties of 40-60 % over a 

wide range of water contents below 3.0km. This reflects the fact that the TMI exhibits good 

sensitivity to the strong emission signature of rainfall over the cold ocean background. Un­

certainties in cloud liquid water are somewhat higher particularly at low water contents 

where they typically exceed 80 %. Uncertainties in both liquid hydrometeor classes in­

crease rapidly at high water content values and above 3km. This can be partially explained 

by the fact that heavy rain is often accompanied by significant amounts of ice aloft which 

scatters radiation from below obscuring the emission signal from the rainfall. It may also 

be indicative of errors in the microphysical assumptions made in partitioning the liquid into 

cloud and precipitation categories in heavy rainfall. Under such conditions, large concen­

trations of hydrometeors collide, coalesce, and break-up and it is unclear how accurately 

microphysics schemes in current CRMs capture these rapidly varying size distributions. In 

addition, the assumption of spherical particles and particular DSDs in subsequent radiative 
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Figure 3.12: Uncertainties in cloud bin liquid water profile estimates and their correspond­
ing weight and database components as a function of height and retrieved liquid water 
content. The irregular vertical axis accounts for the fact that cloud model levels are not 
equally spaced. See Table B.l for model level heights. 

transfer calculations can compound the problem. Evidence that either or both sets of micro­

physical assumptions may be in error is provided by the fact that the weight component of 

the uncertainty dominates in these conditions. Large weight errors result when the retrieval 

is unable to find T B signatures in the database which match those observed by the TMI 

implying that some physics is missing from one of the two models that go into creating the 

a priori cloud profiles. 

Frozen hydrometeors are not retrieved as accurately as their liquid counterparts due to 

a combination of poor TMI sensitivity to ice and strong similarity between the scattering 
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Figure 3.13: As in Figure 3.12 but for profiles of cloud ice. 
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signatures of the two ice hydrometeor classes which can lead to large uncertainties from 

microphysical assumptions in both the cloud resolving and radiative transfer models. The 

most accurate ice retrievals are for precipitating ice particles near the top of the precipitating 

portion of the cloud profiles (rv 6-8 km in most cases) in moderate to light rainfall. Under 

these conditions, 37 and 85 GHz radiation emitted from the surface is scattered by the 

large precipitating ice particles but penetrates through the optically thin cloud ice above it 

resulting in good TMI sensitivity to the fonner and very poor sensitivity to the latter. The 

result is a high degree of non-uniqueness in the nearly transparent cloud ice aloft. At lower 

levels, errors in the ice cloud microphysics, specifically in the distinction between cloud 

and precipitating hydrometeor classes in the CRM and in the shape and DSD assumptions 
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in the radiative transfer modeling, lead to a large degree of uncertainty in the scattering 

component of the simulated T BS which translates, through increased weight errors, to large 

uncertainties in cloud ice retrievals at low levels as well. 
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Figure 3.14: As in Figure 3.12 but for profiles of rainfall. 
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A special case and one which is extremely important both for research and for the in­

habitants of Earth in general is that of strong convection, characterized by copious amounts 

of liquid precipitation at the surface, high concentrations of frozen precipitation and a sig­

nificant amount of liquid cloud and precipitation at intermediate levels, and thick capping 

ice cloud anvil that reaches up to the tropopause. Under these conditions, scattering occurs 

near cloud top masking the scattering signal from the precipitating ice as well as the emis­

sion signal from the liquid hydrometeors at lower levels. This scattering results in narrow 
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weighting functions which all peak above 3km limiting the amount of information from 

below these levels. While some relationship exists between ice scattering aloft and pre­

cipitation below it, this relationship is poorly constrained and the relative contributions of 

emission and scattering must be deduced from the CRM results placing enormous pressure 

on its microphysical assumptions. As a result, uncertainties in the weights assigned to the 

cloud profiles in these conditions are large leading to poor retrievals in all but the cloud ice 

category which benefits from its strong scattering signal giving rise to uncertainties of rv50 

percent. 

18.0 

10.0 

6.0 

E 
C 4.0 
;C 
.!:I' 
'" 3.0 ::c 

2.0 

1.0 

Precipitating Ice: Error 

0.0 0.05 0.1 0.15 0.2 0.25 0.3 
Precipitating Ice Water (gm"') 

140 

120 

100 

80 

60 

40 

20 

o 

g 
I-
0 
l-
I-

'" 

Precipitating Ice: Weight Component Precipitating Ice: Database Component 

E c 
..., 
;:: 

"" 'il 
::c 

18.0 140 18.0 

10.0 

6.0 

4.0 

3.0 

2.0 

1.0 

0.0 0.05 0.1 0.15 0.2 0.25 0.3 
Precipitating Ice Water (gm") 

120g 

100 ~ 
0:: 
o 
~ 

80 E 
o 
'-' 

60 ~ 
I-

'" . 40 ..., 
;:: 

"" 20 ~ 

o 

E c 
..., 
;:: 

"" 'il 
::c 

10.0 

6.0 

4.0 

3.0 

2.0 

1.0 

0.0 0.05 0.1 0.15 0.2 0.25 0.3 
Precipitating Ice Water (gm') 

Figure 3.15: As in Figure 3.12 but for profiles of precipitating ice. 
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Following current trends toward the assimilation of satellite data in NWP models, it 

is logical to expect that numerical weather prediction will eventually seek to incorporate 
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cloud profile information as well as surface rainfall. Looking ahead to such applications, 

similar parameterizations for the uncertainties in retrieved water contents at each model 

level can also be made as demonstrated by the examples in Figure 3.16. Coefficients for 
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Figure 3.16: Sample third order polynomial fits to GPROF retrieval error for all four hy­
drometeor classes. 

the fits of the form 

(3.44) 

where X is the water content in gm-3 are presented in Appendix B for all four hydrometeor 

classes at each model level. 
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3.9.3 The Effects of Correlations between Uncertainties 
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Figure 3.17: Uncertainty in retrieved rainrate using diagonal error covariance matrices (top) 
and a the full covariance matrices calculated in Section 3.7 (bottom). 

It was shown in Section 3.7 that correlations among the uncertainties in the simulated 

emission and scattering indices do exist particularly between the two scattering channels 

at 37 and 85 GHz. Although the GPROF algorithm ignores these correlations in the in­

terest of algorithm speed, it is instructive to investigate whether or not they significantly 

influence the retrieved rainfall and its uncertainty. Figure 3.17 shows that surface rain­

rate estimates change by less than 15 percent with the addition of correlations between 

the uncertainties and a comparison of error statistics from five TRMM orbits (Fig. 3.18) 

demonstrates that including these correlations does not significantly impact the overall un­

certainty in the retrieved rainrates. It appears, therefore, that the emission and scattering 

indices are sufficiently decoupled that neglecting correlations between their errors does not 

appreciably alter the rainfall information they bring into the retrieval. The only exception 
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Figure 3.18: Retrieval errors assuming a diagonal covariance matrix (solid) and those using 
the full covariance matrix (dotted). 

is in very heavy rainfall where the retrieval is dominated by scattering at 37 and 85 GHz. 

Under these conditions the strong coupling between these channels leads to larger model 

and measurement errors increasing the overall uncertainty in the retrieved rainrate. While 

this study focuses on retrievals over ocean, this result may have implications in TMI rainfall 

retrievals over land which are based entirely on scattering by ice. 

3.9.4 Comparison of Measurement Bases 

The BMC formulation is not restricted to any particular choice of measurement basis. In 

this section we compare the overall uncertainty in the estimated surface rainrate using three 



Chapter 3 

-25 -21 

GPROF Uncertainty 

-18 

Tb Basis 

-15 
Longitude 

Delta Tb Basis 

-11 -8 -5 

_21~ __ ~-r--=r-------------------------------------' 

-22 

-24 

-26 

-27 

.. 
-29 

-31 +--~ .----r--------,--------,.::=-'-'!!!'!!!-'--.-------,---.---
-25 -21 -16 

P 
-21 

-22 

-24 

-26 

-27 

-29 

-31 

-25 -21 -18 

-15 
Longitude 

and S Basis 

-15 
Longitude 

-11 -8 

~ . 

-11 -8 

-5 

-5 

109 

400 

300 

200 

100 

250 

200 

150 

100 

50 

100 

60 

60 

40 

20 

Figure 3.19: Uncertainty in retrieved rainrate using raw T BS (top), vertical minus horizontal 
T B differences (middle), and emission and scattering indices (bottom). 
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different bases: one based on emission and scattering indices (PS basis), another on raw 

brightness temperatures (TB basis), and the third on polarization differences, TBv - TBll 

(L~.TB basis) to quantify the differences in accuracy in using each method. Uncertainties 

in surface rainrate estimates using these three measurement bases are presented in Figures 

3.19 and 3.20. Generally the polarization and scattering indices lead to a factor of three 
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Figure 3.20: Comparison of retrieval uncertainty as a function of rainrate using raw TBs 
(solid), vertical minus horizontal T B differences (dotted), and emission and scattering in­
dices (dashed). 

decrease in retrieved rainrate uncertainties relative to the other two measurement bases al-

though the increase in accuracy can exceed a factor of 10 for individual pixels. These 

results are indicative of the fact that the T BS themselves are sensitive to errors in SST, sur-
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face wind speed, and column water vapor. While the Ll T B basis reduces this sensitivity by 

computing T B differences, the reduction to only four variables leads to a high degree of 

indistinguishability within the cloud database and demonstrates only slight improvement 

relative to the T B basis. The polarization and scattering indices, on the other hand, remove 

much of the sensitivity to errors in surface emission parameters by virtue of their definition 

as ratios while maintaining the majority of the information contained in the T B measure­

ments. As a result, the retrieval uncertainties are significantly suppressed in the PS basis. 

Fortunately, for reasons listed in Section 4a and in the appendix, the GPROF algorithm is 

currently cast in terms of these indices. 

3.10 Including Other TRMM Measurements in the GPROF Algorithm 

In principle any new information that may help to further distinguish between cloud profiles 

can be added to the retrieval provided a root-mean-square difference between observations 

and model simulated results can be defined. For the TRMM satellite information may be 

gleaned from the addition of VIRS T ES, PR reflectivities from different range gates, and 

even lightening information from the Lightening Imaging System (LIS). To incorporate 

the VIRS, PR and LIS information, one must respectively model the visible and infrared 

radiances, radar reflectivities as a function of range gate, and the lightening production 

associated with each profile and include rms differences between observed and modeled 

values of these quantities for each profile in Eqn. (3.7). 

Immediately one can envision similar modifications to the uncertainty equations de­

rived above to include new information in the error model as well. One merely modifies 

Eqn. (3.31) such that the sum runs over all data used in the retrieval making an appropri­

ate modification to the definitions of the relevant di . This is the principle upon which we 

base our method of estimating the information content of measurements. Adding (or re­

moving) information from estimates of the 8:;'i and the cloud structure differences, Ll XY , 
J 
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results in changes in the spreads in the cloud profile parameters. Detailed examination 

of these changes provides a means of determining which cloud profile parameters depend 

most strongly on any particular measurement. In this way the information content of each 

measurement as well as the information content of various combinations of measurements 

may be estimated. In the event that the removed measurement contains no information 

whatsoever identical flag-matrices and spreads will result. If, however, information is lost 

as a result of removing these channels, a larger fraction of indistinguishable profile pairs 

will emerge from the database. 

Since radars are more sensitive to vertical profiles of precipitation than radiometers, 

the addition of PR data offers the potential for reducing the cloud database spread relative 

to the TMI alone. Of the TRMM instrument complement, therefore, we anticipate PR 

reflectivities to offer the greatest potential for improving the GPROF rainfall estimates. 

Figures 3.21 and 3.22 present similar delta- and flag-matrices to those depicted in Figs. 3.6 

and 3.7 but with the addition of reflectivity profiles from the PR. Clearly the addition of 

reflectivity data helps to distinguish between similar profiles. The values in the delta-matrix 

increase by approximately a factor of four while the number of non-unique pairs of profiles 

evident in the flag-matrix is significantly reduced. 

Further evidence for the reduction in non-uniqueness through the use of radar data is 

presented in Figure 3.23 which shows the spread in cloud profile parameters for the pixel 

illustrated in Figure 3.8 when the information from the PS basis is combined with a simple 

column-integrated PR reflectivity in the retrieval. Only 6 profiles remain indistinguishable 

from the original and the values of the various parameters spanned by these profiles has 

been dramatically reduced. As one might expect, when the full reflectivity profile is used 

in conjunction with the PS basis, the spread is reduced even further as shown in Figure 

3.24. 

Figure 3.25 illustrates the impact of including both a column-integrated reflectivity and 
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Figure 3.21: As in Figure 3.6 but using both emission and scattering indices and aPR 
reflectivity profile to distinguish each profile. 

a full reflectivity profile on the overall retrieval error. The addition of a full radar reflec­

tivity profile results in a reduction of rv 15 % in the overall uncertainty while the column­

integrated reflectivity has a minimal effect. Figure 3.27 shows that, while the database 

component of the total error is reduced substantially in the presence of PR reflectivity data 

(Fig. 3.26), the weight component is significantly increased, suggesting that the algorithm 

is unable to find profiles which simultaneously reproduce the observed TMI T BS and PR 

reflectivity profile. This conclusion is supported by the fact that to make use of TMI and 

PR data simultaneously requires the assumption of extremely large variances (rv 20 dB) in 
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Figure 3.22: As in Figure 3.7 but for the case where both the emission and scattering indices 
and a PR reflectivity profile are used. 

the radar reflectivity data to avoid increasing the overall uncertainty in the retrieval. These 

enormous uncertainties are not physically reasonable but are necessary to artificially over­

come inconsistencies between the mappings of the active and passive data sets into the 

cloud and rainfall basis. Such mapping inconsistencies are caused by a magnification of 

any systematic errors in the cloud database, either from poor representation of microphysics 

in CRM simulations, incorrect assumptions in the radiative transfer or radar reflectivity cal­

culations such as DSD or beamfilling effects, or missing cloud types. Viltard et al. (2000), 

for example, show that better consistency is obtained between TMI and PR observations if 
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Figure 3.23: As in Figure 3.8 after including a column-integrated PR reflectivity profile. 

somewhat different DSDs are assumed in modeling each. 

At this time, under the assumption of unrealistically large variances in the radar data, we 

find that the addition of a reflectivity profile reduces the retrieval uncertainty at all rainrates 

as indicated by Fig. 3.25 but the assumed variance in the radar reflectivities must be "tuned" 

to optimize the compensating weight error increase and profile error decrease. With further 

investigation into the source of the differences in mapping reflectivities and radiances into 

rainrates (eg. studies like that conducted by Viltard et aI., 2000), this procedure offers the 

potential for significantly reducing the overall retrieval uncertainty in the future. 
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Figure 3.24: As in Figure 3.8 after including the corresponding PR reflectivity profile. 

3.11 The Issue of Database Completeness 

A question of significant interest to this type of retrieval concerns the completeness of the 

database. As was noted earlier, the shape of the probability density function of cloud pro­

files within the database is extremely important in the case where cloud profiles spanning 

a wide range of characteristics have non-negligible weights in the retrieval. From the pre­

ceding sensitivity studies we see that such a situation is indeed a possibility. The question 

arises, therefore, as to how sensitive the spreads in cloud profile parameters and their rep­

resentation of nature are to the database itself. Again, the error model outlined in previous 

sections can be readily applied to obtain at least a qualitative answer to this question. 
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Figure 3.25: Total error in retrieved surface rainrate without PR data (solid), with the addi­
tion of a full PR reflectivity profile (dotted), and with the addition of a column-integrated 
reflectivity (dashed). 

We are interested in determining how the uncertainty and its components vary with 

d b . a( error) B d fi . . ata ase SIze, a(dbase)' y e mtlOn 

8(error) = lim (errOr(dbaSe + <5(dbase)) - errOr(dbaSe)) 
8(dbase) 6(dbase)-+O <5(dbase) 

(3.45) 

which can be approximated as 

8(error) error(dbase + <5(dbase)) - error(dbase) 
8(dbase) ~ c5(dbase) 

(3.46) 
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Figure 3.26: As in Figure 3.25 but for the profile database component to the uncertainty. 

If the database were indeed complete or saturated, i.e. if it contained all possible scenes 

observed in nature, the uncertainties should be invariant with respect to the addition or 

removal of a small number of cloud profiles. 

Figure 3.28 shows that the uncertainty in GPROF surface rainfall estimates depends 

very strongly on the fraction of the database used. As profiles are removed from the es­

timation process, the database becomes less representative of nature and errors increase 

accordingly. In addition, while the uncertainties are least when the full database is used, 

the rate of change of uncertainty remains non-negligible suggesting that additional, more 

diverse cloud profiles, may reduce errors further. 
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Figure 3.27: As in Figure 3.25 but for the weight component to the uncertainty. 

Furthennore, weight and database contributions to the uncertainty, presented in Fig­

ures 3.29 and 3.30, suggest that the database is not saturated as far as either component 

is concerned. Recall that both the weight component, which is most representative of the 

uncertainties in the measurements and the radiative transfer modeling, and the database 

component, which can be loosely attributed to the non-uniqueness of profiles within the 

database, are minimized by the database that most accurately represents the scene being 

observed. Figures 3.29 and 3.30 show that, when profiles are removed from the database, 

its representation of nature is compromised leading to increases in both error components. 

While the rate of change of both components decreases as more profiles are added, it does 
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Figure 3.28: Uncertainty in retrieved surface rainrate as a function of database fraction 
used in the retrieval. The legend provides the percentage of the cloud database which gives 
rise to each curve. 

not vanish indicating that the database may be incomplete and will improve through the 

addition of other cloud profiles from CRM studies under more diverse conditions. 

3.12 Summary 

A rigorous method has been introduced to estimate the uncertainty in the GPROF stochas­

tic BMC retrieval of cloud and precipitation profiles from TMI observations. The model 

provides uncertainty estimates on a pixel-by-pixel basis accounting for the fact that the a 

priori database of realizations represents some scenes better than others. In addition, the 
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Figure 3.29: The component of the uncertainties plotted in Figure 3.28 owing to errors in 
measurement and radiative transfer modeling. 

uncertainty can be broken down into components which can be identified with errors in the 

estimation of the weights and those incurred as a result of uncertainties in the database. In 

this way, the uncertainties can be easily understood in terms of the fundamental proper­

ties of the retrieval algorithm. In principle this method can be adapted to any combination 

of observables to test the impact of adding or removing information on the accuracy of 

the retrieval. Application of this model in operational satellite retrieval algorithms offers 

the potential to supply much needed uncertainty estimates for model validation and data 

assimilation applications. 

We find that GPROF instantaneous surface rainrate estimates are typically accurate to 
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Figure 3.30: The component of the uncertainties plotted in Figure 3.28 owing to profile 
non-uniqueness and database bias errors. 

fifty percent for rainrates below 19 mmh- 1 but rapidly increase at higher rainrates. Cor­

responding profiles of precipitation have uncertainties ranging from 40 to 60 % below 3 

km increasing rapidly at higher levels where ice scattering obscures the emission signal 

of the rainfall. As a consequence of its weaker signal, cloud liquid water is retrieved less 

accurately with uncertainties exceeding 80 % at low water contents. Precipitating ice is 

retrieved with similar accuracy as rainfall except at very low and very high ice water con­

tents and at high altitude where its signal is overwhelmed by that of cloud ice. GPROF 

estimates of cloud ice, on the other hand, are very poor resulting from their weak scattering 

signal and possible uncertainties in the partitioning between ice hydrometeor categories in 
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the CRM. Cloud ice retrievals improve below the 100 % error level solely in instances of 

strong convection where significant concentrations exist near cloud top. Scattering by cloud 

ice, however, obscures the emission and scattering signals from the liquid and ice at lower 

levels resulting in less accurate retrievals of those quantities in such cases. These results 

provide baseline error estimates necessary in current efforts to assimilate surface rainfall 

data in NWP models and for attempts to assimilate profiles of cloud and precipitation in 

the future. 

We have shown that TMI-based retrievals of cloud ice particles suffer primarily from 

the fact that the their signal is weak and that they are difficult to distinguish from larger 

precipitating ice hydrometeors. The radiative impact of rain systems on the Earth's radia­

tion budget is, however, dominated by the particles near the cloud top since such systems 

are optically thick in the visible (solar) and infrared (terrestrial) regions of the spectrum. 

Uncertainties in the ice cloud information from the TMI, particularly at low ice water con­

tents, hinders our ability to determine the cloud radiative forcing and heating rates in rain 

complexes from the TRMM observations. On the other hand, rainfall dominates the la­

tent heating impact of a rain complex. Since liquid precipitation is retrieved much more 

accurately, TRMM is better suited to estimating latent heating than radiative heating. Accu­

rate estimates of latent heating, however, require the additional information regarding local 

vertical air motions which may be extremely difficult to obtain given the current array of 

TRMM sensors. In subsequent chapters, it will be our goal to make use of this uncertainty 

information to determine how accurately the radiative and latent heating impacts of rain 

systems can be estimated using the GPROF cloud and rainfall information and to estimate 

the relative importance of each in the tropical energy budget. 
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Three-Dimensional Cloud Structures from TRMM 

4.1 Precipitating Pixels 

With rigorous error estimates in hand, it is now possible to construct a three-dimensional 

picture of cloud and rainfall in the tropics with associated uncertainties using the GPROF 

product. The results will then serve as input to a broadband radiative transfer model to infer 

the cloudy-atmosphere components of the ERB complementing latent heating estimates 

derived from GPROF. For illustration purposes we focus on February of 1998 to facilitate 

comparison with the latent heating study of Tao et al. (2001) and all data will be mapped 

onto an even 0.25°xO.25° grid to aid in processing. Surface rainrates for February 1, 1998 

are presented in Figure 4.1. There are a number of wide-spread areas of precipitation which 

are well-suited for illustrating the GPROF data and its uncertainty. One such region in the 

southeastern Pacific, demarcated by the gray box in Figure 4.1, is highlighted in Figure 

4.2. The domain contains numerous areas of moderate to intense rainfall surrounded by 

widespread light rain and a substantial number of rain-free pixels which will be used in 

subsequent sections to illustrate the importance of cloud information in estimating radiative 

heating. 

Figures 4.3 and 4.4 show longitude-height cross-sections of each GPROF hydrometeor 

species and their uncertainties for the segment of 80 S latitude between the two gray dia­

monds on Figure 4.2. The value of the TRMM data and the preceding uncertainty analyses 

in computing radiative and latent heating profiles is evident. For each pixel vertical pro­

files of four hydrometeor classes covering cloud and precipitating distributions of liquid 

and frozen hydrometeors are retrieved providing a rich source of information for radiative 
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Figure 4.1: GPROF surface rainrate estimates from February 1, 1998. Results from the 
remainder of this chapter will focus on the region indicated by the gray box. 

heating calculations to follow. In addition, perturbations of these profiles according to their 

uncertainties can be used to establish error bounds on the results. 

It follows from the information content and error analysis studies that the TMI instru­

ment is not well suited for retrieving ice cloud information. This is clearly demonstrated 

in Figure 4.4 where the uncertainties in cloud ice water exceed 100 % in most cases. In 

addition, the GPROF retrieval provides no information regarding the presence of ice clouds 

in non-precipitating regions. The radiative effects of these clouds could be significant con­

sidering their large spatial extent and long lifetimes relative to precipitation events (Liou, 

1986) so we anticipate that the GPROF ice water content estimates will pose a significant 

source of uncertainty in the radiative transfer calculations that follow. Liquid cloud and 
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Figure 4.2: GPROF rainrates within the sample region indicated in Figure 4.1. Gray di­
amonds on the figure indicate the transect across which hydrometeor cross-sections and 
their errors are illustrated below. 

rainfall estimates, on the other hand, are accurate along this segment relative to those of 

ice, so estimates of latent heating and downwelling radiative fluxes are expected to be more 

accurately characterized by the GPROF data. 

4.2 Ice Cloud Properties from VIRS 

Among the primary objectives of this study, is the desire to obtain as complete a view of 

tropical radiative and latent heating as possible. To this end, information on cloud distribu­

tions outside the precipitating regions sampled by the GPROF algorithm is required. In this 

section, an algorithm based on visible and infrared radiances will be applied to data from 
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Figure 4.3: Longitude-height cross-sections of cloud liquid, cloud ice, precipitating liquid, 
and precipitating ice at 80 S from the GPROF algorithm. 

the VIRS instrument to detect ice clouds and provide a rough estimate of their optical prop­

erties. Such measurements are essential to accurately quantify both the outgoing longwave 

and reflected shortwave components of the radiation budget. In addition, they will provide 

a means for studying the relationship between the hydrological cycle and ERB through 

careful examination of the balance between latent heating and cloud radiative forcing. 

4.2.1 Retrieving Cirrus Optical Depth and Effective Radius in the VISIIR 

The importance of cirrus clouds in modulating atmospheric infrared (IR) heating (Roewe 

and Liou (1978), Stephens (1980), and Liou (1986» has lead to the development of nu­

merous diverse methods for the retrieval of their optical properties. As early as the 1960's 
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Figure 4.4: Uncertainties in the hydrometeor cross-sections presented in Figure 4.3. 
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aircraft measurements of cirrus IR emissivities were presented by Kuhn and Weikmann 

(1969) and Platt (1973) while Blau et al. (1966) introduced observations of ice cloud re-

flectance at visible and near-infrared (NIR) wavelengths. These observations prompted a 

number of theoretical investigations into the optical properties of cirrus clouds which form 

the foundation of many retrieval techniques still in use today. Hansen and Pollack (1970), 

for example, were among the first to employ theoretical calculations of the reflectance of 

ice clouds in an effort to describe the spectral variation observed by Blau et al. (1966) while 

Liou (1974) used radiative transfer calculations to illustrate the variation in cirrus cloud op-

tical properties between 11 and 12 Mm. Liou (1977) went on to develop an algorithm for 

the retrieval of the optical thickness, transmissivity and fractional cover of cirrus clouds 
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using multispectral observations at 8.7, 9.1,10.5, and 11.1 /-Lm. 

These early studies paved the way for satellite observations of cirrus clouds which con­

tinue today. One of the first studies aimed at deriving the optical properties of cirrus from 

space was that of Platt et al. (1980) who developed a technique to infer visible albedo, in­

frared emittance and visible optical depth using visible and infrared radiances from geosta­

tionary satellites in combination with ground-based lidar measurements. In a study based 

entirely on measurements in the IR window region, Inoue (1985) noted high variability in 

the optical properties of cirrus clouds through the 10 /-Lm atmospheric window. A method 

for inferring cirrus optical depth and effective radius based on this observation was later de­

veloped by Prabhakara et al. (1988) and applied to study global distributions of thin cirrus 

using the Nimbus-4 Infrared Interferometer Spectrometer (IRIS). Parol et al. (1991) present 

a similar technique applied to channels 4 and 5 (11 and 12 /-Lm) of the Advanced Very High 

Resolution Radiometer (AVHRR) flown on NOAA polar orbiting satellites while Arking 

and Childs (1985) develop a method for retrieving cirrus optical depth, cloud fraction, and a 

parameter related to the size, shape, and phase of its constituent particles from the AVHRR 

3.7 and 11 /-Lm channels. Since then numerous other cirrus studies have been conducted 

using AVHRR observations or GOES radiances of which Minnis et al. (1990), Stone et al. 

(1990), Nakajima and King (1990), Minnis et al. (1993), Ou et al. (1993), and Nakajima 

and Nakajima (1995) are examples. 

Current EOS satellite platforms carry the very modem Moderate-Resolution Imaging 

Spectroradiometer (MODIS) designed to measure cloud aerosol and water vapor using in­

formation from 36 spectral bands in the visible (VIS) and IR regions of the electromagnetic 

spectrum. King et al. (1992) provides an overview of the methods used in MODIS ice cloud 

retrievals each of which derive from those outlined above. Reflection of solar radiation at 

0.66, 1.65, and 2.13 /-Lm along with the combined reflection/emission channel at 3.75 /-Lm 

are used in determining optical properties of thick cirrus while a method based on a com-
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bination of radiances at 8.55, 11, and 12 jJ,m is employed to detect optically thin cirrus). 

While techniques based on passive observations have improved over the years, it is 

important to note that significant shortcomings remain. Of primary significance is the lack 

of information regarding cloud vertical structure in visible and infrared radiances alone. 

As a result, passive algorithms cannot account for the effects of multiple cloud layers and 

often have difficulty in determining cloud vertical placement, particularly when the clouds 

are optically thin. In addition, the resulting retrievals seldom resolve vertical variations in 

cloud microphysical structure. Research is ongoing to improve upon these methods both 

through the use of more diverse multispectral passive observations (Rolland et aI., 2000) 

as well as active measurements such as measurements of lidar backscatter and reflectivity 

measurements from cloud radars. Miller et al. (2000), for example, demonstrate that lidar­

and radar-derived cloud boundaries improve nighttime retrievals of thin cirrus by 30 % 

relative to methods which employ only passive observations. The present study, however, is 

constructed around the TRMM platform in the hopes of making simultaneous observations 

of latent and radiative heating so, while we acknowledge its potential deficiencies, a passive 

method based on IR radiances from VIRS will be adopted to infer ice cloud information. 

4.2.2 VIRS-based Retrieval of T and r e 

The VIRS radiometer on TRMM consists of five channels at VIS and IR wavelengths. The 

method introduced by Prabhakara et al. (1988) based on radiances at 10.8 and 12 jJ,m, both 

channels on the VIRS instrument, is well-suited for the purpose of identifying cirrus and 

obtaining the rough estimates of their optical properties under both daytime and nighttime 

conditions as are required for this study. 

At the root of the method is the fact that particles on the order of 25 jJ,m or smaller more 

efficiently scatter 12 jJ,m radiation relative to that at 10.8 jJ,m. As a result, small ice particles 

1 The addition of the 8.55 J-Lm channel, available from the MODIS instrument is viewed as an extension of 
the method ofPrabhakara et al. (1988). 
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exhibit stronger extinction resulting in cirrus which appear "colder" at 12 /.Lm than at 10.8 

/.Lm. This is illustrated in terms of mass scattering and extinction coefficients in Figure 
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Figure 4.5: Mass extinction (solid curves) and scattering coefficients (dashed curves) at 
10.8 and 12 /.Lm plotted as a function of radius for monodispersed spherical ice particles. 

4.5. For larger particles, the combination of radiation removed through diffraction around 

its edges with that blocked by its geometrical area results in a mass extinction coefficient 

proportional to twice the cross-sectional area of the particle, kext = 21lT2 / m, independent 

of the wavelength of radiation incident on the particle. 

Aircraft spectra shown in Figure 4.6 demonstrate the impact of the differences in ex­

tinction at IR wavelengths on radiances transmitted through three cirrus clouds of varying 

thickness. In the absence of cloud, T BS are approximately constant over the entire atmo-
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Figure 4.6: Emission spectra in the 8-12 f..Lm atmospheric window due to clear-sky, thin, 
moderate, and thick cirrus scenes (from Stephens (1994)). 

spheric window between 10 and 12.5 f..Lm resulting in a very small !:::..T B = TlO .S - T12 due to 

absorption in the wings of nearby water vapor bands. In the presence of cirrus, the radiation 

observed at the aircraft arises from a combination of emission from the atmosphere below 

the cloud and emission at from the cloud itself. The thicker the cloud, the more closely the 

observed brightness temperature to the cloud emitting temperature, T c' The effect of the 

extinction difference between 10.8 and 12 f..Lm is also evident since the T BS in the window 

region decrease with increasing wavelength. !:::..TB is the greatest for thin clouds where the 

extinction is sufficient to have an impact on the radiation emitted from below the cloud but 
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not so great as to mask it entirely. As cloud optical depth increases decreasing the visibility 

of the signal from lower atmosphere, !:::..TB correspondingly decreases until, for extremely 

thick clouds (not shown) it vanishes completely as TlO.s = T12 = Te. 

In order to quantify this effect for use in a retrieval, radiances observed by a satellite 

flying over over the cirrus must be modeled as a function of effective radius and optical 

depth. The model adopted here is based on a simplified two-layer atmosphere described 

in Stephens (1994) which has been recently implemented by Cooper (2001). Neglecting 

scattering which is generally small for cloud particles at IR frequencies2, the radiation 

received by the VIRS instrument is the sum of radiation emitted and reflected by the Earth's 

surface which is transmitted through the atmosphere and the integral of emission from the 

atmospheric column. In terms of optical depth, defined as dT = -(Jextdz, the upwelling 

radiance at TOA, [(0, f-L) is given by 

(4.1) 

where T* is the optical depth of the atmospheric column as a whole, or, equivalently, the 

coordinate of the surface in optical depth space. B( T) is the Planck function accounting 

for thermal radiation emitted at a level T in the atmosphere and f-L is the cosine of the 

satellite viewing angle. For simplicity, the atmosphere will be thought of as consisting of 

two layers, one representing the clear atmosphere below the cloud and the other containing 

a isothermal, homogeneous cloud. The errors introduced by such an approximation are 

likely to be less significant than those incurred as a result of a lack of information regarding 

cloud boundaries both in the retrieval and in modeling radiative heating in the next chapter. 

2This assumption requires some justification. Ice particles of radii 10-50 J.Lm which may be found in cirrus 
clouds scatter approximately as much IR radiation as they absorb. When an ensemble of these particles are 
modeled in a typical cirrus cloud, however, Stephens (1980) showed that they lead to a total IR reflectance of 
only about 5 % or 10 Wm- 1 . While this may be significant in some applications, it will be shown that errors 
introduced by a lack of information regarding vertical cloud placement will be far greater in the present study. 
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Following Stephens (1994), Equation (4.1) reduces to 

(4.2) 

where T a is the effective blackbody temperature of the atmosphere beneath the cloud, Te is 

the optical depth of the cloud which emits at a temperature T e, and e-rc/ J.L is the transmission 

through the cloud layer. Cast in this form it is easy to see that the observed T B is simply a 

weighted sum of the emitting temperatures of the atmosphere and cloud. 

The dependence on effective radius enters through the cloud optical depth, Te, which 

can be estimated provided one makes some assumption regarding particle shape. For sim­

plicity, we will assume spherical particles since we have no a priori reason to adopt any 

other particular shape. If we further assume the cloud consists of a monodispersed size 

distribution the cloud optical depth can be written as 

(4.3) 

where No is the number of particles per unit volume and llz is the geometric thickness of 

the cloud. In this study Qabs is approximated using the anomalous diffraction theory (ADT) 

first introduced by Van de Hulst (1982). While not exact, the method provides a close 

approximation to the overall structure of the extinction derived from Lorenz-Mie theory 

provided particles are large with respect to the incident radiation and have real refractive 

indices close to that of the ambient atmosphere (see, for example, Figure 32 of Van de 

Hulst (1982)). From Stephens (1994), the absorption efficiency in the ADT approximation 

is given by 

(4.4) 

where K, is the imaginary part of the refractive index and X - 27e is the size parame-

ter. Equations (4.2), (4.3), and (4.4) constitute a simple, complete model governing the 
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transmission of radiation through a cirrus cloud from which 10.8 and 12 /-tm brightness 

temperatures can be evaluated for any combination of r e and Te• 

Figure 4.7 illustrates the relationship between ~TB = T lO .8 - T12 and T 10.8 derived 

using this simple approximation to the radiative transfer equation assuming three different 

cloud emitting temperatures. The resulting curves resemble arches. The right foot of the 

arch corresponds to the limit of an optically transparent cloud which is transparent to the 

radiation emitted from the atmosphere below it. In this case ~TB arises solely from differ­

ences in the height at which the clear-sky weighting functions at 10.8 and 12 /-tm peak. The 
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Figure 4.7: 10.8 - 12 /-tm brightness temperature differences as a function of 10.8 /-tm TB 
for cirrus clouds containing spherical ice particles at 255 K (red), 225 K (green), and 195 
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left foot occurs in the presence of optically thick cloud where all radiation from below the 

cloud is obscured at both wavelengths providing an estimate of the emitting temperature of 

the optically thick cloud. Between these points the extinction difference gives rise to larger 

flTBs which are greatest for small particles and optical depths of ~ 1. 

These results are in good agreement with those presented in Prabhakara et al. (1988) 

and demonstrate the strong sensitivity of l:1TB to the assumption of cloud emitting temper­

ature. One can conceive of a method to estimate this temperature based, for example, on 

T BS of nearby thick cloud pixels but the added benefits of such an approach are question­

able considering the enormous uncertainties which would still be present. Instead, we will 

adopt the approach of merely assigning a cloud emitting temperature to all retrievals and 

attempt to establish bounds on the uncertainty this introduces by perturbing its value over 

a range one might reasonably expect to find in the tropics. The resulting optical property 

estimates will be rough, at best, and it is anticipated that their uncertainties will dominate 

the uncertainties in estimates of the radiative component of the diabatic heating. In addition 

the algorithm is not sensitive to particle size or optical depth in thick clouds (7 > 3) where 

both channels saturate and T 12 and T 10.8 converge to the cloud emitting temperature. In 

such cases a simple cloud identification is all that will be possible. Even so, it is impor­

tant to reiterate the significance of even a crude identification of cirrus when attempting to 

estimate atmospheric components of the ERB. This section may, therefore, be more aptly 

named "VIRS-based Retrieval of Thin Cirrus Optical Properties and Detection of Thick 

High Cloud" but that is simply too long for a section heading. 

It should be noted that methods making use of the VIRS 0.6 /-lm visible and 3.75 /-lm 

near IR channels such as that proposed by Nakajima and King (1990) would allow one 

to estimate the optical properties of thicker clouds during daylight hours. In this way im­

provements could be made to the ice cloud estimates from GPROF which would otherwise 

be impossible using the IR-only method we adopt since the cloud above rainfall is optically 
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extremely thick. Perhaps more importantly as far as radiative heating is concerned is the 
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Figure 4.8: Cloud classification scheme used in VIRS-based retrievals of ice cloud optical 
properties. In the standard retrieval, pixels with T lO.8 > Tclear,10.8 - 5 K are designated as 
clear-sky and those with T 10.8 > T cloud + 5 K as thick cloud. 

potential of screening out potential contamination from low altitude stratocumuli which can 

be mistaken for thin high cirrus in the IR-only algorithm but would appear much brighter 

in the visible channel allowing them to be flagged as unphysical. In the present study, how­

ever, we will take the position that the benefits of an algorithm applicable at any time of 
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day (eg. for studying diurnal variability) exceed the information lost by neglecting the 0.6 

p,m channel and its addition will be left as another exercise for the future. To summarize, 

then, the algorithm proceeds as follows: 

• To be consistent with the lower resolution TMI data and products, VIRS data is 

gridded to 0.25°xO.25° resolution also. 

• The algorithm proceeds by computing ,6. T B vs. T 10.8 relationships for a variety of 

optical depths and effective radii using the simple radiative transfer model outlined 

above and assumptions of clear-sky 10.8 and 12 p,m T BS and a cloud emitting tem­

perature. 

• The retrieval consists of looking up the observed values of T 10.8 and ,6. T B and inter­

polating to provide an estimate of T and reo 

• Data points which fall outside the domain of the arches are classified as thick cloud if 

T 10.8 falls below a certain threshold, clear-sky if T 10.8 greater than a second threshold, 

and as containing small or large particles otherwise. This classification is illustrated 

in Figure 4.8 along with definitions of the clear-sky and thick cloud cutoffs. 

4.2.3 Results 

Observed 10.8 and 12 p,m brightness temperatures and ,6.TB for the sample region selected 

earlier are presented on the left hand side of Figure 4.9. High cloud tops associated with the 

raining pixels shown in Figure 4.2 appear cold (TB rv 200K) at both 10.8 and 12 p,m while 

clear-sky pixels are characterized by brightness temperatures on the order of 290 K and 

,6.TB rv 2 K. Based on these observations, values of clear-sky emitting temperatures are 

set to Tclr ,1O.8 = 292K and Tclr ,12 = 290K in the retrieval. In addition, the cloud emitting 

temperature, Tc, is taken to be 225 K corresponding to a mean cloud height of 12 km in a 
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McClatchey standard tropical atmosphere (McClatchey et aI., 1972). The sensitivity of the 

retrieval to each of these assumptions will be investigated in detail below. 

Of primary importance to this study is the region of intermediate T BS in the transition 

from clear to raining conditions. Unlike the clear pixels identified above and raining pixels 

for which D..T B '" 0, brightness temperature differences in this intermediate region range 

from 5 to 8 K suggesting the presence of thin ice clouds by the arguments presented above. 

Estimates of re , T, and ice water path (IWP) for these pixels are shown in the plots on the 

right hand side of Figure 4.9. The IWP is derived from r e and T by assuming a modified 

gamma distribution 

(4.5) 

where Dn = r e/2 is the characteristic diameter and 1/ = 2 defines the width of the distribu­

tion (after Stephens et al. (1990». Recall that effective radius retrievals are possible only in 

those pixels which fall in the central block of Figure 4.8 while optical depths are estimated 

for all classifications except clear and thick cloud so estimates of the latter are not always 

accompanied by the former. Substantial regions of thin cirrus exist on the periphery of the 

rainfall particularly in regions between raining pixels. Generally the optical thickness and 

liquid water path of the ice clouds decreases with increasing distance from rainfall. The 

region between 175E and 175W longitude north of 5S, however, is an exception. Here the 

algorithm has detected a fairly substantial region of thin cirrus which is far removed from 

any rainfall. Clearly, the absence of such information would severely hinder attempts to 

characterize radiative heating in this region, emphasizing the rationale behind developing 

the ice cloud retrieval presented here. 

4.2.4 Sensitivity Studies 

Earlier it was noted that estimates of r e and IWP are extremely sensitive to assumed clear­

sky and cloud emitting temperatures which define the anchor points in the arch-shaped 
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Figure 4.9: VIRS channel 4 and 5 input and resulting effective radius and IWP estimates 
from the sample region on February 1, 1998. 
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relationship between tlTB and TlO .8• In order to establish error bounds on the results, the 

retrieval has been repeated using a large number of different sets of Te, Tclr,lO.8 and Tclr,12. 

Figure 4.10 presents the fraction of pixels which fall into each of the retrieval classifica-
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Figure 4.10: Approximate composition of output pixels from ice cloud retrievals with dif­
ferent cloud and clear-sky emitting temperatures. Assumptions used in each case are sum­
marized in Table 4.1. 

tions defined in Figure 4.8 for each of the seven sets of assumptions listed in Table 4.1. 

The statistics were accumulated over 16 orbits from February 1, 2001, representing some 

670,000 pixels in all. Cases 1-3 examine the sensitivity of the retrieval to cloud emitting 

temperature holding clear-sky brightness temperatures constant. The number of clear-sky 

pixels is the same for all three cases since it is solely a function of Tclr,lO.8 and the number 
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Table 4.1: Clear-sky and cloud emitting temperature characteristics (in K) for each sensi­
tivity study case presented in Figure 4.10. 

Case Tc Tclr,lO.8 Tclr,12 t1Tclr 
1 210.0 292.0 290.0 2.0 
2 225.0 292.0 290.0 2.0 
3 240.0 292.0 290.0 2.0 
4 225.0 290.0 288.0 2.0 
5 225.0 294.0 292.0 2.0 
6 225.0 294.0 290.0 4.0 
7 225.0 292.0 291.0 1.0 

of raining pixels is, likewise, invariant as they are designated using the GPROF rainfall 

product. Partitioning of the remaining pixels between the four intermediate classifications 

varies as a function of the cloud emitting temperature. Assuming Tc = 210 K, almost forty 

percent of the pixels are classified as having large particles allowing only optical depth to 

be retrieved. As Te increases, however, the number of pixels for which t1TB falls within 

the boundaries of the lowest arch increases resulting in a greater number of full retrievals. 

When Te is taken to be 255 K, the fraction of pixels for which retrievals of both r e and Te 

are possible is sixty percent greater than that for Tc = 210 K amounting to a difference of 

more than 6,000 pixels per orbit. At the same time the number of pixels classified only as 

containing thick cloud increases by approximately 4,000 over the same range of Te. 

The remaining cases investigate the impact of different assumptions regarding clear­

sky emitting temperatures at 10.8 and 12 /tm. Generally, reducing T lO .8 while holding 

t1TB ,clr fixed increases the number of pixels which are classified as clear-sky at the expense 

of the four cloud categories. Furthermore, increasing (decreasing) t1TB ,clr results in a 

significant increase (decrease) in the relative fraction of large radius to full-retrieval pixels, 

by increasing (decreasing) the t1TB s along the lowest retrieval arch. 

Quantitative assessment of the sensitivity of r e and IWP to the emitting temperatures 

is more challenging since pixels often completely change classification when Tc and Tclr 

are modified. It is, however, possible to gain some insight into the general dependencies 
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by focusing on the subset of pixels for which full r e and IWP retrievals were possible in 

all cases. This unavoidably restricts the values for which valid sensitivities can be deter­

mined but serves to illustrate some general features of the retrieval nonetheless. Figure 
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Figure 4.11: Expected range of uncertainty in reestimates resulting from required assump­
tions on Tclr and Te. 

4.11 illustrates the range of uncertainty introduced in retrievals of effective radius due to 

the arbitrary assumptions made regarding cloud and clear-sky emitting temperatures. The 

solid and dashed lines represent the mean departure from the baseline retrieval or r e (case 2 

in Table 4.1) while the bars denote the variance in these departures over all sets of assump­

tions tested. 

The sensitivity of retrievals of small particles exceeds 150 % but decreases with in-
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creasing particle size leveling off at 50 % for particles with radii greater than 10 /Jm. It 

is important to note that the decreasing trend of upper bound with increasing radius for 

r e > 15/Jm is an artifact of the fact that as the upper retrieval limit (25 /Jm) is approached, 

a corresponding limit is placed on the maximum perturbation which can be realized through 

any adjustment of the emitting temperatures. The upper error bound above 15 /Jm should, 

therefore, be regarded with caution. The lower bound established by the range of emit­

ting temperatures tested is approximately 50 % apparently independent of the particle size. 

Once again, however, it is important to note that a limit of 4 /Jm is imposed as a minimum 

in the retrievals, thereby limiting the range of perturbations below the retrieved value which 

can occur as a result of changing the emitting temperatures. Extrapolating the results to the 

less trustworthy regions, then, we conclude that uncertainties in re range from ±150 % at 

small effective radius to ±50 % for particles larger than 10 /-lm. 

Similar results demonstrating the spread in retrieved IWP over the range of emitting 

temperatures tested are shown in Figure 4.12. The estimates of IWP shown are less sen­

sitive to the initial assumptions than effective radius, ranging from +80/ - 50 % at the 

lowest retrievable IWP to a minimum of ± 20 % above 0.01 gm-2• This result is primarily 

due to the fact that full retrievals are only possible for thin clouds for which the range in 

retrieved T is very small. Again, these results do not account for pixels which are reclas­

sified as thick cloud or small/large effective radius retrievals as a result of changes to the 

emitting temperatures. The sensitivities indicated in Figure 4.12, therefore, represent only 

perturbations to IWP in cases where full retrievals were possible for all T e, Tclr,lO.S, and 

T clr,12' When employed in the radiative transfer calculations, each case study will be input 

in full allowing for both the sensitivity of r e and T to the emitting temperature assumptions 

highlighted above as well as the potential for pixel reclassification. The results should pro­

vide a complete characterization of the impact of Te and T clr on derived cirrus radiative 

properties. 



Chapter 4 

100 

50 

Q) 
u 
c 0 
Q) 
I-
Q) 

'+-:-= 
o 

-50 

3D Cloud Structures 145 

IWP Sensitivity to Telr and Te 

, '1' f -{-1-1-! -! -! -f -f -t -t -} -} -} + -]- -]--1 

0.002 0.004 0.006 0.008 0.010 0.012 
IWP (kgm-2) 

Figure 4.12: As in Figure 4.11 but for IWP. 

Finally, since IWP and r e are not quantitatively estimated for "thick cloud" pixels, their 

uncertainties are on the order of hundreds of percent. Note, however, that the radiative 

impact of thick clouds is not likely as sensitive to the specific values of IWP and r e as that 

of thin cirrus for which retrievals are possible. In such cases a threshold value of IWP must 

be assigned and a representative reassumed in the radiative transfer calculations but, since 

the cloud is optically thick, its vertical boundaries will dominate its impact in the ERE, as 

opposed to these parameters. 
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4.3 Liquid Clouds 

In addition to the well-documented impact of ice clouds on the ERB, there have been a 

number of studies which suggest that water clouds have a significant impact on the global 

climate through strong radiative interactions (eg. Paltridge (1980) and Somerville and Re­

mer (1984». Furthermore, using data from the Nimbus-7 and ERBE satellites, Stephens 

and Greenwald (1991) demonstrated that the response of the ERB to changes in cloud liq­

uid water can vary substantially from region to region resulting from "gross macrophysical 

differences" between the clouds in disparate locales. In light of these observations, some 

estimate of the location and magnitude of cloud liquid water is advantageous to this study. 

The impact of liquid clouds on the TOA IR is generally small (but not negligible) since 

they reside in the lowest levels of the atmosphere at warm temperatures relative to ice 

clouds and, therefore, have emission characteristics similar to the Earth's surface. These 

clouds are, however, highly reflective and strongly influence the SW components of the 

radiation budget, particularly in the absence of high cloud. To account for this, a method 

will be adopted to estimate cloud liquid water path from the passive microwave measure­

ments available from the TMI. The resulting LWP estimates and a climatologically based 

estimate of effective radius will be then be employed in concert with the precipitation and 

ice cloud information determined above, to deduce the radiative component of the tropical 

energy budget. 

4.3.1 Passive Microwave Techniques for Retrieving Liquid Water Path 

Up to now, the absence of spaceborne radars sensitive enough to detect cloud-sized particles 

coupled with the strong attenuation suffered by spaceborne lidars has lead researchers to 

develop methods for the retrieval of liquid cloud parameters which are based on passive 

sensors. Besides their application for retrieving ice clouds, visible and infrared radiances 

have also been used to infer liquid cloud properties. Han et al. (1998), for example, made 
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use of ISCCP and AVHRR data to study the relationship between cloud liquid water path, 

effective radius, and albedo in low-level clouds. Greenwald et al. (1999) detail and evaluate 

a LWP algorithm based on reflectance measurements at 0.6 and 3.9 j.J,m from the GOES-9 

imager and Kuji et al. (2000) present an algorithm for retrieving effective radius and liquid 

water path (LWP) in low-level marine clouds using AVHRR channels 1,3, and 4. 

For this study, however, we look to the well-established array of microwave-based re­

trievals which apply over a greater range of liquid water contents3 and allow greater sen­

sitivity to the liquid column as a whole rather than the regions near cloud top as is often 

the case with VISIIR methods. Algorithms making use of passive microwave observations 

to simultaneously retrieve water vapor, liquid water and/or surface properties such as wind 

speed and SST have been applied with some success for 30 years. Pioneering studies by 

Basharinov et al. (1969) and Akvilonova et al. (1973) introduced the idea of retrieving 

liquid cloud information from measurements made by the Russian Cosmos satellites. In 

the years which followed, numerous techniques and variations thereof have been proposed 

to estimate atmospheric water vapor based on microwave instruments aboard a variety of 

satellites. Grody (1976), for example, used radiances at 22 and 31 GHz from the Nimbus-E 

Microwave Spectrometer (NEMS) on the Nimbus-5 satellite to retrieve atmospheric liq­

uid water contents while Chang and Wilheit (1979) employed a similar technique with the 

addition of the 19 GHz channel to simultaneously retrieve surface wind speed and column­

integrated water vapor and liquid water. Later, Grody et al. (1980) extended these studies 

to the observations from the Scanning Microwave Spectrometer (SCAMS) flown on the 

Nimbus-6 satellite. 

Further developments in microwave liquid water retrievals accompanied the introduc­

tion of the Special Multichannel Microwave Radiometer (SMMR) in the mid-1980's. Those 

of Njoku and Swanson (1983) and Prabhakara et al. (1986), for example, used improved 

3Methods based on visible and infrared data often fail in regions of high liquid water content such as those 
containing drizzle. 
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empirical relationships to derive a variety of physical parameters such as SST, liquid water 

and surface wind speed from the Seasat and Nimbus-7 satellites, respectively. 

Since 1987, a series of DMSP spacecraft have carried the SSMII instrument, the pre­

decessor to the TMI, leading to the refinement of algorithms in existence at that time as 

well as spawning the development of new approaches which now make up the current gen­

eration of liquid water retrievals. These include the statistical methods of Alishouse et al. 

(1990) and Karstens et al. (1994) and semi-physical algorithms of Petty (1990), Greenwald 

et al. (1993), Liu and Curry (1993), and Lin et al. (1998a,b). In addition, Jung et al. (1998) 

have developed a technique to derive liquid water paths from three different combinations 

of the SSMII radiances using the comparatively new technique of neural networks. 

While the foundations upon which these algorithms are based are similar, namely phys­

ical differences in the emission and polarization signatures of liquid water droplets and the 

ocean background, we favor an approach rooted in a physical model to those based en­

tirely on empirical or statistical relationships. Both techniques have their advantages, but 

the physical approach facilitates the process of uncovering and understanding the primary 

sources of uncertainty in the results, an important requirement in this work. 

4.3.2 TMI-based LWP Retrieval 

The method adopted for retrieving non-precipitating liquid clouds parallels that of Green­

wald et al. (1993) which is based on both horizontally and vertically polarized brightness 

temperatures at 19 and 37 GHz. While originally applied to retrievals from the SSMII, 

this technique is readily adapted to the TMI as both instruments possess channels at the 

required frequencies. Since scattering by liquid clouds is negligible at microwave frequen­

cies, Equation (4.1) applies equally to the radiation observed by the TMI instrument at 19 

and 37 GHz4. The component of the radiation received at the satellite owing to the Earth's 

4Recall that our focus in this section is on liquid clouds, not precipitation for which scattering may be 
important. The GPROF algorithm supplies all profile information used in precipitating pixels. 
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surface is given by 

I ( r* , f.L) e -7* I It = [EP B ( r*) + RP I ( r* , -I f.L I)] e -7* I It (4.6) 

The first tenn accounts for radiation emitted from the surface while the second accounts for 

the reflection of downwelling radiation emitted from the atmosphere. The superscript P is 

used to denote the polarization dependence of the emissivity, E, and the surface reflection 

coefficient, R. Substituting Equation (4.6) into Equation (4.1) and re-casting the result in 

tenns of brightness temperature, T E, we obtain 

(4.7) 

Assuming that a majority of the emission at 19 and 37 GHz is due to water (liquid and 

vapor) in the lowest few kilometers of the atmosphere, we replace T(t) -+ Ts so that 

Equation (4.7) reduces to 

(4.8) 

where Tr = e-7 * lit is the transmissivity of the atmosphere and we have used the fact that, 

for an opaque medium, EP = 1 - RP • Thus, under the assumptions made above regarding 

scattering and emission, the radiation observed at a satellite depends only on surface tem­

perature and wind speed through the surface reflection coefficient and the amount of water, 

liquid and vapor, in the atmospheric column through the transmissivity. 

Figure 4.13 illustrates the polarization dependence of emission and reflection of mi­

crowave radiation by an oceanic surface neglecting the effects of salinity, surface sloping, 

and surface roughening. Based on the solid curves, the reflection of horizontally polarized 

radiation always exceeds that of vertically polarized light. At the TMI view angle, RII - RV 

are .28 and .19 at 19 and 37 GHz, respectively. While wind-induced sloping and roughen­

ing of the ocean's surface somewhat reduces this difference, it remains appreciable for all 
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Figure 4.13: Reflection coefficients, RV,H, at 19 and 37 GHz for reflection from a horizon­
tal, smooth air-pure water interface at 295 K. 

meteorological conditions under which we expect to find non-precipitating liquid clouds. 

The precept upon which the method is based is that absorption and emission by small wa­

ter molecules and quasi-spherical cloud droplets in the atmosphere reduces the degree of 

polarization of the surface radiation. In principle, given a reasonably accurate estimate of 

the surface reflection (eg. from Figure 4.13 corrected for the effects of surface sloping and 

roughening resulting from wind), one can estimate the amount of water vapor and liquid 

water present in the atmospheric column provided measurements of two independent po­

larizations at two different frequencies are available. Taking the transmissivity to be the 

product of the transmission through water vapor, liquid water, and molecular Oxygen, the 
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difference in Equation (4.8) evaluated at vertical and horizontal polarizations is 

AT - TV _ TH - T. [RH _ RV] Tr2 e-2(kIL+kwW)/J1. 
U B - B B - s ' 02 (4.9) 

where Land Ware the LWP and column water vapor (CWV), respectively, and the e-kxX 

represent the transmission through each. Tr02 denotes the transmission through molecular 

Oxygen which is assumed to obey 

(4.10) 

following Greenwald et al. (1993). Note that, according to Figure 4.13, .6.TB will always be 

positive. Measurements of Ti} and T~ at 19 and 37 GHz, therefore, provide two equations 

for the two unknowns, Land W, which can be solved yielding 

where 

W = C19 kl ,37 - C37kl ,19 

kl,37kw,19 - kw ,37kl,19 
(4. 11 a) 

(4.11b) 

(4.12) 

Greenwald et al. (1993) note that the assumption T(t) "-J Ts breaks down when TPW 

exceeds 25 kg m-2 as is often the case in the tropics. To account for the dependence of 

the effective level of emission on water vapor when W > 25 kg m-2, they introduce the 

following correction to Equation (4.12) 

H -
V H v( R~) TBI9 -T R19 - R19 = R19 1 - RV ~ TV _ T 

19 B,19 

(4.13) 
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where t = Ts + r Hw(l - Tx'I9)Tr02,19 and the factor e50kw,19//-L is included to prevent 

discontinuities in the vicinity of 25 kgm-1• Hw = 2.2 km is the water vapor scale height 

and r = -5.8 K km- I is an assumed lapse rate. Greenwald et al. (1993) also employ 

a correction to the 37 GHz channel to correct a constant offset observed in water vapor 

optical depth comparisons in that study. No such correction will be employed here since 

considerable effort has been made by the TRMM science team to ensure that the TMI 

radiances are well-calibrated. 

In order to determine the reflection coefficients RH,v some estimate of surface wind 

speed needs to be made. The algorithm of Goodberlet et al. (1989), used in Greenwald 

et al. (1993) is based on an empirical relation using the 22.235 GHz channel of the SSMII 

instrument. Since the corresponding channel on the TMI has been shifted off the center 

of the water vapor band to 21.3 GHz, the corresponding fit parameters are likely to be 

different. Rather than re-parameterize this relationship using co-located TMI and buoy 

data, we choose to revert back to the RSS product introduced in the previous chapter. This 

data provides high resolution (0.25°xO.25°) estimates of surface wind speeds derived from 

the TMI observations as well as an independent estimate of column water vapor which we 

will use to test the performance of the present algorithm. The emissivity, and hence the 

reflection coefficient, of the wind-roughened surface is then calculated based on the model 

developed by Petty (1990). Finally, cubic polynomial parameterizations of liquid water 

mass absorption coefficients at 19 and 37 GHz are adopted directly from Greenwald et al. 

(1993) based on their observation that, in a climatological sense, cloud temperature roughly 

follows SST as Tc ~ Ts - 6K. Table 4.2 summarizes the cubic polynomial coefficients for 

both Oxygen transmission from Equation (4.10) and liquid water absorption. 
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Table 4.2: Replica of Table 1 from Greenwald et al. (1993) which provides cubic fit pa­
rameters for Oxygen transmission and liquid water absorption coefficients at 19 and 37 
GHz. 

a b c d 

Tr02,19 0.978 -6.31x1O-5 7.75x1O 6 -1.00x1O-7 

Tr02,37 0.927 -8.53x1O-5 1.81x1O-5 -2.01x1O-7 

kL 19 0.0786 -2.30x1O-3 4.48x1O-5 -4.64x1O-7 , 
kL,37 0.267 -6.73x1O-3 9.75x1O-5 -7.24xl0-7 

4.3.3 Results 

Horizontally and vertically polarized brightness temperatures at 19 and 37 GHz are pre­

sented in Figure 4.14 for the sample region discussed above. The warm emission signature 

of the rainfall is clearly evident in all four channels. These data, in conjunction with esti­

mates of SST and surface wind speed from RSS, were used to retrieve the CWV and LWP 

shown in Figure 4.15. The panels on the left side display the RSS input data while those on 

the right summarize resulting CWV and LWP estimates. The upper right plot indicates re­

gions where the retrieval failed either due to the presence of a land or coastal region within 

the pixel (flagged with a 1) or a risk of contamination by precipitation (flagged with a 2). 

Neither CWV or LWP is plotted for these pixels. 

In general the retrieved column-integrated water vapor (CWV) agrees well both in 

structure and magnitude with those from RSS. With the exception of the northern most 

regions, differences in the two products range from 10-15 %. Areas of high LWP are ev­

ident adjacent to most precipitation pixels indicating either light rain or drizzle missed by 

GPROF or areas of thick non-precipitating stratocumulus clouds surrounding convective 

rainfall. In either case, the radiative implications of such clouds cannot be neglected partic­

ularly at solar wavelengths. In addition, there are numerous more expansive regions with 

LWP on the order of 0.06-0.08 kgm-2 throughout the domain. The significance of these 

regions as far as the tropical energy budget is concerned will be investigated in the next 

chapter. 
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Figure 4.14: TMI TBs at 19 and 35 GHz on February 1, 1998 used as input to the LWP 
retrieval. 

4.3.4 Sensitivity Studies 

Before characterizing uncertainties in the LWP estimates themselves, it is interesting to 

determine how well retrieved precipitable water from the present study compares with that 

made independently at RSS. As noted in the previous section, both CWV products exhibit 

similar patterns over the illustrated region and provide comparable magnitudes throughout 

the domain. Employing statistics from many TRMM orbits, Figure 4.16 directly compares 

the two estimates on a O.25°xO.25° pixel-by-pixel basis. The correlation between the prod­

ucts is quite good although a significant degree of scatter exists in the points which is to 

be expected given the lack of refinement to the Greenwald et al. (1993) method for the 



Chapter 4 3D Cloud Structures 155 

5 

o 
Q) -5 
"d 
;j 

...., -10 :;; 
(lj 

....:I -15 

-20 

SST (Wentz) 

- 25 +---,-----'-"""'"r-

160 166 173 180 -173-166-160 
Longitude 

298 300 302 304 306 
K 

CWV (Wentz) 
5 _ 

o 
Q) -5 

"d 

.3 -10 :;; 
(lj 

....:I -15 b. 

-20 ~_ 
I'" 

-25+-__ ~~ __ ~ __ ~ __ ~-4 

160 166 173 180 -173-166-160 
Longitude 

o 10 20 30 40 50 60 70 
kgm-2 

Vav (Wentz) 
5~------~------~---' 

o ~, 
Q) -5 
"d 

~ 

;j 
:::: -10 ...., 
(lj 

....:I -15 
'" 0'-'-

-20 

-25+---~~~-,--,r--T--4 

160 166 173 180 -173-166-160 
Longitude 

5 15 

5 

o 

Q) -5 
"d 

.3 -10 :;; 
(lj 

....:I -15 

-20 

-25 

LWP Retrieval Flag 

160 166 173 180 -173-166-160 
Longitude 

o 2 3 

5 

o 

Retrieved CWV 

-20 ~,-" 
-25 +---~-'-i' .=f,-' -.... -r-~--T--,.~-.'-"'-~'--I: 

160 166 173 180 ·-173-166-160 
Longitude 

o 10 20 30 40 50 60 70 
kgm-2 

Retrieved LWP 
5 ---"'_-:-00 

o 
Q) -5 

"d 
;j 

:::: -10 ...., 
(lj 

....:I -15 

-20 

-25 

160 166 173 180 -173-166-160 
Longitude 

0.00 0.05 0.10 0.15 0.20 0.25 0.30 
kgm-2 

Figure 4.15: LWP retrievals from the sample region on February 1, 1998. 
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Figure 4.16: Comparison of precipitable water estimates from the present study with those 
from Wentz et al at RSS. 

present study. In fact, the results are remarkably good given the the fact that the parame­

terization used in this study hasn't been significantly adjusted since its publication in 1993 

and considering the lack of any additional calibration employed here to account for differ­

ences between the TMI and SSMII instruments. Furthennore the small spatial scale over 

which the correlations hold as well as the lack of temporal averaging represents the most 

rigorous scale at which the data can be compared. These results are in no way intended to 

serve as a validation of the approach, for that the interested reader is referred to Greenwald 

et al. (1993). Instead they are presented here to suggest that the algorithm is behaving in a 

manner consistent with that used at RSS. 
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Establishing the sensitivity of the LWP estimates to the principal inputs is not nearly 

as difficult as it was in the ice cloud retrievals. First, the retrieval either works, yielding 

a physically acceptable estimate of liquid water path, or it fails. Furthermore, the rela­

tionship between LWP and the model inputs is more straight-forward than those between 

IWPlr e and the emitting temperatures assumed in the ice cloud retrieval. For a given set of 

brightness temperatures, increasing either SST or surface wind speed generally increases 

the estimated LWP while decreasing these quantities leads to a corresponding decrease 

in LWP. Retrievals were repeated perturbing SST and surface wind speed estimates by 
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Figure 4.17: Expected range of uncertainty in LWP estimates resulting from errors in as­
sumed SST and surface wind speed, Vav • 

amounts consistent with reasonable values for the uncertainties in the RSS data. Aver-
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Figure 4.18: Total uncertainty in LWP estimates as a function of LWP. 

age differences between original retrievals and LWP retrieved augmenting SST by 3K and 

doubling Vav (solid curve) and decreasing SST by 3K and halving Vav (dashed curves) are 

presented in Figure 4.17 establishing both upper and lower bounds under the assumption 

that the retrieval model itself is perfect. The bars represent the variance of the errors about 

their mean. The results suggest that the retrieved LWP is most sensitive to the external 

input at low LWP. Physically this seems reasonable since one expects the TMI brightness 

temperatures to be most sensitive to the atmosphere, and therefore least sensitive to the 

properties of the ocean surface, when large amounts of cloud liquid are present. Thus at 

high LWP, the contribution of surface emission to the radiation observed by the TMI is 
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much less than that due to the liquid water column itself reducing the impact of the SST 

and surface wind speed. 

Ultimately the uncertainty in retrieved LWP is a combination of sensitivity to SST and 

wind speed errors and some inherent model error. To account for the latter while main­

taining the trend observed in Figure 4.17, the mean of the uncertainty quoted in Greenwald 

et al. (1993) will be added to the component owing to uncertainties in SST and Vav deter­

mined above. This approach, while somewhat arbitrary, ensures that uncertainty estimates 

employed in the radiative transfer calculations are pessimistic and provide a maximum er­

ror bound on the results. Resulting uncertainties in LWP are presented in Figure 4.18. The 

solid and dotted lines represent the uncertainty in the LWP estimates which will be assumed 

in the radiative transfer calculations to follow while the error bars indicate the values one 

would obtain using the minimum and maximum uncertainty quoted in Greenwald et al. 

(1993),25 and 40 %, respectively. 

When employed in the ERE analysis, assumptions of both cloud height (base and top) 

as well as an effective particle size will need made since the retrieval presented above 

provides only a column-integrated LWP estimate. A detailed discussion of the radiative 

implications of these assumptions will be left for the next chapter. 

4.4 Summary 

Through the use of the GPROF algorithm and two semi-physical cloud property retrievals, 

the three-dimensional structure of clouds and precipitation between 40N and 40S have been 

determined. Clear-sky pixels can now be identified within the uncertainties imposed by the 

assumptions in the liquid and ice cloud retrievals. For the purposes of estimating radiative 

heating rates, a pixel will be considered clear if it is both classified as being devoid of high 

cloud in the VIRS retrieval and has a LWP of less than 0.05 kgm-2 according to the TMI 

retrieval. While this value may seem arbitrary, it represents the minimum uncertainty in 
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Figure 4.19: Pixel classification used to specify the locations of cloud and rainfall for future 
radiative transfer modeling. Flags are defined in Table 4.3. 

the retrieved LWP and is consistent with the lower limit of observed LWC in thin stratus 

(Cotton and Anthes, 1989). 

Collecting results from each retrieval, Figure 4.19 illustrates the composition of all pix­

els observed by TRMM in terms of the presence of precipitation, ice cloud, liquid cloud, 

Table 4.3: Description of flags used to identify the constituents in each pixel for future 
radiative transfer modeling. The last two columns indicate the fraction of pixels which fall 
into each category for the sample region and globally respectively. , 

Flag Type Comments Region Global 
1 Clear-sky TlO.s > T clr - 5 K; LWP < 0.05 kgm-2 0.255 0.167 
2 Ice cloud TlO.s < T clr - 5 K; LWP < 0.05 kgm-2 0.212 0.209 

(a) - thick cirrus 
(b) - re less than minimum in look-up table 
(c) - re exceeds maximum in look-up table 

(d) - full re and T retrieval 
3 Both clouds TlO.s < T clr - 5 K; LWP > 0.05 kgm-2 0.091 0.159 
4 Liquid cloud TlO .s > Tclr - 5 K; LWP > 0.05 kgm-2 0.060 0.035 
5 Raining pixel Pixels containing precipitation 0.163 0.110 
6 Land pixel Pixels containing land or coastal regions 0.018 0.320 



Chapter 4 3D Cloud Structures 161 

and land. Each flag is defined in Table 4.3 and the fraction of pixels in the sample region 

which fall into each category are presented. The importance of cloudy pixels is, again, 

evident as more than 30 % of the pixels in this region are classified as having one or both 

types of cloud with no precipitation while precipitating pixels account for less than 17 % of 

the cases. Furthermore, since this particular region was selected for its high density of pre­

cipitating pixels, its ratio of precipitating to non-precipitating cloudy pixels is significantly 

enhanced relative to the global average which we find to be 1 : 4, approximately half the 

17 : 30 ratio observed in the highlighted region. The significance of these findings for the 

ERB will be addressed in the next chapter where radiative and latent heating profiles will 

be derived accounting for all cloud and precipitation information furnished by the methods 

outlined thus far. 



Chapter 5 

Toward A Tropical Energy Budget from TRMM Rainfall 

Observations 

The preceding chapters have laid the groundwork necessary to address the primary ob­

jective of this dissertation: to derive tropic-wide estimates of radiative and latent heating. 

This chapter takes an in-depth look at the impact of TRMMs cloud and precipitation in­

formation on the exchange of radiant energy in the tropics. Monthly-mean maps of long­

and shortwave fluxes, heating rates, and cloud radiative forcing are derived for the month 

of February 1998. Uncertainties in the results are determined through an extensive set of 

sensitivity studies and some validation is attempted through the use of outgoing longwave 

radiation derived from the CERES and AVHRR instruments. In general, derived OLR esti­

mates agree with these products within the uncertainties associated with the cloud data used 

in this study. The chapter concludes by revisiting the concept of a complete, observation­

based energy budget derived from TRMM observations. Fluxes derived using the technique 

described here are averaged over the region observed by TRMM to evaluate the principal 

components in the short-term tropical energy budget. Due to as yet unresolved problems 

with the GPROF database, recent latent heating estimates made using the GPROF algorithm 

for the same period are left as future work. The interested reader is directed to Appendix 

C which presents recent latent heating estimates made using the GPROF algorithm for the 

same period and discusses the results in the context of previous studies. Instead, surface 

rainfall estimates are used to provide an estimate of the column-integrated latent heating to 

fill in some estimate of this form of energy exchange in the energy budget estimates. 
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5.1 Methodology 

Given an estimate of the three-dimensional structure of a tropical cloud system, it is a rela­

tively simple matter to deduce a corresponding three-dimensional view of radiative heating 

(RH) within it. For this purpose the independent pixel approximation (IPA) is invoked in 

which each 0.25°xO.25° pixel will be treated as radiatively isolated from its neighbors. This 

approximation neglects the the effects of horizontal inhomogeneity within the clouds but 

such information has already been lost as a result of the footprint size of the instruments 

and the retrieval methods employed in the previous chapter. Up- and downwelling broad­

band radiative fluxes are computed for each pixel within the cloud system making use of an 

implementation of the 6-two-stream approximation to the radiative transfer equation l over 

six shortwave and twelve longwave spectral bands. The model, known as BUGSRAD2, 

explicitly accounts for the effects of scattering, absorption and emission from the four 

hydrometeor classes retrieved by GPROF using the parameterization of cloud optical prop­

erties introduced in Stephens et al. (1990), and includes gaseous absorption through the 

correlated k-distribution method of Fu and Liou (1992). 

5.2 Clear-sky Pixels 

Of the six pixel classifications identified in Section 4.4, clear-sky pixels provide the sim­

plest set of radiative transfer calculations (excluding land pixels for which calculations are 

1 In the interest of space the reader is referred to Stephens and Webster (1979), Ritter and Geleyn (1992), 
and Stephens et al. (2001) for an overview of the 6-two-stream model equations and details of their derivation. 

2 A version of the BUGSRAD model is currently implemented in the CSU GeM. In the present study, 
however, some significant modifications have been made to facilitate its application to the GPROF output. 
First, two additional hydrometeor classes, corresponding to liquid and frozen precipitation, were added to 
allow the model to account for scattering and absorption in rainfall. To account for the large size of pre­
cipitating hydrometeors relative to the cloud particles for which the model was originally designed, a new 
parameterization of the asymmetry parameter was also required. For this purpose exponential fits were made 
to theoretical relationships between asymmetry parameter and effective radius assuming MP distributions of 
spherical particles. To improve accuracy, separate fits were made for re below and above 40 f.lm. Finally, 
size distributions assumed in the model were modified to reflect the assumptions used in the GeE CRM 
simulations used as input to the GPROF algorithm. 
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not made). Fluxes depend only on the reflection and emission properties of the underlying 

surface and profiles of temperature and humidity since all other atmospheric constituents 

are assumed invariant for simplicity. The albedo of the ocean surface is assumed to be 

0.12, consistent with the ERBE-derived mean cited in Harrison et al. (1990). Atmospheric 

temperature and humidity profiles are determined by scaling the mean tropical atmosphere 

of McClatchey et al. (1972) so that the SST and column-integrated water vapor match 

corresponding estimates from RSS data. Although BUGSRAD is capapble of modeling 

aerosols, their effects will be neglected in the present study as a result of a lack of accurate 

observations. 

5.2.1 Radiative Heating Profiles and Column Heating Rates 

Radiation provides an important mechanism for the exchange of energy between the com-

ponents of the Earth-atmosphere system through its interaction with molecules and small 

particles. Through the absorption of radiation impinging on it from above and below and 

emission of radiation towards the Earth's surface and to space, an atmospheric layer often 

experiences a net flux difference which results either in a heating, if positive, or cooling, if 

negative, within it. The heating rate of a volume of air is related to the vertical gradient of 

the net flux through the volume via 

dT 1 aPNET 
-

dt cpP az (5.1) 

where cp is the specific heat at constant pressure and p is density. The net flux is defined 

as the difference between the upwelling and downwelling flux through a level, p NET = 

pt - P+. 

SW and LW fluxes and heating rates derived from them are shown in Figure 5.1 for a 

cloud-free tropical pixel. The pixel, 15.125° Sand 179.87SO W, was viewed by TRMM 

at approximately noon, local time on February 1, 1998. With the solar insolation at TOA 
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Figure 5.1: Radiative fluxes and heating rates for a tropical clear-sky pixel. The symbols t 
and t refer to upwelling and downwelling fluxes, respectively. 

at a peak, the shortwave and longwave components of the total heating are approximately 

equal, leading to a slight net heating3 of 0.13 Kday-l when integrated over the column. 

The net heating profile exhibits moderate cooling in the middle and upper troposphere due 

to absorption and re-emission in the rotational bands of the water vapor spectrum and a 

heating in the stratosphere due to absorption of solar radiation by Ozone. At night, in 

the absence of solar radiation, this pixel cools at a rate of about 2 Kday-l due to strong 

water vapor emission in the lower atmosphere coupled with emission from CO2 in the 

3Note that net heating rate and net cloud radiative forcing (below) are defined as the sum of the LW and 
SW components and should not be confused with the definition of net flux earlier. 
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stratosphere, typical of the moist tropical atmosphere. 

5.2.2 Sensitivity Studies 

Although relatively few assumptions are required to model the tropical atmosphere, uncer­

tainties in these parameters can have a significant impact in the clear-sky components of 

the radiation budget. It is, therefore, important to quantify the sensitivity of the cloud-free 

fluxes and heating rates to errors in surface albedo, SST, CWV, and its vertical distribu­

tion as these, potentially variable, quantities primarily control the magnitude and vertical 

distribution of heating under cloud-free conditions. 

Figure 5.2 presents flux and heating rate profiles corresponding to ocean surface albedos 

of 0.09 and 0.15, characteristic of the range of variability observed in ERBE data (Harrison 

et aI., 1990). Despite a small increasing in the upwelling shortwave flux, small perturba­

tions to the reflection from the ocean surface have little impact on the clear-sky fluxes and 

heating rates in the tropical atmosphere. Still small, but perhaps not negligible, is the sen­

sitivity of the heating rates in this pixel to CWV and SST. Figure 5.3 displays heating rates 

derived assuming two extremes based on expected uncertainties in the RSS data product. 

The "Max." case corresponds to SST and CWV increased by 3 K and 30 %, respectively, 

while the "Min." case derives from each decreased by an equivalent amount. It should be 

noted that the low sensitivity to CWV is likely a result of the fact that the pixel chosen for 

illustration is nearly saturated. Small perturbations in CWV have a more substantial impact 

in drier regions. 

In addition to the column-integrated water vapor and temperature at the surface, we are 

required to specify a standard vertical distribution of relative humidity and temperature. 

While the McClatchey tropical atmosphere is almost certainly the most suitable choice 

given its foundations as the mean of years of soundings spanning the variety of condi­

tions expected in the tropical atmosphere, it is instructive to determine the sensitivity of 
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Figure 5,2: Sensitivity of clear-sky radiative fluxes and heating rates to ocean albedo. 

the derived heating rate profiles to modifications in the vertical distribution of humidity 

and temperature. Figure 5.4 provides an extreme case where a humidity and temperature 

profile characteristic of midlatitude winter conditions is employed in the radiative transfer 

calculations. Even though both are scaled to yield the same CWV, the vertical structure of 

the relative humidity and temperature profile has a profound impact on the resulting heat­

ing rate profile. Both the heating and cooling by water vapor at lower levels are reduced. 

The largest difference in the net cooling results from the reduction in LW cooling by water 

vapor in the middle and upper troposphere leading to an overall heating in the column of 

0.5 Kday-l. 
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Figure 5.3: Sensitivity of radiative flux and heating rate profiles to errors in CWV and SST 
under cloud-free conditions. 

Column-integrated heating rates for each of the cases presented above are presented in 

Table 5.1. With the exception of the assumed vertical profiles of temperature and humid-

ity, the column heating rates exhibit very weak sensitivities over the range of uncertainties 

expected in the RSS and ERBE-derived input. Furthermore, these error bounds likely rep­

resent a maximum as we anticipate the presence of clouds and precipitation to reduce the 

impact of these assumptions. As a result, cloud-free conditions will be used to establish the 

error bounds resulting from CWV, SST, and albedo in the analyses which follow. 
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Figure 5.4: Clear-sky radiative flux and heating rate profiles for a standard tropical (TRP) 
and midlatitude winter (MLW) profiles of temperature and relative humidity. 

5.3 Non-precipitating Cloudy Pixels 

Clouds modify the exchange of radiation between the surface, atmosphere, and space 

through reflection of solar and absorption and re-emission of LW radiation. It is through 

these processes that clouds, both precipitating and non-precipitating, impact the ERB es­

tablishing an intimate connection between the Earth's radiative equilibrium and the global 

hydrological cycle. We now seek to quantify the effects of clouds on radiative transfer in 

the tropical atmosphere and the accuracy with which the TRMM observations can provide 

such information. 
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Table 5.1: Sensitivities of clear-sky column heating to humidity, SST, and surface albedo. 
Heating is expressed in Kday-l. 

Case Modifications to Base Case SW Heating LWHeating Net Heating 
1 Baseline case (see text) 1.96 -1.83 0.13 
2 Albedo decreased by 25 % (to 0.09) 1.94 -1.83 0.11 
3 Albedo increased by 25 % (to 0.15) 1.98 -1.83 0.15 
4 MLW RH and T profile 1.39 -0.83 0.55 
5 SST and CWV decreased by 3 K and 33 % 1.83 -1.74 0.09 
6 SST and CWV increased by 3 K and 33 % 2.09 -1.90 0.19 

In addition to assuming surface and clear-sky atmospheric parameters, modeling clouds 

requires a number of additional quantities as input. The BUGSRAD model requires effec­

tive radius and cloud water content to be specified for all cloud layers. For thin cirrus, re 

and IWC information is supplied by the retrieval, provided the observed IR brightness tem­

peratures fall within the boundaries of the outer arches in Figure 4.7. For those retrievals 

falling outside these limits, an assumption on particle size is required. According to the the­

ory, pixels with large f:j.TB are predominantly composed of small particles. Effective radii 

for pixels which lie above the upper-most arch are, therefore, set equal to the minimum 

effective radius in the retrieval, r e = 5j.lm. All other failed r e retrievals can be classified as 

either thick cirrus or containing larger particles than the maximum assumed in generating 

the f:j.TB-TB relations. In such cases the effective radii are set based on climatological data 

from McFarquhar and Heymsfield (1998) and Francis et al. (1999) who present a variety of 

in situ observations of rein cirrus clouds. 

The primary drawback to passive-only approaches for deriving cirrus cloud optical 

properties is a lack of information regarding their vertical boundaries. As a result, a rep­

resentative geometry must be assumed for all cases deemed to have cloud. Based loosely 

on the observational evidence from McFarquhar and Heymsfield (1998) and Francis et al. 

(1999), cirrus clouds will be taken to be 1.5 km or three model layers thick. To be radia­

tively consistent with the IR-based retrieval, the cloud is placed at the model level asso­

ciated with the assumed emitting temperature, Te. A combination of the various retrieval 
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cases discussed in the previous chapter and various assumptions of cloud geometry will be 

used to assess the sensitivity of the broadband fluxes to these assumptions and to establish 

error bounds on the results. 

A disadvantage to using passive microwave data to infer LWP, is that cloud droplets 

are typically much smaller than the wavelength of the radiation used, so the measurements 

provide little information regarding particle size. As a result, a characteristic particle size 

must be assumed based on observations. In the present study, an effective radius of 11 

/-lm will be adopted consistent with the mean value presented in Table 1 of Miles et al. 

(2000), who compile a database of in situ observations of low-level stratiform clouds made 

between 1972 and 1995. These values are also consistent with those quoted in Han et al. 

(1998). Liquid cloud vertical boundaries will be assumed to be 0.5 and 1.5 km, also based 

on Miles et al. (2000). A rough estimate of the uncertainty owing to these assumptions 

may be derived from the standard deviation of the observations in the study since they 

represent a wide variety of cases, studied in different regions and at different times of the 

year. Based on the maximum and minimum values presented in the table, two extreme 

scenarios will be tested in addition to the mean conditions, one representing an extremely 

thin cloud between 0.5 and 1.0 km and the other a thick cloud between 1.0 km and 2.5 

km. Similarly, the sensitivity to particle size will be examined by performing calculations 

assuming radii of 6 /-lm and 17 /-lm, spanning the range of data presented in Miles et al. 

(2000). 

5.3.1 Radiative Heating Profiles 

Radiative fluxes and heating rate profiles at noon for a pixel containing a thin cirrus cloud 

are presented in Figure 5.5. The cloud, located between 11.5 and 13 km, introduces mod­

erate increases in both SW and LW heating rates near its base accompanied by a smaller 

increase in LW cooling at its top. Since these effects are localized in the vertical, the cloud 
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results in a column-integrated net heating of only 0.5 Kday-l. 
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Figure 5.5: As in Figure 5.1 but for a pixel containing a cirrus cloud with an IR optical 
depth of 0.4, located between 11.5 and 13 km. 

For the comparison purposes, RH profiles from a nearby pixel containing a cloud with 

an IR optical depth approximately three times as great, are presented in Figure 5.6. The 

enhancement of SW radiative heating in the presence of the thicker cloud is pronounced 

and leads to a column-integrated heating of more than 1 Kday-l. From the flux profiles, 

we see that the cloud enhances SW reflection to space as well as trapping a large fraction of 

the LW radiation emitted from below it. Thus, even the crude cirrus information provided 

by the VIRS-based ice cloud retrieval presents a substantial addition to the GPROF rainfall 

information and is critical for making quantitative estimates of the ERB. 
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Figure 5.6: As in Figure 5.5 for a cirrus cloud with an IR optical depth of 1.2. 

The effect of stratus clouds on atmospheric fluxes and heating rates is demonstrated 

through another example presented in Figure 5.7. The cloud, located between 1 and 2 km 

with an IR optical depth of approximately 15, impacts the exchange of both LW and SW 

radiation between the surface, atmosphere, and space. The enhancement of SW reflection 

to space, and corresponding reduction in that which reaches the surface is evident from 

the upper left plot. At the same time the cloud enhances downwelling LW radiation at the 

Earth's surface through increased atmospheric emission. Integrating over the atmospheric 

column, the competing effects of shortwave heating and longwave cooling result in a mod­

est column net heating of 0.31 Kday-l. 
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Figure 5.7: As in Figure 5.1 but for a pixel containing a 1 kIn stratus cloud with IR optical 
depth of 15 centered at 1.5 kIn. 

5.3.2 Cloud Forcing 

A useful quantity for quantifying the impact of clouds on the radiation budget is the cloud 

radiative forcing (CRF) defined as the difference in net flux (upwelling minus downwelling) 

between the clear-sky atmosphere and that which contains clouds, precipitating or other-

wise, 

C F NET FNET 
= clear - all-sky (5.2) 

The subscript all-sky refers to the cloudy atmosphere while clear denotes that from which 

all clouds and precipitation have been removed. In the shortwave, clouds tend to re-
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duce the amount of radiation incident at the Earth's surface through the reflection of so­

lar radiation back to space. This increases P:t/! .. ;ky resulting in a negative CRF at the 

top of the atmosphere. Shortwave CRF at the surface is also negative. At the surface 

pNET = pt - pJ.. = pJ..(a - 1), a negative quantity. Assuming that the presence of cloud 

doesn't modify the surface albedo, reducing pJ.. correspondingly reduces the CRF. 

In the longwave, clouds absorb radiation emitted from the surface and re-radiate it both 

to space and back towards the surface. Since the radiating temperature of a cloud is gener­

ally colder than that of the surface, clouds reduce the amount of radiation emitted to space 

resulting in a positive TOA CRF. Similarly, the increased emission of longwave radiation 

back to the Earth's surface reduces pNET relative to cloud-free conditions providing a 

positive SFC CRF. 

The relative magnitudes of the competing SW and LW effects and their spatial and tem­

poral variability is a crucial component modulating global atmospheric circulations. The 

strengths of these forcings, in tum, depend strongly on the optical properties of the cloud 

and its height in the atmosphere. A high, thin, cirrus cloud, for example, emits radiation 

at a much colder temperature than the Earth's surface while reflecting only a small frac­

tion of the solar radiation incident upon it. Such clouds, therefore, heat the atmosphere. 

Conversely, bright stratus clouds, which reside at much warmer temperatures, reflect con­

siderably more solar radiation than they trap at IR wavelengths, thereby serving to cool the 

planet. At noon, the thin and moderate cirrus cases presented in the preceding section, for 

example, result in TOA net (SW + LW) CRFs of 35 and 50 Wm-2, respectively, whereas 

the highly reflective stratus cloud results in a net CRF of -403. Wm-2 • 

Figure 5.8 presents TOA cloud radiative forcing for all pixels designated as precipitation­

free by GPROF over small section of a TRMM orbit on February 1, 1998. Apart from the 

clear-sky regions for which CRF is, by definition, zero, there are a substantial number of 

radiatively significant, non-precipitating cloudy pixels. The presence of many pixels with 



Chapter 5 

5 

0 

-5 

-10 

-15 

-20 

-25 

160 166 

Tropical Energy Budget 

5 

0 

-5 

-10 

-15 

-20 

-25 

160 166 

TOA SW eRF 

173 180 -173 ~166 ~160 

Longitude 

TOA Net eRF 

o 

-200 

-400 

-600 

, 
E 
'" 

173 180 -173 - 166 -160 
Longitude 

TOA LW eRF 
o 5~---------------------' 

o 
, -200 

-5 

" or "g 
r -400 ~ 5- 10 

..'l 
-15 

-600 
-20 

~25 

160 166 173 180 -173 ~ 166 -160 
Longitude 

176 

150 

100~ 

~ 
. 50 

o 

Figure 5.8: LW, SW, and net cloud radiative forcing at the TOA for a small section of orbit. 

high SW CRF and comparatively low LW CRF in the southwestern comer of the orbit, 

suggests the presence of highly reflective liquid clouds at low-levels in the atmosphere. 

Conversely the signature of cold-topped thin cirrus is clearly evident over a substantial 

fraction of the northeastern part, most likely associated with convective precipitation cen­

tered at 80 Sand 170 0 W. CRF at the Earth's surface for the same period is displayed in 

Figure 5.9. At the surface, the impact of thin cirrus is minimal due to a combination of wa­

ter vapor which masks their small enhancement to the downwelling LW radiation and their 

low albedos relative to low clouds. On the other hand, more reflective thicker cirrus and 

stratus clouds surrounding the large precipitating regions give rise to shortwave forcings on 

the order of -400 Wm-2 • Finally, warm stratus clouds have the additional effect of increas-
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ing atmospheric emission to the surface, resulting in a surface LW forcing of between 60 

and 80 Wm-2 in the southwestern comer of the orbit. 

5.3.3 Column Heating 

By modifying the net flux change through the atmosphere, clouds also influence the rate at 

which it heats or cools through the absorption or emission of radiation. By reducing the 

amount of radiation emitted to space, for example, cirrus clouds reduce LW cooling while 

slightly increasing SW heating by absorbing a small amount of solar radiation. The pres­

ence of liquid clouds, on the other hand, increases LW cooling through enhanced emission 

but also increases SW heating through a combination of absorption and enhanced reflection 
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Figure 5.10: As in Figure 5.8 but for column-integrated SW, LW, and Net radiative heating. 

of SW radiation back to space effectively doubling the path length through the water vapor 

above them. These effects are highlighted in Figure 5.10 which shows maps of column 

heating. Recall that, at this time of day, a typical clear-sky pixel exhibits a SW heating 

of 1.96 Kday-l while cooling at a rate of 1.83 Kday-l through thermal emission, result­

ing in a net heating of a tenth of a degree per day (Table 5.1). Regions of reduced LW 

cooling associated with cirrus dominate the central and northeastern sections of the swath 

surrounding the precipitation producing stronger net heating within the atmospheric col­

umn. Evidence of liquid clouds is less conclusive but regions of enhanced LW cooling and 

SW heating (relative to the clear-sky values) are evident surrounding precipitation between 

100 and 16° S. When summed, however, these effects cancel for the most part resulting in 
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no appreciable net heating or cooling. 

5.3.4 Sensitivity Studies 

In order to establish error bounds on these estimates of CRF and radiative heating, it is 

important to investigate their sensitivities to the required assumptions. Even though they 

are designed primarily as error analyses, these sensitivity studies also provide valuable in­

formation toward determining the sensitivity of the ERB to both natural and anthropogenic 

climate perturbations. For example, the impact of decreasing particle radii while holding 

LWP fixed is akin to modeling the indirect radiative forcing of increased aerosol concentra­

tions. It has been speculated that such increases may increase available cloud condensation 

nuclei (CCN) thereby increasing their particle concentration while decreasing their mean 

particle size (see, for example, Seinfeld and Pandis (1998». Alternatively, the effects of 

variable cloud height illustrate the response of our model to variations such as those pro­

posed by Cess et al. (2001) to explain the observed increase in the ratio of SW to LW CRF 

during the 1998 EI Nino. It is easy to see how the distribution and optical properties of ice 

cloud, liquid cloud, and precipitation and coincident radiative flux data provided here might 

be used to provide observational evidence to test these and other atmospheric phenomena 

in the future. 

Figures 5.11 and 5.12 demonstrate the impact of cirrus cloud height on flux profiles and 

heating rates derived using the BUGSRAD model. Each of the cirrus clouds described in 

Section 5.3.1 have been modeled and the results derive from varying the assumed emitting 

temperature in the ice cloud retrieval between 210 and 240 K. The height of a cirrus cloud 

has little impact on its SW reflective and absorptive properties so the vertical placement 

of the cloud changes the altitude at which SW heating occurs but does not substantially 

affect its magnitude. LW fluxes and heating rates, however, are extremely sensitive to the 

temperature difference between the cloud and the underlying surface. As a result, both 
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Figure 5.11: Sensitivity of radiative fluxes and heating rates to assumed cloud emitting 
temperature for thin cirrus case. 

the magnitude and the vertical distribution of LW heating vary substantially as a function 

of the assumed cirrus cloud emitting temperature. The higher the cloud, the stronger the 

heating at cloud base. Peak LW heating in a thin cirrus cloud at 240 K is -1 Kday-l while 

the same cloud placed at 210 K gives rise to a peak heating of 4 Kday-l. The thicker ice 

clouds depicted in Figure 5.12 exhibit similar sensitivity to height but at larger magnitudes. 

In addition, the lower two clouds exhibit some LW cooling at cloud top which decreases 

with decreasing cloud temperature. 

Unlike high clouds for whom vertical placement largely governs their impact on atmo­

spheric heating profiles, low liquid clouds are most sensitive to assumptions which affect 
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Figure 5.12: As in Figure 5.11 but for a cloud with an IR optical depth three times greater. 

their SW properties, such as the effective radius of their constituent particles. Figure 5.13 

presents the range of fluxes and heating rates which can be expected by varying the effec­

tive radius of a sample stratus cloud between 6 and 17 J-Lm, consistent with the range in 

observations presented in Miles et al. (2000). Reflection of incoming solar radiation in­

creases substantially with decreasing effective radius, evidence of an overall increase in the 

number of scattering events which occur within the cloud at a given LWP. This effect man­

ifests itself as a substantial decrease in net cooling through the cloud layer with decreasing 

reo At a radius of 17 J-Lm, for example, peak cooling reaches approximately 3 Kday-l while 

a similar cloud composed of 6 J-Lm droplets cools at only 1 Kday-l at the same atmospheric 
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Figure 5.13: Sensitivity of radiative flux and heating rate profiles for liquid clouds with 
different r e' 

level. 

A short description of other selected case studies used to investigate the sensitivity of 

the BUGSRAD model to the assumed parameters is given in Table 5.2. This is not a com­

prehensive list of all studies that have been conducted but these cases, in particular, repre­

sent the dominant contributions to the overall uncertainties in the derived fluxes and heating 

rates. CRF and column-integrated heating rates for each of these cases are summarized in 

Table 5.3. 

The impact of cirrus cloud vertical placement on the column-integrated quantities is 

represented by cases 4-7 in which cirrus clouds are placed at each of the two bounding tem-
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Table 5.2: Description of non-precipitating cloud case studies. Only those parameters 
explicitly listed are modified from the base case described in the text. 

Case Modifications to Base Case 
1 Baseline: liquid clouds at 0.5-1.5 km and ice clouds at 11.5-13 km 
2 SST and CWV decreased by 3 K and 33 %, respectively 
3 SST and CWV increased by 3 K and 33 %, respectively 
4 High-geometrically thick ice cloud (13-15.5 km) 
5 High-geometrically thin ice cloud (14-14.5 km) 
6 Low-geometrically thick ice cloud (8.5-11 km) 
7 Low-geometrically thin ice cloud (9.5-10 km) 
8 High-geometrically thick liquid cloud (1-2.5 km) 
9 Low-geometrically thin liquid cloud (0.5-1 km) 
10 Liquid cloud r e ~ 6.0jlm 
11 Liquid cloud re ~ 17.0jlm 

peratures, 210 and 240 K, and with geometrical thicknesses ranging from an upper bound 

of 2.5 km to a lower bound of 0.5 km. For both clouds, the effect of cloud height on col-

umn heating rates is surprisingly low given the strong sensitivities exhibited by the vertical 

profiles of heating. Recall that these estimates derive from a combination of modifications 

to the retrieval and to the assumptions made in the radiative transfer code. Changing cloud 

emitting temperature results in corresponding changes to its retrieved optical properties 

such that the cloud yields 10.8 and 12 jlm brightness temperatures consistent with those 

observed by the VIRS instrument. When these optical properties are subsequently used in 

radiative transfer calculations they produce similar radiances to the VIRS observations used 

as input. While this does not necessarily hold over the entire range of IR wavelengths which 

go into the flux calculations, it is reasonable to speculate that some degree of consistency 

between the observations and the derived fluxes should result. 

Comparing column heating from the two clouds, it is clear that the optically thicker 

cloud results in approximately twice as much net heating as the optically thin cloud. This 

is primarily a result of an increased greenhouse effect whereby the cloud traps emission 

from the Earth's surface. A more significant difference between the two clouds is the 
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Table 5.3: Sensitivity of CRF and column radiative heating to retrieval and modeling as­
sumptions in representative non-precipitating liquid and ice clouds. Refer to table 5.2 for a 
description of each case. 

Thin Cirrus 

Case Shortwave Longwave Net 
Heating TOAF SFCF Heating TOAF SFCF Heating TOAF SFCF 

1 2.04 -24.1 -25.0 -1.49 59.1 2.26 0.55 35.0 -22.7 
2 1.91 -26.1 -12.4 -1.42 54.3 -10.1 0.49 28.2 -22.5 
3 2.16 -22.0 -38.1 -1.51 65.0 11.4 0.65 43.0 -26.7 
4 2.03 -20.9 -21.5 -1.51 55.9 1.71 0.53 35.0 -19.8 
5 2.03 -21.2 -21.7 -1.51 55.5 1.69 0.52 34.3 -20.1 
6 2.04 -35.0 -35.9 -1.55 52.6 3.17 0.49 17.6 -32.7 
7 2.04 -34.6 -35.4 -1.56 50.7 3.06 0.47 16.1 -32.3 

Thicker Cirrus 

Case 
Shortwave Longwave Net 

Heating TOAF SFCF Heating TOAF SFCF Heating TOAF SFCF 
1 2.17 -53.1 -55.6 -1.15 103. 3.08 1.02 50.1 -52.5 
2 2.04 -55.3 -42.3 -1.09 101. -6.76 0.95 45.7 -49.2 
3 2.30 -51.0 -69.2 -1.19 106. 9.94 1.11 55.4 -59.3 
4 2.19 -27.6 -32.1 -1.22 93.8 1.67 0.96 66.2 -30.4 
5 2.19 -27.9 -32.4 -1.23 92.8 1.62 0.96 64.9 -30.7 
6 2.01 -208. -192. -1.19 101. 4.97 0.82 -107. -187. 
7 2.02 -202. -186. -1.23 95.9 4.77 0.79 -106. -181. 

Stratus 

Case Shortwave Longwave Net 
Heating TOAF SFCF Heating TOAF SFCF Heating TOAF SFCF 

1 2.48 -414. -482. -2.18 10.9 53.1 0.31 -403. -429. 
2 2.37 -422. -476. -2.09 6.31 59.8 0.09 -415. -416. 
3 2.60 -406. -488. -2.12 16.0 47.9 0.51 -390. -440. 
8 2.50 -417. -486. -2.21 7.46 53.6 0.29 -409. -433. 
9 2.42 -503. -564. -2.04 22.4 48.3 0.38 -481. -515. 
10 2.50 -603. -673. -2.13 18.4 54.5 0.38 -584. -618. 
11 2.43 -309. -371. -2.18 10.4 53.8 0.26 -299. -318. 
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sensitivities of their CRF to changing cloud height. The thin cloud LW and SW forcings 

behave similar to its column heating, exhibiting very slight sensitivity to cloud height. 

While the sensitivity of the LW forcing from the thicker cloud to its height is also weak, 

this is not true of its SW and Net forcings. In moving the cloud from 210 K to 240 K, SW 

forcing at TOA goes from a modest -28 Wm-2 to more than -200 Wm-2 • This feature is 

evident in Figure 5.12 where the upwelling SW flux at TOA varies by nearly 200 Wm-2 

between the two cloud cases, implying significantly more reflection from the lower cloud. 

At first this result is unexpected. As noted previously, the emitting temperature of a cirrus 

cloud primarily impacts its LW properties. We have found the opposite to be true, the 

LW properties are approximately invariant while the SW properties are sensitive to cloud 

height. The explanation once again lies in the fact that these results simultaneously reflect 

the sensitivities of both the radiative transfer and original cirrus cloud retrieval models to 

the assumed emitting temperature. In this case, the assumption of a 240 K cloud emitting 

temperature in the retrieval resulted in a retrieved effective radius of only 3.5 /-lm compared 

to approximately 10 /-lm at 225 K. The "anomalous reflection" from the 240 K cloud is, 

therefore, not a result of the flux calculations but the effect of varying the assumptions used 

in the retrieval. This finding illustrates the importance of accounting for the sensitivities of 

both the retrieval and the radiative transfer calculations to the assumptions. 

Finally, provided total IWP remains constant, varying the cloud geometric thickness 

from 0.5 to 2.5 km has a negligible impact on both the column heating rates and CRF. The 

radiative transfer equation for the simple two-layer atmosphere presented in Equation (4.2) 

predicts this result since changing the cloud geometric thickness has very little impact on 

its optical depth if all other properties are held fixed. 

The lowest panel of Table 5.3 demonstrates the sensitivity of the fluxes and heating rates 

to stratus cloud parameters. First, note that the stratus cloud impacts the SW components 

of the ERB much more significantly than those in the LW while the opposite was true of 
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the cirrus clouds. In this case only assumptions regarding SST and CWV impact both the 

retrieval and the radiative transfer calculations. SW and LW heating rates vary by 5-10 % 

over the a ± 3 K range in SST and ± 30 % change in CWv. Corresponding SW and LW 

CRFs vary by less than 10 Wm-2 over the same range of initial conditions. 

Assumptions regarding the vertical placement liquid clouds and the size of their con­

stituent particles are required only in deriving fluxes and heating rates, not in the retrieval, 

so the results from cases 8-11 reflect solely the sensitivity of the BUGSRAD model to 

these parameters. As with the profiles flux and heating rates discussed above, SW radia­

tive transfer in the presence of stratus clouds is extremely sensitive to assumed effective 

radius. Assuming an effective radius of 6 j.,lm results in a factor of two greater cloud SW 

forcing than a re of 17 j.,lm. As a result, this assumption dominates uncertainties in results 

associated with stratus clouds. 

5.4 Precipitating Pixels 

All r~maining pixels are classified as either containing precipitation or residing over a land 

background. Due to the complications associated with modeling a land surface, the present 

study focuses on oceanic pixels only. All that remains to completely characterize the radia­

tive properties of the tropical atmosphere is to derive radiative flux profiles corresponding 

to the GPROF hydrometeor content estimates. 

5.4.1 Radiative Heating Profiles 

Employing the modified version of the BUGSRAD broadband radiation scheme, LW and 

SW flux profiles were derived on a pixel-by-pixel basis for all precipitating pixels. A 

longitude-height cross-section of radiative heating rates at noon local time is presented in 

Figure 5.14. These profiles correspond to the hydrometeorprofiles shown in Figure 4.3. In 

many ways this figure represents the culmination of the research conducted in the previous 
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three chapters. Here, finally, we obtain a glimpse at the three-dimensional structure of 

radiative heating in tropical rainfall. There is a sharp contrast in heating profiles east and 
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Figure 5.14: Longitude-height cross-sections of net radiative heating and associated errors 
using the cloud and precipitation shown in Figure 4.3. 

west of -1740 W. To the east, where rainrates are low and ice water contents are negligible 

above 9 km (see Figure 4.3), heating does not exceed 5 Kday-l and peaks between 5 and 

10 km. To the west, in regions of heavier convective rainfall, peak heating occurs near 

the GPROF model top of 18 km. Furthermore, many profiles show peak heating in excess 

of 15 Kday-l approximately 1 km below cloud top and a cooling of 5 Kday-l in the 

uppermost cloud layer. In both cases a majority of the heating occurs near cloud top in 

regions primarily consisting of ice particles. 

Since estimates of IWC from GPROF have high uncertainties, errors in derived heating 
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rates are also very large. In fact, uncertainties in vertically-resolved heating rates are on 

the same order of magnitude as the estimates themselves, a point that will be discussed in 

more detail below. 

Two of the flux and heating rate profiles from Figure 5.14 will be discussed in more 

detail here. Figure 5.15 presents profiles of temperature, water vapor, ozone, and the four 

GPROF hydrometeor classes for a light rain pixel at 172.375 0 W. This profile is repre-
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Figure 5.15: Inputs to the radiative transfer model for the light rain case. 

sentative of stratiform rainfall and is characterized by light precipitation at the surface, a 

well-defined melting layer consisting of precipitating ice particles and very low cloud liq­

uid and ice water contents. Fluxes and heating rate profiles for this pixel are presented 
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Figure 5.16: Flux and radiative heating rate profiles derived from the input shown in Figure 
5.15. 

in Figure 5.16. The cloud and precipitation increases reflection of SW radiation while 

decreasing emission of LW radiation at the TOA. At the same time the amount of SW 

radiation reaching the surface is reduced while atmospheric emission to the surface is in­

creased. In this way the precipitating cloud exhibits some of the characteristics of both ice 

and liquid clouds. The resulting heating rate profiles reflect this, showing an enhanced LW 

cooling through the upper ice regions of the cloud and an enhanced SW heating at slightly 

lower levels. Since the calculations were made at noon local time, the net heating is biased 

towards the SW impact of the cloud, resulting in an average heating of 1.7 degree per day 

through the atmospheric column. 
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Hydrometeor profiles for a convective rain pixel at 174.875 0 Ware presented in Figure 

5.17. This pixel is characterized by moderate rainfall of 12 mmh -1 at the surface and a 

substantial amount of cloud ice extending through to the model boundary at 18 km. 
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Figure 5.17: Inputs to the radiative transfer model for the moderate rain case. 

Fluxes and heating rates for this case, shown in Figure 5.18, are considerably different. 

The reduction of LW emission to space and enhanced reflection are more pronounced and 

the enhanced emission back to the surface results in a net flux (upwelling minus down­

welling) of nearly zero. Atmospheric heating and cooling are more tightly confined near 

cloud top, particularly in the longwave, and their magnitudes are five times larger than in 

the light precipitation case. Furthermore, the cloud and precipitation in the convective case 
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Figure 5.18: Flux and radiative heating rate profiles derived from the input shown in Figure 
5.17. 

give 'rise to -618 Wm-2 of SW and 180 Wm-2 of LW CRF compared to -167 and 123 

Wm-2 in the light rain case. 

5.4.2 Cloud Forcing 

Figure 5.19 provides a look at TOA CRF due to precipitating cloud. In the large areas of 

deep convection, LW TOA CRF is 180 Wm-2 and is constant across much of the cloud 

system implying a uniform cloud top height associated with the capping effect of the 

tropopause. Making use of the Stefan-Boltzmann law, F = uT4 where u = 5.67xlO-8 

Wm-2K-4 , we find that this forcing corresponds to the difference in emission from black-
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Figure 5.19: Cloud radiative forcing at TOA for precipitating pixels in a section of orbit. 

bodies radiating at 265 and 205 K, respectively. Since 265 K, roughly corresponds to the 

clea~-sky emitting temperature of the moist tropical atmosphere and 205 K is consistent 

with the temperature of the upper most model layer, this demonstrates the fact that the 

thick clouds associated with convective precipitation effectively mask all emission from 

below, providing 180 Wm-2 of longwave energy to heat both the atmosphere and surface. 

The shortwave CRF is substantially larger owing to the greater source of radiation pro­

vided by the sun at noon. In the heaviest precipitation, clouds reflect 800 Wm-2 of solar 

energy back to space dominating the LW heating in similar regions. On the periphery of 

these regions lower cloud top heights associated with lighter rainfall are evidenced by the 

somewhat lower LW forcings they produce. SW forcing is also substantially reduced in the 
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surrounding light precipitation areas resulting in a net forcing near O. 
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Figure 5.20: As in Figure 5.19 but illustrating CRF at the Earth's surface. 
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30 

10 

SW surface CRF, depicted in Figure 5.20, resembles that at TOA since the magnitude 

of an increase in reflection to space induces a corresponding reduction in the radiation 

reaching the surface. LW CRF at the surface, on the other hand, derives from additional 

emission of radiation to the surface by liquid droplets in the atmosphere. Its magnitude 

depends not only on the amount of liquid water present but also on its temperature. Heavy 

convective rainfall, deriving from recently melted ice particles, results in less surface LW 

forcing than low clouds and stratiform precipitation which emit at a temperature closer 

to that of the ambient atmosphere. This is particularly evident when the values in the 

lower right panel of Figure 5.20 are compared with those for non-precipitating liquid cloud 



Chapter 5 Tropical Energy Budget 194 

regions in Figure 5.9. Despite the fact that the non-precipitating clouds contain an order 

of magnitude less liquid mass, they produce between 70 and 80 Wm-2 of LW CRF at the 

surface, three times more than the heavy precipitation. 

5.4.3 Column Heating 

The influence of precipitating clouds on the column-integrated radiative heating is pre­

sented in Figure 5.21 for the same section of orbit. The deep cold clouds associated with 
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Figure 5.21: Column-integrated radiative heating rates for in precipitating pixels corre­
sponding to a TRMM overpass at local noon. 

the large regions of convection substantially reduce the exchange of longwave radiation 

between the atmosphere and space. At the same time the absorption of SW radiation is 
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slightly enhanced resulting in a substantial increase in net heating relative to clear sky con­

ditions. Over much of the precipitating region, the net heating is greater than 2 Kday-l 

and shows little spatial variability. The SW and LW heating fields, on the other hand, can 

vary by half a degree per day or more but both increase at approximately the same rate with 

decreasing rainrate leading to a canceling of this variability in the net heating field. 

The storms in the focus area were long-lived and, as a result, TRMM provided a sec­

ond overpass of these regions 13 hours later, at 1 :00 am local time. Column heating rates 

derived from this return visit are displayed in Figure 5.22. The effects of the diurnal vari-
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Figure 5.22: As in figure 5.21 but for an overpass at 1:00 am local time. 
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ability in solar insolation are clear. As opposed to a heating of approximately 2 Kday-l at 

noon, the atmosphere is cooled by -1.0 Kday-l at night. This emphasizes both the obvious 
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importance of making estimates of cloud and precipitation at night for deriving a complete 

picture of the tropical ERE and the more subtle observation that the methods presented 

here' are well-suited to study diurnal variability in the ERE. With the concept of a con­

stellation of satellites to provide better temporal resolution being introduced in preliminary 

discussions regarding a follow-up to TRMM, these techniques could be used to analyze the 

diurnal cycle of cloud- and precipitation-induced radiative heating and CRF. 

5.4.4 Sensitivity Studies 

Estimates of the sensitivities of CRF and column heating to errors in the hydrometeor con­

tents are straightforward given the uncertainty analyses presented in Chapter 3. Upper and 

lower error bounds on the fluxes and heating rate profiles can be established by perturb­

ing the water contents retrieved by GPROF by an amount consistent with their estimated 

uncertainties. Figure 5.23 illustrates the resulting sensitivities for the light rain case pre­

sented above. The reflection and emission properties of this precipitating cloud are very 

sensitive to the large uncertainties in the prescribed profiles of LWC and IWC. In particular 

the downwelling shortwave radiation at the surface varies by 250 Wm-2 over the range of 

values tested. This translates into substantially greater net heating throughout the cloud 

when water contents are set to their maximum value. 

In the case of heavier rainfall, sensitivities appear to be greater as can be seen from 

Figure 5.24. This is, however, primarily an artifact of the fact that the majority of the SW 

heating and LW cooling occurs over a region confined to near the cloud top. Within this 

layer, SW heating varies by as much as a factor of three while LW cooling varies by a factor 

of 2. This produces a net heating of 25 Kday-l when water contents are at their maxima 

compared to 5 Kday-l at their minima. When integrated over the atmospheric column, 

however, this difference amounts to less than 0.3 Kday-l. By virtue of its distribution over 

a broader range of height, the column-integrated net heating difference is 0.6 Kday-l in 
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Figure 5.23: Sensitivity of flux and heating rate profiles in light rain to errors in retrieved 
water contents. 

light rain. 

Column-integrated heating and CRF from these and a number of other sensitivity stud­

ies based on the GPROF error analyses are presented in Table 5.4. A summary of the 

perturbations made in each case is presented in Table 5.5. The effects of perturbing water 

contents, vary between the two cloud and rainfall profiles as well as between the SW and 

LW. LW cloud forcing and column heating are insensitive to errors in LWC in the light 

rain case, but differ substantially over the range of IWCs tested. When IWC is halved, for 

example, the LW CRF is 50 Wm-2 less than when it is doubled. Differences in the SW are 

even larger. The SW TOA CRF can be as low as -90 Wm-2 or as high as 284 Wm-2 while 
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Table 5.4: Sensitivities of column heating and CRFs in light and moderate rainfall to errors 
in retrieved liquid and ice water content. Column heating is expressed in Kday-l while 
cloud radiative forcing estimates are in Wm-2

• See Table 5.5 for a brief account of the 
perturbations made in each case. 

Light Rain 

Case Shortwave Longwave Net 
Heating TOAF SFCF Heating TOAF SFCF Heating TOAF SFCF 

1 2.78 -167. -249. -1.07 123. 15.6 1.71 -43.7 -233. 
2 2.80 -184. -269. -1.08 124. 16.9 1.72 -60.7 -252. 
3 2.76 -155. -235. -1.07 123. 14.5 1.70 -31.7 -220. 
4 2.83 -270. -358. -0.88 147. 16.0 1.95 -123. -342. 
5 2.68 -103. -173. -1.28 97.6 15.1 1.39 -5.66 -158. 
6 2.83 -284. -372. -0.89 147. 17.1 1.94 -137. -355. 
7 2.64 -90.3 -126. -1.28 96.7 13.8 1.36 6.37 -142. 

Moderate Rain 
1 2.53 -618. -669. -0.69 180. 24.1 1.84 -438. -645. 
2 2.51 -653. -702. -0.70 180. 25.3 1.81 -473. -677. 
3 2.54 -587. -641. -0.68 180. 22.9 1.87 -407. -618. 
4 2.42 -705. -745. -0.70 179. 24.1 1.73 -526. -720. 
5 2.64 -535. -600. -0.70 178. 24.1 1.94 -357. -576. 
6 2.42 -724. -762. -0.70 179. 25.3 1.71 -545. -737. 
7 2.67 -486. -554. -0.69 178. 22.9 1.98 -308. -531. 
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Figure 5.24: As in Figure 5.23 but in moderate rainfall. 

surface CRF estimates range from -126 to -372 Wm-2• 
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In heavier rain, the LW CRF and column heating exhibit no sensitivity to perturbations 

in the amounts of either liquid or ice since the cloud already blocks all emitted radiation 

from below. Its reflective properties, on the other hand, exhibit substantial sensitivity, par-

ticularly to perturbations in IWC. SW TOA and surface CRF vary by as much as 238 and 

208 Wm-2, respectively, over the range of perturbations implied by the GPROF uncertain-

ties. 

For both cases, the results show that errors in retrieved IWCs dominate expected un­

certainties in the derived radiative heating rates and cloud forcing. This is easily explained 
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Table 5.5: Summary of precipitation case studies. Only those parameters explicitly listed 
are modified from the base case described in the text 

Case Modifications to Base Case 
1 Baseline: as retrieved by GPROF 
2 LWCs magnified by 50 % 
3 LWCs reduced by 50 % 
4 IWCs doubled 
5 IWCs halved 
6 LWCs magnified by 50 % and IWCs doubled 
7 LWCs reduced by 50 % and IWCs halved 

since ice resides at upper levels within the cloud and therefore dominates its emitted radia­

tion and cloud IWC is the most uncertain quantity retrieved by GPROF. 

To provide additional statistics, Figure 5.25 illustrates maximum (case 6) and minimum 

(case 7) column heating rates for the orbit cross section highlighted earlier. The results 

emphasize the important difference between the heavy and light rain regions. In heavy 

rainfall, column heating decreases with increasing liquid and ice water contents while the 

opposite is true in lighter rain. It is also clear that atmospheric heating is most sensitive to 

errors in the water content estimates when they are low to begin with. An estimate of the 

uncertainty in column heating rates for light raining pixels from this figure is 0.6 Kday-l, 

as opposed to 0.3 Kday-l in heavy rainfall. 

Similar results for LW, SW, and net CRF are presented in Figure 5.26 illustrating a 

number of interesting differences between them. The results emphasize the fact that, at 

noon, SW cloud effects dominate those in the LW.1t is also clear that the LW CRF is truly 

at a maximum in the deep convective region as it does not vary when the water contents 

are varied between their error bounds. SW forcings at both the surface and TOA, however, 

are sensitive to errors in the water contents varying by as much as 300 Wm-2 in heavy 

precipitation and 150 Wm-2 in lighter precipitation. As a result, we anticipate uncertainties 

in the net TOA and surface cloud forcing estimates to be on the order of 200 Wm-2 during 

the daytime due to the SW contribution but to be significantly reduced at night. At best, 
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Figure 5.25: Range in estimates of column heating induced by GPROF retrieval uncertain­
ties. Max. and Min. refer to the maximum and minimum perturbations in liquid and ice 
water contents, respectively. 

however, we can probably expect accuracies on the order of about 50 % since the forcing 

at night is considerably smaller than that during the daytime. These estimates will be 

quantified further below. 

5.5 Composite View 

It is now possible to combine these results to produce tropic-wide maps of TO A and surface 

radiative fluxes, cloud forcing, and column heating rates, the first step towards determining 

a tropical radiation budget. The following pages present maps covering all of the primary 



Chapter 5 Tropical Energy Budget 

Net CRF TOA 

-177 -175.3 --173.5 -171.8 -170 
Longitude 

SW CRF TOA 
o ------, 

... -200 

~ -400 
to. 
0:: 
u -600 

-800 L-_-= __ ~_ ... _~_-----' 
-177 175.3 -173.5 -171.8 -170 

Longitude 

LW CRF TOA 
200,--------

~ 150 .......... · .... 

~ 100 -- Mean 
to. Min. 

~ 50 - - - Max. 

OL-_~ __ ~ ___ 
-177 -175.3 -·173.5 -171.8 -170 

Longitude 

Net CRF SFC 
-100 ----. ~--

-200 ...... :": 

,. -300 ".: : 
~ -400 ': 

;: -500 

~ -600 

-700 
-800 '---_ __=...~ 

-177 -175.3 -173.5 -171.8 -170 

to. 
0:: 
U 

Longitude 

SW CRF SFC .----

-177 -175.3 -173.5 -171.8 -170 
Longitude 

5 
o 

LW CRF SFC 
--~ 

··177 -175.3 -173.5 -171.8 -170 
Longitude 

Figure 5.26: As in Figure 5.25 but corresponding to CRF estimates. 
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interactions that govern radiative exchanges in the atmosphere to portray the full range of 

quantities that can be deduced using the model. 

Quantities relating to the exchange of LW radiation in the Earth-atmosphere system are 

displayed in Figures 5.27-5.30. The first of these illustrates LW fluxes at the atmospheric 

boundaries. Downwelling LW radiation emitted from the cold space background is negli­

gible. Surface emission follows the monthly-mean SST, and is greatest in tropical regions 

just south of the equator and least over the cool winter-time oceans at northern midlatitudes. 

This emission is largely balanced by emission from atmospheric water vapor back to the 

surface demonstrating the strong atmospheric greenhouse effect in the tropics. The lowest 
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ary 1998. 
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Chapter 5 Tropical Energy Budget 207 

Solar Insolation 
40 
26 

" 13 ." 

~ 0 

" -13 ....l 

-26 
-40 

0 60 120 180 -120 -60 0 
Longitude 

, 
,;;;,,/,,,\. 

0 100 200 300 400 500 600 
Wm-' 

Downwelling SWat SFC 
40 
26 

~~". 
" 13 ." 

~ 0 
j -13 

-26 
-40 

0 60 120 180 -120 -60 0 
Longitude 

0 100 200 300 400 500 600 
Wm-e 

SW Reflected at SFC 
40 
26 

13 

0 

-13 

-26 
-40 

0 60 120 180 -120 -60 0 
Longitude 

" >" :-....... ;;~ " 

0 10 20 30 40 50 60 
Wm-2 

40 
26 

13 

0 

-13 

-26 .... ' .. , 
-40 

0 60 120 180 -120 -60 0 
Longitude 

0 50 100 150 200 250 
Wm-2 

Figure 5.31: Monthly-mean SW fluxes for February 1998. 
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ary 1998. 
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Figure 5.33: As in Figure 5.32 but for surface shortwave cloud forcing. 
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Figure 5.36: As in Figure 5.35 but for net cloud forcing at the surface. 
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Figure 5.37: As in Figure 5.30 but for net heating. 
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panel presents the total outgoing longwave radiation to space. Cold cloud tops associated 

with the ITCZ and SPCZ reduce OLR to less than 200 Wm-2 while a comparable effect 

is realized as a result of the reduced surface emission and the presence of clouds at higher 

latitude in the northern hemisphere. 

Many of these features are highlighted in Figure 5.28 which presents LW cloud radia­

tive forcing at TOA as well as a breakdown of this forcing into components owing to pre­

cipitating and non-precipitating clouds, individually. The strong greenhouse effect due to 

precipitating clouds is evident by comparing with monthly-mean surface rainfall estimates 

from GPROF, presented in Figure 5.38. In all regions where precipitation is significant on 

a monthly-mean timescale, the corresponding raining-pixel only cloud forcing exceeds 100 

Wm-2 • At the surface, on the other hand, the forcing by precipitation is much weaker than 

that due to liquid clouds. As a result, clouds in the ITCZ and SPCZ provide minimal sur­

face CRF while warm low clouds above 15 N substantially increase atmospheric emission 

to the surface. 

The exchange of thermal energy between the atmosphere and space is represented by 

the LW cooling presented in Figure 5.30. Longwave emission from the water vapor in the 

tropical atmosphere acts to cool it by more than 2 Kday-l in clear regions. The presence 

of clouds, particularly deep, precipitating clouds in the ITCZ, traps a significant fraction of 

this emitted radiation and reduces cooling by a factor of two. When all three pixel-types 

are combined, cooling in the ITCZ is approximately 1.3 Kday-l and approximately 1.5 

Kday-l in the SPCZ. At higher latitudes in the northern hemisphere, lower amounts of 

water vapor combined with persistent high cloudiness result in an equivalent reduction in 

LW cooling. 

It should be noted that the magnitudes presented in the component plots isolate those 

pixels which fall into the category considered. The upper panel, on the other hand, rep­

resents a true monthly mean derived by averaging all TRMM observations in each pixel, 
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Figure 5.38: GPROF monthly-mean rainfall for February 1998. 
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including both clear and cloudy skies. Thus the top panel does not necessarily resemble a 

mean of the other panels, particularly as far as cloud forcing is concerned. 

Figures 5.31-5.34 present the factors governing the exchange of shortwave energy in the 

atmosphere. The first, presents SW fluxes at the atmospheric boundaries and highlights an 

important drawback to using TRMM measurements in deriving short-term products such 

as these. By virtue of its axial tilt, the Earth's northern and southern hemispheres receive 

different amounts of radiation at different times of year. In February, the southern hemi­

sphere receives more than the northern hemisphere since the latter is tilted away from the 

sun. The top panel of Figure 5.31, however, implies precisely the opposite showing three 

times as much solar insolation at 40° N than 40° S. The explanation for this lies in the 
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time of day each region is sampled by the TRMM satellite. From a combination of its 

precession rate and the fact that it observes the southern latitudes at approximately 6 am on 

February 1, 1998, a majority of the observations made of the region south of -200 take place 

at night when solar insolation is O. Conversely, a majority of the observations above 400 N 

take place during the daytime biasing the shortwave fields presented here to the northern 

hemisphere. This will be avoided when longer term maps4 are produced but for now it is 

important to keep it in mind when considering the SW figures. 

Figures 5.32 and 5.33 present SW cloud forcing at the TOA and surface, respectively. 

The effects of clouds on the net (upwelling minus downwelling) radiation at the top of the 

atmosphere and the surface are very similar for the reasons discussed earlier. In general, 

bright convective clouds associated with precipitation in the ITCZ reflect a majority of 

the solar radiation incident upon them, resulting in SW forcing of less than -200 Wm-2
• 

Non-precipitating clouds reflect slightly less radiation but are more widespread resulting 

in SW forcing on the order of -100 to -150 Wm-2 but over a larger region. In both cases, 

subsequent averaging with clear-sky pixels reduces the magnitude of this forcing but the 

impact of clouds on the SW components of the ERB remains evident. Figure 5.34 illustrates 

how clouds impact the heating of the tropical atmosphere. In most cases, the presence of 

non-precipitating clouds reduces the amount of solar radiation available to be absorbed by 

water vapor below them, resulting in a decrease in SW column heating. Precipitation has 

the opposite effect, most likely due to enhanced absorption of solar radiation by ice at upper 

levels in precipitating systems. 

Combining these LW and SW components, maps of net cloud radiative forcing and 

column heating are presented in 5.35-5.37. These figures illustrate the competing effects of 

LW and SW cloud forcing and column heating. The result is that, on average for the month 

of February 1998, the tropical atmosphere cools at -1 Kday-l and experiences a net cloud 

4The TRMM satellite samples the complete diurnal cycle once every 46 days at its orbittal extremities. 
As a result a 46 day increments provide a more representative time increment than monthly time-scales. 
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Table 5.6: Average uncertainties in monthly mean estimates of fluxes (Wm-2), column 
heating rates (Kday-l), and cloud radiative forcing (Wm-2) attributed to retrieval uncer­
tainties and radiative transfer model assumptions. 

Category Quantity Clear-sky Non-precip. Clouds Precipitation 
LWTOA 6 114 42 

Flux t LWSFC ",0 ",0 ",0 

SWTOA 15 89 39 
SWSFC 3 13 6 
LWTOA ",0 rvO ",0 

Flux ..I-
LWSFC 56 74 12 
SWTOA <3 <3 <3 
SWSFC 25 108 52 

SW 0.1 0.2 0.1 
Column Heating LW 0.2 0.7 0.3 

Net 0.1 0.6 0.3 
SW N/A 83 60 

TOACRF LW N/A 54 38 
Net N/A 120 61 
SW N/A 85 66 

SFC CRF LW N/A 34 5 
Net N/A 71 66 

forcing of -10 Wm-2 at TOA and -22 Wm-2 at the surface. 

The sensitivity studies introduced in the preceding sections have been used to estimate 

average uncertainties in fluxes, heating rates, and CRF estimates. Table 5.6 summarizes 

these uncertainties in terms of pixel composition. "", 0" is used to denote uncertainties in 

parameters which are not sensitive to the atmospheric properties studied here and whose 

errors cannot be predicted as a result. When considered as an ensemble, we expect uncer­

tainties in these quantities to be negligible compared to those introduced by components 

which strongly depend on the assumed cloud properties. 

Clear-sky fluxes and heating rates are the most accurate by virtue of the limited number 

of assumptions required for their estimation. Since quantities such as SST and CWV are 

known accurately, particularly on a monthly timescale, the uncertainties they induce in the 

flux calculations are small. The clear-sky uncertainties presented in Table 5.6 are likely 



Chapter 5 Tropical Energy Budget 218 

somewhat low since both longwave and shortwave fluxes in cloud-free conditions are very 

sensitive to the reflective and emissive properties of the surface which have not been per­

turbed. Even so, the basic properties of an oceanic surface are reasonably well understood 

so it is reasonable to assume that the clear-sky pixels are determined most accurately. 

With the exception of LW emission to the surface which strongly depends on the 

amount and distribution of water vapor in the atmosphere, uncertainties in cloudy pixels 

are substantially larger than those characteristic of clear-sky regions. Potential errors in 

outgoing longwave and reflected shortwave radiation, for example, are at least five times 

larger in the presence of clouds and precipitation. In addition, the uncertainties in non­

precipitating cloudy pixels are generally a factor of two or more larger than their raining 

counterparts. This reflects the crude retrievals employed in establishing cloud information 

compared with the more refined GPROF precipitation algorithm. Errors in cloud forcing 

are also significantly larger in the shortwave than in the longwave. While this may seem 

counter-intuitive given the strong sensitivity of a cloud's emitting properties to its, highly 

uncertain, vertical placement in the atmosphere, it is important to recall that cirrus optical 

properties have been prescribed based on IR observations from the VIRS instrument. Thus 

the optical properties of the cloud are constrained in the retrieval while its SW properties 

are largely unconstrained. 

Overall, we find that, in the absence of additional information, the procedure described 

in the present work provides monthly-mean estimates of column radiative heating accurate 

to rv 30 % and cloud radiative forcing with accuracies ranging from approximately 40 % 

for raining pixels to 75 % in non-precipitating clouds. It is important to note that a number 

of sources of uncertainty related to the flux calculations have not been investigated in depth. 

The surface emissivity model, for example, which dominates uncertainties in the amount 

of LW radiation emitted by the Earth's surface, has been assumed to be perfect thus far. 

When considering the cloud and precipitation components of the results, however, these 
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additional sources of uncertainty are anticipated to be small compared to those associated 

with the vertical structure and optical properties of the clouds and precipitation. 

5.6 CERES Observations and NOAA Interpolated OLR 

The month of February 1998 was primarily chosen for the purpose of providing some vali­

dation for the results since it corresponds to a time when the CERES instrument on TRMM 

was fully operational. LW fluxes measured by CERES provide an appropriate source of 

information with which to test the present approach since its observations are necessarily 

co-located with those from which the cloud and precipitation information derive. Figure 

5.39 displays the CERES monthly-mean outgoing longwave and shortwave flux product 

(ES-9)5 for February 1998. These results are qualitatively similar to those derived above 

(Figure 5.27). A distinct reduction in OLR accompanying regions of intense precipitation 

in the ITCZ and SPCZ are clearly evident in both plots6• The present study also captures the 

decrease in OLR associated with storm tracks through the northern portion of the TRMM 

domain as well as a large region of reduced OLR induced by the clouds trailing away from 

the heavy rainfall located in central South America. 

Significant differences in the OLR estimates are evident, however, partiCUlarly outside 

the ITCZ and SPCZ. OLR derived in the present study shows large regions of reduced 

emission off the Pacific coast of Mexico and to the east of South America. Taking OLR less 

than 235 K as an indicator of precipitation (Arkin and Meisner, 1987), the OLR estimates 

in the present study imply a substantial amount of rainfall in these regions but neither 

the CERES OLR data nor the monthly-mean GPROF surface rainfall map confirm this. 

Such anomalies are most likely due to incorrect ice cloud retrievals in these areas, perhaps 

relating to the assumptions regarding vertical cloud placement, for instance, but this needs 

5These data were obtained from the NASA Langley Research Center Atmospheric Sciences Data Center. 
6 Arkin (1979) and Arkin and Meisner (1987) have suggested that a mean OLR of less than 235 Kover 

the spatial scales characteristic of the results presented here provides a strong indicator of rainfall in tropical 
regions. 
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Figure 5.39: CERES monthly-mean outgoing LW and reflected SW fluxes for February 
1998. 

to be verified. 

The NOAA Interpolated OLR7, depicted in Figure 5.40, provides a similar product 

derived from AVHRR radiances. There are notable differences between the NOAA and 

CERES OLR estimates. Most notably, the NOAA product exhibits a substantially stronger 

precipitation signature over the SPCZ and along coastal regions of South Africa. In ad­

dition, the CERES data imply substantially larger emission in the large-scale subsidence 

region between 10° and 25° N. 

Direct comparison of monthly-mean OLR estimates from the present study with those 

7Interpolated OLR data provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado, 
from their Web site at http://www.cdc.noaa.gov/. 
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Figure 5.40: NOAA monthly mean OLR for February 1998. 

from both the CERES and NOAA products is presented in Figure 5.41. The figure demon­

strates that a reasonably strong correlation exists between the results of the present study 

and both the NOAA and CERES OLR products but that a substantial spread is present 

in the results. It is interesting to note that the present estimates correlate better with the 

NOAA OLR (0.83) than those from CERES (0.82) despite the fact that the latter is flown 

on TRMM. Another important result from this comparison is that the results of the present 

study appear to be biased about 20 Wm-2 lower than those from CERES. A direct com­

parison of the CERES and NOAA products indicates a similar, although less slightly less 

pronounced bias of 10 Wm-2 between those estimates, and a correlation of only 0.82. As 

a result, the bias between the results presented here and those from NOAA is less than 
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Figure 5.41: Scatter plot of derived monthly-mean OLR versus equivalent NOAA and 
CERES products. 

10 Wm-2• Considering the fact that the present model has not been tuned in any way 

and taking into account the large uncertainties introduced through a number of its assump­

tions, correlations greater than 0.8 are encouraging. The large errors associated with the 

non-precipitating cloud pixels are sufficient to account for the discrepancies in the results. 

Furthermore, the CERES product is corrected for the diurnal sampling of the TRMM satel­

lite while the NOAA product samples at all times of day. 

Three conclusions can be drawn from these comparisons: 

1. As an initial attempt at using the technique introduced here with no external con-
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straint or advance calibration, these results are promising. Beyond exhibiting quali­

tative agreement with the corresponding precipitation fields, the results correlate well 

with similar products derived from the AVHRR and CERES instruments. 

2. There is a significant potential for biases to enter into the results through the physical 

assumptions required in both the retrieval and the broadband flux calculations. While 

the negative implications of this result are clear, these biases also provide insight into 

an alternative source of information which may prove useful in constraining future 

versions of the model. In principle, the strong sensitivity of the results to assumptions 

regarding cloud height provide a means for constraining the retrieval using broadband 

flux observations such as those made by CERES. 

3. The OLR field represents only one of many produced by the methods here. More 

exhaustive testing of some of the other fields, particularly those pertaining to surface 

fluxes, are required to establish adequate confidence in the method. To this end, inter­

comparison exercises using downwelling flux measurements at the surface observed 

during the Joint Air-Sea Monsoon Interaction Experiment (JASMINE) cruises are 

planned to provide an independent validation of the SFC flux predictions. 

5.7 A Short-term Tropical Energy Budget 

In Section 1.1 it was noted that observations of the temporal and spatial variability of 

the principal components of Earth's energy budget in response to both natural and an­

thropogenic forcings on the hydrologic cycle represents a significant challenge facing the 

climate community. One of the primary motivations for this research was to establish a 

technique for making such estimates based on presently available data. The results of this 

endeavor are presented in Figure 5.42 which illustrates a short-term tropical oceanic en­

ergy budget derived from TRMM observations in February 1998. This illustration provides 
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Figure 5.42: February 1998 tropical energy budget from TRMM. All quantities are ex­
pressed as a percentage of the total incoming solar radiation at the top of the atmosphere, 
393.6 Wm-2 • 

a near-complete breakdown of the major processes governing the exchange of energy be­

tween the sun, the atmosphere, and the ocean over the TRMM region, which extends from 

40 S to 40 N covering approximately 64 % of the globe. In addition, rigorous uncertainty 

estimates which are rooted in the physical assumptions governing both the retrieval and 

the radiative transfer models have been assigned to each quantity based on the sensitivity 

studies conducted above. 

In February 1998, an average of 28 % of the incoming solar radiation to this region 

is reflected to space while the atmosphere absorbs only 13 %. The remaining 59 % is 

absorbed by the ocean. At the same time, the ocean emits 111 units of thermal energy 
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which is nearly balanced by a corresponding atmospheric emission of 104 units back to the 

Earth's surface. The moist tropical atmosphere further emits 59 units of energy to space 

resulting in a net deficit of 39 units or approximately 150 Wm-2 in the atmosphere. Based 

on a surface rainrate-derived estimate of latent heating8
, latent heat release accounts for 

81 Wm-2 leaving an overall atmospheric energy deficit of rv 70 Wm-2
• At the TOA and 

surface boundaries we find a deficit of 51 Wm-2 and a surplus of 121 Wm-2 , respectively. 

Thus this region is not in energetic balance on a monthly timescale. 

Absent from the processes depicted in Figure 5.42 are the meridional transport of en­

ergy to midlatitudes as well as the magnitude of the sensible heat flux at the ocean surface. 

These processes, as well as oceanic energy transport, must account for the observed differ­

ences when averaged globally and on annual timescales. 

The radiation budget presented is only representative of a small fraction of the lifetime 

of the TRMM satellite, never-mind the history of climate change on Earth, but it furnishes 

a foundation onto which future extensions can be built. With the addition of successive 

months and years of data, a climatology can start to be developed from which analyses 

of short-term climate variability and preliminary observations of long-term climate change 

can begin to be realized. 

8Provided a spatial and temporal domain large enough to encompass the geographic evolution and life­
cycle of the cloud complex is considered, the LH terms can be vertically integrated from the surface to the 
top of the cloud to yield 

(5.3) 

where R is the surface precipitation rate. Thus the column-integrated LH is, in a space-time average sense, 
related to the total condensate removed from the system by precipitation processes. For further discussion of 
latent heating and results for the month of February 1998 obtained using the GPROF algorithm, see Appendix 
c. 
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5.8 Discussion 

Together, Chapters 4 and 5 constitute a complete method for determining the principal com­

ponents of the tropical energy budget using solely passive observations from the TRMM 

satellite. The method makes use of a crude representation of liquid and ice clouds and 

more detailed information regarding profiles of liquid and ice in precipitating regions to 

derive SW and LW fluxes throughout the atmosphere. From these profiles, column heating, 

cloud forcing, and the vertical structure of heating in the atmosphere can be diagnosed and 

broken down into components owing to clear-sky, low cloud, high cloud, and precipitation, 

affording us the opportunity to quantify important relationships between the hydrologic 

cycle and the Earth's energy budget. This data can, in principle, be applied to study short 

term climate variability through investigations of perturbations to the radiation balance in­

duced by changes in the distributions of water vapor, cloud, and precipitation on short to 

moderate timescales. The spatial coverage of the TRMM satellite is well-suited to study 

the tropical region as a whole and the duration of the mission should provide a continuous 

three and a half year data set with which one can begin constructing climatologies of the 

key components of the tropical radiation budget. The resulting data can then be used to 

study climatic cycles on diurnal, intraseasonal, seasonal, and annual timescales. 

Beyond extending the results to cover a longer time period, improved spatial coverage 

and temporal resolution also offer the potential to significantly enhance the results pre­

sented here. Extension of the TRMM mission to ± 70° and the constellation of satellites 

being proposed for GPM will certainly improve upon this aspect of the present work. A 

continuous data set spanning the lifetime of the TRMM mission followed by the applica­

tion of the technique to the GPM constellation will provide a means for studying global 

and regional weather phenomena such as the El Nino Southern Oscillation (ENSO) as well 

as providing a mechanism for observing climate change. In addition, increased tempo­

ral resolution provides an opportunity to assimilate ERB information to constrain cloud 
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information in NWP models in the future. 

At present there are a number of drawbacks to the approach which still need to be 

addressed. The method has been restricted to oceanic regions by the passive microwave 

and VISIIR methods employed in cloud retrievals. To fulfill our need for cloud information, 

alternate approaches will be needed over land surfaces. In addition, further refinements are 

necessary to better constrain cloud and precipitation vertical structure and optical properties 

in the model. Looking to the future, a solution to both of these deficiencies may be realized 

through the use of active sensors such as the PR and CPR. This possibility is explored 

in more detail in Appendix D which presents a novel approach to rainfall profiling from 

attenuating radars formulated in such a way as to facilitate the combination of information 

from multiple sensors. Results suggest that explicit cloud vertical profile information from 

active sensors and bulk estimates of precipitation water path from passive observations 

provide complementary information to rainfall retrievals. The combination of the Aqua 

and CloudSat satellites flying in formation in the near future will provide an opportunity to 

develop and study such methods in greater detail in the future. In light of the sensitivities 

presented above, we anticipate significant improvements in the energy budget components 

as a result. 
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Conclusions 

Today's satellite platforms provide a unique global perspective of the Earth's climate sys­

tem. Recent technological advances have made it possible to operate combinations of in­

struments, which have traditionally been restricted to ground-based applications, in space. 

This has made possible a new generation of multi-sensor techniques for inferring the prop­

erties of the Earth-atmosphere system on a global scale. This dissertation has sought to 

make use of information regarding the distribution of cloud and precipitation from the 

Tropical Rainfall Measuring Mission to develop a new method for estimating the princi­

pal components of the tropical energy budget. The method, which simultaneously exploits 

information from both the TMI and VIRS instruments aboard TRMM, furnishes estimates 

of short- and longwave radiative fluxes throughout the atmosphere which are then used to 

determine atmospheric heating rates and cloud radiative forcing. In so doing we are able 

to quantitatively assess the mechanisms by which clouds and precipitation impact energy 

exchange in the tropics. 

A concerted effort has been made to characterize uncertainties in all results to satisfy 

requirements for pursuing studies of global climate change, model validation, and data as­

similation exercises. It has been well established that GeMs are sensitive to profiles of ra­

diative and latent heating arising from clouds and precipitation, yet current representations 

of their development are crude, at best. Simultaneous assimilation of cloud, precipitation, 

and associated profiles of radiative and latent heating offers the potential for substantially 

improving the characterization of these processes and, in turn, lead to improved forecasts. 

In addition, a breakdown of the uncertainties into their principal components highlights the 
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primary areas of deficiency in the method. From this information, a number of modifica­

tions to improve the technique are suggested. 

6.1 Information and Uncertainties in TMI-based Rainfall Retrievals 

Chapter 2 presents a new application of the PCA approach to determining the information 

content of an observing system to establish a basic understanding of the precipitation pro­

filing information contained in the TMI observations. The results, based on a simplified 

model relating profiles of both liquid and ice to the rainrate at the surface, show that the 

information content of the TMI can be broken down into three distinct rainfall ranges. At 

rainrates less than rv 6 mmh- 1, the weighting functions of the TMI peak near or at the sur­

face providing sensitivity to surface rainfall but limited information from the layers above 

it. Conversely, in rainfall exceeding rv 25 mmh-1, none of the TMI channels directly sense 

rainfall below 3 km. The optimal range for rainfall profiling by algorithms which explicitly 

incorporate vertical structure information was found to lie at rainrates between these two 

thresholds. At this rain intensity, the high frequency 37 and 85 GHz channels are sensitive 

to scattering by large ice particles near cloud top while the low frequency 10 and 19 GHz 

channels are sensitive to liquid water emission near and slightly above the surface, respec­

tively. By virtue of its proximity to the water vapor absorption band, weighting functions 

for the 21 GHz channel peak higher still providing a direct observation relating to the liquid 

water in the middle of the cloud. 

In a perfect remote sensing application there exists a one-to-one relationship between 

the observations and the quantity or quantities being retrieved. Measurements can then be 

used to uniquely determine an appropriate solution to the inversion problem. In satellite­

based passive microwave rainfall retrievals, however, similar observed brightness temper­

ature signatures can arise from a multitude of different combinations of liquid and ice hy­

drometeors in the atmosphere resulting in a non-uniqueness problem (recall Figure 2.27). 
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In this case it is impossible to unambiguously assign a single set of hydrometeor profiles 

to a given set of measurements. To quantify the effects of this non-uniqueness and provide 

a useful estimate of the uncertainty in passive microwave rainfall retrievals from the TMI 

instrument, a quantitative analysis of the uncertainties in the TMI-based GPROF cloud and 

precipitation profile retrieval algorithm are presented in Chapter 3. A rigorous new un­

certainty model for general Bayesian Monte Carlo retrieval algorithms is constructed and 

applied to GPROF which is responsible for the TMI instantaneous rainfall product (2a12). 

The method not only accounts for uncertainties in the observations and radiative transfer 

modeling, but also those which occur as a result of the use of a finite representation of 

the distribution of cloud and precipitation profiles in nature. The method provides uncer­

tainty estimates for all retrieved parameters on a pixel-by-pixel basis and decomposes these 

uncertainties into components which can be identified with errors in deriving the weights 

assigned to each profile and the a priori cloud database. 

GPROF instantaneous surface rainrate estimates are accurate to fifty percent for rain­

rates below 20 mmh- 1 but rapidly increase at higher rainrates where TMI weighting func­

tions fail to directly sense the lowest levels of the atmosphere. In addition, a parameter­

ization of the fractional uncertainty in the GPROF instantaneous surface rainfall product 

as a function of the magnitude of the estimate is proposed. The resulting third order poly­

nomial accurately represents the uncertainties in surface rainfall estimates over the range 

0- 25 mmh-1 providing an alternative to performing pixel-by-pixel calculations in appli­

cations where computational cost must be kept at a minimum. The example offered here 

is variational data assimilation of surface rainfall data which, before now, have relied on 

off-the-cuff error estimates to weight the observations. Similar uncertainty statistics and 

polynomial fits are derived for all hydrometeor classes at all levels in the GCE model at­

mosphere. 

Another feature of the uncertainty model is that it can be used to quantitatively assess 
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the impact of different combinations of observations on the retrieval. Making use of this 

property, it was shown that the polarization and scattering indices of Petty (1994a) con­

stitute a substantial improvement over unprocessed TMI brightness temperatures or polar­

ization differences. In addition, preliminary attempts to incorporate radar reflectivity data 

to reduce profile database uncertainties show promise but can lead to a compensating in­

crease in the modeling and measurement error component. These results highlight the need 

for studying sources of systematic error in the cloud database such as errors in cloud mi­

crophysical assumptions, beamfilling errors, or biases in the radiative transfer calculations 

used to simulate brightness temperatures for each profile. 

6.2 The Tropical Energy Budget 

Chapters 4 and 5 present a new "algorithm" for determining the principal components of 

the tropical oceanic energy budget using passive microwave and infrared observations from 

the TRMM satellite. The technique proceeds as follows: 

1. Passive microwave radiances from the TMI instrument are used to retrieve column 

liquid water paths for all non-precipitating pixels (as determined by the GPROF al­

gorithm). 

2. For the same subset of pixels, VIRS radiances at 10.8 and 12 f.1m are employed to 

detect cirrus clouds and estimate their optical properties, when possible. 

3. Crude representations of liquid and ice clouds derived from these estimates are used, 

along with the more detailed cloud and precipitation profiles from the GPROF al­

gorithm in precipitating regions, to derive SW and LW fluxes throughout the atmo­

sphere. A pixel is assumed clear if the 10.8 f.1m brightness temperature is within 5 

K of an assumed clear-sky emitting temperature and the retrieved LWP is less than 

0.05 kgm-2• 
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4. From these profiles, column heating, cloud forcing, and the vertical structure of ra­

diative heating in the atmosphere is diagnosed and decomposed into components 

owing to clear-sky, low cloud, high cloud, and precipitation. 

5. At the same time, profiles of latent heating are estimated as part of the GPROF re­

trieval package, providing information regarding non-radiative energy transfer in the 

tropics. 

6. Finally, these instantaneous products are gridded to lower spatial resolution and tem­

porally averaged over daily and monthly timescales to produce maps of the principal 

components governing the exchange of energy between the ocean, atmosphere, and 

space. Tropic-wide monthly-mean estimates of the fluxes at atmospheric boundaries 

are also derived which, when combined with a corresponding monthly mean estimate 

of latent heating, comprise a short-term estimate of the tropical energy budget over 

oceans. 

Results have been compiled for the month of February 1998 to illustrate the utility of 

the technique and derive a preliminary short-term tropical energy budget. On average, over 

this period, the tropical atmosphere absorbs 13 % of the solar radiation incident at the top 

of the atmosphere. A further 28 % is reflected by atmospheric particles, clouds, and the 

surface leaving 59 % to be absorbed by the ocean. At thermal wavelengths, it is found 

that the ocean emits 111 units of energy to the atmosphere while the atmosphere emits 

a total of 163 units, 104 downward toward the surface and 59 to space. Accounting for 

latent heat release which amounts to an exchange of 21 units of energy between the surface 

and atmosphere, the results imply a deficit of 70 Wm-2 of energy in the atmosphere and a 

surplus of 121 Wm-2 at the Earth's surface. The implied net gain of 51 Wm-2 in the Earth­

atmosphere system is consistent with the difference between the incoming solar radiation 

and emitted thermal radiation at the top of the atmosphere. It is speculated that these 
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imbalances are largely accounted for by sensible heating, meridional energy transport, and 

absorption and transport of energy in the ocean. 

Limited validation for the method, through a comparison of monthly-mean OLR esti­

mates at 2.5 degree resolution with similar products from CERES and NOAA, provide an 

indication that the method captures general trends in tropical OLR. Large-scale features 

such as the ITCZ and SPCZ qualitatively agree between the three products but the present 

results indicate spurious high cloud in some regions a direct result of the lack of cloud 

height information in both the cloud retrievals and radiative transfer modeling. Correla­

tions of 0.82 and 0.83 are obtained between the present estimates and those from CERES 

and NOAA, respectively. Uncertainty estimates deriving from detailed sensitivity studies 

provide information regarding the validity of the results as well as highlighting areas where 

more appropriate measurements or more accurate algorithms are required in the future. 

This approach represents a preliminary attempt to make tropic-wide (and ultimately 

global) estimates of the components of the energy budget using explicit cloud and precipi­

tation information from spacebome observations. The results can, in principle, be applied 

to study short term climate variability through investigations of perturbations to the radia­

tion balance induced by changes in the distributions of water vapor, cloud, and precipitation 

on short to moderate timescales affording us the opportunity to quantify important relation­

ships between the hydrologic cycle and the Earth's energy budget. 

6.3 Rainfall Profile Information from Spaceborne Radars 

The final chapter introduces a novel approach for estimating profiles of rainfall from space­

borne radars, particularly those which ordinarily suffer from copious amounts of attenua­

tion. The Constrained Optimal estimation Rainfall Retrieval ALgorithm, or CORRAL, 

makes use of an optimal estimation technique to deduce the profile of rainfall which best 

fits the observed reflectivity profile. The method is constrained by attenuation information 
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from estimates of surface return-derived PIA or passive microwave-derived PWP. Salient 

features of the algorithm include: 

• This technique, while purely mathematical in nature, provides a framework well­

suited for explicitly incorporating information regarding the accuracy of the mea­

surements, forward model, and any a priori information used to derive the results. 

In addition, a suite of retrieval diagnostics are available to determine the quality and 

accuracy of the resulting rainfall profiles. 

• It is straightforward to include external information, such as an estimate of PIA, 

through a constraint whose strength can be varied to account for its accuracy. In 

principle, any addition information related to some aspect of the rainfall can be added 

in this way and its impact on the retrieval will be directly proportional the sensitivity 

of the precipitation profile to the information and the accuracy with which it can be 

estimated. 

• Since the results derive from the minimization of a general cost function, it is also 

possible to include measurements from alternative instruments directly in the esti­

mation process. In this way the model is not exclusively limited to either active or 

passive information and can incorporate the complementary information offered by 

each in a coherent manner. Furthermore, the error diagnostic analyses are readily 

modified to provide a breakdown of the total uncertainty into components owing to 

each piece of information used in the retrieval. 

• The flexibility afforded by the optimal estimation approach allows the algorithm to 

be re-cast in terms of a variable DSD by changing the forward model used to map 

rainfall to the observations. Such changes substantially increase the utility of the 

algorithm for global rainfall estimation which is often complicated by the variety of 

different microphysical processes leading to rain formation. 
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Through the use of synthetic retrievals using the GPROF cloud and precipitation database 

and simplifying assumptions regarding DSD, it was shown that, at 14 GHz (the frequency 

of the TRMM PR), retrievals of rainfall up to 40 mmh-1 were accurate to better than 20 

%. The presence of a constraint allows this rainfall range to be extended to over 40 mmh-1 

and generally reduces uncertainties by 25 % when attenuation is important. At 94 GHz 

(the frequency of the CloudS at CPR), an accurate constraint is a necessity to overcome 

strong attenuation suffered by the radar beam at this frequency. While the CloudSat radar 

detects rainfall throughout the atmospheric column for surface rainrates up to 5 mmh-1 or 

more, quantitative retrievals are exceedingly uncertain in the absence of a constraint. A 

moderately certain estimate of PIA or PWP, however, markedly improves the results al­

lowing accurate retrievals to be made in rainfall up to 8-10 mmh- 1 provided a the signal 

is not attenuated by the rainfall in the column. In heavier precipitation, the reflectivities 

from layers near the surface may be completely attenuated but, provided a PWP estimate is 

available, rainfall profiles can still be inferred in upper layers and may be crudely projected 

to the surface using a representative rainfall profile. Furthermore, the CPR is sensitive to 

cloud-sized liquid droplets, cloud ice, and frozen precipitation. Thus cloud and light pre­

cipitation profile information from the CPR, coupled with precipitation and corresponding 

PWP estimates from the AMSR instrument on Aqua will provide an opportunity to test 

improved techniques for estimating global diabatic heating. 

6.4 Ongoing and Future Work 

The analyses presented here are intended to provide a series of starting points from which, 

it is hoped, future research projects will evolve. The challenges posed by the problem of 

establishing observational evidence for climate change are many and will, no doubt, oc­

cupy the community for many years into the future. This work has sought to provide the 

underpinnings of a method for deriving observation-based estimates of the Earth's energy 



Chapter 6 Conclusions 236 

budget and its relationship to the global hydrologic cycle, an important aspect of this prob­

lem. While preliminary results are promising, the techniques presented require substantial 

refinements before their full potential can be realized. 

Of immediate importance is to extend the time period over which ERE estimates have 

been examined in the present work to cover the duration of the TRMM mission. This 

TRMM-derived climatology can then be used to study a variety of problems such as those 

summarized in the Introduction. The spatial coverage and time period encompassed by 

the TRMM data set make it well-suited to study energy balance in the tropical atmosphere 

and the role played by clouds and precipitation in establishing and modifying this balance. 

Another problem readily addressed in the future is to examine the role of cloud radiative ef­

fects in driving regional atmospheric circulations and vice versa, particularly on timescales 

characteristic of short term climate variability, such as the 30 - 60 day intraseasonal oscil­

lation (MJO). 

Concurrent research is underway to implement more sophisticated cloud retrieval al­

gorithms to improve vertical placement and microphysical assumptions in the broadband 

flux calculations. In the short term, this requires additional calibration of the TMI-based 

LWP retrieval and extension of the VIRS-based ice cloud retrieval to incorporate supple­

mental information to constrain cloud emitting temperature. The outgoing SW and LW 

fluxes measured by CERES, for example, could be used to pre-condition cloud retrievals 

reducing potential misclassification of ice cloud pixels. In the more distant future, meth­

ods combining active and passive observations, such as those from the AMSR, MODIS 

and CPR instruments on the Aqua and CloudSat satellites, to simultaneously retrieve cloud 

boundaries and ensure consistency between a wide variety of observations will be devel­

oped. In light of the sensitivity studies conducted in Chapter 5, such improvements, while 

requiring a substantial amount of future development, should appreciably reduce uncertain­

ties in derived profiles of radiative heating and TOA and surface fluxes. 
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A related area of future work concerns the optimal estimation-based radar retrieval al­

gorithm introduced in Appendix D. While the CORRAL algorithm was not directly applied 

in the radiation budget analysis, it is clear how vertically resolved cloud and precipitation 

profiles can improve them. Before it can be applied in such applications, however, the 

algorithm needs to be tested using a combination of real-world reflectivity and in situ mi­

crophysical observations. Furthermore, to realize its full potential, the algorithm should be 

re-cast to retrieve a variable DSD from reflectivity measurements at multiple radar wave­

lengths, or, alternatively coincident active and passive observations. Until this is accom­

plished, the algorithm is susceptible to non-uniqueness as a result of the different drop size 

distributions found in nature. Once developed and tested, the CORRAL data can be imple­

mented in concert with that deriving from methods already discussed, to further improve 

estimates of radiative and latent heating and the ERB. 

Finally, with the ongoing development of new, more sophisticated, instruments and 

improvements to those already in existence, we anticipate the necessity for continuous 

updates to the technique in an effort to maintain contact with the state-of-the art in cloud 

and precipitation profile remote sensing. In this regard there are no well-defined beginning 

and end to the problem. This work represents an extension of those published previously 

and will hopefully find its place as a building block for those to come. 
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Appendix A 

General Uncertainty Formulae 

To aid in characterizing the uncertainty in a quantity which results from the combination of 

a number of measurements a few key formulas which are commonly used in the calculation 

of a "combined standard uncertainty" (see the NIST Reference (1994» will be summarized 

in this appendix. Let 6Xi represent the uncertainty in the measurement Xi and let y = 

f(Xl' X2, X3, ... , xn) be a function of n measurements. In general, the uncertainty in y is 

given by: 

(A.I) 

where 6Xi is the estimated standard deviation (equal to the square root of the variance) in 

the measurement Xi and 6Xij is the estimated covariance of the measurements Xi and Xj' 

The first term in Eqn. (A.I) represents the contributions of the individual uncertainties 

in the Xi to the overall uncertainty in y while the second term accounts for the fact that the 

uncertainties in the measurments may not be completely independent of one another. In 

the subsections below, we will look at a few examples to illustrate the use of Eqn. (A.I) 

that will be of use in trying to estimate the uncertainties associated with more complex 

combinations of measurements. 
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A.I Example 1: Sum of 2 measurements 

Consider the function Y(Xll X2) = aXI + bX2. Differentiating Y with respect to Xl and X2 

yeilds 

a 

- b (A.2) 

Using Eqn. (A.I) the uncertainty in Y is 

(A.3) 

If we can show that the uncertainties in the two measurements are uncorrelated, then the 

second term vanishes and the uncertainty in Y reduces to the well-known Pythagorean the­

orem, by2 = a2(bxI? + b2(bx2? 

A.2 Example 2: Product of 2 measurements 

(AA) 

In this case the estimated uncertainty in y is: 

(A.5) 
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With some rearrangement, the fractional uncertainty in y is given by 

6y 
y 

A.3 Example 3: Quotient of 2 measurements 

Now consider the function Y(Xl' X2) = a;;. 

ay 
-

The estimated uncertainty in y is 

6y = 

In this case the fractional uncertainty in y is given by: 

6y 
-

y 

255 

(A.6) 

(A.7) 

(A.S) 

(A.9) 

Notice that Eqn. (A.6) and Eqn. (A.9) differ only by the sign of the covariance term. 

The covariance term increases the overall uncertainty in a product while decreasing it in a 

quotient. 
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A.4 Example 4: Exponential of a measurement 

Finally consider the function y(x) = beax . Here the uncertainty is given by 

8y (A. 10) 

In this case we find the interesting property that as a becomes large, the uncertainty in y 

can actually exceed the value of y since: 

8y 
- =a8x 
y 

(A.ll) 

So, if a > o~, the uncertainty in y exceeds the value the value of y itself! This is due to the 

fact that the exponential is a very rapidly increasing function. 
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GPROF Uncertainty Parameterizations 

Table B.l: Parameters for third order polynomial fits to the uncertainties in GPROF cloud 
and precipitation profile estimates. Levels with no data indicate that a fit was not possible 
due to too few (or no) data points for a meaningful result. 

Hydro. Class Model Level ao al a2 a3 

0.5 km 1.06 -30.9 408 -1430 
1.0km 1.05 -18.3 132 -244 
1.5km 0.937 -13.5 81.7 -124 

Cloud 2.0km 0.920 -13.7 8004 -120 
Liquid 2.5km 0.876 -11.7 64.2 -83.6 
Water 3.0km 1.01 -1304 77.0 -100 

3.5km 0.775 -3.32 28.3 -41.9 

4.0km 1.33 -6.62 8.11 25.2 
5.0km 2.51 -39.7 245 -492 
4.0km 1.12 -22.6 -2510 70500 
5.0km 3040 -508 32400 -5.93x105 

Cloud 6.0km 0.748 -9.74 69.5 -4160 
Ice 8.0km 0.587 8.85 -1l20 15500 

1O.0km 1.89 -73.3 1220 -6530 
14.0 km 4.25 -167 2550 -12600 
18.0 km 2.79 -110 1760 -9070 
0.5km 0.358 0.0713 -0.507 -0.670 
1.0km 0.391 -00403 0.663 -0.076 
1.5km 0.335 0.0717 -0.281 00488 
2.0km 0.233 10488 -4.07 3045 

Rain 2.5km 0.705 -3.25 8.38 -3.64 
3.0km 0.806 -3.67 1604 -11.6 
3.5km 0.216 21.1 -98.1 131 
4.0km 2.01 -33.1 262 -545 
5.0km 2.58 -48.8 559 -2120 
2.5 km 0.925 -11.4 101 -209 
3.0km 1.44 -21.5 136 -234 
3.5 km 1.09 -16.8 109 -166 

Precipitating 4.0km 0.950 -14.1 9304 -134 
Ice 5.0km 1.65 -32.0 228 -415 

6.0km 1.97 -40.4 268 -487 
8.0km 1.38 -44.5 541 -2060 
10.0 km 1.80 -86.0 1616 -9325 
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Latent Heating from TRMM 

C.I Background 

The cooling of the atmosphere through radiative processes is largely balanced by the release 

of latent heat by precipitation. This is particularly true in the tropics which accounts for 

two thirds of global precipitation (Simpson et aI., 1996). In this appendix, profiles of latent 

heating derived using the GPROF algorithm are presented to complement the radiative 

heating calculations of Chapter 5. 

When averaged over a suitably large horizontal domain, small-scale eddies in the hor­

izontal wind components can be neglected, and the "apparent" atmospheric heat source 

can be written as the sum of vertical eddy flux convergence of heat, latent heating from 

condensation, evaporation, and sublimation, and radiative cooling (Yanai et aI. (1973), Tao 

et aI. (1993), and Olson et al. (1999)). Letting c, e, j, m, d, and s represent the rates of 

condensation, evaporation, freezing, melting, deposition, and sublimation per unit mass of 

air, and denoting the latent heats of vaporization, fusion, and sublimation by Lv, L f and 

L s , we have 

where 7r = (p/lOOOmb)R/cp with R the dry gas constant and cp the specific heat of air at 

constant pressure. () is the potential temperature, w the vertical velocity, and p is pressure. 

The overbar denotes horizontal averages while the primes denote deviations from these 

means. The first term accounts for the eddy flux contribution to the total heating and Q R 
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denotes the radiative heating component. The remaining terms constitute the latent heating 

due to all relevant hydrometeor phase changes and will be the focus of this section. 

Provided a spatial and temporal domain large enough to encompass the geographic 

evolution and life-cycle of the cloud complex is considered, the LH terms can be vertically 

integrated from the surface to the top of the cloud to yield 

where R is the surface precipitation rate. Thus the column-integrated LH is, in a space-time 

average sense, related to the total condensate removed from the system by precipitation 

processes. 

Profiles of LH not only depend on profiles of condensate and water vapor but also on 

the dynamics of the local environment and are considerably more challenging to estimate 

as a result (Olson et aI., 1999). Such information is not readily available from the TRMM 

measurements alone and must, therefore, be introduced from an external source. In the ab­

sence of observations, cloud resolving models provide the most complete source of cloud 

dynamics infonnation. Yang and Smith (1999a,b, 2000) (the last of which will hereafter be 

referred to as YS3), for instance, incorporate CRM dynamical information by parameteriz­

ing local vertical motion in terms of the constituent hydrometeor water contents viz 

where Cloudi, Raini, Graupeli, I cei, and Snowi are the water contents of the various 

species in the University of Wisconsin-Numerical Modeling System (UW-NMS) CRM. 

Following YS3, LH due to hydrometeor species, X, is given by the vertical derivative of its 

mass flux, R'X, which depends on vertical fluxes of condensation or deposition. The total 
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LH at any level, z, in the atmosphere is determined by 

where cp is the specific heat at constant pressure, 9 is the acceleration due to gravity, and 

Lv and Lh are the latent heats of vaporization and fusion, respectively. The crux of the 

model lies in the assumptions for computing the vertical mass fluxes for rain, liquid cloud 

droplets, precipitating ice, and ice cloud droplets, denoted with subscripts rp, cd, pi, and id, 

respectively.The mass fluxes depend on the terminal velocity of the precipitating particles, 

W x, and the local vertical velocity W through 

R*X(z) = - [Wx(z) + W(z)] LWCx(z) (C.S) 

Required terminal velocities can be derived from gravitational fallout equations based 

on aerodynamical considerations and appropriate assumptions regarding particle size and 

shape (eg. a MP distribution of spherical particles), while the liquid water contents, LWCx , 

are retrieved by the algorithm. The local vertical velocity in model level i is then deter­

mined using Eqn. (C.3) providing all supplemental information needed to compute LH via 

Eqn. (C.4). This approach, while relatively straight-forward, adds the element of uncer­

tainty associated with parameterizing the highly variable wind speed to the already difficult 

task of retrieving profiles of multiple hydrometeor classes from passive microwave obser­

vations. 

Tao et al. (1993,2001) have suggested a different approach involving CRM results in a 

more direct way. Their approach, the convective-stratiform heating (CSH) algorithm, is to 

select an appropriate mean region- and cloud type-specific LH rate profile derived based on 

GCE CRM simulations. A convective/stratiform classification is used as a criterion for se­

lecting a particular profile and the result is then scaled according to a retrieved near-surface 
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rainfall rate. While this method is conceptually simple and avoids some of the uncertainties 

incurred in passive microwave cloud profile retrievals, it incurs a potentially substantial and 

difficult to quantify uncertainty owing to its strong dependence on the CRM-derived LH 

estimates. 

While each of these methods has its merits, the estimates presented here derive from the 

GPROF algorithm itself. The method, described in detail by Olson et al. (1999), retrieves 

cloud, precipitation and LH simultaneously through the BMC techniques described earlier. 

LH estimates associated with each cloud profile in the a priori cloud database are computed 

directly using the CRM. The retrieved LH profile is composed of a weighted-average of all 

profiles in the database whose simulated multi-spectral microwave T B signature matches 

that observed by the TMI in the same way as the hydrometeor water contents themselves. 

This method, too, relies heavily on CRM-derived estimates of LH but averages only those 

profiles whose spectral signatures match those observed removing some, but not all, of the 

non-uniqueness inherent in the CSH approach. 

C.2 GPROF Latent Heating Rates 

Figure C.1 presents a profile of latent heating superimposed on profiles of daytime and 

nighttime heating rates for the 12 mmh-1 rain case presented earlier. As noted earlier, LW 

cooling is confined to a thin layer near cloud top but SW heating due to absorption by 

cloud ice persists through the top 5 km of the cloud. Surprisingly, the latent heat release 

by precipitation at lower levels in the cloud is rather weak by comparison. Despite being 

spread over a greater vertical range, the column-integrated latent heating resulting from this 

profile is only 200 Wm-2 or 1.66 Kday-l compared to a column radiative heating of 1.84 

Kday-l. This result is contrary to many typical latent heating profiles in the literature. Tao 

et al. (2001), for example, present a collection of profiles from a variety of prior studies. 

The minimum convective latent heating profile from the set predicts a maximum heating of 
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Latent Heating from GPROF 
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Figure C.1: Profiles of radiative and latent heating for a single precipitating pixel (R = 11 
mmh-1). 

approximately 40 Kday-l for a rainrate of 12 mmh-1. 

With this concern in mind, we will proceed to examine a more substantial data set in 

the hopes that the previous example was an isolated anomaly. When integrated in the 

vertical and spatially and temporally averaged, the GPROF estimates should provide a 

reasonable measure of the large-scale latent heat release in the tropics. Figure C.2 presents 

column-integrated latent heating averaged over the month of February 1998 as well as 

monthly-mean cross-sections of latent heating at 2, 5, and 8 km. The maps show that latent 

heating generally tracks the heavy precipitation expected in the Intertropical Convergence 

Zone (ITCZ) and South Pacific Convergence Zone (SPCZ). Isolated regions of strong latent 
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Figure C.2: Monthly mean column latent heating and cross-sections at 2.0, 5.0, and 8.0 km 
as retrieved by GPROF. 
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heat release are also present in the Gulf of Mexico and along the Atlantic coast of the 

United States. The monthly mean cross-sections of latent heating illustrate the height in 

the vertical where the majority of latent heating occurs. Latent heating is extremely weak at 

2 km reflecting the fact that most precipitation formation occurs higher in the atmosphere. 

Latent heat release at 5 and 8 km are comparable in magnitude and much larger than at 2 km 

indicating that the condensation and deposition processes leading to precipitation formation 

occur between these levels. The present results agree qualitatively with similar figures from 

Tao et al. (2001) but significantly underestimate the magnitude of latent heating by a factor 

of 10. 

Monthly mean surface rainfall and a corresponding estimate column-integrated latent 

heat release is presented in Figure C.3. On a tropic-wide and monthly mean sense, these 

estimates, derived using Equation (C.2), provide a reasonable estimate of the column latent 

heating in the tropics for February 1998. The fact that these estimates, while exhibiting 

similar a spatial distribution, are more than an order of magnitude larger than those ob­

tained through direct vertical integration of the latent heat profiles retrieved using GPROF 

confirms that there is a problem with the latter. 

While there is clearly a need for further refinement to the latent heating estimates pre­

sented here, the results demonstrate that it is feasible to simultaneously infer both radiative 

and latent heating using the TRMM platform. It is likely that either the latent heating as­

signed to each cloud and precipitation database by the CRM is in error or that information 

is being lost in the generation of the FOV-averaged database used as input to the version 

of the GPROF algorithm used here. It should be noted that alternative versions of the al­

gorithm have been used by other investigators to derive more reasonable results (see, for 

example, the afore mentioned Olson et al. (1999) and Tao et al. (2001». It is, therefore, 

likely that the error will be fixed in the very near future. 
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Mean Surface Rainrate (Feb. 1998) 
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Figure C.3: GPROF monthly mean rainfall and associated column-integrated latent heat 
release for February 1998. 

C.3 Uncertainties 

In light of these observations, uncertainty estimates for the latent heating rate estimates de­

rived in the present study are somewhat pointless. It is still useful, however to present the 

latent heating component of the GPROF uncertainty derived in Chapter 3 as they will apply 

when the model is corrected. Error statistics compiled over a number of TRMM orbits are 

presented in Figure CA. It is interesting to note that the uncertainties are largest in and 

around the climatological melting layer at 5-6 km. This reinforces the notion that numer­

ous distributions of liquid and ice give rise to very similar passive microwave brightness 

temperatures. Thus the precise distribution of latent heat release, which depends strongly 
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Figure CA: Uncertainties in GPROF latent heating estimates assuming the latent heating 
assigned to each profile by the CRM is perfect. 

on the specific distribution and phase of the particles forming the rainfall, is difficult to 

determine uniquely given the TMI observations alone. 

These estimates assume that the latent heating estimates assigned to each cloud pro­

file are not biased. Since latent heating does not influence the retrieval in any way once 

the cloud database is generated, it relies on the fact that the CRM generated latent heating 

profiles are, in a mean sense, representative of nature. Provided this is true, Figure CA 

provides an appropriate estimate of uncertainty since the model predicts that the more scat­

ter there is in the relationship between TMI T BS and latent heating, the more uncertain the 

estimate of latent heat release is for a given set of hydrometeor water contents. 

There is debate as to the amount of temporal and spatial averaging required to satisfy 
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the assumptions governing the use of Equation (C.2). It seems reasonable, however, that on 

a monthly timescale and over a region of a few tens of degrees, total precipitation should 

provide a reasonable proxy for total latent heating. In that case the uncertainty in surface 

rainfall estimates and latent heating should be identical. Thus the uncertainty in total latent 

heat release derived using monthly-mean GPROF surface rainrates will be on the order 

of 50 %, considerably more accurate than that anticipated for retrievals of instantaneous 

profiles of latent heating. 
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Complementary Information from Spaceborne Radars 

Satellite observations are not restricted to passive microwave radiometers. Alternative pas­

sive sensors such as those operating at visible and infrared wavelengths, those which mea­

sure broadband fluxes, and lightening detectors as well as active instruments which include 

radars and lidars are either currently in operation or planned for the near future. Each sys­

tem has spawned its own unique approaches to the retrieval problem which employ distinct 

forward models to estimate unique sets of retrievables. While it is beyond the scope of this 

dissertation to study all such instruments, the profiling capabilities of spaceborne radars, 

their recent use in global precipitation observations from TRMM, and the fact that they too 

operate at microwave frequencies, justifies exploring them in greater depth. 

Since each reflectivity measurement from a range-resolved radar system can be at­

tributed to the hydrometeors in a distinct volume of the atmosphere, radar observations 

are well-suited to cloud and rainfall profiling applications. Making use of this information 

is complicated by microphysical assumptions such as DSD and the shape and phase of the 

hydrometeors in the scattering volume, all of which add a degree of non-uniqueness to 

radar retrievals. The problem of characterizing the information contained in radar observa­

tions and its implications for uncertainties in rainfall retrievals is, therefore, of considerable 

interest to the search for alternatives to the passive microwave techniques described above. 

In this appendix we begin to address this problem through the development and preliminary 

analysis of an algorithm for retrieving rainfall profiles from attenuating spaceborne radars. 
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D.I Introduction 

The profiling capabilities of spaceborne radars have the potential to add vertical structure 

information to complement techniques based exclusively on passive measurements. As a 

result, the TRMM carried the first radar designed for precipitation measurements flown in 

space. Given the success of the PR, which has been operational for more than three years, 

future spaceborne radar missions are being discussed. The potential for extensive spatial 

coverage offered by satellite-based radars has also been recognized by the CloudSat science 

team (Stephens et aI., 2000) and a 94 GHz Cloud CPR will be flown on that satellite which 

may be capable of measuring light rainfall as well as clouds. As a result of the logistics of 

flying a radar in space, most notably size, weight, and power restrictions, only frequencies 

greater than 10 GHz are practical for a spaceborne radar system (Fujita and Satake, 1997). 

Consequently, all spacebome radars are subject to significant attenuation caused by the 

rain and clouds they are measuring necessitating new radar-rainfall retrieval algorithms 

which explicitly account for attenuation effects. Hitschfeld and Borden (1954) were the 

first to propose a method for directly correcting measured reflectivities for the attenuation. 

Since then numerous retrieval schemes have been developed which incorporate aspects of 

this early work along with the more recent technique of constraining retrievals using path­

integrated attenuation (PIA) derived from surface return echoes. Iguchi and Meneghini 

(1994), Marzoug and Amayenc (1994), and Amayenc et aI. (1996) describe many such 

algorithms and evaluate them in the context of airborne and spaceborne operation. 

Many ground-based radar retrieval algorithms are based on the Rayleigh approxima­

tion where raindrops are assumed to be small compared to the radar wavelength and some 

assumed DSD providing simple relationships between radar reflectivity and rainrate. From 

an operational standpoint these algorithms are computationally efficient, simple to imple­

ment, and produce useful results but they incur uncertainties which are difficult to estimate 

as a result of their underlying assumptions. Errors associated with the assumption of an 
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idealized size distribution were pointed out as early as 1948 by Wexler (1948) while Gunn 

and East (1954) showed that the Rayleigh approximation is not valid for wavelengths less 

than 3 cm (or frequencies greater than 10 GHz) emphasizing the need for an algorithm 

which isn't restricted by such assumptions in spaceborne applications. This has been rec­

ognized by the designers of the TRMM PR algorithm who select a DSD based on rain type 

and the presence or absence of a bright band and correct the DSD based on a PIA esti­

mate (Iguchi et aI., 2000). Another shortcoming of many algorithms their inability to adapt 

measurements from other instruments except in a limited capacity. With the growing trend 

towards multi-sensor platforms, exemplified by the TRMM satellite, it is important to de­

velop algorithms better suited to combining information from a variety of different sources 

simultaneously in rainfall retrievals. Again, this has been recognized by the TRMM sci­

ence team and a first-generation combined PR-TMI algorithm has been developed which 

employs a Bayesian approach to retrieve DSD parameters from PR reflectivities with a PIA 

estimate derived from the 10.6 GHz channel of the TMI (Haddad et aI., 1997). 

For model validation and data assimilation applications, rigorous estimates of the un­

certainty in the retrieved rainfall profiles are required but many algorithms are limited to a 

rough estimate of their accuracy at best. For this reason, all operational TRMM algorithms, 

including the two PR algorithms described above, are required to provide estimates of their 

accuracy and considerable emphasis will be placed on error diagnostics for the algorithm 

presented below. 

This appendix presents a complete algorithm for retrieving profiles of rainfall from 

spaceborne radar measurements which seeks to address these issues and provide an al­

ternate method of inversion to either of those currently employed in the TRMM algo­

rithms. This new algorithm, the Constrained Optimal estimation Rainfall Retrieval AL­

gorithm (CORRAL)!, differs from those of many previous works in that it can be adapted 

1 This acronym was adopted at the expense of the more humorous alternative: Constrained Optimal esti­
mation Rain Profiling SystEm (CORPSE) which runs the risk of foreshadowing a somewhat dubious fate. 
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to use any DSD, requires no simplifying assumptions regarding particle shape provided 

backscatter information can be computed, and is readily modified to include any additional 

measurements that are available. Furthermore, the CORRAL algorithm is accompanied by 

a suite of error diagnostics which facilitate sensitivity studies and uncertainty analyses of 

the resulting rainfall estimates for the purposes of comparison with the passive microwave 

technique described earlier. As opposed to presenting radar as an alternative to radiometer 

observations, a concerted effort will be made to highlight the complementary nature of in­

formation from active and passive instruments. With this frame of mind, the methodology 

herein provides the groundwork necessary for the simultaneous use of active and passive 

information in future rainfall retrievals. The CORRAL retrieval method and some syn­

thetic retrieval examples are summarized in "An Estimation-based Precipitation Retrieval 

Algorithm for Attenuating Radars", to appear in The Journal of Applied Meteorology. 

D.2 Attenuating Radar Forward Model 

In general, the return power, Pn received by a radar which transmits a power Pt at wave-

length A. is given by 

(D.l) 

where G is the antenna gain, e and ¢ characterize the half-power beamwidth of the pulse, 

h is the length of the emitted pulse, and r is the range to the target. With kext defined as 

the attenuation coefficient, the exponential factor accounts for the two-way attenuation due 

to all atmospheric constituents along the slant path, s, of the radar beam. Finally, fJ is the 

radar reflectivity per unit volume, V, given by 

(D.2) 
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where the (Jb are the backscatter cross sections (per unit volume) of the particles in the 

target volume. 

Ground-based radar models assume that the particles in the target volume are much 

smaller than the wavelength of the incident radiation, 7rf < < 1, and use the Rayleigh 

approximation for the backscatter cross-section yielding 

(D.3) 

where Z = J D6 N(D)dD is the Rayleigh reflectivity factor. Here N(D)dD is used to 

denote the number of particles with diameters between D and D + dD in the target vol­

ume. K = :~~~ is the dielectric factor of a scattering particle where m = n - ik is 

the wavelength and temperature dependent complex refractive index of the scatterers. At 

the frequencies used in most spacebome applications, the Rayleigh approximation breaks 

down in rain. Figure D.la illustrates the ratio of Mie to Rayleigh reflectivity factors at 

14, 35, and 94 GHz as a function of size parameter, X = 7r}!, assuming spherical liquid 

raindrops distributed according to the MP DSD. Plotted in this way, the frequency depen­

dence of the ratio can be attributed solely to differences in the real part of the refractive 

index which is greatest at 14 GHz and lowest for 94 GHz. The results show that using 

the Rayleigh approximation leads to large errors for size parameters greater than about 

0.15 when integrating over a size distribution. Cast as a function of rainfall rate in Figure 

D.lb, we deduce that the Rayleigh approximation is only suitable for rainrates less than 2.5 

mmh- 1 at 14 GHz, and is not applicable in any appreciable rainfall at 35 or 94 GHz. 

Based on Figure D.l, we adopt a more general form for the reflectivity, 'rj, 

'rj = ! (JbdV = l ! QscaP (8 = 180)7r D2 N(D)dD 
v 

(D.4) 

where P(8 = 180) is the scattering phase function evaluated in the backscatter direction, 
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Figure D.I: Ratio of effective reflectivity computed using Mie theory to Rayleigh reflectiv­
ity as a function of: (a) effective size parameter, and (b) rainrate. 

Q sea is the scattering efficiency equal to the ratio of the particle's scattering cross section 

to it's geometric cross section, and N(D) is an arbitrary number distribution of particles as 

a function of their effective diameter, D. A series of tables of P(8 = 180) and Qsea are 

created as a function of particle size using Mie theory for spherical particles or some al­

ternate computational method for more complicated particle shapes. This allows flexibility 

with regard to particle size, shape, and number concentration, all of which can be adapted 

to any given problem as needed. 

Combining Equations (D. I), (D.3), and (DA), we now construct a model to simulate an 



AppendixD Spaceborne Radars 274 

effective reflectivity factor for any atmospheric profile 

(D.5) 

Un attenuated reflectivities are computed at each level along with an attenuation correction 

due to the hydrometeors in that level. Each reflectivity is then corrected in tum for the 

attenuation through the levels above it. 

D.3 Sensitivity of Spaceborne Radars to Rainfall 

Prior to inverting this radar equation to estimate rainfall from observations of radar re­

flectivity, it is instructive to review the pertinent physical mechanisms which give rise to 

these measurements at frequencies typical of spacebome radars and briefly investigate the 

sensing capabilities of a few such radars. 

D.3.1 Scattering and Absorption of Radar Beams 

Figure D.2 presents effective reflectivity factor as a function of rainrate for spacebome 

radars operating at 14, 35, and 94 GHz. MP distributions of spherical liquid and ice parti-

cles are assumed and attenuation is neglected. Frequencies are chosen to be representative 

of the currently operational TRMM PR (14 GHz), the CloudSat CPR to be flown in the 

near future (94 GHz), and a second frequency proposed for the next generation PR (35 

GHz) and axes have been set to facilitate later comparison with a similar figure in which 

attenuation has been included. 

In the Rayleigh regime, characterized by particles which are small with respect to the 

radar wavelength, Zef f increases linearly with the logarithm of rainrate, consistent with 

power-law relationships of the form Z = aRb, commonly employed in ground-based radar 

retrievals. As rainrate increases and particles become larger, the backscatter cross-section 
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Figure D.2: Effective reflectivity factors as a function of rainrate at 14,35, and 94 GHz in 
the absence of attenuation. 

transitions from dependence on particle size to the sixth power under the Rayleigh ap­

proximation to a dependence on the square of particle size in the large particle limit. At 

the same time, the rate of change of effective particle size with rainrate decreases as rain­

rate increases2 further reducing the sensitivity of Zeff to changes in rainrate in heavy rain. 

These effects are particularly evident at 94 GHz where the relationship between Zeff and 

the logarithm of rainrate deviates substantially from linear even in light rain. 

In liquid precipitation, non-Rayleigh effects are compounded by absorption within the 

particles which reduces the amount of radiation they scatter relative to non-absorbing ice 

2For a MP distribution, effective radius goes as rainrate to the 0.21 power. ~, therefore, goes as R-O.79. 
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particles. When particles are small compared to wavelength, this effect is minimal relative 

to the factor of five difference in the value of [K[2 for liquid and ice so liquid droplets 

appear "brighter" than their frozen counterparts. At size parameters approaching unity, 

however, absorption in liquid droplets exceeds this factor of five and backscatter from ice 

exceeds that from liquid droplets. This results in a fundamental difference between low and 

high frequency radars when observing precipitating particles. At 14 GHz, effective size 

parameters are less than 1 for all rainfall thus liquid raindrops have greater reflectivities 

than equivalent sized ice particles. At 94 GHz, however, most appreciable rainfall contains 

enough large particles for absorption effects to dominate and ice particles appear brighter 

than liquid raindrops to the radar. Reflectivities at the intermediate frequency primarily 

reflect the difference in [K[2 but as rainrate increases the reflectivities of liquid and ice 

particles converge, evidence of the fact that the effective size parameter approaches unity 

in heavy rain at 35 GHz. 

Backscattered radiation from a particular atmospheric volume suffers from attenuation 

due to interactions with molecules and other particles along the path from the radar to and 

from the target volume. Following Battan (1973), the loss of intensity in a radar beam due 

to attenuation can be expressed (in decibels, dB) as 

(D.6) 

where the /'\, are attenuation coefficients in dBkm-1 for gas, cloud, and precipitation and R 

represents the range of the target from the radar. At frequencies characteristic of ground­

based weather radars, attenuation by cloud and gases is negligible by virtue of their ex­

tremely small size relative to the wavelength of the incident radiation. At the higher fre­

quencies characteristic of spacebome radars, however, absorption by molecular Oxygen 

and water vapor as well as liquid cloud droplets can contribute a significant fraction of the 

total attenuation suffered by the radar signal. 
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Table D.1: Two-way attenuation (in dB) through a number of standard cloud-free atmo­
spheres between TRMM PR (14 GHz) and CloudSat CPR (94 GHz) and three representa­
tive atmospheric levels (lOkm, 5km, and 0.5km). 

McClatchey 14GHz 94GHz 
Profile lOkm 5km 0.5km lOkm 5km 0.5km 

Tropical 0.0149 0.0471 0.2923 0.1211 0.5499 5.4541 
Midlatitude Summer 0.0140 0.0433 0.2313 0.1144 0.4760 4.0841 
Midlatitude Winter 0.0124 0.0385 0.1366 0.0994 0.3520 1.8200 
Subarctic Winter 0.0114 0.0373 0.1178 0.0908 0.3214 1.3121 

Examples of gaseous attenuation over the two-way path between two spacebome radars 

and various depths in the atmosphere are presented in Table D.1. Four McClatchey standard 

atmospheres (McClatchey et aI., 1972), spanning the range of water vapor concentrations 

observed globally, are examined and results are presented in dB, (defined as 10l0g(e[ -

2 I; kext(s)ds]). Attenuation by gases is clearly negligible at the lower frequency TRMM 

PR reaching a maximum of 0.3 dB through the entire moist, tropical atmosphere, well 

within the instrument's uncertainty. The cloud radar, on the other hand, experiences sig­

nificant attenuation in the lowest 5 km of the atmosphere which strongly depends on the 

amount of moisture present. Gaseous attenuation at 94 GHz, therefore, ranges from 1.5 

and 6 dB and must be accounted for in the retrieval. 

At microwave frequencies, attenuation by small cloud particles is dominated by ab­

sorption since, in the Rayleigh approximation, the absorption efficiency, Qabs, is propor­

tional to the ratio of the particle radius to the wavelength of the incident radiation while 

the scattering efficiency, Qsca, is related to the fourth power of this ratio. Specifically, 

Qext ~ Qabs = 4xlm{ - K}, so the attenuation in dBkm-1 due to cloud particles can be 

written 
67r 

K,c = kcw = 0.4343 p'\ Im{ -K}w (D.7) 

where kc is a coefficient expressed in dB km- 1 (g m-3)-1, wand p are the water content 

and density of particles of the species under consideration, and ,\ is the wavelength of 
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Table D.2: Parameters describing attenuation due to liquid and ice cloud particles at 14 and 
940Hz 

Liquid Ice 
Parameter 140Hz 940Hz 140Hz 940Hz 

-8°C 10°C 20°C -8°C 10°C 20°C -20°C -20°C 

n 5.39 6.89 7.44 2.53 3.04 3.34 1.78 1.78 
k 3.03 2.78 2.41 1.23 1.75 2.04 .0007 0.003 

Im{-K} 0.063 0.035 0.027 0.217 0.117 0.153 .0003 0.001 
kc 0.239 0.135 0.102 5.72 4.68 4.05 .0011 0.029 

the incident radiation. Table D.2 summarizes real and imaginary parts of the refractive 

index, 1m { - K}, and kc for liquid and ice particles at selected temperatures. Due to their 

rigid lattice structure, ice particles have very small imaginary refractive indices and do 

not absorb radiation. As a result, attenuation by cloud ice is negligible at all microwave 

frequencies. Since typical cloud liquid water contents range from 0.1 kgm-3 in stratus 

to, at most, 2.0 kgm-3 in towering cumulus, attenuation by liquid cloud particles is also 

negligible at 140Hz. At 940Hz a 1km thick stratus cloud with a LWC of 0.1 kgm-3 

gives rise to approximately 1 dB of attenuation, already significant. Attenuation from thick 

cumuli may exceed 50 dB at 940Hz, in some cases. 

The effects of attenuation by rainfall can seldom be neglected at the frequencies char­

acteristic of spacebome radars. Figures D.3 and D.4 show the total attenuation, /'l,~xt, and 

its components due to scattering, /'l,~ca and absorption, /'l,~bs, as a function of rainrate for MP 

distributions of liquid and ice spheres, respectively. Unlike cloud-sized droplets, attenua­

tion from liquid precipitation derives from a combination of both radiation absorbed and 

scattered away from the radar beam while scattering dominates attenuation from frozen 

precipitation. Regardless of phase, attenuation by precipitation increases by orders of mag­

nitude with increasing frequency. Neglecting cloud and atmospheric gases, a 4km thick 

column of rainfall at 15.0 mmh-1 results in 3 dB of attenuation at 140Hz compared to 43 

dB at 940Hz. This will playa critical role in the detection capabilities of each radar and 

will ultimately determine the range of rainfall intensities one might expect to retrieve with 
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Figure D.3: Attenuation and its scattering and absorption components in dBkm-1 for liquid 
rain assuming a Marshall-Palmer DSD at 14,35, and 94 GHz. 

each system. 

D.3.2 Rainfall Detection Capabilities of Spaceborne Radars 

Equipped with a basic understanding of the fundamental principles governing the inter­

action of a radar beam with the atmosphere we can proceed to apply the forward model 

outlined in Section D.2 to simulate spaceborne radar observations of realistic cloud and 

precipitation structures. It is once again useful utilize the GPROF database of cloud and 

precipitation profiles for a number of reasons. The database provides a large collection 

of physically-based, CRM-generated cloud and precipitation profiles which span a wide 
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Figure D.4: As in Figure D.3 but for frozen hydrometeors. 
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range of rainfall intensities and generation mechanisms and its use furnishes some degree 

of continuity with the remainder of the dissertation. Also the hydrometeor contents in the 

database have been averaged over the field of view (FOY) of the 85.5 GHz channel of the 

TMI instrument which is approximately the same size as that of the TRMM PR3• This FOY 

is, however, much larger than f'V lkm footprint of the CloudSat CPR but no attempt is made 

to account for this since this study is primarily of a qualitative nature. 

Using Equation (D.5) profiles of Zeff have been modeled for all cloud structures in 

the database accounting for backscatter and attenuation from the four hydrometeor classes 

3The PR scans between ± 17° cross-track so its footprint varies from a circle of diameter 4.3km at nadir 
to an ellipse with a major axis of approximately 5km at the limbs. 
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as well as attenuation due to gases. The effective reflectivity in the range gate nearest 

the surface was then compared with an appropriate minimum detectable signal (MDS) for 

each radar to determine the range of profiles for which a surface rainfall signature can be 

detected with each. Following the instrument specifications summarized in Kummerow 

et aI. (1998), the TRMM PR MDS is set to 18 dBZ while that of the CloudSat CPR is set to 

-30 dBZ after Miller and Stephens (2001). Preliminary discussions regarding the proposed 

35 GHz frequency for GPM place its MDS at 8 dBZ. 
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Figure D.5: (a) PDF of near-surface rainrate for the entire GPROF algorithm. (b)-(d) Frac­
tion of profiles for which the reflectivity return from near-surface rainfall exceeds the radar 
minimum detectable signal for the TRMM PR, a hypothetical second frequency (35 GHz) 
on GPM, and the CloudSat CPR. 
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A PDF of near-surface rainrates from the GPROF algorithm is presented in Figure D.5a. 

The remaining plots illustrate the fraction of profiles (indicated by the shaded region) for 

which surface rainfall is detectable using each of the three radars. The different character of 

each radar is clearly evident. The TRMM PR is well-suited for observing rainfall between 

1 and 35 mmh- 1 but is unable to detect extremely light rain. The CPR, on the other hand, is 

capable of detecting cloud and all light rain up to approximately 4 mmh-1 but suffers from 

attenuation in heavier rainfall. The 35 GHz frequency provides an intermediate range of 

detection capable of observing a small fraction of very light rain scenes as well as moderate 

rainfall up to 11 mmh- 1 before succumbing to the effects of attenuation. 

A notable characteristic of the database is that its rainrate PDF heavily favors light 

rain. Since the database derives from realistic CRM simulations of tropical rainfall events 

which employ detailed treatments of microphysical and dynamical processes, we expect 

the resulting distribution of rainfall to be somewhat representative of nature, that is, after 

all, the basis for its use in GPROF. When comparing individual events, considerably more 

precipitation results from strong rain systems than their light rain counterparts but if the 

frequency of occurrence of each rain type resembles that in the database, light rain may 

account for a significant fraction of total tropical precipitation4• 

Figure D.6 displays the results in Figure D.5 in terms of the normalized cumulative 

probability distribution (CDF) of near-surface rainfall rate in the GPROF algorithm. Note 

that 55 % of the profiles in the database correspond to rain lighter than 1 mmh-1
. As a 

result, while the range of rainrates detectable at 14 GHz far exceeds that at 94 GHz, both 

the PR and CPR detect roughly the same percentage of total scenes in the database. It must 

be noted, however, that in terms of total precipitation, which is proportional to the integral 

under the curves, the PR detects a far greater fraction of the total rainfall at the surface than 

either of the other two radars. 

4Extension to midlatitudes, as is proposed for the GPM, will likely result in a greater frequency of light 
rain events suggesting that the fraction of global rainfall which falls as light rain may be even more substantial. 
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Fig\lre D.6: The results displayed in Figure D.5 expressed in tenns of nonnalized CDFs. 

At the root of these results are the competing effects of backscatter and attenuation. 

Average two-way attenuation over the total atmospheric column and attenuation-corrected 

reflectivities from the rainfall layers nearest the surface are plotted as a function of near­

surface rainrate in Figure D.7. By comparing average reflectivities with the MDS of each 

radar, an approximate range of detectable rainrates can be deduced which agrees quite 

well with the results presented above. At 94 GHz, for example, the average reflectivity 

drops below -30 dBZ for near-surface rainrates in excess 4 mmh-1 implying that, in an 

average sense, the CPR is capable of detecting surface rainfall in scenes characterized 

by rainrates below this threshold. At 14 GHz, on the other hand, average reflectivities 
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Figure D.7: Average attenuation and attenuation-corrected reflectivity from near surface 
rainfall plotted as a function of rainrate at 14, 35, and 94 GHz. Black dotted lines indicate 
the minimum detectable signals of each radar. 

exceed 18 dBZ in rainfall between 0.6 and 45 mmh-1 indicative of the utility of the PR 

for measuring tropical rainfall. In addition, the figure clearly demonstrates the physical 

mechanism limiting the higher frequency radars to low rainrates, namely the overwhelming 

effects of attenuation, and that which limits the utility of the lower frequency TRMM PR in 

the extremely light rainfall regime, the relative transparency of the atmosphere to 14 GHz 

radiation. It is interesting to note the differences between Figure D.7 and the idealized 

un attenuated reflectivities shown in Figure D.2. The impact of attenuation from realistic 

cloud profiles is clearly a critical factor in determining the detection capabilities of any 
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radar. 

It is also important to recall that these results apply only to the range gate nearest the 

surface which, in effect, maximizes the effects of attenuation. In profiles for which attenu­

ation at 94 GHz precludes the detection of surface rainfall, the CPR may still offer rainfall 

and cloud information from higher levels in the atmosphere. The inability of the 14 GHz 

radar to detect light rain, however, is due to its relative transparency to the incident radar 

beam so very little information, if any, is expected from other atmospheric levels. This 

point is illustrated in Figures D.8-D.lO which present profiles of all reflectivities which 

lie above each radar's MDS for three different rainfall intensity ranges. All profiles with 

surface rainrates within ± 5 % of the value listed in the plot titles are presented. 

The upper panel of Figure D.8 shows that in very light rain the TRMM PR provides lim­

ited information restricted to levels in and around the melting layer in some profiles while 

receiving no discernible signal in others. Rainfall in the lowest 2km of the atmosphere is 

largely missed at 35 GHz also. The CloudSat CPR, on the other hand, is designed to mea­

sure cloud and receives strong backscatter signals from all profiles including a significant 

fraction of the ice clouds region above the rainfall. 

At 3 mmh-1 (middle panel) all three radars detect a majority of the near-surface rain­

fall. The PR receives a near-surface signal from all profiles while the 35 GHz radar misses 

only a few profiles characterized by geometrically thick cloud and precipitation profiles 

with appreciable signals extending through the top model layer at 18km. At 94 GHz the 

more severe attenuation results in a greater fraction of cases where the signal at the surface 

is completely blocked by the cloud and precipitation above it but in all but a few cases, the 

radar receives a discernible signal down to the 3km level. The bottom panel, which illus­

trates profiles with surface rainrates of 20 mmh- 1, is the antithesis of the top panel. The 

surface rain signal is blocked for only a single profile at the frequency of the PR, reflecting 

its design for tropical rainfall measurements. Both the 35 and 94 GHz radars suffer from 
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Figure D.8: Profiles of radar reflectivity at 14 GHz for GPROF cloud structures correspond­
ing to extremely light rain (top), light rain (middle), and moderate to heavy rain (bottom). 
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attenuation effects at this rainrate. At 35 GHz, the surface rainfall signal is completely 

attenuated in more than half of the cases but information is obtained down to 1.5 km for 

75 % of the profiles. Remarkably, despite the strong attenuation, the CloudSat CPR is able 

to detect rainfall down to at least 3 km in 50 % of the cases. Even so, the CPR does not 

detect rainfall in the lowest range gate for any of the profiles at this rainfall intensity. Nev­

ertheless, one could envision making some simplifying assumptions regarding the vertical 

distribution of precipitation between the lowest detectable level and the surface in order to 

obtain an, albeit crude, estimate of the near-surface rainrate even in high attenuation. With 

the recent confirmation of the CloudSat mission, this idea warrants further study at least in 

an experimental capacity. 

Figure D.ll illustrates the individual components which comprise the attenuation at 

each frequency for two different cloud and rainfall profiles each of which results in a surface 

rainrate of approximately 5 mmh-l. Both the effects of attenuation from each hydrometeor 

class as well as the principal contributions to the total attenuation as a function of height 

are highlighted at each frequency. The importance of the vertical distribution of cloud and 

precipitation, in particular, the depth of the liquid precipitation column, in determining the 

signal received at the radar is evident. The relatively shallow precipitation in the upper 

three plots results in less than half the attenuation of the deeper precipitation column in the 

lower three. At 94 GHz this amounts to a difference of almost 60 dB and wholly determines 

whether or not the radar can detect the near-surface rainfall. This strong influence of cloud 

and precipitation vertical structure preclude us from assigning rigid quantitative limits on 

the range of detectable rainrates, requiring, instead, that we draw only the general qualita­

tive conclusions noted above regarding the capabilities of each radar. Furthermore, there is 

an important distinction between merely detecting rainfall and accurately determining its 

intensity. The remainder of this appendix is dedicated to the design and implementation of 

a new inversion algorithm for estimating rainrate profiles from spacebome radars in gen-
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Figure D.ll: Profiles of attenuation at 14, 35, and 94 GHz from each of the GPROF hy­
drometeor classes for two distinct profiles of rainfall both characterized by the same surface 
rainrate (5 mmh- 1). 

eral. I Through synthetic retrievals, discussed below, we hope to gain insight into the rainfall 

measurement capabilities of each radar. 

D.4 Optimal Estimation Approach to Inversion 

Many radar algorithms assume a size distribution and Rayleigh scattering to obtain rela­

tions of the form Z = aRb and k = aR(3 which are directly invertible to obtain rainrate 

given radar reflectivity measurements. These methods have the advantage that they cast 

the problem into a simple analytical form, which results in a computationally quick and 
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relatively simple retrieval algorithm. These assumptions also lead to two potential sources 

of uncertainty: (1) the assumption of a DSD strongly influences the values of a, b, a, and 

f3 and (2) the Rayleigh assumption is not valid for radars with frequencies in excess of 

10 GHz, a characteristic of both the TRMM PR and CloudSat CPR. In addition, the use 

of such functions precludes the addition of information from alternative sources such as 

passive microwave sensors and makes estimates of retrieval uncertainty difficult. Here we 

apply a significantly different technique to invert Equation (D.5) based on the works of 

Rodgers (1976, 1990) and Marks and Rodgers (1993) and applications of their work by 

Engelen and Stephens (1999) and Miller et al. (2000). Within the constructs of this ap­

proach we are able to maintain a high degree of generality in the problem which allows 

one to vary assumed particle size and shape and facilitates the addition of complementary 

information from different sensors if so desired. 

D.4.1 Basic Theory 

Denoting the forward model in Equation. (D.5) by F, a general profile of radar reflectivi­

ties, Z, can be expressed as 

Z = F(R, b) + EZ (D.8) 

where EZ is a vector of measurement uncertainties. For the purpose of illustrating the 

method, we cast the retrieval in terms of the vertical profile of rainrate R (in mmh-1), 

representing all other parameters in the radar forward model by b. This choice is purely 

arbitrary and the algorithm could, equivalently, be developed in terms of any other set of pa­

rameters which completely describe the DSD. An alternate formulation may be particularly 

useful when other observations are available to supplement the reflectivities to constrain the 

shape of the size distribution. In either case, an appropriate F to be used in the retrieval 

can be selected from criteria such as rain type, freezing level, or the presence of a bright 

band and uncertainties in the parameter vector, b, must be explicitly accounted for in the 
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inversion approach. 
I 

Our problem is to estimate the rainrate profile which most likely produced a given 

observed profile of reflectivity. Following Olson et al. (1996), the optimal rainrate profile 

is given by 

E(R) = ! R pdf (R)dR (D.9) 

where pdf(R) is a probability density function proportional to the conditional probability 

that R is the true atmospheric rainrate profile given the observed reflectivity profile, P(R = 

RtruelZtrue = Z). Invoking Bayes' theorem, the probability density function can be recast 

as a product of the probability of observing a reflectivity profile, Z, given a simulated 

reflectivity profile, F(R), and the a priori probability that R is the true rainrate profile 

pdf(R) ex P(ZIF(R))Pa(R) (D.lO) 

Some assumption is now required regarding the shape of the probability distributions 

P(ZIF(R)) and Pa(R). Jaynes (2001) argues that, according to the Principle of Maximum 

Entropy, the Gaussian distribution is the "most honest" representation of errors if only 

the mean and variance of a probability distribution are known. Alternate distributions, 

unless rigorously justifiable, add spurious infonnation to the retrieval therefore biasing the 

results. Since we have no compelling reason to assume any particular shape for the error 

distributions, Gaussian statistics will be adopted so that only distribution mean and variance 

infonnation are introduced in the retrieval. Under this assumption, 

P(ZIF(R)) ex exp[-~(F(R) - ZfSZl(F(R) - Z)] (D.ll) 

where S z is the total error covariance matrix representing the sum of the measurement 

and model errors. Similarly, if Ra represents some a priori guess at a rainrate profile, the 
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probability of finding the true atmospheric rainrate profile R will be expressed as 

(D.12) 

where Sa is the error covariance matrix associated with the a priori guess. The "best" 

estimate of a rainfall profile given these two probabilities is that which maximizes the joint 

probability 

P(ZIF(R))Pa(RIRa) ex: exp [-~[(F(R) - ZfSZl(F(R) - Z) 

+ (R - Ra)TS;l(R - Ra)l] 

or, alternatively, minimizes the scalar cost function 

with respect to the rainrate profile R. The resulting rainrate profile is 

(D. 13) 

(D.14) 

(D.15) 

Here K = of/oR is the Kernel or weighting function representing the sensitivity of the 

model to the parameter being retrieved. From Equation (D.15) it is clear that a model which 

is very sensitive to the rainfall rate profile is desirable since the Kernel functions weight the 

measurement portion of the retrieval. It is worth noting that under the assumptions of un­

correlated, unbiased, Gaussian error statistics, the maximum-likelihood estimate computed 

here is identical to the minimum variance solution (Daley, 1991) which guarantees that R 

estimated using Equation (D.15) will be the best possible fit to the observations given our 

uncertainty estimates. 
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Equation CD. IS) is implemented numerically through a Newtonian iteration scheme 

CD.I6) 

where Sil = (S;;-l + K[SZl K i )-l is the covariance matrix of the retrieved rainfall pro­

file. The iteration proceeds until such time as the covariance-weighted square difference 

between successive estimates is much less than the total number of independent variables 

being retrieved, in this case the number of layers in the atmosphere, Nl 

(D.l7) 

D.4.2 Error Diagnostics 

The preceding optimal estimation formulation of the inversion problem furnishes a number 

of useful diagnostics to measure the quality of the results. The most important of these is 

the covariance matrix of the retrieved parameters 

(D.I8) 

Equation (D.I8) provides a direct estimate of the uncertainty in the retrieved rainrate profile 

due ~o uncertainties associated with the a priori profile, forward model, and measurements 

themselves. The diagonal elements of S R give the variance for the retrieved rainrate at 

each level while the off-diagonal elements indicate correlations between the uncertainties 

in retrieved rainrate at different levels. Returning to the details of the forward model, F, for 

example, uncertainties in the parameter vector b, such as those associated with assumptions 

regarding the highly variable DSD, must be accounted for in the measurement and model 

covariance matrix, Sz. An appropriate Sz dictates the reliability of the observations and 

forward model in the retrieval and ensures a reliable estimate of retrieval accuracy through 
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Equation (D.18). 

Defining the matrix 

(D.19) 

Equation (D.16) can be written 

(D.20) 

In this way, the contributions to the retrieved profile from the measurements and from 

the a priori profile are isolated. In an ideal retrieval, the so-called "a priori matrix", A, 

will be an identity indicating that the retrieval is based exclusively on the measurements. 

Departures from the identity represent a combination of influences from the a priori data 

and reflectivity measurements from different atmospheric levels on the rainrate retrieved at 

a given level. 

Finally, one can investigate the validity of the assumption of Gaussian error statistics 

using the X2-test. If the assumption is valid, 

(D.21) 

will be approximately equal to the number of independent parameters in the retrieval, in this 

case Nt. In cases where our physical assumptions, particularly those relating to the DSD, 

are grossly different from those being observed or in the event that the Gaussian distribution 

and assumed variances do not properly characterize uncertainties in the measurements and 

model, X2 will be much greater than Nt. In global applications, a significant number of re­

trievals characterized large X2 is indicative of over-optimistic error covariance assumptions 

in the algorithm, such as a misrepresentation of the DSD variability encountered by the 

satellite. On the other hand, if X2 is much less than Nt, the measurement, model, and/or a 

priori covariances may have been over estimated and S R will correspondingly overestimate 
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Table D.3: Z-R and k-R parameters used to initialize rainfall retrieval. The distinction 
between the "high" and "low" fits occurs at 17.8 mmh-1 at 14 GHz and 11.0 mmh- 1 at 94 
GHz 

Parameter 14 GHz (low) 14 GHz (high) 94 GHz (low) 94 GHz (high) 
a 155.1 243.4 29.2 42.2 
b 1.61 1.45 0.71 0.55 
a 0.014 0.020 0.68 0.88 

fJ 1.23 1.10 0.78 0.67 

the retrieval uncertainty. 

D.4.3 Algorithm Initialization 

There is generally no "average" climatological profile of rainfall available to use as an a 

priori guess. As a result, we resort to the more traditional relationships 

kext = aR!3 (D.22) 

to obtain Ra and we use this rainfall profile to initialize the iteration. Table D.3 summarizes 

parameters determined assuming a MP size distribution of spherical raindrops and Mie 

theory for the backscatter cross-sections at 14 and 94 GHz. Due to the departure from the 

linear relationship as Mie effects become important, the fit was divided into two regions to 

improve results. The fits at 94 GHz are illustrated in Figures D.12 and D.l3. 

The CORRAL retrieval procedure is illustrated in Figure D.14 and can be summarized 

as follows: 

1. Infer an initial rainrate and extinction coefficient for the upper-most rain layer using 

the appropriate Z-R and k-R relations. 

2. Correct the measured reflectivity in the next layer for the attenuation due to the one 

above it and determine an initial rainrate and extinction coefficient for that layer. 
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Figure D.12: Reflectivity vs. rainrate for a MP distribution of spherical raindrops. 

3. Repeat for all layers, correcting the measured reflectivity of each layer for the atten­

uation due to all layers above it. In the event of a negative or unreasonably large 

rainrate which can result from the instability of the HB method, rainrates are ar­

tifically set either to 0.01 or to a maximum value assigned based on the detection 

capabilities of the radar. 

4. Using this initial profile of rainrate, simulate reflectivities using the radar forward 

model (Equation (D.5». 

5, Compute a new rainrate profile using Equation (D.16). 

6. Iterate until Equation (D.17) is satisfied. 

D.S Synthetic Retrievals 

In order to illustrate the utility of the model, reflectivity profiles with 0.5 km vertical reso­

lution were computed for all cloud and rainrate profiles in the GPROF database assuming 
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Figure D.13: Extinction vs. rainrate for a MP distribution of spherical raindrops. 
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a MP distribution of spherical raindrops and cloud droplets5. These reflectivity profiles 

were then perturbed by adding a randomly distributed noise component and run through 

the CORRAL algorithm to recover the original profile. The noise was set to 1 dB (or 23 

%) for profiles with surface rainrates less than 20 mmh- 1 and 2 dB (or 46 %) for higher 

rainrates to reflect the fact that errors due to particle shape are more significant for larger 

raindrops than smaller ones (Green, 1975). In the retrieval, the measurement covariance 

matrix is assumed to be diagonal with elements equal to 1.0 dB2 (or 4.0, where applicable). 

In light of the concerns discussed earlier regarding the use of such relationships, we assume 

a variance of 25.0 mm2h-2 in all a priori rainrates and all correlations between errors at 

different levels are neglected. In this way, the retrieval is based far more heavily on the 

measurements and the a priori merely serves as an initial guess and an extremely weak 

positivity constraint on the retrieval. In addition, the assumption of high a priori variances 

minimizes errors incurred as a result of neglecting correlations between uncertainties at 

5 As noted previously, the database consists of approximately ten thousand cloud and rainfall profiles vary­
ing from non-precipitating cirrus and stratus clouds to heavily precipitating cumulonimbus cloud complexes 
and represents a wide range of conditions with which to test the CORRAL algorithm. 
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Figure D.14: The CORRAL retrieval algorithm. 

different levels which are, in practice, extremely difficult to determine. In this appendix, 

results will focus on the 14 GHz TRMM PR and the 94 GHz CloudSat CPR. Readers inter-

ested in the performance of the CORRAL algorithm at the intermediate 35 GHz frequency 

proposed for GPM are directed to Appendix E. 

A scatter plot of retrieved surface rainrate against the GPROF input at 14 GHz is pre­

sented in the Figure D.15. The results show excellent agreement for all rainrates below 40 

mmh-l. Significant attenuation by large raindrops at higher rainrates, however, degrades 

the quality of the retrievals. Figure D.16 shows similar results obtained from a retrieval 



AppendixD Spaceborne Radars 300 

·-T .- - -T 1 
.. 

1 • ): 1 ,;r' • 
.'" · I 

140 · ~ . . . .. · . · · 
,-... 120 . · · i .. · . . 
£ • · • E . . · .. . · . . . .. 
E 100 · .. .. 

'--' · ... . . . ill 
+-' 
0 80 . • l.-

e · ". 
0 

n::: · .. 
""0 60 · . .. . 
ill · ... > 

. .. · ill . · · · .c: .-
+-' 40 
ill . · n::: · : .1 

20 

0 L. __ I 

0 20 40 60 80 100 
GPROF Rainrate (mmh-') 

Figure D.15: Synthetic near-surface rainfall retrievals at 14 GHz. 

using reflectivities at 94 GHz. Attenuation is severe for all rainfall at 94 GHz and only 

rainrates less than 1.5 mmh- 1 are retrieved accurately at this frequency in the absence of 

additional information. 

Figures D.17 and D.1S present the estimated error in the retrieved surface rainfall rate 

and the corresponding component of the a priori matrix at 14 GHz. Together, the two 

figures demonstrate that, under the present assumptions, the uncertainty in retrieved rainfall 

is below 30 percent for all profiles with surface rainrates between 0 and 40 mmh-l. In 

heavier rain, the retrieval relies heavily on the a priori guess so, although the retrieval 

errors appear to be acceptable, the results do not reflect the information contained in the 
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Figure D.16: As in Figure D.15 but for retrievals at 94 GHz. 

measurements and must be discarded. 
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20 

At 94 GHz, the enormous retrieval uncertainties illustrated in Figure D.19 demonstrate 

the fact that reflectivity measurements do not provide sufficient information to accurately 

dete?TIine surface rainfall rate. The fractional error only remains within tolerable limits 

up to about 1.0 mmh-1. In heavier rain, uncertainties become large and differences in the 

vertical distribution of rainfall above the surface give rise to scatter in the results. Many of 

the 94 GHz retrievals also yield extremely high values of X2 (not shown) indicating that the 

retrieved profile of rainfall seldom attains satisfactory agreement with the observations. 

These results may be attributed to the method adopted for applying the attenuation cor-
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Figure D .17: Error in retrieved rainrate as a function of rainrate for the 14 GHz synthetic 
retrievals. 

rection. Since the procedure, which is analogous to the HB method, first corrects the layers 

closest to the radar and then adjusts lower layers according to rainrates derived from these 

corrections, it leads to the propagation and magnification of errors as the algorithm pro­

ceeds to lower levels within the cloud. Figure D.21 supports this hypothesis. The figure 

shows rainrates retrieved at 94 GHz at 4.0 km, near the top of the liquid rain column. Al­

though the retrievals exhibit some deviation from the input at high rainrate, the agreement 

is clearly far superior than that at the surface. Figures D.22 and D.23 show that the uncer­

tainties in the retrieved rainrates are much smaller at 4.0 km and that the retrieval relies less 

heavily on the initial guess near the top of the cloud. 
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Figure D.18: Diagonal element of the a priori matrix corresponding to the surface rainrate 
bin as a function ofrainrate for the 14 GHz retrievals. 

D.6 Constraining the Retrieval 

Due to the severity of attenuation by rainfall at high frequencies, it is not sufficient to rely 

excl~sively on a profile of radar reflectivity to make estimates of rainfall profiles. Fortu­

nately, many spaceborne platforms such as TRMM offer additional sources of information 

either from the radar itself or from other instruments. Most notable among these are the 

column-integrated precipitation water path (PWP) which can be estimated using microwave 

radiometers (see, for example, Fujita et al. (1985) and Alishouse et al. (1990)) and the PIA 

which can be determined from surface radar returns. Both the PWP and PIA complement 
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Figure D.19: As in Figure D.17 but at 94 GHz. 
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304 

the radar reflectivity measurements in that they impose a constraint on the total attenuation 

through the rain column. 

D.6.1 Theory 

In the presence of either constraint, the cost function can be expressed as 

(F(R) - ZfSRl(F(R) - Z) 

+ (R - RafS;:l(R _ Ra) + (Xsim ~ Xobs)2 
ax 

(D.23) 
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where Xobs represents the observed PWP or PIA with standard deviation O"x. X sim is the 

simulated PWP or PIA obtained by integrating the rainrate profile or its resulting attenua­

tion, in height. Minimizing with respect to R, we obtain 

Ri+1 = Sit [S;;: lRa + KfSZl(Z - F(R)) + ~Li~z(Xobs - X sim + L; ~ZRi)l 
i O"x 

(D.24) 

with Sit = (S;;1 + KTSz1 Ki + ~t LiLT) -1. The vector, ~zL, consists of the deriva­

tives of X with respect to the rainrate at each level. 

One measure of the strength of the constraint is to determine the relative contributions 
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Figure D.21: As in Figure D.16 but at an altitude of 4.0 km. 

of the measurements, a priori guess, and the constraint to the retrieval error covariance 

matrix, S k Defining 

(D.25a) 

(D.25b) 

(D.25c) 
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Figure D.22: As in Figure D.19 but at an altitude of 4.0 km. 

the total retrieval error covariance matrix can be expressed as 

(D.26) 

i 

where Sx is a diagonal matrix with o} on the diagonal. Diagonal elements of each term 

represent the contributions of the measurements, a priori guess, and the constraint to the 

retrieval uncertainty making it possible to assess the relative strengths of the three compo­

nents in determining the rainrate profile. In addition, the X2 test can, again, be employed to 
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Figure D.23: As in Figure D.20 but at an altitude of 4.0 km. 

test the assumption of Gaussian statistics and the values assumed for the variances 

D.6.2 Results 

Precipitation Water Path 

Surface rainrate retrievals at 94 GHz with a precipitation water path constraint are pre­

sented in Figure D.24. The constraint variance was taken to be 10 percent and no other 
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Figure D.24: Constrained synthetic near-surface rainfall retrievals at 14 GHz. 

retrieval parameters were changed. An accurate estimate of PWP forces CORRAL to put 

the correct water mass in the atmosphere while the radar reflectivities determine how this 

mass is distributed in the vertical. This emphasizes the compatibility of active and passive 

microwave data in rainfall retrievals. The value of an accurate PWP estimate is further 

evidenced by Tables D.4 and D.5, which compare the correlation coefficients and their 

stan~ard deviations for unconstrained and constrained retrievals at 14 and 94 GHz, respec­

tively. The constraint reduces the retrieval standard deviation in all rainrate bins at both 

frequencies. At 14 GHz, errors are reduced by between 20 and 30 percent over the entire 

range of rainrates tested and rainrates up to 80 mmh-1 exhibit standard deviations of less 
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Table D.4: Correlation coefficients and standard deviation (in mmh-1) for unconstrained 
and constrained synthetic surface rainrate retrievals at 14 GHz. 

Rainrate Range Unconstrained (J'PWP = 10 % 
Correlation Std. Dev. Correlation Std. Dev. 

0- 20 mmh-1 0.991 0.834 0.993 0.739 
20 - 40 mmh-1 0.869 3.267 0.918 2.434 
40 - 60 mmh-1 0.521 9.989 0.604 7.646 
60 - 80 mmh-1 0.305 24.407 0.394 16.500 
80 - 100 mmh-1 0.166 37.805 0.063 31.366 
0- 100 mmh- 1 0.932 8.375 0.958 6.346 

Table D 5' As in Table D 4 but for retrievals at 94 GHz .. 
Rainrate Range Unconstrained (J'PWP = 10 % 

Correlation Std. Dev. Correlation Std. Dev. 
0-5 mmh-1 0.718 2.050 0.992 0.170 
5 - 10 mmh- 1 0.153 5.578 0.837 1.046 
10 - 15 mmh-1 0.126 7.538 0.547 1.923 
15 - 20 mmh-1 0.105 9.774 0.245 3.530 
0- 20 mmh-1 0.651 5.184 0.968 1.477 

than 25 percent when constrained. At 94 GHz, standard deviations in the absence of a con-

straint are on the order of 50 percent over the range of rainrates presented but are reduced 

by a factor of five when it is introduced. Biases introduced by attenuation affects are also 

substantially reduced when the PWP constraint is enforced. 

Figure D.25 shows retrievals of selected rainfall profiles from the GPROF database at 

the frequency of the TRMM PR with constraints of varying strength. The constraint has 

little impact on the PR retrievals below 30 mmh- 1 regardless of its accuracy. At a near­

surface rainrate of over 45 mmh-1, however, the surface rainrate is underestimated by 25 

% in the absence of a constraint but improves significantly with a strong one. In extremely 

heavy rain, where the attenuation effects are severe, an accurate PWP estimate improves 

retrieved surface rainrate errors from 40 percent to less than 10 percent. Similar results 

are presented in Figure D.26 for the CloudSat CPR. Due to the different range of rainfall 

rates detectable by the CPR, the two heaviest rain profiles have been replaced by light rain 
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Figure D.25: Sample rainfall retrievals at 14 GHz. 
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15 

80 

cases in this figure. In extremely light rain the retrieved rainfall profile varies little with the 

addition of a constraint. For all other rainfall, the constraint has a marked impact. Note that 

the accuracy in the PWP estimate required to obtain an accurate retrieval increases with 

rainrate following the increasing trend of the attenuation. 

Figures D.25 and D.26 also illustrate a very important, yet heretofore overlooked, ben­

efit to using coincident cloud and precipitation radar measurements. The 14 GHz radar 

cannot detect rainfall lighter than 0.7 mmh- 1 as is evidenced by the upper left plot. The 

cloud radar, on the other hand, is perfectly suited to retrieve light rain as well as cloud 

but is incapable of quantitatively measuring heavy rainfall. Despite their low rainfall rates, 
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Figure D.26: As in Figure D.25 but for retrievals of lighter rain at 94 GHz. 

light rain systems typically occur over large areas and are long-lived relative to heavy rain. 

They may, therefore, account for a significant fraction of the total precipitation globally 

and cannot be ignored when studying the impacts of the hydrological cycle on the Earth's 

climate system. In addition, given the radiative impact of clouds in driving global circula­

tions (see Stephens et aI. (2000) and references therein and recall the results of Chapter 5), 

they represent a significant omission from the information provided by a lower frequency 

radar. The synergy offered by these two instruments makes them well-suited to be operated 

simultaneously in future studies. 

A cursory glance at the retrieval covariance matrices for the same four CPR retrievals 
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further emphasizes the dramatic improvement realized in the presence of an accurate PWP 

constraint. The covariance matrices, S R' shown in Figure D.27 illustrate the difficulties 
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Figure D.27: Retrieval covariance matrices for synthetic retrievals at 94 GHz. All ele­
ments have been normalized by the appropriate retrieved rainrate and therefore represent 
fractional uncertainties. 

encountered at high frequency due to strong attenuation by rainfall. In the absence of 

an attenuation constraint, variances for some levels exceed 100 % in all cases except the 

lightest rainfall. These high uncertainties can be directly attributed to attenuation effects 

which are implied by the large off-diagonal elements in the S flo In an attenuation-free 

retrieval, reflectivities in each range bin are completely uncorrelated with those at other 

levels since they arise solely from scattering within the volume at that range. In rainfall at 

94Gflz, however, radiation reflected at lower levels in the column is scattered and absorbed 
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Figure D.28: As in Figure D.27 but for retrievals with a PWP constraint accurate to 10 %. 

by the hydrometeors in upper levels introducing significant correlations between them. 

These correlations manifest themselves as non-zero off-diagonal elements in the covariance 

matrices and, the stronger the rainfall, the higher in the atmosphere such correlations occur. 

Similar covariance matrices illustrated in Figure D.28 characterize retrievals with a PWP 

estimate uncertainty of 10 %. Not only are uncertainties reduced to less than 50 % for all 

cases, the strong attenuation-induced correlations evident in the unconstrained cases have 

been removed except in the lowest levels of the atmosphere. 

Contributions from the measurements, a priori guess, and constraint to the overall re­

trieval uncertainty at 94 GHz are illustrated in Figure D.29 for a moderate (O"pwp = 10%) 

constraint. In the absence of attenuation in extremely light rain, the retrieval is dominated 
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Figure D.29: The measurement (dotted line), a priori (dashed line), and PWP constraint 
(dot-dashed line) contributions to the total error (solid line) in the retrievals from Figure 
D.26 assuming a constraint accuracy of 10%. 

by the reflectivity measurements. In each of the other cases, the retrieval is dominated by 

measurements at upper levels and by the constraint at lower levels. Once again this supports 

the hypothesis that the constraint adds important attenuation information in the algorithm. 

Finally, it is somewhat disturbing to note that CORRAL relies heavily on the a priori guess 

in the highest rainfall shown. Given the concerns raised earlier as to the accuracy of the 

initial guess, this serves as a warning to restrict application of this algorithm to rainrates of 

10 mmh-1 or less when using the high frequency radar unless an extremely accurate PWP 

estimate is available. Figures D.27-D.29 also serve to highlight the powerful uncertainty 
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analyses that are possible within the constructs of an optimal estimation based retrieval. 

We are able to deduce the specific infonnation driving the retrieval in addition to obtaining 

the rainrate and an associated uncertainty. 

The ratio of the constraint contribution to the 94 GHz retrieval uncertainty to those of 

the a priori guess and measurements is displayed in Figure D.30 as a function of constraint 

accuracy. The peak in these curves can be taken as an optimal o"pw p for the retrieval. If the 
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Figure D.30: Ratio of the constraint contribution to the total error to the sum of the cor­
responding measurement and a priori contributions as a function of constraint strength for 
the rainfall retrievals in Figure D.26. 

constraint is significantly less accurate, it's impact on the retrieval will be minimal while the 

benefits of increasing its accuracy beyond the peak aren't likely to be significant enough to 
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Table D.6: Similar to Tables D.4 and D.5 but for retrievals at both 14 and 94 GHz with the 
addition of a PIA constraint 

14 GHz ((JPIA = 10 %) 94 GHz ((JPIA = 10 %) 
Rainrate Range Correlation Std. Dev. Rainrate Range Correlation Std. Dev. 
0- 20 mmh 1 0.993 0.727 0-5mmh 1 0.960 0.4207 

20 - 40 mmh-1 0.922 2.277 5 - 10 mmh- 1 0.525 2.577 
40 - 60 mmh- 1 0.620 7.878 10 - 15 mmh-1 0.216 3.964 
60 - 80 mmh- 1 0.373 17.74 15 - 20 mmh-1 0.143 6.038 
80 - 100 mmh-1 0.200 30.06 
0- 100 mmh 1 0.957 6.417 0- 20 mmh 1 0.898 2.801 

warrant the extra effort required to obtain such accuracy. From the magnitudes of the peaks 

it is clear that the constraint has little impact on the retrieval in extremely light rain but very 

significant, and comparable, impact for the three remaining rain profiles. It is also apparent 

that the optimal constraint accuracy increases with increasing rainrate and with decreasing 

altitude. The greater the attenuation, the more accurate the PWP estimate must be to correct 

for it. Depending on the specific goals for the application of the CORRAL algorithm, an 

estimate of PWP with only moderate accuracy might be all that is required to constrain the 

retrieval. In applications involving the use of a high frequency radar to supplement rainfall 

information obtained at lower frequency, for example, retrievals in rainfall lighter than 4 

or 5 mmh- 1 may be of primary importance in which case a PWP estimate accurate to 20 

percent is sufficient. 

Path Integrated Attenuation 

Similar results are obtained constraining the retrieval using an estimate of path integrated 

attenuation. Table D.6 provides correlation coefficients and their standard deviations for 

retrievals constrained using PIA estimates with uncertainties of 10 % at 14 and 94 GHz. 

Significant improvement is obtained with respect to the unconstrained results although 

higher standard deviations generally result when using a PIA constraint instead of a PWP 

constraint, particularly at 94 GHz where attenuation effects are the most pronounced. This 
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is likely a result of the fact that an imperfect physical model is still required to convert 

between attenuation and precipitation while the PWP is directly related to the integral of 

precipitation in the vertical. 

Figure D.31 displays a collection of synthetic rainrate profile retrievals at 94 GHz us­

ing PIA constraints with the same accuracies as in Figure D.26. Qualitatively the results 
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Figure D.31: As in Figure D.26 but with PIA constraints. 

are very similar but subtle differences can be discerned particularly at low levels. Most 

notably, when the constraints are weak the PIA constraint is less effective at lower levels 

than the PWP. Analysis of the optimal PIA constraint strength provided by Figure D.32 

confirms that the PWP provides a stronger constraint on the retrieval. Regardless of rain-
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Figure D.32: As in Figure D.30 but for varying strengths of PIA constraint. 

rate, the magnitudes of the maximum contribution of the PIA estimates are smaller than 

corresponding values from PWP estimates. Furthermore the peak occurs at lower (JPIA 

suggesting that a more accurate PIA estimate is required to maximally impact the retrieval. 

Physical Interpretation 

Figure D.33 illustrates the physics introduced in the retrieval process from both the active 

and passive measurements. Shown are rainrate profiles at each step of the iteration process 

for a single retrieval from the database with constraints at four different accuracies. The 

upper left plot illustrates the propagation of errors due to attenuation in the absence of a 
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Figure D.33: Iterations in a synthetic retrieval at 94 GHz with (a) no constraint, (b) a 
constraint with (J"pwp = 25.0, (c) a constraint with (J"pwp = 10.0, and (d) a constraint with 
(J"pwp = 2.0. 

constraint. In this case, the CORRAL algorithm suffers from the inability to distinguish 

between un attenuated light rain and attenuated heavier rain, retrieving the former when, 

in fact, viewing the latter. A modest PWP constraint ((J"pwp = 25%) results in signifi­

cantly improved agreement with the true profile particularly above 1.5 km. When stricter 

constraints are imposed, as in the lower two plots, CORRAL increases the rainrate at all 

levels in subsequent iterations eventually attaining good agreement with the true profile. 

Note that in every case the same initial guess, based on the Z-R and k-R relations, is made. 

The presence of a PWP constraint, however, forces CORRAL to "pump" more water into 
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the column in the three cases involving a constraint. We see, therefore, that the constraint 

determines the PWP in the atmospheric column during the first few iterations and the re-

flectivity measurements establish its vertical distribution in the remaining iterations. By 

virtue of Equations (D. 17) and (D.24), the process cannot stop until agreement is obtained 

with both measurements. 

Similar results using a PIA constraint are presented in Figure D.34 providing similar 

results. The PIA constraint also forces CORRAL to augment the initially underestimated 
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Figure D.34: As in Figure D.33 but using a PIA constraint as opposed to a PWP constraint. 

column integrated precipitation in the first two iterations while the radar reflectivities deter­

mine its vertical distribution. Careful comparison of Figures D.33 and D.34 reveals that the 
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principal difference between the two constraints is the magnitude of the initial correction to 

the integrated precipitation. When the constraints are equally accurate, the PWP estimate 

introduces slightly more water to the column during the first iteration resulting in slightly 

better retrievals, particularly at lower levels. These results likely reflect the more indirect 

relationship between precipitation and PIA relative to the direct integrated water content 

provided by the PWP estimate. 

To recapitulate, both constraints have very similar impact on the retrievals, improving 

them significantly in the presence of strong attenuation. This is an important result since 

passive observations are not always available or may be inaccurate due to water vapor and 

cloud liquid water effects, their large footprints with respect to those of active systems, and 

difficulties in co-locating them with radar observations resulting from the need to either 

orient the instruments with different view angles as on TRMM or to fly them on different 

satellites as will be the case with the CloudS at CPR and AMSR-E radiometer. Conversely, 

the PIA is a well-calibrated quantity which is guaranteed to be co-located with the other 

radar measurements and is always available provided a surface return is detectable. Even 

though the more direct measure of water content provided by the PWP provides a slightly 

stronger constraint for a given accuracy, we expect estimated PIA values to be at least two 

or three times more accurate in present observing systems so the PIA may ultimately be 

the best candidate to constrain the retrieval. Finally, in the event that both estimates are 

available, the formalism outlined here can use them simultaneously by merely adding a 

second constraint term to Eqn. D.24. 

D.7 Sensitivity to Model Errors 

A necessary but regrettable consequence of synthetic retrievals is the arbitrary assump­

tion of a number of important parameters with little or no justification from observations. 

Through human nature we are often predisposed to tune these parameters in such a way as 
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to generate the best possible results. In our case, the variances used above may be opti­

mistic particularly given the strong dependence of radar reflectivities on the highly variable 

real-world DSDs. In this section, assumed variances are augmented in order to supply a 

more thorough assessment of the expected range in algorithm performance over the variety 

of rainfall scenarios provided by the GPROF database. 

Figures D.35 illustrates surface rainrate retrievals at 14 GHz assuming 6 dB of random 

noise while Figure D.35 presents similar results with the addition of an accurate PIA con­

straint. Comparing Figures D.15 and D.35 we find that model and measurement accuracy 
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Figure D.35: Synthetic retrievals at 14 GHz as in Figure D.15 but assuming 6 dB errors. 

is of paramount importance to the success of the retrieval. If errors are large, the range of 
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accurately retrievable rainrates is reduced significantly. Furthermore, Figure D.36 shows 

that the impact of the constraint is more pronounced when model and measurement errors 

are large, highlighting the fact that the severity of the instability one encounters in the HB 

method of correcting for attenuation increases with increasing forward model error. 

In the interest of space, results from all remaining synthetic retrievals at 14 GHz as­

suming random noise levels of 1.5, 3.0, and 6.0 dB are summarized in Table D.7 while 

corresponding results at 94 GHz can be found in Table D.8. At both frequencies, standard 

deviations from the unconstrained synthetic retrievals increase significantly when more 

noise is added, particularly at rainrates where the retrievals work the best. Uncertainties 
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in PR retrievals between 1 and 40 mmh-1, for example, double when noise is augmented 

from 1.5 to 3 dB and again when it is further increased to 6 dB. At 94 GHz the effects 

of increasing noise are not quite as severe since the unconstrained retrievals are poor even 

with very little noise. Even so, uncertainties in retrievals between 5 and 10 mmh-1 increase 

by approximately 50 % each time noise is incremented. 

Table D.7: Correlation statistics for synthetic surface rainrate retrievals at 14 GHz assuming 
1.5 dB (top), 3.0 dB (middle), and 6.0 dB, random noise. 

1.5 dB Noise 

Rainrate Range 
Unconstrained O"PWP = 10 % O"PIA = 10 % 

Correlation Std. Dey. Correlation Std. Dey. Correlation Std. Dey. 
0- 20 mmh 1 0.994 0.64 0.995 0.57 0.996 0.56 
20 - 40 mmh- 1 0.918 2.41 0.947 1.89 0.956 1.69 
40- 60mmh-1 0.617 7.72 0.745 5.18 0.742 5.12 
60- 80 mmh- 1 0.226 19.9 0.435 15.5 0.294 14.9 
90 - 100 mmh- 1 0.108 33.1 0.169 26.9 0.186 27.0 
'0 - 100 mmh ·1 0.949 6.94 0.968 5.43 0.970 5.34 

3.0 dB Noise 
0- 20 mmh 1 0.979 1.28 0.983 Ll1 0.985 1.06 
20- 40 mmh- 1 0.719 5.76 0.804 4.07 0.855 3.45 
40 - 60mmh-1 0.388 15.8 0.498 ILl 0.484 10.1 
60 - 80 mmh-1 0.163 32.7 0.218 25.8 0.259 22.7 

90 - 100 mmh-1 0.003 46.6 0.155 34.2 0.269 32.7 
0- 100mmh ·1 0.892 ll.s 0.933 8.62 0.943 7.82 

6.0 dB Noise 
0- 20 mmh ·1 0.914 2.83 0.936 2.27 0.941 2.17 

20 - 40mmh-1 0.517 11.0 0.601 8.37 0.609 7.96 
40 - 60 mmh- 1 0.223 31.8 0.354 22.6 0.289 21.7 
60- 80mmh-1 0.153 43.8 0.208 31.7 0.270 29.3 
90 - 100 mmh- 1 0.026 51.5 0.ll8 39.6 0.211 37.7 
0- 100mmh 1 0.827 17.3 0.888 12.7 0.895 12.0 

A major distinction between the two radars is their response to increasing measurement 

noise in the presence of a constraint. Uncertainties in TRMM PR constrained retrievals 

also rapidly increase with increasing measurement noise although the impact of the con­

straint is notably stronger in the presence of a high level of noise. Errors in constrained 

retrievals at the CPR frequency, however, show little sensitivity to measurement noise with 

the exception of estimates of very light rainfall. This result is easily explained if we note 

that the constraint accuracy remains constant in all cases. In all but the lightest rainfall, 
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Table D.8: As in Figure D.7 but for retrievals at 94 GHz. 
1.5 dB Noise 

Rainrate Range 
Unconstrained apwp = 10 % apIA = 10 % 

Correlation Std. Dey. Correlation Std. Dey. Correlation Std. Dey. 
0- 5 mmh ·1 0.671 2.64 0.968 0.38 0.882 0.94 

5 - 10 mmh- 1 0.112 6.36 0.610 1.94 0.381 3.49 
10 - 15 mmh- 1 0.063 8.15 0.291 3.34 0.176 5.24 
15 - 20 mmh- 1 0.073 10.2 0.116 5.33 0.151 7.54 
0- 20 mmh ·1 0.618 5.75 0.921 2.36 0.823 3.68 

300 dB Noise 
0-5 mmh -1 0.589 4_19 0.934 0.59 0.873 1.02 

5 - lOmmh-1 0.132 8_29 0.553 2.36 0.316 3.86 
10 - 15 mmh-1 0.034 9.63 0.301 3.68 0.180 5.45 
15 - 20 mmh- 1 0.071 10.8 0.150 5.49 0.096 7.82 
0- 20 mmh- 1 0.550 7.09 0.910 2.56 0.809 3.88 

600 dB Noise 
0-5 mmh 1 0.536 6.80 0.801 1.25 0.769 1.79 

5 - 10 mmh- 1 0.003 9.96 0.476 2.90 0.218 2.91 
10 - 15 mmh-1 -0.009 10.8 0.236 3.95 0.055 5.53 
15 - 20 mmh-1 0_054 11.44 0.053 5.19 0.049 7.38 

i 0 - 20mmh 1 0.409 9.11 0.893 2.83 0.796 4.08 

CPR retrievals always rely most heavily on the information introduced by the constraint 

while the reflectivities themselves are used primarily to determine the vertical distribution 

of the rainfall. As a result, increasing noise in the reflectivity measurements induces smaller 

errors in the surface rainfall retrievals than reducing the accuracy of the constraint. PR re­

trievals, on the other hand, are dominated by the reflectivity measurements themselves over 

the range of noise levels tested and the retrieval uncertainties reflect this. Finally it should 

be noted that in some cases increasing the noise actually appears to slightly decrease the 

retrieval standard deviation at 94 GHz. This serves to point out the statistical nature of the 

results and the fact that they can fluctuate slightly from trial to trial. These fluctuations, 

however, are not statistically significant and it is important to restrict our attention to large 

differences. 

In practice, the performance of the algorithm will depend on a number of factors includ­

ing the sensitivity of each radar to particle shape, size distribution, and composition (ego 

mixed-phase particles) as well as the amplitude of spatial and temporal fluctuations in these 
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factors over the scenes being observed. Estimation of Sy is, therefore, radar and application 

dependent and is left as a topic for further study. It is expected that the resulting Sy and 

corresponding algorithm performance will lie somewhere within the cases presented here. 

D.S Discussion 

With the growing trend towards space-based observation platforms which carry high fre­

quency cloud and rain profiling radars, the need for accurate, flexible algorithms for retriev­

ing rainfall at attenuating frequencies is paramount. In this paper, we have presented an al­

gorithm which is not, in principle, restricted by assumptions of size distribution or particle 

shape and accounts for attenuation through direct integration of two-way extinction due to 

all rl;lin along the path to each target layer. The algorithm maximizes a posterior probability 

density function derived from an assumption of uncorrelated, unbiased errors following a 

Gaussian distribution. The Gaussian distribution, by virtue of its symmetry, adds the least 

bias of any assumed error distribution in the absence of additional information and ensures 

equivalence between the locations of its maximum and its mean, a necessary condition for 

the solution to be optimal. 

Preliminary results, using simplifying assumptions, illustrate the utility of the COR­

RAL algorithm, particularly at low frequencies. At 14 GHz, synthetic retrievals of rainfall 

profiles using the GPROF cloud database accurately reproduce the input for rainrates as 

high as 40 mmh-l. At 94 GHz, however, the CORRAL algorithm grossly over- or under­

estimates surface rainfall at all rainrates above 1.5 mmh- 1 due to instability inherent in the 

method employed to correct for attenuation. The PIA approach to correct for attenuation, 

which makes use of the surface return echo to estimate the total attenuation through the rain 

column, is stable and yields much more accurate results when attenuation is severe (Iguchi 

and Meneghini, 1994). This is confirmed by the remarkable improvement in the retrieval 

when precipitation water path or path-integrated attenuation constraints are imposed on the 
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retrieval. Since the PIA derives from the precipitation water path, both constraints perform 

essentially the same function. Either method (or both) can be used in the present algorithm 

with very little modification. It is also worth noting that the application of this algorithm to 

the CloudSat radar is explicitly for the purpose of retrieving very light rain which may not 

be detectable at lower frequencies. In this light, the results presented here are encouraging. 

It is interesting to briefly compare these results with those obtained in the studies of the 

passive microwave GPROF algorithm discussed earlier. Recall that the major drawback of 

the TMI-based GPROF retrieval was a lack of explicit vertical profile information in the 

measurements. Spaceborne radars, in effect, suffer from the opposite problem, requiring 

some measure of the attenuation due to the bulk PWP. This suggests a synergy between 

activ;e and passive instruments which to date has not been fully exploited. Radars offer the 

potential to enhance the limited profile information in passive microwave cloud and rain­

fall retrievals while the sensitivity of passive microwave observations to bulk liquid water 

contents can provide much-needed information to constrain DSD by requiring consistency 

between observed reflectivities and liquid water path estimates. As a result, these two sen­

sors complement each another and an algorithm which combines both types of information 

can begin to resolve some of the problems suffered by each independently. While the anal­

yses presented above have not directly addressed the performance of a combined TMI-PR 

algorithm (or a multi-parameter radar algorithm which offers equally intriguing possibili­

ties), the utility of the optimal estimation approach for such applications has been strongly 

emphasized and this research will proceed in that direction in the future. 

The assumption of an exponential DSD and spherical particles greatly over simplifies 

the problem. It is worth pursuing extensions of the model to include more direct estimation 

of size distribution parameters making more complete use of the other observations avail­

able to both the TRMM and CloudSat missions. In a slightly more general form, Equation 
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(D.14) can be written as 

(D.28) 

where x is a more general vector of retrieval parameters, perhaps consisting of DSD param­

eters at each level, y is a general vector of satellite measurements, and F is an appropriate 

combination of forward models which map the retrieval parameters into the basis of these 

measurements. This equation can be solved in exactly the same manner as above yield­

ing an iterative solution to determine the best estimate of rainrate based on all available 

observations simultaneously. As the TRMM PR algorithms have demonstrated, directly 

accounting for DSD variability is of paramount importance for the next generation of satel­

lite radar retrievals. Studies are currently underway to re-cast the CORRAL algorithm in 

terms of a more general DSD and a parallel effort is being undertaken to directly incorpo­

rate radiances from the TMI to provide the more rigorous constraint required to estimate a 

more flexible DSD. 

Finally, it is important to note that this appendix relies heavily on synthetic retrievals 

which provide useful comparison studies but are in no way presented as validation of the 

merits of such an approach in an operational context. The fact that the same assumptions 

are made in both the forward and inverse models undoubtedly masks the impact of variable 

DSD and particle shape on the results but synthetic retrievals of this type are not necessar­

ily meant to provide a rigorous test of the algorithm. This study merely demonstrates the 

feasibility of applying the optimal estimation at attenuating frequencies and has supplied 

us with crude estimates of the uncertainties we might expect when such an approach is 

applied to single-frequency radars. Complete validation of a new approach such as this 

requires application to real-world data and detailed comparison with other algorithms and 

sensors including in situ observations. Time did not permit such studies for this work but 

a number are planned for the near future which will focus on rainfall retrievals from the 
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CloudSat CPR (possibly using the AMSR-E as a constraint although a significant effort 

will be required to overcome uncertainties resulting from the mismatch in footprints be­

tween these instruments), the proposed dual-frequency radar for GPM, and simultaneous 

radar/passive microwave observations, employing airborne and spaceborne radar data with 

aircraft and ground validation. In many of these studies the algorithm can be cast in such 

a way that the DSD itself can be modified to give the best overall fit to all data available 

including passive microwave radiances. Furthermore, the skill of these variants in deriving 

profiles of radiative and latent heating needs to be addressed. 
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Synthetic Radar Retrievals at 35 G Hz 

Current proposals for a follow-up to the TRMM mission include a 35 GHz radar flown in 

conjunction with the 14 GHz TRMM PR to determine DSD through differential attenuation 

techniques!. The algorithm presented in Chapter D is well-suited for simultaneously using 

data from a variety of instruments but such an application must be left as an exercise for 

the future. Instead some results regarding the use of radar reflectivity measurements from 

a single spacebome 35 GHz in profiling rainfall will be examined in this appendix. These 

results are not meant to be a critique of the combined 14-35 GHz system, but to compare 

the rainfall retrieval capabilities of a single 35 GHz radar to those at 14 and 94 GHz. 

Synthetic retrievals of near-surface rainrate and their corresponding uncertainties are 

displayed in Figures E.l and E.2. As expected based on the radar sensitivity study in 

Section D.3 (and a little intuition), the results at 35 GHz lie between those at 14 and 94 

GHz. Suitable agreement is obtained rainfall estimates are made up to 8 mmh-1 in the 

absence of any constraint, an improvement over the negligible range retrievable at 94 GHz 

but much lower than the range of the TRMM PR. Retrieval uncertainties over this range 

vary from 25 % to 75 %. Beyond 8 mmh-1, both figures exhibit extreme scatter indicative 

of pronounced attenuation effects similar to those encountered at 94 GHz. 

Statistics for near-surface rainfall retrievals from 35 GHz with both PWP and PIA con-

straints accurate to 10 % are summarized in Table E.!. Correlation coefficients and stan-

dard deviations suggest that acceptable rainfall retrievals are possible in moderate rainfall 

exceeding 20 mmh-1 in the presence of either constraint with the prescribed accuracy. 

I See (Meneghini and Kozu (1990)) for an overview of the method of differential attenuation from space­
borne dual-frequency radars. 
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Figure E.l: Comparison of near-surface rainfall estimates using reflectivities at 35 GHz 
with truth. 

Both fonns of constraint yield at least a factor of two improvement in retrieval accuracy in 

rainfall up to 30 mmh-l. 

Comparison of sample rainfall retrievals over a range of rainrates (shown in Figure E.3) 

with those obtained at 14 and 94 GHz, highlights the fact that the attenuation at 35 GHz 

is significant but somewhat less so than at 94 GHz. Attenuation errors below 8 mmh-1 

are minimal, but a moderate constraint is required up to 15 mmh- 1, and retrievals are not 

possible in rainfall exceeding 20 mmh-1 without an unrealistically accurate constraint. 
J 

An error breakdown for the retrievals in Figure E.3 similar to that in Figure D.29 is 

presented in Figure E.4. The results demonstrate that the measurements dominate the 35 
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Figure E.2: Error in retrieved rainrate as a function of rainrate for the 350Hz synthetic 
retrievals. 

Table E.l: Correlation coefficients and standard deviation (in mmh -1) for unconstrained 
and constrained synthetic surface rainrate retrievals at 350Hz. 

Rainrate Range Unconstrained (jpwp = 10 % (jPIA = 10 % 
Correlation Std. Dev. Correlation Std. Dev. Correlation Std. Dev. 

0-10 mmh-1 1.0557 1.244 0.99856 0.298 0.99942 0.297 
10 - 20 mmh-1 1.1705 7.175 1.02926 1.531 1.10050 2.395 
20 - 30 mmh- 1 0.8380 12.14 0.91747 3.675 0.88189 5.338 
30 - 40 mmh-1 0.4222 14.83 0.86811 5.541 0.64125 8.040 
40 ~ 50 mmh-1 0.2354 16.78 0.57466 7.795 0.52337 10.57 
0- 50 mmh 1 0.9060 8.421 0.96068 3.001 0.96256 4.265 
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Figure E.3: Sample rainfall retrievals at 35 GHz. Profiles are chosen to reflect the range of 
rainfall retrievable at 35 GHz and therefore include some of those shown to represent 14 
GHz retrievals in Figure D.25 at some shown in Figure D.26 illustrating 94 GHz retrievals. 

GHz retrievals at upper levels while the constraint dominates at lower levels where the 

effects of attenuation are more pronounced. Also evident when comparing the figures is 

the fact that errors incurred as a result of attenuation are significantly stronger at 94 GHz 

since the constraint dominates more absolutely at that frequency. This fact is even more 

apparent in Figure E.5 which presents the ratio of the constraint contribution to the retrieval 

error to those due to a priori and measurement errors. Comparing with similar results at 94 

GHz (Figure D.30) we see that, in general, the impact of the constraint is less pronounced 

at 35 GHz. It is also worth noting that the location of optimal constraint is shifted to higher 
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Figure E.4: The measurement (dotted line), a priori (dashed line), and PWP constraint 
(dot-dashed line) contributions to the total error (solid line) in the retrievals from Figure 
E.3 assuming a constraint accuracy of 10%. 

accuracy at 35 GHz but the inverse dependence on rainrate and proportionality to height is 

evident, emphasizing that the same physical mechanism is responsible for the improvement 

in both cases. Considering the 35 GHz radar as a separate entity, we find its ability to detect 

and measure rainfall falls somewhere between that of the 14 GHz TRMM PR and the 94 

GHz CloudS at CPR both in terms of the detectable rainfall (Section D.3) and the range of 

quantatitively retrievable rainfall profiles. 

Ij'or comparison purposes, Figure E.6 illustrates the fraction of rainfall scenes from the 

GPROF database that can be detected by two hypothetical combinations of the 14, 35, and 
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Figure E.5: Ratio of the constraint contribution to the total error to the sum of the corre­
sponding measurement and a priori constributions as a function of constraint strength for 
the rainfall retrievals in Figure E.3. 

94 GHz radars investigated above. The results assume that the radars operate independently 

and a successful detection requires that either of the two radars sense the near-surface 

rainfall. While algorithms to retrieve rainfall from dual-frequency radar systems will never 

be restricted to merely combining results from independent applications of single frequency 

algorithms in this way, it is interesting to note the complementary nature of the 14 and 94 

GHz radars. While the significance of the contribution from extremely light rain to global 

prec~pitation and latent heat budgets is uncertain and may be small, their radiative impact 

is considerable and the prospect of coincident cloud and precipitation radar measurements 
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Figure E.6: As in Figures D.5 and D.6 but for hypothetical combinations of radars. 

to simultaneously infer radiative and latent heating should not be overlooked. 

The utility of either a 35 or a 94 GHz radar in conjunction with the TRMM PR depends 

on the application. For GPM, where the focus is on rainfall, it may be important to have 

a combination of radars that will provide measurements of differential attenuation in mod­

erate to heavy rainfall. In that case the 35 GHz radar may be better suited than a higher 

frequency radar by virtue of the enormous attenuation suffered by the latter. For light rain 

and cloud applications, such as the estimation of radiative heating, on the other hand, the 

addition of a 35 GHz radar does little to improve undersampling at 14 GHz. In such appli­

cations a 94 GHz cloud radar presents a greater addition system as a whole. Quantitative 
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assessment of the properties of combinations of these radars and passive microwave ra­

diometers clearly warrants further study in light of the complementary information they 

contain. 
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Symbol Definitions and Common Units 

a, b - coefficients in Z-R relation 

a, /3- coefficients in kexcR relation 

A - a priori matrix 

B(r) - Planck function (Wm-2sr-1) 

X - size parameter 

C - a general error covariance matrix 

Dn - characteristic diameter in gamma distribution (J1m) 

fJ - a random error 

D.TB - (Sec. 4.2) 10.8 - 12 p,m brightness temperature difference 

D.T B - (elsewhere) vertical minus horizontal T B polarization difference 

D. XY - difference in T B signatures for cloud profiles X and Y 

E - a random error 

EP - surface emissivity at polarization, P 

F - a general forward model or mapping function 

f - a known function 

f m - mean value of the function f 

G - radar antenna gain 

,R _ ratio of a measurement's sensitivity to the surface to that at the weighting function 

peak (at rainrate R) 

f(x) - the gamma function 

h - radar pulse length (m) 
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I - radiance (Wm-2sr-1) 

I - identity matrix 

Symbol Definitions 

K - sensitivity or weighting function 

JKJ2 - dielectric factor 

kext - mass extinction coefficient (m2 kg-I) 

kL - liquid water mass extinction coefficient (m2 kg-I) 

kw - water vapor mass extinction coefficient (m2 kg-I) 

""9 - gas attenuation coefficient (dBkm-1
) 

""c - cloud attenuation coefficient (dBkm- 1
) 

""p - precipitation attenuation coefficient (dBkm-1
) 

L - liquid water path (kgm-2 ) 

A - Lagrange multiplier (chapter 2) or wavelength (J-lm) 

J-l - cosine of the solar zenith or satellite view angle 

No - number density (m-4 ) 

N(D) - a drop size distribution 

m = n + i"" - complex index of refraction 

rl - radar reflectivity per unit volume 

o - a general observation covariance matrix 

P - polarization index (Petty (1994a)) 

P(a) - probability of criterion a 

P(8) - scattering phase function 

Pr - return power recieved by a radar 

Pt - power transmitted by a radar 

Q abs - absorption efficiency 

Q sca - scattering efficiency 

Q ext - extinction efficiency 
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R - rainfall rate (mmh-1) 

RP - surface reflection at polarization P 

R - a profile of rainfall rate (mmh- 1) 

r - radius (J,Lm) 

r e - effective radius (J,Lm) 

P - density (gm-3) 

Pl - liquid density (gm-3) 

Pi - i,ce density (gm-3) 
I 

Pa - air density (gm-3) 

8 - path length 

S - scattering index (Petty (1994a)) 

S - a general model covariance matrix 

Sa - a priori error covariance matrix 

S R - retrieved rainrate error covariance matrix 

Sz - reflectivity measurement error covariance matrix 

(Jb - backscatter cross-section per unit volume 

T - temperature (K) 

T B - brightness temperature (K) 

Tf - freezing temperature (K) 

T m - melting temperature (K) 

Ts - surface temperature (K) 

Tr(a, b) - transmission between points a and b 

T - optical depth 

T* - total atmospheric column optical depth 

V - volume 

W - column water vapor or total precipitable water (kgm-2) 

341 



AppendixF Symbol Definitions 

x - a general state vector 

Xa - a priori value of the state vector x 

E(x) - expectation value of the state vector x 

Yo - vector of observations 

Ys - vector of modeled or simulated measurements 

Z - radar reflectivity 

Zej j - effective radar reflectivity 

Z - radar reflectivity profile (mm6m-3 or dBZ, as specified in the text) 
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Acronymns and Abbreviations 

ADT - anomalous diffraction theory 

AMSR-E - Advanced Microwave Scanning Radiometer 

AMip - Atmospheric Modeling Intercomparison Project 

AVHRR - Advanced Very High Resolution Radiometer 

BMC - Bayesian Monte Carlo 

CCMl - NCAR Community Climate Model 

CDF - cumulative distribution function 

CERES - Clouds and the Earth's Radiant Energy System 

CIMSS - Cooperative Institute for Meterological Satellite Studies 

CORRAL - Constrained Optimal estimation Rainfall Retrieval ALgorithm 

CPR - Cloud Profiling Radar 

CRAS - CIMSS Regional Assimilation System 

CRF - cloud radiative forcing 

CRM - cloud resolving model 

CWV - column water vapor 

DMSP - Defense Meteorological Satellite Program 

DSD - drop size distribution 

ECMWF - European Centre for Medium-Range Weather Forecasts 

EFOV - effective field of view 

ENSO - EI Nino Southern Oscillation 

EOS - Earth Observing System 
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ERB - Earth's radiation budget 

ERBE - Earth Radiation Budget Experiment 

ESSA - Environmental Science Services Administration 

FGGE - First GARP Global Experiment 

FOV - field of view 

GARP - Global Atmospheric Research Program 

GCE - Goddard Cumulus Ensemble (model) 

GCM - General Circulation Model 

GFDL - Geophysical Fluid Dynamics Laboratory 

GLA - Goddard Laboratory for Atmospheres 

GMS - Geostationary Meteorological Satellite (Japanese) 

GOES - Geostationary Operational Environmental Satellites 

GOMS - Geosynchronous Meteorological Satellite (Russian) 

GPCC - Global Precipitation Climatology Centre 

GPM - Global Precipitation Mission 

GPROF - Goddard Profiling Algorithm 

IR - infrared portion of the electromagnetic spectrum (A = 0.7 J-Lm - 1 mm) 

IRIS - Infrared Interferometer Spectrometer 

ISCCP - International Satellite Cloud Climatology Project 

ITCZ - intertropical convergence zone 

IWC - ice water content 

IWP - ice water path 

JASMINE - Joint Air-Sea Monsoon Interaction Experiment 

LIS - Lightening Imaging System 

LH - latent heating 
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LW - radiation with wavelenths in the range 4.0 - 100.0 J-Lm (dominated by terrestrial emis-
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sion) 

LWC - liquid water content 

LWP - liquid water path 

Acronyms and Abbreviations 

MDS - minimum detectable signal 

MJO - Madden-Julian Oscillation 

MLW - McClatchey standard mid-latitude winter atmosphere 

MODIS - Moderate-Resolution Imaging Spectroradiometer 

MP - Marshall-Palmer 

MW - microwave portion of the electromagnetic spectrum (A = 1 mm - 1 m) 

NASA - National Aeronautics and Space Administration 

NCAR - National Center for Atmospheric Research 

NCEP - National Center for Environmental Prediction 

NEMS - Nimbus-E microwave spectrometer 

NIR - near-infrared portion of the electromagnetic spectrum (A = 0.7 - 3 /.Lm) 

NIST - National Institute of Standards and Technology 

NOAA - National Oceanic and Atmospheric Administration 

NUBF - non-uniform beamfilling 

NWP - numerical weather prediction 

OLR - outgoing longwave radiation 

PCA - principal component analysis 

PDF - probability density function 

PIA - path-integrated attenuation 

POES - Polar Orbitting Environmental Satellites 

PR - Precipitation Radar 

PWP - precipitation water path 

RH - radiative heating 
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Appendix G Acronyms and Abbreviations 

RSS - Remote Sensing Systems (www.ssmi.com) 

SCAMS - Scanning Microwave Spectrometer 

SFC - surface 

SSMII - Special Sensor Microwavellmager 

SMMR - Special Multichannel Microwave Radiometer 

SPCZ - South Pacific convergence zone 

SST - sea surface temperature 
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SW - radiation with wavelenths in the range 0.1 - 4.0 f.tm (dominated by solar radiation) 

TM1; - TRMM Microwave Imager 

TOA - top of the atmosphere 

TOGA COARE - Tropical Ocean Global Atmospheres Coupled Ocean-Atmosphere Re­

sponse Experiment 

TRMM - Tropical Rainfall Measuring Mission 

TRP - McClatchey standard tropical atmosphere 

VIRS - Visible Infrared Sounder 

VIS - visible portion of the electromagnetic spectrum (). = 0.4 - 0.7 f.tm) 
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