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Abstract

We develop a Bayesian methodology for systemic risk assessment in financial networks such as the

interbank market. Nodes represent participants in the network and weighted directed edges represent

liabilities. Often, for every participant, only the total liabilities and total assets within this network are

observable. However, systemic risk assessment needs the individual liabilities. We propose a model

for the individual liabilities, which, following a Bayesian approach, we then condition on the observed

total liabilities and assets and, potentially, on certain observed individual liabilities. We construct a

Gibbs sampler to generate samples from this conditional distribution. These samples can be used in

stress testing, giving probabilities for the outcomes of interest. As one application we derive default

probabilities of individual banks and discuss their sensitivity with respect to prior information included

to model the network. An R-package implementing the methodology is provided.

Key words: Financial network, unknown interbank liabilities, systemic risk, Bayes, MCMC, Gibbs

sampler, power law.

1 Introduction
Assessing systemic risk in financial systems is a key concern for regulators and policy makers. We think

of systemic risk as the risk that some external or economic shock causes a participant in the financial system

to default on their obligations which then leads to severe knock-on effects to other participants, such as their

default; see (Hurd, 2015, Section 1.2) for a discussion of different definitions of systemic risk.

Participants in these financial systems consist of various types of institutions, e.g. banks, hedge funds,

pension funds or insurance companies. As banks are key players for systemic risk assessment we will, for

simplicity, refer to all participants in the financial system as banks.
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Systemic risk is often assessed using a network model (Elsinger et al., 2013), in which nodes represent

banks and weighted directed edges represent liabilities. Stress tests apply shocks to the network and analyse

their consequences. Banks who survive the initial shock might default due to contagion caused by other

banks no longer satisfying their obligations. Such balance sheet spill-over effects are one main channel of

systemic risk. We focus on balance sheet contagion in this paper, but our methodology can also be used in

stress tests that include additional channels of systemic risk such as fire sales (Upper, 2011; Hurd, 2015).

Often, the full network of interbank liabilities is not available. Aggregates for each bank, such as the

total interbank liabilities and assets, are more readily available (Upper & Worms, 2004; Elsinger et al., 2013;

Anand et al., 2014). These aggregates can for example be obtained from public balance sheet information.

Looking beyond public information, it is not the case that regulators can observe financial networks in full.

They usually only have limited data on financial institutions not required to report to them, such as banks

outside their jurisdiction1 or non-bank financial institutions such as insurance companies, hedge funds etc.

Typically also among the data that they do obtain only large exposures are reported (Langfield et al., 2014).

We provide more details on this in Section 6 of the Supporting Document.

As of 2015, there are still large gaps in the data available on bilateral exposures and interlinkages be-

tween financial systems2 3. Hence, finding a rigorous and tractable way to deal with the lack of data when

performing stress tests is of paramount importance.

We focus on the situation where the total interbank liabilities and assets are known but not all of the

individual liabilities are known. To be precise, we describe interbank liabilities in a network with n banks by

a liabilities matrix L ∈ [0,∞)n×n where Lij represents the nominal liability of bank i to bank j. Knowing

the total interbank liabilities and assets means that the row and column sums of L are known. Often, all or

some of the Lij are not observable.

The number and severity of contagious defaults in financial markets is strongly dependent on the often

unobserved bilateral liabilities Lij . Any stress testing results will therefore significantly depend on the

method used for filling in the missing information. We will provide a new methodology to do this.

The formal setting where the row and column sums of a matrix describing a financial network are known

but the matrix itself is not known has been recognised as a key problem by several major central banks.
1Some additional information beyond national data on so-called global systemically important banks is starting to become

available due to the G-20 Data Gaps Initiative (Financial Stability Board & International Monetary Fund, 2015).
2“Even among the world’s largest banks, data on their bilateral exposures to one another remains partial and patchy, especially

for off balance sheet positions and securities holdings. That means large parts of the core of the international banking map remain,
essentially, uncharted territory”, (Haldane, 2015, p. 14)

3The missing data problem was also acknowledged in the recent report on the Bank of England’s approach to stress testing
the UK banking system “However, models need good data and there are big gaps in the data on interlinkages between different
parts of the financial system and common exposures across the financial system. The lack of data makes it difficult to build up a
point-in-time picture of the interlinkages between different parts of the financial system and calibrate quantitative models” (Bank
of England, 2015, p. 31).
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Currently, an international study involving several central banks and their proprietary data on interbank,

payment, Repo, FXS, CDS, equity and derivatives networks is being conducted to test network reconstruc-

tion methods from the row and column aggregates for these data, see Anand (2015). Initial results suggest

that the performance of the tested methods depends strongly on the similarity measure used and the sparsity

of the underlying network. Since our new methodology is more flexible than existing methods, it can cope

with a wide range of underlying network structures. Furthermore, we consider a more general information

setting, by allowing some entries of the matrix to be known. This allows for an improved data situation on

parts of the network that either exists already or might become available in the future. The classical situation

where all entries of the network are unknown is included in our model as a special case.

Our paper makes two main contributions. First, we provide a Bayesian framework for a distribution on

the bilateral exposures L conditional on observed balance sheet data. We start by proposing a probabilistic

model for the liabilities matrix L which we then condition on the observed row and column sums as well

as possibly on some observed individual entries. We construct a Gibbs sampler for this distribution. Our

methodology is flexible enough to include a wide range of possible network structures (adjacency matrices),

such as complete networks, Erdős-Rényi networks, tiered networks or scale-free networks. We can also

model a wide range of probability distributions for the weights (i.e., the liabilities), such as light or heavy-

tailed distributions. We are not aware of any other approach that achieves this. An implementation is

available as an R-package (systemicrisk) on the Comprehensive R Archive Network (CRAN).

Second, we illustrate how our framework can be applied to assess systemic risk in financial networks.

The key novelty is that we can give probabilities for the outcomes of stress tests. These probabilities are

based on stochastic assumptions that are consisted with stylised facts observed in financial networks. The

variability in the outcomes clearly shows that only using a point estimate for the liabilities matrix gives a

very restricted view of the systemic risk.

The current standard approach for deriving individual interbank liabilities from aggregates is to minimise

the Kullback-Leibler (KL) divergence between the liabilities matrix and a previously specified input matrix

(Upper & Worms, 2004). This approach has been used to estimate interbank exposures from balance sheet

data for banks in Germany (Upper & Worms, 2004), UK (Wells, 2004; Elsinger et al., 2006) and Belgium

(Degryse & Nguyen, 2007). One drawback of the KL method is that the resulting interbank liabilities

usually form a complete network, meaning that all entries of L (except the diagonal) are positive. However,

empirical research (Craig & Von Peter, 2014) shows that such networks are usually sparse. Furthermore,

using the KL method can underestimate systemic risk, as Mistrulli (2011) illustrate using bilateral exposures

from the Italian interbank market. Parts of the problem can be overcome by using different input matrices

for the KL method, see e.g. Chen et al. (2014).
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Mastromatteo et al. (2012) have proposed a message-passing algorithm for estimating interbank expo-

sures. Their aim is to fix a global level of sparsity for the network, i.e., the adjacency matrix. Once this is

given the weights on the existing links are distributed similarly to the KL-method. Our methodology is more

general since we can control sparsity on an individual exposures level and have an additional methodology

for distributing the weights that is consistent with empirical properties of these weights (such as heavy tails).

Anand et al. (2014) have proposed the minimum density (MD) method. They minimise the total number

of edges that is consistent with the aggregated interbank assets and liabilities. They argue that the MD

method tends to overestimate contagion and therefore can together with the KL method be used to provide

upper and lower bounds for stress test results. They also provide an extension to derive less sparse results for

the underlying network structure. We will see in Section 5.2, however, that general monotonicity arguments

of the type that more links result in more stable network and fewer links result in more systemic risk are not

true in general. Hence, any attempts to derive bounds on systemic risk by purely optimising over the degree

of completeness is unlikely to provide the full picture.

All previously mentioned methods produce a point estimate for the financial network and this is treated

as the true network when performing stress tests. No additional information accounting for the uncertainty

inherent in all estimation procedures such as confidence intervals etc. is considered. This is already problem-

atic, when one wants to assess the health of the financial system as a whole, but it is even more problematic

for deriving conclusions about individual financial institutions.

A simulation-based approach to reconstructing financial networks has been proposed by Hałaj & Kok

(2013). They randomly generate different network structures. In contrast to our approach, the probabilistic

model and the distribution from which the samples are generated, however, is not completely characterised.

In particular, it is not explicitly designed to reproduce stylised facts observed in financial networks.

Another simulation-based approach (Moussa, 2011) samples financial networks from an externally given

random graph model that does not satisfy the balance sheet constraints. The balance sheet constraints

are only met in expectation, by weighting the samples appropriately. In our approach, however, every

sample satisfies the balance sheet constraints individually. Furthermore, our approach is Bayesian, making

it possible to learn properties of the network from observed information.

Musmeci et al. (2013) consider the problem of reconstructing topological properties from limited infor-

mation. They use a bootstrapping approach and decide on link existence via a fitness model. Their method

estimates global properties of the underlying network, but does not try to reconstruct individual links.

There is also a substantial body of literature on related mathematical and statistical problems that deal

with the problem of sampling or counting matrices with given marginals whose entries are (non-negative)

integer values or binary values (i.e., 0 or 1). For some recent overview and results see e.g. Barvinok (2012),
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Miller et al. (2013). In statistics this problem arises when evaluating tests for independence in contingency

tables, for which the sampling needs to be done on the uniform distribution on all matrices. One approach

is to start with one matrix that is consistent with the given row and column sums and apply a series of

transformations that preserves row and column sums, see e.g. Ryser (1960). He proves an interchange

theorem, see (Ryser, 1960, Theorem 1.2), that shows that all matrices within the class of interest can be

obtained via suitable swaps/ changes of a subset of elements of the matrix. Monte Carlo methods have been

proposed to enumerate and simulate such matrices with fixed marginals, see e.g. Snijders (1991) for binary

matrices or Diaconis et al. (1998) who propose an algorithm based on a Markov chain with Metropolis step

for contingency tables. When swapping methods are applied within a Monte Carlo framework, one needs

to be careful to choose admissible matrices with the correct weights, see e.g. Zaman & Simberloff (2002).

Nonnegative matrices with fixed marginals also occur as solutions to transportation problems and are often

referred to as transportation polytopes, see e.g. (Brualdi, 2006, Section 8.1).

Considering a liabilities matrix is substantially different from this strand of the literature and its methods

are not directly applicable in our context: the elements of the liabilities matrix are not restricted to either 0-1

or nonnegative integers and we have the additional constraint that the diagonal of the liabilities matrix has

to be zero (and that potentially some additional entries are known).

Glasserman & Young (2015) study the likelihood of contagion in financial networks based on aggregates

available from balance sheet data. They compared expected losses within a given financial network to the

losses in the situation where all liabilities from the interbank market were replaced by liabilities to external

entities. They find that for some stylised default mechanisms the difference in expected losses can be quite

small. However, if more advanced default mechanisms are used, accounting e.g. for market frictions such

as bankruptcy costs, they find that network structure does matter. This supports the idea that filling in the

missing network structure is one of the key problems of systemic risk assessment.

2 The network of interbank liabilities
We consider a financial system consisting of n ∈ N banks with indices N = {1, . . . , n}. We describe

liabilities between the banks through a liabilities matrix which we define to be an n × n matrix L with

nonnegative entries. For notational convenience we only consider square liabilities matrices. Lij , i, j ∈ N ,

represents the nominal liability of bank i to bank j, i.e., the payment that is due from bank i to bank j.

We can think of the banks representing the nodes in a network. If Lij > 0 then there is a directed edge

from node i to node j with weight Lij . To indicate whether there is a link between two nodes we also use

the adjacency matrix A = (Aij) ∈ Rn×n defined by Aij = 1 whenever Lij > 0 and Aij = 0 otherwise.

We consider the situation in which the liabilities matrix is not fully known. We allow certain fixed

elements of the liabilities matrix to be known or observed. For this, we introduce the matrix L∗ ∈ L∗ :=
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({∗} ∪ [0,∞))n×n where L∗ij = ∗ means that the liability between i and j is unknown. We let F = {(i, j) :

L∗ij 6= ∗} be the positions where the liabilities matrix is known, i.e. fixed to a given value.

Our canonical example is that there are no liabilities from a bank to itself, i.e. L∗ii = 0 for all i ∈ N

but that all other liabilities are unknown, i.e. L∗ij = ∗ for all i 6= j. We call this the minimal observation

setting. Other examples include the view-point from an individual market participant, who knows their own

liabilities and assets, but only the aggregates for other participants and the view-point of a regulator, who is

able to observe individual liabilities from banks reporting to them, but only aggregates from other banks.

Definition 2.1 (Liabilities matrix). A matrix L = (Lij) ∈ [0,∞)n×n is called a liabilities matrix respecting

L∗ if ∀i, j ∈ N : L∗ij 6= ∗ implies Lij = L∗ij . We write L ≡ L∗.

We assume that we observe the total nominal interbank liabilities, the row sums of L, and the total

nominal interbank assets of each bank, the column sums of L. We often need the row and column sums of a

given matrix, including potentially matrices with unknown values (which will be ignored in the sums). For

this we define r, c : L∗ → Rn by r(M) := (r1(M), . . . , rn(M))>, c(M) := (c1(M), . . . , cn(M))> and

ri(M) :=
∑n

j=1,Mij 6=∗Mij , ci(M) :=
∑n

j=1,Mji 6=∗Mji.

Definition 2.2 (Admissible liabilities matrix). We call a matrix L ∈ Rn×n an admissible liabilities matrix

for a, l ∈ [0,∞)n respecting L∗ ∈ L∗ if it is a liabilities matrix respecting L∗ and satisfies

c(L) = a, r(L) = l. (1)

Knowing the row and column sums of the liability matrix only (and some other fixed values) leaves

considerable degrees of freedom for the liabilities matrix L. For example, in the minimal observation setting

the liabilities matrix L has n2−n unknown entries. Assuming that the row and column sums of L are known

gives 2n linear constraints on L. At least one of these is redundant, as the sum of column sums equals the

sum of row sums. Thus we have n2 − n− (2n− 1) = n2 − 3n+ 1 degrees of freedom when estimating L.

Under what conditions does an admissible liabilities matrix exist? The following theorem gives a nec-

essary and sufficient condition.

Theorem 2.3 (Existence of an admissible liabilities matrix). Consider two vectors a ∈ [0,∞)n, l ∈ [0,∞)n

and L∗ ∈ L∗ satisfying
∑n

i=1 ai =
∑n

i=1 li, r(L
∗) ≤ l and c(L∗) ≤ a. Then the following are equivalent:

1. There exists an admissible liabilities matrix L for a and l respecting L∗.

2. ∀I ⊂ N , J ⊂ N with L∗ij 6= ∗∀i ∈ I, j ∈ J we have∑
i∈I

l̃i +
∑
j∈J

ãj ≤ A (2)

where l̃ = l − r(L∗) and ã = a− c(L∗) and A =
∑n

i=1 l̃i.
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The proof in Appendix A transforms the problem into a maximum flow problem, for which there are

efficient algorithms, see e.g. Cormen et al. (1990). In the minimal observation setting, (2) is equivalent to

ai ≤
∑
j 6=i

lj ∀i ∈ N , (3)

which requires that the assets of any bank are bounded by the total liabilities of all other banks.

Example 2.4. Consider a network with n = 3 banks with the minimal observation setting. The system of

linear equations given by (1) has one degree of freedom. Letting x = L32 be the free parameter, we see that

the resulting general liabilities matrix L = L(x) is of the form

L(x) =


0 a2 − x −a2 + l1 + x

a1 − l3 + x 0 l2 − a1 + l3 − x

l3 − x x 0

 .

An x satisfying the nonnegativity constraint Lij ≥ 0 ∀i, j ∈ {1, 2, 3} exists iff a and l satisfy condition (3).

As an example, assume l = a = (1, 1, 1). Then nonnegativity of L is equivalent to 0 ≤ x ≤ 1 and

L(x) =


0 1− x x

x 0 1− x

1− x x 0

 . (4)

For x = 1/2 we obtain a complete network with the same weight of 1/2 for all edges. This is the network

one would obtain using KL divergence minimisation (with input matrix given by L̃ = (L̃ij) ∈ Rn×n, where

L̃ij = ailj/
∑n

ν=1 aν ∀i 6= j, L̃ii = 0∀i). For x ∈ (0, 1) \ {1/2} the network is also complete but with

inhomogeneous weights. Setting x = 0 or x = 1 gives a cycle and the network is no longer complete. The

minimum number of possible edges in this example is 3 which corresponds to the two cycle networks. The

maximum number of edges is 6 which corresponds to the complete networks.

3 A Bayesian methodology for estimating interbank liabilities
In this section, we describe probabilistic models for the liabilities matrix. We first describe a basic

model, which we then use as building block in hierarchical models. Throughout we assume that we have an

underlying matrix L∗ ∈ L∗ describing the observed elements.

3.1 Basic model
The basic model first constructs an adjacency matrix A = (Aij) through a generalised version of the

Erdős-Rényi model (Erdős & Rényi, 1959): directed edges from i to j are generated via independent

Bernoulli trials with success probabilities pij ∈ [0, 1] i, j ∈ N . Second, weights (i.e., liabilities) are at-

tached to the existing directed edges using exponential distributions. To be precise, the model is as follows.

P(Aij = 1) = pij ,

Lij |{Aij = 1} ∼ Exponential(λij).
(5)
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Figure 1: Survival function of the out-degree distribution of 10 simulated instances of the unconditional
basic model (5) with n = 100 and pij = 0.3I(i 6= j).

Model parameters are two matrices: p ∈ [0, 1]n×n, where pij is the probability of the existence of a directed

edge from i to j, and λ ∈ (0,∞)n×n, which governs the distribution of the weights given that an edge exists.

Figure 1 shows an illustration of the out-degree distribution for a homogeneous choice of p.

We assume that we observe the following from the basic model (5):

r(L) = l, c(L) = a, L ≡ L∗, (6)

i.e., we only observe the row sums and column sums (l, a) and some elements of the liabilities matrix given

by L∗, the liabilities matrix L is not directly observable.

Our main interest lies in the distribution of some functional h of L (h(L)) conditional on l, a, L∗. For

example, we consider in Section 5.1 functions h that compute the vector of default indicators.

The distribution of h(L)|l, a, L∗ it not available in closed form; however it can be approximated using

MCMC methods. Indeed, the relatively simple form of the model (including the choice of an exponential

distribution of the existing liabilities) allows us to construct a Gibbs sampler (Section 4.1), for which we

need to compute certain conditional distributions.

It is a very flexible model. We will consider two setups in later examples, but other choices are possible:

In Section 5.3.1 we consider a homogeneous setup in which pij = p̃I(i 6= j) and λij = λ̃ for fixed p̃ and

λ̃; the resulting adjacency matrix is then essentially a classical Erdős-Rényi graph. In Section 5.3.2 we will

consider core-periphery models where the elements of the parameter matrices are not identical.

3.2 Identifiability
The matrices p and λ cannot be fully identified merely by observing the row and column sums. Specif-

ically, the following proposition shows that in the minimal observation setting p cannot be identified from

row and column sums by showing that for any (reasonable) matrix p there exits a matrix of rate parameters

λ = (λij) s.t.
∑n

i=1 E(Lij) = aj and
∑n

j=1 E(Lij) = lj .

Proposition 3.1. Let l, a ∈ (0,∞)n with A =
∑n

i=1 li =
∑n

i=1 ai and ai + li < A ∀i. Let p ∈ [0, 1]n×n
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with pij > 0 ∀i 6= j, diag(p) = 0. Then

∃(λij) such that ∀j :

n∑
i=1

E(Lij) = aj and ∀i :

n∑
j=1

E(Lij) = li.

A proof is given in Appendix A. The consequence of this lack of identifiability is that one needs to

impose some structure on p and λ, e.g. by setting these to specific values for the basic model or by assuming

a hierarchical model that makes assumptions about the network structure. This choice will be specific to the

application under consideration.

3.3 Hierarchical models
The basic model can be embedded into a larger Bayesian model, where the matrices p and λ are them-

selves random quantities. This allows incorporation of various features that one might observe in empirical

data (heavy or light tailed distribution etc.). Making p random allows us to model a wide range of degree

distributions including power laws. Making λ random in such a larger model gives us great flexibility on the

distribution of the liabilities. Indeed, a large range of important probability distributions can be character-

ized by exponential mixture models. An important result in this context is Bernstein’s theorem, which states

that every completely monotone probability density function is a mixture of exponential distributions (Feld-

mann & Whitt, 1997, Theorem 3.1.). For example, the Pareto II distribution (which can be heavy-tailed)

is a Gamma mixture of exponential distributions (Harris, 1968), see also Section 4.2 of the Supporting

Document.

We consider the following hierarchical model in which we assume that p and λ are influenced by some

underlying random parameter θ. In addition to (5), we assume

θ ∼ π(θ),

(pij , λij)i,j∈N = f(θ),
(7)

where π is an a-priori distribution on θ and f is a given function. We will explore two examples of such

hierarchical models in the following.

3.3.1 Conjugate distribution model

This model assumes that all components of p (apart from the diagonal) and all components from λ are

equal but random. More precisely, we set θ = (p̃, λ̃) and assume

p̃ ∼ Beta(α, β), λ̃ ∼ Gamma(γ, δ),

pij = p̃I(i 6= j), λij = λ̃, i, j ∈ N ,

for some parameters α, β, γ, δ. The prior on p̃, λ̃ is flexible and brings advantages in constructing samplers

as the conditional distribution of p̃|L follows a Beta distribution and λ̃|L follows a Gamma distribution.

A tiered financial network in which subsets of banks are assumed to be similar can be defined by parti-

tioning the matrix L and using independent models of the above type for each element of the partition.
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3.3.2 Fitness model

Fitness models (see e.g. Caldarelli et al., 2002; Servedio et al., 2004) have mainly been used to model

undirected non-weighted networks. Typically, each node i is equipped with a random “fitness” xi (whose

pdf we denote by ρ) and links between nodes with fitness xi and xj are formed with probability f(xi, xj)

for a given function f . Several choices for f and ρ have been proposed, giving rise to different degree

distributions. In particular, power laws for the degree distributions can be obtained (Servedio et al., 2004).

A popular choice for f is the product of the (potentially transformed) fitnesses, i.e. f(xi, xj) = g(xi)g(xj)

for some function g. This structure limits the expected degree of the largest bank. Since we want to have the

possibility of one bank having connections to a large number of banks we do not use a product structure.

Our model will be a fitness model in which every bank i has an underlying fitness xi which influences

both its propensity to generate links (via p) as well as the size of its links (via λ). The model allows for a

power law for the number of links of banks (the degree distribution) as well as for the interbank liabilities

of a bank. This is motivated by empirical studies of interbank networks which have found power law

distributions for the degree distribution and the weights (see e.g. Boss et al., 2004).

Our model assumes that the fitness has an Exponential distribution with rate 1, i.e. ρ(x) = exp(−x)I(x ≥

0). Furthermore, we assume that the link function depends on the two fitnesses only through the sum of the

two fitnesses, i.e. f(xi, xj) = f̃(xi + xj) for a suitable function f̃ . The precise model is as follows.

Xi ∼ Exp(1), i ∈ N ,

pij = f̃(Xi +Xj)I{i 6=j}, i 6= j ∈ N ,

λij = G−1
ζ,η(exp(−Xi)) +G−1

ζ,η(exp(−Xj)) i, j ∈ N ,

(ζ, η) ∼ π(ζ, η),

(8)

where π is a suitable prior distribution, G−1
ζ,η is the quantile function of a Gamma distribution with shape

parameter ζ > 0 and scale parameter η > 0 and

f̃(x) :=

 β
(
γ
β

)1−exp(−x) (
1− log

(
γ
β

)
exp(−x)

)
, if α = −1,

β (ξ + (1− ξ)e−x)
1

α+1

{
1 + 1

α+1
1−ξ

ξex+1−ξ

}
, if α 6= −1,

(9)

where ξ := (γ/β)α+1, 0 < β < γ ≤ 1 and α < 0. We need to ensure 0 ≤ f̃(x) ≤ 1. Straightforward

calculations show that this is satisfied for α ≤ −2, but that for α > −2 we get the additional constraints:

if α ∈ (−2, 0) \ {−1} : γ/β ≤ (α+ 2)
1

α+1 ; if α = −1 : γ/β ≤ e.

The link function f̃ has been constructed such that the degree distribution exhibits a power law in the

sense that the pdf of the expected out-degree of a node at k is proportional to kα, where the distribution of

the expected out-degree is the distribution of the random variable dout(X), with X ∼ Exp(1) and

dout(x) = (n− 1)

∫ ∞
0

f̃(x+ z)e−zdz.
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Figure 2: Survival function (left) and log-log plot of the pdf (right) of the distribution of the expected
out-degree for the fitness model with n = 100 nodes and various choices of parameters.
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Figure 3: Survival function of the degree distribution (left) and of the entries of L (right) in simulated
instances of the fitness model with n = 100, α = −2.5, β = 0.2, γ = 1 and fixed ζ = 0.75 and η = 1000.

dout(x) can be interpreted as the expected out-degree of a node with fitness x. The range of the power law is

[β(n− 1), γ(n− 1)]. See Section 4.1 of the Supporting Document for details on the derivation of f̃ , which

is based on ideas in Servedio et al. (2004). Formula (15) of Servedio et al. (2004) is identical to (9) with

α = −2.

Since, limx→∞ f̃(x) = γ, we obtain limx→∞ d
out(x) = γ(n− 1) showing that banks with large fitness

have liabilities to roughly γ(n − 1) other banks. Furthermore, dout(0) = β(n − 1), showing that a bank

with fitness 0 has liabilities to roughly β(n− 1) other banks. Figure 2 illustrates the flexibility of the model

by showing the distribution of the expected out-degree for various parameter choices. Figure 3 shows how

the realised out-degrees and the realised entries of Lij scatter around the expected values. The fitness model

allows a much wider range of degrees than the basic model (see Figure 1).

The parts of the model concerning the adjacency matrix were originally proposed by Servedio et al.

(2004) for undirected, non-weighted networks and they derived specific formulae for the case α = −2. We

adapt their methodology to the directed/weighted network case and derive formulae for all α < 0. The

extension to using the fitness to also model the weights of the edges in this form is new.

The model for λij is constructed such that we obtain economically reasonable behavior for the positive

entries of L. First, higher values of the fitnesses will imply smaller values of λ and hence higher expected
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liabilities. This is because G−1
ζ,η(e

−x) is decreasing in x.

Second, our model for Lij conditional on being positive is a mixture of exponentials as the distribution

on the fitness induces a mixture distribution on the λij . Our particular choice leads to heavy tails for this

distribution. Conditional on the parameters (ζ, η), we have G−1
ζ,η(e

−X) ∼ Gamma(ζ, η) for X ∼ Exp(1)

because e−X has uniform distribution on (0, 1) and because applying the quantile function to a U(0, 1)

distributed random variable gives a random variable having this quantile function. Thus the rate parameter

λij is the sum of two independent Gamma distributed random variables and hence a Gamma distributed

random variable with shape parameter 2ζ and scale parameter η. A Gamma mixture of Exponentials has

Pareto II distribution (Harris, 1968). Hence, the distribution of a randomly selectedLij is for large arguments

close to the cdf of a Pareto II distribution with shape parameter 2ζ and scale parameter 1/η. I.e. for such

an Lij and x > 0, P(Lij > x) ≈ (1 + ηx)−2ζ (if β = γ = 1, this is the exact distribution). We provide

details on this in Section 4.2 of the Supporting Document. Boss et al. (2004) observe a power law in the

interbank liabilities of the Austrian interbank market with a power around−1.87. We can choose ζ to match

any power of interest. Hence, the priori model assumption is reasonable in the context of empirical data.

Third, when considering pairs of banks with very different fitnesses, the large bank essentially deter-

mines the link existence probability (to be high), and the small bank determines the weight (to be small).

Indeed, consider two banks, one with a high fitness xi and one with a low fitness xj . The high fitness xi

will lead to a high link existence probability. The small fitness xj leads to the transformed value e−xj being

large, implying a large corresponding quantile of the Gamma distribution. Hence, there is a large summand

in the definition of the corresponding λij which is resulting in a low expected weight. We would not obtain

this behaviour if we were to add the fitnesses before transforming to the desired Gamma distribution.

We have designed the specific fitness model such that it has many desirable economic features. Our

Bayesian framework can easily accommodate alternative choice for the distribution of the fitness ρ, the link

existence probabilities f or the relationship between the fitnesses and the rate parameter λ.

4 Sampling
We show how an MCMC algorithm (more precisely, a Gibbs-sampler) can be used to sample from the

conditional distribution of the liabilities matrix given its row and column sums (l, a) and known entries.

These samples can then be plugged into functionals of interest for systemic risk assessment, e.g., to work

out the distribution of the number of banks defaulting or the probability of the default of a specific bank. We

consider the basic model before extending the resulting methodology for hierarchical models.

In addition to the theoretical derivation of the samplers, we provide a simulation study in Section 1 of

the Supporting Document which shows that our samplers are sampling from the correct distribution and that

the implementation provided in the R package systemicrisk works.
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To diagnose convergence of MCMC samplers, a large number of methods have been developed, see e.g.

Plummer et al. (2006). We demonstrate some of these methods in Section 2 of the Supporting Document.

4.1 A Gibbs sampler for the basic model
A large number of algorithms for sampling from matrices conditionally on their row and column sums

have been proposed; the introduction contains a short overview. Most algorithms are constructed for count

data, i.e., all entries are either assumed to be binary or to be nonnegative integers. These methods are not

directly applicable in our setting for two reasons. First, we are assuming that our entries are coming from

absolutely continuous random variables with a point mass at 0. Second, certain elements can be set to fixed

values - in the minimal observation setting the diagonal is set to 0.

We develop a Gibbs sampler to generate samples from the liabilities matrix conditional on the observed

row and column sums. The key idea of a Gibbs sampler is to iteratively update one or several components

of the entire parameter vector by sampling them from their joint conditional distribution given the other

components of the parameter vector. Often, components of the parameter vector are updated individually,

but sometimes it is necessary or more efficient to update several components of the parameter vector jointly.

By repeating these updating steps one constructs a Markov Chain whose distribution converges to the target

distribution as the number of updating steps tends to infinity.

In practice, the results are reported based on a single run of the chain. Often a burn-in period is used,

i.e., one discards the first few samples. Afterwards one often does not use every sample but only every

δth sample for a suitable nonnegative integer δ. This thinning reduces the autocorrelation of the retained

samples. See Robert & Casella (2004) for background regarding MCMC methods and the Gibbs sampler.

In our case the parameter vector is the matrix L. The MCMC sampler will then produce a sequence of

matrices L1, L2, . . . and for our quantity of interest we use the approximation

E[h(L)|l, a] ≈ 1

N

N∑
i=1

h(Liδ+b),

where N is the number of samples to use in the estimation, b is the length of the burn-in period and δ ∈ N

defines the amount of thinning employed. For a specific application, a reasonable ambition is to ensure that

the N dependent samples being produced from the MCMC chain are equivalent to an independent sample

of size, say, N/10. An appropriate amount of thinning can be set using pilot runs of the chain together

with estimates of the componentwise effective sample size (using e.g. the CODA package (Plummer et al.,

2006)). Our R-package includes a function that determines the thinning in this way. As default burn-in we

use b equivalent to 10% of the overall effort.

4.1.1 Components that can be updated

For the construction of a Gibbs sampler, updating individual components of L is not useful, as condi-

tionally on the row and column sums and the other values of L, the individual components are uniquely
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Figure 4: Illustration of submatrices to be updated via a Gibbs step (left-to-right): k = 2, 3, 4.

determined. Thus we need to jointly update a subset of the components of L.

The smallest possible update where we can hope to have some degrees of freedom would be based on

updating a 2x2 submatrix, see the left matrix in Figure 4. Conditioning on the row and column sums and

all other components of L is equivalent to conditioning on the row and column sum of the original 2x2

submatrix of L. This gives 4− 1 = 3 side conditions (the total row and column sums automatically match),

leaving one degree of freedom if none of the elements of the submatrix are fixed.

Performing Gibbs updates of 2x2 submatrices will not be enough to iterate through the space of possible

liabilities matrices. To see this, consider Example 2.4. Here, any 2x2 submatrix contains at least one element

of the diagonal. Thus Gibbs updates of 2x2 matrices leave L unchanged.

This is why we use more general updates - as subcomponents to update we use cycles given by an

integer k ∈ {2, . . . , n} and mutually disjoint row indices (i1, i2, . . . , ik) and mutually disjoint column

indices (j1, j2, . . . , jk). We update L at the indices

η := ((i1, j1), (i1, j2), (i2, j2), . . . , (ik, jk), (ik, j1))

conditional on all other values of L. We refer to such a cycle as a cycle of length k. A cycle of length k

contains the indices of 2k elements of L. Figure 4 illustrates submatrices that can be updated along a cycle.

Conditioning on the row and column sums of the current subelements of L is equivalent to conditioning

on other values of L. Thus we can implement a Gibbs sampler if we are able to sample from such a subset

of values with given row and column sums. We discuss how to do this in Section 4.1.2.

We need to initialise the chain with a matrix L that satisfies r(L) = l and c(L) = a. To generate

such a matrix we could use a maximum flow algorithm on the flow network constructed in the proof of

Theorem 2.3. This would result in a very sparse matrix. This would potentially lead to the need to use a

long burn-in phase. To reduce this problem, we first sample an Erdős-Rényi random matrix L̃ with degree

existence probability roughly equal to the the average degree distribution of the unconditional model and

with r(L̃) ≤ l and c(L̃) ≤ a (which is easy to ensure). We then use the maximum flow-algorithm on the

remaining row and column sum and add the resulting matrix to L̃.

Our implementation of the Gibbs sampler uses the above update steps as follows. Based on a given
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matrix L(t) satisfying all constraints (1), we derive a new matrix L(t+1) again satisfying (1) by selecting

a cycle of the above type and replacing the corresponding values of L(t) with conditionally sampled new

values and by leaving the remaining values untouched.

There is considerable flexibility in how to choose which cycle to update. From a theoretical point of

view it suffices to ensure that all cycles can be selected with positive probability. From a practical point of

view the efficiency of the resulting MCMC sampler will be affected by this choice. We use the following

method: We first sample the cycle length k from the discrete distribution which assumes that the probability

of selecting a cycle of length k is given by 2n−k/(2n−1 − 1) for k ∈ 2, . . . , n. This choice implies that for

large n we roughly select k = 2 with probability 1/2 and k = 3 with probability 1/4. After that we sample

(i1, . . . , ik) and (j1, . . . , jk) uniformly from N without replacement.

As the expected number of elements updated in an individual step is constant, the number of individual

updating steps (i.e. the thinning) should be proportional to n2, the number of elements in L - this is why we

will describe the amount of thinning as multiples of n2.

4.1.2 Conditional distribution for the Gibbs sampler

We now derive the conditional distribution of the elements of L contained in a cycle given all other

values. For this, suppose we want to update L using a cycle of length k ∈ {2, . . . , n} and mutually disjoint

row indices (i1, i2, . . . , ik) and mutually disjoint column indices (j1, j2, . . . , jk). In other words we update

L at the indices η = ((i1, j1), (i1, j2), (i2, j2), . . . , (ik, jk), (ik, j1)) conditional on all other values of L. Let

Lη denote the vector obtained by extracting the 2k values of L along the cycle into a vector.

Updating L along the cycle conditional on all other values of L is equivalent to updating L along η

conditional on consecutive row and column sums. To formalise this, let g : R2k → R2k be a function that

takes the sum of consecutive elements, i.e.,

g(x) = (x1 + x2, x2 + x3, . . . , x2k−1 + x2k, x2k + x1) ∀x ∈ R2k.

Let L̃η ∈ R2k have the same distribution as Lη. We are interested in the distribution of L̃η conditional on

g(L̃η) = g(Lη). The only L̃η satisfying this are

L̃ηi = Lηi + (−1)i+1∆,

for some ∆ ∈ R. Thus it suffices to derive the distribution of ∆.

Next, we derive constraints on ∆ and discuss how it can be sampled. If the cycle contains an observed

element, i.e. ηi ∈ F for some i then ∆ = 0 is the only available choice and hence the entries along the cycle

will not get changed. Otherwise, as the elements of L̃ need to be nonnegative, we have ∆ ≥ −Lηi for i odd

and ∆ ≤ Lηi for i even. Putting these together gives

∆ ∈ [∆low,∆up] := [−min
i odd

Lηi ,min
i even

Lηi ].

The unconditional density of L̃η (with respect to the sum of the Lebesgue measure and the counting
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measure at 0) is

f(L̃η) =
2k∏
i=1

(
(1− pηi)I(L̃ηi = 0) + pηiI(L̃ηi > 0)ληi exp(−ληiL̃ηi)

)
. (10)

When conditioning on g(L̃η) = g(Lη) we need to be careful as we are working with a measure consisting

of both continuous and discrete parts. The discrete part will come into play only for ∆ ∈ {∆low,∆up} and

the continuous part for ∆ ∈ (∆low,∆up).

It turns out (Appendix B.1) that if only one zero is contained in the boundary cases L̃low,i = Lηi +

(−1)i+1∆low, i ∈ {1, 2, . . . , 2k} or L̃up,i = Lηi + (−1)i+1∆up i ∈ {1, 2, . . . , 2k} then the conditional dis-

tribution of ∆ is supported on both {∆low,∆up} as well as on the continuous part (∆low,∆up). However, if

more than one zero is contained in L̃low or L̃up then the entire probability mass is concentrated on the bound-

ary case with the highest number of zeros and the probability of the intermediate case ∆ ∈ (∆low,∆up) is

zero. If the number of zeros is identical for both boundary cases then the conditional distribution is split

between these cases.

Conditional on the intermediate case ∆ ∈ (∆low,∆up), using density transformation, we show in Section

B.2 that the distribution of ∆ conditional on g(L̃η) = g(Lη) and Lηi 6= 0, i = 1, . . . , 2k is given by what we

call a “restricted generalised exponential distribution” with rate parameter
∑2k

i=1(−1)i+1ληi meaning that

its density on the support ∆ ∈ (∆low,∆up) is proportional to

exp

[
−

(
2k∑
i=1

(−1)i+1ληi

)
∆

]
.

The generalisation compared to the conventional exponential distribution is that the rate parameter need not

be positive. This is possible because ∆ has bounded support (∆low,∆up).

One of the consequences of the above is that an updating step can delete edges as well as create edges

and change weights of existing edges.

These considerations together with working out all conditional probabilities via Bayes formula lead to

Algorithm 1. Some remarks on it follow. The function f∗ defined in line 2 is related to the density f defined

in (10) in the sense that f∗(∆) = f(Lη + s∆). If, for at least one component of the cycle, the probability of

a link is exactly 0 then there is no flexibility in the update and thus the original matrix needs to be returned;

this is done in line 4. Line 7 computes the number of zeros arising in the boundary cases. If this is at most

one, then both the boundary cases {∆low,∆up} as well as the intermediate case (∆low,∆up) are part of the

possible support. In lines 10–12 we sample among these cases with the appropriate probabilities. Lines

18–21 deal with the case that more than one value of zero is possible in this update step. In this case the

boundary case with the highest number of 0s dominates the other cases, see Appendix B.

Within our R-package, Algorithm 1 is implemented in C++. This allows for fast execution of a large

number of steps. For example, in a setup with roughly 30% of the elements of L being positive in a network
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Algorithm 1: Sampling of a cycle conditional on row and column sums in the model (5)

Input: k ∈ N, i, j ∈ {1, . . . , n}k, L ∈ [0,∞)n×n, p ∈ [0, 1]n×n, λ ∈ (0,∞)n×n

1 η = ((i1, j1), (i1, j2), (i2, j2), . . . , (ik, jk), (ik, j1)); s = (1,−1, 1, . . . , 1,−1) ∈ R2k

2 Let f∗ : R→ R,∆ 7→
2k∏
i=1

[
I(Lηi + si∆ = 0)(1− pηi) + I(Lηi + si∆ > 0)pηiληie

−ληi (Lηi+si∆)
]
.

3 For every ∆ ∈ R, let L∆ ∈ Rn×n be defined by L∆
ηi = Lηi + si∆, i = 1, . . . , 2k and by being equal

to L for all other components.
4 if ∃i : pηi = 0 then return L
5 ∆up = mini=2,4,...,2k Lηi ; ∆low = −mini=1,3,...,2k−1 Lηi
6 if ∆low = ∆up then return L
7 n0

up = #{i even : Lηi = ∆up}; n0
low = #{i odd : Lηi = −∆low}

8 if n0
up ≤ 1 and n0

low ≤ 1 then
9 λ̃ =

∑
i ληisi

10 if λ̃ = 0 then p∗ = (∆up −∆low)f∗(1
2(∆up + ∆low))

11 else p∗ = λ̃−1
(

exp
[
λ̃

∆up−∆low
2

]
− exp

[
−λ̃∆up−∆low

2

])
f∗(1

2(∆up + ∆low))

12 Sample x from {1, 2, 3} with probabilities ξf∗(∆low), ξp∗, ξf∗(∆up) where
ξ = (f∗(∆low) + p∗ + f∗(∆up))−1

13 if x=1 then return L∆low

14 if x=2 then
15 Sample ∆ from the extended exponential distribution restricted to (∆low,∆up) with rate λ̃
16 return L∆

17 if x=3 then return L∆up

18 else
19 if n0

up > n0
low then return L∆up

20 if n0
low > n0

up then return L∆low

21 if n0
low = n0

up then with probability f∗(∆low)
f∗(∆low)+f∗(∆up) return L∆low ; otherwise return L∆up

with n = 100 nodes, 5 · 106 cycle updates take about one second on a single core of an Intel Core i7-860

CPU with a clock speed of 2.8 GHz.

4.1.3 Gibbs moves can reach all admissible matrices

By construction, a Gibbs sampler automatically has the correct invariant distribution. Full convergence

proofs usually rely on showing Harris recurrence (Robert & Casella, 2004), which is essentially the require-

ment that the entire space is explored repeatedly. In this section we make a step towards such a proof by

showing that, under conditions, the Gibbs sampler can move from a matrix L1 to any other matrix L2.

Theorem 4.1. Let a, l ∈ [0,∞)n. Suppose that L1, L2 ∈ [0,∞)n×n are such that for L = L1 and L = L2

the following conditions are satisfied:

(i) (correct row/column sums) r(L) = l, c(L) = a.

(ii) (L consistent with p) ∀i, j ∈ N : Lij > 0⇒ pij > 0.

(iii) (L connected along rows/columns) The undirected graph G = (V,E) with vertices
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V = {r1, . . . , rn, c1, . . . , cn} and edges E = {(ri, cj) : (i, j) /∈ F , Lij > 0} is connected.

(iv) (no positive ties) ∀i, j, i∗, j∗ ∈ N : Lij = Li∗j∗ 6= 0 implies i = i∗, j = j∗.

Then there exists a sequence of moves by the Gibbs sampler in Algorithm 1 that transforms L1 to L2.

The proof can be found in Appendix A. Condition (iii) considers the bipartite graph with nodes corre-

sponding to all rows and all columns in which a row is connected to a column if the corresponding entry in L

is positive. Connectedness of this graph, i.e. that all nodes can be reached from any node, can be efficiently

checked for a given matrix L using e.g. depth first search (Cormen et al., 1990).

One can see that condition (iii) is implied for all L satisfying (i) by the following condition on a and l:

∀I, J ⊆ N :

∑
i∈I

li =
∑
j∈J

aj =⇒ I = J = N or I = J = ∅

 . (11)

Fully checking (11) is usually only feasible for small n as it is similar to the NP-hard equal-subset-sum

problem, see e.g. Woeginger & Yu (1992). Condition (iv) is satisfied with probability one in the models that

we consider, e.g. for models (5) and (8).

4.2 MCMC samplers for hierarchical models
In the hierarchical model the unknown parameters are L and θ. To sample from (θ, L)|a, l, L∗ in this

joint model we can again use a Gibbs sampler (or a Metropolis within Gibbs sampler). As θ directly defines

the matrices p and λ, the updates used in the basic model can be used to update components of L. Updating

components of θ will depend on the specific choice of θ and f . Below we give some examples.

The model of Section 3.3.1 has been specifically set up such that the priors for p̃ (a Beta distribution)

and λ̃ (a Gamma distribution) are conjugate priors for the model generating L (the indicators I(Lij > 0)

are independent Bernoulli random variables with parameter p̃ and Lij conditional on Lij > 0 follows an

Exponential distribution with parameter λ̃). Hence, (p̃, λ)|L is given by independent Beta and Gamma

distributions with appropriately updated parameter values.

For the fitness model in Section 3.3.2 we use Metropolis-Hastings updates to update θ. As these are

straightforward extensions of our basic sampler we present the details in Section 3 of the Supporting Docu-

ment.

5 Applications to systemic risk assessment
5.1 Stress testing a financial network

We now use our methodology for stress testing. We assume that in addition to the row and column sums

of L we also observe the external assets a(e) ∈ [0,∞)n and the liabilities to entities outside the interbank

network l(e) ∈ [0,∞)n. Table 1 illustrates a simple balance sheet based on this. The vector of total liabilities

is lall := l(e) + r(L) ∈ Rn and the vector of net worths is w = w(L, a(e), l(e)) = a(e) + c(L) − lall. If

wi ≥ 0, the net worth corresponds to the book value of bank i’s equity.
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Table 1: Balance sheet of bank i.

Assets Liabilities
external assets a

(e)
i external liabilities l

(e)
i

interbank assets ai := ci(L) interbank liabilities li := ri(L)
net worth wi

We consider deterministic proportional shocks defined by s ∈ [0, 1]n: bank i’s external assets are re-

duced to sia
(e)
i . The banks in the set D0 := {i ∈ N | wi(L, sia(e)

i , l
(e)
i ) < 0} are fundamentally insolvent.

These fundamental defaults are purely caused by the external shocks under the assumption that all banks in

the network are meeting their obligations. Fundamental defaults depend on the liabilities matrix only via its

row and column sums l and a but not on the individual entries Lij .

Default may also be caused by other banks no longer being able to repay their debt, called contagious

defaults. As mechanism of contagion we use the clearing payment approach (Eisenberg & Noe, 2001) and

its generalisation to include default costs (Rogers & Veraart, 2013). Other generalisations could also be

used, e.g. to fire sales (Cifuentes et al., 2005), to combinations of default costs, fire sales and cross-holdings

(Awiszus & Weber, 2015), or alternatives such as the default cascade algorithm (Amini et al., 2013) and

systemic risk measures (Chen et al., 2013; Kromer et al., 2015; Biagini et al., 2015; Feinstein et al., 2015).

The main idea of the clearing approach, consistent with the assumption that all liabilities have equal

priority, is that banks repay their creditors in the same proportions as their original debt was distributed. We

define the relative liabilities matrix Π ∈ Rn×n by setting Πij := Lij/l
all
i , if lall

i > 0 and 0 otherwise. A

clearing vector c?(s) ∈ [0, lall]n is a solution to c?(s) = Φ(c?(s)), where

Φ(c(s))i :=

 lall
i , if lall

i ≤
∑n

j=1 Πjicj(s) + sia
(e)
i ,

β(c)
∑n

j=1 Πjicj(s) + α(c)sia
(e)
i , else.

Here α(c), β(c) ∈ [0, 1] are constants modeling default costs (Rogers & Veraart, 2013). For α(c) =

β(c) = 1, this is the classical clearing vector introduced by Eisenberg & Noe (2001) corresponding to no

default costs. A bank i is in default if c?i (s) < lall
i ; this includes both contagious and fundamental defaults.

5.2 Toy example
To illustrate the sensitivity of defaults and clearing payments on the underlying network, we consider

a simple situation in which we can easily analytically characterize all networks that are consistent with

given row and column sums. Specifically, we consider the network with three banks from Example 2.4 with

liabilities matrix (4).

In addition to the row and column sums, we choose a(e) =
(

1
2 ,

5
8 ,

3
4

)> for the external assets and

l(e) =
(

3
2 ,

1
2 ,

1
2

)> for the external liabilities. Hence, the total liabilities are lall =
(

5
2 ,

3
2 ,

3
2

)> and the net

worth is w =
(
−1, 1

8 ,
1
4

)>. Therefore, only bank 1 is in fundamental default.
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Figure 5: Dependence of stress test outcomes on the network structure: Figure 5(a) shows∑3
i=1 c

?
i (0)/

∑3
i=1 l

all
i as a function of x. The lines in Figure 5(b) show for which x each bank defaults.

We use the clearing mechanism without default costs. Figure 5 shows the dependence of the stability

of the interbank market on the network configuration. Bank 2 defaults due to contagion for all x ∈ [0, 6
5 −

1
10

√
19) ≈ [0, 0.76). Bank 3 defaults due to contagion for all x ∈ (− 1

20 + 1
20

√
161, 1] ≈ (0.58, 1]. Hence,

just from the marginals a, l we cannot determine the outcomes for bank 2 and bank 3. In some network

constellations both suffer a contagious default, in others only one of them. Even in the situations where only

one of them defaults due to contagion the total clearing payments differ quite substantially. Furthermore,

the parameter range for which all banks default corresponds to the highest value of clearing payments. This

can be explained by the losses being (partially) absorbed by the net worth of two banks rather than the net

worth of only one bank.

Applying the standard KL method to this example gives the liabilities matrix L(1/2). For this situation

only bank 2 suffers a contagious default, but this is not the worst possible outcome for the network, hence

contagion can indeed be underestimated by the KL-method.

The circular networks with either x = 0 or x = 1 have the fewest number of edges. However, they do

not represent the worst possible network scenarios. This indicates that the sparsest network consistent with

the marginals is not necessarily the network with the highest contagion risk. Hence, using such a network

as an upper bound for systemic risk as suggested by Craig & Von Peter (2014) will not always work.

When applying our basic model to this example (using e.g. pij = 0.3I(i 6= j) and λij = I(i 6= j))

then once the sampler has reached one of the extreme cases x = 0 or x = 1 it iterates between these two

cases only, visiting each with the same probability (using a cycle move of length 3). This is consistent with

the model - similarly to the arguments in Appendix B.1, one can show that these extreme cases are more

probable than the intermediate case.
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5.3 Empirical example
In the following we demonstrate how our methodology can be applied to empirical data. To do this, we

use data from banks that took part in the European Banking Authority’s (EBA) 2011 stress test4.

For every bank, the total assets ai + a
(e)
i , the interbank assets ai and the net worth wi (i.e., the Tier 1

capital) are available. Hence, the external assets a(e)
i are available as the difference between the total assets

and the interbank assets. The interbank liabilities li are not provided in the data set. Some empirical studies

based on these data assumed li = ai ∀i ∈ N , see e.g. Chen et al. (2014) and Glasserman & Young (2015).

We will assume that li is a slightly perturbed version of ai to ensure that condition (11) is satisfied. In

particular, we set li := r
(

(ai + εi)
∑n
j=1 aj∑n

j=1(aj+εj)

)
, i ∈ {1, . . . , n− 1}, and ln :=

∑n
i=1 ai −

∑n−1
i=1 li, where

r(·) is the rounding function to 1 decimal place and ε1, . . . , εn are independent realisations from a normal

distribution with mean 0 and standard deviation 100. Throughout this example we use one fixed realisation

for the li. Using this assumption, the external liabilities are given by l(e)i = (ai + a
(e)
i )− wi − li.

We look at a subset of the EBA stress test data containing eleven German banks as in Chen et al. (2014).

The corresponding balance sheet data are provided in Section 5 of the Supporting Document. The EBA

stress test data set contains the total interbank assets for each bank and total interbank assets that a given

bank has from banks in a specific country. To construct a closed network between the eleven banks, we only

use interbank assets from other German banks (rather than the total interbank assets across all countries).

We use the simplifying assumption that these interbank assets are from banks within the network, whereas

they will partially be from other German banks besides the 11 banks that we are considering. All other

assets are considered to be external assets in our analysis, even though parts of them are interbank assets

from banks that are not part of the network that we consider.

The data set allows us to study default behaviour in a heterogeneous network, which is rarely done in the

existing literature. Nevertheless, given the above simplifying assumptions, the results should be considered

an illustration of our methodology rather than specific information about the banks involved.

Initially all banks are solvent. We then apply a deterministic shock to the external assets of all eleven

banks in the network by considering the shocked external assets sia
(e)
i with si = 0.97∀i ∈ N . This

shock causes the fundamental default of four banks: DE017, DE022, DE023, DE024. We then use our new

methodology to determine the posteriori default probabilities for the remaining seven banks.

5.3.1 Basic model - homogeneous network assumption

Initially we assume that all link probabilities pij are identical, i.e., pij = p ∀i 6= j ∈ N and pii = 0∀i ∈

N . We consider probabilities p ∈ {0.2, 0.3, . . . , 0.9, 1}. We do not consider probabilities smaller than 0.2

since to satisfy the 2n− 1 = 21 side conditions we need at least a fraction of 21/(121− 11) ≈ 0.191 of the

4See http://www.eba.europa.eu/risk-analysis-and-data/eu-wide-stress-testing/2011/results
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Figure 6: Posteriori default probabilities as a function of p in the basic model for different default costs
parameters α(c) and β(c) in the clearing mechanism. Plots have different scale on y-axis.

non-diagonal entries of the liabilities matrix to be positive.

We assume that the parameters of the exponential distribution modelling the weights on all existing edges

are all identical, i.e., λij = λ ∀i 6= j ∈ N . We set λ := pn(n−1)/A, where againA =
∑n

i=1 li =
∑n

i=1 ai,

to ensure that the expected total of the entries of the liabilities matrix is equal to the observed total, i.e.,

E

 n∑
i=1

n∑
j=1

Lij

 =
n∑
i=1

n∑
j=1

pij
λij

= n(n− 1)
p

pn(n− 1)/A
= A. (12)

With this parameter choice we run the Gibbs sampler. We discarded the first 10000 samples as burn-in.

We then retained a sample every 5000th step of the chain, producing a total of 10000 samples.

Figure 6 shows the (posteriori) probability of default for the various banks that are not fundamentally

insolvent if we use the clearing approach with or without default costs. The banks that do not appear in the

figure are either fundamentally insolvent or never default in our simulations.

The default probabilities clearly depend on the network structure characterised by the edge probability

p. In the situation without default costs (Figure 6(a)) we see that the probability of default is decreasing in

p. Figures 6(b) and 6(c) show that default probabilities are in general higher in the presence of default costs.

For our choice of default costs all 7 remaining banks can in principle default. Default probabilities of banks

that are quite small (here less than 0.5) for p = 0.2 tend to decrease in p, whereas default probabilities of

banks that are larger (here greater than 0.5) for p = 0.2 tend to increase in p. Hence we see, that one cannot

say in general that more connected networks are more stable or sparser networks are more fragile.

More connected networks spread losses more evenly, so banks get a relatively small loss from the inter-

bank network with relatively high probability. In sparse networks, banks receive, with small probability, a

relatively large loss from the interbank network. Thus, if a bank is already close to default (the probability

for a bank to default is high) then a small amount of additional loss from interbank liabilities is already

sufficient to force the bank into default. As more connected networks increase the probability of this hap-

pening we see the increase of default probabilities in p. If a bank is better capitalised (i.e. the probability
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of it defaulting is small) then a relatively large loss from the interbank network is needed to cause default.

More connected networks only lead to a relatively small loss for each bank from the interbank network -

this is why for better capitalised banks the default probability is decreasing in p.

For comparison purpose we have run the three different clearing mechanisms presented in Figure 6 on

the network that one obtains from minimising the Kullback-Leibler divergence. We used the code provided

in Temurshoev et al. (2013). The resulting network is complete. Without default costs (as in Figure 6(a))

all remaining 7 banks survive, for α(c) = 1, β(c) = 0.7 (as in Figure 6(b)) only bank DE018 and DE027

survive and for α(c) = 0.9, β(c) = 1 (as in Figure 6(c)) only bank DE018 survives. Here those banks whose

default probabilities tend to (almost) zero in the basic model as p goes to 1 turn out to be the survivors under

the KL method. Those banks that have higher default probabilities under the basic model assumption are

categorised as defaults under the KL method.

5.3.2 Basic model - tiered network assumption

Several empirical studies have found that financial networks exhibit tiering or some core-periphery struc-

ture, see e.g. Craig & Von Peter (2014) for the German interbank market. Motivated by this we now consider

situations in which not all edge probabilities pij are identical.

Following (Nier et al., 2007, Section 6), we assume that there are n(l) large banks and n(s) small banks

such that n(l) + n(s) = n. The probability p(l) that a large bank is connected to other banks (both large or

small) is assumed to be higher than the probability p(s) that small banks are connected to each other, i.e.

0 ≤ p(s) ≤ p(l) ≤ 1. Nier et al. (2007) argue that to make a meaningful comparison between an Erdős-Rényi

network with link probability p(ER) ∈ [0, 1] and a tiered network with p(s) ≤ p(l) one should require that the

expected number of links stays the same. This can be obtained by fixing n(l), n(s), p(l), p(ER) and setting

p(s) =
n(n− 1)p(ER) − n(l)(n− 1)p(l) − n(l)n(s)p(l)

n(s)(n(s) − 1)
. (13)

Let I(s), I(l) ⊆ N denote the sets of indices corresponding to small and large banks, respectively, let pii = 0

∀i ∈ N and for all i 6= j let

pij =

 p(l), if {i, j} ∩ I(l) 6= ∅,

p(s), if {i, j} ⊆ I(s).

For the parameters of the exponential distribution we choose λ = λij =
∑n
µ=1

∑n
ν=1 pµν

A ∀i 6= j, which is

consistent with the considerations in (12).

In the following we use two different criteria to decide on the tiered structure: total interbank assets and

total assets. The results are presented in Figure 7. The first network has bank DE020 as the only large bank.

The second has banks DE019 and DE020 as the only large banks (according to interbank assets). Figure

7(a) contains the corresponding default probabilities. The third tiered network uses bank DE017 as the only

large bank. The fourth uses DE017 and DE018 as large banks (according to total assets). Figures 7(b) and
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Figure 7: Default probabilities in tiered networks with one large bank (either DE020 or DE017), in tiered
networks with two large banks (either {DE019, DE020} or {DE017, DE018}) and in a homogeneous Erdős-
Rényi network for the clearing mechanism without default costs.

shows the corresponding default probabilities. We have n = 11 banks and use p(ER) = 0.3 p(l) = 0.5.

Hence from (13) we obtain that p(s) ≈ 0.26 and p(s) ≈ 0.20 for n(l) = 1 and n(l) = 2 respectively.

In some additional simulation studies not reported here, the gap between default probabilities in tiered

networks compared to those in the Erdős-Rényi network increases in p(l) − p(s) as one would expect.

Grouping banks according to their interbank assets seems natural. However, it is not absolutely neces-

sary to enforce this through a tiered network structure. Even in a homogeneous Erdős-Rényi network, the

corresponding posteriori degrees of the nodes will adjust for inhomogeneity in the interbank assets. This

is confirmed by the results in Table 2, which shows the mean out-degrees, i.e., E
[∑n

j=1Aij | a, l
]

with

A the adjacency matrix, for all 11 nodes in the network where we assumed a homogeneous Erdős-Rényi

network with different link probabilities p(ER). The in-degrees, not presented here, are similar due to the

near symmetry of our example.

In a homogeneous Erdős-Rényi network the expected in-degree is equal to the expected out-degree for

all nodes and it is given by (n−1)p, hence in our example it is 10p. When averaging over all nodes in Table

2, we get quite close to 10p as out-degree, but the out-degrees of the individual nodes are clearly different.

The mean out-degrees of all 11 nodes in the network are increasing in the interbank assets (shown in the

second column of Table 2).

Consistent with the results in Table 2, the difference between tiered and non-tiered, i.e., Erdős-Rényi

networks is rather small when we choose total interbank assets to decide on the grouping as in Figure 7(a).

Figure 7(b) illustrates how default probabilities can change if grouping decisions are made based on

information that are not part of the liabilities matrix L itself - such as using external assets. In larger

networks one might consider grouping banks together according to countries etc. Furthermore, one might
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Table 2: Mean out-degree of banks, i.e., E[
∑

j Aij | a, l], for different pER in the Erdős-Rényi network and
different α, β, γ in the fitness model.

model ER Fitness
model parameters pER α, β, γ

name interbank liab l 0.5 0.9 -2.5, 0.2, 1 -2.5, 0.2, 0.6 -2.5, 0.5, 1 -1, 0.5, 1
DE020 99936 6.20 9.00 8.80 6.10 9.40 9.60
DE019 91314 6.00 8.90 8.50 5.80 9.20 9.40
DE021 66494 5.50 8.80 7.50 5.30 8.70 9.00
DE022 54907 5.30 8.80 6.90 4.90 8.40 8.70
DE018 49864 5.10 8.70 6.70 4.80 8.30 8.60
DE017 46989 5.10 8.70 6.60 4.70 8.20 8.60
DE028 30963 4.50 8.40 5.70 4.20 7.60 8.00
DE027 27679 4.30 8.30 5.50 4.00 7.40 7.80
DE024 23971 4.10 8.20 5.30 3.90 7.30 7.70
DE023 8023 2.80 6.90 4.00 3.10 6.30 6.60
DE025 4841 2.40 6.10 3.60 2.70 5.90 6.30
posteriori mean out-deg 4.66 8.25 6.30 4.50 7.90 8.20

apriori mean out-deg 5.00 9.00 3.60 3.10 6.80 7.20
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Figure 8: Default probabilities in the fitness model for the clearing mechanism without default costs.

want to use more than two groups in tiered networks. This can be easily accommodated in our framework.

5.3.3 Hierarchical model - fitness model

We now analyse the default probabilities under the fitness model assumption for the clearing approach

without default costs. We choose α = −2.5, β = 0.2, γ = 1 as default parameters for the power law of the

degree distribution. For the prior distribution π of the parameters of the Gamma distribution used to model

the weights we assume that ζ ∼ U(0.5, 2) and η ∼ Exp(1000).

The MCMC sampler updates θ, which consists of the fitness vector x and the parameters ζ, η, via

standard Metropolis-Hastings steps. Details of this are in Section 3 of the Supporting Document. For every

update of θ, we perform n2 = 121 updates of the matrix. We thin the resulting chain, reporting one sample

for every 200 updates of θ. We produce a total of 10000 samples. The number of steps of the burn-in is set

to equal 10% of the steps used in the main part of the simulation. We computed the effective sample size for
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all components of L as well as well as for all elements of θ using the CODA package in R (Plummer et al.,

2006): the effective sample size was above 1000 for all simulation runs of this section. Further diagnostic

assessments, not reported here, did not flag any convergence problems.

Figure 8 shows the sensitivities of the default probabilities with respect to the parameters modelling the

degree distribution α, β, γ. The same banks that are at risk of defaulting (DE025, DE020, DE028) under the

basic model are also at risk of defaulting under the fitness model. Their default probabilities are in a similar

range under both modelling assumption. Default probabilities are decreasing as the power parameter α of

the degree distribution increases (note that α < 0). As we can see in Table 2 the smaller α the lower is

the corresponding mean out-degree in the network. This corresponds to higher default probabilities in this

example as it was the case under the basic modelling assumption. A similar effect can be observed when we

change the range parameters of the power law β and γ. Higher values of β imply a higher mean out-degree

of the network, see Table 2, and again we observe a decrease in default probabilities. Also higher values of

γ imply higher mean out-degrees and lower default probabilities in this example.

The ordering of the banks stays the same under both the basic model as well as the fitness model. The

larger the total interbank liabilities the larger the out-degree (and the larger the corresponding posteriori

fitness). Under the power law assumption we can influence the variability of the out-degrees with a small

number of parameters. If the range of the power law is quite narrow, i.e. β, γ are close together we obtain a

more homogeneous network; otherwise the out-degrees between the banks can vary substantially. This can

be further influenced by the choice of the power parameter α.

6 Conclusion
We have described mechanisms for generating liabilities matrices that are consistent with the marginal

constraints on the total liabilities and total assets of each bank in the network and satisfy some additional

properties as well. These additional properties are describing properties of the network structure that we

assume to be known or at least estimated from empirical data.

Instead of a fixed shock we could use a random shock. This can be easily accommodated in our method-

ology by sampling one or several different shocks for each sample of a liabilities matrix.

In practice, the data from different banks may be based on (slightly) different time points or use slightly

different accounting assumptions. Even the basic consistency condition
∑n

i=1 ai =
∑n

i=1 li will often not be

satisfied. To accommodate this our model could be extended by allowing for random errors in the observed

total interbank liabilities/assets. Details of this are outside the scope of this paper.

A Proofs
Proof of Theorem 2.3. We transform the problem of finding a liabilities matrix into a max-flow problem.

We use the terminology defined in Cormen et al. (1990). We may assume that the observed values in L∗ are
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0; otherwise we subtract the known parts from l and a. Consider the flow network (V,E, c) with vertices

V = {s, r1, . . . , rn, c1, . . . , cn, t}, where s is the source and t the sink, edges

E = {(s, r1), . . . , (s, rn), (c1, t), . . . , (cn, t)} ∪ {(ri, cj) : (i, j) /∈ F}

and capacities c : V × V → [0,∞) being 0 except for

c(s, ri) = li, i = 1, . . . , n, c(cj , t) = aj , j = 1, . . . , n, and ∀(i, j) /∈ F : c(ri, cj) =∞.

A cut is a partition of V into two sets S, T with s ∈ S and t ∈ T . The capacity c(S, T ) =
∑

a∈S,b∈T c(a, b)

of a cut is an upper bound for the value of any flow (Cormen et al., 1990, Cor 27.6). Using the cut ({s}, V \

{s}), which has capacity A, we see that the value of any flow is at most A.

Let L be the set of liabilities matrices L with r(L) = l, c(L) = a and ∀(i, j) ∈ F : Lij = 0. The

existence of a matrix in L is equivalent to the existence of a maximal flow with value A in (V,E, c). This is

because there is a one-to-one correspondence between L and the flows with value A in the above network

given by mapping L ∈ L to the flow f given by

∀i, j : f(s, ri) = li, f(ri, cj) = Lij , f(cj , t) = aj .

We already know that there is a cut with capacity A. Thus, by the Max-flow min-cut theorem (Cormen

et al., 1990, Theorem 27.7), the existence of a maximum flow of size A is equivalent to all cuts having

capacity greater or equal to A . Next, we show that this is equivalent to 2. in the statement of the theorem.

Suppose 2. holds. Let (S, T ) be a cut. If there are (i, j) /∈ F with ri ∈ S, cj ∈ T then c(S, T ) ≥

c(ri, cj) =∞ ≥ A. Otherwise, let I = {i : ri ∈ S} and J = {j : cj ∈ T}. Then I × J ⊂ F . Using 2.,

c(S, T ) =
∑
i/∈I

li +
∑
j /∈J

aj = 2A−

∑
i∈I

li +
∑
j∈J

aj

 ≥ A.
Suppose that the capacity of every cut is at least A and let I, J be s.t. I × J ⊂ F . Define the cut (S, T )

by S = {s} ∪ {ri : i ∈ I} ∪ {cj : j /∈ J} and T = V \ S. Then (2) is implied by

A ≤ c(S, T ) =
∑
i/∈I

li +
∑
j /∈J

aj = 2A−

∑
i∈I

li +
∑
j∈J

aj

 .

Proof of Proposition 3.1. The condition ai + li < A ensures that (l, a) is in the interior for the admissible

row/column sums given by (3).

Let ε > 0 s.t. l̃ = l− ε1 and ã = a− ε1 are admissible row/column sums. By Theorem 2.3 we can find

M with r(M) = l̃, c(M) = ã, M ≥ 0, diag(M) = 0. For i, j ∈ N , let λij =
pij

ε/(n−1)+Mij
. Then

E[

n∑
i=1

Lij ] =
∑
i 6=j

pijE[Lij |Lij > 0] =
∑
i 6=j

pij
λij

=
∑
i 6=j

(
ε

n− 1
+Mij

)
= ε+

∑
i 6=j

Mij = ε+ ãj = aj .

The other statement can be shown similarly.

Proof of Theorem 4.1. We only need the moves from Algorithm 1 for the case n0
low =≤ 1 and n0

up ≤ 1. In
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this case moves exist to all L∆ for ∆ ∈ [∆low,∆up]. These moves are reversible in the sense that if one can

move from L to L∆ then one can move from L∆ to L by using −∆ as increment.

Let S(L) = {(i, j) : Lij > 0} be the support of a matrix L. Let S = S(L1)∪S(L2) be the joint support

of L1 and L2. Let C be the set of matrices satisfying (i), (ii), (iii), (iv).

We first show that we can transform any L ∈ C with S(L) ⊂ S to a matrix in C with S(L) = S

using cycle moves. Suppose (i, j) ∈ S with Lij = 0. We construct a cycle move that gives a matrix in

C with S(L) ⊂ S where this entry is positive without creating additional zeros. Iteratively applying this

construction transforms L to a matrix that is positive on S.

As (i, j) ∈ S we have L1
ij > 0 or L2

ij > 0 implying ri(L) = ri(L
1) = ri(L

2) > 0. Hence, there exists

j∗ such that Lij∗ > 0. Similarly, there exists i∗ such that Li∗j > 0. By the connectedness of L, there exists

a simple path between (ri, cj∗) and (ri∗ , cj) along G. Together with (i, j) this defines a cycle that only has

one zero. As there are no tied positive value in L there is a unique smallest positive value ξ of L along this

cycle and we can use the cycle move with ∆ ∈ (0, ξ) chosen such that no positive ties are being created.

This will transform L into a matrix in C with (i, j) ∈ S.

Thus we can transform L1 into a positive matrix on S . As all of the steps are reversible, any matrix

L ∈ C with S(L) = S can be transformed into L2. It remains to construct transformations between matrices

in C with support S. Let L1 and L2 be two such matrices. Let D = L2 − L1. The following step reduces

the number of nonzero entries in D by at least 1. Repeated application removes the differences between L1

and L2, as there are only finitely many differences and as the step does not create new differences.

Let η1 = (i, j) be such that Dij < 0. Starting from η1, construct a path with ηi ∈ N 2 and ηi1 = ηi+1
1 for

odd i and ηi2 = ηi+1
2 for even i such that Dηi < 0 for odd i and Dηi > 0 for even i. As the row and column

sums of D are 0 it is always possible to extend this path by an additional element. Extend the path until,

for the first time, the first component or the second component repeats itself in non-adjacent elements of the

path i.e., if m is the current length of the path then for some j ≤ m − 2 we have (ηj1 = ηm1 , ηj1 6= ηj+1
1 )

or (ηj2 = ηm2 and ηj2 6= ηj+1
2 ). Then use the cycle (ηj , . . . , ηm) to remove the smallest value (in absolute

values) in D (denote the index of this element by b). To do this choose this element as the first element of

the cycle (reversing the cycle if necessary) and use ∆ = −Db.

B Conditional distribution on a cycle
This section provides details on the derivation of Algorithm 1. Suppose the current liabilities matrix isL.

Suppose we have a fixed cycle of length k with η determining the index pairs of the elements to be updated.

To ease notation, we use Li = Lηi , L̃i = L̃ηi , and similarly for p, λ. Let s = (1,−1, . . . , 1,−1) ∈ R2k.
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B.1 Probability of the boundary cases and the intermediate case
We work out the probability of the boundary cases ∆ ∈ {∆low,∆up} and the intermediate case ∆ ∈

(∆low,∆up). For this we compute the probability of a realisation in a neighbourhood of (Li + si∆)i=1,...,2k

for ∆ = ∆low,∆ = ∆up and ∆ ∈ (∆low,∆up) before letting the size of this neighbourhood go to 0.

First we consider the boundary case. Suppose ∆ ∈ {∆low,∆up}, then the exact value for L̃i would be

xi = Li + si∆, at least one of which is 0. The probability of all L̃i being at most ε > 0 away from xi is

P(|L̃i − xi| < ε, i = 1, . . . , 2k) =
2k∏
i=1

(
(1− pi)I(|xi| < ε) + pi

∫ xi+ε

(xi−ε)+

λie
−λiydy

)
= O

(
ε#{i:xi 6=0}

)
as ε→ 0, where x+ = max(x, 0) and #B is the number of elements in the set B. In particular, #{i : xi 6=

0} ≤ 2k − 1 and we might even sometimes have a strict inequality.

Next we consider the intermediate case ∆ ∈ (∆low,∆up). Suppose ∆low 6= ∆up, then for all ∆ ∈

(∆low,∆up), all xi(∆) = Li + si∆, i = 1, . . . , 2k will be positive, implying that only the absolutely

continuous part of the random variable is relevant in this case. Integrating out the one degree of freedom

given by ∆, one sees that the probability of L̃η being close to (x1(∆), . . . , x2k(∆)) for some ∆ is

P(L̃1 − L1 ∈ (∆low,∆up), L̃i ∈ BL̃1−L1
i (ε), i = 2, . . . , 2k) =

=

∫ L1+∆up

L1+∆low

2k∏
i=2

(∫
Bi(x1−L1,ε)

λie
−λixidxi

)
λ1e
−λ1x1dx1 = O(ε2k−1)

as ε→ 0 where B∆
i (ε) = (max(Li + si∆− ε, 0), Li + si∆ + ε).

Hence, if two or more 0s are produced in L̃η for ∆ = ∆low or ∆ = ∆up then the boundary case

dominates the intermediate case (hence we have lines 18–21 in Algorithm 1). Otherwise, the probability

contributions of the boundary case and the intermediate case are of the same order and we sample among

these cases in lines 10–12 of Algorithm 1; for details of this see the next subsection.

B.2 The case where there is at most one 0 at the boundary
The conditional distribution of L̃ along the cycle η is concentrated on matrices of the form Lη+s∆ with

∆ ∈ [∆low,∆up]. This section considers the case #{i : Li + si∆up = 0} = #{i : Li + si∆low = 0} = 1.

We first work out the probability mass for the three cases ∆ = ∆low, ∆ ∈ (∆low,∆up) and ∆ = ∆up.

The probability mass for the boundary case ∆ = ∆low is f(Lη + s∆low) and for ∆ = ∆up is f(Lη + s∆up).

The total probability mass of the intermediate case ∆ ∈ (∆low,∆up) is∫
(∆low,∆up)

f(Lη + s∆)d∆ =

∫
(∆low,∆up)

2k∏
i=1

piλie
−λi(Li+si∆)d∆

=
2k∏
i=1

piλie
−λi(Li+si∆̃)

∫
(∆low,∆up)

e−λ̃(∆−∆̃)d∆ = f(Lη + s∆̃)

∫
(∆low,∆up)

e−λ̃(∆−∆̃)d∆,
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where ∆̃ =
∆low+∆up

2 , λ̃ =
∑2k

i=1 λisi. If λ̃ = 0 then this is f(Lη + s∆̃)(∆up −∆low), otherwise it is

f(Lη + s∆̃)− λ̃−1e−λ̃(∆−∆̃)|∆up
∆low

= f(Lη + s∆̃)λ̃−1
[
eλ̃

∆up−∆low
2 − e−λ̃

∆up−∆low
2

]
.

Next, we work out the distribution of ∆ conditional on the intermediate case ∆ ∈ (∆low,∆up). Consider

the mapping g : R2k → R2k, g1(x) = x1−L1, gi(x) = xi−1 +xi. Then g(L̃) = (∆, L̃1 + L̃2, . . . , L̃2k−1 +

L̃2k). We are interested in the distribution of ∆ = g1(L̃) conditional on gi(L̃) = gi(L), i = 2, . . . , 2k.

Using standard density transformation, and the fact that g is a linear mapping where the matrix has

determinant 1, we get that the density ofM = g(L̃) is f(g−1(M)).′ Hence, conditionally on gi(L̃) = gi(L),

i = 2, . . . , 2k, the density of ∆ = g1(L̃) is proportional to

f(g−1(∆, L1 + L2, . . . , L2k−1 + L2k)) = f(L+ s∆) =

2k∏
i=1

piλie
−λi(Li+si∆) ∝ e−(

∑2k
i=1 λisi)∆ = e−λ̃∆,

which is an extended exponential distribution with parameter λ̃ restricted to the interval (∆low,∆up).
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