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Abstract

The Dependency Diagram of a Linear Programme (LP) shows how the successive
inequalities of an LP depend on former inequalities, when variables are projected out by Fourier-
Motzkin Elimination. This is explained in a paper referenced below. The paper, given here, extends
the results to the Mixed Integer case (MILP). It is shown how projection of a MILP leads to a �nite
disjunction of polytopes. This is expressed as a set of inequalities (mirroring those in the LP case)
augmented by correction terms with �nite domains which are subject to linear congruences.

1 Introduction

The Dependency Diagram of an LP, and associated theorems, is explained in Williams[9]. In this
paper we extend those results to give the Dependency Diagram for a MILP.
In section 2 we repeat the results for the LP case. In section 3 we show how these can be

extended to deal with the elimination of integer variables.

2 The Dependency Diagram of an LP

The projection (elimination) of a variable, from an LP, relies on the following theorem (using logical
terminology as applied, for example, by Langford in terms of eliminating an 9 quanti�er).

Theorem 1 9xj faijxj � fi i 2 I; �akjxj � gk k 2 Kg () 0 � akjfi + aijgk i 2 I; k 2 K
where aij > 0; i 2 I [K;xj 2 R
Proof. (i) )This is obtained by adding each inequality, in the form xj � fi=aij to each inequality,
in the form �xj � gk=akj respectively to give fi=aij � -gk=akj ; i 2 I; k 2 K ie 0 � akjfi + aijgk
i 2 I; k 2 K:
(ii)(Suppose 0 � akjfi + aijgk ie �aijgk � akjfi: This can expressed as �gk=akj � fi=aij : Let

xj = maxiffi=aijg (or minkf�gk=akjg): Then aijxj � fi and �akjxj � gk i 2 I; k 2 K
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Note that if either I or K (or both) are empty then the conclusion is tautologically true and
the variable xj (and all inequalities containing it) can be removed with no resultant inequalities.
We will refer to such an elimination as �trivial�.

For illustration we apply this result to the following numerical example. To give it greater
generality we take general RHS coe¢ cients.

M1: Minimize x1 + 2x2
subject to :

2x1 + x2 � b1

5x1 + 2x2 � b2

�4x1 + 5x2 � b3

x1; x2 � 0

Expressing this model in standard inequality form, with z representing the objective, we have:

M2:

�x1 � 2x2 + z � 0 : C0

2x1 + x2 � b1 : C1

�5x1 � 2x2 � �b2 : C2
�4x1 + 5x2 � b3 : C3

x1 � 0 : C4

x2 � 0 : C5

Eliminating x1, using theorem 1, gives the Dependency Diagram in �gure 1.

Figure 1: Dependency Diagram after the elimination of
x1

The resultant inequalities are:
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M3:

�3x2 + 2z � b1 : D1

�2x2 + z � 0 : D2

x2 � 5b1 � 2b2 : D3
7x2 � 2b1 + b3 : D4

�2x2 � �b2 : D5
5x2 � 2b3 : D6

x2 � 0 : C5

We refer to the two inequalities, from which each new inequality is derived, as the parents.Hence
D0 has C0 and C1 as parents. That with a positive coe¢ cient, for the eliminated variable, will be
referred to as the father and that with a negative coe¢ cient as the mother. Note that the result
of carrying out successive eliminations of variables will be to produce inequalites which are positive
combinations of some of the original inequalities (which we will refer to as the �ancestors�).

In order to reduce the number of derived constraints, we can rely on the following theorem
(attributed to Kohler[3] and Chernikov[1]).

Theorem 2 If an inequality depends on a proper, or the same, subset of the inequalities which give
rise to another inequality then this latter inequality is redundant.

The proofs of this, and the following two theorems and corollary are given in [9] and not repeated
here.

Theorem 3 If, after eliminating n variables by Fourier-Motzkin Elimination, an inequality depends
on more than n+ 1 of the original inequalities it is redundant.

This theorem can be strengthened by the following corollary.

Corollary 4 Any non-redundant inequality, after the non-trivial elimination of n variables depends
on exactly n+ 1 of the original inequalities.

By �non-trivial� we mean each elimination of a variable is between an inequality in which it has
a negative coe¢ cient and an inequality in which it has a positive coe¢ cient. A �trivial�elimination
is that remarked on after theorem 1 where the variable has all coe¢ cients zero,or of the same sign,
resulting in the removal of the variable and all inequalities in which it occurs.

We now proceed to the elimination of x2 from the example using the results of the foregoing
theorems to avoid generating redundant inequalities. The result is given in �gure 2.
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Figure2: Dependency Diagram after the elimination of
x1 and x2.

The derived inequalities, after eliminating x2 are:

M4:

z � 16b1 � 6b2 : E1
14z � 13b1 + 3b3 : E2

2z � b1 : E3

5z � b3 : E4

z � 0 : E5

0 � �b2 : E6

This gives the value function of the original LP model as z = max(16b1�6b2; (13b1+3b3)=14; b1=2; b3=5; 0).
The model is feasible if b2 � 0.

We now consider the IP model, of which the above model is the LP relaxation. Before doing
that we extend theorem 1 to deal with the elimination of integer variables.

3 The Dependency Diagram of a MILP

The extension of Fourier-Motzkin Elimination to IP models was explained by Williams[7].
In order to eliminate integer variables between inequalities we make use of the following theo-

rems.
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Theorem 5 9xj faijxj � fi i 2 I; �akjxj � gk k 2 Kg () 0 � akjfi + aijgk + akjui;
fi + ui � 0(mod aij); ui 2 f0; 1; 2; :::; aij � 1g; i 2 I; k 2 K;where aij ; akj > 0; i 2 I [K;xj 2 Z
Proof. (i) )We can write the inequalities in the form akjfi � akjaijxj � �aijgk implying
that a multiple of akjaij lies between the left and rightmost terms. If we apply a non-negative
�correction term� akjui to the left side we have akjfi + akjui � akjaijxj � �aijgk so long
as ; fi + ui � 0(mod aij):This implies 0 � akjfi + aijgk + akjui:Whatsmore there is no loss of
generality in restricting ui to the domainf0; 1; 2; :::; aij � 1g:Note that we could alternatively ap-
ply (di¤erent) correction terms to the right side.(ii)(Suppose 0 � akjfi + aijgk + akjui and
fi+ui � 0(mod aij) where ui 2 f0; 1; 2; :::; aij�1g: This can expressed as �gk=akj � fi=aij+ui=aij :
Let xj = maxiffi=aij + ui=aijg which is integral by virtue of the congruence. Then aijxj � fiand
�akjxj � gk ; i 2 I; k 2 K:

When we project out an integer variable we, in general, produce congruence relations as well as
inequalities. These must be taken account of in the elimination of subsequent variables.
Before doing this it is convenient to eliminate the next variable, to be projected out, from all

except one of the current set of congruence relations. This may be done by means of the Generalised
Chinese Remainder Theorem (GCRT). This result is encapsulated in the following theorem.

Theorem 6 ex � dl(modml) l 2 L () ex �
X
l

�lm
0

ldl(modM) ; 0 � dl � ds(mod gcd(ml;ms))

l; s � L where M = lcml(ml) ,mlm
0

l =M; l � L and
X
l

�lm
0

l = 1

Proof. (i) =) The result that there exist �l such that
X
l

�lm
0

l = gcdl(m
0

l) = 1 is well known and

proved using the Euclidean Algorithm. We do not repeat the proof here. References are given in sec-
tion 7. Multiplying each of the original congruences by �lm

0

l we obtain ex �
X
l

�lm
0

ldl(modM):Subtracting

the congruences in pairs we obtain 0 � dl�ds(mod gcd(ml;ms)):(ii)(= If 0 � dl�ds(mod gcd(ml;ms))

l; s � L then
X
l

�lm
0

ldl � ds
X
l

�lm
0

l(mod gcdl(�lM;ms

X
l

�lm
0

l) s � L:Since ex �
X
l

�lm
0

ldl(modM)

and
X
l

�lm
0

l = 1 this implies ex � ds(modms) s 2 L:

Having aggregated all the congruences, involving the variable to be eliminated, into one con-
gruence (together with congruences involving the other variables) we are in a position to eliminate
a variable between a set of inequalities and this congruence. However two cases need to be distin-
guished, depending on whether the new variable to be eliminated is integer or real. We consider
the two cases in the following two theorems.

Theorem 7 9xj faijxj � fi i 2 I; �akjxj � gk k 2 K ; exj � d(modm)g () 0 � akjfi+aijgk+
akjui; 0 � d(mod gcd(e;m)); fi � �maijd= gcd(e;m) + ui � 0(mod aijm= gcd(e;m)) where aij ; akj
> 0; i 2 I[K;xj 2 Z ; �em= gcd(e;m)+�me= gcd(e;m) = 1 and ui 2 f0; 1; 2; :::; aijm= gcd(e;m)�1g

Proof. (i) )We can write the inequalities in the form akjefi � aijakjexj � �aijegk: From the
congruence,aijakjexj � aijakjd(mod aijakjm):Let y = aijakjexj :Then y � 0(mod aijakje) and y �
aijakjd(mod aijakjm). Applying the GCRT gives 0 � d(mod gcd(e;m)) and y � �maijakjed= gcd(e;m)
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mod(aijakj lcm(e;m)). Therefore akjefi��maijakjed= gcd(e;m) �a multiple of aijakj lcm(e;m) �
�aijegk��maijakjed= gcd(e;m). Since (e;m) divides d, by the congruence, the leftmost expression,
in the above inequality, is a multiple of akje. Hence we can apply a non-negative �correction term�
akjeui to the left side giving akjefi � �maijakjed= gcd(e;m) + akjeui � 0(mod aijakj lcm(e;m)): ie
fi��maijd= gcd(e;m)+ui � 0(mod aijm= gcd(e;m)). ui can be restricted to the domainf0; 1; 2; :::; aijm= gcd(e;m)�
1g:The resultant inequalities are 0 � akjfi + aijgk + akjui:(ii)(Suppose 0 � akjfi + aijgk +
akjui; 0 � d(mod gcd(e;m)); fi � �maijd= gcd(e;m) + ui � 0(mod aijm= gcd(e;m)),where aij ; akj
> 0; i 2 I [K; and ui 2 f0; 1; 2; :::; aijm= gcd(e;m)� 1g The inequality can be expressed as �aijgk
� akjfi + akjui:But akjfi + akjui � �maijakjd= gcd(e;m) (mod aijakjm= gcd(e;m)) by the sec-
ond congruence. Let aijakjxj = maxifakjfi + akjuig giving xj 2 Z . Then aijxj � fi and
�akjxj � gk; i 2 I; k 2 K . Also 9i such that aijxj = fi + ui. Combining this with the
above congruence gives xj � �md= gcd(e;m) (modm= gcd(e;m)) ie xj � (1 � �em)d= gcd(e;m)
(modm= gcd(e;m)) . This implies exj � d(modm)g.

Theorem 8 9xj faijxj � fi i 2 I; �akjxj � gk k 2 K ; exj � d(modm)g () 0 � akjefi +
aijegk+ akjeui; efi � aijd+ eui � 0(mod aijm) i 2 I; k 2 K
where aij ; akj > 0; i 2 I [K;xj 2 R and ui 2 [0; 1; 2; :::; aijm=e):

Proof. (i) )We can write the inequalities in the form efi=aij � exj � �egk=akj implying that
efi=aij � d � exj � d � �egk=akj � d ie a multiple of m lies between the left and rightmost
expressions. We apply a non-negative �correction term� to the left side. This correction term is
from the continuum of the rationals, so may be scaled. To maintain correspondence with Theorem 4
it is convenient to denote it by eui=aij giving efi=aij �d+ eui=aij � (modm): ie efi�aijd+ eui �
(mod aijm): ui can be restricted to the interval [0; 1; 2; :::; aijm=e):The resultant inequalities are 0 �
akjefi+aijegk+akjeui:(ii)(Suppose 0 � akjefi+aijegk+akjeui and efi�aijd+eui � 0(mod aijm)
where ui 2 [0; 1; 2; :::; aijm=e): The inequalities expressed as �egkj=akj � efi=aij + eui=aij : Let
exj = maxifefi=aij + eui=aijg ie Then aijxj � fi and �akjxj � gk ; i 2 I; k 2 K . Also 9i such
that exj = efi=aij + eui=aij ie efi + eui = aijexj :Combining this with the above congruence gives
exj � d(modm):

Theorems 5 and 7 demonstrate how the elimination of an integer variable, from a pair of in-
equalities, results in the same inequality, as in the LP case, but strengthened by the addition of
a correction term. The correction term has a �nite domain of possible values and is subject to a
linear congruence relation involving the remaining variables

It will be shown (theorem 9) below that theorems 2 and 3 still apply in the IP case .

From the theorems above it can be seen that the congruence relation can be derived from
either the father or the mother inequality. For the purpose of this paper we will always derive
the congruence from the father. Suppose, therefore, that the father and mother inequalities are
respectively a1x + f � b1 and �a2x + g � b2 (where a1; a2 > 0) and (after aggregating) the
congruence involving x is ex � d(modm): The derived relations are then:
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R:

a2f + a1g � a2b1 + a1b2 + a2u

d � 0(mod(e;m))

(e;m)f + �a1d� (e;m)u � (e;m)b1(mod a1m)

u � f0; 1; :::; a1m
(e;m)

� 1g

where (e;m) denotes the greatest common divisor of e and m. � is the inverse of e
(e;m)

mod( m
(e;m) ):

Note that the derived inequality is of the same form as in the LP case, but strengthened by the
term a2u. In addition two congruences are generated and the domain of the correction term de�ned.
Hence once the Dependency Diagram has been generated for the LP relaxation correction terms can
be added to the derived inequalities and linear congruences generated, based on the fathers of the
derived constraints at each stage. We illustrate this by the numerical example. Before doing this
we prove that it is still valid to apply theorems 2 and 3, in order to remove redundant inequalities,
even though we are now dealing with IPs.

Theorem 9 Theorems 2 and 3 still apply in the IP case.

Proof. Suppose we ignore theorems 2 and 3 and create an inequality that depends on more than
n + 1 ancestors, after the elimination of n variables. Then, at some stage in the Dependency
Diagram, we must have the situation shown in �gure 3

Figure 3: A Redundant IP Constraint
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Congruences and correction terms will be generated, at the second level, from the fathers A and
C, and at the third level from the father E, or alternatively from the mother F. These correction
terms will apply to inequality G. But we will also generate an inequality H at the second level, from
B and C. If this inequality has a negative sign, for the next variable to be eliminated, it can be
combined with E in order to create a new inequality at level 3, which has ancestors A, B and C at
level 1. If the new inequality, at level 2, has a positive sign, for the next variable to be eliminated,
then it can be combined with F in order to create a new inequality, at level 3, which has ancestors B,
C and D at level 1. The new inequality at level 3 will have the same correction terms, subject to the
same congruences (depending on whether the father or mother inequalities are used to generate the
congruences at level 2) as G Whatsmore the ancestors of G, at level 1, are a superset of those for
the new inequality at level 1. Ultimately values will be be determined for the correction terms. Then
the inequalities, at level 3, can be treated as in the LP case, demonstrating that G is redundant. If
the new inequality, at level 2, has a zero coe¢ cient, for the next variable to be eliminated, then this
inequality renders G redundant by the above argument.

We now return to the numerical example.
At the top level, in �gure 2, we have no congruences. The only non-trivial congruence is

generated from the father inequality C1, which has a non-unit positive coe¢ cient.
This gives x2 � b1 + u1(mod 2), u1� f0; 1g. Hence the inequalities, after the elimination of x1 ,

are amended to:

[7]
M5:

�3x2 + 2z � b1 + u1 : D1

�2x2 + z � 0 : D2

x2 � 5b1 � 2b2 + 5u1 : D3
7x2 � 2b1 + b3 + 2u1 : D4

�2x2 � �b2 : D5
5x2 � b3 : D6

x2 � 0 : C5

x2 � b1 + u1(mod 2) : J1; u1�f0; 1g

We name the correction terms which apply to Ci as ui and those which apply to Di as vi .

We now eliminate x2 ,from the above set of relations, using the result of theorem 5, illustrated
in T. This results in the amended set of inequalitesM5 with congruences generated from the father
inequalities D3, D4,D6,C5, combined with the congruence in x2.
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M6:

2z � 16b1 � 6b2 + 16u1 + v3 : E1
14z � 13b1 + 3b3 + 13u1 + 3v4 : E2

2z � b1 + u1 + 3u5 : E3

5z � 2b3 + 2v6 : E4

z � 2u5 : E5

0 � �b2 + u5 : E6
v3 � 0(mod 2) : K1

9u1 + v4 � 5b1 + 13b3(mod 14) : K2

5u1 + v6 � 5b1 + 9b3(mod 10) : K3

u1 + u5 � b1(mod 2) : K4

u1� f0; 1g; v3� f0; 1g; v4� f0; 1; :::; 13g; v6� f0; 1; :::; 9g; u5� f0; 1g;

To make this example speci�c we will take b1 = 13; b2 = 30; b3 = 27.
This results in:
M7:

2z � 28 + 16u1 + v3 : E1

14z � 250 + 13u1 + 3v4 : E2

2z � 13 + u1 + u5 : E3

5z � 54 + 2v6 : E4

z � 0 + u5 : E5

0 � �30 + u5 : E6
v3 � 0(mod 2) : K1

9u1 + v4 � 10(mod 14) : K2

5u1 + v6 � 8(mod 10) : K3

u1 + u5 � 1(mod 2) : K4

u1� f0; 1g; v3� f0; 1g; v4� f0; 1; :::; 13g; v6� f0; 1; :::; 9g; u5� f0; 1g;

The optimal solution occurs when u1 = v3 = 0; v4 = 10; v6 = 2; u5 = 1 giving z = 20:
The values of the variables can be obtained by backtracking through earlier inequalities and

congruences in the Dependency Diagram giving x2 = 9; x1 = 2:

In contrast the solution of the LP relaxation is obtained by dropping the congruences and
correction terms and backtracking giving z = 17 67 ; x2 = 7

4
7 ; x1 = 2

5
7 :

A number of observations are worth making regarding the method described in this paper.

1. The correction terms are not nessessarily the same as the surplus variables, but have �-
nite domains requiring the �nal solution to be obtained by solving linear congruences as well as
inequalities.
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2. The correction terms and congruences are not unique. There will be alternative (and some-
times more economical representations) obtained by using a mixture of mother, as well as father,
inequalities to obtain congruences and correction terms.
3. As is well known (and the numerical example demonstrates) the optimal solution to an IP

may not be the same as that obtained by solving the IP subject only to the constraints binding
at the LP optimum (an IP over a cone). In the example while the optimal IP solution arises
from the same �nal inequality as the optimal LP solution it also depends on correction terms and
congruences arising from inequalities not binding at the LP optimum. In this example constraints
C0; C1; C2; C3 are all binding at the IP optimum although only C0; C1 and C3 are binding at the
LP optimum. If we were to solve, using the cone constraints C0; C1; C3, we would only obtain the
�nal constraint E2 and congruence K2 allowing the (infeasible) solution x1 = 3; x2 = 8; z = 19.
4. The (M)IP over a cone is simpler to solve by this method than a general MIP and forms the

subject of Williams[10].An analytic solution is given for a model with general coe¢ cients.
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