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Abstract – This paper expands on previous research on the 
effect of introducing social robots into crowded situations 
in order to improve pedestrian flow. In this case, a genetic 
algorithm is applied to find the optimal parameters for the 
interaction model between the robots and the people. 
Preliminary results indicate that adding social robots to a 
crowded situation can result in significant improvement in 
pedestrian flow. Using the optimized values of the model 
parameters as a guide, these robots can be designed to be 
more effective at improving the pedestrian flow. While this 
work only applies to one situation, the technique presented 
can be applied to a wide variety of scenarios. 

Keywords: crowd dynamics, genetic algorithms, social 
robots 

1 Introduction 
 Crowd dynamics has long been a subject of interest in 
a variety of fields, including architecture, transportation, 
emergency escape design, and event planning. Improving 
crowd dynamics has the potential to save lives in situations 
where the behavior of the crowd itself becomes a threat to 
individuals. The goal of this research is to provide insight 
into the potential of employing robotic agents to reduce 
bottlenecks and improve pedestrian flow.  

 Attempts to introduce robots into crowds in different 
situations have been made [1], and while it has been shown 
that robots can improve crowd flow in some situations, 
many questions remain to be answered concerning the form 
of the robots themselves. This form includes both visual 
and behavioral aspects, which include size, shape, vocal 
cues, and movement [2,3]. The exact nature of the robots’ 
interaction with the crowd is also variable, and can be 
modified by changing these attributes. Significant research 
has been performed on human-robot interaction and the 
effect that these different characteristics have on human 
response in the field of social robotics [4,5].  

 Because of the difficulty associated with empirically 
testing pedestrian flow in emergency situations, simulation 
provides a useful and important tool. However, one must 
have an accurate mathematical model of these social 
interactions.  In order to accomplish this, we used the social 

force model, which was first introduced by Helbing and 
Molnar, [4]. 

 We first describe the underlying model in detail.  We 
then describe an example problem situation and discuss a 
baseline simulation. This is followed by a detailed 
description of the genetic algorithm technique applied to 
the example problem scenario. Finally, the results are 
analyzed and conclusions are presented. 

2 Social Force Model 
 The social force model for modeling pedestrian flow 
was first introduced by Helbing and Molnar [6] and 
expanded to include robots in [1]. This model is basically 
an application of particle dynamics to the simulation of 
pedestrian crowds. Each person or robot is treated as a 
circular particle with a particular mass and radius. The 
interactions between objects in the simulation are modeled 
as forces. In each iteration, the forces on each particle are 
summed, and then Newton's equation is solved to determine 
the acceleration, which is then used to determine the 
velocity and position of the particle.  

 Each object in the simulation can interact with all of 
the other objects. For example, there will be a force acting 
on each person due to the walls, and a separate force acting 
on each person due to every other person. The person-
person force, for example, models the tendency for people 
to keep a minimum amount of personal space.  While the 
person-person and person-wall interactions are fixed by 
human nature, the parameters that model the interactions 
between people and robots can be controlled to some extent 
by changing the form and behavior of the robot. One of the 
goals of this paper is to determine, through simulation, 
optimal values for these parameters. This will give an 
indication as to the form and behavior of the robot required 
to achieve the desired interaction. The implementation of 
the robots is left open for future research.  

 The total force on each particle is given by 
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where fi
S is the self-driven force for the ith particle, fij

I is the 
repulsive interaction force on particle i due to particle j, fik

W 

is the repulsive force on particle i due to wall k, and fih
C is 

the cohesive force on particle i due to robot h. In this model 
there are N particles, M walls, and R robots. The self-
driven force is simply a model of the particle’s desire to 
achieve a specified velocity. This force is modeled by 
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where mi is the mass of the ith individual, si is the desired 
speed, êi is the desired direction, vi is the current velocity, 
and �i is a parameter that determines how fast the particle 
responds. The desired direction is set by an error term 
between the current position of the particle and the desired 
end location. 

 These simulations utilize two basic types of 
interaction forces. The repulsive force is modeled as 
follows: 
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where A is the magnitude, dij is the distance between object 
i and object j, ri is the radius of the ith particle, and B is a 
parameter that affects the rate of decay of the force. In 
high-density situations, physical contact can occur, and k 
and � are used to model a compression term and a 
tangential friction term. Whether or not the particles are in 
contact is determined by the function g(x), which is zero if x 
is positive and one otherwise. The terms nij and tij are the 
normal and tangential components of the vector between 
the two particles. The other important force is the cohesive 
force, which is modeled as: 

�
�

�

�

�
�

�

� −−
=

E

Dd
Cf ij

C

2)(
exp                   (5) 

where C is the peak magnitude, D controls how far away 
from the center of the object this peak occurs, and E affects 
the rate of decay of the force.  

 Using the nominal parameters given in [7], Figure 1 
shows a graph of the repulsive force and the cohesive force 
versus distance. This provides a reasonably accurate model 
of the behavior of pedestrian crowds in the real world. 
Using this model, we then chose a specific pedestrian 
crowd situation to simulate. 

Figure 1 – This plot shows the nominal repulsive force that 
is exhibited between all objects, i.e., people, robots and 
walls.  The nominal cohesive force is between the robots 
and the people in the hallway. 

3 Problem Statement 
3.1 Problem Situation 

 For our example problem we consider a very 
simplified exit scenario where individuals can take one of 
two paths to exit a hallway.  The geometry for this situation 
is shown in Figure 2, which consists of a straight, six meter 
wide hallway with two different sized openings at the end. 
The end point of the split wall in the center of the hallway 
is variable in order to control the size of each exit. When 
one of the exits becomes small, the efficiency of the crowd 
leaving the hallway drops significantly because of 
blockages in the narrow part of the hallway. 

Figure 2 – This figure shows the geometry of the example 
situation. Pedestrians flow from left to right, and the red 
arrow indicates the variability of the exit sizes. 

 These blockages result in a significant portion of the 
pedestrian crowd being unable to exit the hallway in a 
reasonable time, as shown in Figure 3. If this were a real 
situation, such as a fire in a crowded building, it could 
mean that those people’s lives would be in danger. 
However, introducing social robots into this situation could 
reduce or eliminate the blockage, and reduce the overall 
exit time of the people in the hallway.  
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Figure 3 – This figure shows a simulation of the hallway 
with no robots. The white arrows inside each green circle 
indicate the desired direction of travel. The blockage in the 
upper part of the hallway is apparent in this figure. 

3.2 Measure of Flow Efficiency 

 To provide a numerical measure of the efficiency of 
pedestrian flow, we calculate how close the individuals in a 
given area are to achieving their desired velocity. This 
number is then averaged over all particles within a six-
meter wide window centered on the starting point of the 
split wall. The average of all the particles is then averaged 
over ten simulation runs for a particular set of parameters, 
with each run having a different set of random initial 
starting locations. In particular, the efficiency for a group of 
particles is calculated with the following equation 
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where N is the number of pedestrians in the window, êi is 
the desired direction of travel, vi is the actual velocity, and s 
is the desired speed. This measure of efficiency generally 
ranges from zero to one, although it is possible for particles 
to achieve an efficiency greater than one if their actual 
velocity exceeds their desired velocity. The first ten 
seconds of the simulation were discarded to eliminate the 
transient effects of the crowd first entering the split wall 
area. Other measures such as the particle exit rate were also 
computed, however, they yielded results comparable to the 
average efficiency. 

 To measure the improvement of adding social robots, 
a baseline case was simulated, genetic algorithms were 
implemented to optimize the interactions, and then the 
baseline situation was re-simulated with the new 
parameters. 

4 Baseline Simulation 
 Figure 4 shows a graph of the efficiency versus the 
ratio of the two openings. When the ratio is small, the top 
exit is significantly smaller than the bottom exit and a 
bottleneck forms, which results in the blockage shown in 
Figure 3. The steep increase in efficiency that occurs at a 
ratio of 0.15 is due to the fact that the small top opening 
becomes wide enough to allow two people to pass through 

Figure 4 – This plot shows the efficiency as the end point of 
the split wall is moved from the top to the center position. 
A low ratio indicates a small exit size, and the plot clearly 
shows how the efficiency drops off as the exit narrows. 

side by side instead of allowing only one person to exit. 
Similarly, a steep increase in efficiency occurs when the top 
opening becomes wide enough for three people to pass 
through side by side at a ratio of 0.25. Increasing the ratio 
beyond 0.3 has no appreciable effect on the efficiency. This 
may be due to the fact that typically no more than six 
people pass through the unobstructed hallway side by side. 
As can be seen from the graph, merely introducing robots 
with nominal cohesive forces into this situation actually 
decreases the efficiency slightly. This is because the robots 
become another object that must exit the hallway and, since 
they are larger than the people, they further impede the 
pedestrian flow.  

 When the split wall is horizontal and the two openings 
are the same size, a maximum efficiency of around 0.9 is 
achieved. An efficiency of 1.0 is not achieved because of 
the effects of people bumping into the end of the split wall.  

5 Genetic Algorithm 
 Clearly the results of the previous section show that 
robot behavior parameters that were optimal for other 
pedestrian flow scenarios are not optimal for the case 
studied here. Unfortunately, determining optimal 
parameters is difficult because the search space is very 
large and difficult to describe mathematically in its entirety.  
However, genetic algorithms (GAs) offer a promising way 
to find near-optimal solutions. In order to experiment with 
different genetic algorithm techniques, the GALib software 
package was integrated into the crowd simulation software 
[8]. GALib allowed us to quickly design and implement a 
GA for this particular situation. We designed two similar 
approaches, designated GA1 and GA2 in this paper. 

 A GA functions by defining a genome and a fitness 
measure. In this case the genome is the set of parameters to 
simulate, and the fitness measure indicates how successful 
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that particular genome was at solving the problem. The GA 
begins by generating and evaluating an initial population of 
random genomes. Next, a new population is created from 
the old one by several methods. In these simulations both a 
crossover operation, which creates a new individual by 
combining two others, and a mutation operation, which 
creates a new individual by randomly changing one element 
of a previous genome, were used.  The new population then 
replaces the original population, and the GA starts over 
again at the evaluation stage. The evolution continues until 
a specified convergence condition is reached, which in this 
case was 50 generations with no significant improvement. 

5.1 Genome structure 

 The first GA (GA1) randomly sent robots to either the 
top exit or the bottom exit, using a total of 10 robots. The 
top robots had one common set of interaction parameters, 
while the bottom robots had a separate common set of 
interaction parameters. The second GA (GA2) only used 
four robots, and allowed them to stop at a location inside 
the split section of the hallway. Each robot in this case had 
its own set of interaction parameters. The desired direction 
of travel, êi for robot i, is computed as 
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where li is the destination location and xi is the current 
position of the robot. The interaction parameters were 
structured into a genome using the genes shown in Table 1.  

Table 1 – Gene Descriptions 

Gene Description 
PR_A person-robot force ‘A’ parameter (Eq. 3) 
RP_A robot-person force ‘A’ parameter (Eq. 3) 
RR_A robot-robot force ‘A’ parameter (Eq. 3) 
RW_A robot-wall force ‘A’ parameter (Eq. 3) 
PR_B person-robot force ‘B’ parameter (Eq. 3) 
RP_B robot-person force ‘B’ parameter (Eq. 3) 
RR_B robot-robot force ‘B’ parameter (Eq. 3) 
RW_B robot-wall force ‘B’ parameter (Eq. 3) 

C cohesive force ‘C’ parameter (Eq. 5) 
D cohesive force ‘D’ parameter (Eq. 5) 
E cohesive force ‘E’ parameter (Eq. 5) 

T/B top/bottom exit for robots in GA1 
l destination location for robots in GA2 (Eq. 7) 

 

5.2 Fitness measure 

 The fitness measure chosen in this research was the 
average efficiency defined in section 3.2. Genomes with a 
higher efficiency were used to create the next population, 
whereas genomes with a lower efficiency were discarded in 
each generation.  

Table 2 – Common GA Parameters 

Parameter Value 
GA Population Size 50 

Mutation Probability 0.05 

Crossover Probability 0.9 

Simulation Length (seconds) 60 

Number of Runs 10 

 

5.3 GA Parameters 

 Some common parameters, shown in Table 2, were 
constant for all genetic algorithm runs. Due to the 
variability of the efficiency depending on the starting 
locations of the objects, each case was simulated in runs of 
60 seconds, with the average of all runs resulting in the 
final score for that case. All genomes in a particular 
generation used the same set of starting locations. 

 The crossover operation was a standard crossover in 
which two parents resulted in two children using a random 
crossover point. The mutation operator picked a parameter 
at random from the genome and replaced it with a new 
value chosen at random from a specified range. Elitism, or 
always retaining the best individual ever found, was used in 
all simulations.  

6 Optimized Results 
 Figures 6 shows the performance of the genetic 
algorithms. The first GA achieved a maximum score of 0.5 
and improved pedestrian flow overall, but failed to 
eliminate the blockage in the hallway. The second GA 
achieved a maximum score of approximately 0.88 and was 
successful at relieving this blockage, significantly 
increasing the efficiency.     

                  

Figure 6 – This plot shows the efficiency distribution of the 
population for each generation of each GA. 
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 Figure 7(a) shows a snapshot of the hallway for the 
best genome of the first GA. This solution sent all of the 
robots towards the bottom opening with a cohesive force to 
pull the crowd through.  

Figure 7 – This figure shows the optimized simulations for 
GA1 and GA2. 

 Figure 8 shows the graphs of the forces with respect to 
distance from the best genome found by the first GA. Since 
the solution only sent robots to the bottom opening, we are 
not concerned with the forces associated with the top 
robots. The bottom robots had high robot-person forces, 
which helped push them forward since the majority of the 
crowd was behind the robots. The bottom robots also had 
low person-robot forces, which is to be expected since they 
attempted to collect people around them. They also had a 
significant robot-wall force, which helped them stay in the 
center of the hallway. Since they are attempting to use their 
cohesive forces to pull groups of people through the bottom 
exit, this would allow the maximum amount of space for the 
group to pass through. 

 The cohesive forces for the first GA are consistent 
with the general strategy. The bottom robots have a large 
cohesive force compared to the nominal values, which 
helps them to gather people together. 

 Figure 7(b) shows a snapshot of the optimized 
solution for the second GA. In this case, the genetic 
algorithm found that the best solution was to place 
stationary robots with large repulsive forces at the entrance 
to the top exit. This allows only a small number of people 
into the top exit, which eliminates the blockage seen in the 
baseline by forcing the people into a single file line. The 
other two robots are given a cohesive force and directed 
through the bottom exit.  

Figure 8 – These plots show the magnitude of the repulsive 
and cohesive forces versus distance in meters for GA1. 

 Figures 9 and 10 show graphs of the repulsive and 
cohesive forces with respect to distance for the best genome 
of the second GA. The two stationary robots have higher 
person-robot and robot-person repulsive forces than the 
moving robots, indicating that they attempt to keep the 
pedestrians away from them. This creates the empty bubble 
in Figure 7(b), which prevents most of the people from 
entering the top hallway. For the stationary robots, the 
robot-robot and robot-wall forces are considerably different 
between the two individual robots, which indicate that these 
forces are not important for the solution. This is because the 
force that keeps the robots stationary overrides any force 
that would cause them to repel each other or move away 
from the walls. The average cohesive force for the 
stationary robots is much lower than the nominal case, 
indicating that these robots do not try to collect pedestrians 
around themselves, which is consistent with the general 
strategy in this case. 

Figure 9 – These plots show the magnitude of the repulsive 
forces versus distance in meters for each of the robots in 
GA2. 
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Figure 10 – This plot shows the magnitude of the cohesive 
forces versus distance for each of the robots in GA2. 

  The moving robots have high robot-robot and robot-
wall forces, which have the effect of spreading them out 
and keeping them in the center of the bottom hallway, 
similar to the first GA. The average cohesive force for the 
moving robots is much higher than that of the stationary 
robots, and also higher than the nominal case.  

 Figure 11 shows a graph of the efficiency as the size 
of the exits are changed, using the new optimized 
parameters. It is clear that the second optimized case is a 
significant improvement over the baseline. The optimized 
parameters also do not significantly degrade the 
performance at high ratios, which means that this solution is 
useful in a wide range of exit ratios. 

Figure 11 – This plot again shows the efficiency as the end 
point of the split wall is moved from the top to the center 
position. It is clear that GA2 improved the situation 
dramatically, especially at low ratios. 

 

7 Conclusions 
 Simulations indicate that the introduction of social 
robots into crowded situations has great potential for 
improving pedestrian flow. The robots were able to 
completely eliminate the large blockages in the top part of 
the hallway. However, the effectiveness of these robots 
depends to some extent on their starting location in the 
crowd. It is interesting to note that the GA found an optimal 
solution in a relatively large search space,. This illustrates 
the potential of genetic algorithms for finding nontrivial 
solutions to these types of problems. 

 Future work might include modifying the mutator 
algorithm for the GA to “fine-tune” the individual 
parameters by incrementally changing them instead of 
picking a new value at random from a specified range. 
Different measures of fitness could also be used, and 
different geometries could be optimized and compared. 
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