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Abstract

Do Disaster risk and Fortune risk fetch a premium or discount in the
pricing of individual assets? Disaster risk and Fortune risk are mea-
sures for the co-movement of individual stocks with the market, given
that the state of the world is extremely bad and extremely good, re-
spectively. To address this question measures of Disaster risk and
Fortune risk, derived from statistical Extreme Value Theory, are con-
structed. The measures are non-parametric and the number of or-
der statistics to be used in the analysis is based on the Kolmogorov-
Smirnov distance. This alleviates the problem of an arbitrarily chosen
extreme region. The extreme dependence measures are used in Fama-
MacBeth cross-sectional asset pricing regressions including Market,
Fama-French, Liquidity and Momentum factors. I find that Disaster
risk fetches a significant premium of 0.43% for the average stock.
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1 Introduction

Returns in financial markets are characterized by extreme movements (Jansen
and De Vries, 1991, Fama, 1963 and Mandelbrot, 1963). It is in these ex-
treme cases that investors are highly concerned about the performance of
their portfolio. The extreme movements of the market are not always re-
flected equally in all individual stocks. Securities which are more sensitive
to these extreme negative shocks are undesirable and therefore should sell at
a discount. In this paper I propose downside and upside dependency mea-
sures, i.e. Disaster and Fortune risk respectively, which captures this risk for
individual stocks. These non-parametric EVT based tail dependency mea-
sures offer a new approach to capture disaster risk in asset prices. I find that
Disaster risk fetches a robust premium. On the upside, exposure to Fortune
risk carries a discount.

Prior literature on disaster risk in asset pricing mainly focuses on theoretical
models. Part of this literature includes higher moments to account for tail
thickness. Samuelson (1970) as well as Harvey and Siddique (2000), consider
skewness and kurtosis as the higher moments. Others, like Rietz (1988) pro-
poses an extreme event premium to explain the equity premium puzzle. He
adjusted the equity premium model by Mehra and Prescott (1985), by intro-
ducing a disaster state to the Arrow-Debreu paradigm. With the inclusion of
the low probability high impact state, Rietz is able to explain the equity risk
premium puzzle for a reasonable choice of parameters. Barro (2006) extends
this idea to investigate the impact of disaster risk on asset pricing facts and
welfare costs. He finds, as Rietz does, that the equity risk premium and
the risk free rate puzzle can be explained by including disaster risk. Gabaix
(2012) extends these models by adding time variability of disaster risk. He is
able to explain ten asset pricing puzzles including the equity premium puzzle.

Testing these theoretical models has proven to be a challenge as extreme
events are only rarely observed. Several papers attempt to overcome this
challenge by studying different sources of extreme movements in asset prices.
Berkman, Jacobsen, and Lee (2011), Bittlingmayer (1998) and Frey and
Kucher (2000) use major political crises as a measure for disaster risk. Ami-
hud and Wohl (2004) and Rigobon and Sack (2005) find a link between the
stock market and the second Iraq war. These studies lack the full empirical
analysis of the systematic compensation for extreme event risk.

In this paper I consider a novel approach. This approach employs a non-
parametric count measure to determine the dependence in the tail between
individual stocks and the market portfolio. In essence the measure counts
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the number of joint excesses of the market return Rm,t and individual stock
return Ri,t conditional on the Rm,t being stressed at time t. This captures
in a direct way the dependence given that the world is in a disaster state.
This measure is not limited to the left side of the tail, i.e. disaster state. It
also provides a dependence measure for an extreme up state of the world.
Hartmann, Straetmans, and De Vries (2004) employ Huang’s (1992) count
measure to investigate the extreme dependence within and between stock
and bond markets.

There are currently two other empirical approaches which attempt to measure
tail risk across the market. Kelly and Jiang (2014) estimate the thickness
of the tail from the daily cross-section of traded stocks. Kelly and Jiang
(2014) use a fixed proportion of the higher extreme order statistics to measure
the tail thickness. The day-by-day tail exponent estimate functions as the
measure of disaster risk in the economy. Although this measures the cross-
sectional dispersion in the lower tail, it does not directly measure the disaster
risk in the economy. Secondly, the use of the estimator of the tail exponent
by Hill (1975) in the cross-section violates the independence assumption of
the Hill estimator.

The second approach in the literature uses the information of deep out of
the money (OTM) put options to capture tail risk. This approach utilizes
the difference between quadratic variation and integrated variance to isolate
the risk of jumps. Bollerslev and Todorov (2011) infer tail risk from the
OTM put options on the S&P 500. They use EVT to scale up the risk
of medium jumps to large jumps. They find that jump risk and fear of
jumps accounts for two-thirds of the equity risk premium. Siriwardane (2013)
utilizes the difference between OTM put and call options to isolate jump risk
for individual stocks. He then sorts these into portfolios according to their
jump risk to create a High-minus-Low factor. Both papers find that investors
demand compensation for tail risk.

An advantage of the approach offered in this paper compared to the previ-
ously proposed measures is that the proposed factors are a direct and simple
measure of the relationship of the state of the world and the pay-off of the
financial asset. As EVT shows, the count measure has predictive value at
very high but finite levels. For this measure I refrain from using the deep
OTM options, e.g. as Siriwardane (2013) and Bollerslev and Todorov (2011).
OTM options can suffer from liquidity issues, especially for individual com-
panies. This can induce a miss-pricing of these options and accuracy issues
for the measurement of the risk factor.
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The methodology of using the dispersion in the cross-section of stock returns
is an indirect way of measuring tail risk. In addition, it also violates the inde-
pendence assumption of the estimator. Although the risk factors introduced
in this paper are simple to construct and a direct measure of the state depen-
dence, they do have drawbacks. A limitation of using the EVT framework is
that a long time series is needed to collect sufficient tail observations for the
risk measure. This prohibits the measurement of time varying disaster risk.
The other two approaches do not suffer this limitation.

The count measure necessitates the choice of a threshold to determine the
tail region for the joint excesses of Ri,t and Rm,t. With these thresholds the
extreme area is determined, for example (Ri,t < v,Rm,t < w), where v and w
are the respective thresholds. The optimal thresholds for Ri,t and Rm,t are
univariately determined, and thus in a direct way the multi-variate extreme
area is constructed. To determine the thresholds, v and w, I use a methodogy
which estimates the heavyness of the tail. Bickel and Sakov (2008) employ
the Kolmogorov-Smirnov (KS) test to find the optimal sub-sample bootstrap
size to attain convergence of the bootstrap- and a parametric distribution. In-
spired by Bickel and Sakov (2008), Danielsson, Ergun, De Haan, and De Vries
(2016) propose a methodology for locating the ’start’ of the tail by estimating
the optimal number of order statistics for the Hill estimator. To determine
the optimal number of extreme order statistics they use a horizontal distance
measure that minimizes the maximum distance between the empirical and
the semi-parametric distribution. Given these thresholds I determine my
dependence measures for the tail region.

The extreme dependence measures are employed in Fama-MacBeth regres-
sions to determine whether they are priced and subsequently whether they
fetch a premium or a discount. Fortune and Disaster risk loadings are in-
cluded in the CAPM- and Fama-French factor model. The Momentum factor
by Carhart (1997) and the Liquidity factor by Stambaugh and Lubos (2003)
along with variables which are commonly used in the asset pricing litera-
ture are also included in the analysis. The up- and downside beta of the
non-linear beta model by Ang, Chen, and Xing (2006) are included as well.
The Disaster and Fortune risk measures are also utilized to test for a further
non-linearisation of their model.

The results from the cross-sectional analysis indicate that high dependence
in the tail of the distribution matters, especially for the downside. I find that
investors demand a risk premium of 0.4% on the average stock for dependence
in the downside tail region. This is in line with the results of Kelly and
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Jiang (2014) and Siriwardane (2013) who also find higher compensation for
downside sensitivity. Disaster and Fortune risk also perform well in the
non-linear beta framework. This indicates that a further non-linearisation is
fitting for risk sensitivity of investors.

Section 2 introduces the dependence measure and discusses the asset pricing
framework. This is followed by Section 3 which describes the data which is
used for the empirical analyses. Section 4 presents and discusses the empirical
results from the analyses, followed by the conclusion.

2 Asset pricing methodology

The methodology for asset pricing purposes consists of four parts. The first
two parts elaborate on how extreme dependence is measured and how I define
the start of the tail. The third part gives an overview of systematic risk
measures brought forth by the literature. The fourth part elaborates on
the regressions that are employed to address the question whether extreme
dependence is priced in the market.

2.1 Extreme dependence measures

Investors are interested in the performance of individual stocks relative to
their wealth in a particular state of the world. I examine the asset pricing
in the extremely bad and extremely good states of the world. It is in these
economic circumstances that investors are most sensitive to the performance
of the individual stocks.

I am interested in observing extreme Ri,t conditional on Rm,t being extreme.
The count measure which is employed in this paper is,

Disasteri =

∑T

t=1
I{Ri,t<v,Rm,t<w}∑T

t=1
I{Rm,t<w}

(1)

where I is the indicator function. The summation in the numerator counts
the number of paired observations which fall in the extreme quadrant, indi-
cated in Figure 1. This measure can be viewed as the conditional probability,

P (Rm,t < w,Ri,t < v | Rm,t < w) =
P (Rm,t < w,Ri,t < v)

P (Rm,t < w)
.
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Figure 1: This graph gives the scatter plot of Allegheny Power Systems Inc. returns and
the corresponding market returns. Here w is the illustrative optimal threshold level for
the market returns and v is the illustrative optimal threshold level of stock i for the left
tail. The region under v and to the left of w is the extreme quadrant for Disaster risk.

This dependence measure is a proxy for the level of dependence a stock has on
extreme market risk. For v and w going to infinity the conditional probability
tends to the tail dependence measure presented in Hartmann, Straetmans,
and De Vries (2004). A thorough derivation is provided in De Haan and
Ferreira (2007). Under the self-similarity property the tail dependence model
can be captured by the count measure described above. The event which the
count measure seeks to quantify is: Given that the market has an extreme
shock, how likely is it that stock i also exhibits an extreme movement in the
same direction?

2.2 Where does the tail start?

This paper employs the Extreme Value Theory (EVT) methodology to de-
termine where the tail of a distribution is optimally measured. Through
this optimization the extreme quadrants of Disaster and Fortune risk are
established.
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In EVT the 1/γ in the power function Ax−1/γ determines the shape of the
tail. In the literature 1/γ is often referred to as the tail index. The level of
1/γ determines how many moments exist and thus how heavy the tail of the
distribution is. The most popular estimator for γ is the Hill estimator,

γ̂ =
1

k

k∑
i=1

(log (Xn−i+1,n)− log (Xn−k,n)) (2)

where Xn−i+1,n is the (i)th largest observation (order statistic) and k is the
number of observations in tail which are used for estimating γ̂. As can be
seen from Equation (2) one has to choose the nuisance parameter k which
determines how many extreme order statistics are used. Figure 2 shows the
change in 1/γ̂ as the number of order statistics included in the estimation
increase.

Figure 2: This graph depicts the estimate for 1/γ̂ = α̂ for different levels of k. The

sample of 10,000 is simulated from a Student-t distribution with 4 degrees of freedom.

This graph is often referred to as the Hill plot.

To locate k∗, the optimal number of order statistics for the Hill estima-
tor, Danielsson et al. (2016) introduce a simple method inspired by Bickel
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and Sakov (2008). Bickel and Sakov (2008) minimize the maximal dis-
tance between the empirical and parametric probability. They employ the
Kolmogorov-Smirnov distance to match the empirical and theoretical distri-
bution to find the optimal sub-sample size for the heavy tailed distributions.
Danielsson et al. (2016) do not apply the same Kolmogorov-Smirnov metric.
Instead, the distance is measured in the quantile rather than the probability
dimension. The choice of the quantile dimension is motivated by the fact that
a probabilistic mistake in the tail of the distribution translates into a dispro-
portionally large quantile mismatch, which is the dimension that economists
care about. Basing the metric in the quantile dimension allows them to put
better emphasis on modelling the tails.

In EVT the Pareto distribution is often utilized to estimate the extreme quan-
tiles semi-parametrically. To fit the tail one only needs estimates for the scale
and tail index of the Pareto distribution. Via various simple transformations
Danielsson et al. (2016) arrive at the following penalty metric,1

QKS = inf
1<k≤K

[
sup

1<j≤K

∣∣∣∣xn−j+1,n − q
(
j

n

)∣∣∣∣] .
I limit the area over which the above metric, i.e. KS distance metric, is
measured to x ≥ Xn−K,n. Here K > k is large, but is still in the tail.2 The k
that produces the smallest maximum horizontal difference along all the tail
observations up to K, is chosen as the optimal number of observations to
estimate the thickness of the tail. Through the optimal k, i.e k∗, I also define
the start of the tail.

Here I define k∗i and k∗m as the optimal number of order statistics in the tail
which are utilized in the analysis for stock i and the market index, respec-
tively. Once k∗i and k∗m are determined, I turn to the multivariate problem
of measuring the dependence. From the univariate measures, k∗i and k∗m,
an extreme dependence region is created, as in Figure 1. These regions are
separately estimated for the left and right tail of the distribution.

The region (Ri,t < v,Rm,t < w), where v and w correspond to the quantile of
the order statistics k∗i and k∗m respectively, is appointed as the extreme quad-
rant. The number of extreme pairs of Ri,t and Rm,t, which fall in this region,
relative to the number of extreme market movements k∗m is the dependence
measure in Equation (1).

1See Appendix A.1 for the derivation of the semi-parametric quantile estimator.
2For example 10% of the sample fraction.
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2.3 Other systematic risk factors

The asset pricing literature suggests several systematic risk factors. In this
paper these risk factors are used as control variables. Harvey and Siddique
(2000) use Coskewness as a measure of heavy tails. Coskewness is defined as

Coskew =
E
[
(Ri − µi) (Rm − µm)2

]√
var (Ri)var (Rm)

,

where µi is the expected excess return of asset i and µm is the expected excess
return on the market portfolio. Although Coskewness is not a direct measure
of tail dependence, it gives an indication of a stronger relationship in the tail.
Harvey and Siddique (2000) predict that lower Coskewness should be asso-
ciated with higher expected returns. The estimation of Coskewness requires
the full return distribution. EVT shows that only the tail observations are
necessary to provide information about tail risk. Moreover, using the vast
number of center observations in the estimation might create a biased mea-
sure of tail dependence.

Scott and Horvath (1980) introduce a measure of the sensitivity of the kur-
tosis of a stock to the market kurtosis:

Cokurt =
E
[
(Ri − µi) (Rm − µm)3

]√
var (Ri)var (Rm)

3
2

.

In the univariate case kurtosis is often used as an indicator for the presence
of heavy tails. Cokurtosis would then be a natural extension of a measure
of tail dependence. However, Cokurtosis suffers from the same drawback as
the Coskewness in that it uses central observations which makes it a biased
tail dependence measure. An additional problem with the Cokurtosis and
Coskewness measures is that they need the second and third moment to
exist. This is not always the case for financial returns.

Ang et al. (2006) propose a non-linear CAPM by separating the co-movement
of an individual asset conditional on a down movement and up movement.
Given that the market is above its average excess return a beta is estimated.
Accordingly, this is also done for the below average state. They define the
up- and downside beta as,

β+ =
cov (Ri, Rm|Rm > µm)

var (Rm|Rm > µm)
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β− =
cov (Ri, Rm|Rm < µm)

var (Rm|Rm < µm)
,

where β+ and β− are the up- and downside betas, respectively.

Ang et al. (2006) winsorize the tail observations at the 99% empirical quantile
for the measurement of the non-linear beta measures, β+ and β−. It is in
my view, however, that the information lost by winsorizing provides valuable
information for the extremely good and bad states of the world. I utilized the
information in the winsorized observations as a further non-linearisation of
their risk-return relationship. By excluding the winsorized tail observations
from the up and downside beta, the tail dependence measure can be estimated
using these excluded observations. Therefore, the factors proposed in this
paper provide a natural extension of their framework.

2.4 Asset pricing regressions

The fourth part of the empirical methodology deals with the pricing of the
factors, i.e. do investors care about Disaster and Fortune risk? These de-
pendence measures are applied in a cross-sectional framework which is often
used in the asset pricing literature.

For a first indication of whether the factors are priced in the market I start by
sorting the stocks in quintiles according to the realized factor loadings.3 The
direction of the expected returns of these five portfolios indicates whether
there is an initial relationship between the risk factor and expected returns.

The more formal test is a cross-sectional regression in the form of an APT
framework. In this regression the newly created factors are regressed on the
expected returns along with other known risk factors. The cross-sectional
model has a simple linear form

E [Re] = λ′β + ε

where E [Re] is the vector of expected returns, measured by taking the aver-
age of the monthly holding period returns of stock i. The vector of coefficients
is represented by λ and can be interpreted as the risk premium. The ma-
trix β is the factor loadings of every factor for the individual stocks. The β
contains a constant, factor loading of commonly used risk factors in the liter-
ature and the extreme dependence measures developed in this paper. The ε

3The size of the coefficient from a regression of the stock return on the factor.
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is the vector of residuals in the cross-sectional regression. The cross-sectional
regressions are estimated using OLS.

Because the elements of β are estimated, an error-in-variable problem is intro-
duced. This problem is usually overcome by using the cross-sectional frame-
work put forth by Fama and MacBeth (1973). Alternatively, the Shanken
(1992) correction can be applied. This paper uses the Fama-MacBeth proce-
dure to alleviate the error-in-variable problem. This is a two-step procedure.
An overlapping rolling window regression is utilized to estimate time vary-
ing factor loadings. In the first instance the extreme dependence measures
are difficult to estimate in a rolling window framework. Due to sample size
restrictions in determining the optimal threshold, there is a preference for a
long time series for every asset. Requiring the sample to be long excludes
short lived firms which contain essential information. Given that I apply a
rolling window framework, the assets with a shorter time series will pop in
and out of the rolling window. This will bias the results in the direction of
a survivorship bias. To deal with this bias I perform additional robustness
analyses.

In the first stage of the Fama-MacBeth procedure the factor loadings are
estimated for the individual stock present in window t. This is represented
as,

Re
t = at + βtXt + εt

where Re
t is the vector of excess returns for stock i in time window t. The Xt

is a l by T matrix for the l factors and the T time units within the window t.
The factor loadings are then collected in βt. In the second stage regression
the factors are tested for significance in risk premia.

E [Re
t ] = λ′tβt + εt

where λt is the vector with the price of the risk of factors in window t.

Due to the use of the overlapping rolling windows in the Fama-MacBeth
procedure, the time series of the λ are autocorrelated. To correct for this, I
use Newey and West (1987) standard errors for λ.

3 Data

The analysis uses the daily US equity market data from 1963 to 2012. The
extreme dependence measures are build up solely out of stock price infor-
mation. The stock market data is obtained from the Center for Research
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in Security Prices (CRSP). The CRSP database contains individual stock
data from the NYSE, AMEX, NASDAQ and NYSE Arca. The Fama-French
factor (Fama and French, 1996) data is provided by the website of Kenneth
R. French as is the Momentum factor by Carhart (1997). The data library
contains daily and monthly constructed Fama-French and Momentum factors
from 1963 to 2012. The Liquidity factor by Stambaugh and Lubos (2003) is
obtained from the website of Lubos Pastor.

In the main analysis 15,904 stocks are included. For the data analysis the
monthly stock returns need to be matched to the monthly regression factors.
Therefore, the analysis is confined to the period 1963 to 2012.4 For every
stock that is included in the analysis it needs to be traded on one of the four
exchanges during the entire measurement period.5 Only stocks with more
than 48 months of data are used, as accuracy of extreme value estimators
typically requires a large total sample size. Only a small sample fraction is
informative for tail estimation. Table 1 gives the descriptive statistics for the
Disaster factor and Fortune factor.

In the Appendix, Figures 3 and 4 give additional details on the distribution
of the sample fractions used for the estimation of the count measure. We see
that the shape of the distribution of the k∗m for the Disaster and Fortune risk
measures are different. For the Fortune measure a relatively small percentage
of the tail observations are utilized for the dependence estimation. For the
Disaster risk measure we find a similar distribution of the utilized sample
fraction. The fraction of market returns used does differ for the Fortune
and Disaster risk measures. For Disaster risk the cut-off point of 10% of the
market return observations is often used. This difference does not seem to
affect the distribution of the dependence measures.

The book-to-market ratio, which is used as one of the control variables, is
obtained from the Compustat database. The Compustat database contains
data from 1950 to 2012 on balance sheet items of the respective companies.
The CRSP database provides linked PERMNO6 numbers for the Compu-
stat database. The linked PERMNO numbers are used to match the two
databases.

4The CRSP database and Fama-French factors dataset provide information going back
to 1926. For a detailed description of the construction of the Fama-French factors and the
Momentum factor please visit the data library on the website of Kenneth R. French.

5In the CRSP database exchange code -2, -1, 0 indicates that a stock was not traded
on one of the four exchanges and thus no price data is recorded for these days. Stocks
which contain one of the exchange codes are not included in the analysis. In addition,
only stocks with share code 10 and 11 are included in the analysis.

6CRSP’s permanent issue identifiers.
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4 Empirical results

Common practice in the asset pricing literature is to sort the stocks in quintile
portfolios based on their factor realizations. Subsequently, the direction of
the aggregated portfolio returns is examined for the predicted relationship.

Table 2: Single sorted portfolios This table lists the equal-weighted average
excess returns and risk characteristics of stocks sorted on extreme factor realizations.
Fortune and Disaster factors are calculated using daily observations for every individual
asset which is listed on NYSE, AMEX, NASDAQ or NYSE Arca in between the years
1963 and 2012. The returns on the individual assets are of a monthly frequency. The total
number of assets under consideration is n = 15, 904. The stocks are all sorted in ascending
order of the factor realizations. The column ”E(Re

i )” reports the average excess return of
the realized factors sorted portfolio.

(a) Sorted by Disaster factors

Portfolio E(Re
i ) Fortune Disaster

1 low 0.1301 0.0670 0.0045
2 0.1476 0.0819 0.0354
3 0.1475 0.0979 0.0892
4 0.1670 0.1325 0.1865

5 high 0.1832 0.1891 0.4564

(b) Sorted by Fortune factors

Portfolio E(Re
i ) Fortune Disaster

1 low 0.1371 0.0017 0.0808
2 0.1409 0.0281 0.1168
3 0.1524 0.0709 0.1447
4 0.1658 0.1404 0.1776

5 high 0.1792 0.3274 0.2521

Table 2 shows the average returns of the lower to upper quintile portfolios
sorted by the Disaster and Fortune factors. The portfolios sorted on the
Disaster factor show an overall increase in the average returns. This direction
is in line with the risk-return relationship that one expects. Given that the
market is in an extremely bad state, if the asset is also preforming extremely
badly, then investors wants to be compensated for bearing this risk by a
higher expected return. The average return of the portfolios sorted on the
Fortune factor also show a monotone increasing average portfolio return.
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This result is not in line with what one would expect as a negative risk
premium should go together with a higher frequency of large pay-offs. When
observing Table 5 in the Appendix one can see that Fortune and Disaster
factor loadings are positively correlated. As these factors are not meant to
be in a single factor model, I do not expect the results to be found in the
portfolio sorting exercise. To get a better idea of what the relationship is
and how much investors want to be compensated for the exposed systematic
risk follows from the Fama-MacBeth regression shown below.

Table 3: Base case Fama-MacBeth regression

Model I II III IV V VI
α 0.0416 0.0347 0.0422 0.0377 0.0351 0.0299

(0)*** (0)*** (0)*** (0)*** (0)*** (0)***
Market 0.0639 0.0283 0.0632 0.0533 0.0571 0.0277

(0)*** (0)*** (0)*** (0)*** (0)*** (0)***
SMB 0.0052 0.0313 0.0332 0.0057

(0.1793) (0)*** (0)*** (0.1351)
HML -0.0199 -0.0287 -0.028 -0.0197

(0)*** (0)*** (0)*** (0)***
Fortune -0.0223 0.0034 0.0072 0.0187

(0.0337)** (0.6572) (0.3423) (0.0029)***
Disaster 0.0207 0.0267 0.0261 0.038

(0.0039)*** (0)*** (0)*** (0)***
Momentum 5.3366 5.3395 5.35

(0)*** (0)*** (0)***
Liquidity 0.0077 0.0301 0.0083

(0.043)** (0)*** (0.0267)**
Coskewness 0.0155 0.0128

(0.0277)** (0.0533)*
Cokurtosis 0.007 0.0048

(0.0793)* (0.1929)

This table shows the results of Fama-MacBeth (1973) regressions of 60-month excess re-
turns on realized-risk characteristics. The sample period is from July-1963 to December-
2012. An overlapping 60-month rolling window is employed on assets which are listed on
the NYSE, AMEX, NASDAQ or NYSE Arca. The assets have to be listed consecutively
on one of the exchanges. The number of stocks in each rolling window varies from 1,651
to 5,107. Market is the CAPM beta. Fortune and Disaster are the Fortune and Disaster
risk factors created in this paper. HML and SMB are high minus low and small mi-
nus big factors (Fama and French,1996), respectively. Liquidity is the liquidity beta by
Pastor and Stambaugh (2003). Momentum is the momentum factor created by Carhart
(1997). Coskewness and Cokurtosis are the systematic risk factors as measured by Ang
et al. (2006). The p-values for the overlapping Fama-Macbeth regression are computed
using the Newey-West (1987) autocorrelation and hetroskedastic robust standard errors.
*, **, *** are indicators for the significance level at 10%, 5% and 1% of the coefficients,
respectively.
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In Table 3 the CAPM and the Fama-French results are reproduced. This is
the starting point for the analysis, as these are the standard results in the
asset pricing literature. Adding Fortune and Disaster risk to these models
indicates the importance of extreme dependencies. Applying the rationale
of the Arrow-Debreu framework to the Disaster risk measure would imply
a positive risk premium. A stock which has extremely low returns in the
extremely bad states of the world is an undesirable asset and requires a pos-
itive risk premium. When adding Disaster risk to the models the coefficient
is positive and significant. This implies that investors do want to be com-
pensated for stocks that have a high loading on Disaster risk. The premium
for carrying a stock with a full loading on Disaster risk is around 2.5%. This
means that a standard deviation increase of Disaster risk is a 0.5% increase
in E(Re

i ).

When adding Fortune risk loadings to the cross-sectional regression the sign
of the coefficient is negative. The negative sign implies a negative risk pre-
mium for having a high loading on Fortune risk, as can be seen from the
third model in Table 3. The intuition behind this factor is that in the good
states of the world stocks with a high loading have a tendency to pay out
extremely well. This does not convey any information about the bad states
of the world. As expected, investors demand a negative premium for carrying
Fortune risk as assets with this risk dependence are desirable. The discount is
2.23% on an annual basis when Fortune risk is added to the standard CAPM
regression. This means that a one standard deviation increase of Fortune risk
implies a 0.36% decrease in E(Re

i ). When added to the Fama-French factor
model the premium becomes positive and insignificant. The results for the
extreme dependence measures are in line with the results of Kelly and Jiang
(2014) and Siriwardane (2013). One can also observe that Disaster risk is
more robustly priced than Fortune risk.

One can also wonder if stocks which have a high extreme dependence are sen-
sitive to liquidity issues. Stambaugh and Lubos (2003) find that stocks with
high sensitivity to liquidity have a higher expected return. This is especially
a concern when the market experiences an extreme downwards movement.
Model V shows that the Liquidity factor does not affect the significance of
the premium on Fortune or Disaster risk compared to Model IV. The Mo-
mentum factor is another addition to the APT model often applied in the
asset pricing literature to account for an additional source of systematic risk.
Carhart (1997) is able to explain the persistent performance of mutual funds
with the Momentum factor. Adding the Momentum factor to the regres-
sion model does not significantly influence the previously found results. This
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implies that Disaster risk is not likely functioning as a proxy for other well
tested risk factors. Given the inclusion of the Fama-French, Momentum,
Liquidity, Coskewness, and Cokurtosis factor, Disaster risk is still significant
and persistently has the same magnitude. Therefore, investors demand a
compensation for stocks that carry Disaster risk in addition to existing risk
factors.

Combining this result with the separation of the standard CAPM market
factor into Ang et al. ’s (2006) conditional up- and downside beta indicates
that investors care differently about the co-movement in different parts of the
distribution. They show that investors want to be differently compensated for
up- and downside risk. In this paper their framework is extended to include
extreme down, down, up and extreme up sensitivity. The count measures
are now measured at the 1% threshold level.7 The remaining 98% of the
observations are utilized to measure the up and downside beta.

The results of the second stage regressions that included these four factors
are presented in Table 4. Note from Table 4 that for model III all four risk
premia have the expected sign. The downside factors both fetch a premium
and the upside factors exposures fetch a discount. This is consistent with
the model of Ang et. al. (2006). The insignificance of β+ is puzzling, as
Fortune risk is consistently significant. This hints in the direction of a casino
behaviour of investors, i.e. only the extreme upside dependence is appreci-
ated. The significant pricing of the extreme dependence measures indicates
that investors do care about extreme co-movements above the regular co-
variation in the center of the distribution. The inclusion of the σ2 changes
the regression results considerably, as seen in model V. Aside from the change
in magnitude of the coefficients, the direction of the Fortune risk coefficient
changes as well. The same effect is found in Ang et. al. (2006), where the
inclusion of σ increases the size of the constant by five times.

The correlation matrix of the factors points out that there is a correlation of
0.80 between the Disaster and Fortune risk loadings (See Table 5 in the Ap-
pendix). This might cause multicollinearity issues in the regressions. There-
fore, different robustness checks are carried out in the next section. Ang
et al.’s up and downside beta loadings are relatively uncorrelated with the
extreme dependence loadings. This takes away the concern that both ap-
proaches measure the same fundamental risk.

7I use the 1% observations, because Ang et al. (2006) winsorize their sample at 1 %
and 99% level.
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Table 4: Base regression non-linear Beta model

Model I II III IV V

α 0.145 0.1484 0.0641 0.0625 0.1468
(0)*** (0)*** (0)*** (0)*** (0)***

Market 0.0427
(0)***

β+ 0.0275 -0.005 0.021 0.0283
(0)*** (0.4073) (0.0014)*** (0)***

β− 0.0148 0.0769 0.067 0.017
(0.0246)** (0)*** (0)*** (0.0086)***

Fortune -0.0925 -0.0427 0.1249
(0.0001)*** (0.0247)** (0)***

Disaster 0.0401 0.0395 0.1348
(0.0407)** (0.0183)** (0)***

σ2 -0.9876 -0.9216 0.2164
(0.765) (0.7907) (0.949)

Coskewness -0.1061 -0.1299 -0.0862 -0.1204
(0)*** (0)*** (0)*** (0)***

Cokurtosis 0.0359 0.0411 -0.0146 0.0325
(0)*** (0)*** (0.0043)*** (0)***

Bk-Mkt 5.8427 5.8205 6.3871
(0)*** (0)*** (0)***

log(size) -0.0298 -0.0306 -0.0347
(0)*** (0)*** (0)***

This table shows the results of Fama and MacBeth (1973) regressions of 60-month excess
returns on firm characteristics and realized-risk characteristics. The sample period is
from July-1963 to December-2012. An overlapping 60-month rolling window is employed
on assets which are listed on the NYSE, AMEX, NASDAQ or NYSE Arca. The assets
have to be listed consecutively on one of the exchanges. The number of stocks in each
rolling window varies from 470 to 4,320. Market is the CAPM beta. β− and β+ are
the down- and upside beta (Ang et al., 2006), Respectively. Fortune and Disaster are the
Fortune and Disaster risk factors created in this paper. Coskewness and Cokurtosis are the
systematic risk factors as measured by Ang et. al. (2006). Bk-Mkt is the book to market
ratio measured at the beginning of the rolling window. log(size) is the log of market
capitalization, where market capitalization is measured by common shares outstanding
multiplied by the share price at the beginning of the rolling window. σ2 is the variance of
the asset returns over the rolling window. The p-values for the overlapping Fama-MacBeth
regression are computed using the Newey-West (1987) autocorrelation and hetroskedastic
robust standard errors. *, **, *** are indicators for the significance level at 10%, 5% and
1% of the coefficients, respectively.

5 Robustness analyses

The results in Table 3 indicate that for all the companies which have a
positive exposure and have been listed for longer than 48 months, they exhibit

18



positive premia for Disaster risk. A possibility is that the sensitivity to the
exposure is not equal among all firms. Table 7 shows the Fama-MacBeth
regression results for stocks that are listed between 48 and 180 months on
one of the stock exchanges.8 The results in Table 7 indeed indicate that
regressions only applied to stocks that exist between 48 and 180 months have
a substantially higher premium for extreme dependency than the average
premium found in Table 3. This is an indication that the exposure to the
extreme dependence risk factors is important for firms which are relatively
young. For the more established firms extreme dependence plays a lesser
role. Table 8 shows the regression results for firms which started trading
on one of the exchanges from year 1998. For this subsample the results are
even stronger, further supporting the higher sensitivity of younger firms to
extreme dependence.

The extreme quadrant is created out of the univariate estimates of k∗i and k∗m.
The concern might arise that the factors perform well when the market beta
is away from one and lose their explanatory power otherwise. Given that
the market beta is close to unity, the origin of the extreme quadrant is more
likely along the 45 degree line. Table 9 presents the results for the separate
regressions for stocks with market betas not between 0.9 and 1.1. The results
indicate that Disaster risk premia remains significant and positive. Fortune
risk is not always significant under all the model specifications. This leads
me to conclude that Disaster risk premia is robustly significant, as opposed
to Fortune risk.

6 Conclusion

The dependence of a stock on the extreme movements of the market is an
essential part for understanding the behaviour of asset prices. In these infre-
quent and extreme cases, investors care most about the performance of their
own portfolios. In this paper a measure for the dependence of stock returns
on the extreme movements of the market is created for the negative and posi-
tive extreme market movements. These measures are derived from statistical
Extreme Value Theory. The difficulty lies in determining where the tail of
the distribution starts. This paper uses an approach to locate the optimal
threshold for the Hill estimator, by matching the empirical and the theoreti-
cal distribution along the quantile dimension. This threshold is employed to
determine the starting point of the tail. These two univariate measures for
the market and stock returns are then combined to obtain the multivariate

8Functioning as a proxy for the maturity of the firm.
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extreme dependence region. The multivariate extreme quadrant, i.e. the re-
gion where both the market and stock return pass a determined threshold, is
then utilized to measure the dependence in the tail. The pair of observations
for market and stock returns that both exceed their threshold are counted
as pairs of the extreme market returns. This functions as a count measure
of extreme dependence.

The measures of Fortune and Disaster risk are subsequently applied to ex-
plain the cross-section of expected returns. This reveals whether investors
care about this extreme dependence on top of other risk factors and whether
extreme dependence fetches a premium or a discount. The results from the
cross-sectional regressions show that Disaster risk carries a premium as would
be expected from theory. The premium for stocks is on average 0.43% and
remains significant in various robustness checks. Investors care less about the
dependence in the extreme upside. Fortune risk dependence has a negative
premium, but it is not robustly significant and in some cases positive. These
results are in line with the literature to date. Kelly and Jiang (2014) find that
investors indeed require a discount for stocks that have high returns when
tail risk is high. Ang, Chen, and Xing (2006) find in their upside and down-
side beta framework that there is a higher premium for the downside beta.
In line with the bisection of the beta model, I proposed a further division of
the risk sensitivity of the market model. I find that adding extreme up and
downside dependence to Ang et al.’s (2006) up and downside beta forms a
significant and natural extension to their model. Fortune risk and Disaster
risk are significantly priced in their framework, with an average premium of
0.64% for Disaster risk and a discount of 1.57% for Fortune risk.
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A Appendix

A.1 Quantile estimator

Suppose the tail of the distribution is regularly varying at infinity and satisfy
the following expansion

P (X ≤ −x) = F (−x) = Ax−α[1 + o(1)].

Conditional on being in the tail of the distribution, the cdf can be rewritten
in the empirical counterpart

Fxpx≤−xs(−x) =
Ax−αs [1 + o(1)]

Ax−αss [1 + o(1)]
=

(
x

xs

)−α(s)

. (3)

By definition

Fxpx≤−xs(−x) =
P (X < x ∩X < s)

Fx(−xs)
=

p

Fx(−xs)
. (4)

Equating (3) and (4) gives

p

Fx(−xs)
=

(
x

xs

)−α(s)

p = Fx(−xs)
(
x

xs

)−α(s)

.

Replace Fx(−xs) by the empirical cdf and replace s by xk and the condition-
ing of α on k instead of s then gives

p =
k

n

(
x

xk

)−α(k)

,

where k =
∑
I{xi<xs} and where k/n is the empirical cdf. Given this expression

for the probability dimension, the quantile estimator q (j/n) is given by

q

(
j

n

)
=

(
k

j

) 1
α̂ k

(xk+1) ,

where p is replaced by the empirical counterpart, i.e. j/n.
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A.2 Tables and Figures

Figure 3: Characteristics Disaster risk

These graphs depict the distribution of the different characteristics of the Disaster mea-
sure. The upper left picture depicts the sample fraction of the total data used to define
the extreme negative region of the stock. On the right you see this for the market. The
lower left picture depicts the difference in the number of observations applied in the
count measure for the market and stock i. The picture on the bottom right gives the
distribution of the Disaster risk measure.
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Figure 4: Characteristics Fortune risk

These graphs depict the distribution of the different characteristics of the Fortune mea-
sure. The upper left picture depicts the sample fraction of the total data used to define
the extreme positive region of the stock. On the right you see this for the market. The
lower left picture depicts the difference in the number of observations applied in the
count measure for the market and stock i. The picture on the bottom right gives the
distribution of the Fortune risk measure.
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Figure 5: Risk premia Disaster and Fortune risk for rolling window

This graph depicts the estimated risk premia for Disaster risk and Fortune risk for every
overlapping window. Here LL is the line for the Disaster factor and UR is the line for
the Fortune factor. These are measures from the second stage of the overlapping window
regression in the Fama-MacBeth procedure.
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Table 6: Firms exist for more than 180 months in the database.

Model I II III IV V VI
α 0.0454 0.0466 0.0494 0.0457 0.0434 0.0435

(0)*** (0)*** (0)*** (0)*** (0)*** (0)***
Market 0.065 0.0303 0.0644 0.0534 0.0576 0.0297

(0)*** (0)*** (0)*** (0)*** (0)*** (0)***
SMB 0.0051 0.0335 0.0354 0.0056

(0.1842) (0)*** (0)*** (0.1355)
HML -0.0234 -0.0307 -0.0294 -0.0232

(0)*** (0)*** (0)*** (0)***
Fortune -0.0378 -0.0116 -0.0082 0.0044

(0)*** (0.0597)* (0.1915) (0.3916)
Disaster 0.0115 0.0201 0.0202 0.032

(0.1178) (0.0011)*** (0.0006)*** (0)***
Momentum 5.945 6.1007 5.9546

(0)*** (0)*** (0)***
Liquidity 0.008 0.0274 0.0086

(0.0285)** (0)*** (0.0143)**
Coskewness 0.0084 0.0073

(0.1306) (0.1801)
Cokurtosis -0.0011 -0.0021

(0.7771) (0.5945)

This table shows the results of Fama-MacBeth (1973) regressions of 60-month excess
returns on firm characteristics and realized-risk characteristics. The sample period is from
July 1963 to December 2012. An overlapping 60-month rolling window is employed on
assets which are listed on the NYSE, AMEX, NASDAQ or NYSE Arca. The assets have
to be listed consecutively on one of the exchanges. The number of stocks in each rolling
window varies from 1,186 to 2,790. Market is the CAPM beta. Fortune and Disaster are
the Fortune and Disaster risk factors created in this paper. HML and SMB are high
minus low and small minus big factors (Fama and French,1996), respectively. Liquidity is
the liquidity beta by Pastor and Stambaugh (2003). Momentum is the momentum factor
created by Carhart (1997). Coskewness and Cokurtosis are the systematic risk factors
as measured by Ang et al. (2006). The p-values for the overlapping Fama-Macbeth
regression are computed using the Newey-West (1987) autocorrelation and hetroskedastic
robust standard errors. *, **, *** are indicators for the significance level at 10%, 5% and
1% of the coefficients, respectively.
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Table 7: Firms exist between 48 and 180 months in the database

Model I II III IV V VI
α 0.0226 -0.0065 0.0178 0.0113 0.0063 -0.0164

(0.0138)** (0.5241) (0.0785)* (0.1751) (0.4624) (0.1144)
Market 0.0659 0.0199 0.0635 0.0549 0.0591 0.0174

(0)*** (0)*** (0)*** (0)*** (0)*** (0.0001)***
SMB 0.0008 0.0291 0.032 0.0001

(0.8224) (0)*** (0)*** (0.9718)
HML -0.0134 -0.0247 -0.0251 -0.0118

(0)*** (0)*** (0)*** (0)***
Euphoria 0.0128 0.0304 0.0398 0.0663

(0.4246) (0.0398)** (0.0091)*** (0)***
Depression 0.0432 0.0444 0.0425 0.0849

(0.0001)*** (0)*** (0)*** (0)***
Momentum 3.6266 3.6391 3.63

(0)*** (0)*** (0)***
Liquidity 0.0069 0.0388 0.0068

(0.1103) (0)*** (0.1211)
Coskewness 0.0118 0.0086

(0.3017) (0.4265)
Cokurtosis 0.0248 0.0204

(0)*** (0)***

This table shows the results of Fama-MacBeth (1973) regressions of 60-month excess returns
on firm characteristics and realized-risk characteristics. The sample period is from July 1963
to December 2012. An overlapping 60-month rolling window is employed on assets which
are listed on the NYSE, AMEX, NASDAQ or NYSE Arca. The assets have to be listed
consecutively on one of the exchanges. The number of stocks in each rolling window varies
from 186 to 1,234. Market is the CAPM beta. Fortune and Disaster are the Fortune and
Disaster risk factors created in this paper. HML and SMB are high minus low and small
minus big factors (Fama and French,1996), respectively. Liquidity is the liquidity beta by
Pastor and Stambaugh (2003). Momentum is the momentum factor created by Carhart
(1997). Coskewness and Cokurtosis are the systematic risk factors as measured by Ang et al.
(2006). The p-values for the overlapping Fama-Macbeth regression are computed using the
Newey-West (1987) autocorrelation and hetroskedastic robust standard errors. *, **, *** are
indicators for the significance level at 10%, 5% and 1% of the coefficients, respectively.
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Table 8: Firms which are included onto one of the exchanges after 1997

Model I II III IV V VI
α 0.0352 0.0243 0.0269 0.0158 0.0188 -0.0007

(0.0675)* (0.219) (0.1942) (0.4407) (0.3427) (0.9723)
Market 0.0745 0.0156 0.0731 0.0524 0.0527 0.0151

(0)*** (0.0951)* (0)*** (0)*** (0)*** (0.1118)
SMB 0.0122 0.0421 0.0414 0.0127

(0.0002)*** (0)*** (0)*** (0.0001)***
HML -0.0127 -0.0344 -0.0358 -0.0141

(0.0074)*** (0)*** (0)*** (0.0041)***
Fortune -0.0329 0.0604 0.0523 0.1395

(0.5063) (0.2598) (0.2738) (0.0011)***
Disaster 0.1276 0.1345 0.1393 0.1766

(0)*** (0)*** (0)*** (0)***
Momentum 4.5699 1.4516 4.3391

(0)*** (0.1046) (0)***
Liquidity -0.013 0.0158 -0.0125

(0.0824)* (0.0881)* (0.1028)
Coskewness 0.0845 0.071

(0.0019)*** (0.0057)***
Cokurtosis 0.0309 0.0165

(0.0228)** (0.1889)

This table shows the results of Fama-MacBeth (1973) regressions of 60-month excess returns
on firm characteristics and realized-risk characteristics. The sample period is from January
1997 to December 2012. An overlapping 60-month rolling window is employed on assets
which are listed on the NYSE, AMEX, NASDAQ or NYSE Arca. The assets have to be
listed consecutively on one of the exchanges. The number of stocks in each rolling window
varies from 101 to 1,143. Market is the CAPM beta. Fortune and Disaster are the Fortune
and Disaster risk factors created in this paper. HML and SMB are high minus low and
small minus big factors (Fama and French,1996), respectively. Liquidity is the liquidity beta
by Pastor and Stambaugh (2003). Momentum is the momentum factor created by Carhart
(1997). Coskewness and Cokurtosis are the systematic risk factors as measured by Ang et al.
(2006). The p-values for the overlapping Fama-Macbeth regression are computed using the
Newey-West (1987) autocorrelation and hetroskedastic robust standard errors. *, **, *** are
indicators for the significance level at 10%, 5% and 1% of the coefficients, respectively.
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Table 9: Firms which have a Market estimate between 0.9 and 1.1

Model I II III IV V VI
α 0.0227 0.014 0.0217 0.0278 0.0328 0.0099

(0.051)* (0.202) (0.0681)* (0.007)*** (0.0008)*** (0.3768)
Market 0.0754 0.0277 0.0733 0.0582 0.0562 0.0256

(0)*** (0.0034)*** (0)*** (0)*** (0)*** (0.0066)***
SMB 0.0066 0.0305 0.0302 0.0064

(0.0975)* (0)*** (0)*** (0.0981)*
HML -0.0245 -0.0367 -0.0341 -0.024

(0)*** (0)*** (0)*** (0)***
Fortune -0.0079 0.0091 0.0115 0.016

(0.5139) (0.2919) (0.1724) (0.0176)**
Disaster 0.0279 0.0345 0.0309 0.0355

(0.0008)*** (0)*** (0)*** (0)***
Momentum 6.4219 6.9575 6.4673

(0)*** (0)*** (0)***
Liquidity 0.0024 0.0306 0.0025

(0.7161) (0)*** (0.6923)
Coskewness 0.0192 0.0162

(0.0559)* (0.0922)*
Cokurtosis 0.019 0.0175

(0.0001)*** (0.0001)***

This table shows the results of Fama-MacBeth (1973) regressions of 60-month excess returns on
firm characteristics and realized-risk characteristics. The sample period is from July 1963 to
December 2012. An overlapping 60-month rolling window is employed on assets which are listed
on the NYSE, AMEX, NASDAQ or NYSE Arca. The assets have to be listed consecutively
on one of the exchanges. The number of stocks in each rolling window varies from 166 to 645.
Market is the CAPM beta. Fortune and Disaster are the Fortune and Disaster risk factors
created in this paper. HML and SMB are high minus low and small minus big factors (Fama
and French,1996), respectively. Liquidity is the liquidity beta by Pastor and Stambaugh (2003).
Momentum is the momentum factor created by Carhart (1997). Coskewness and Cokurtosis are
the systematic risk factors as measured by Ang et al. (2006). The p-values for the overlapping
Fama-Macbeth regression are computed using the Newey-West (1987) autocorrelation and
hetroskedastic-robust standard errors. *, **, *** are indicators for the significance level at 10%,
5% and 1% of the coefficients, respectively.
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