A COMPARISON OF A COAXIAL FOCUSED LASER DOPPLER SYSTEM IN ATMOSPHERIC MEASUREMENTS

by

S. Karaki

Prepared under

National Aeronautic and Space Administration Contract No. NAS8-26234 Marshall Space Flight Center Huntsville, Alabama

June 1973

CER71-72SK35

Contractor:

Civil Engineering Department Engineering Research Center

Foothills Campus

Colorado State University

Fort Collins, Colorado 80521

Title:

Final Report

Author:

S. Karaki

Type of Report: Contract Number: Control Number: Final Report NAS8-26234

DCN 1-0-75-00101(1F)&S1(1F) DCN 1-0-75-00101 S1 (1F)

Date:

June 25, 1973

Prepared for George C. Marshall Space Flight Center NASA, Huntsville, Alabama 35812

TABLE OF CONTENTS

<u>Pa</u>	ge
LIST OF FIGURES	i
LIST OF TABLES	٧
INTRODUCTION	1
BASIC PRINCIPLES	2
DESCRIPTION OF THE LASER DOPPLER VELOCIMETER	6
Spatial Resolution	7
Signal Processing	9
TEST FACILITIES	4
INSTRUMENTATION	6
RECORDING OF TEST DATA	21
TEST PROCEDURE	23
Pre-Test Preparation	23
Pre-Test Calibration	25
Data Recording	26
DATA REDUCTION PROCEDURE	27
Selection of Digitizing Rates	27
Multiplexed Data Groups	28
Data Format	29
Data Reduction	29
EXPERIMENTAL RESULTS AND DISCUSSION	34
Calibrations	34
Measurements of Run 50801	37
Measurements of Run 32701	51

TABLE OF CONTENTS - Continued

į.	Page
Measurements of Run 101401	64
Measurements of Run 102501	72
OBSERVATIONS AND CONCLUSIONS	80
REFERENCES	81
APPENDIX A	82
A-1 Computer Program for Analysis of Doppler Signals	
A-2 Computer Program for Determination of Velocity Profiles	
A-3 Computer Program for Determination of Temperature and Humidity Profiles	

LIST OF FIGURES

<u>Figure</u>			Page
1	Schematic arrangement of the laser Doppler velocimeter.	٠	4
2	Definition diagram for Doppler shift frequency \dots		5
3	Range positioning as a function of lens position \dots	•	8
4	Spatial resolution of the 12-in. telescope		10
5	Spectrum analyzer block diagram		11
6	Block diagram of signal detection circuitry	•	12
7	Typical spectrum analyzer output for calibration and Doppler frequencies		13
8	Block diagram of frequency tracker	٠	14
9	Field site at Christman Field	•	15
10	Site arrangement for towers and instrument van \dots	•	17
11	Instrument vans at test facility		18
12	Towers at test facility. Profile tower is at left $$. $$	•	18
13	Instrument arrangement inside laser van		18
14	Sample data sheet	•	22
15	Simplified flow chart of Doppler data reduction	•	31
16	Calibration curves for climet anemometer \dots	•	35
17	Hot-wire calibration curve		36
18	Velocity profiles for test period 50801	•	38
19	Calibration frequency 1.007 MHz. Test 50801	٠	40
20	Detector noise calibration. Test 50801	•	40
21	Sample Doppler signal. Test 50801	•	40
22	Sample Doppler signal. Test 50801	٠	40
23	Time traces of wind velocity. Test 50801, Interval 1 .	٠	41
24	Time traces of wind velocity. Test 50801, Interval 2.	٠	42

LIST OF FIGURES - continued

Figure		Page
25	Distributions of velocities about the mean. Test 50801	45
26	Spectral density distributions for cup anemometer. Test 50801	46
27	Spectral density distributions for hot-wire anemometer. Test 50801	47
28	Spectral density distributions for LDV data. Test 50801 .	48
29	Comparison of spectral density distributions. Test 50801.	49
30	Velocity profiles. Test 32701	52
31	Calibration frequency 4.009 MHz. Test 32701	54
32	Noise Calibration. Vertical scale is 100 mv/cm. Test 32701	54
33	Typical Doppler signal. Test 32701	54
34	Typical Doppler signal. Test 32701	54
35	Time traces of wind velocity. Test 32701, Interval 3	55
36	Time traces of wind velocity. Test 32701, Interval 5	56
37	Distributions of velocities about the mean. Test 32701	59
38	Spectral density distributions for cup anemometer data. Test 32701	60
39	Spectral density distributions for hot-wire anemometer. Test 32701	61
40	Spectral density distributions for LDV data. Test 32701 .	62
41	Comparison of spectral density distributions. Test 32701.	63
42	Calibration frequency 1.691 MHz. Test 101401	65
43	Noise Calibration. Test 101401	65
44	Sample Doppler signal. Test 101401	65
45	Time traces of wind velocity. Test 101401, Interval 1	66

LIST OF FIGURES - continued

Figure		Page
46	Time traces of wind velocity. Test 101401, Interval 5 .	67
47	Distribution of velocities about the mean. Test 101401.	70
48	Comparison of spectral density distributions. Test 101401	71
49	A.C. tracker and hot wire traces. Test 101401	72
50	Calibration frequency 1.678 MHz. Test 102501	74
51	Noise calibration. Vertical scale is 200 ms/cm. Test 102501	74
52	Sample Doppler signal. Test 102501	74
53	Time traces of wind velocity. Test 102501, Interval ${\bf 1}$.	75
54	Time traces of wind velocity. Test 102501, Interval 2 .	76
55	Distribution of velocities about the mean. Test 102501.	78
56	Comparison of spectral density distributions. Test 102501	79

LIST OF TABLES

Table		Page
1	MAXIMUM SAMPLE RATES FOR SELECTED SCAN TIMES	20
2	MINIMUM BANDWIDTHS IN kHz FOR COMBINATIONS OF SCANWIDTH AND SCAN TIME	20
3	MEANS AND VARIANCES FOR TEST 50801	43
4	MEANS AND VARIANCES FOR TEST 32701	57
5	MEANS AND VARIANCES FOR TEST 101401	68
6	MEANS AND VARIANCES FOR TEST 102501	77

INTRODUCTION

Measurements of fluid flow speed may be made by utilizing the Doppler shift of laser light scattered from small particles suspended in the flowing fluid. The principle of the Doppler shift is of course well known, but only recently was a technique introduced by Yeh and Cummins (1964) to utilize the Doppler shift of a laser radiation to successfully measure fluid flow speeds. Since that time there have been a number of separate investigations reported in the literature (see references). The instrument utilized in this investigation was developed by a team of scientists at NASA/MSFC (Huntsville, Alabama), Raytheon Company (Sudbury, Massachusetts) and Lockheed Missiles and Space Company (Huntsville, Alabama). Much of the technology used was originally developed in assembling a system to be used in subsonic and supersonic gas flows with large quantities of particle entrainment [Rolfe et al. (1968)]. The system used in this study involved only aerosols and particulate matter suspended naturally in the atmosphere.

Interest in application of the instrument has broadened currently (1972) to a variety of practical situations where a remote-sensing instrument has particular advantages over conventional velocimeters. Two applications currently under research is for use as an airport warning system for wake vortex detection and as an air-borne system for clear-air turbulence detection. A potentially important use of the instrument is in meteorological investigations of the atmospheric boundary layer. Further uses of the instrument could be for remote air-pollution detection and for measurement of mass and momentum fluxes in a variety of fluid flow fields.

In principle it is possible to measure "point" velocities in the flow field with complete vector directional resolution. A laboratory three-dimensional instrument is presently being investigated at NASA/MSFC (Huntsville, Alabama), where also an atmospheric three-dimensional arrangement is under research and development. The instrument used in this investigation was a one-dimensional co-axial system, using a 25-watt CO₂ laser and back-scattered radiation. The direction of wind velocity was resolved by utilizing an ordinary wind-vane direction sensor.

The purpose of this research project was to obtain measurements of atmospheric velocities and turbulence with the laser Doppler system and to compare the results with cup anemometer and hot-wire measurements in the same wind field.

BASIC PRINCIPLES

The frequency of laser light scattered by moving particles in a flow field is shifted by the Doppler effect. The Doppler shift is detected by optical mixing of the emitted or incident and scattered beams. A variety of optical configurations is possible to accomplish the optical mixing. In the present arrangement the back-scattered radiation along the axis of the incident beam was redirected into the laser to combine with the original laser beam. The resultant heterodyne or "beat" frequency is equal to the difference in frequencies of the emitted and scattered frequencies, and is directly proportional to the particle speed. If the scatterers are small, and no relative velocity exists between the particle and the fluid, then fluid velocity is

measured. An infrared detector was used to convert the Doppler-shifted frequency to a measurable electrical signal. The arrangement of the system is shown schematically in Figure 1.

The laser Doppler velocity measurement system (hereinafter referred to as the laser Doppler velocimeter and mnemonically denoted LDV) is almost instantaneous and has the advantage that no prior calibration is required as with other velocity instruments. The range of detectable velocities is very large. There is minimal perturbation of the fluid flow field by the laser radiation. The spatial resolution which is fixed ultimately by diffraction limitations can be controlled to a large degree by size and optical quality of the lenses and mirrors.

A nonrelativistic derivation of velocity determination from the Doppler shift frequency follows. A definition diagram relative to the derivation is shown in Figure 2. For purpose of clarity, the scattered beam is shown at an arbitrary angle θ from the direction of particle motion. In the case of a coaxial system, $\theta = \alpha$.

The emitted monochromatic laser radiation of wave length λ_0 and speed c illuminates a particle having a velocity \hat{V} . The direction of the incident beam is defined by the unit vector \hat{r}_0 . If the particle is motionless, the number of waves incident on the particle per unit of time is $f_0 = c/\lambda_0$, where c is the speed of the laser radiation and λ_0 is the wave length.

If the particle is in motion at an angle α with respect to the incident beam, the frequency of the waves per unit of time relative to the moving particle is

$$f_p = \frac{c + V\cos\alpha}{\lambda_0}$$

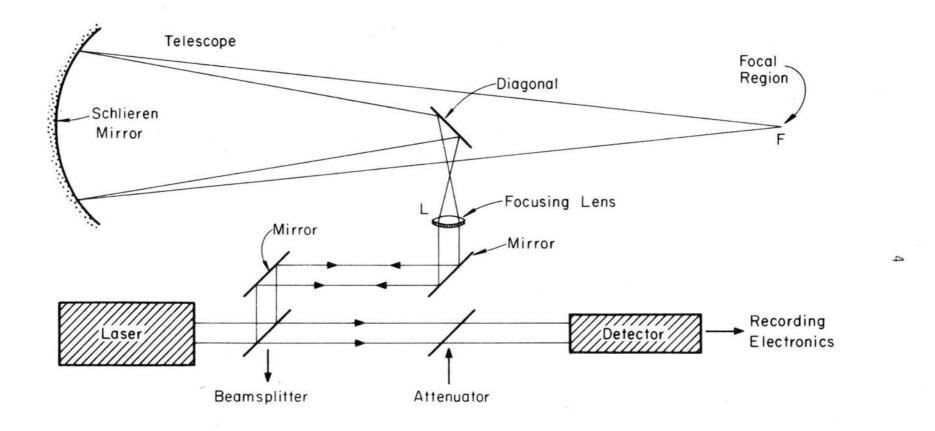


Figure 1. Schematic arrangement of the laser Doppler velocimeter.

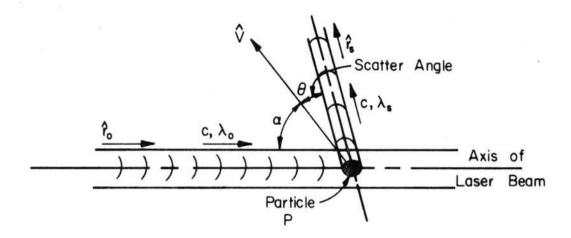


Figure 2. Definition diagram for Doppler shift frequency.

which is also the frequency of the scattered waves relative to the particle. The scattered radiation is directed toward a fixed point along a direction \hat{r}_s from point P. The frequency of the scattered radiation relative to the particle is f_p , but to a fixed observer along \hat{r}_s , the wave length appears to be

$$\lambda_{s} = \frac{c - V\cos\theta}{f_{p}} = \frac{c - V\cos\theta}{c + V\cos\alpha} \lambda_{0}$$

and the frequency of the scattered radiation appears to be

$$f_s = \frac{c}{\lambda_s} = \frac{c}{\lambda_0} (\frac{c + V\cos\alpha}{c - V\cos\theta})$$

which is rearranged to give

$$f_{S} = \frac{c}{\lambda_{O}} \left(\frac{1 + \frac{V\cos\alpha}{c}}{1 - \frac{V\cos\theta}{c}} \right) .$$

The apparent shift in frequency, the Doppler shift, is

$$f_D = f_S - f_O$$

or,

$$f_D = \frac{1}{\lambda_0} [V(\cos\alpha + \cos\theta)]$$

using the approximation that $\frac{|V|}{c} \ll 1$.

For backscatter along the incident laser beam, θ = α , thus

$$f_D = \frac{2V\cos\alpha}{\lambda_0}$$

and

$$V = \frac{\lambda_0 f_D}{2\cos\alpha} = \frac{c}{2\cos\alpha} \frac{f_D}{f_0} .$$

In particular the component of the particle velocity along the laser beam axis ${\rm V}_{\rm O}$ is always determinable from

$$V_0 = V\cos\alpha = \frac{\lambda_0 f_D}{2} = \frac{cf_D}{2f_0}$$
.

The wavelength of the ${\rm CO}_2$ laser was 10.6 microns, thus the velocity is given by

$$V_0 = 5.3 \times 10^{-6} f_D \text{ m/sec}$$

or,

$$V_0 = .53$$
 cm/sec/KHz Doppler shift.

DESCRIPTION OF THE LASER DOPPLER VELOCIMETER

The optical configuration of the LDV is shown schematically in Figure 1. It consists of a 25-watt, 10.6μ , CO_2 laser, beam splitters, mirrors and attenuators, an f8 12-inch Newtonian telescope and a liquid-helium cooled Ge-Hg infrared detector.

Based on relative power of 100 percent of the laser output (nominal 25 watts), the power at the focal region F was about 60 percent. The focal region is the sample space or volume from where the scattered signal is effectively heterodyned. The relative power at the detector was about 1 percent.

The laser radiation is focused at the desired range by a 2-in. focusing lense L. A diagonal, 1-7/8 by 2-21/32 inches mounted on a spider within the 15-in. diameter tube of the telescope, directs the beam to a 12-in. diameter schlieren mirror mounted at the end. The mirror is adjustable on a 3-point mount. Physical limitation of the focusing lense movement limited the near range of the telescope focus to about 60 feet from the mirror. The other limit of the telescope focusing range is limited to about 250 feet by the size of the diagonal. Of course if the power loss from beam "spill over" at the diagonal is not of concern the range can be extended. A curve of focal distance as a function of lense movement is shown in Figure 3. The reference position of the lense is arbitrary and made relative to 60 feet in the figure. The range of the telescope relative to "performance" is also diffraction limited [cf. Lockheed Missiles and Space Company (LMSC) progress report D162417, July 23, 1970].

Spatial Resolution

The spatial resolution of the system is specified in terms of the signal-to-noise, S/N, ratio. A calculation of S/N was made by LMSC (cf. Appendix A, Interim Report D225028, June 1971). It has been shown [Thomson and Dorian (1967)] that only radiation scattered from the region near the focus of the telescope contributes most significantly

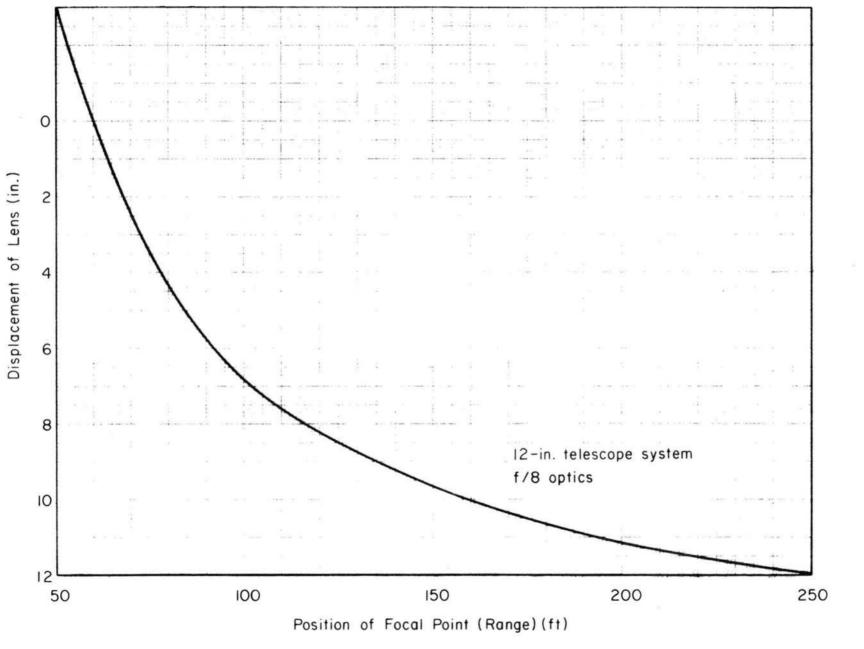


Figure 3. Range positioning as a function of lens position.

to the Doppler signal. Nevertheless, there is some amount of heterodyned signal attributable to scattered returns in the whole space of illumination. The ratio of S/N from the focal region in comparison to the total S/N, then, is a method of defining the spatial resolution. A curve of spatial resolution (axial dimension) as a function of focal range is reproduced from the LMSC calculations as Figure 4.

Signal Processing

There are several options for discriminating the Doppler shift in frequency from the detector. These are:

- Spectrum analyzer
- 2. Wide-band frequency discriminator
- 3. Filter bank
- Doppler frequency tracker
- Phase-locked receiver.

The merits, advantages and disadvantages are discussed by Rolfe et al. (1968). In this system principal use was made of a spectrum analyzer and to a limited extent of a frequency tracker.

<u>Spectrum Analyzer</u> - The Hewlett-Packard Model 8553B/8552A spectrum analyzer used in this investigation is a swept superhetrodyne receiver. A simplified block diagram is shown in Figure 5. Essentially the signal frequency is compared with a harmonic of the local oscillator frequency and the analyzer displays the signal directly in the frequency domain as a carrier with its side bands. The center frequency is tuneable, and a scan of the total band is selectable. The spectrum analyzer resolution is determined by a selectable IF bandwidth. The scan time can vary from 1 millisecond to 100 seconds for the selected scan width.

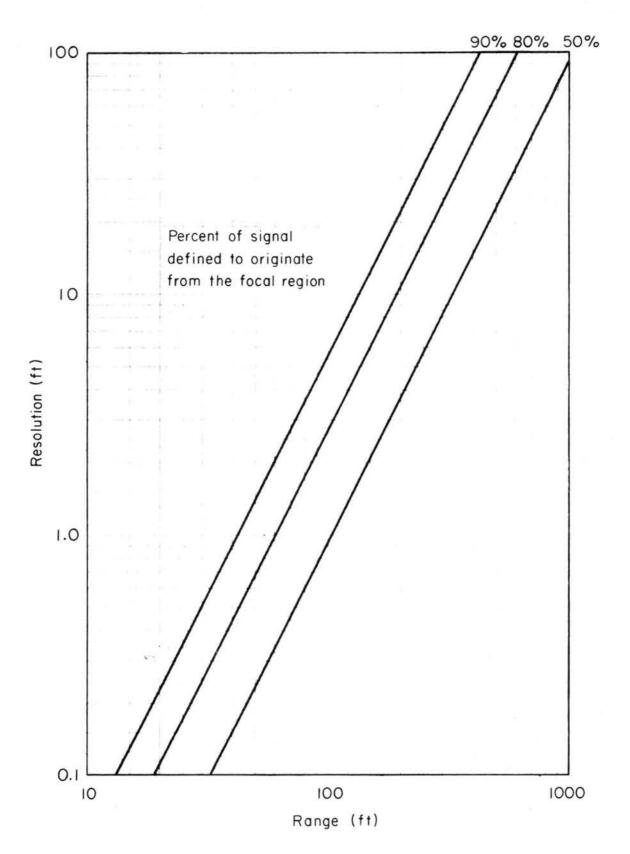


Figure 4. Spatial resolution of the 12-in. telescope.

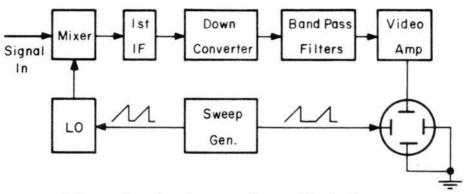


Figure 5. Spectrum analyzer block diagram.

If time intervals are too small, power output of the signal may be too small to measure. On the other hand, for large time intervals the output reflects the spectrum of particle speeds passing through the resolution focal volume of the beam, and can give therefore only a spectrum of velocities (Doppler frequencies) and not an "instantaneous" velocity as a function of time. Clearly, for "instantaneous" velocities the time interval should be consistent with the focal resolution volume, convected particle speed and S/N ratio of the spectrum analyzer.

In order to convert spectral information in frequency space to velocity, use is made of the linear variation of velocity with Doppler frequency shift. The frequency bandwidth of the spectrum analyzer is "swept" at a rate consistent with resolution of the analyzer and the power contained in the bandwidth is recorded on a conventional FM recorder in time space. Conversion from time to frequency hence to velocity in principle is simple, requiring only a reference zero frequency and known bandwidth or alternatively a calibrated external frequency. The rate at which the spectral bandwidth is swept is controlled externally to the spectrum analyzer. A schematic arrangement of the process including preconditioning of the detector signal is shown in Figure 6. A typical time, frequency trace of the power output is shown in Figure 7.

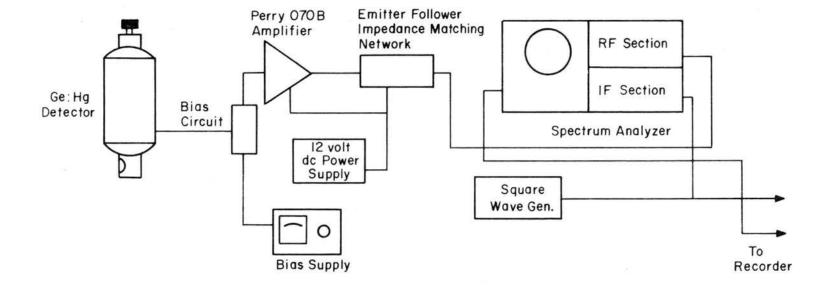
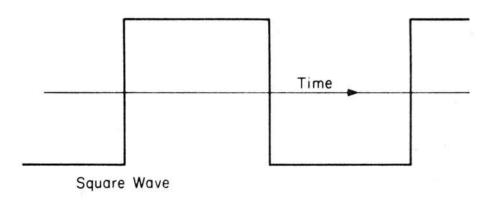



Figure 6. Block diagram of signal detection circuitry.

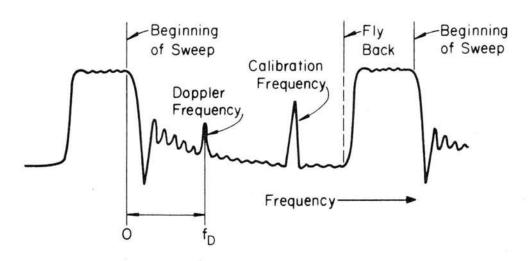


Figure 7. Typical spectrum analyzer output for calibration and Doppler frequencies.

<u>Doppler frequency tracker</u> - A device which provides an output voltage proportional to a given Doppler frequency is termed a Doppler frequency tracker, or simply frequency tracker. The technique is also known as "frequency compressive feedback" or "frequency-locked loop" [cf. Rolfe et al. (1968)]. The Doppler frequency, $f_D(t)$, is heterodyned with a local oscillator frequency. The local oscillator frequency, f_{L0} , is varied so that the difference f_{L0} - f_D is constant and equal to the center frequency of a discriminator. The driving voltage of the local oscillator is then proportional to f_D , hence to the velocity. A schematic representation of the tracker is shown in Figure 8.

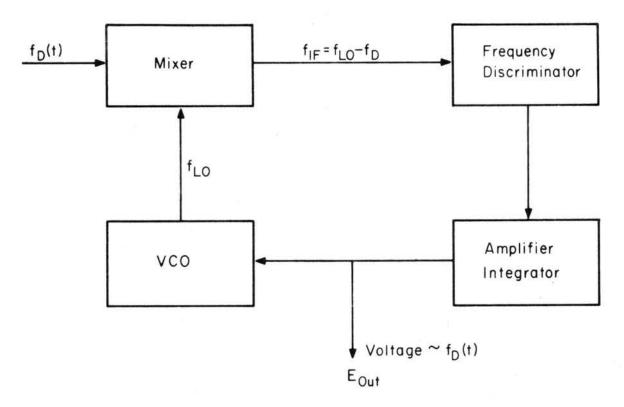


Figure 8. Block diagram of frequency tracker.

TEST FACILITIES

The field site for the experiments was selected at the Colorado State University airport (Christman field) located approximately three miles west of the city of Fort Collins, Colorado (see Figure 9). The test site has a clear field from northwest to northeast, and from south to southwest. There are buildings and trees in the range from south to east, although the nearest building is some 1100 feet away. To the west is the foothills of the Rocky Mountains about a mile distant. The site was selected on the basis of land and power availability and proximity to the research center about 1/2 mile away. The dominant wind directions in the area are north-south, as evident from the alignment of the runway, although strong winds also blow over the foothills directly from the west.

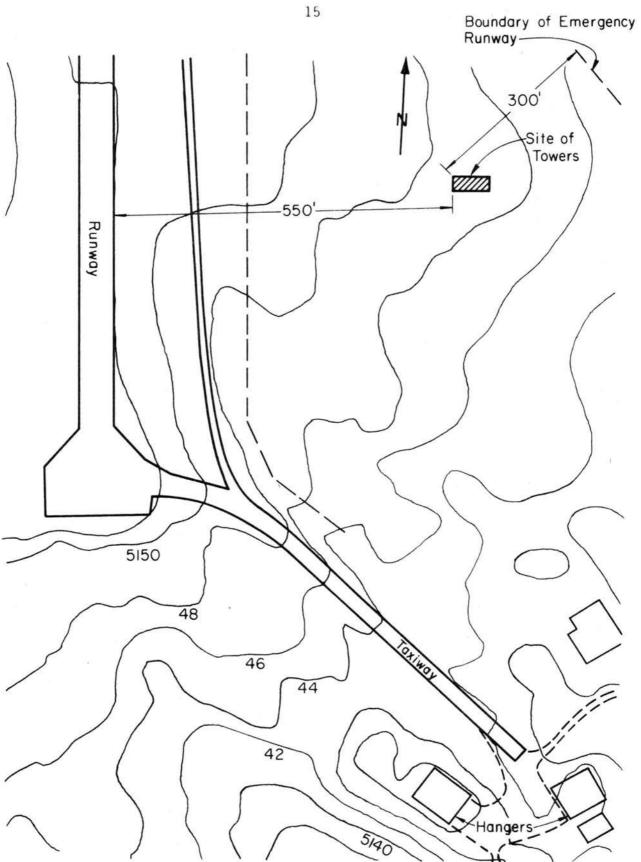


Figure 9. Field site at Christman Field.

The site facilities included two towers and two trailer vans to house the instruments and the LDV system. The arrangement shown in Figure 10 was to provide clear wind fields to the north and south. As winds seldom blow from the east, the instrument vans were located so as to cause as little interference as possible to the wind field.

The 60-ft high tower was used to mount the wind profiling anemometers. The 40-ft tower was used to mount mirrors to direct the laser beam and also to mount the comparison instruments, a climet anemometer and wind vane, and a hot wire for turbulence measurements. Photographs of the established arrangement are shown in Figures 11 and 12.

INSTRUMENTATION

The arrangement of the various instruments in the laser instrument van is shown in the photograph of Figure 13. The total instrumentation for data taking and recording included the following:

<u>Spectrum analyzer</u> - The function and description of the spectrum analyzer was given in a previous section.

<u>Frequency tracker</u> - This instrument was also discussed in the earlier section.

<u>Wide band frequency generator</u> - A frequency generator of MHz range was used to establish a calibration point for the spectrum analyzer.

Depending upon the prevailing wind speed, a calibration frequency was selected near the extreme of the wind speed range and the scan width of the spectrum analyzer was selected to contain this calibration frequency.

<u>Frequency counter</u> - A frequency counter was used to determine the calibration frequency.

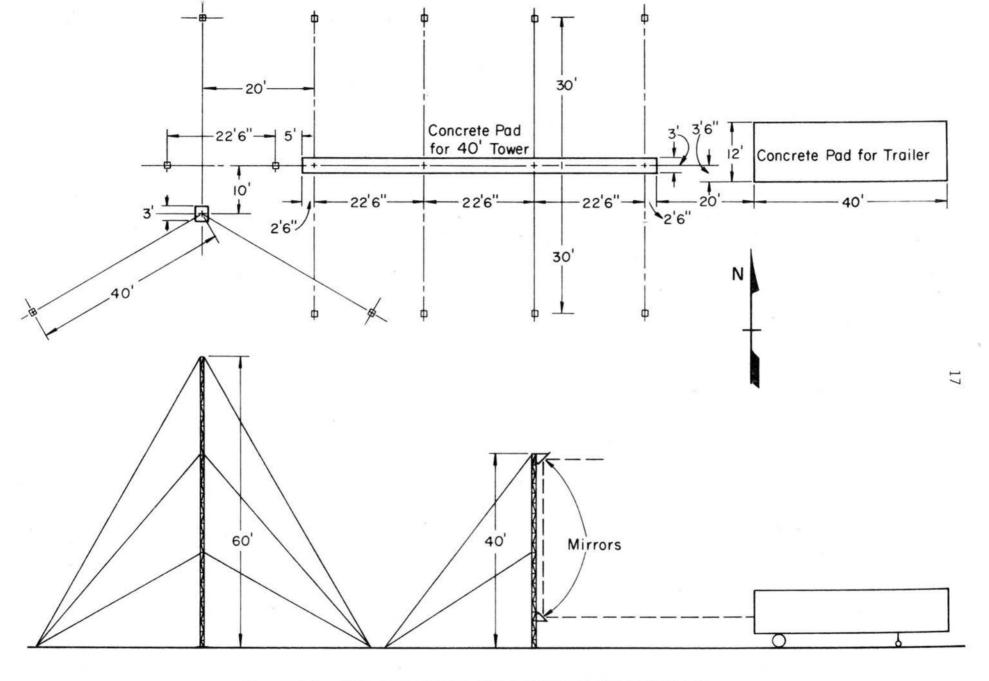


Figure 10. Site arrangement for towers and instrument van.

Figure 11. Instrument vans at test facility.

Figure 12. Towers at test facility. Profile tower is at left.

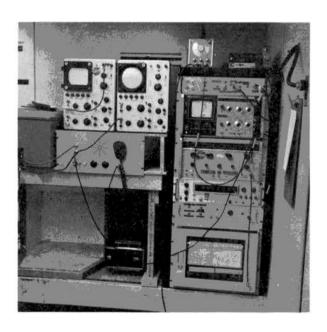


Figure 13. Instrument arrangement inside laser van.

Function generator - A stable function generator was used to drive the sweep of the spectrum analyzer IF at a rate consistent with the spectrum analyzer scan time. A finite sweep time and "flyback" is involved. A given combination of sweep duration and scan width has its optimum IF filter bandwidth. A table of sample rates for various scan time settings is given in Table 1, and bandwidths as a function of scan width and scan time is given in Table 2. These tables were reproduced from the LMSC report No. D162840 describing the operating procedures of the LDV system.

Mirror position indicator and drive - The upper mirror on the 40-ft tower had a motor drive to rotate the mirror about its vertical axis. This permitted orientation of the laser beam into nominal alignment with the wind direction. The position of the mirror was indicated by a 357 degree potentiometer. There were 3 degrees of ambiguity from 357 degrees to 360 (zero) degrees. The position pot of the mirror was oriented so that zero was due east.

<u>Climet wind translator</u> - The translator presented wind direction and speed as sensed by the cup anemometer and wind direction sensor into recordable analog signals. The wind direction sensor was oriented so that zero output coincided with due east. The analog signals were then monitored on a dual channel strip chart recorder.

<u>FM tape recorders</u> - Two 14 channel FM tape recorders were used to record the analog signals, one a CP-100 Ampex unit and the second an FR-1300 Ampex recorder.

<u>Temperature sensor</u> - A standard bridge and amplifier circuity was constructed for this study to measure the deviations in temperature of the various thermistors from a reference unit.

TABLE 1. MAXIMUM SAMPLE RATES FOR SELECTED SCAN TIMES

Spectrum Analyzer Scan Time (Millisec/cm)	Maximum Sample Rate (Hz)	External SYNC Period (sec)
0.5	165	0.006
1.0	69	0.0145
2.0	40	0.025
5.0	18.2	0.055
10.0	5.0	0.200
20.0	3.3	0.303

TABLE 2. MINIMUM BANDWIDTHS IN kHz FOR COMBINATIONS OF SCANWIDTH AND SCAN TIME

Scar	1	Scan Time, Millisec/Division							
Width/	cm cm	1.0	2.0	5.0	10.0	20.0	50.0		
0.02	kHz kHz	0.3	0.3	0.1 0.3	0.1	0.1	0.1		
0.1	kHz kHz	1.0	1.0		0.3	0.3			
0.5	kHz kHz	3.0	3.0	1.0	1.0	7.4.5.74	0.3		
2.0	kHz kHz	10.0	3.0	3.0	3.0	1.0	1.0		
10.0	kHz		10.0	10.0	3.0	3.0			
0.05	kHz MHz	30.0	30.0	10.0	10.0	10.0	3.0		
0.1	MHz MHz	100.0	100.0	30.0	30.0	10.0	10.0		
0.5	MHz MHz	300.0	300.0	100.0	100.0	30.0	30.0		
2.0	MHz MHz			300.0	300.0	100.0	100.0		
10.0	MHz					300.0			

<u>Hot-wire anemometer</u> - A constant temperature hot-wire anemometer was used to measure the atmospheric turbulence. A 100-ft long cable was used for the probe and a cable capacitance compensator was used for the long-length cable. The hot wires were calibrated with the extra cable and compensator.

<u>Time code generator</u> - A time code generator in IRIG B format was used to synchronize the two tape recorders. Usually the times were synchronized with the National Bureau of Standards time broadcasts.

RECORDING OF TEST DATA

There were in all 26 separate pieces of continuous information desired for each test. Two analog 14 channel FM recorders were needed. However, two recorders were not available for all tests and some information was therefore sacrificed. The sample data recording sheet shown in Figure 14 indicates the data recorded on each channel of each recorder. They were arranged in such a way that temperature and humidity data were sacrificed when the second recorder was unavailable.

The data can be grouped into the following sets. On the 60-ft tower, six levels of wind speed were obtained to establish the vertical profile of the wind field in which comparison data were taken. These were grouped in the CP-100 Ampex recorder. Also, on the same tower, there were six levels of temperature measurements to determine the temperature profile and four levels of wet bulb temperatures to establish the humidity profile. These were grouped on the FR-1300 Ampex recorder. On the 40-ft tower the comparison instruments, the cup anemometer, the wind vane, and the hot wire were mounted. These data together with the

Test	Min		
Test	MO.		

ATMOSPHERIC LASER DOPPLER VELOCIMETER PERFORMANCE VERIFICATION

☐ NASA-MSFC Field Test Site, Huntsville, A. ☐ Airport Field Test Site, Foothills Campus, ☐ Other		do State	Univ., F	rt. Colli	nš	
Test Conducted Between a.m./p.m. a	nd	a. m./p	.m. on			
METFOROLOGICAL DATA Air Pollution Index: . Visibil Sky Condition: . Clear; . Light Clouds; Temperature	☐ Media	or Dev	ids; DH	□ Poor eavy Ov	(date) ercast	
Time into Test (min)	0	15	30	45	60	
Mean Wind Speed (knots, mph, ft/sec)						
Mean Wind Direction (deg wrt north)						
Laser Coolant Temperature (°F)						
General Weather Conditions (frontal presen	nce, rai	n in pas	st 12 hou	rs, etc.)	:	
Telescope mirror to lower tower mirror d Distance between top and bottom mirrors o Total distance from telescope mirror to fo Homodyne configuration: Laser power into telescope: watts; Po Telescope mirror size: in, diam.; Ler Comments:	n tower cus vol:	nal cay	ft ——	in.	s; He dew r type:	ar check□ .
Sweep Rate:ms/cm; Sample Rate: Number of sweeps averaged per sample: Frequency dispersion:MHz/cm. Fit	12			Hz; Bar	ndwidth: _	kHz.
FM RECORDER DATA - MODEL CP-100 AMPEX	FM I	RECORDER	DATA - MOI	LL FR-13	00 AMPEX	
Label Tape Reel with Test No. Tape No; Tape Speedips; ResponseHz.	Labe	l Tape i	Reel with T	est .o. needi	ps; Respons	eliz.
Cha. No. Contents 1 Voice: Test ident. etc.	Cha	No.	Content.	Fixed	level 2	i
2 Spect. analy. sync. pulse:		2 The	erm., diff	dry air	level 3	
3 Spect. analy. Y out. Freq. disp.	_	3 The	erm., defi	dr. air	level 1	
4 wind dir. Climet volts> 0 wrt 5 wind speed Climet volts> fps		5 The	erm., diff	dry air	level 4	
6 Mirror azimuth volts> wrt		6 The	erm., diff	ne: nul	level 4	
7 Hot wire anemometer		7 The	erm., diff	dry air	level 5	
8 Fixed tower data - Wind sp. level 1			erm., diff			
9 Nind sp. level 2 10 Wind sp. level 3			erm., diff			
11 Wind sp. level 3			d direct.			
12 Wind sp. level 5		12				
13 wind sp. level 6		13		The second	a reconstant	
14 Time code ident. IRIG B		14 Tif	ne code 1d			
AUDIO RECORD		Aux Vo	ice: Test	ident, et		
☐ Test Identification Number; ☐ Spectrum An etc.); ☐ Mean Wind; ☐ Distance from teles	alyzer cope m	settings irror to	s (sweep o focal vo	rate, nu lume;	mber san] Visual o	ples averaged, quality of signal
and Problems and other comments.						

(Signed) Test Engineer

spectrum analyzer signal and appurtenant data were grouped into the CP-100 recorder. On one channel of each recorder there was an IRIG B time code for referencing the two sets of data to corresponding times. A voice channel (direct record) was reserved for verbal description of conditions and problems which occurred during a test.

Data with a frequency tracker were taken during a period when the second tape recorder was unavailable. Since two additional channels were required to record the signals from the tracker, two levels of wind speed data were sacrificed on the CP-100. These were levels 2 and 4.

TEST PROCEDURE

Pre-Test Preparation

Preparations for recording one-hour of continuous wind data and associated documentation was elaborate and time-consuming. For any given test, or attempted test, the following routine was necessary.

<u>Cooling the Ge-Hg detector</u> - The Ge-Hg detector was pre-cooled with liquid nitrogen for a period of about one hour before filling with liquid helium. This procedure was followed primarily to conserve liquid helium, which is comparatively many times more expensive than liquid nitrogen. Just prior to data-taking, after all preparations were completed, the dewar of the detector was filled with liquid helium.

<u>optics alignment</u> - Before each test, alignment of the optics was necessary. A specific alignment procedure progressing outward from the laser to the tower was necessary. Although the beam splitters and mirrors did not require frequent adjustment, the optical beam on which

the focusing mirror was mounted required frequent adjustment. As the scattered radiation was redirected back into the laser, slight misalignment of the optical axis caused poor to no heterodyning, hence weak or no Doppler detection. Since alignment of the focusing lense mount is coupled with the diagonal and the schlieren mirror, a sequence of trial and readjustment was usually necessary.

After the optical beam was adjusted, the diagonal required minute adjustment to center the diverging radiation on the schlieren mirror. The schlieren mirror in turn required adjustment to direct the converging beam through the end of the 9-ft long tube. Thereafter, the entire mounting table required movement to center the beam on the lower external mirror near the base of the 40-ft tower. If the optics were bumped out of alignment during this process, then the entire procedure was restarted.

Once the laser beam was centered on the lower mirror, then the lower mirror was adjusted to center the beam on the upper one, and finally the upper mirror was rotated to direct the beam as closely as possible either directly into the prevailing wind direction or downwind along the wind direction, checking also to see that the beam was parallel with the ground. To establish the latter, an identification mark on the adjacent 60-ft tower was used to place the line of sight parallel to the ground, hence the axis of the laser beam was in the horizontal plane of the mean wind.

<u>Profile tower</u> - The thermistors on the 60-ft tower were arranged in a radiation shield, with a suction pump arranged to draw 2 ft/sec air velocity over the "dry bulb" thermistor and 30 ft/sec over the "wet bulb" thermistors. Distilled water was forced up the tower by air pressure into water wells with wicks leading to the "wet bulb" thermistors.

These thermistors were checked before each test and wicks were prewetted to insure that the distilled water would be drawn up from the wells.

<u>Hot-wire anemometer</u> - The hot-wire anemometer which was dismounted during a non-test period was remounted. The wire was placed in a vertical axis and the probe was oriented toward the wind and in a location such that there was no interference from the mirror, the cup anemometer or the tower itself.

Pre-Test Calibration

<u>Tape recorder</u> - The FM record amplifiers of the tape recorder are subject to slight deviations from calibrated conditions from day to day. To account for these deviations, a five-level DC signal was provided as a calibration of tape-recorded (and playback) voltage against a "true" voltage registered by a calibrated digital voltmeter (DVM). Since in the data set, a continuous square-wave signal was recorded, the calibration set did not include a sinusoidal signal of known rms value.

<u>Climet anemometers</u> - Both climet anemometer translators were calibrated for zero and full scale 1 volt outputs and recorded on the tape recorder. Prior to mounting the anemometers in the towers, all cup anemometers as well as the hot wires were calibrated in the Colorado State University wind tunnel against a pitot probe of known performance. Calibrations were performed twice, in February and June 1971.

<u>Mirror position</u> - The mirror position, with zero oriented directly east for convenience, was calibrated for zero and full scale ouput, with the assumption of linearity with angular position. Since the position was indicated by a potentiometer, the assumption seems justified.

<u>Spectrum analyzer</u> - Proper settings of the spectrum analyzer controls were established consistent with the prevailing wind speeds.

The sweep of the spectrum analyzer was triggered by an external square wave from a stable function generator by a change from negative to positive voltage. A known deviation frequency was input to the spectrum analyzer and the resultant signal from the IF output was recorded as the frequency band was swept. This calibration thus provided the reference for determining velocity from the Doppler shifted frequency of the back-scattered radiation.

<u>Noise calibration</u> - The final pre-test calibration was made of the background noise emitted from the detector. With the detector dewar charged with liquid helium, and the main laser beam to the telescope blocked, the output signal from the detector which consisted only of noise was recorded.

Data Recording

After completing the pre-test preparations and calibrations, data were recorded on the tape recorders for nominal periods of one hour duration. Constant monitoring of the data was provided, and instrument adjustments when necessary were properly recorded as to time and nature.

The turbulence range of interest extended only to a maximum of 5 Hz, thus the CP-100 tape recorder was operated at $7\frac{1}{2}$ inches per second (ips) and the FR-1300 recorder at 1-7/8 ips. The higher speed of the CP-100 recorder was necessary to record the Doppler signals from the spectrum analyzer. At $7\frac{1}{2}$ ips the recorder amplifiers are responsive to 2.5 KHz.

Anomalies in the data noticed were recorded on a voice channel (direct record) of the tape recorder, as well as on the data record sheet (Figure 14).

DATA REDUCTION PROCEDURE

All data for this investigation were analyzed digitally, the digitizing being done in prescribed sets in simultaneous sample and hold mode at the NASA-MSFC computer center. The digitized data were analyzed at the Colorado State University computer center.

Selection of Digitizing Rates

The turbulent frequencies of interest in this study are less than 5 Hz, thus the digitizing frequency should be at 10 samples per second, and also, because in general the recorded information should be related to the same instants of time, a simultaneous sample and hold mode was used in digitizing. The analog signals were filtered at 5 Hz (real-time base).

The scan rate of the spectrum analyzer for Doppler frequencies was 16 Hz. Since the Nyquist frequency is equal to one-half sampling frequency,

$$f_N = \frac{f_D}{2}$$

the highest frequency information contained in the recorded signal is 8 Hz. However, the usual criterion of digitizing rate to obtain this frequency information does not apply. The objective in data reduction was to determine the location (time base) of the Doppler signal with reference to zero frequency, hence of Doppler frequency and of wind velocity. The bandwidth and resolution of the spectrum analyzer determines the nature of the Doppler signal. If we view the peak signal in the bandwidth as depicting the mean velocity in the prescribed resolution interval, then the digitizing rate of the Doppler signal is

independent of the spectrum analyzer settings. Thus with a view to maximizing the frequency resolution (of the peak) in a given sweep, a choice of 250 points per sweep was made. The choice of this digitizing rate does however affect the total quantity of digitized data. Two channels of information, the external function generator and the IF output of the spectrum analyzer, were digitized at this higher rate, multiplexed on digital magnetic tape in binary format. The sampling rate for these channels was thus 4 KHz/channel and the data were filtered at 2 KHz.

Multiplexed Data Groups

The 26 channels of analog information were digitized in three separate groups.

 $\underline{Group\ 1}$ - The sweep signal (square wave) and the spectrum analyzer IF(y) output were multiplexed and digitized at a rate of 4 KHz/channel.

<u>Group 2</u> - The climet anemometer and wind direction sensor, the mirror position, the hot wire output and six levels of wind speeds on the profile tower were multiplexed and digitized at a rate of 10 Hz/channel.

<u>Group 3</u> - The ten channels of thermistor data were multiplexed and digitized at a rate of 10 Hz/channel.

The remaining four channels of voice, time codes and wind direction on the profile tower were not digitized and were retained for reference. The time code information was of course used to identify the regions of the analog tape which were digitized.

Data Format

The A/D converter used at NASA/MSFC generated data words of 10 bits plus sign. The packed format of the multiplexed data therefore were written in groups of 11 bits. The CDC 6400 at Colorado State University is a 60-bit word machine, thus some tape reading problems were presented with the original format of the generated data tape. In order to reduce the reading problem, the original data tapes were reformated to give data words which were 11 bits plus sign, or 12 bit words where a zero was inserted into the most significant bit. The packed 12-bit data words were thus conveniently separated and sorted from the 60-bit computer word.

The data included a record of header information at the beginning of each data set, and a 24-bit time word at the beginning of each data record. This time word is a reference digitizing time, and relates to real time in accordance with the ratio of record to playback tape speed. However, for records of the order of 60 minutes real time duration, the time word (expressed in milliseconds) becomes excessively large. Thus the digitizing clock which recycles after 100 seconds requires accounting of the cycles to convert digitizing time to real time as well as the ratio of record to playback speeds.

Data Reduction

Laser Doppler signals - The bulk of data reduction involved the Doppler signals. The view adopted in computer program formulation was to devise a general, automatic program. This was successful to a degree, however sufficient problems with data anomalies were encountered that some initialization is necessary. Considerable time was spent in developing this feature of a data reduction program. In retrospect,

perhaps less automatic, sequential programs would be more economical in terms of total effort. The flow chart for the program is shown in Figure 15 and a listing is given in Appendix A.

The essential technique is as follows: Data from Group 1 (identified above), and the first channel of the multiplexed data of Group 2, are necessary to convert the spectrum analyzer data to wind speed. If the mirror direction varies in the data period, that information is also required.

The cup anemometer wind speed, the hot wire data and the profile information can be processed separately, but because the two groups of data were arranged on different tapes and had to be read in "simultaneously" to analyze the Doppler signal, the program included processing of these data at the same time. It should be noted here that several alternative methods were recognized from the outset, and a one-pass automatic program seemed feasible and most desirable. Ultimately the profile data program was separated from the others and analyzed in a separate pass. The flow chart in Figure 15 reflects this variation to the original technique.

The program first determines the input-output calibration of DC voltage. This calibration enables conversion of such data as wind and mirror directions, cup anemometer speeds and hot wire turbulence velocities from tape output voltage to true voltage hence to the physical quantities. The next step in the analysis is to determine the calibration Doppler frequency. That is, the known frequency input is identified in the time space (number of points) from zero frequency, and since velocity is linear with Doppler frequency, then calibration is obtained for the velocity component along the laser axis. In order to

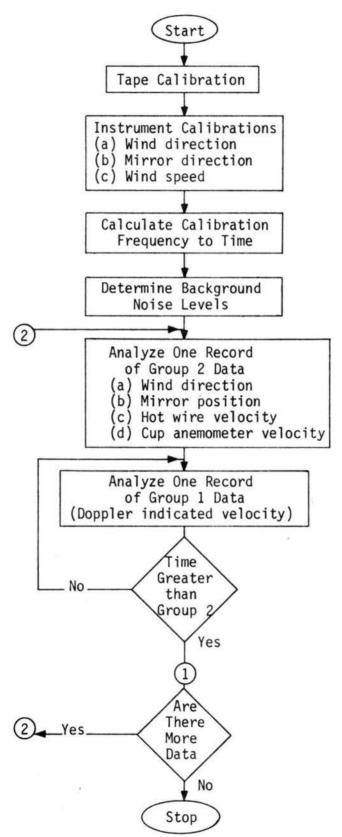


Figure 15. Simplified Flow Chart of Doppler Data Reduction.

distinguish the Doppler "peak" from the background noise, the noise calibration established the noise level across the entire frequency band of the spectrum analyzer. In the program the S/N ratio is a variable and may be set at any level compatible with the recorded Doppler signal.

The first step in the data analysis is to read in one record from the multiplexed Group 2 data. Each digital value is converted to velocity, and reference times for each value are calculated. The velocities and reference times are stored. The cup and hot wire data are digitized at identical times, thus one reference time serves both channels of information. Means and variances are calculated. Wind direction voltages are averaged for 10 seconds (one record) and converted to angle with respect to the laser beam. The value is temporarily stored. The mirror azimuth (direction) is averaged and checked. If no change occurred (i.e. the mirror was not rotated) the information is redundant and discarded.

The first record of Group 1 is then read in. Each spectrum analyzer scan, approximately 250 points, is searched for zero frequency (the change in voltage of the square wave from negative to positive identifies the beginning of the sweep) and the Doppler signal. The reference time for Doppler-converted velocity is referenced to the beginning of the sweep. Successive sweeps and time words at the beginning of each record references the true time of the calculated Doppler-measured velocity. The first identifiable Doppler peak is accepted as the measured velocity. To determine the peak value, comparison is made to successive points, and if the signal level (voltage) drops, the previous point is accepted as the Doppler frequency. It is possible that in a given sweep there is no

Doppler signal (signal dropout), in that event, the velocity determined in the previous sweep is recorded. The Doppler-indicated velocity is then converted to wind velocity by the 10-second average angle of the wind direction with respect to the laser beam axis (mirror direction).

There are 3000 data points (2 channels) in each record of the Group 1 data. This corresponds to 6 sweeps of the spectrum analyzer and 0.375 second in terms of real time. Successive records of Group 1 are read in and analyzed until the real time reference period exceeds the real time period of the data read in from the Group 2 data. Additional Group 2 data are then read and reduced, and the process repeated.

The stored values of velocities and reference times are periodically purged from storage and written on a magnetic tape. Thus the entire test record is converted to velocity-time history with the same reference times for the cup anemometer and hot-wire data, but a different reference time for the Doppler-indicated velocities.

The generated velocity-time history tape is then reprocessed to obtain the statistical characteristics of the turbulent wind data. These characteristics are the mean, variance (standard deviation), probability density and spectral densities (power spectrum).

<u>Velocity profiles</u> - The velocity profiles are calculated in a straight forward manner, using the other six channels of data in Group 2. Only the mean values are of concern, and ten-minute average velocities are calculated for each anemometer. The calibration data for voltages, and the prior wind-tunnel calibrations, are all that are required. A program listing is given in Appendix A.

<u>Temperature profiles</u> - Temperature and humidity profiles likewise, are relatively straightforward requiring manufacturer's calibration data for the thermistors and conversion of average tape voltage to true voltage. The resistances are calculated from a standard bridge equation, hence temperatures are determined. The program listing is given in Appendix A.

EXPERIMENTAL RESULTS AND DISCUSSION

Calibrations

Climet anemometers — Calibration curves of the climet anemometer,
Series No. 828, are shown in Figure 16. The calibration was performed
in a wind tunnel with the translator set for 1 volt output at 1896 Hz
input (signal frequency generated by the cup) for the 60 scale setting
on the translator. Ordinarily, the translator is adjusted to output 1
volt for specific input frequencies on each scale. However, for purpose
of this calibration, adjustment was made for 1 volt output on the 60 scale
only (any frequency would have served as well) and outputs read from both
30 and 60 scales. In setting the translator during an experiment, therefore, adjustment was always made only for the 60 scale. The output is
linear with velocity as seen in the figure.

The CP-100 tape recorder has a low input impedance, causing a loading problem with virtually all the instruments connected to it.

Thus the cup anemometers and hot wires were calibrated with the outputs connected to the tape recorder.

<u>Hot-wire anemometer</u> - A typical calibration curve for the hot-wire anemometer is shown in Figure 17. For purpose of this investigation, the King's law relationship is shown, and it is seen that in the region

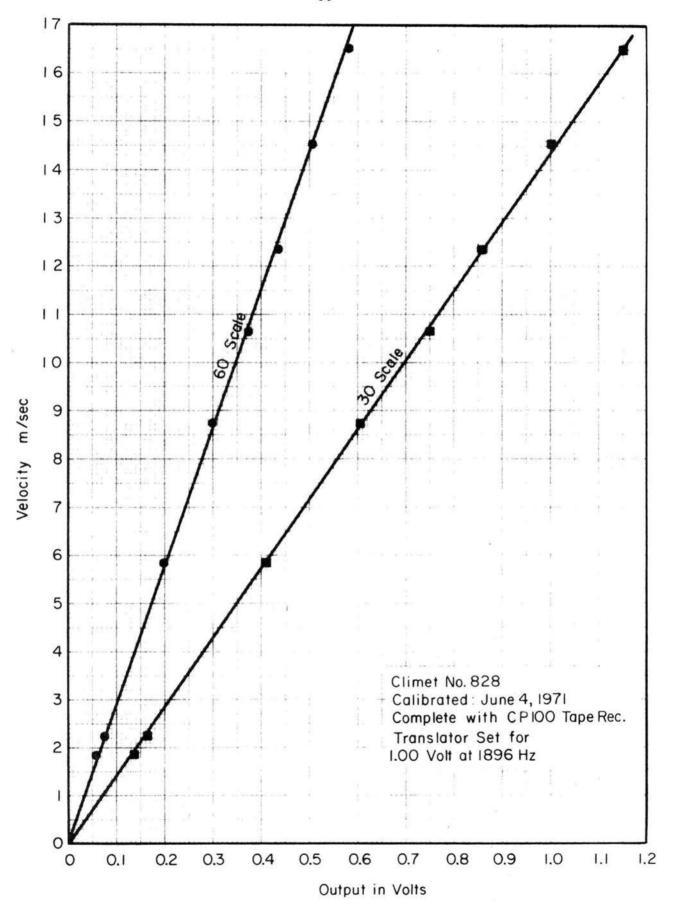


Figure 16. Calibration curves for climet anemometer.

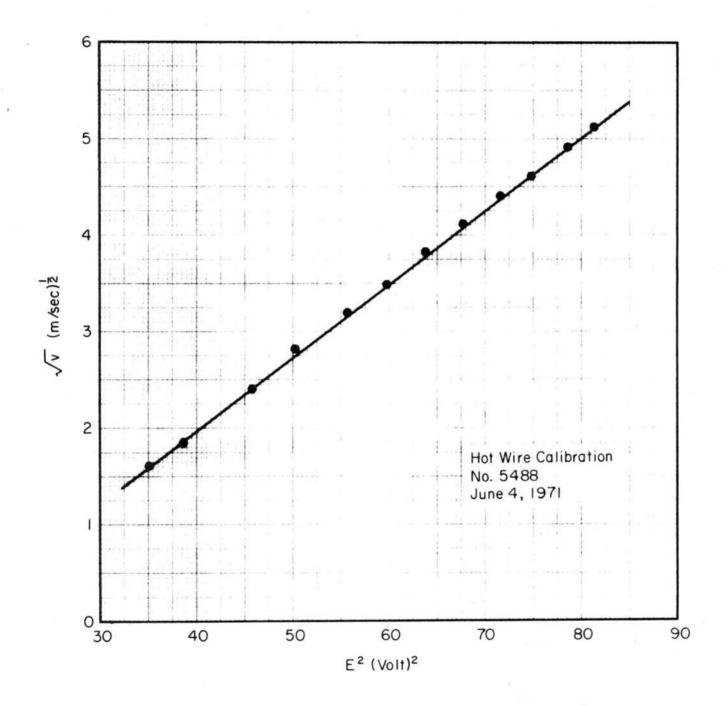


Figure 17. Hot-wire calibration curve

of interest, the curve was linear. A linearizer was not used with the anemometer. Instead, each digitized data point was converted to actual voltage and velocity calculated from the calibration.

Measurements of Run 50801 (May 8, 1971)

The data for this test were taken from 1:48 pm to 2:45 pm, covering a period of approximately one hour. At the beginning of the test the wind was blowing from the south-southeast (30 degrees east from south) which gradually changed to south-southwest (15 degrees west from south) by the end of the test period. The wind speed was reasonably constant at about 4 m/sec (9 mph) throughout the test period. Particle counts in the atmosphere were not available for this test; however, with the prevailing south wind, the pollution from Denver was evident as a blue haze along the horizon. This was also reflected in the strength of the Doppler signals on the spectrum analyzer.

<u>Velocity profiles</u> - The velocity profiles for successive 10-minute periods throughout the test are shown on Figure 18. The velocity profiles were logarithmic as expected; however, the slope of the profiles differ, indicating that the effects of accelerating and decelerating winds (gusts) are reflected in the profiles. It will be seen in the time traces of velocities that the fluctuations are of the same order of magnitude as the means, and the mean values change with time. The analysis to establish the profiles assumes piece-wise stationarity.

<u>Spectrum analyzer settings</u> - The following settings were made on the spectrum analyzer:

Sweep rate:

5 ms/cm

Sample rate:

16 sweeps/sec

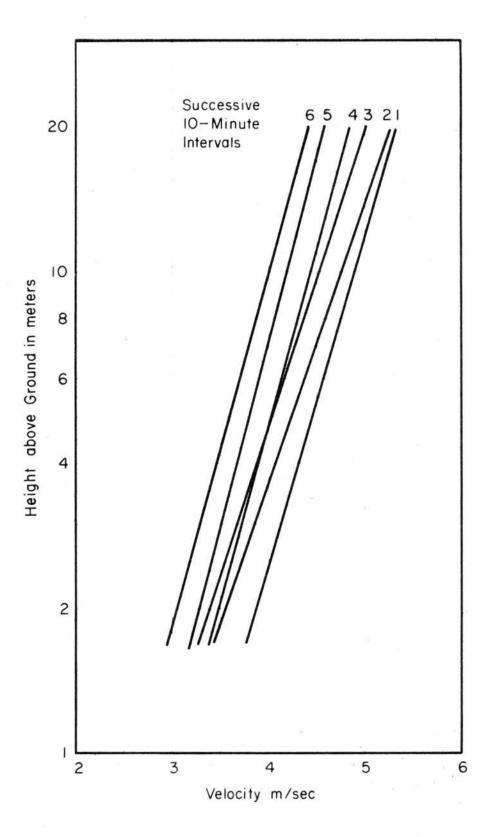
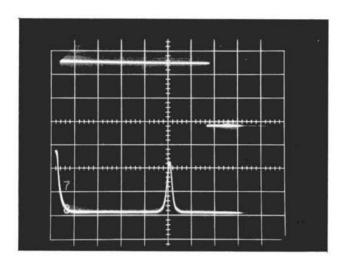


Figure 18. Velocity profiles for test period 50801.

Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth: 10 KHz


Bandwidth: 30 KHz

The calibration frequency was 1.007 MHz (5.34 m/sec) which is pictured in Figure 19. The noise level from the detector is shown in Figure 20. The photograph is the oscilloscope trace from playback (at record time) of the recorded signal on the CP-100. The signal is inverted to avoid confusion with the square wave shown at the top part of the picture. The vertical scale is 200 mv/cm.

Typical Doppler signals are shown in Figures 21 and 22. As noted, the S/N ratio is large, but the spectral bandwidth is also large. Peaks in the signal of the kind shown in Figure 21 are relatively easy to determine; however, multiple peaks are evident in Figure 22. In these instances, the first largest peak is detected, and the others ignored. There were undoubtedly particles of different sizes in the focal region with different angularity with respect to the laser beam axis which cause the multiple peaks in a given sweep.

<u>Velocity time traces</u> - Time traces of velocity from the cup anemometer, hot wire and the LDV, for two consecutive 4.26-minute periods are shown in Figures 23 and 24. Mean velocities for each 4.26-minute interval have been subtracted; the fluctuations thus are referenced to zero for each plot.

As seen in these traces, there is reasonable conformance between the cup anemometer, hot wire and LDV outputs. It should be noted here that the cup anemometer was at a level 11.3 meters above ground, the hot wire was 0.3 meters below the cup level and the laser beam axis was at the same level as the hot wire although the focal region was 3 meters

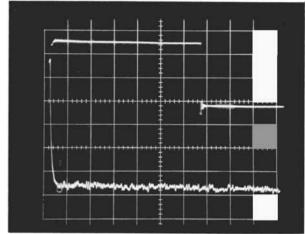


Figure 19. Calibration frequency 1.007 MHz. Test 50801

Figure 20. Detector noise calibration. Vertical scale is 200 mv/cm. Test 50801

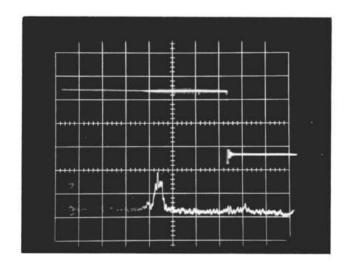


Figure 21. Sample Doppler signal. Test 50801

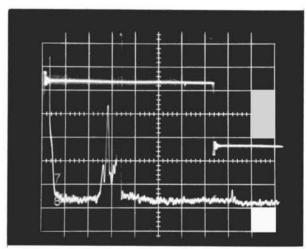


Figure 22. Sample Doppler signal. Test 50801

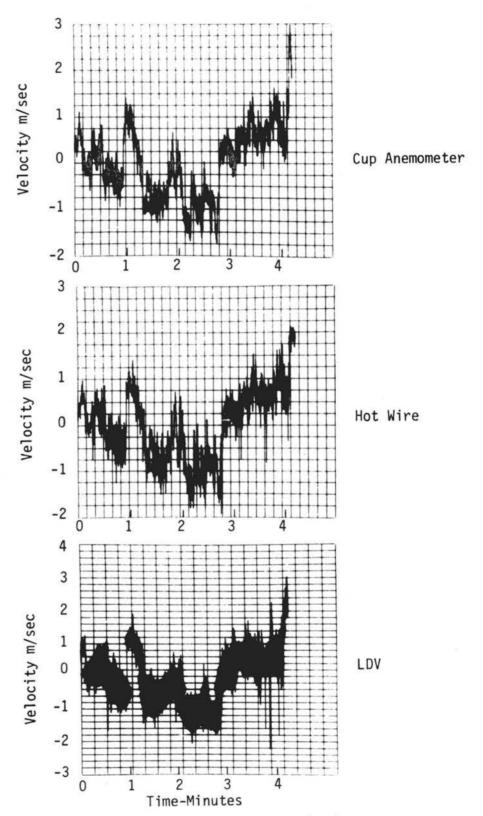


Figure 23. Time traces of wind velocity.
Test 50801, Interval 1
(For means and variances see Table 3)

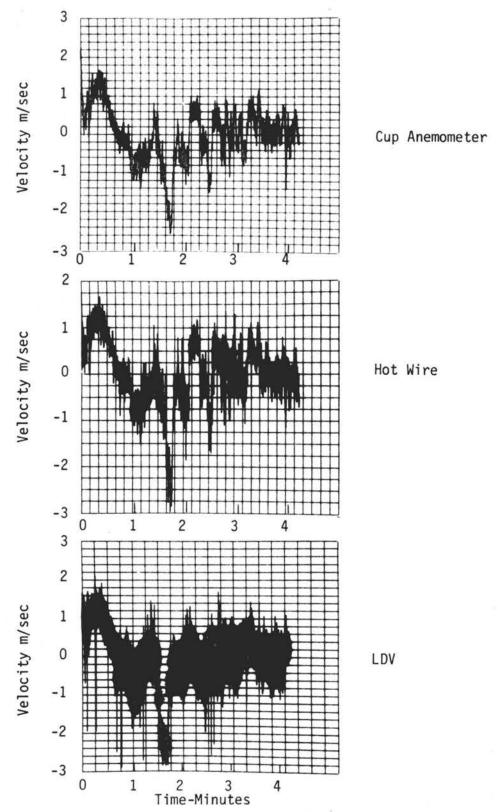


Figure 24. Time traces of wind velocity
Test 50801, Interval 2
(For means and variances see Table 3)

farther upwind. It should be noticed in making visual comparisons that the vertical scales are different for the traces.

<u>Means and variances</u> - The means and variances from a 34-minute interval of the total record were analyzed and are shown in Table 3. The choice of a 34-minute period was based largely on the limitations of the spectral analysis program. This was also a sufficiently large period to reflect a reasonable confidence interval for the spectral densities.

TABLE 3. MEANS AND VARIANCES FOR TEST 50801

4.26-Minute Intervals	Mean Velocities m/sec			Variances (m/sec) ²		
	Cup	Hot Wire	LDV	Cup	Hot Wire	LDV
1	4.203	4.232	4.044	.612	.604	.689
2	4.486	4.488	4.253	.539	.524	.672
3	3.762	3.799	3.585	.340	.258	.348
4	4.245	4.270	4.247	.458	.355	.596
5	3.976	4.000	3.953	.444	.340	.526
6	3.823	3.847	3.693	.342	.342	.503
7	3.618	3.642	3.489	.623	.598	.573
8	4.212	4.235	4.073	.461	.361	.674
Averages	4.041	4.064	3.917	.472	.413	.567

The mean wind speeds detected by the LDV is in overall 3 percent agreement with the cup anemometer, and within 5 percent for any given 4.26-minute interval. The greater spread for smaller time intervals is to be expected because of the spatial spread of sampling points for the two instruments.

The variances for LDV are larger than those detected by either the hot-wire or the cup anemometer. It is surprising to note also that the variances for the hot wire are less than that for both the cup anemometer and LDV measurements. The greater variances for the LDV results are due in part to the fact that only mean horizontal angularity of the particle motion with respect to the laser axis is included in the correction. Thus there are greater variations of velocities from the mean. This is observed also in comparing the mean speeds for the three data sets. The mean is lower for the LDV as compared to cup speeds.

<u>Probability distributions</u> - The distributions of velocities about the means for the three instruments are shown in Figure 25. These data are in terms of standard deviations, and are not normalized so that straight lines are drawn from one data point to another. The distributions are skewed to the right. This skewness is governed by the nature of the turbulence in the atmosphere rather than by instrument response, as it can be seen that all three instruments respond similarly. The percentage of data near the mean is greater for the cup anemometer than for the other instruments, as was suggested in the preceding paragraph, the percent of low velocities appear to be greater for the LDV than for either cup or hot wire measurements.

<u>Spectral densities</u> - The spectral densities for measured turbulence in the atmosphere are shown in Figures 26, 27 and 28 for the cup, hot wire and LDV instruments, respectively, and a comparison of the three are shown on Figure 29.

There are apparent energy concentrations in the spectra for the cup anemometer and hot wires at 5 Hz which are also noted at 2.5 and

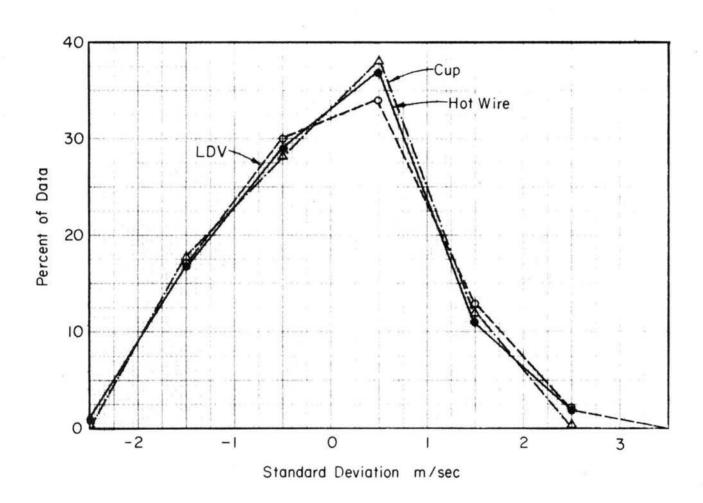


Figure 25. Distributions of velocities about the mean. Test 50801

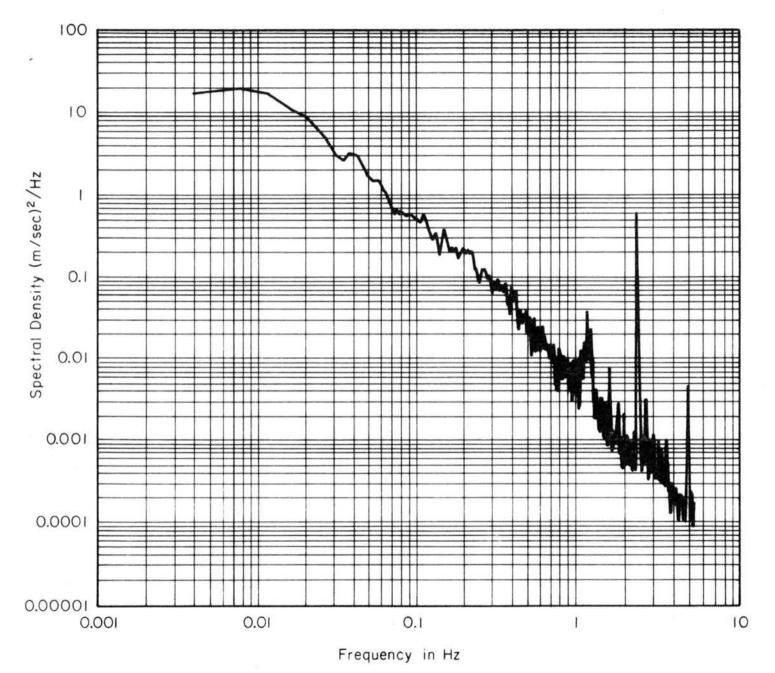
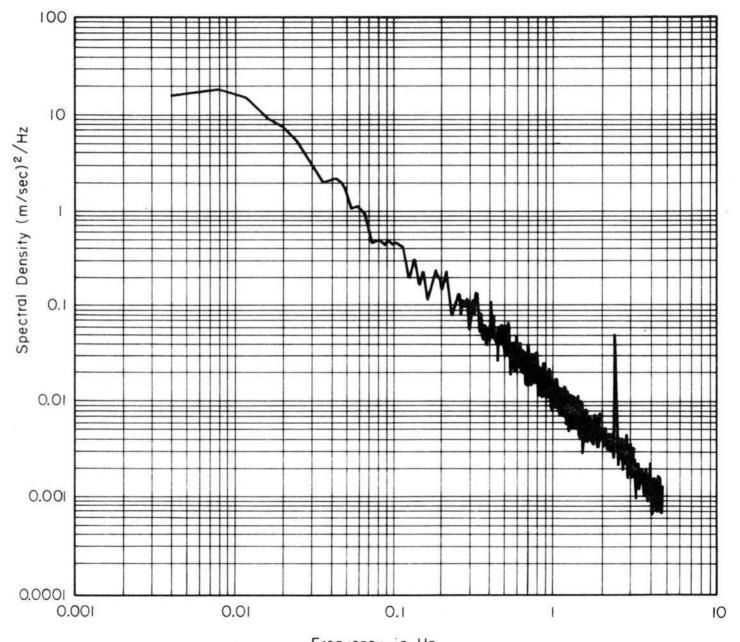
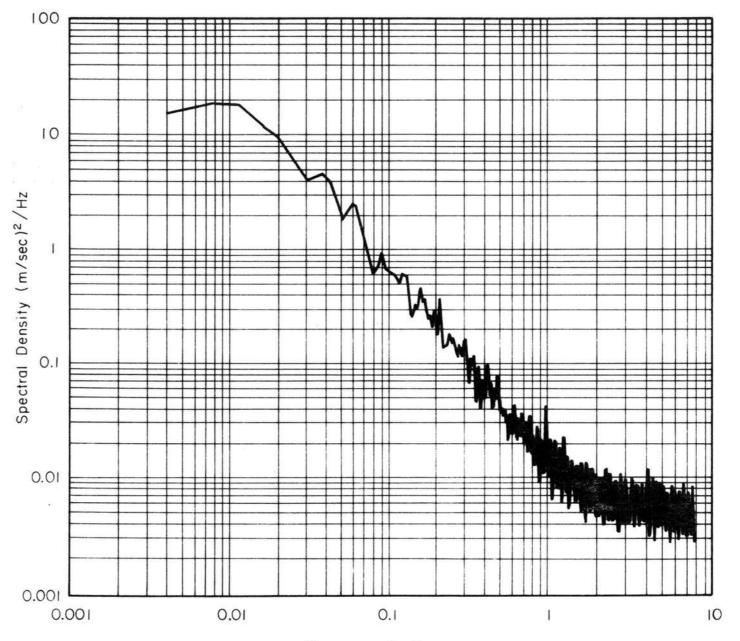




Figure 26. Spectral density distributions for cup anemometer. Test 50801

Frequency in Hz
Figure 27. Spectral density distributions for hot-wire anemometer.
Test 50801

Frequency in Hz
Figure 28. Spectral density distributions for LDV data.
Test 50801

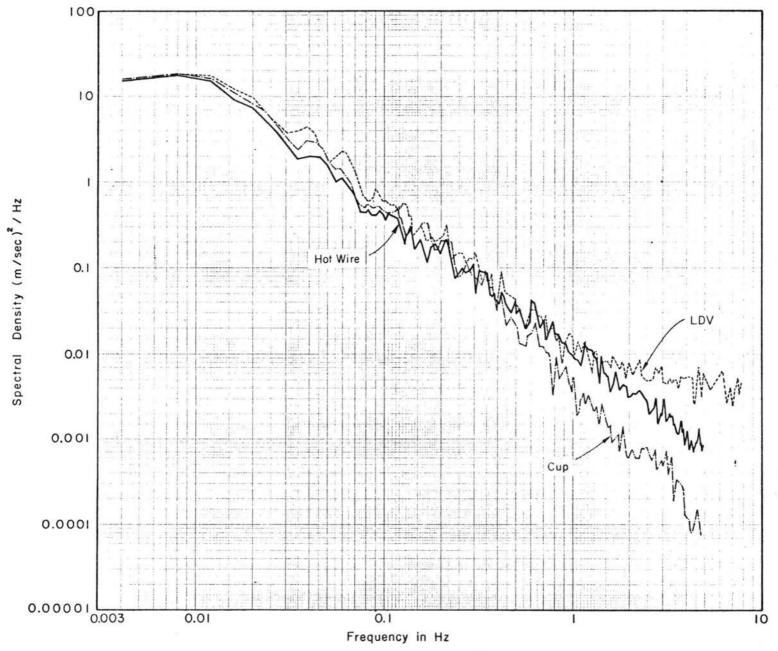


Figure 29. Comparison of spectral density distributions for Test 50801.

1.25 Hz. These must be due to mechanical aliased frequencies from the tape recorder, for they appear in the hot-wire and cup anemometer data but not in the LDV data. Mechanical aliasing does not appear in the LDV data because of the manner in which the velocity-time history is generated (see section on data reduction).

If the aliased spectral densities are ignored, it can be seen that the hot-wire and cup anemometer have identical spectra up to 0.4 Hz. Beyond that frequency, the spectrum decreases because of the limited frequency response of the cup anemometer. The cup anemometer data may in principle be corrected by a frequency response function (see Camp 1965), but in this study the correction was not made, as the comparison spectrum for higher frequency is given by the hot-wire anemometer data. The response of the constant temperature hot wire used here is up to at least 1 KHz and the data were filtered at 5 Hz before digitizing.

As it is seen on Figure 29, the spectral densities for the LDV-measured turbulence is slightly greater for frequencies less than 1 Hz, but essentially parallel to the hot-wire data. For higher frequencies, there appears to be more energy contained in the LDV-measured turbulence. This must be aliased information because the hot-wire data do not show this trend.

The aliasing must arise from the technique used in data reduction. While the spectrum analyzer is being swept (sampled) at a rate of 16 Hz, thereby effectively establishing the Nyquist frequency, the velocity time data cannot be filtered at 8 Hz before the sampling is done. That is, turbulence of higher frequency transporting aerosol and solid particles in the atmosphere are sensed in the resolution volume of the LDV. Thus in calculating the velocity from the sampled spectrum, the aliasing

from higher frequency cannot be avoided. What is surprising, however, is to note the magnitude of the aliased spectrum in the LDV-measured turbulence indicated by the deviation beyond 1 Hz.

Measurements of Run 32701 (March 27, 1971)

The data for this test were taken from 3:30 pm to 4:18 pm, a period of 48 minutes. The wind was essentially steady from the north-east (60 degrees east from north) at around 12 m/sec (27 mph). Particle counts in the atmosphere were not available for this test. There was an arctic front moving in from the north and the air was "clean." Visibility was virtually unlimited. The laser beam axis was directed downwind in this test because the direction of the wind was such that the laser beam axis would have been close to a vertical leg of the tower.

Velocity profiles - The velocity profiles for successive 10-minute intervals are shown on Figure 30. The profiles are logarithmic and the mean velocities increased in the first 20 minutes of the 50-minute period and decreased thereafter. The spread of mean velocities for the total period varied from about 10.7 to 13 m/sec at the level of the focal region of the laser beam.

Spectrum analyzer settings - The settings of the spectrum analyzer were as follows:

Sweep rate:

5 ms/cm

Sample rate:

16 sweeps/sec

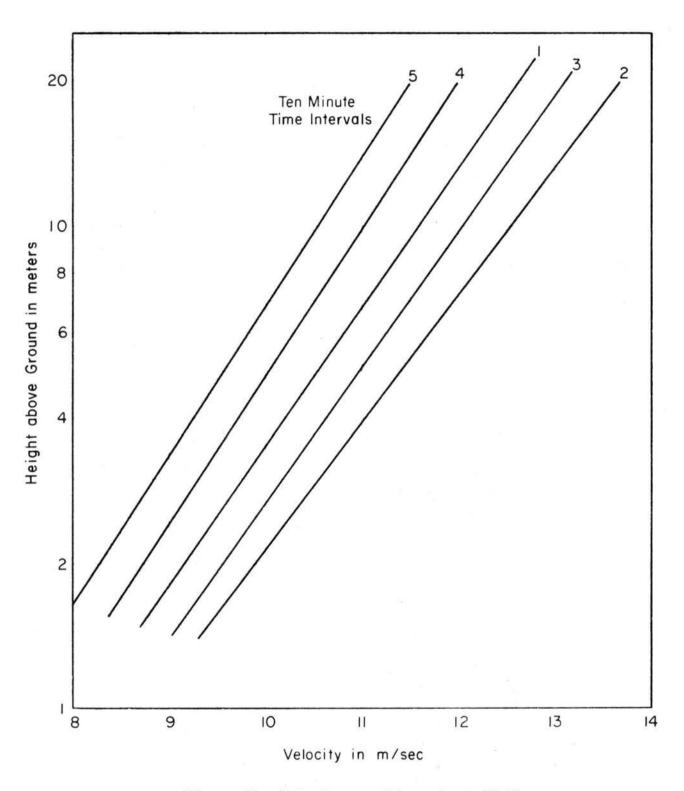
Frequency dispersion: 0.5 MHz/cm

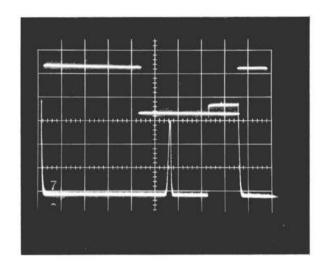
Filter Bandwidth:

off

Bandwidth:

30 KHz




Figure 30. Velocity profiles. Test 32701

The calibration frequency was 4.009 MHz (21.2 m/sec) which is shown in Figure 31. The noise level from the detector is shown in Figure 32. The vertical scale in the oscilloscope trace is 100 mv/cm.

Typical Doppler signals are shown in Figures 33 and 34. As noted, the S/N ratio is small and the spectral dispersion is also small. There were larger periods of signal dropout, that is sweeps when there were no detectable signals. In these instances the analysis was made assuming that the velocity indicated in the current sweep was equal to that of the previously detected velocity.

<u>Velocity time traces</u> - Time traces of velocity from the three instruments are shown in Figures 35 and 36 for two representative 4-minute time intervals.

There is reasonable agreement between the cup anemometer and hotwire traces in general trend of mean velocities. However, the turbulent fluctuations in the hot-wire signals are greater than that indicated by the cup anemometer traces. The LDV signals have several peculiarities. The fluctuations are clipped at both the upper and lower limits. These clipped signals are results of the low S/N ratio and the computer program. As indicated previously, the low particle concentration in the atmosphere often caused no detectable signal in a given sweep of the spectrum analyzer. In such instances the velocity was set equal to the immediately-previous calculated velocity. At the lower end, the signal was lost in the noise (see the noise calibration trace of the oscilloscope) and a previously higher value was then identified as the velocity for that sweep. There are noticeable high peaks in the LDV trace. It is believed that these signals are spurious, resulting from identification of high noise peaks as Doppler signals. The trend of mean

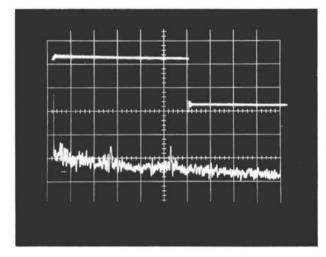


Figure 31. Calibration frequency 4.009 MHz. Test 32701

Figure 32. Noise calibration.

Vertical scale is 100 mv/cm
Test 32701

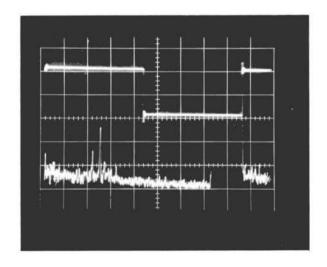


Figure 33. Typical Doppler signal. Test 32701

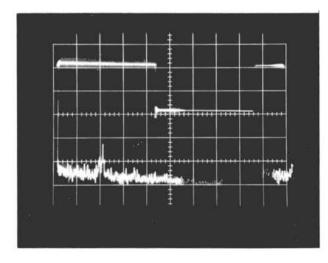


Figure 34. Typical Doppler signal. Test 32701

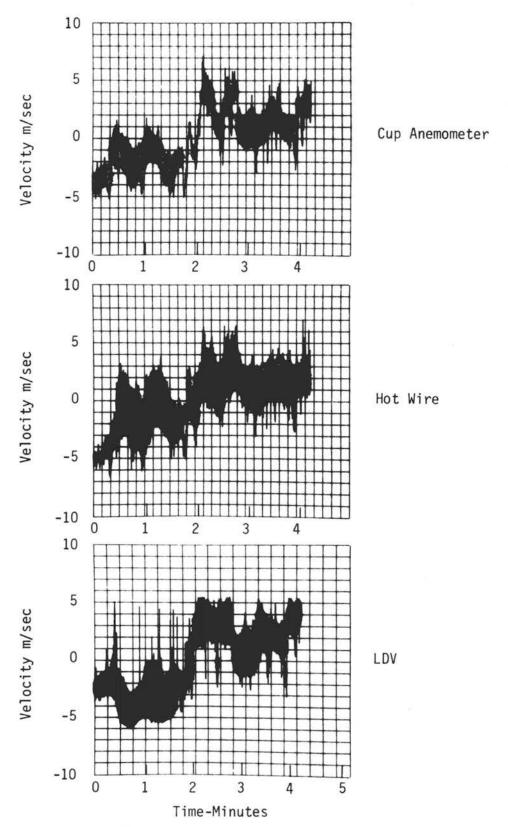


Figure 35. Time traces of wind velocity
Test 32701, Interval 3
(For means and variances see Table 4)

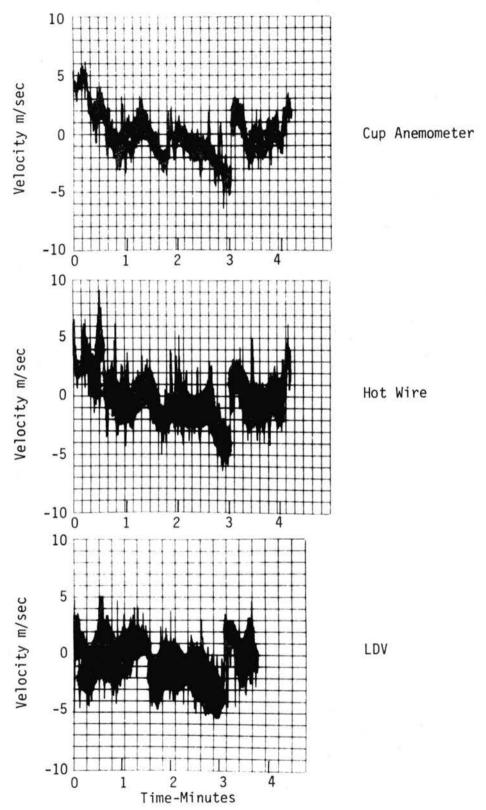


Figure 36. Time traces of wind velocity
Test 32701, Interval 5
(For means and variances see Table 4)

velocities is generally identifiable, but the comparison is not as favorable as for test 50801.

<u>Means and variances</u> - The means and variances from a 34-minute interval of the total record are given in Table 4.

TABLE 4. MEANS AND VARIANCES FOR TEST 32701

4.26-Minute Intervals	Mean Velocities m/sec			Variances (m/sec) ²		
	Cup	Hot Wire	LDV	Cup	Hot Wire	LDV
1	12.041	12.152	11.697	2.686	5.067	4.326
2	13.659	13.835	13.460	4.951	4.281	6.111
3	13.164	13.203	13.990	6.497	7.258	9.897
4	13.973	14.094	14.226	4.117	5.382	5.415
5	13.486	13.575	14.557	5.167	5.429	6.833
6	12.658	12.697	12.441	2.812	3.349	6.620
7	12.417	12.578	11.570	4.000	6.290	3.193
8	11.453	11.551	10.071	2.934	3.826	2.802
Averages	12.856	12.961	12.751	4.093	5.040	5.448

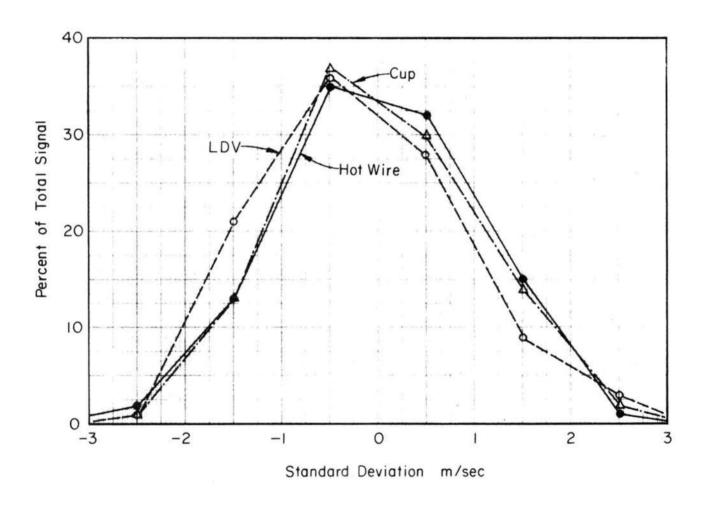
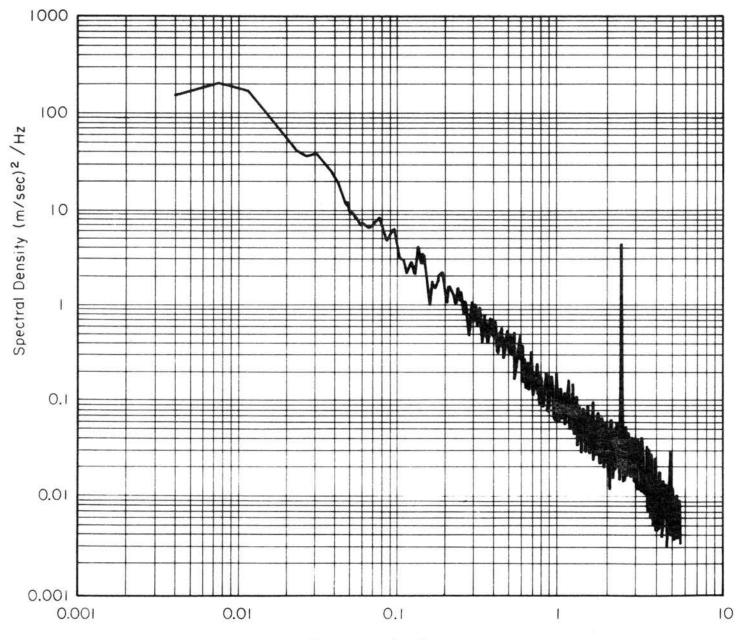
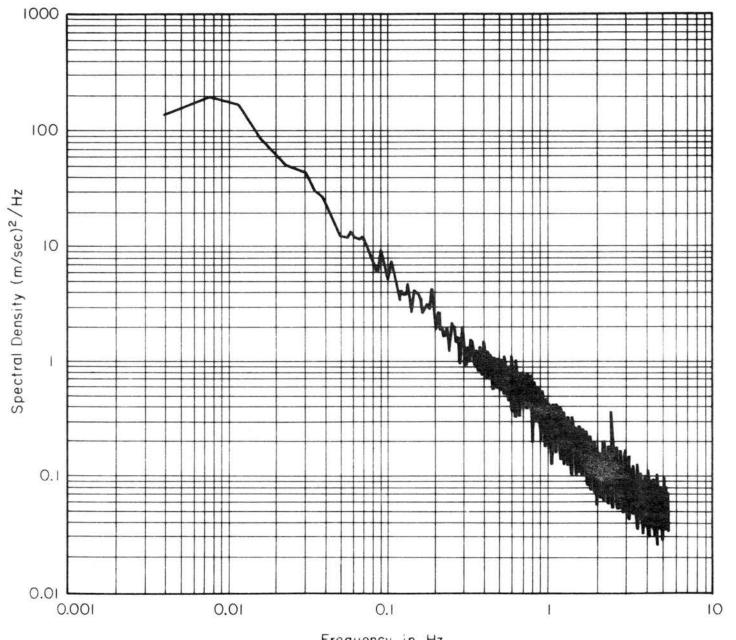
The average wind speed detected by the LDV in the 34-minute period is within 1 percent of the cup and hot wire averages. There are larger variations however for the shorter 4.26-minute intervals, and as the time traces would suggest, variations become greater for even shorter periods. As noted in the preceding section, these are undoubtedly caused by the spurious signals in the velocity calculations. The mean velocities measured by the hot wire were generally larger than the cup anemometer, and the variances as expected are definitely greater because the frequency response of the cup anemometer is limited.

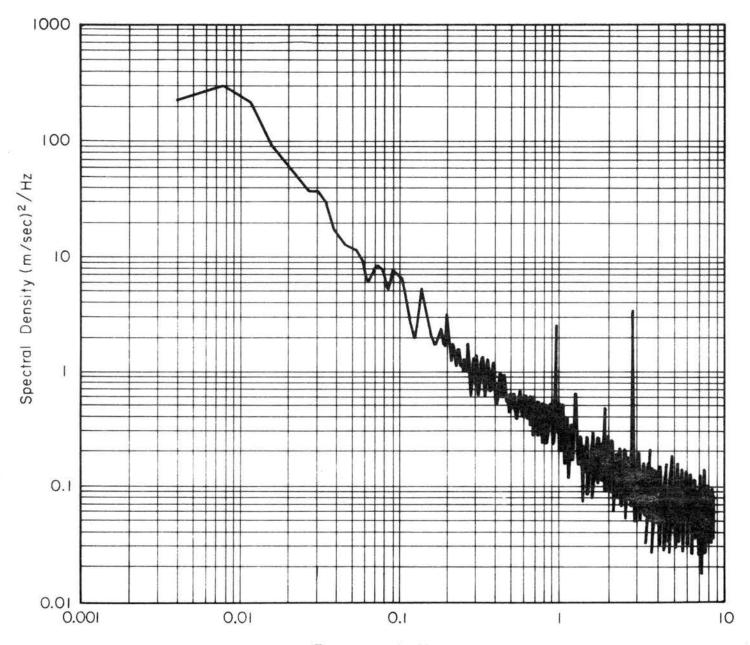
Over a 34-minute period, the fluctuations (variances) detected by the LDV are larger than those of the hot wire. This was also true for Test 50801 which had considerably lower mean wind speeds. Again, the spurious signals in the LDV velocities contribute significantly to variances.

<u>Probability distributions</u> - The distributions of velocities about the means for the three instruments are shown in Figure 37. Turbulence velocities are skewed to the left for all three instruments. The LDV data indicated difficulty in tracing the larger velocities. As explained previously, this could be due in part to the three dimensional nature of turbulence and only the horizontal angularity was corrected (in the mean) in these measurements. This feature of the LDV traces was noted also for test 50801.

Spectral densities - The spectra for the cup anemometer, hot wire and LDV data are shown in Figures 38, 39 and 40, respectively. For comparison, the three are replotted in Figure 41. Spikes of high frequency are again noted at 2.5 and 5 Hz in the cup anemometer spectra. It was noted that the time traces of the LDV data included spurious spikes of high velocity. These spikes are transformed into the spectra and are noted particularly as spikes of power near 1 and 3 Hz. These spikes in the spectra were ignored in replotting on Figure 41.

The spectra of turbulence measured by the LDV and hot wire compare favorably. This is also indicated by the comparison of variances in Table 4. The cup spectra however drops off at around 0.2 Hz because of the limited frequency response. Response corrections for the cup anemometer were not made.


Figure 37. Distributions of velocities about the mean. Test 32701

Frequency in Hz
Figure 38. Spectral density distributions for cup anemometer data.
Test 32701

Frequency in Hz
Figure 39. Spectral density distributions for hot-wire anemometer.
Test 32701

Frequency in Hz
Figure 40. Spectral density distributions for LDV data.
Test 32701

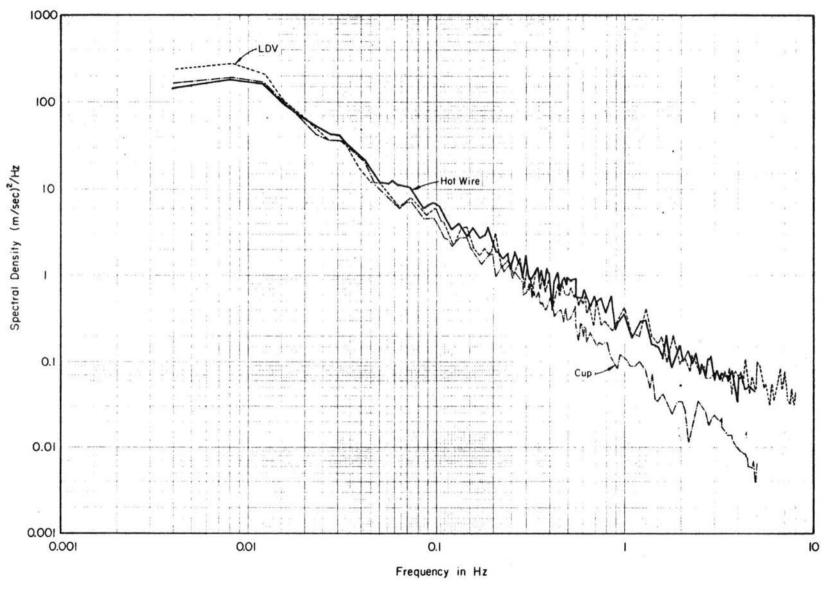


Figure 41. Comparison of spectral density distributions for Test 32701.

Measurements of Run 101401 (October 14, 1971)

The data for this test were taken from 9:16 pm to 9:55 pm, a period of 39 minutes. The wind was from the north-northwest across the clear grassland. The mean wind speed varied from about 4 m/sec at the start of the test to about 5.7 m/sec at the end. The wind direction remained constant. With a northern weather front moving in, the air was clear, (little pollution), and visibility was good.

Spectrum analyzer settings - The settings of the spectrum analyzer were as follows:

Sweep rate:

5 ms/cm

Sample rate:

16 sweeps/sec

Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth:

10 KHz

Bandwidth:

30 KHz

The calibration frequency was 1.691 MHz, which is shown in Figure 42. The noise level is shown in Figure 43. It will be noted that reference zero frequency is shifted slightly from the pulse rise of the square wave, resulting from a horizontal axis shift of the spectrum analyzer. An accounting of this shift was made in data analysis.

A sample trace of one sweep of the spectrum analyzer is depicted in Figure 44. The S/N of the Doppler trace is small but was sufficient to discriminate from noise. There were drop outs in Doppler signature as indicated by the time traces of wind speeds.

Velocity time traces - Time traces of wind speeds from the cup and hot wire anemometers and the LDV are shown for representative 4-minute intervals in Figures 45 and 46. As with the two previous tests, the mean trends correspond with apparent differences in turbulence

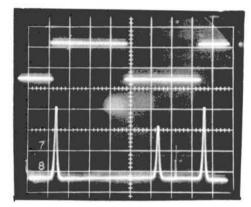


Figure 42. Calibration frequency 1.691 MHz. Test 101401

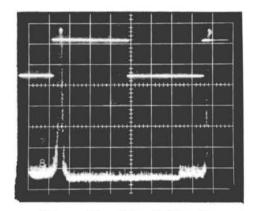


Figure 43. Noise Calibration. Test 101401

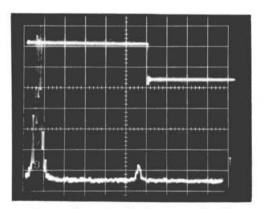


Figure 44. Sample Doppler signal. Test 101401

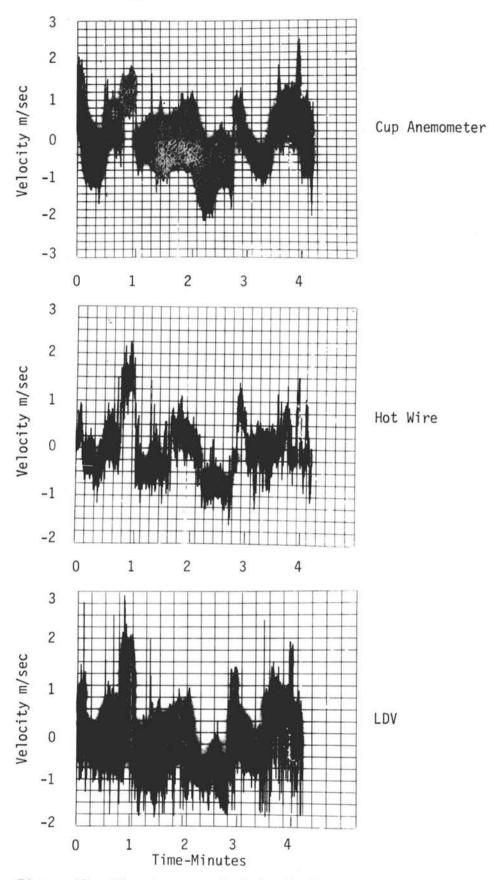


Figure 45. Time traces of wind velocity.
Test 101401, Interval 1
(For means and variances see Table 5)

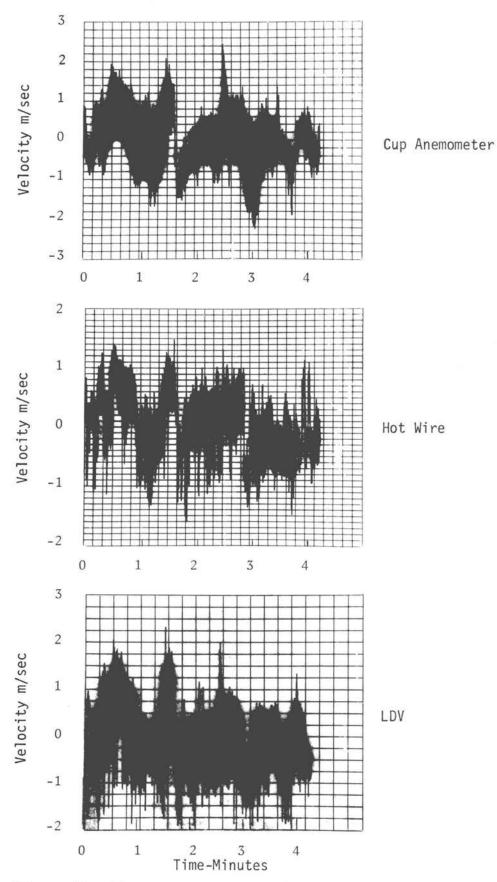


Figure 46. Time traces of wind velocity.
Test 101401, Interval 5
(For means and variances see Table 5)

fluctuations. The large number of low points in the LDV signature resulted from the low S/N ratio; particularly by having to set a low level trigger in the computer program. The spurrious high peaks are believed to be caused by extraneous signal in the Doppler sweep. There are not enough of these to cause difficulty with the statistical analysis.

<u>Means and variances</u> - Means and variances for the entire 34-minute test period are given in Table 5 for each 4.26-minute segment.

TABLE 5. MEANS AND VARIANCES FOR TEST 101401

4.26-Minute Intervals	Mean Velocities m/sec			Variances (m/sec) ²		
	Cup	Hot Wire	LDV	Cup	Hot Wire	LDV
1	5.150	5.154	5.451	.760	.654	.770
2	5.535	5.543	5.677	.736	.600	.847
3	5.425	5.479	5.722	.940	.760	.977
4	6.052	6.092	6.463	.813	.744	.856
5	5.381	5.406	5.742	.714	.586	.692
6	6.417	6.426	6.698	.822	.809	.879
7	6.417	6.457	6.821	.702	.659	.707
8	5.958	5.996	6.218	.745	.614	.675
Averages	5.792	5.819	6.099	.799	.678	.800

The average wind speed indicated by the LDV measurements is about 5 percent greater than that indicated by the cup anemometer. This is comparably about the same as for Test 50801. The variance for the LDV is greater than for the anemometers. Also, the variance for the hot wire is less than that for the cup anemometer as was the case also for Test 50801.

<u>Probability distributions</u> - The distributions of velocities about the means for the three instruments are shown in Figure 47. The turbulent fluctuations are more normally distributed about the mean than was the case for the previous two tests. As before, the probability distributions compare favorably one instrument to another.

<u>Spectral densities</u> - A comparison of the spectral density distributions with frequency for the three instruments is shown in Figure 48. The spectral distribution for the cup anemometer drops off slightly at about 0.5 Hz, the hot wire spectrum decreases on a constant slope and the LDV spectrum tends to level off for higher frequencies. The 2.5 and 5 hertz spikes were not included in drawing these spectra. The comparisons are reasonable to about 1 Hz frequency.

<u>Frequency tracker</u> - Considerable difficulty was experienced in tracking the LDV output with the frequency tracker. The tracker required frequent adjustments during the test, and tracking was often lost. Consequently the tape recorded output was too intermittent and analysis was difficult.

From observations during the test, it was noted that when tracking was achieved, the D.C. output (although slightly nonlinear) corresponded with the mean Doppler frequency, hence with the indicated wind speed. The A.C. output however did not correspond very well with the turbulent fluctuations. For example, in Figure 49, is shown a simultaneous trace of the hot wire and the A.C. output from the tracker for Test 101401. The hot wire leads the laser focal volume by about 3 meters and the average wind speed was about 6 meters per second. The horizontal sweep on the oscilloscope was 0.2 sec/cm.

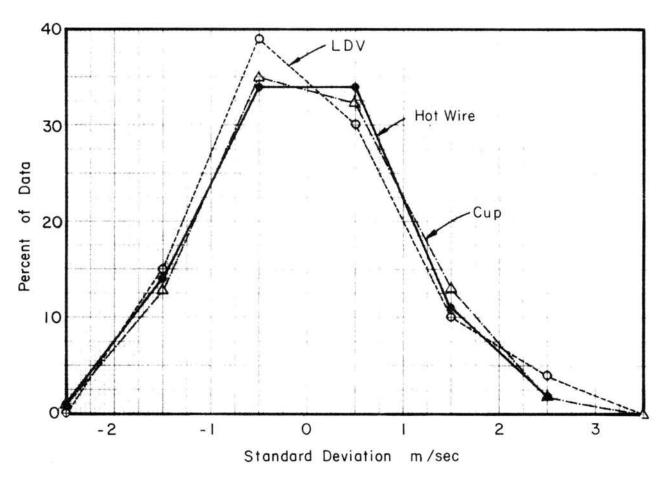


Figure 47. Distribution of velocities about the mean. Test 101401

Figure 48. Comparison of spectral density distributions. Test 101401

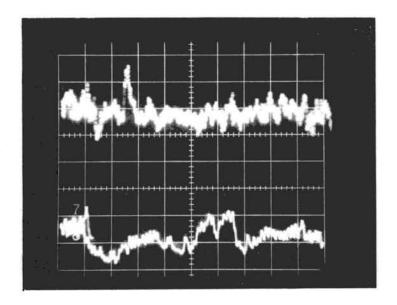


Figure 49. A.C. Tracker and Hot Wire Traces.
Test 101401

The A.C. output (top trace) resembles noise rather than turbulence, while the hot wire output is clearly that which traces the turbulence. The intermittency of the tracker signal created considerable difficulty with digital data analysis. After considerable effort, this part of the data analysis was abandoned. The particular frequency tracker used in these tests (1971) should be modified to provide long-term uninterrupted velocity-time histories. This of course is related to Doppler S/N ratio and to the concentration of aerosols which provide the Doppler shifted signals. With no Doppler signature (signal drop out) there can be no tracking regardless of the quality and design of the frequency tracker.

Measurements of Run 102501 (October 25, 1971)

Test time was from 2:04 pm to 2:45 pm. The wind was from the south-southeast at about 5 m/sec. There were no active weather fronts in the vicinity and the sky had been clear for the day. Some pollution was evident in the air, but visibility was good.

Spectrum analyzer settings - The settings were as follows:

Sweep rate:

5 ms/cm

Sample rate:

16 sweeps/sec

Frequency Dispersion: 0.2 MHz/cm

Filter Bandwidth

10 KHz

Bandwidth:

30 KHz

The calibration frequency was 1.678 MHz as shown in Figure 50. The noise level from the detector is shown in Figure 51. The vertical scale is 200 mv/cm. A sample Doppler trace of one sweep is shown in Figure 52. As is observable, the S/N ratio is small which made data analysis difficult.

Velocity time traces - Time traces of velocity from the cup and hot wire anemometers and the LDV are shown in Figures 53 and 54. There was much more variability of wind speeds during this test than in previous tests. The smaller scale turbulence is superimposed on larger scale variations. Thus, it should be expected, as will be seen later, that the power spectra would indicate greater power at the lower frequencies. Some amount of dropout in signals is indicated for the LDV. In general comparisons of the time traces appear satisfactory.

Means and variances - The means and variances for 8 segments of a 34-minute time period are given in Table 6.

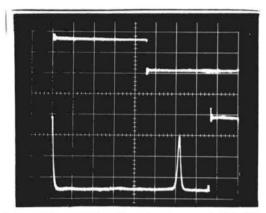


Figure 50. Calibration frequency 1.678 MHz. Test 102501

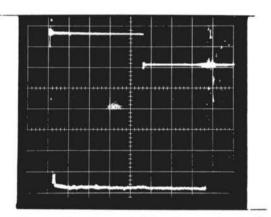


Figure 51. Noise Calibration. Vertical scale is 200 ms/cm.
Test 102501

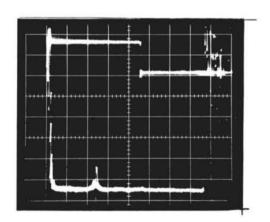


Figure 52. Sample Doppler signal. Test 102501

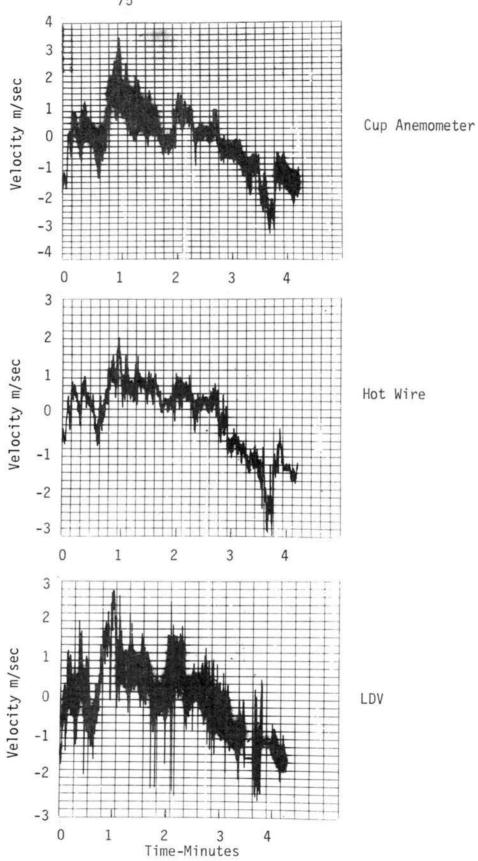


Figure 53. Time traces of wind velocity.
Test 102501, Interval 1
(For means and variances see Table 6)

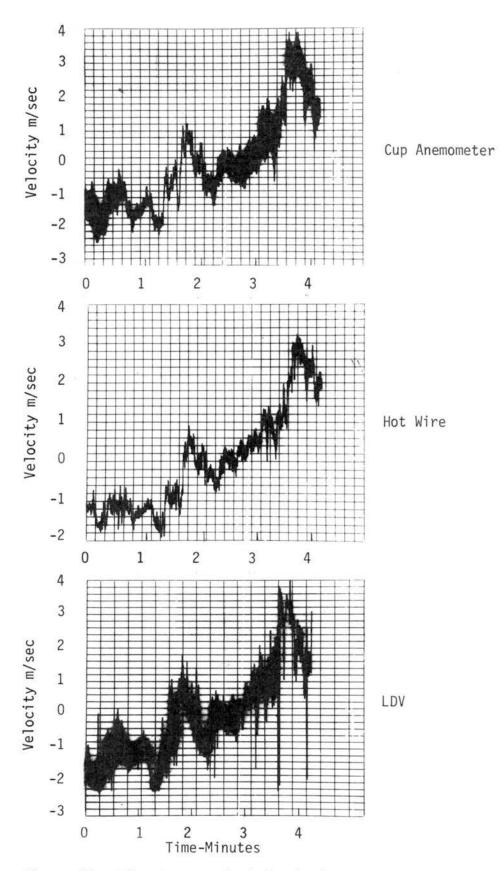


Figure 54. Time traces of wind velocity.
Test 102501, Interval 2
(For means and variances see Table 6)

TABLE 6. MEANS AND VARIANCES FOR TEST 102501

4.26-Minute Intervals	Mean Velocities m/sec			Variances (m/sec) ²		
	Cup	Hot Wire	LDV	Cup	Hot Wire	LDV
1	4.397	4.444	4.298	1.077	.900	.984
2	4.154	4.169	3.946	1.372	1.273	1.418
3	6.025	6.010	5.805	.762	.482	.762
4	4.943	5.000	4.683	1.450	1.162	1.436
5	5.307	5.315	4.989	.992	.717	.921
6	4.713	4.748	4.252	.873	.710	.953
7	5.082	5.102	4.878	.933	.702	.968
8	5.278	5.284	5.004	.628	.385	.666
Averages	4.987	5.009	4.732	1.011	.792	1.014

The average wind speed indicated by the LDV is within 5 percent of the cup and hot wire averages. The comparison is reasonably good.

<u>Probability distributions</u> - The distributions of velocities about the means for the three instruments are shown in Figure 55. Turbulence velocities are skewed to the right. The distributions are about the same as for the other tests.

<u>Spectral densities</u> - The spectral distributions of turbulence are shown in Figure 56. As was noted earlier the lower frequency variations of velocities produced greater power spectral densities at the lower frequencies. The cup anemometer response drops off at about 0.5 Hz, and the LDV tends to level off for frequencies greater than about 2 Hz. The comparison of spectral distributions is reasonably good.

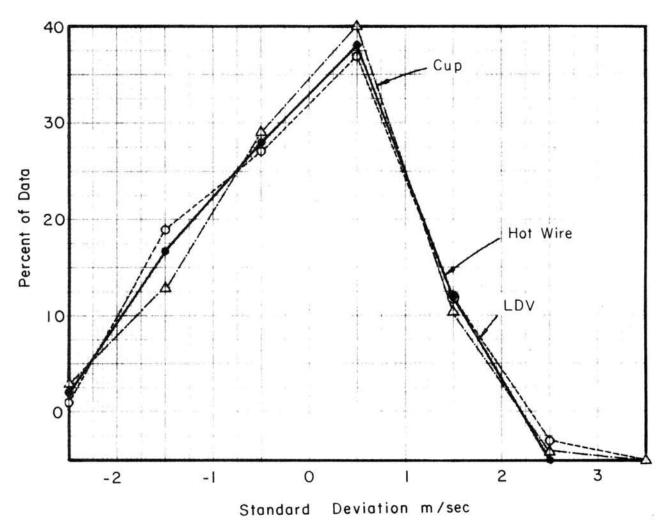


Figure 55. Distribution of velocities about the mean. Test 102501

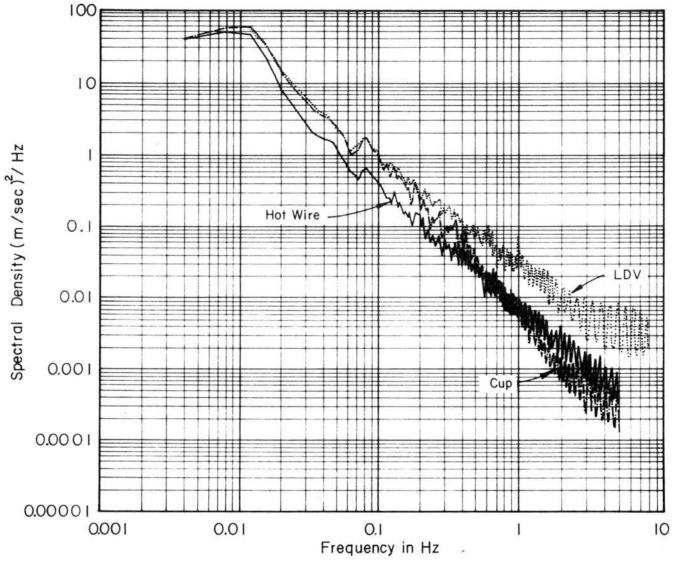


Figure 56. Comparison of spectral density distributions. Test 102501

OBSERVATIONS AND CONCLUSIONS

As a consequence of the comparisons presented, the following observations can be made regarding the one-dimensional LDV system.

- The gross features of atmospheric phenomena in the boundary layer are measured by the LDV system. The time traces show reproduction of these gross features and comparison with other anemometers are favorable.
- Mean values determined from the LDV data are in general within 5% of other anemometer data for long (34-minute) time periods. The variations are larger for shorter time periods, chiefly because of larger variations in measured velocities. That the LDV measures larger velocities is also indicated by the probability (percent) distributions of the data and by the spectral distributions with frequency.
- The confidence of measuring high frequency turbulence (greater than 2 Hz in atmosphere) is not yet established.
- 4. The technique for data reduction of the LDV data is cumbersome in its present form. Immediate improvements can be made by including on-line analog to digital equipment including a special purpose minicomputer to calculate the velocities from the digitized data. Alternatively an analog system to detect Doppler signals such as an improved frequency tracker could be used. The frequency tracker used in this study required very fine tuning, and dependable frequency lock was not achieved.

REFERENCES

- Angus, J. C., D. L. Morrow, J. W. Dunning, Jr. and M. J. French (1969) Motion measurements by laser Doppler techniques. Industrial and Engineering Chemistry, Vol. 61, No. 2, pp. 9-20.
- Camp, D. W. (1965) Analysis of wind tunnel data for several Beckman and Whitley series 50 and Climet C1-14 anemometers. NASA TM X-53271.
- Foreman, J. W., Jr., E. W. George and R. D. Lewis (1965) Measurement of localized flow velocities in gases with a laser Doppler flowmeter. Applied Physics Letters, Vol. 7, No. 4, pp. 77-78.
- Foreman, J. W., Jr., R. D. Lewis, J. R. Thornton and H. J. Watson (1966) Laser Doppler velocimeter for measurement of localized flow velocities in liquids. Proceedings of the IEEE, pp. 424-425, March.
- Goldstein, R. J. and W. F. Hagen (1967) Turbulent flow measurements utilizing the Doppler shift of scattered laser radiation. Physics of Fluids, Vol. 10, pp. 1349-1352.
- Goldstein, R. J. and D. K. Kreid (1967) Measurement of laminar flow development in a square duct using a laser-Doppler flowmeter. Journal of Applied Mechanics, Vol. 34, pp. 813-818.
- Greated, C. A. (1969) An improved method of flow measurement in water. La Houille Blanche, No. 6, pp. 631-633.
- Lockheed Missiles and Space Company (1970) Progress Report No. D162417, July.
- Lockheed Missiles and Space Company (1971) NASA-MSFC field carbon dioxide laser Doppler system operating procedures. Report No. LMSC-HREC D162840, January.
- Lockheed Missiles and Space Company (1971) Application of laser Doppler velocity systems. Interim Report, June.
- Rolfe, E., J. K. Silk, S. Booth, K. Meister and R. M. Young (1968) Laser Doppler velocity instrument. NASA Contractor Report CR1199, Prepared by Raytheon Company.
- Thomson, A. and M. F. Dorian (1967) Heterodyne detection of monochromatic light scattered from a cloud of moving particles. CDC-ERR-AN-1090, General Dynamics/Convair, San Diego, California, June.
- Watson, R. C., Jr., R. D. Lewis and H. J. Watson (1969) Instruments for motion measurements using laser Doppler heterodyning techniques. ISA Transactions, Vol. 8, No. 1, pp. 20-28.
- Yeh, Y. and H. Z. Cummins (1964) Localized fluid flow measurements with an He-Ne laser spectrometer. Applied Physics Letters, Vol. 4, No. 10, pp. 176-178.

APPENDIX A

- A-1 Computer Program for Analysis of Doppler Signals
- A-2 Computer Program for Determination of Velocity Profiles
- A-3 Computer Program for Determination of Temperature and Humidity Profiles

APPENDIX A-1

Computer Program for Analysis of Doppler Signals

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
              LASDOP
                         TRACE
  PROGRAM
                   PROGRAM LASDOP (INPUT.OUTPUT.TAPES=INPUT.TAPE6=OUTPUT.TAPE2.TAPE1.
                  .TAPE3)
                   COMMON/BLOCKI/LENARRI.WINDIRE(100).NRECORI.NFILEI.
                                  ZEROTM1.DIRMIRR(100).VOLT(2.100).WRIDAT1
                   COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2.
                                  ZEROTM2.WRIDAT2.NTAPEZ
                   COMMON/BCAL IBR/SLOPE (2) . ZEROTAP (2) . SLOPEAN . ANINTER . SLOPEHW .
                                   SLOPEWD . WDINTER . SLOPEMD . DMINTER
                   COMMON/BTAPECA/NCHANTP . NCALVAL . VARITP . ACTVOLT (5)
                   COMMON/BINSTCA/NINSCAL + VARIIN . FULSCAW . ZEROWD . FULSCAM . ZEROMD .
10
                                   FRSTINT
                   COMMON/BLASER/NFLYBAC , NPTSWP
                   COMMON/BLASCAL/NCALREC.NSWPREC.IBEGCHK.CALEVEL.CALVELO.WAVLEN.
                                   DEVERFO
15
                   COMMON/HNOISCA/FLYHACK . NOISKET . XNLEVEL (275)
                   COMMON/BRUFLA1/NTOTFI1.JCLOCK1.IEXIT.TIMADA.NREC
                   COMMON/BSOPTI/IHEGSK1.ISKIP1.FACTOR1
                   COMMON/BBUFLAZ/JCLOCKZ+IEXTIME +NRECZ+NREC3+NHEC4+TIMADJ1+TIMADJ2+
                                   TIMADJ3.TIMACJ4
                   COMMON/HSOPTZ/IHEGSKZ.ISKIPZ
20
                   COMMON/BSKPEO1/LPACDA1.
                                                    IDENTI . NFLSKPI . NRCSKPI
                   COMMON/HSKPEOZ/LPACDAZ.
                                                    NTOIFIZ.IDENTZ.NFLSKPZ.NRCSKPZ.
                                   NTUTAPE . IEXIIZ . NTOTREC . TIMADJ
                   COMMON/HCONSTM/NAVEMIR.DIRECMR.CHGAIR.TIMEMIR
25
                   COMMON/BVOLTAD/ISCALE
                   COMMON/BSPEED/SUMVELO. ISAMPLE. IDATAHW. SUMVOLT. TIMRATI. CHANNEL.
                                  DIGRATI.TIMECHG. VOLTCHG. MULTIME.TIMEHW. DCSUPRE
                                 .FRSTSPD. WRITAPE.PRINTOK
                   COMMON/BAVE wIN/JSAMPLE.SUMWIND.MULTIMI.TIMAVWD.AVEWD(3000)
                                   . LASTIME
30
                   COMMON/BBUMPUP/TIME1 (702) . VELOC2 (702)
                   COMMON TIME2(200) . VELOLAS(200) . IPOINT
                   COMMON/UNPKI/ITIME1.ICOMWRU(201).IDATWRD(1000)
                   COMMON/UNPK2/ITIME2+LCOMWRD(601)+LUATWRD(3000)
                   READ (5.1) VOLTCHG. WRIDATZ. CALTAPE. CALINST. CALLAS.
35
                              CALNOIS . WRIDATI . IDENTI . IDENTZ . LENARRI . LENARRZ . IBEGSKI .
                              ISKIP1. THEGSKZ. ISKIDZ. NAVEMIR. NFLYHAC. ISCALE. NTOTF12.
                              NTOTAPE . LPACDAZ . NCHANTP . NCALVAL . LPACDAL . NTOTF II . NCALREC .
                              NSWPREC . THE GCHK . NUTSKEC . NINSCAL . NLASREC . DIGRATI .
                              TIMECHG.TIMEHW.SLOPFHW.TIMRATI.CHANNEL.VARITP. (ACTVOLT
                              (I) . I=1.5) . TIMAVWU . CALEVEL . FLYBACK . DFLYBAC . VARIIN .
                              FULSCAW.ZEROWD.FULSCAM.ZEROMD.DCSUPRE.DEVFREQ.WAVLEN.
                              CHANNEZ DIGRATZ TIMPATZ
                  FORMAT ( 9A3.1114./.1114.5F6.0./.2F6.0.5(F5.0).7F6.0./.3F6.0.2E9.3.
                   READ (5.5) TIMADJ1.TIMADJ2.TIMADJ3.TIMADJ4.TIMADA.NREC2.NREC3.
                               NREC4 . NCALFIL . NCALTAP . NREC
                  FORMAT (5F10.3.315.212.15)
                   READ (5.8) FRSTAPE . FRSTINT . FPSTLAS . FRSTNOS . NTAPFII . NLASFIZ . NINSFII .
                              NOISFIZ.WRITAPE.IRUNNO.MRCONST
51
                  FORMAT (4A3.413.43.16.43)
                   WRITE (6.10) IRUNNO
               10 FORMAT (1H1.5X*INPUT DATA FOR DUN NUMBER*17)
                   WRITE (6.2) VOLTCHG. WRIDATZ. CALTAPE. CALINST. CALLAS.
```

CALNOIS . WHIDATI . IDENTI . IDENTZ . LENARRI . LENARRZ . IBEGSKI .

55

```
PAGE
                                                        CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
   PROGRAM
               LASDOP
                          TRACE
                              ISKIP1.IBEGSK2.ISKIP2.NAVEMIR.NFLYBAC.ISCALE.NTOTFIZ.
                              NTOTAPE + LPACDAZ + NCHANTP + NCALVAL + LPACUAL + NTOTFII + NCALREC +
                              NSWPREC . IBEGCHK . NOISREC . NINSCAL . NLASREC . DIGRATI .
                              TIMECHG.TIMEHW.SLOPFHW.TIMRATI.CHANNEL.VARITP. (ACTVOLT
                              (I) . I=1.5) . TIMAVWD . CALEVEL . FLYBACK . DFLYBAC . VARIIN .
 60
                              FULSCAW.ZEROWD.FULSCAM.ZEROMD.DCSUPRE.DEVFREQ.WAVLEN.
                              CHANNEZ DIGRATZ TIMPATZ
                2 FORMAT(1HO. * VOLTCHG = *A4* WRIDAT2 = *A4* CALTAPE = *A4* CALINST = *A
                   .4* CALLAS =*A4* CALNOIS =*A4* WRIDAT1 =*A4* IDENT1 =*A4* IDENT2 =*
                   .44/* LENARP1 =*14* LENARR2 =*14* IBEGSK1 =*13* ISKIP1 =*13* IBEGSK
 65
                   .2 ==130 ISKIP2 ==130 NAVEMIR ==134 NFLYBAC ==14+ ISCALE ==12/# NTO
                   .TFI2 = 0120 NTOTAPE = 0120 LPACNA2 = 14* NCHANTP = 130 NCALVAL = 12
                   . LPACDA1 = 0140 NIOTF11 = 0120 NCALREC = 0130 NSWPREC = 012/0 IBEGCHK
                   . = 0130 NOISHEC = 0130 NINSCAL = 0120 NLASHEC = 013/0 DIGHAT1 = 0F7.1
                   . TIMECHG = OF3.10 TIMEHW = OFY.40 SLOPEHW = OF9.40 TIMEAT] = OF4.1/
 70
                   . CHANNEL = F5.1 VARITE = F5.3/ ACTVOLT(1 THRU 5) = F5.1/ TIMA
                   .VWD = F5.20 CALEVEL = F9.20 FI YBACK = F5.10 UFLYBAC = F5.10 VARIIN
                   . = 0F6.3/0 FULSCAW = 0F9.3 0 ZEPOWD = 0F9.30 FULSCAM = 0F9.30 ZEROMD =
                   . 0F4.30 DCSUPRE = 0F7.30 DEVFHED = 0E10.3/0 WAVLEN = 0E13.60 CHANNE2 =
                   . F5.1 DIGRAT2 = F9.1 TIMEAT2 = F6.1)
 75
                   WPITE(6.6)FRSTAPE.FRSTINT.FRSTLAS.FRSTNOS.NTAPFII.NLASFIZ.NINSFII.
                              NOISFIZ. WRITAPE . MRCONST
                6 FORMAT()H . FRSTAPE = A4 FRSTINT = A4 FRSTLAS = A4 FRSTNOS = A
                   .40 NTAPFI1 =0130 NLASFI2 =0130 NINSFI1 =0130 NOISFI2 =0130 WRITAPE
                   . = *A3* MRCONST =*A3)
 80
                   WRITE(6.9) TIMADJ1. TIMADJ2. TIMADJ3. TIMADJ4. TIMADA. NRECZ. NRECZ. NRECZ
                              .MCALFIL . NCALTAP . NRFC
                9 FORMAT(1H .. TIMADJ1 =*F4.1* TIMADJ2 =*F10.1* TIMADJ3 =*F10.1* TIM
                   .ADJ4 = 0F10.10 TIMADA = 0F10.1/0 NKEC2 = 0150 NREC3 = 0160 NREC4 = 016
                   . * NCALFIL = *12 * NCALTAP = *12 * NREC = *14)
 85
                    REWIND 1
                    REWIND 2
                    IF (WRITAPE .EQ. 3HYES) REWIND 3
                    FRSTPT = 3HYES
 90
                    IEXTIME = 0
                    MULTIME = 1
                    SUMVELO = 0.0
                    ISAMPLE = 0
                    SUMVOLT = 0.0
                    JSAMPLE = 0
 95
                   SUMWIND = 0.0
                    CALVELO = 0.0
                    NSWPS = 0
                    NRECORI = 0
                    NRECOR2=0
100
                   NTRIG = 1
                   NFILE1 = 1
                   NFILE2 = 1
                   ZEROTMI = 0.0
105
                    ZEROTM2=0.0
                    IEXIT = 3H NO
                    IEXIT2 = 3H NO
                    SLASTPT = 10.0
                    ICHANGE = 0
110
                   FACTOR1 = SQRT(2.)/(2.009-1.0)
```

```
PAGE
                                                                                                                         3
                                                       COC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
               LASTOP
                         TRACE
   PROGRAM
                   FRSTSPD = 3HYES
                   NTAPE2 = 1
                   NEXTPTS = 0
                   NAVEWD = 0
                   NDATAPT = 1
115
                   JCLOCK1 = 0
                   JCLOCK2 = 0
                  . IWIND = 1
                   IPOINT = 1
                   JCOUNT = 0
120
                   IF (IDENTI .EQ. 3HYES) CALL HEADERI
                   IF (IDENT2 .EQ. 3HYES) CALL HEADER2
                   IF (FRSTAPE .EQ. 3H OK) GO TO 20
                   NFLSKP1 = 0
                   NRCSKP1 = 1
125
                   CALL SKPEOF1
                20 IF (CALTAPE .EQ. 3HYES) CALL TAPECAL
                   IF (CALTAPE .EQ. 3HNED) READ(5.11) (SLOPE(I).ZEROTAP(I).I=1.2)
               11 FORMAT (4F10.3)
                   IF (NFILE) .GT. NTAPFII) GO TO 21
130
                   NFLSKP1 = 1
                   NPCSKP1 = 0
                    CALL SKPEOF1
               21 IF (CALINST .EQ. 3HYES) CALL INSTCAL
                   IF (CALINST .EQ. 3HNED) READ(5.11) SLOPEND. SLOPEND. WDINTER. DMINTER
135
                   IF (NFILE1 .GT. NINSFII) GO TO 23
                   NFLSKP1 = 1
                   NRCSKP1 = 0
                   CALL SKPEOF1
                23 IF (FRSTLAS .EQ. 3H OK) GO TO 24
140
                   NFLSKP2 = 0
                   NRCSKP2 = 1
                   CALL SKPEOF2
               24 IF (CALLAS .EQ. 3HYES) CALL LASCAL
                   IF (CALLAS .EQ. 3HNED) READ(5.12) CALVELO.NPTSWP
145
               12 FORMAT (F10.3.14)
                   FLYBACK = FLYBACK - DFLYBAC
                   IF (NFILE2 .GT. NLASFIZ) GO TO 25
                   NFLSKP2 = 1
                   NRCSKP2 = 0
150
                   CALL SKPEDEZ
                25 IF (FRSTNOS .EQ. 3H OK) GO TO 26
                   NFLSKP2 = 0
                   NRCSKP2 = 1
                   CALL SKPEOF2
155
               26 IF (CALNOIS .EQ. 3HYES) CALL NOISCAL
                    IF (CALNOIS .EQ. 3HNED) READ(5.4) (XNLEVEL(I).I=1.202)
                 4 FORMAT((13F6.0))
                   IF (NFILEZ .GT. NOISFIZ) GO TO 27
160
                   NFLSKP2 = 1
                   NRCSKP? = 0
                   CALL SKPEOF 2
               27 CALL VOLTADJ
                   IF (MRCONST .EQ. 3HYES) CALL CONSTMR
                   IF (MRCONST .NE. 3HNED) GO TO 75
165
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                                PAGE
   PROGRAM
               LASDOP
                         TRACE
                   READ (5.14) CHGMIR.TIMEMIR
                   READ (5.13) DIRECMR
               13 FORMAT (F10.3)
               14 FORMAT (A3.F6.2)
                   WRITE (6.15) DIRECMR. CHGMIR. TIMEMIR
170
                15 FORMAT (1Hg.5X*DIRECMR =*F10.3* CHGMR =*A3* TIMEMIR =*F10.3)
               75 JCLOCK1 = 0
                   ZEROTH1 = 0.0
                   JCFOCK5= 0
175
                   ZEROTH2 = 0.0
                   IDATAHW = 1
                   MULTIM1 = 1
                   IEXTIME = 0
                   LASTIME = 1
180
                   MULTIME = 1
                   PRINT 16
               16 FOPMAT (1H1)
               100 CALL SPEED
                   CALL AVEWIND
                   IF (PRINTOK .EQ. 3HYES) WRITE (6.7) NFILEZ.NTAPEZ
185
               7 FORMAT(1H0.5X*LASER VELOCITIES*5X*FILE*12.5X*TAPE*12/10X*TIME.SEC*
                  .10x *VELOCITY . M/SEC*10X*RECORD*)
               150 CALL BUFLAS2
                   IBEGIN = 1
               175 DO 200 M=18EGIN+LENARR2
190
                   IF (YLASER(M) .GE. FLYBACK) GO TO JOO
               200 CONTINUE
                   GO TO 150
               300 JCOUNT = JCOUNT + 1
195
                   M = M + 1
                   IF (M .LE. LENARR2) GO TO 500
               400 CALL BUFLAS2
                   M= 1
               500 IF (YLASER(M) .GE. FLYBACK) GO TO 300
                   IF (JCOUNT .GT. 15) GO TO 600
200
                   JCOUNT = 0
                   IBEGIN = M
                   IF (M .LE. LENARR2) GO TO 175
                   GO TO 150
               600 M = M + IBEGCHK - 1
205
                   IF (M .LE. LENARR2)GO TO 650
                   CALL BUFLASZ
                   M = M - LENARR2
               650 JCOUNT = 0
                   LAST = NPTSWP-NFLYBAC
210
                   DO 800 I= INEGCHK, LAST
                   IF (YLASER(M) .GE. XNLEVEL(1) * 2.)GO TO 900
                   M = M + 1
                   IF (M .LE. LENARRZ) GO TO 800
215
               700 CALL BUFLAS2
                   M = 1
               800 CONTINUE
                   IBEGIN = M
                   IF (FRSTPT .EQ. 3HYES) GO TO 175
550
                   VELOLAS(IPOINT) = VELOLAS(IPOINT - 1)
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
   PROGRAM
               LASDOP
                         TRACE
                   TIME2(IPOINT) = TIME2(IPOINT-1) + (NPTSWP*CHANNE2*TIMRAT2)/DIGRAT2
                   IF (TIME2(IPOINT) .GT. IWINU*TIMAVWD) IWIND = IWIND + 1
                   IF (AVEWD(IWIND) .NE.O.O) GO TO 825
                   IF (IEXIT .EQ. 3HYES) GO TO 870
                   IF (WRITAPE .EQ. 3HYES) CALL LASWRIT
225
                   IPOINT = 1
               810 CALL SPEED
                   CALL AVEWIND
                   IF (PRINTOK .EQ. 3HYES) WRITE (6.7) NFILEZ.NTAPEZ
230
                   GO TO 825
               820 IWIND = IWIND - 1
                   IF (AVEWD(IWIND) .EQ. 0.0) GO TO 820
               825 IF (PRINTOK .NE. 3HYES) GO TO 875
                   WPITE (6.3) TIMEZ (IPOINT) . VELOLAS (IPUINT) . NRECORZ
235
               875 IPOINT = IPOINT + 1
                   GO TO 175
               900 IF (YLASER(M+1) .LT. YLASER(M)) GO TO 925
                   I = I + I
                   M = M + 1
                   60 TO 900
240
               925 TIMEZ(IPOINT) = TIMRATZ*((ITIMEZ-ZEROTMZ)/10000+((M )*CHANNEZ)/
                                          DIGRATA)
                   FRSTPT = 3H NO
                   IF (TIME2(IPOINT) .GE. TIMEMIR .A. CHGMIR .EQ. 3HYES) CALL CONSTMR
                   IF (TIMEZ(IPOINT) .GT. IWIND . TIMAVWD) IWIND = 1WIND . 1
245
                   IF (AVE ND (IWIND) .NE. 0.01GO TO 935
                   IF (IEXIT .EQ. 3HYES) GO TO 930
                   IF (WRITAPE .EQ. 3HYES) CALL LASWRIT
                   IPOINT = 1
               926 CALL SPEED
250
                   CALL AVEWIND
                   IF (PRINTOK .EQ. 3HYES) WRITE (6.7) NFILEZ.NTAPEZ
                   GO TO 935
               930 IWIND = IWIND - 1
                   IF (AVEWD(IWIND) .EQ. 0.0) GO TO 930
255
               935 WDIREC = AVEWD(IWIND) - DIRECMR
                   WDIREC = (WDIREC * 2. * 3.14)/ 360.
                   VELOLAS(IPOINT) = ((I + 4)*CALVELO)/COS(WDIREC)
                   IF (PRINTOK .NE. 3HYES) GO TO 1000
                   WRITE (6.3) TIMES (IPOINT) . VELOLAS (IPUINT) . NRECORS
260
                3 FORMAT(1H . 8XF8.3.15XF6.3.14x14)
              1000 IPOINT = IPOINT . 1
                   IBEGIN = M
                   IF (M .LE. LENARR2)GO TO 175
                   GO TO 150
265
```

END

PAGE

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBPOUTINE TAPECAL TRACE
                  SUBROUTINE TAPECAL
                  COMMON/BTAPECA/NCHANTP . NCALVAL . VARITP . ACTVOLT (5)
                  COMMON/BLOCK1/LENARRI.WINDIRE(100).NRECORI.NFILE1.
                                 ZEROTM1.DIRMIRR(100).VOLT(2.100).WRIDAT1
                  COMMON/BCAL IBR/SLOPE (2) . ZEROTAP (2) . SLOPEAN . AN INTER . SLOPEHW .
 5
                                  SLOPEWD . WDINTER . SLOPEMD . DMINTER
                  DIMENSION SUMCAL (2).SUMTAP(2).SQVALUE(2).SUMACT(2).ACT X TAP(2).
                             SUMSQ (2.5) . RECMEAN (2) . TOTMEAN (2.5) . TEPMEAN (2) . SUMEAN (2) .
                             TEMPSUM(2) . STANDEV(2.5)
                  ICHECK = 0
10
                  NSAMPLE = 0
                  LASTCAL = 0
                  ICALVAL = 1
                  DO 100 I= 1.NCHANTP
15
                  SUMEAN(I) = 0.0
                  TEMPSUM(I) = 0.0
                  SUMCAL (1) = 0.0
                  SUMACT(I) = 0.0
                  SUMTAP(I) = 0.0
                  SQVALUE(1) = 0.0
50
                  ACT X TAP(I) = 0.0
                  TEPMEAN(I) = 0.0
                  RECMEAN(I) = 0.0
                  DO 100 J=1.NCALVAL
                  TOTMEAN(I,J) = 0.0
25
              100 SUMSQ(1+J) = 0.0
              110 CALL BUFLASI
                  GOTOBUF = 3H NO
                  IF (ICALVAL .EQ. NCALVAL) LASTCAL = LASTCAL + 1
                  DO 120 I=1.NCHANTP
30
                  DO 120 K=1.LENARR1
              120 SUMCAL(I) = SUMCAL(I) + VOLT(I+K)
                  IF (ICHECK .GT. 0) GO TO 151
                  NSAMPLE = NSAMPLE + 1
                  DO 140 I=1.NCHANTP
35
                  RECHEAN(I) = SUMCAL(I) /LENARP1
                  IF (NRECORT .EQ. 1) GO TO 125
                  IF (RECMEAN(I) .GT. TOTMEAN(I, ICALVAL) . VARITP .O. RECMEAN(I)
                      .LT. TOTMEAN(I.ICALVAL) - VARITP) GO TO 150
              125 DO 130 K=1.LENARR1
40
              130 SUMSQ(I.ICALVAL) = SUMSQ(I.ICALVAL) + VOLT(I.K)**2
                  SUMEAN(I) = SUMEAN(I) + RECMEAN(I)
                  SUMCAL(I) = 0.0
                  TOTMEAN(I.ICALVAL) = SUMEAN(I)/NSAMPLE
45
                  IF (1 .EQ. 1)
                 .WRITE(6.1) NRECOR1.ICALVAL.ACTVOLT(ICALVAL)
                  FORMAT (1HO.5X*RECORD MEANS*4X*RECORD NUMBER*14.7X*CALIBRATION*12.
                  .4X * INPUT VALUE * F5.1/11X * CHANNFL * 10X * MEAN * 13X * CUMULATIVE MEAN * 6X
                 .*NUMBER RECORDS FOR CUMULATIVE MEAN*)
              140 WRITE (6.2) I. RECMEAN (I) . TOTMEAN (I. ICALVAL) . NSAMPLE
50
              2 FORMAT(1H +12X+12+10X+F8-4+14X+F8-4+25X+13)
                  GO TO 110
              150 NSAMPLE = NSAMPLE - 1
                  ICALVAL = ICALVAL + 1
```

151 IF (ICALVAL .GT. NCALVAL .A. LASTCAL .GT. 3) GO TO 180

55

PAGE

```
PAGE
                                                        CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
   SUBROUTINE TAPECAL TRACE
                   ICHECK = ICHECK + 1
                   WRITE (6.5) NRECOR1 + ICALVAL + ACTVOLT (ICALVAL)
                5 FORMAT (1H0.5X*TEMPORARY MEANS*BX*RECORD NUMBER*14.10X*CALIBRATION
                  .*I2.4X*INPUT VALUE *F5.1/11X*CHANNEL*10X*MEAN*)
                   DO 170 I=1.NCHANTP
                   RECMEAN(I) = SUMCAL(I)/LENARRI
                   WRITE (6.6) I.RECMEAN(I)
                   FORMAT (1H .12X12.10XF8.4)
                   SUMCAL (1) = 0.0
                   IF (ICHECK .EQ. 1) GO TO 160
                   DO 155 K=1.LENARRI
               155 SUMSQ(I.ICALVAL) = SUMSQ(I.ICALVAL) . VOLT(I.K)**2
                   TEMPSUM(I) = TEMPSUM(I) + RECMEAN(I)
               160 IF (RECMEAN(I) .GT. TOTMEAN(I.ICALVAL-1) . VARITP .O. RECMEAN(I)
                       .LT. TOTMEAN(I.ICALVAL-I)-VARITP) GOTOBUF = 3HYES
 70
               170 CONTINUE
                   IF (ICHECK .GT. 3) GO TO 180
                   IF (GOTOBUF . EQ. 3HYES) GO TO 110
                   DO 175 I=1.NCHANTP
 75
                   TEMPSUM(I) = 0.0
               175 SUMSO(I.ICALVAL) = 0.0
                   ICHECK = 0
                   ICALVAL = ICALVAL - 1
                   GO TO 110
               180 IEND = ICALVAL - 1
                   WRITE (6.8) IEND. ACTVOLT (IENU)
                8 FORMAT (1HO. / , 5X+STANDARD DEVIATIONS*10X*CALIBRATION*12,5X*INPUT VA
                  .LUE .F5.1/11x . CHANNEL . 10x . RMS .)
                   DO 190 I=1.NCHANTP
                   STANDEV(I.IEND) = SQRT(SUMSQ(I.IEND)/(NSAMPLE*LENARRI) -
 85
                                     TOTMEAN (I . IEND) **2)
               190 WRITE (6.9) I.STANDEV (I. IEND)
                   FORMAT (1H .12x12.7xF9.3)
                   NSAMPLE = ICHECK - 1
                   DO 195 I=1.NCHANTP
 90
                   SUMEAN(I) = TEMPSUM(I)
                   TOTMEAN(I.ICALVAL) = TEMPSUM(I)/NSAMPLE
               195 TEMPSUM(I) = 0.0
                   ICHECK = 0
 95
                   IF (ICALVAL .LE. NCALVAL) GO TO 110
                   WRITE (6.10) NRECORT
               10 FORMAT (1HO.5X*ACTUAL VS TAPE VOLTAGE*10X*LEAST SQUARE METHOD*5X*NU
                  .MBER RECORDS USED FOR CALCULATIONS+13)
                   DO 210 I=1.NCHANTP
                   DO 200 J=1.NCALVAL
100
                   SUMTAP(1) = SUMTAP(1) . TOTMEAN(1.J)
                   SOVALUE(I) = SQVALUE(I) + TOTMEAN(I+J)**2
                   ACT X TAP(I) = ACT X TAP(I) + TOTHEAN(I.J) ACTVOLT(J)
               200 SUMACT(I) = SUMACT(I) . ACTVOLT(J)
105
                   SLOPE(I) = (SUMACT(I) *SUMTAP(I) -NCALVAL* ACT X TAP(I))/
                               (SUMACT(I) ** 2- NCAL VAL * SQVALUE(I))
                   ZEROTAP(I) = (SUMACT(I) *ACT x TAP(I) - SUMTAP(I) *SQVALUE(I))/
                               (SUMACT(I) ** 2- NCAL VAL *SUVALUE(I))
                   WRITE (6.11) I. (ACTVOLT (J) . TO IMFAN (I.J) . J=1.NCALVAL)
                11 FORMAT (1HO.10X+C H A N N E L*13/15X+VALUES USED FOR LEAST SQUARE C
110
```

SUBROUTINE TAPECAL TRACE

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

3

.ALCULATIONS*10X*INPUT VALUE*SX*TAPE VALUE*/(69XF4.1*11XF6.3))
210 WRITE(6*12)SLOPE(I)*ZEROTAP(I)
12 FORMAT(1H0*15X*VALUES OBTAINED FROM LEAST SQUARE CALCULATIONS* 7X*
.SLOPE*8X*INTERCEPT*/68XF5.3*11XF5.3)

PRINT 13

13 FORMAT(1H1)
RETURN
END

115

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                                PAGE
  SUBROUTINE INSTCAL TRACE
                  SUBROUTINE INSTCAL
                  COMMON/BINSTCA/NINSCAL . VARIIN . FULSCAW . ZEROWD . FULSCAM . ZEROMD .
                                  FRSTINT
                  COMMON/BLOCK1/LENARR1.WINDIRE(100).NRECOR1.NFILE1.
                                 ZEROTMI.DIRMIRR(100), VOLT(2,100), WRIDAT1
                  COMMON/BCALIBR/SLOPE(2) . ZEROTAP(2) . SLOPEAN . ANINTER . SLOPEHW .
                                  SLOPEWD . WDINTER . SLOPEND . DMINTER
                  DIMENSION SUMSQWD(3).SUMSQMD(3).TMEANWD(3).TMEANMD(3).STDEVWD(3).
                            STDEVMD(3)
                  LEVEL = 10HZERO INPUT
10
                  NRECOR1 = 0
                  IF (FRSTINT .EQ. 3HYES) NRECOR1 = 1
                  SUMWD = 0.0
                  SUMMD = 0.0
                  SUMAVEW = 0.0
15
                  SUMAVEM = 0.0
                  NSAMPLE = 0
                  INSCAL = 1
                  TEMPWD = 0.0
20
                  TEMPMD = 0.0
                  ICHECK = 0
                  DO 100 I = 1.NINSCAL
                  SUMSOWD(I) = 0.0
              100 SUMSOMD(I) = 0.0
                  IF (NRECOR1 .EQ. 1) GO TO 175
25
              150 CALL BUFLASI
                  GOTOHUF = 3H NO
                  IF (NFILE1 .GT. 1) GO TO 850
              175 DO 200 K=1.LENARRI
31
                  SUMWD = SUMWD . WINDIRE(K)
              200 SUMMU = SUMMU + DIRMIRR(K)
                  AVEWD = SUMWD/LENARR1
                  AVEND = SUMMD/LENARRI
                  SUMWD = 0.0
                  SUMMD = 0.0
35
                  IF (NRECOR1 .EQ. 1) GO TO 300
                  IF (ICHECK .GT. 0) GO TO 600
                  IF (AVEWD .GT. THEANWD(INSCAL) + VARIIN) GO TO 500
              300 SUMAVEW = SUMAVEW + AVEWD
                  SUMAVEM = SUMAVEM + AVEMD
40
                  NSAMPLE = NSAMPLE + 1
                  THEANWD (INSCAL) = SUMAVFW/NSAMPLE
                  TMEANMD(INSCAL) = SUMAVEM/NSAMPLE
                  WRITE (6.1) NRECORI, LEVEL . AVEMD. THEANHD (INSCAL) . NSAMPLE, AVEWD.
                             THEANWU (INSCAL) , NSAMPLE
45
                  FORMAT(1H0.5x*INSTRUMENT CALIBRATION*5x*RECORD MEANS*5x*RECORD*13.
                 .5X * INPUT *A10/10X * INSTRUMENT * 10X * RECORD MEAN * 10X * CUMULATIVE MEAN *
                 .10X NUMBER OF RECORDS IN CUMULATIVE MEAN*/7X*MIRROR DIRECTION*9XF6
                 ..3.19xF6.3,30x12/ 8x*WIND DIRECTION*10xF6.3.19xF6.3.30x12)
                  DO 400 K=1.LENARR1
50
                  SUMSOWD(INSCAL) = SUMSOWD(INSCAL) + WINDIRE(K)**2
              400 SUMSUND(INSCAL) = SUMSUND(INSCAL) + DIRMIPR(K) **2
                  GO TO 150
              500 INSCAL = INSCAL + 1
```

55

600 ICHECK = ICHECK + 1

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                              PAGE
SUBROUTINE INSTCAL
                     TRACE
                IF (ICHECK .LT. 2) GO TO 150
                TEMPWD = TEMPWD + AVEWD
                TEMPMD = TEMPMD + AVEMD
                IEND = ICHECK - 1
                LEVEL = 10HFULL SCALE
                WRITE (6,2) NRECORI, LEVEL, AVEMD, TEMPMD, IEND, AVEWD, TEMPWD, IEND
                FORMAT (1HO.5X*TEMPORARY SUMS*10X*RECORD*13.10X*INPUT *A10/ 10X*INS
               .TRUMENT-10X-RECORD MEAN-10X-SUM OF RECORD MEANS-10X-NUMBER OF RECO
               .RDS IN SUM- / 7x MIRROR DIRECTION 9XF6.3.20XF6.3.25XI2/BX WIND DIR
               .ECTION = 10xF6.3,20xF6.3,25x12)
                00 700 K=1.LENARR1
                SUMSQWD(INSCAL) = SUMSQWD(INSCAL) + WINDIRE(K)**2
            700 SUMSOMD(INSCAL) = SUMSOMD(INSCAL) + DIRMIRR(K)**2
            800 IF (AVEWO .GT. THEANWD(INSCAL-1) + VARIIN) GOTOBUF = 3HYES
                IF (ICHECK .GT. 3) GO TO 900
                IF (GOTOBUF .EQ. 3HYES) GO TO 150
                SUMSQWD(INSCAL) = 0.0
                SUMSOMD(INSCAL) = 0.0
                ICHECK = 0
                TEMP#0 = 0.0
                TEMPMD = 0.0
                INSCAL = INSCAL - 1
                GO TO 150
            850 INSCAL = INSCAL + 1
            900 IEND = INSCAL - 1
                LEVEL = IOHZERO INPUT
                IF (IEND . FQ. 2) LEVEL = 10HFULL SCALE
                STDEVWD(IEND) = SQRT(SUMSQWD(IEND)/(NSAMPLE*LENARR1) -
                                  THEANWD (IEND) **2)
                STDEVMD(IEND) = SQRT(SUMSQMD(IEND)/(NSAMPLE+LENARRI) -
                                  THEANMD (IEND) **2)
                WRITE (6.3) IEND. LEVEL. STDEVMD (IEND) . STDEVWD (IEND)
             3 FORMAT (1HO.5x*STANDARD DEVIATIONS*10X*CALIBRATION*12.10X*INPUT *
                .A10/10x+Instrument+10x+RMS+/7x+MIRROR DIRECTION+ 6XF5.3/ 8X+WIND D
               .IRECTION - 7xF6.3)
                LEVEL = 10HFULL SCALE
                NSAMPLE = ICHECK - 1
                SUMAVEW=TEMPWD
                SUMAVEM = TEMPMO
                TMEANWD (INSCAL) = SUMAVEW/NSAMPLE
                THEANND (INSCAL) = SUMAVEM/NSAMPLE
                TEMPWD = 0.0
                TEMPHD = 0.0
                ICHECK = 0
                IF (INSCAL .LE. NINSCAL) GO TO 150
                SLOPEWD = (FULSCAW-ZEROND)/(TMEANWD(2)-TMEANWD(1))
                SLOPEND = (FULSCAM-ZEROND)/(TMEANMD(2)-TMEANMD(1))
                DMINTER = FULSCAM - SLOPEMD*TMEANMU(2)
                WDINTER = FULSCAW - SLOPEWD+TMEANWU(2)
                WRITE (6+4) NRECOR1 + TMEANMD(1) + 7 EROMD + TMEANMD(2) + FULSCAM + SLOPEMD +
               .DMINTER.TMEANWD(1).ZEROWD.TMEANWD(2).FULSCAW.SLOPEWD.WDINTER
             4 FORMAT (1HO.5X*INSTRUMENT CALIFRATION*5X*NUMBER OF RECORDS USED*13/
               . 10x . MIPROR DIRECTION . 15x . VALUES USED FOR CALIBRATION . 10x . INPUT . 5
               .x *TAPE VALUE *5x *ACTUAL VALUE */ 53x *ZERO *6xF6.3.10xF7.3/ 49x *FULL
```

.SCALE 44xF6.3.10xF7.3/ 15x*VALUES OBTAINED 22x*SLOPE 5x*INTERCEPT*/

60

70

75

8n

85

95

100

105

110

SUBROUTINE INSTCAL TRACE CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

.51xf7.3,6xf5.3//10x*wind direction*/ 15x*values used for calibrati .0n*10x*input*5x *Tape value*5x*actual value*/53x*Zero*6xf6.3,10xf7.3/49x*full scale*4xf6.3,10xf7.3/15x*values obtained*22x*slope*5x .*INTERCEPT*/51XF7.3.6XF7.3)
RETURN

115

END

55

I=J+LENARR?

SUBROUTINE LASCAL COMMON/BLASCAL/NCALREC.NSWPREC.IBEGCHK.CALEVEL.CALVELO.WAVLEN. DEVFREQ COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2. ZEROTM2.WRIDAT2.NTAPE2 COMMON/BLASER/NFLYBAC+NPTSWP DIMENSION NPTRIG(20) NEXT = 0 NPTSWP = 0 SLASTPT = 10.0 10 CALVELO = 0.0 NSAMPLE = 0 NSWPS = 0 LASTPT = 0 15 GO = 3H NO LEFTOVR = 0 100 CALL BUFLAS2 IF (NRECOR2 .GT. NCALREC) GO TO 900 150 NTRIG = 1 DO 50 I=1.20 20 50 NPTRIG(1) = 0DO 500 K=1.LENARR2 IF (K .GT. 1) GO TO 200 IF (SYNC(K) .GT. 0.0 .A. SLASTPT .LT. 0.0) GO TO 300 25 GO TO 500 200 IF (SYNC(K) .GT. 0.0 .A. SYNC(K-1) .LT. 0.0) GO TO 300 GO TO 500 300 IF (GO .EQ. 3H NO) GO TO 400 NPTSWP = NPTSWP + K - LASTPT + LEFTOVR - 1 31 NSWPS = NSWPS + 1 LEFTOVR = 0 400 NPTRIG(NTRIG) = K - 1 NTRIG = NTRIG + 1 LASTPT = K - 1 35 GO = 3HYES 500 CONTINUE SLASTPT = SYNC(LENARR2) LEFTOVR = LENARR2 - NPTRIG(NTRIG-1) LASTPT = 0 NEXT = 0 NTRIG = 1 NAVEPTS = NPTSWP / NSWPS 600 ISTART = NPTRIG(NTRIG) + IBEGCHK LAST = NPTRIG(NTRIG) + NAVEPTS - NFLYBAC IF (LAST .GT. LENARR2) NEXT = LAST - LENARR2 45 IF (LAST .GT. LENARR2)LAST=LENARR2 DO 700 I = ISTART+LAST IF (YLASER(I) .GT. CALEVEL) NFXT = 0 IF (YLASER(I) .GT. CALEVEL) GO TO 800 700 CONTINUE 50 IF (NEXT .EQ. 0) GO TO 750 CALL BUFLASZ DO 725 J=1.NEXT IF (YLASER(J) .LE. CALEVEL) GO TO 725

END

GO TO 800 725 CONTINUE IF (NRECOR2 .GT. NCALREC) GO TO 900 GO TO 150 61 750 NTRIG = NTRIG + 1 IF (NPTRIG(NTRIG) .GT. 0) GO TO 600 IF (NRECOR2 .GT. NCALREC) GO TO 900 800 IF (YLASER(I+1) .GT. YLASER(I)) I=I +1 CALVELO = CALVELO + I - NPTRIG(NTRIG) 65 NSAMPLE = NSAMPLE + 1 NTRIG = NTRIG . 1 IF (NRECOR2 .GT. NCALREC) GO TO 900 IF (NEXT .GT. 0) GO TO 150 IF (NPTRIG(NTRIG) .GT. 0) GO TO 600 70 GO TO 100 900 CALVELO = CALVELO/NSAMPLE NPTSWP = NPTSWP / NSWPS WRITE (6.5) NRECORZ. CAL VELO.NPTSWP 5 FORMAT (1H1.5X*DEVIATION FREQUENCY CALIBRATION*5X*NUMBER OF RECORDS 75 . USED FOR CALIBRATION*13/95x*WAVELENGTH X DEV. FREQ.*/10X*AVERAGE NUMBER OF POINTS TO DEVIATION FREQUENCY SX AVERAGE NUMBER OF POINT .5/5kP*5X*------ 95X*2 X POINTS TO DEV. FREQ.*/ . 32xF5.1.39x[3) CALVELO = (WAVLEN*DEVFREQ)/(2*CALVELO) 80 #RITE(6.6) CALVELO 6 FORMAT (1H+.104XF5.4) RETURN

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBPOUTINE NOISCAL TRACE
                  SUBROUTINE NOISCAL
                  COMMON/BNOISCA/FLYBACK . NOISREC . XNLEVEL (275)
                  COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2.
                                ZEROTHZ.WRIDATZ.NTAPEZ
                  COMMON/BLASER/NFLYBAC . NPTSWP
                  DIMENSION SUMPTS (300)
                  DO 100 I=1.NPTSWP
              100 SUMPTS(I) = 0.0
              150 CALL BUFLASZ
10
                  K = 1
                  JCOUNT = 0
              175 DO 200 I=K.LENARR2
                  IF (YLASER(I) .GT. FLYBACK) GO TO 300
              200 CONTINUE
15
                  IF (NRECOR2 .GE. NOISREC) GO TO 800
                  GO TO 150
              300 DO 400 J=I.LENARHZ
                  JCOUNT = JCOUNT + 1
                  IF (YLASER(J) .LT. FLYBACK) GO TO 450
              400 CONTINUE
20
                  IF INRECORZ .GE. NOISRECT GO TO 800
                  CALL BUFLASZ
                  1 = 1
                  60 TO 300
              450 IF (JCOUNT .GT. 15) GO TO 500
25
                  JCOUNT = 0
                  K=J
                  IF (K.LE. LENARRZ) GO TO 175
                  IF (NRECOR2 .GE. NOISREC) GO TO 800
31
                  GO TO 150
              500 M=1
              550 ISTART = J - 1
                  DO 600 K=ISTART.LENARR2
                  SUMPTS (M) = SUMPTS (M) + YLASER (K)
35
                  M=M+1
                  IF (4 .GT. NPTSWP - NFLYBAC) GO TO 700
              600 CONTINUE
                  IF INRECOR2 .GE. NOISREC) GO TO 800
                  CALL BUFLASE
                  J= 1
40
                  GO TO 550
              700 NSAMPLE = NSAMPLE + 1
                  JCOUNT = 0
                  IF (K .LE. LENARR2) GO TO 175
                  IF (NRECOR2 .LT. NOISREC) GO TO 150
45
              800 LAST = NPTSWP - NFLYBAC
                  DO 900 I = 1.LAST
              900 XNLEVEL (I) = SUMPTS(I) / NSAMPLE
                  WRITE (6.1) (XNLEVEL(I).I=1.LAST)
50
                 FORMAT (1HO./. NOISE LEVELS .. . (1x. 15 (F8.3)))
                  DO 1000 I=9+LAST
             1000 XNLEVEL (I) = 40.0
                  RETURN
```

END

PAGE

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                              PAGE
  SUBROUTINE BUFLASI TRACE
                  SUBROUTINE BUFLASI
                  COMMON/BBUFLA1/NTOTFI1.JCLOCK1.IEXIT.TIMADA.NREC
                  COMMON/BLOCK1/LENARRI.WINDIRE(100) .NRECORI.NFILE1.
                                ZEROTMI.DIRMIRR(100).VOLT(2.100).WRIDAT1
                  COMMON/BSKPEO1/LPACDA1.
                                                 IDENTI . NFLSKPI . NRCSKPI
                  COMMON/UNPK1/ITIME1+ICOMWRD(201)+IDATWRD(1000)
                  CORTIMI = 3H NO
              100 BUFFER IN(1.1) (ITIME1.ICOMARD(LPACDAL))
                  IF (UNIT(1)) 500.200.400
10
              200 WRITE(6.1) NRECORI.NFILE
               1 FORMAT (1HO. * THERE ARE*15" HECORDS ON FILE*13" UNIT 1. ENCOUNTERE
                 .D IN BUFLASIO)
                  NRECOR1 = 0
                  NFILE1 = NFILE1 + 1
                  IF (NFILE1 .GT. NTOTFII) GO TO 300
15
                  IF (IDENTI .EQ. 3HYES) CALL HEADERI
                  GO TO 100
              300 IEXIT= 3HYES
                  RETURN
20
              400 NRECOR1 = NRECOR1 + 1
                  LEN = LENGTH(1)
                  WRITE (6.2) NRECORIONFILEIOLEN
              2 FORMAT (1HO. * PARITY ERROR ON NEXT DATA, RECORD*15* FILE*14.5X* NU
                 .MBER OF COMPUTER WORDS*14)
25
                  IF (LEN .NE. LPACUAL) GO TO 100
                  CALL UNPAKI
                  CALL SORTI
                  IF (WRIDAT) .EQ. 3H NO) CALL DATWRIL
                  GO TO 600
              500 NRECOR1 = NRECOR1 + 1
30
                 LEN = LENGTH(1)
                  IF (LEN .NE. LPACDAL) GO TO 700
                  CALL UNPAKI
                  CALL SORTI
35
              600 IF (NRECOR) .EQ. 1) ZEROTHI = ITIME!
                  IF (ITIME1-999999 .GT. -12000) CORTINI=3HYES
                  ITIME1 =ITIME1 +JCLOCK1+999999 + TIMADA/(NREC-1)+(NRECOR1-1)
                  IF (CORTIMI .EQ. 3HYES) JCLOCK1 = JCLOCK1 . 1
                  RETURN
              700 WRITE (6.3) NRECORI . NFILE 1.LEN
              3 FORMAT (1HO. * RECORD ENCOUNTERED OF IMPROPER LENGTH ON UNIT 1. RECO
                 .RD*I4* FILE*12* NUMBER OF COMPUTER WORDS*14)
                  GO TO 100
              800 RETURN
                  END
```

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02. SUBPOUTINE HEADER1 TRACE SUBROUTINE HEADER1 COMMON/BLOCK1/LENARRI.WINDIRE(100).NRECORI.NFILE1. ZEROTHI.DIRMIRR(100).VOLT(2.100).WRIDATI COMMON/BHEAD1/ID(9) 50 BUFFER IN(1.0)(ID(1).ID(9)) IF (UNIT(1))300.200.100 200 PRINT 1.NFILE1 1 FORMAT (1HO. * EOF READ IN HEADER ON FILE 12 UNIT 1+) GO TO 50 100 PRINT 2. NFILE1 10 2 FORMAT(1HO+ PARITY ERROR IN HEADER ON FILE*12* UNIT 1*) 300 LEN = LENGTH(1) PRINT 3. NFILE1. (ID(I). I=1.2).LEN 3 FORMAT (1HO. . ID ON UNIT 1. FILE . IS . ZAIO. NUMBER OF COMPUTER W 15 .ORDS+14) RETURN END

.

•

.

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02. SUBROUTINE SORTI TRACE SUBROUTINE SORTI COMMON/BSORT1/IBEGSK1.ISKIP1.FACTOR1 COMMON/BLOCK1/LENARRI.WINDIRE(100) .NRECORI.NFILE1. ZEROTMI.DIRMIRR(100).VOLT(2.100).WRIDAT1 COMMON/UNPK1/ITIME1.ICOMWRD(201).IDATWRD(1000) M= IBEGSK1 DO 100 I=1.LENARR1. WINDIRE(I) = IDATWRD(M) * FACTOR1. VOLT(1,1) = IDAT#RD(M+1) * FACTOR1 DIRMIRR(I) = IDATWRD(M+2) * FACTOR1 10 VOLT(2,1) = IDATWRD(M+3) * FACTOR1 100 M= M+ ISKIPI IF (WRIDATI .EQ. 3HYES) CALL DATWRIL RETURN

15

END

.

•

•

•

.

TRACE

SUBROUTINE DATWRII TRACE

END

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

SUBROUTINE DATWRIL COMMON/BLOCK1/LENARR1.WINDIRE(100).NRECOR1.NFILE1. ZEROTM1.DIRMIRR(100).VOLT(2.100).WRIDAT1 COMMON/UNPK1/ITIME1.ICOMWRD(201).IDATWRD(1000) WRITE (6.1) NRECORT.ITIMET FORMAT (1H1.* RECORD NUMBER *14.6X* ITIME1*16) WRITE (6.2) (VOLT(1.1). [=1.LENARR1) FORMAT (1H0./.(1X.10(F10.5.2X))) WRITE (6.2) (VOLT(2.1).I=1.LENARR1) WRITE (6.2) (WINDIRE(I), I=1.LFNARR1) WRITE (6.2) (DIRMIRR(I).I=1.LFNARRI) RETURN

SUBROUTINE BUFLAS2 TRACE

10

15

20

25

30

35

40

45

50

55

SUBROUTINE BUFLASZ

CORTIM2 = 3H NO

NRECOR2 = 0

GO TO 100 250 NTAPEZ = NTAPEZ + 1

NFILE2 = 1

NTOTFIZ = 1CALL UNLOADW(2) JCLOCK2 = 0 IEXTIME = ISTORTM 260 GO TO (220.230.240) .NTAPE2

220 NTOTHEC = NHEC2 SLUAMIT = LUAPIT GO TO 225 230 NTOTREC = NREC3 ELGAMIT = LOAMIT

GO TO 225 240 NTOTREC = NREC4 TIMADJ = TIMADJ4 GO TO 225 300 NRECOR2 = NRECOR2 +1

LEN = LENGTH(2)

CALL UNPAKE CALL SORTZ

GO TO 500 400 NRECOR2 = NRECOR2 + 1

LEN = LENGTH(2)

.OF COMPUTER WORDS 14)

IF (LEN .EQ. LPACDAZ) GO TO 450 WRITE (6.4) LEN. NRECORZ. NFILEZ. NTAPEZ

4 FORMAT (1HO. * ENCOUNTERED RECORD OF IMPROPER LENGTH. LENGTH WAS*13* . COMPUTER WORDS. THIS OCCURRED ON RECORD*15. FILE*12. TAPE*12. ON

COMMON/BSKPEOZ/LPACDAZ.

IF (UNIT(2)) 400,200.300

NFILE2 = NFILE2 + 1

TIMADJ3.TIMADJ4

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBROUTINE BUFLAS2 TRACE
                 .UNIT 20)
                 GO TO 100
             450 CALL UNPAKE
                 CALL SORTZ
             500 IF (NTOTREC .EQ. 0) RETURN
60
                  IF (NRECOR2 .EQ. 1) ZEROTM2 = ITIME2
                  IF (ITIME2 - 999999 .GT. -935) CORTIM2 = 3HYES
                 ITIME2 = ITIME2 + JCLOCK2*99999+(TIMADJ/(NTOTREC-1))*(NRECOR2-1)
                . . IEXTIME
             550 IF (CORTING .EQ. 3HYES) JCLOCK2 = JCLOCK2 + 1
65
                  ISTORTM = ITIME2
                 IF (NRECOR2 .LE. NTOTREC) RETURN
                 WRITE (6.2) NRE COR2.NTAPE2
             2 FORMAT (1HO.5X*REACHED RECORD*15* ON TAPE*12* WITHOUT EOF*)
                  GO TO 200
70
              600 IF (WRITAPE .NE. 3HYES) CALL FXIT
                 LENARR2 = 1
                  CALL LASWRIT
              700 ENDFILE 3
75
                 ENDFILE 3
                 ENDFILE 3
                 ENDFILE 3
                 REWIND 3
                 CALL EXIT
                 RETURN
81
                 END
```

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02. SUBROUTINE HEADERS TRACE SUBROUTINE HEADER2 COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2. ZEROTHZ.WRIDATZ.NTAPEZ COMMON/BHEAD2/ID(9) 50 BUFFER IN(2.0) (ID(1).ID(9)) IF (UNIT(2)) 300.100.200 100 PRINT 1.NFILEZ.NTAPEZ 1 FORMAT (1HO. * EOF IN HEADER ON FILE*12* TAPE*12* ON UNIT 2.*) GO TO 50 200 PRINT 2. NFILEZ.NTAPEZ 10 2 FORMAT(1HO. PARITY ERROR IN HEADER ON FILE*12* TAPE*12* UNIT 2*) 300 LEN = LENGTH(2) PRINT 3. NFILEZ. NTAPEZ. (ID(I) . I=1.2) . LEN FORMAT (1HO. . ID ON FILE-12- TAPE-12- UNIT 2 IS -2A10- NUMBER OF CO .MPUTER WORDS+14) 15 RETURN

¥ ...

END

•

•

SUBROUTINE SORTE TRACE

RETURN END

10

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

1

SUBROUTINE SORT2
COMMON/BSORT2/IBEGSK2.ISKIP2
COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2.
ZEROTM2.WRIDAT2.NTAPE2
COMMON/UNPK2/ITIME2.LCOMWRD(601).LDATWRD(3000)
M=IBEGSK2
DO 100 I=1.LENARR2
SYNC(I) = LDATWRD(M)
YLASER(I) = LDATWRD(M+1)*(-1.0)
100 M=M*ISKIP2
IF (WRIDAT2 .EQ. 3HYES) CALL DATWRI2

9

. .

SUBROUTINE DATWRIZ TRACE

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

SUBROUTINE DATWRIZ COMMON/BLOCKZ/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2. ZEROTM2.WRIDAT2.NTAPE2 COMMON/UNPKZ/ITIMEZ.LCOMWRD(601).LDATWRD(3000) WRITE (6.1) NRECOR2.ITIMEZ 1 FORMAT (1H1. * RECORD NUMBER * 14 * ITIME 2= * 16) WRITE (6.2) (SYNC(1):1=1.LENARR2) 2 FORMAT (1H0./.(1X.10(F10.5.1X))) WRITE (6.2) (YLASER(I). I=1.LENARR2)

END

RETURN

10

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                                          PAGE
              SUBROUTINE SKPEOF1
                                   TRACE
                              SUBROUTINE SKPEOF1
                              COMMON/BLOCKI/LENARRI.WINDIRE(100).NRECORI.NFILEI.
                                             ZEROTM1.DIRMIRR(100).VOLT(2.100).WRIDAT1
                              COMMON/UNPK1/ITIME1.ICOMWRD(201).IDATWRD(1000)
                                                              IDENTI . NFLSKPI . NRCSKPI
                              COMMON/BSKPEO1/LPACDA1.
                              NREC = 0
                              IF (NFLSKP1 .LE. 0) GO TO 500
                              NFILSKP = 1
                          100 BUFFER IN(1.1)(ITIME1.ICOMWRD(LPACUAL))
                              IF (UNIT(1)) 300,400,200
            10
                          200 LEN = LENGTH(1)
                              NREC = NREC + 1
                              NRECOR1 = NRECOR1 + 1
                              WRITE (6.2) NYECORI . NFILEI . NFLSKPI . NREC . LEN
                          2 FORMAT(1HO.* PARITY ERROR IN RECORD*14* FILE*12* ON UNIT 1. ENCOU
            15
                              .NTERED WHILE SKIPPING FILE*13/
                                                                  5X* NUMBER RECORDS SKIPPED*13*.
                              . LENGTH OF RECORD#14* COMPUTER WORDS*)
                              GO TO 100
                          300 LEN = LENGTH (1)
                              NREC = NREC + 1
            20
                              NRECOR 1 = NRECOR1 . 1
                                                         WRITE (6.3) LPACDAL . LEN. NRECORL . NFILEL .
                              IF (LEN .NE. LPACDAL)
                           3 FORMAT(1HO. * A RECORD WAS ENCOUNTERED WITH LENGTH NOT EQUAL TO-14*
                              . COMPUTER WORDS. LENGTH WAS*14*.*/5X* RECORD*14* FILE*12* ON UNIT
            25
                             .1. NUMBER OF RECORDS SKIPPED-14)
                              GO TO 100
                          400 WRITE (6,4) NRECORI + NFILEI + NREC + NFILSKP + NFLSKPI
                           4 FORMAT(1HO.5X*THERE WERF*IS* RECORDS ON FILE*12* UNIT 1.*/5X13* RE
                              .CORDS SKIPPED ON THIS FILE. TOTAL NUMBER OF FILES SKIPPED+12+ TOT
            30
                              .AL NUMBER TO BE SKIPPED+12)
                              NFILE 1= NFILE1 + 1
                              NFILSKP = NFILSKP + 1
                              NREC = 0
                              NRECOR1 = 0
)
            35
                              IF (IDENTI .EQ. 3HYES) CALL HEADERI
                              IF (NFILSKP .LE. NFLSKP1) GO TO 100
                              IF (NRCSKP1 .GT. 0) GO TO 500
                              RETURN
                          500 DO 900 I=1.NRCSKP1
                              BUFFER IN(1.1) (ITIME1.ICOMWRD(LPACDAL))
                              IF (UNIT(1))800.700.600
                          600 LEN = LENGTH (1)
                              NREC = NREC + 1
            45
                              NRECOR1 = NRECOR1 . 1
                              WRITE (6.5) NRECORI.NFILEI.NREC.NRCSKPI.LEN
                           5 FORMAT(1HO. PARITY ERROR IN RFCORD-14+ FILE-12- ON UNIT 1.-/5X+ NU
                              .MBER RECORDS SKIPPED*14* NUMBER RECORDS TO BE SKIPPED*13*. LENGTH
                             . OF RECORD WAS*I+* COMPUTER WORDS.*)
                              GO TO 900
            50
                          700 WRITE (6.6) NRCSKP1+NREC+NRECOR1+NFILE1
                           6 FORMAT (1HO. * EOF READ WHILE TRYING TO SKIP*13* RECORDS. *14* RECORDS
                             .S HAVE SEEN SKIPPED. RECORD NUMBER 14 FILE 12 ON UNIT 10)
                              GO TO 900
                          800 NREC = NREC + 1
            55
```

0

0

SUBROUTINE SKPEOF1 TRACE

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

PAGE

NRECOR 1= NRECOR1 . 1 LEN = LENGTH(1) IF (LEN .NE. LPACDAL)

WRITE(6.3)LPACDAL.LEN.NRECORL.NFILEL. NREC

900 CONTINUE 60

WRITE(6+7) NREC+NRCSKP1+NRECOR1+NFILE1
7 FORMAT(1H0+* COMPLETED SKIPPING*14* RECORDS. NUMBER OF RECORDS TO

. HAVE BEEN SKIPPED*14/5X* RECORD NUMBER*15* FILE*12* ON UNIT 1*)
RETURN

END 65

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBROUTINE SKPEOF2
                       TRACE
                  SUBROUTINE SKPEOF2
                  COMMON/BSKPEO2/LPACDA2+
                                                 NTOTF 12. IDENT2. NFLSKP2. NRCSKP2.
                                 NTOTAPE. IEXITZ. NTOTREC. TIMADJ
                  COMMON/BBUFLAZ/JCLOCK2.IEXTIME.NREC2.NREC3.NREC4.TIMADJ1.TIMADJ2.
                                 TIMADJ3.TIMADJ4
                  COMMON/BLOCK2/LENARR2.SYNC(1500).YLASER(1500).NRECOR2.NFILE2.
                                ZEROTM2.WRIDAT2.NTAPE2
                  COMMON/UNPK2/ITIME2.LCOMWRD(601).LDATWRD(3000)
                  NREC = 0
                  IF (NFLSKP2 .LE. 0) GO TO 600
10
                  NFILSKP = 1
              100 BUFFER IN(2.1) (ITIMEZ.LCOMWRD(LPACDAZ))
                  IF (UNIT(2)) 300,400,200
              200 NREC = NREC + 1
                  LEN = LENGTH(2)
15
                  NRECOR2 = NRECOR2 + 1
                  WRITE (6.2) NFILEZ.NTAPEZ.NRECORZ.NREC.LEN
               2 FGRMAT(1HO. * PAHITY ERROR OCCURRED WHILE SKIPPING RECORDS ON FILE
                 .NUMBER *12 * OF TAPE *12 * UNIT 2. */5X * THE RECORD NUMBER IS *15 . 2X13 *
                 .RECORDS HAVE BEEN SKIPPED. THE RECORD LENGTH WAS*14* COMPUTER WOR
20
                 .05*1
                  GO TO 100
              300 NREC = NREC + 1
                  NRECOR2 = NRECOR2 . 1
25
                  LEN = LENGTH(2)
                  IF (LEN .NE. LPACDAZ) WRITE(6.3)LPACDAZ.LEN.NRECORZ.NF1LEZ.NTAPEZ.
               3 FORMAT (1HO, . LENGTH OF A RECORD WAS NOT EQUAL TO-14 COMPUTER WORD
                 .S. IT CONTAINED+14+ COMPUTER WORDS.+/5X+ THIS OCCURRED WHEN RECOR
                 .D. 15. WAS SKIPPED ON FILE.
                                                  12. TAPE+12. UNIT 2. TOTAL NUMBER
30
                 . OF RECORDS SKIPPED*13)
                  GO TO 100
              400 WRITE (6,4) NRECORZ.NFILEZ.NTAPEZ.NREC.NFILSKP.NFLSKPZ
                 FORMAT (1HO.5X THERE WERE 15" RECORDS ON FILE 12" TAPE 12" UNIT 2."/
                 ./5x13* RECORDS SKIPPED ON THIS FILE . TOTAL NUMBER OF FILES SKIPP
35
                 .ED.12. TOTAL NUMBER TO BE SKIPPED.12)
                  NFILE2 = NFILE2 + 1
                  NFILSKP = NFILSKP + 1
                  IF (NFILEZ .LE. NTOTFIZ) GO TO 500
                  NTAPE2 = NTAPE2 + 1
                  IF (NTAPEZ .LE. NTOTAPE) GO TO 450
                  IEXIT2 = 3HYES
                  RETURN
              450 NTOTF12 = 1
                  CALL UNLOADW(2)
                  NFILE 2= 1
                  NRECOR 2= 0
                  NREC = 0
              475 GO TO (480,485,490) .NTAPE2
50
              480 NTOTREC = NREC2
                  SLOAMIT = LOAMIT
                  GO TO 495
              485 NTOTREC = NKEC3
                  TIMADJ = TIMADJ3
```

GO TO 495

55

0

.

PAGE

6.

```
SUBROUTINE SKPEOF2 TRACE
                                                      CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
                                                                                                              PAGE
              490 NTOTREC = NREC4
                  TIMADJ = TIMADJ4
             495 IF (IDENT2 .EQ. 3HYES) CALL HEADER2
                  IF (NFILSKP .LE. NFLSKP2) GO TO 100
                  IF (NRCSKP2 .GT. 0) GO TO 600
                  RETURN
              500 NRECOR2 = 0
                  NREC = 0
                  IF (NFILE2 .EQ. NTOTF 12) GO TO 475
                  IF (IDENT2 .EQ. 3HYES) CALL HEADER2
65
                  IF (NFILSKP .LE. NFLSKP2) GO TO 100
                  IF (NRCSKP2 .GT. 0) GO TO 600
                  RETURN
              600 DO 1000 I=1.NRCSKP2
                  BUFFER IN(2+1) (ITIME2+LCOMWRD(LPACDAZ))
70
                  IF (UNIT(2)) 900.800.700
              700 LEN = LENGTH(2)
                  NREC = NREC + 1
                  NRECOR2 = NRECOR2 . 1
                  WRITE(6.5) NRECOR2.NFILEZ.NTAPEZ.NREC.LEN
75
               5 FORMAT (1HO. * PARITY ERROR OCCURRED WHILE SKIPPING RECORDS. RECORD
                 . NUMBER - 15 + FILE - 12 - TAPE - 12 - ON UNIT 2 - - /5x14 - RECORDS HAVE BEEN
                 .SKIPPED. LENGTH OF RECORD WAS*14* COMPUTER WORDS.*)
                  GO TO 1000
80
              800 WRITE (6.6) NREC.NRECORZ.NFILEZ.NTAPEZ
                 FORMAT (1HO. AN EOF WAS ENCOUNTERED WHILE SKIPPING RECORDS. 15. RE
                 .CORDS HAVE BEEN SKIPPED.*/5X* RECORD NUMBER*15* OF FILE*12* ON TAP
                 .E . 12 . OF UNIT 2. ..
                  GO TO 1000
85
              900 NREC = NREC + 1
                  NRECOR2 = NRECOR2 + 1
                  LEN = LENGTH(2)
                  IF (LEN .NE. LPACDAZ)
                                           WRITE (6.3) LPACDAZ. LEN. NREC. NFILEZ. NTAPEZ.
                                                    NRECOR2
             1000 CONTINUE
90
                  WRITE (6.7) NREC . NRCSKP2 . NRECOR2 . NFILEZ . NTAPE2
              7 FORMAT (1HO. * COMPLETED SKIPPING 14 * RECORDS. NUMBER OF RECORDS TO
                 . HAVE BEEN SKIPPED-14" RECORD NUMBER-15" FILE-12" TAPE-12" ON UN
                 .IT 20)
                  RETURN
                  END
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
 SUBROUTINE CONSTMR
                       TRACE
                  SUBROUTINE CONSTMR
                  COMMON/BCONSTM/NAVEMIR.DIRECHR.CHGMIR.TIMEMIR
                  COMMON/BLOCK1/LENARRI.WINDIRE(100).NRECORI.NFILE1.
                                ZEROTMI.DIRMIRR(100).VOLT(2.100).WRIDAT1
                  COMMON/BCALIBR/SLOPE(2).ZEROTAP(2).SLOPEAN.ANINTER.SLOPEHW.
                                 SLOPEWD . WDINTER . SLOPEMD . DMINTER
                  AVENIR = 0
                  NRECOR1 = 0
                  CALL BUFLASI
              100 CALL BUFLASI
10
                  DO 200 K=1.LENARRI
              200 AVEMIR = AVEMIR + DIRMIPR(K)
                  IF (NRECOR) .LE. NAVEMIR) GO TO 100
                  DIRECMR = AVEMIR/(LENARRI*NAVEMIR)
15
                  LAST= NAVEMIR + 1
                  DO 300 I=1.LAST
                  BACKSPACE 1
              300 CONTINUE
                  READ (5.1) CHGMIR.TIMEMIR
               1 FORMAT (A3.F6.2)
20
                  WRITE (6.2) NHECORI. DIRECMR. SLOPEMD. UMINTER
               2 FORMAT (1HO . 5X MIRROR DIRECTION SX NUMBER OF RECORDS USED FOR AVERA
                 .GE*13/ 10X*AVERAGE VOLTAGE*5X*SLOPE*5X*INTERCEPT*5X*DIRECTION.DEGR
                 .EES*/14xF7.3.9xF7.3.5xF5.3)
                  DIRECHR = SLOPEMO+DIRECHR + DMINTER + 180
25
                  WRITE (6.3) DIRECMR
               3 FORMAT (1H+.59XF7.3)
                  NRECOR1 = 0
                  RETURN
                  END
30
```

PAGE

..

APPENDIX A-2

Computer Program for Determination of Velocity Profiles

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
                                                                                                                    PAGE
                          TRACE
  PROGRAM
               ANEVEL
                   PROGRAM ANEVEL (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE1 + FILMPL)
                   COMMON TIME (101) . VELOC (6.100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT
                   COMMON /BCAIBR/ NCALVAL. ACTVOLT(5).SLOPE(6).ZEROTAP(6).
                                    STANDEV (6.5) . VARI
                   COMMON/BBUFANE/IDENT. IPARITY . LPACDAT. EOFMUL. NTOTFIL. PLOT
                   COMMON/BSORT/IBEGSKP, WRITDAT. ISK IP, FACTOR
                   COMMON/BYOL TAD/ICHANGE. SCALE (A). ZEROACT (6). VOL TCHG. TIMECHG.
                                   ISCALE (6)
                   COMMON/BPLOTVE/ELEV(6), SUMAVE(6), ISAMPLE, LABELX(4), LABELY(4),
                                   LTITLE (4) . MULTIME . IDATAPT
10
                   COMMON/ASKIPEO/NFILSKP+NRECSKP
                   COMMON/UNPK/ITIME + ICOMWRD(200) + IDATWRD(1000)
                   DATA LABELX/40H
                                                VELOCITY . M/SEC
                        +LABELY/40H
                                                  FLEVATION. M
                                               VELOCITY PROFILE
                        .LTITLE/40H
15
                   REWIND 1
                                  IDENT, WRITAP, EOFMUL, WRITDAT, WRITPAP, PLOT, VOLTCHG,
                   READ (5.1)
                              LPACDAT . NCHANNC . NCAL VAL . ISKIP . IBEGSKP . LENARR . NTOTFIL .
                              PLOTIME, AVETIME, (15CALE(1), I=1.6), (ELEV(I), I=1.6), VARI,
                              DIGRAT, (ACTVOLT(1), 1=1,5), TIMERAT, CHANNEL, TIMECHG.
20
                              INSTCAL . TAPECAL
                   FORMAT (3x,743.714,2F5.3,6(12)./.6(F6.2).2F5.2.5(F5.1).3F3.1/2A3)
                                  IDENT. WRITAP, EUF MUL. WRITDAT, WRITPAP, PLOT. VOLTCHG,
                              LPACDAT, NCHANNC, NCAL VAL, ISK IP, IBEGSKP, LENARR, NTOTFIL,
                              PLOTIME . AVETIME . (ISCALE (1) . I=1.6) . (ELEV (1) . I=1.6) . VARI.
25
                              DIGRAT . (ACTVOLT(I) . I=1.5) . IIMERAT . CHANNEL . TIMECHG .
                              INSTCAL , TAPECAL
                3 FORMAT(1HO. IDENT = A4 WRITAP = A4 EOFMUL = A4 WRITDAT = A4 W
                  *RITPAP =*A4* PLOT =*A4* VOLTCHG =*A4/* LPACDAT =*14* NCHANNC =*12*
                  . NCALVAL =*12* ISKIP =*13* IHFGSKP =*13* LENARR =*14* NTOTFIL =*12
31
                  ./* PLOTIME = F5.1 AVETIME = F5.1 ISCALE(1 THRU 6) = 612/* ELEV(1
                  . THRU 6) =*6F6.2* VARI =*F4.2* DIGHAT =*F5.1/* ACTVOLT(1 THRU 5) =
                   .*SF5.1* TIMRAT =*F4.1* CHANNE! =*F4.1* TIMECHG =*F3.1/* INSTCAL =*
                  .A4* TAPECAL =*A4)
                   IF (IDENT.EQ. 3HYES) CALL HEADER
35
                   IEXIT = 3H NO
                   CORTIME = 3H NO
                   JCLOCK = 0
                   ZEROTIM = 0.0
                   ICHANGE = 0
40
                   FACTOR = SORT(2.)/(2.**9 - 1.0)
                   MULTIME = 1
                   NRECOR = 0
                   BADDATA = 3H NO
                   NEXTPTS = 0
45
                   NFILE = 1
                   IPARITY = 0
                   ISAMPLE = 0
                   DO 100 I=1.NCHANNC
               100 SUMAVE(I) = 0.0
51
                   IF (TAPECAL .EQ. 3HYES) CALL CALIBRA
                   IF (INSTCAL .NE. 3HYES) GOTO 102
                   NFILSKP = 1
                   NRECSKP = 0
55
                   CALL SKIPEOF
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  PROGRAM
              ANEVEL
                        TRACE
              102 CALL VOLTADJ
              103 CALL BUFANE
                  IF (IEXIT .EQ. 3HYES) TIME(IDATAPT-1) = TIME(IDATAPT-1) + 0.1
                  IF (IEXIT .EQ. 3HYES) CALL PLOTVEL
                  IF (NRECOR .EQ.1 .AND. ITIME .NE. 0) ZEROTIM = ITIME
60
                  IF ((ITIME - 999999) .GT. -12000) CORTIME = 3HYES
                  ITIME = ITIME + JCLOCK * 999999
                  IF (CORTINE .EQ. 3HYES) JCLOCK = JCLOCK + 1
                  CORTIME = 3H NO
                  IDATAPT = 1
65
              105 DO 110 I=1.NCHANNC
                  VELOC(I.IDATAPT) = SLOPE(I) * VELOC(I.IDATAPT) . ZEROTAP(I)
             110 VELOC(I.IDATAPT) = (VELOC(I.IDATAPT) *SCALE(I) *ZEROACT(I))*0.3048
                  TIME (IDATAPT) = TIMERAT*((ITIME -ZEROTIM)/10000.+((IDATAPT-1)*
                                CHANNEL)/DIGRATI
71
                  IF (TIME (TOATAPT) .GE. TIMECHG .AND. VOLTCHG .EQ. 3HYES)
                       CALL VOLTADJ
                  IDATAPT = IDATAPT + 1
                  IF (AVETIME . MULTIME . LE. TIME (IDATAPT-1) . AND. PLOT
75
                       .EQ. 3HYES) GO TO 120
                  IF ( IDATAPT .LE. LENARR) GO TO 105
                  IF (WRITPAP .EQ. JHYES) GO TO 134
                  IF (WRITAP .EQ. 3HYES) GO TO 135
                  GO TO 103
              120 DO 130 I= 1.NCHANNC
80
              130 SUMAVE(1) = SUMAVE(1) + VELOC(1.IDATAPT-1)
                  ISAMPLE = ISAMPLE + 1
                  IF ( TIME (IDATAPT-1) .GE. PLOTIME MULTIME) CALL PLOTVEL
                  IF (IDATAPT .LE. LENARR) GO TO 105
85
                  IF (WRITPAP .EQ. 3HYES) GO TO 134
                  IF (WRITAP .EQ. 3HYES) GO TO 135
                  GO TO 103
              134 WRITE (6.2)
              2 FORMAT(1H1.4X* TIME.SECS*10X* VELOCITIES.M/SEC*4X* LEVEL 1*4X
                         * LEVEL 2*4X* LEVEL 3*4X* LEVEL 4*4X* LEVEL 5*4X* LEVEL 6*
90
                         111
                  WRITE (6.4) (TIME(J), (VFLOC(I.J), I=1.6), J=1.LENARR)
              4 FORMAT (1H .100(4x.F10.3.28x.6(F6.3.6x)/))
                  GO TO 103
              135 CONTINUE
              140 CONTINUE
                  END
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.44.
                                                                                                                 PAGE
  SUBROUTINE CALIBRA TRACE
                   SUBROUTINE CALIBRA
                   COMMON TIME (101) . VELOC (6,100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT
                   COMMON /BCAIHR/ NCALVAL. ACTVOLT(5).SLOPE(6).ZEROTAP(6).
                                   STANDEV (6.5) . VARI
                   DIMENSION SUMCAL (6) . SUMTAP(6) . SQVALUE(6) . SUMACT(6) . ACT X TAP(6) .
                             SUNSQ (6.5) . RECHEAN (6) . TOTHEAN (6.5) . TEPHEAN (6) . SUMEAN (6) .
                             TEMPSUM (6)
                   ICHECK = 0
                   NSAMPLE = 0
                   LASTCAL = 0
10
                   ICALVAL = 1
                   DO 100 I=1. NCHANNC
                   SUMEAN(I) = 0.0
                   TEMPSUM(1) = 0.0
                   SUMCAL(I) = 0.0
15
                   SUMACT(1) = 0.0
                   SUMTAP(I) = 0.0
                   SQVALUE(I) = 0.0
                   ACT \times TAP(I) = 0.0
                   TEPMEAU(I) = 0.0
20
                   RECMEAN(I) = 0.0
                   DO 100 J=1, NCALVAL
                   TOTMEAN(I.J) = 0.0
              100 SUMSO(I.J) = 0.0
25
              105 CALL BUFANE
                   GOTOBUF = 3H NO
                   IF (ICALVAL .EQ. NCALVAL) LASTCAL = LASTCAL + 1
                   DO 110 K=1.LENARR
                   DO 110 I=1. NCHANNC
             110 SUMCAL(I) = SUMCAL(I) + VELOC(I+K)
30
                   IF (ICHECK .GT. 0) GO TO 131
                   NSAMPLE = NSAMPLE . 1
                   DO 125 I=1. NCHANNC
                   RECHEAN(I) = SUMCAL(I)/LENARR
                   IF (NRECOR .EQ. 1) GO TO 120
35
                   IF (RECMEAN(I) .GT. TOTMEAN(I.ICALVAL) + VARI .OR. RECMEAN(I) .LT.
                       TOTMEAN(I+ICALVAL) - VARI) GO TO 130
              120 IF (1 .EQ. 1) WHITE (6.1) NRECOR. ICALVAL. ACTVOLT (ICALVAL)
               1 FORMAT (1H0.5X*RECORD MEANS*4X*RECORD NUMBER*14.7X*CALIBRATION*12.4
                  .x+1';PUT VALUE*F5.1/11X+CHANNEL+10X+MEAN+13X+CUMULATIVE MEAN+6X+NUM
40
                  .BER RECORDS FOR CUMULATIVE MEAN+)
                   DO 123 K=1.LENARR
              123 SUMSO(I.ICALVAL) = SUMSO(I.ICALVAL) + VELOC(I.K)**2
                   SUMEAN(I) = SUMEAN(I) + RECMEAN(I)
45
                   SUMCAL(I) = 0.0
                   TOTMEAN(I . ICALVAL) = SUMEAN(I)/NSAMPLE
              125 WRITE (6.2) I. RECHEAN (1) . TOTHEAN (I. ICALVAL) . NSAMPLE
                  FORMAT (1H .12x.12.10x.FH.4.14x.FH.4.25X13)
                   GO TO 105
50
              130 NSAMPLE = NSAMPLE - 1
                   ICALVAL = ICALVAL + 1
              131 IF (ICALVAL .GT. NCALVAL .AND. LASTCAL .GT. 3) GO TO 160
                   ICHECK = ICHECK . 1
                   WRITE(6.3) NRECOR. ICALVAL. ACTVOLT(ICALVAL)
```

FORMAT (1HO.5% TEMPORARY MEANS BY RECORD NUMBER 14.10% CALIBRATION

55

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
                                                                                                                 PAGE
   SUBROUTINE CALIBRA
                        TRACE
                  . I2.4X*INPUT VALUE*F5.1/11X*CHANNEL*10X*MEAN*)
                    DO 140 1=1. NCHANNC
                   RECMEAN(I) = SUMCAL(I)/LENARR
                    WRITE(6.4) I.RECMEAN(I)
                   FORMAT (1H .12X12.10XF8.4)
60
                    SUMCAL(I) = 0.0
                    IF (ICHECK .EQ. 1) GO TO 135
                    DO 137 K=1.LENARR
               137 SUMSO([, ICALVAL)=SUMSQ([, ICALVAL) + VELOC([,K)**2
                    TEMPSUM(I) = TEMPSUM(I) + RECHEAN(I)
 65
               135 IF (RECMEAN(I) .GT. TOTMEAN(I, ICALVAL-1) . VARI .OR. RECMEAN(I)
                         .LT. TOTMEAN(I.ICALVAL-1) - VARI) GOTOBUF=3HYES
               140 CONTINUE
                    IF (ICHECK.GT. 3) GO TO 160
 70
                    IF (GOTOBUF .EQ. JHYES) GO TO 105
                    DO 150 I=1. NCHANNC
                    TEMPSUM(I) = 0.0
               150 SUMSQ(I.ICALVAL)=0.0
                    ICHECK = 0
                    ICALVAL = ICALVAL - 1
 75
                    GO TO 105
               160 IEND = ICALVAL - 1
                    WRITE(6.5) IEND. ACTVOLT(IEND)
                   FORMAT (1HO.5x*STANDARD DEVIATIONS*10x*CALIBRATION*12.5X*INPUT VALU
 HO
                   .E .F5.1/11X . CHANNEL . 10X . RMS.)
                   DO 170 1=1. NCHANNC
                   STANDEV(I.ICALVAL-1) = SORT(SUMSQ(I.ICALVAL-1)/(NSAMPLE*LENARR) -
                                               TOTMEAN(I.ICALVAL-1)**2)
               170 WRITE (6.6) I.STANDEV (1. IEND)
               6 FORMAT (1H .12x12.7xF9.3)
 85
                    NSAMPLE = ICHECK - 1
                    DO 175 I=1.NCHANNC
                    SUMEAN(I) = TEMPSUM(I)
                    TOTMEAN(I.ICALVAL) = TEMPSUM(I)/NSAMPLE
               175 TEMPSUM(1) = 0.0
 90
                   ICHECK = 0
                    IF (ICALVAL .LE. NCALVAL) GO TO 105
               180 WRITE (6.7) NRECOR
               7 FORMAT (1HO.5X*ACTUAL VS TAPE VOLTAGE*10X*LEAST SQUARE METHOD*5X*NU
                   .MBER RECORDS USED FOR CALCULATIONS+13)
                   DO 200 I=1. NCHANNC
                   DO 190 J=1. NCALVAL
                    SUMTAP(I) = SUMTAP(I) + TOTMEAN(I+J)
                    SQVALUE(I) = SQVALUE(I) + TOTMEAN(I.J) ++2
                    ACT x TAP(1) = ACT x TAP(1) + TOTMEAN(1.J) ACTVOLT(J)
100
               190 SUMACT(1) = SUMACT(1) + ACTVOLT(J)
                    SLOPE(1) = (SUMACT(1) *SUMTAP(1) -NCALVAL*ACT X TAP(1))/
                               (SUMTAP(I) ** 2-NCAL VAL * SQVALUE(I))
                    ZEROTAP(I) = (SUMTAP(I) *ACT x TAP(I) - SUMACT(I) *SQVALUE(I))/
105
                                (SUMTAP(I) .. 2- NCALVAL . SQVALUE(I))
                    WRITE(6.8) I. (ACTVOLT(J).TOTMEAN(I.J).J=1 .NCALVAL)
                  FORMAT (1HO.10x°C H A N N E L+13/15x°VALUES USED FOR LEAST SQUARE
                   .CALCULATIONS . 10x . INPUT VALUE . CX . TAPE VALUE . (69XF4.1.11XF6.3))
               200 WRITE (6.9) SLOPE (1) . ZEROTAP (1)
               9 FORMAT(1H .15X .VALUES OBTAINED FROM LEAST SQUARE CALCULATIONS .TX ...
110
```

SUBROUTINE CALIBRA TRACE

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.

PAGE

3

.LOPE*8X*INTERCEPT*/68XF5.3.11xF5.3)
RETURN
END

•

•

.

•

•

.

•

•

•

•

•

•

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  SUBROUTINE BUFANE
                         TRACE
                  SUBROUTINE BUFANE
                  COMMON TIME (101) . VELOC (6.100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT
                  COMMON/BRUFANE/IDENT. IPARITY . L PACDAT. EOFMUL. NTOTFIL. PLOT
                  COMMON/UNPK/ITIME . ICOMWRD(200) . IDATWRD(1000)
              100 DO 105 I=1.LPACDAT
              105 \text{ ICOMWRD}(I) = 0
                  LUNPDAT = LPACDAT . 5
                  DO 110 I = 1.LUNPDAT
              110 IDAT#RD(I) = 0
10
              115 NRECOR = NRECOR + 1
              120 BUFFER IN (1.1) (ITIME. ICOMWRD (LPACDAT))
              125 IF (UNIT(1)) 140.130.135
              130 NRECOR = NRECOR - 1
                  WRITE (6.1) NRECOR. NFILE
                  NRECOR = 0
15
                  NFILE = NFILE +1
                  IF (NFILE .GT. NTOTFIL) GO TO 136
                  IF (IDENT .EQ. 3HYES) CALL HEADER
                  GO TO 100
20
              135 IPARITY = IPARITY + 1
                  WRITE (6,2) NRECOR, NFILE
                  NRECOR = NRECOR - 1
                  WRITE (6,3) IPARITY
                  GO TO 115
              136 IF (PLOT .FQ. 3HYES) IEXIT = 3HYES
25
                   IF (PLOT .EQ. 3HYES) GO TO 150
                  CALL EXIT
              140 CALL UNPAK
                  CALL SORTANE
                  FORMAT (1HO. * THERE ARE *14* RECORDS ON FILE NUMBER*13)
30
                 FORMAT (1HO. * PARITY ERROR OCCURRED ON RECORD NUMBER*14* FILE NUMB
                                ER-13)
                  FORMAT (1HO.* THERE HAVE BEEN+13* PARITY ERRORS*)
              150 RETURN
                  END
35
```

SUBROUTINE HEADER

SUBROUTINE HEADER

COMMON TIME(101)*VELOC(6*100)*NCHANNC*LENARR*NFILE*NRECOR*IEXIT

COMMON/BHEADER/ID(2)

BUFFER IN(1**0)(ID(1)**10(2))

110 WRITE(6**2) NFILE

2 FORMAT(110*** PARITY ERROR OR EOF OCCURRED IN HEADER OF FILE NO**

13)

100 WRITE(6**1) ID**NFILE

1 FORMAT(111*** HEADER IN BINARY *2A10** ON FILE NUMBER *12)

120 RETURN

END

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49. . SUBROUTINE SORTANE TRACE SUBROUTINE SORTANE COMMON TIME(101) . VELOC(6,100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT COMMON/RSORT/IBEGSKP.WRITDAT.ISKIP.FACTOR COMMON/UNPK/ITIME . ICOMWRD (200) . IDATWRD (1000) M= IBEGSKP 00 100 I=1.LENARR VELOC(1.1) = IDATWRD(M) * FACTOR VELOC(2.1) = IDATWRD(M.1) . FACTOR VELOC(3.1) = IDATWRD(M+2)*FACTOR VELOC(4.1) = IDATWRD(M+3) * FACTOR 10 VELOC(5+1) = IDATWPD(M+4) * FACTOR VELOC(6+1) = IDAT#RD(M+5) * FACTOR 100 M = M + ISKIP . IF (WRITDAT .EQ. 3HYES) CALL DATA RI 15 RETURN END

.

•

:

SUBROUTINE DATAWRI TRACE

SUBROUTINE DATAWRI

COMMON TIME (101) * VELOC (6*, 100) * NCHANNC*** LENARR * NFILE * NRECOR** IEXIT

COMMON/UNPK/ITIME** ICOMWRD (200) * IDATWRD (1000)

DO 10 I=1 * NCHANNC

10 WRITE (6*, 1) 1 * (VELOC (1*, J) * J=1 * LENARR)

1 FORMAT (110**, 100*** ANEMOMETER VFLOCITY DATA** LEVEL NUMBER** IZ/101

(10F115/))***

PRINT 2**ITIME

2 FORMAT (110**, 100**** ITIME AT BEGINNING OF RECORD** II0)

10 RETURN

END

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  SUBROUTINE SKIPEOF
                        TRACE
                   SUBROUTINE SKIPEOF
                   COMMON TIME (101) . VELOC (6.100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT
                   COMMON/BBUFANE/IDENT.IPARITY.LPACDAT.EOFMUL.NTOTFIL.PLOT
                   COMMON/UNPK/ITIME . ICOMWRD (200) . IDATWRD (1000)
                  COMMON/BSKIPEO/NFILSKP NRECSKP
                   NREC = 0
                   IF (NFILE .GT. NFILSKP) GO TO 125
              100 BUFFER IN(1.1) (ITIME. ICOMWRD (LPACDAT))
                   IF (UNIT(1))115.120.110
              110 NREC = NREC + 1
10
                   LEN = LENGTH(1)
                   NRECOR = NRECOR . 1
                   PRINT 2.NFILE.NPECOR.NREC.LEN
                  FORMAT(1H0.5X*PARITY ERROR OCCURRED WHILE SKIPPING FILE*12* RECORD
                  .*14/7X13* RECORDS HAVE BEEN SKIPPED. LENGTH WAS*14)
15
                   GO TO 100
              115 LEN = LENGTH(1)
                   NREC = NREC + 1
                   NRECOR = NRECOR . 1
                   IF (LEN .NE. LPACDAT + 1) WRITE(6.3) LEN.NRECOR.NFILE.NREC
20
              3 FORMAT (1HO.5X*RECORD SKIPPED OF IMPROPER LENGTH. LENGTH WAS*14/7X
                  .*RECORD*14* FILE*12.2X12* RECORDS SKIPPED*)
                   GO TO 100
              120 WRITE (6.4) NREC . NFILE . NRECOR
                  FORMAT(1H0.5X*SKIPPED*13* RECORDS ON FILE*12* THERE WERE*14* RECOR
25
                  .DS ON THIS FILE .)
                   NFILE = NFILE . 1
                   IF (IDENT .EQ. 3HYES) CALL HEADER
                   NREC = 0
                   NRECOR = 0
30
                   IF (NFILE .LE. NFILSKP) GO TO 100
              125 IF (NRECSKP .EQ. 0) RETURN
                   DO 160 I=1.NPECSKP
                   BUFFER IN (1-1) (ITIME + ICOMWRD (LPACDAT))
                   IF (UNIT(1))130,150,140
35
              130 NRECOR = NRECOR . 1
                   NREC = NREC + 1
                   LEN = LENGTH(1)
                   IF (LEN .NE. LPACUAT . 1) WRITE(6.3) LEN.NRECOR.NFILE.NREC
                   GO TO 160
              140 NREC = NREC + 1
                   NECOR = NECOR + 1
                   LEN = LENGTH (1)
                   WPITE (6.5) NRECSKP.NFILE.NRECOR.LEN.NREC
                5 FORMAT(1HO.5x*PARITY ERROR OCCURRED WHILE SKIPPING*12* RECORDS ON
45
                  .FILE * 12/7X * RECORD * 14 * LENGTH * 14 * RECORDS SKIPPED * 13)
                   GO TO 160
              150 WRITE (6.6) NFILE . NRECOR . NREC
               6 FORMAT(1H0.5X*EOF OCCURRED WHILE SKIPPING RECORDS ON FILE*12/7X*LA
                  ST RECORD #14.2X13 RECORDS HAVE BEEN SKIPPED *)
50
              160 CONTINUE
                   WRITE (6.7) NPEC. NFILE
               7 FORMAT (1HO.5X.) 13 RECORDS HAVE BEEN SKIPPED ON FILE*12)
                   RE TURN
```

END

55

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  SUBROUTINE VOLTADJ TRACE
                  SUBROUTINE VOLTADJ
                  COMMON TIME (101) . VELOC (6.100) . NCHANNC . LENARR . NFILE . NRECOR . IEXIT
                  COMMON/BVOLTAD/ICHANGE.SCALE (6).ZEROACT (6).VOLTCHG.TIMECHG.
                                 ISCALE (6)
                  IF (ICHANGE .GT. 0) READ (5.1) (ISCALE(I).I=1.6). VOLTCHG.TIMECHG
                  DO 90 I= 1.6
             20 GO TO (30.40.50.60.70.80).I
              30 GO TO (31.32.33). ISCALE(1)
              31 SCALE(1) = 40.166
                  ZEROACT(1) = 2.799
10
                  GO TO 90
              32 SCALE(1) = 7H.867
                  ZEROACT(I) = 2.413
                  GO TO 90
15
              33 SCALE([] = 0.0
                  ZEROACT(I) = 0.0
                  GO TO 90
              40 60 10 (41,42,43), ISCALE(I)
              41 SCALE(I) = 42.161
                  ZEROACT(1) = 2.183
20
                  GO 10 40
              42 SCALE(1) = 81.437
                  ZEROACT(1) = 2.281
                  GO TO 90
25
              43 SCALE(1) = 0.0
                  ZEROACT(I) = 0.0
                  GO TO 90
              50 GO TO (51.52.53) . ISCALE(I)
              51 SCALE(I) = 42.981
                  ZEROACT(1) = 2.057
30
                  GO TO 90
              52 SCALE(1) = 83.606
                  ZEROACT(I) = 1.883
                  GO TO 90
              53 SCALE(1) = 0.0
35
                  ZEROACT(I) = 0.0
                  GO TO 90
              60 GO TO (61.62.63) . ISCALE(I)
              61 SCALE(1) = 42.869
                  ZEHOACT(1) = 3.674
                  GO TO 90
              62 SCALE(1) = 83.224
                  ZEROACT(1) =3.065
                  GO 10 90
45
              63 SCALE(1) = 0.0
                  ZEROACT(1) = 0.0
                  GO TO 90
               70 GO TO (71.72.73) . ISCALE(1)
              71 SCALE(1) = 47.070
51
                  ZEROACT(1) = 0.075
                  GO TO 90
              72 SCALE(1) = 93.300
                  ZEROACT(1) = 0.330
                  GO TO 90
              73 SCALE(1) = 0.0
55
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  SUBROUTINE VOLTADY TRACE
                 ZEROACT(I) = 0.0
                 GO TO 90
             80 GO TO (81.82.83) . ISCALE(I)
             81 SCALE(I) = 40.217
                 ZEROACT(1) = 3.764
60
                 GO TO 90
             82 SCALE(I) = 77.313
                 ZEROACT(1) = 3.639
                 GO TO 90
65
             83 SCALE(1) = 0.0
                 ZEROACT(I) = 0.0
             90 CONTINUE
                 ICHANGE = ICHANGE + 1
             1 FORMAT (6(12).A3.F5.3)
70
                 WRITE (6.2)
             2 FORMAT(1H0.5X*ACTUAL VOLTAGE VS VELOCITY*5X*REGRESSION VALUES*/10X
                .*LEVEL*5X*SLOPE*5X*INTERCEPT*)
                 DO 100 I=1.NCHANNC
             100 WRITE(6.3) I.SCALE(I).ZEROACT(I)
75
              3 FORMAT(1H .11X11.7XF6.3.6XF5.3)
                 RETURN
                 END
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 12.53.49.
  SUBROUTINE PLOTVEL
                   SUBROUTINE PLOTVEL
                   COMMON TIME (101) . VELOC (6,100) . NCHANNC . LENARR . NF ILE . NRECOR . IEXIT
                   COMMON/BPLOTVE/FLEV(6) . SUMAVE(6) . ISAMPLE . LABELX(4) . LABELY(4) .
                                  LTITLE (4) . MULTIME . IDATAPT
                  DIMENSION AVEVEL (6)
                   MULTIME = MULTIME + 1
                   WRITE(6.1) TIME(IDATAPT-1).NRECOR
                  FORMAT (1HO.5X*VELOCITY PROFILE PLOITED AT TIME*F9.3.5X*RECORD NUMB
                  .ER-14/10X-VALUES USED FOR PLOT-5X-LEVEL-5X-ELEVATION. M.-5X-VELOCI
10
                  .TY. M/SEC*)
                  00 100 I = 1.NCHANNC
              100 AVEVEL(I) = 0.0
                   DO 110 I=1.NCHANNC
                  AVEVEL(1) = SUMAVE(1)/ISAMPLE
                   WRITE (6.2) I.ELEV(I).AVEVEL(I)
15
                  FORMAT (1H .36X11.10XF6.3.13XF6.3)
              110 SUMAVE(1) = 0.0
                   CALL IDIOT (AVEVEL+ELEV+6+2+DIM+LABELX+LABELY+LTITLE++1)
                   ISAMPLE = 0
                   IF (IEXIT .EQ. 3HYES) CALL EXIT
20
                   RETURN
                  END
```

```
IDENT UNPAK
                                                  INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS
                               311
                                      LENGTHA
                                               SET 201
                              1750
                                      LENGTHB
                                               SET 1000
                                               USE /UNPK/
                                               BSS LENGTHA
         311
                                               BSS LENGTHB
                                               USE
                                               ENTRY UNPAK
10
                                      UNPAK
                                               BSS 1
           1 7170000001
                                               SX7 18
                    7100004000
                                               SXO
                                                   4000B
                                               MX2
                                                   12
                                                             A(1) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED
                   5110000000 C
                                               SAL NE
15
                                               586
                                                   A-1
                                                             B(J) BASE
           3 6160000310 C
                                                   B+LENGTH8-1 B(LAST)
                        6170002260 C
                                               587
           4 6150000060
                                               585
                                                   48
                        6110000074
                                               581 60
           5 5011000001
                                      GE 160
                                               SAL
                                                   41+1
                                                             GET A(I)
                                      GET12
                                               586
                                                   86+1
           6 6166000001
                        11621
                                               RXP
                                                   x2ex1
                                                             MASK OUT 12 BITS
                             67515
                                                                   RIGHT SHIFT
                                               S85 #1-85
                                               LX6 85.X6
           7 22656
                                                                   BUT
                   67515
                                                   R1-85
                                                                   AVOID SIGN EXTENSION
                                                                   CK FOR SIGN BIT
                        11760
                                               BX7 X6*X0
                                               ZR
                                                   x7.STURB
          10 0307000011 +
                                               8X6 -X0*X6
                                                                   MASK OUT SIGN BIT
                        15660
                                               HX6 -X6
30
                             14666
                                      STORB
                                               BSS
          11
                                                             DELETE ZERO-BIT RIGHT-FILL
          11 21601
                                               AXO
                                                             STORE IN B(J)
                                               SA6
                   56660
                                                   R6
                        0467000000 +
35
                                               EQ
                                                    A6.B7.DONE.
                                               NE
                                                    A5.BO. INMID
          12 0550000014 +
                        6150000060
                                               585
                                                   48
                                               MX2 12
          13 43214
                   0400000005 +
                                               EQ
                                                    CET60
                                      INMID
                                               LX2 48
          14 20260
                                                   H5-12
                   6155777763
                                               585
                                               EQ
                                                    GET12
          15 0400000006 +
                                               EQU INPAK
                                      DONE
          16
                                               END
                                                                44 STATEMENTS
                                                                                    10 SYMBOLS
                             46302
                                     STORAGE USED
```

6400 ASSEMBLY

0.341 SECONDS

UNPAK

COMPASS - VER 2.0 M 02/10/72 12.54.16.

23 REFERENCES

APPENDIX A-3

 $\begin{array}{c} \textbf{Computer Program for Determination of Temperature} \\ \textbf{and Humidity Profiles} \end{array}$

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                         TRACE
 PROGRAM
               TEMPHUM
                   PROGRAM TEMPHUM (INPUT, OUTPUT, TAPES=INPUT, TAPE6=OUTPUT, TAPE1,
                                    FILMPL)
                   DEBUG
            CS
                   ARRAYS
                   COMMON NFILE . NRECOR . LENARR . NCHANN . TEMP (10 . 100) . WRITDAT
                   COMMON/BSORT/IBEGSKP.FACTOR.ISKIP
                   COMMON/BINSTCA/NINSCAL . VARIIN. EXCITVO. RESIS(10.2). CALRES(10.2).
                                   GAIN(10)
                   COMMON/BCALIBR/SLOPE (10) . ZEROTAP (10)
                   COMMON/BBUFTEM/IDENT, MULEOF, IEXIT, NTOTFIL, PLOT, IPARITY, ZEROTIM,
10
                   COMMON/UNPK/ITIME . ICOMWRD (200) . IDATWRD (1000)
                   COMMON/HSKPEOF/BADATA.LPACDAT.NRECSKP.NFILSKP
                   COMMON/BHUMID/SIGMA.BARPRES.HFATLAT.CP.CPV.HUMIDI(10)
                   COMMON/BTAPECA/NCALVAL , VARITP , ACTVOLT (5)
15
                   COMMON/BPLOTEM/AVETEMP(10), TIME, ELEV(6), LABELX(4), LABELY(4), LTITLE
                                   (4)
                   DIMENSION RESIST(10) . SUNTEMP(10)
                                                 TEMPERATURE . C
                   DATA LABELX/40H
                                                  FLEVATION.M
                       .LABELY/40H
20
                                              TEMPFRATURE PROFILE
                       ·LTITLE/40H
                   READ (5.1) CALTAPE . CALINST . WRITDAT . IDENT . MULEOF . PLOT . NCHANN . LENARR .
                              NAVEREC. IBEGSKP. ISK IP. NINSCAL . LPACDAT. NTOTFIL. EXCITVO.
                              RESISR(1) . A.B.C.D.E.TIMRAT. VARIIN. SIGMA. BARPRES. CP.
                              HEATLAT, CPV. VARITP. (ACTVOLT(1).1=1.5). (RESIS(1.1).1=1.10
25
                              ) . (RESIS(I.2) . I=1.10) . (CALRES(I.1) . I=1.10) . (CALRES(I.2) .
                              I=1.10) . (ELEV(I) . I=1.6) . NCALVAL
                  FORMAT (6A3,814,3F8.3/4F8.3,2F5.2,5F7.3/1F5.2,5(F5.2),10(F5.2)/
                           10(F5.2),6(F5.2)/4(F5.2).10(F5.2)/6(F6.3).13)
30
                   REWIND 1
                   PRINT 3
              3 FORMAT (1H0.5x*NOTE... CHANNEL ) IS LEVEL 2, AMBIENT TEMPERATURE*/12
                  .X*CHANNEL 2 IS LEVEL 3, DRY*/12X*CHANNEL 3 IS LEVEL 1, DRY*/12X*CH
                  .ANNEL 4 IS LEVEL 1, WET-/12X+CHANNEL 5 IS LEVEL 4, DRY+/12X+CHANNE
                  .L 6 IS LEVEL 4. WET -/12X - CHANNEL 7 IS LEVEL 5. DRY -/12X - CHANNEL 8
35
                  .IS LEVEL 5. WET */12X * CHANNEL 9 IS LEVEL 6. DRY */12X * CHANNEL 10 IS
                   PRINT 4. CALTAPE.CALINST.WRITDAT.IDENT.MULEOF.PLOT.NCHANN.LENARR.
                              NAVEREC . IBEGSKP . ISKIP . NINSCAL . LPACDAT . NTOTFIL . EXCITVO .
                              RESISR(1) . A . B . C . D . E . TIMRAT . VARIIN . SIGMA . BARPRES . CP .
                              HEATLAT.CPV.VARITP.(ACTVULT(1).I=1.5).(RESIS(1.1).1=1.10
                              ) . (RESIS(1.2) . I=1.10) . (CALRES(1.1) . I=1.10) . (CALRES(1.2) .
                              I=1.10) . (ELEV(I) . I=1.6) . NCALVAL
                   FORMAT (1HO. + CALTAPE = A4+ CALINST = A4+ WRITDAT = A4+ IDENT = A4
                  . * MULEOF = * 44 PLOT = * 44/ * NCHANN = * 13 * LENARR = * 14 * NAVEREC = * 15
45
                  .. IREGSKP ==12. ISKIP ==13. NINSCAL ==12. LPACUAT ==14. NTOTFIL ==
                  .12/0 EXCITVO =0F5.30 RESISR(1) =0F5.20 A =0F8.20 B =0F7.30 C =0F7
                  ..3 D=0F5.3 F=0F6.3 TIMRAT =0F4.1 VARIIN =0F5.2 SIGMA =0F7.5
                  .. BARPRES ==F8.2* CP ==F5.3* HEATLAT ==F6.1* CPV ==F5.3* VARITP =*
                  .F4.2/*ACTVOLT(1 THRU 5)=*5F5.1/* RESIS(1 THRU 10+1) =*10F5.2/* RES
                  .IS(1 THRU 10.2) =*10F5.2/* CALRES(1 THRU 10.1) =*10F5.2/* CALRES (1
                  .1 THRU 10.2) =*10F5.2/* ELEV(1 THRU 6) =*6F7.3* NCALVAL =*12)
                   IEXIT = 3H NO
                   JCLOCK = 0
55
                   BADATA = 3H NO
```

```
TEMPHUM
                         TRACE
                                                       CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                                                                                                                PAGE
  PROGRAM
                   FACTOR = SQRT(2.0) /(2.0**9-1.0)
                   NFILE = 1
                   NRECOR = 0
                   ZEROTIM = 0.0
                   IPARITY = 0
                   MULREC = 1
                   DO 100 I=1.NCHANN
               100 SUMTEMP(1) = 0.0
                   IF (CALTAPE .EQ. 3HYES) CALL TAPECAL
65
                   IF (CALINST .EQ. 3HYES) CALL INSTCAL
                   NFILSKP = 1
                   NRECSKP = 0
                   IF (NFILE .LE. 1) CALL SKIPEOF
                   JCLOCK = 0
                   ZEROTIM = 0.0
70
                   NRECOR = 0
                   READ (5.5) FRSTREC
                  FORMAT (A3)
                   IF (FRSTREC .NE. 3HBAD) GO TO 200
75
                   NFILSKP = 0
                   NHECSKP = 1
                   CALL SKIPEOF
               200 CALL BUFTEMP
                   IF (IEXIT .EQ. 3HYES) GO TO 400
                   DO 300 I=1.NCHANN
An
                   DO 300 K=1.LENARR
               300 SUMTEMP(I) = SUMTEMP(I) + TEMP(I.K)
                   IF (NRECOR .LE. NAVEREC+MULREC) GO TO 200
                   GO TO 500
               400 NAVEREC = NRECOR-(NAVEREC*(MULREC-1))
85
               500 DO 700 I=1.NCHANN
                   AVFTEMP(1) = SUMTEMP(1)/(NAVEREC+LENARR)
                   SUMTEMP(I) = 0.0
                   AVETEMP(1) = (SLOPE(1) *AVETEMP(1) * ZEROTAP(1))/GAIN(1)
91
                   FACTOR1 = AVETEMP(1)/EXCITVO
                   FACTOR2= RESIS(I+1)/(RESISR(I) + RESIS(I+1))
                   AVETEMP(1) = RESIS(1.2)/(FACTOR2-FACTOR1)- RESIS(1.2)
                   1F (1 .6T. 1)GO TO 700
                   DO 600J=2+NCHANN
               600 RESISR(J) = AVETEMP(1)
               700 AVETEMP(I) = A+8*AVETEMP(I) + C*AVETEMP(I)**2 +D*AVETEMP(I)**3 +
                              E*AVETEMP(1) **4
                   TIME = (TIMRAT * (ITIME-ZEROTIM)/10000.)
                   WRITE (6.2) TIME . NRECOR . (AVETEMP (1) . 1=1 . NCHANN)
                  FORMATITHO. TEMPERATURES AVERAGED OVER 10 MINUTE INTERVALS. TIME
100
                  . FF9.3" SECS. RECORD NUMBER 14//2x CHANNEL 1"4X CHANNEL 2"4X CHAN
                  .NEL 3*4x*CHANNEL 4*4x*CHANNEL 5*4X*CHANNEL 6*4X*CHANNEL 7*4X*CHANN
                  .EL 204x0CHANNEL 904X0CHANNEL 100/3x0LEVEL 206X0LEVEL 306X0LEVEL 10
                  .6X PI EVEL 186X PLEVEL 486X PLEVEL 486X PLEVEL 586X PLEVEL 586X PLEVEL 68
105
                  .6X*LEVEL 6*/3X*AMBIENT*BX*DRY*10X*DRY*10X*WET*10X*DRY*10X*WET*10X*
                  .DRY-10x-WET-10x-DRY-10x-WET-/3XF6.3+ C+5XF6.3+ C+5XF6.3+ C+5XF6.3+
                  . C+5xF6.3 C+5xF6.3 C+5xF6.3 C+5xF6.3 C+5xF6.3 C+5xF6.3 C+5xF6.3 C+1
                   CALL HUMID
```

IF (PLOT .EQ. 3HYES) CALL PLOTEMP

MULREC = MULREC + 1

110

HADATA = 3H NO

TEMPHUM TRACE PROGRAM

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.

IF (IEXIT .NE. 3HYES) GO TO 200 END

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
  SUBROUTINE TAPECAL TRACE
                  SUBROUTINE TAPECAL
                  COMMON/BTAPECA/NCALVAL.VARITP.ACTVOLT(5)
                  COMMON/BCAL IBR/SLOPE (10) . ZEROTAP (10)
                  COMMON NFILE . NRECOR . LENARR . NCHANN . TEMP (10 . 100) . WRITDAT
                  DIMENSION SUMCAL(10), SUMTAP(10), SQVALUE(10), SUMACT(10), ACT X TAP(1
                             0) - SUMSQ(10+5) - RECMFAN(10) - TOTMEAN(10+5) - TEPMEAN(10) - SU
                             MEAN(10) . TEMPSUM(10) . STANDEV(10.5)
                  ICHECK = 0
                  NSAMPLE = 0
                  LASTCAL = 0
10
                  ICALVAL = 1
                  DO 100 I=1.NCHANN
                  SUMEAN(I) = 0.0
                  TEMPSUM(I) = 0.0
15
                  SUMCAL(I) = 0.0
                  SUMACT(I) = 0.0
                  SUMTAP(I) = 0.0
                  SQVALUE(I) = 0.0
                  ACT X TAP(1) = 0.0
                  TEPMEAN(I) = 0.0
                  RECMEAN(I) = 0.0
                  DO 100J=1.NCALVAL
                  STANDEV(I.J) = 0.0
                   TOTMEAN(I.J) = 0.0
25
              100 SUMSQ(I+J) = 0.0
              200 CALL BUFTEMP
                  GOTOBUF = 3H NO
                   IF (ICALVAL .EQ. NCALVAL) LASTCAL = LASTCAL + 1
                  DO 300 K=1.LENARR
                  DO 300 I=1.NCHANN
30
              300 SUMCAL(I) = SUMCAL(I) + TEMP(I+K)
                   IF (ICHECK .GT. 0) GO TO 800
                  NSAMPLE = NSAMPLE + 1
                  WRITE(6.1) NRECOR. ICALVAL. ACTVOLT(ICALVAL)
               1 FORMAT(1H0,5X*RECORD MEANS*4X*RECORD NUMBER*14,7X*CALIBRATION*12*
35
                 .4X*INPUT VALUE .F5.1/11X*CHANNEL . 10X*MEAN . 13X*CUMULATIVE MEAN. 6X
                 .. NUMBER RECORDS FOR CUMULATIVE MEAN*)
                  DO 600 I=1+NCHANN
                  RECMEAN(I) = SUMCAL(I) / LENARR
                  WRITE (6.2) I. RECMEAN(I)
               2 FORMAT(1H .12X,12.10X,F8.4)
                   IF (NRECOR .EQ. 1) GO TO 400
                   IF (RECMEAN(I) .GI. TOTMEAN(I.ICALVAL) + VARITP .O. RECMEAN(I)
                       .LT. TOTMEAN(I.ICALVAL) - VARITP) GO TO 700
              400 DO 500 K=1.LENAPR
              500 SUMSQ(I.ICALVAL) = SUMSQ(I.ICALVAL) + TEMP(I.K)**2
                  SUMEAN(I) = SUMEAN(I) + RECHEAN(I)
                  SUMCAL(I) = 0.0
                  TOTHEAN (I + I CALVAL) = SUMEAN (I) / NSAMPLE
50
              600 WHITE (6.4) TOTHEAN (1. ICALVAL) . NSAMPLE
                4 FORMAT (1H++46X+F8.4+25X+13)
                  GO TO 200
              700 NSAMPLE = NSAMPLE - 1 .
                  ICALVAL = ICALVAL + 1
              BOO IF (ICALVAL .GT. NCALVAL .A. LASTCAL .GT. 3) GO TO 1300
```

(SUMTAP(1) ** 2-NCAL VAL *SQVALUE(1))

11 FORMAT (1H . 10X+C H A N N E L+13/15X+VALUES USED FOR LEAST SQUARE C

WRITE(6.11) I. (ACTVOLT(J).TOTMEAN(I.J).J=1.NCALVAL)

110

11 FURNATION . TUASC H A N N E LETATION VALUES USED FOR CEAST SOURCE 110 CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42. PAGE SUBROUTINE TAPECAL TRACE .ALCULATIONS*10X*INPUT VALUE*5X*TAPE VALUE*/(69XF4.1.11XF6.3)) 1700 WRITE(6.12) SLOPE(I).ZEROTAP(I) 12 FORMAT (1HO.15X *VALUES OBTAINED FROM LEAST SQUARE CALCULATIONS* 7X* .SLOPE *8X * INTERCEPT */68XF5.3.11XF5.3) RETURN 115 END

*

•

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
  SUBROUTINE INSTCAL
                       TRACE
                  SUBROUTINE INSTCAL
                  COMMON/BINSTCA/NINSCAL . VARIIN. EXCITVO. RESIS(10.2) . CALRES(10.2).
                                  GAIN(10)
                  COMMON/BCAL IBR/SLOPE (10) . ZEROTAP (10)
                  COMMON NFILE . NRECOR , LENARR , NCHANN , TEMP (10 . 100) . WRITDAT
                  COMMON/BSKPEOF/BADATA+LPACDAT+NRECSKP+NFILSKP
                  DIMENSION SUMAVE(10).TSUMAVE(10).SQVALUE(10).STANDEV(10.2).
                             TOTAVE (10.2) . SUMTEMP (10) . TSUMSQ (10) . ACTUAL (10) .
                             AVEREC(10)
                  NRECOR = 0
10
                  BADATA = 3HYES
                  DO 100 I=1.NCHANN
                  SUMAVE (1) = 0.0
                  TSUMAVE(I) = 0.0
15
                  TSUMSO(1) = 0.0
                  SQVALUE(I) = 0.0
                  SUMTEMP(I) = 0.0
                  DO 100 K=1.NINSCAL
                  STANDEV(I.K) = 0.0
              100 TOTAVE (I+K) = 0.0
50
                  INSCAL = 1
                  ICHECK = 0
                  NSAMPLE = 1
                  LEVEL = 10HZERO INPUT
24
              200 CALL BUFTEMP
                  IF (NFILE .GT. 1) GO TO 1050
                  GOTOBUF = 3H NO
                  DO 400 I=1.NCHANN
                  DO 300 K=1.LENARR
              300 SUMTEMP(I) = SUMTEMP(I) + TEMP(I,K)
30
                  AVEREC(I) = SUMTEMP(I)/LENARR
              400 SUMTEMP(1) = 0.0
                  IF (ICHECK .GT. 0) GO TO 800
                  IF (NRECOR .EQ. 1) GO TO 500
                   IF (ABS(AVEREC(1)) .GT. ABS(TOTAVE(1, INSCAL)) . VARIIN) GO TO 700
35
              500 WRITE (6+3) NRECOR . INSCAL . LEVEL
                 FORMAT(1H0.5x*RECORD MEANS*4X*RECORD NUMBER*14,7X*CALIBRATION*12,4
                  .XOINPUT *A10/11X*CHANNEL*10X*MEAN*13X*CUMULATIVE MEAN*6X*NUMBER OF
                  . RECORDS FOR CUMULATIVE MEAN*)
                  DO 600 I=1.NCHANN
                  SUMAVE(1) = SUMAVE(1) + AVEREC(1)
                  TOTAVE(I.INSCAL) = SUMAVE(I) / NSAMPLE
                  WRITE (6.2) I. AVEREC (I) . TOTAVE (I. INSCAL) . NSAMPLE
               2 FORMAT (1H .12X.12.10X.F8.4.14x.F8.4.25X.13)
                  DO 500 K=1.LENARR
              600 SQVALUF(1) = SQVALUE(1) + TEMP(1.K) **2
                  NSAMPLE = NSAMPLE + 1
                  GO TO 200
              700 INSCAL = INSCAL . 1
                  LEVEL = 10HFULL SCALE
              800 ICHECK = ICHECK . 1
                  IF (ICHECK .EQ. 1) GO TO 200
                  IEND = ICHECK - 1
                  WRITE (6.4) NRECON. INSCAL . LEVEL
                  FORMAT (1HO.5x *TEMPORARY SUM OF MEANS*4X*RECORD NUMBER*14.7X*CALIBR
55
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                                                                                                                PAGE
   SUBROUTINE INSTCAL TRACE
                  .ATION+12.4X+INPUT +A10/11X+CHANNEL+10X+SUM OF MEANS+13X+NUMBER OF
                  .RECORDS IN SUM*)
                   DO 900 I=1.NCHANN
                   TSUMAVE(I) = TSUMAVE(I) + AVEREC(I)
                   WRITE (6.5) I.TSUMAVE (I) . IEND
60
                  FORMAT (1H .13X.12.16xF6.3.27X12)
                   DO 900 K=1.LENARR
               900 TSUMSQ(I) = TSUMSQ(I) + TEMP(I.K)**2
                   IF (ABS(AVEREC(1)) .GT. ABS(TOTAVE(1.INSCAL-1)) . VARIIN)
65
                      GOTOBUF = 3HYES
                   IF (ICHECK .GT. 3) GO TO 1100
                   IF (GOTOBUF .EQ. 3HYES) GO TO 200
                   DO 10001=1.NCHANN
                   TSUMAVE(1) = 0.0
              1000 TSUMSQ(I) = 0.0
70
                   LEVEL = 10HZERO INPUT
                   ICHECK = 0
                   INSCAL = INSCAL - 1
                   GO TO 200
              1050 INSCAL = INSCAL + 1
75
                   NSAMPLE = NSAMPLE - 1
              1100 IEND = INSCAL - 1
                   LEVEL = 10HZERO INPUT
                   IF (IEND .EQ. 2) LEVEL = 10HFOLL SCALE
                   WRITE (6.6) IEND . LEVEL
 An
                   FORMAT (1HO.5X*STANDARD DEVIATIONS*10X*CALIBRATION*12.5X*INPUT *A10
                  ./11x *CHANNEL *10x *RMS*) .
                   DO 1200 I=1.NCHANN
                   STANDEV(I.INSCAL-1) = SORT(SQVALUE(I)/(NSAMPLE+LENARR)- TOTAVE(I.
                                              INSCAL-110021
 AS
              1200 WRITE (6.7) I.STANDEV (I. IEND)
                7 FORMAT (1H .12X12.7XF9.3)
                   NSAMPLE = ICHECK - 1
                   DO 1300 I=1.NCHANN
                   SUMAVE(I) = TSUMAVE(I)
 90
                   TOTAVE(I.INSCAL) = SUMAVE(I)/NSAMPLE
                   SQVALUE(1) = TSUMSQ(1)
                   TSUMAVE(1) = 0.0
              1300 TSUMSQ(1) = 0.0
 95
                   ICHECK = 0
                   NSAMPLE = NSAMPLE + 1
                   LEVEL = 10HFULL SCALE
                   IF (INSCAL .LE. NINSCAL) GO TO 200
              1400 DO 1600 I=1.NCHANN
100
                   DO 1500 K=1.NINSCAL
              1500 TOTAVE(I.K) = SLOPE(I) . TOTAVE(I.K) . ZEROTAP(I)
                   ACTUAL(1) = EXCITVO*((RESIS(1,1)/(RESIS(1,1)+CALRES(1,1))) - (RESI
                                S(1,2)/(RESIS(1,2) + CALRES(1,2))))
                   GAIN(I) = (TOTAVE(I+2) - TOTAVE(I+1))/ACTUAL(I)
              1600 WHITE(6,8) I.TOTAVE([,1),TOTAVE([,2),ACTUAL(1),GAIN(1)
105
                8 FORMAT (1HO, 10X+C H A N N E L+T3/15X+VALUES USED FOR GAIN CALCULATI
                  .ONS-10x-INPUT-5x-TAPE VALUE-5x+ACTUAL VALUE-/59x+ZERO+7XF6.3.12X+0
                  ..0 - /56x - FULL SCALE - 4x F6.3 - 11x F6.3 / 15x - GAIN COMPUTED - F10.3)
                   RETURN
```

110

END

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                                                                                                               PAGE
 SURROUTINE BUFTEMP
                        TRACE
                  SUBROUTINE BUFTEMP
                  COMMON/BBUFTEM/IDENT, MULEOF, IEXIT, NTOTFIL, PLOT, IPARITY, ZEROTIM,
                                  JCLOCK
                  COMMON/BSKPEOF/BADATA.LPACDAT.NRECSKP.NFILSKP
                  COMMON NEIL E.NRECOR. LENARR. NCHANN. TEMP (10.100) . WRITDAT
                  COMMON/UNPK/ITIME . ICOMWRD (200) . IDATWRD (1000)
                  IF (IDENT .EQ. 3HYES .A. BADATA .EQ. 3H NO .A. NRECOR .EQ. 0)
                      CALL HEADER
                  CORTIME = 3H NO
                  BADATA = 3H NO
10
              100 NRECOR = NRECOR + 1
                  BUFFER IN(1,1)(ITIME, ICOMWRD (LPACDAT))
                  IF (UNIT (1))500.200.400
              200 WRITE (6.1) NRECOR . NFILE
               1 FORMAT(1HO. * THERE ARE*15* RECORDS ON FILE*13)
15
                  NRECOR = 0
                  IF (MULEOF .NE. 3HYES) GO TO 300
                  NFILE = NFILE . 1
                  IF (NFILE .GT. NTOTFIL) GO TO 300
                  GO TO 100
21
              300 IF (PLOT .EQ. 3HYES) IEXIT = 3HYES
                  IF (PLOT .EQ. 3HYES) RETURN
                  CALL EXIT
              400 WRITE (6.2) NRECOR . NFILE
               2 FORMAT (1HO. * PARITY ERROR IN DATA. RECORD-15* FILE-13)
25
                  IPARITY = IPARITY + 1
                  WRITE (6.3) IPARITY
               3 FORMAT (1HO, * THERE HAVE BEEN* 13* PARITY ERRORS*)
                  CALL UNPAK
                  CALL SORT
30
                  IF (WRITDAT .EQ. 3H NO) CALL DATWRIT .
                  GO TO 600
              500 CALL UNPAK
                  CALL SORT
              600 IF (NRECOR .EQ. 1 .A. ITIME .NE. 0) ZEROTIM = ITIME
35
                  IF (ITIME-999999 .GT. -12000) CORTINE = 3HYES
                  ITIME = ITIME + JCLOCK . 999999
                  IF (CORTINE .EQ. 3HYES) JCLOCK = JCLOCK + 1
                  RETURN
                  END
```

END

110

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42. SUBROUTINE HEADER TRACE SUBROUTINE HEADER COMMON NEILE. NRECOR. LENARR, NCHANN, TEMP (10, 100), WRITDAT DIMENSION ID(2) BUFFER IN(1.0) (ID(1).ID(2)) IF (UNIT(1)) 200.100.100 100 WRITE (6.1) NFILE 1 FORMAT(1HO. * PARITY ERROR OR FOF IN HEADER OF FILE NUMBER*13) 200 WPITE(6.2) NFILE. (10(1).1=1.2) 2 FORMAT(1HO. + HEADER ON FILE+13+ IS +2110) RETURN 10 END

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
  SUBROUTINE SORT
                        TRACE
                  SUBROUTINE SORT
                  COMMON NFILE . NRECOR . LENARR . NCHANN . TEMP (10 . 100) . WRITDAT
                  COMMON/BSORT/IBEGSKP.FACTOR.ISKIP
                  COMMON/UNPK/ITIME . ICOMWRD (200) . IDATWRD (1000)
                  M = IBEGSKP
                  L = 0
                  DO 200 I= 1.LENARR
                  DO 100 K=1.NCHANN
                  TEMP(K, I) = IDATWRD(M + L) * FACTOR
              100 L = L + 1
10
                  L = 0
              200 M=M + ISKIP
                  IF (WRITDAT .EQ. 3HYES) CALL DATWRIT
                  RETURN
                  END
15
```

PAGE

CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42. PAGE SUBROUTINE DATWRIT TRACE SUBROUTINE DATWRIT COMMON/UNPK/ITIME . ICOMWRD(200) . IDATWRD(1000) COMMON NEILE . NRECOR . LENARR . NCHANN . TEMP (10 . 100) . WRITDAT WRITE(6.1) NRECOR. ITIME 1 FORMAT(1HO. * RECORD NUMBER*15* ITIME IS*110) DO 100 I=1.NCHANN 100 WRITE(6.2) I. (TEMP(I.K).K=1.LFNARR) 2 FORMAT (1HO, * TAPE CHANNEL NUMBER *13./. (16F8.3)) RETURN 10 END

```
SUBROUTINE SKIPEOF TRACE
                                                       CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                   SUBROUTINE SKIPEOF
                   COMMON/BSKPEOF/BADATA.LPACDAT.NRECSKP.NFILSKP
                   COMMON/BBUFTEM/IDENT.MULEOF. IEXIT.NTOTFIL.PLOT. IPARITY.ZEROTIM.
                                    JCLOCK
                   COMMON/UNPK/ITIME.ICOMWRD(200).IDATWRD(1000)
                   COMMON NFILE . NRECOR . LENARR . NCHANN . TEMP (10 . 100) . WRITDAT
                   NREC = 0
                   IF (NFILE .GT. NFILSKP) GO TO 500
              100 BUFFER IN(1.1) (ITIME. ICOMWRD (LPACDAT))
10
                   IF (UNIT(1))300++00+200
               200 LEN = LENGTH(1)
                   NREC = NREC + 1
                   NRECOR = NRECOR + 1
                   WRITE (6.1) NFILE . NRECOR . NREC . LEN
15
               1 FORMAT(1H0.5X*PARITY ERROR OCCURRED WHILE SKIPPING FILE*12* RECORD
                  .. 14.. 13. RECORDS HAVE BEEN SKIPPED. LENGTH OF RECORD-14)
                   GO TO 100
               300 LEN = LENGTH(1)
                   NREC = NREC + 1
20
                   NRECOR = NRECOR + 1
                   IF (LEN .NE. LPACDAT + 1) WRITE(6.2)NRECOR.NFILE.LEN.NREC
                  FORMAT (1HO, 5X*RECORD ENCOUNTERED OF IMPROPER LENGTH. RECORD*14* F1
                  .ILE . IZ LENGTH . I4 . ZX I 3 * RECORDS HAVE BEEN SKIPPED *)
                   60 TO 100
               400 WRITE (6.3) NREC . NFILE . NRECOR
25
                  FORMAT(1H0.5X13* RECORDS HAVE BEEN SKIPPED ON FILE*12*. THERE WER
                  .E . 14 RECORDS ON THIS FILE .)
                   NFILE = NFILE + 1
                   NREC = 0
                   NRECOR = 0
30
                   IF (IDENT .EQ. 3HYES) CALL HEADER
                   IF (NFILE .LE. NFILSKP) GO TO 100
               500 IF (NRECSKP .EQ. U) RETURN
                   DO 900 I=1.NRECSKP
                   BUFFER IN(1.1) (ITIME. ICOMWRD (LPACDAT))
30
                   IF (UNIT(1))800.700.600
               600 NREC = NREC + 1
                   NRECOR = NRECOR + 1
                   LEN = LENGTH(1)
                   WRITE (6.4) NRECOR . NFILE . NREC . LEN
                  FORMAT (1HO.5X PARITY ERROR OCCURRED WHILE SKIPPING RECORD 14" ON F
                  .ILE . IZ . . . ZX I 3 * RECORDS HAVE BEEN SKIPPED. LENGTH 14)
                   GO TO 900
               700 WRITE (6.5) NRECOR . NFILE . NREC
                  FORMAT (1HO.5X *EOF OCCURRED WHILE SKIPPING RECORDS. LAST RECORD WA
45
                  .S.I4. ON FILE.IZ. 2XI3. RECORDS HAD BEEN SKIPPED. ..
                   GO TO 900
               800 NRECOR = NRECOR + 1
                   NREC = NHEC + 1
                   LEN = LENGTH(1)
                   IF ILEN.NE. LPACDAT + 1) WRITE (6.2) NRECOR, NFILE . LEN. NREC
               900 CONTINUE
                   WRITE (6.6) WREC . NF ILE . NRECOR
                  FORMAT (1HO.5XI3* RECORD(S) HAVE BEEN SKIPPED ON FILE*12*. RECORD
```

55

.NUMBER IS* I+1

.NUMBER IS*I4) 55 SUBROUTINE SKIPEOF TRACE CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42. RETURN END

```
SUSPOUTINE HUMID
                        TRACE
                                                    CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
                                                                                                            PAGE
                  SUBROUTINE HUMID
                  COMMON/BHUMID/SIGMA.BARPRES.HEATLAT.CP.CPV.HUMIDI(10)
                  COMMON/BPLOTEM/AVETEMP(10), TIME, ELEV(6) . LABELX(4), LABELY(4), LTITLE
                  M = 1
                  DO 1001=4.10.2
                  RHOS = 10.*(10.**((22.5518*(AYETEMP(I)+273.16)-2937.4)/(AVETEMP(I)
                        +273.16)))/((AVETEMP(1)+273.16)**4.9283)
                 WMIXRA = (SIGMA*RHOS*AVETEMP(I))/(BARPRES- RHOS*AVETEMP(I))
                  HUMIDI(M) = WMIXRA+HEATLAT-(AVETEMP(I-1) - AVETEMP(I))*CP /
10
                            (CPV*(AVETEMP(I-1) - AVETEMP(I)) + HEATLAT)
              100 M = M + 1
                  WRITE(6.1) (HUMIDI(I).I=1.4)
               1 FORMAT(1HO.5X*HUMDITIES*/5X* LEVEL 1*5X* LEVEL 4*5X* LEVEL 5*5X* L
                 .EVEL 6+/4(5xF8.3))
15
                  RETURN
                  END
```

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 08.46.42.
  SUBROUTINE PLOTEMP TRACE
                  SUBROUTINE PLOTEMP .
                  COMMON/BPLOTEM/AVETEMP(10) .TIME.ELEV(6) .LABELX(4) .LABELY(4) .LTITLE
                                  (4)
                  DIMENSION TEMP(6)
                  TEMP(1) = AVETEMP(3)
                  TEMP(2) = AVETEMP(1)
                  TEMP(3) = AVETEMP(2)
                  TEMP(4) = AVETEMP(5)
                  TEMP(5) = AVETEMP(7)
10
                  TEMP(6) = AVETMEP(9)
                  WRITE (6.1) TIME . (ELEV(I) . TEMP(I) . I=1.6)
               1 FORMAT (1HO. TEMPERATURE PROFILE VALUES -/ 3X AVERAGE OF POINTS OVE
                 .R TEN MINUTE INTERVALS. TIME OF PLOT .F10.3. SECS./3X. ELEVATION.
                        TEMPERATURE . C . /6 (6X . F6. 3 . 10x F6. 3/1)
                  CALL IDIOT (TEMP.ELEV.6.1.DUM.LABELX.LABELY.LTITLE.+1)
15
                  RETURN
                  END
```

PAGE

.

9

•

•

```
UNDAK
                                                                   COMPASS - VER 2.0 M 02/10/72 08.47.10.
                                                IDENT UNPAK
                                                   INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS
                               311
                                      LENGTHA
                                               SET 201
                              1750
                                      LENGTHB
                                               SET 1000
                                                USE /UNPK/
                                                BSS LENGTHA
          311
                                                BSS LENGTHB
                                               USE
                                                ENTRY UNPAK
10
                                      UNPAK
                                                BSS 1
           1 7170000001
                                                SX7 18
                        7100004000
                                               SX0 40008
            2 43214
                                               MX2 12
                   5110000000 C
                                               SAI NE
                                                             A(1) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED
15
            3 6160000310 C
                                                586 8-1
                                                             B(J) BASE
                        6170002260 C
                                                SHT B+LENGTHB-1 B(LAST)
            4 6150000060
                                               SB5 48
                        6110000074
                                               SB1 60
                                      GET60
                                               SAL AI+1
                                                             GET A(I)
            5 5011000001
                                      GET12
            6 6166000001
                                               SB6
                                                    R6+1
                                                    x2-x1
                                                              MASK OUT 12 BITS
                        11621
                                                BX6
                                                                   RIGHT SHIFT
                             67515
                                                585
                                                    A1-85
           7 22656
                                               LX6
                                                    A5.X6
                                                                    BUT
25
                   67515
                                                    B1-85
                                                                   AVOID SIGN EXTENSION
                        11760
                                                BX7
                                                    x6#X0
                                                                   CK FOR SIGN BIT
           10 0307000011 +
                                                ZR
                                                    x7.STORB
                                                BX6 -X0*X6
                                                                   MASK OUT SIGN BIT
                        15660
                            14666
30
                                               8X6 -46
                                      STORB
                                               BSS
          11 21601
                                               AX6 1
                                                             DELETE ZERO-BIT RIGHT-FILL
                                                             STORE IN B(J)
                                               SA6 R6
                        0467000000 +
35
                                               EQ
                                                    R6.B7.DONE
          12 0550000014 +
                                               NE
                                                    A5.B0. INMID
                        6150000060
                                               585 48
           13 43214
                                               MX2 12
                   0400000005 +
                                               EQ
                                                    GET60
                                      INMID
          14 20260
                                               LX2
                                                    48
                   6155777763
                                               585
                                                    R5-12
          15 0400000006 +
                                               EQ
                                                    GET12
                                     DONE
                                               EQU
                                                    UNPAK
                                               END
           16
                             46302
                                      STORAGE USED
                                                                44 STATEMENTS
                                                                                    10 SYMBOLS
                                      6400 ASSEMBLY
                                                             0.340 SECONDS
                                                                                   23 REFERENCES
```

SUBROUTINE VOLTADJ TRACE CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02. SUBPOUTINE VOLTADA COMMON/BVOLTAD/ISCALE COMMON/BCAL IBR/SLOPE (2) . ZEROTAP (2) . SLOPEAN . AN INTER . SLOPEHW . SLOPEWD. WDINTER . SLOPEMD. DMINTER 5 GO TO (100.200.300). ISCALE 100 SLOPEAN = 47.736 ANINTER = -0.411 WRITE (6.1) ISCALE . SLOPEAN . ANINTER . 1 FORMAT (1HO.5X*ANEMOMETER VALUES*5X* SCALE*12/10X*SLOPE*5X*INTERCEP 10 .T*/10XF6.3.6XF6.31 RETURN 200 SLOPEAN = 93.021 ANINTER = 0.451 WRITE (6.1) ISCALE. SLOPEAN. ANINTER 15 RETURN 300 SLOPEAN = 0.0 ANINTER = 0.0 WRITE (6.1) ISCALE. SLOPEAN. ANINTER RETURN 20 END

PAGE

.

.

,

000

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBROUTINE SPEED
                        TRACE
                  SUBROUTINE SPEED
                  COMMON/BSPEED/SUMVELO.ISAMPLE.IDATAHW.SUMVOLT.TIMRAT1.CHANNE1.
                                DIGRATI.TIMECHG. VOLTCHG. MULTIME.TIMEHW.DCSUPRE
                                .FRSTSPD.WRITAPE.PRINTOK
                  COMMON/BBUMPUP/TIME1(702) + VELOC2(702)
                  COMMON/BLOCK1/LENARRI. WINDIRE(100) . NRECORI. NFILEI.
                                ZEROTMI.DIRMIRR(100).VOLT(2,100).WRIDATI
                  COMMON/BCALIBR/SLOPE(2), ZEROTAP(2), SLOPEAN, ANINTER, SLOPEHW,
                                  SLUPEWD. WDINTER. SLOPEMD. DMINTER
                  COMMON/UNPKI/ITIME1 + [COMWRD(201) + [UATWRD(1000)
10
                  COMMON/BBUMP/WRITIME (100) . VELOCI (100)
                  COMMON/BBUFLA1/NTOTFI1. JCLOCK1. IEXIT. TIMADA. NREC
                  PRINTOK = 3H NO
                  KFIRST = 1
                  IF (FRSTSPD .EQ. 3HYES .A. NRFCOR1 .NE. 0) GO TO 25
15
                  CALL BUFLASI
                  IF (IEXIT .EQ. 3HYES) GO TO 200
                 DO 100 IDATAWS = KFIRST.LENARRI
                  VELOCI(IDATAWS) = SLOPE(1) * VOLT(1.IDATAWS) * ZEROTAP(1)
                  VELOCI (IDATAWS) = (SLOPEAN* VFLOCI (IDATAWS) . ANINTER) . 3048
20
                  VELOCZ(IDATAHW) = SLOPE(2) VOLT(2. IDATAWS) . ZEROTAP(2) DCSUPRE
                  IF (FRSTSPD .EQ. 3HYES) GO TO 50
                  SUMVELO = SUMVELO + VELOCI(IDATAWS)
                  ISAMPLE = ISAMPLE + 1
                  SUMVOLT = SUMVOLT + VELOC2(IDATAHW)
                 TIME ((IDATAHW) = TIMEATI*((ITIME1-ZEROTMI)/10000 + ((IDATAWS )
                 .*CHANNEll/DIGRATI)
                  IF (TIME1(IDATAHW) .GE. TIMECHG .A. VOLTCHG .EQ. 3HYES)
                      CALL VOLTADJ
                  IF (TIME1 (IDATAHW) .GE. MULTIME*TIMEHW) GO TO 200
30
              100 IDATAHW = IDATAHW + 1
                  FRSTSPD = 3H NO
                  ISTART = IDATAHW - LENAPRI+KFIRST-1
                  DO 115 I=KFIRST+LENARR1
35
                  WRITIME(I) = TIME1(ISTART)
              115 ISTART = ISTART + 1
              120 IF (NRECOR1 .GE. 2 .A. NRECOR) .LE. 8) GO TO 125
                  I = NRECOR1 - 1
                  IF (MOD(1.30) .EQ. 0)60 TO 125
                  GO TO 160
              125 PRINT 3.NRECORI
                                                        RECORD NUMBER + 14//2X + TIME + SEC
               3 FORMAT (1HO. * ANEMOMETER VELOCITY
                 .S.S. VELOCITY, M/SEC+10X+ TIME, SECS+5X+ VELOCITY, M/SEC+10X+ TIME, S
                 .ECS+5X+ VELOCITY .M/SEC+/)
45
                  PRINTOK = 3HYES
                  WRITE(6.1) (WRITIME(I) + VELOCI(I) + I=1 + LENARRI)
               1 FORMAT (1H .1XF8.3.11XF6.3.15XF8.3.11XF6.3.15XF8.3.11XF6.3)
                  IF (WRITAPE .NE. 3HYES) RETURN
              160 WRITE (6.12) NRECORT
50
              12 FORMAT (1H .* NRECOR1=*15)
                  BUFFER OUT (3.1) (WRITIME(1).VFLOC1(100))
                  IF (UNIT(3)) 400.180.190
              180 WRITE (6.6) NRECORL NFILE1
               6 FORMAT (1H .. EOF ON RECORD NUMBER 110 FILE NUMBER 13)
```

55

GO TO 400

0

Ü

```
SUBROUTINE SPEED
                         TRACE
                                                       CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
               190 WRITE (6.7) NRECORIONFILE
                7 FORMAT(1H .* PARITY ERROR INPUT ON RECORD NUMBER*110* FILE NUMBER
                  .*15)
                   GO TO 400
               200 AVEVELO = (SUMVELO/ISAMPLE)/0.3048
 60
                   AVEVOLT = SUMVOLT/ISAMPLE
                   KFIRST = IDATAWS + 1
                   DO 250 JK = 1. IDATAWS
               250 WRITIME (JK) = TIME1 (IDATAHW-IDATAWS + JK)
                   SUMVELO = 0.0
 65
                   SUMVOLT = 0.0
                   ISAMPLE = 0
                   MULTIME = MULTIME + 1
                   HWINTER = SORT (AVEVELO) - SLOPEHW AVEVOLT - 2
 70
                   DO 300 I=1.IDATAHW
               300 VELOC2(I) = ((SLOPEHW*VELOC2(I)**2*HWINTER)**2)*0.3048
                   IF (NRECOR1 .GE. 2 .A. NRECOR1 .LE. 8) GO TO 305
                   I = NRECOR1 - 1
                   IF (MOD(1.30) .EQ. 0)60 TO 305
 75
                    GO TO 310
               305 WRITE(6.2) TIME1(1).TIME1(1DATAHW).NRECORI.(TIME1(1).VELOC2(1). I=
                  . I . IDATAHWI
                  FORMAT(1HO. . HOT WIRE VELOCITY. CALCULATED FOR TIME PERIOD FROM
                  .F7.2* TO*F7.2* RECORD NUMBER*13//* TIME.SECS*5X* VELOCITY.M/SEC*10
                  .x. TIME.SECS.SX. VELOCITY.M/SEC*10X* TIME.SECS.SX. VELOCITY.M/SEC*
 80
                  .//-(1x.F8.3.12x.F6.3.14x.F8.3.12x.F6.3.14x.F8.3.12x.F6.3))
                   IF (WRITAPE .EQ. 3HYES) GO TO 310
                   IF (IEXIT .EQ. 3HYES) RETURN
               307 IDATAHW = 1
 85
                   IF (KFIRST .GT. LENARRI)GO TO 120
                   GO TO 25
               310 M = 1
                   PRINT 13.NRECORI.IDATAHW
               13 FORMAT (1H . * H. W. NRECOR1=*I10* NUMBER OF WORDS = *I10)
 90
                   LAST = 2
                   IF (IDATAHW .LE. 301)LAST = 1
                   DO 370 I=1.LAST
                   N = M + 300
                   IF (I .EQ. LAST) N = IDATAHW
                   BUFFER OUT (3.1) (TIME1 (M) . TIME1 (N))
 95
                   IF (UNIT(3))340.330.320
               320 WRITE (6.8) NRECORIONFILEIOMON
                8 FORMAT(1H .* PARITY ERROR ON HW TIME. RECORDS110* FILE*13* ME*15*
                  .N=*15)
                   GO TO 340
100
               330 WRITE (6.9) NRECORI.NFILEI.M.N
                9 FORMAT (1H .* EOF ON HW TIME, RECORD-110. FILE-13. M=-15. N=-15)
               340 BUFFER OUT (3.1) (VELOCZ (M) . VELOCZ (N))
                   IF (UNIT(3)) 370,360,350
105
               350 WRITE (6.10) NRECORT .NFILET .M.N
               10 FORMAT(1H .* PARITY ERROR ON HW VELOCITY. RECORD-110* FILE-13* M=*
                  .15* N=*15)
                   GO TO 370
               360 WRITE (6.11) NRECORI .NFILE 1.M.N
               11 FORMAT(1H .* EOF ON HW VELOCITY, RECORD* 110* FILE*13* M=*15* N=*1
110
```

SUBROUTINE SPEED TRACE CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.

.5) 370 M = M + 301 IDATAHW = 1 IF (IEXIT .EQ. 3HYES) RETURN IF (KFIRST .GT. LENARRI)GO TO 120

115

GO TO 25 400 RETURN END

```
CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
  SUBROUTINE AVENIND
                        TRACE
                  SUBROUTINE AVENIND
                  COMMON/BAVEWIN/JSAMPLE.SUMWIND.MULTIM1.TIMAVWD.AVEWD(3000)
                                 .LAST IME
                  COMMON/BSPEED/SUMVELO.ISAMPLE.IDATAHW.SUMVOLT.TIMRATI.CHANNEI.
                                DIGRATI.TIMECHG. VOLTCHG. MULTIME.TIMEHW.DCSUPRE
                                .FRSTSPD.WRITAPE.PRINTOK
                  COMMON/BBUMPUP/TIME1(702) + VELOC2(702)
                  COMMON/BLOCKI/LENARRI.WINDIRE(100).NRECORI.NFILEI.
                                ZEROTM1.DIRMIRR(100).VOLT(2.100).WRIDAT1
                  COMMON/BCALIBR/SLOPE(2).ZEROTAP(2).SLOPEAN.ANINTER.SLOPEHW.
10
                                 SLOPE WD . WD INTER . SLOPEMD . MD INTER
                  J= IDATAHW - LENARRI - 1
                  UO 100 K=1.LENARRI
                  J = J + 1
                  JSAMPLE = JSAMPLE + 1
15
                  SUMWIND = SUMWIND + WINDIRE(K)
                  IF (K .LT. LENARRI)GO TO 100
              150 AVEWD(MULTIM1) = SUMWIND/JSAMPLE
                  AVEWD (MULTIM1) = SLOPEWD * AVEWD (MULTIM1) * WDINTER
                  MULTIM1 = MULTIM1 . 1
21
                  SUMWIND = 0.0
                  JSAMPLE = 0
              100 CONTINUE
                  IF (WRITAPE .EQ. 3HYES) RETURN
                  WRITE (6.1) TIMAYWD. MULTIM1. (AVEWD(1). I=LASTIME. MULTIM1)
25
              1 FORMAT (1H . WIND DIRECTIONS IN DEGREES. MEANS OF DATA FOR F5.1"
                 .SEC INTERVALS. THIS IS INTERVAL NUMBER • 14/(10F10.3))
                  LASTIME = MULTIMI
                  RETURN
```

END

30

PAGE

```
PAGE
                                                                   CDC 6400 FTN V3.0-P261 OPT=0 02/10/72 13.01.02.
               SUBPOUTINE LASWRIT TRACE
                               SUBROUTINE LASWRIT
                               COMMON TIME 2 (200) . VELOLAS (200) . IPOINT
                               COMMON/BLOCK2/LENARR2.SYNC(1500), YLASER(1500).NRECOR2.NFILE2.
                                             ZEROTMZ.WRIDATZ.NTAPEZ
                               WRITE (6.5) NRECOR2. IPOINT
                              FORMAT (1H .* NRECOR2=*I10* NUMBER OF WORDS =*I10)
                            5
                           50 M = 1
                               N = IPOINT - 1
                               BUFFER OUT (3.1) (TIME2(M).TIME2(N))
                               IF (UNIT(3))300.200.100
            10
                           100 WRITE (5.1) NRECORZ.NFILEZ.M.N
                            1 FORMAT(1H .* PARITY ERROR ON LASER TIME RECORD NUMBER*110*FILE NUM
                              .BER . 13 . M= . 15 . N= . 15)
                               GO TO 300
                           200 WRITE (6.2) NHECOR2.NFILEZ.M.N
            15
                           2 FORMAT(1H . * EOF ON LASER TIME RECORD*110* FILE *13* M=*15* N=*15)
                           300 BUFFER OUT (3.1) (VELOLAS (M) . VFLOLAS (N))
                               IF (UNIT(3))600.500.400
                           400 WRITE (6.3) NRECORZ.NFILEZ.M.N
                            3 FORMAT(1H .. PARITY ERROR ON LASER VELOCITY, RECORD*110* FILE*13*
2
            20
                              .M=#15# N=#15)
                               GO TO 600
"
                           500 WRITE (6.4) NRECORZ.NFILEZ.M.N
                            4 FORMAT (1H . * EOF ON LASER VELOCITY, RECORD*110*FILE*13* M=*15* N=*
                              . 15)
            25
.,
                           600 TIMEZ(1) = TIMEZ(IPOINT)
                               VELOLAS(1) = VELOLAS(IPOINT)
                               RETURN
                               END
```

..

. .

-

```
IDENT UNPAKT
                                                         INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS
                                     312
                                            LENGTHA
                                                      SET 202
                                    1750
                                            LENGTHB
                                                      SET 1000
      5
                                                      USE /UNPK1/
                                            NE
                                                      BSS LENGTHA
                 0
               312
                                            8
                                                      BSS LENGTHB
                                                      USE
                                                      ENTRY UNPAKI
7
      10
                                            UNPAK1
                                                      B5S 1
                                                      SX7 18
                 1 7170000001
.
                              7100004000
                                                      SX0 4000B
                                                      MX2 12
                                                                    A(1) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED
      15
                         5110000000 C
                                                      SAL NE
                 3 6160000311 C
                                                      580
                                                          P-1
                                                                    B(J) BASE
3
                              6170002261 C
                                                      SHT
                                                           A+LENGTHB-1 B(LAST)
                                                      SBS
                 4 6150000060
                                                          48
2
                                                      581
                                                           60
                              6110000074
                                                                    GET A(I)
                 5 5011000001
                                            GET60
                                                      SAL
                                                           41+1
     20
                                                           A6+1
                 6 6166000001
                                            GET12
                                                      586
                                                                    MASK OUT 12 BITS
                                                      BX6
                                                           x2*X1
*)
                             11621
                                   67515
                                                      585
                                                           R1-85
                                                                         RIGHT SHIFT
                 7 22656
                                                           45.X6
                                                      LX6
                                                                          BUT
                                                                          AVOID SIGN EXTENSION
                         67515
                                                      585
                                                           F1-85
9
                              11760
                                                      BX7
                                                           X6*X0
                                                                          CK FOR SIGN BIT
                                                      ZR
                                                           x7.STORB
                10 0307000011 +
                                                                          MASK OUT SIGN BIT
                                                      BX6 -X0*X6
                              15660
                                                      8X6 -X6
                                   14666
      30
                                            STORB
                                                      BSS
                11
                                                                    DELETE ZERO-BIT RIGHT-FILL
                                                      AX6
                11 21601
                         56660
                                                      SA6
                                                           R6
                                                                    STORE IN B(J)
                              0467000000 +
                                                      EQ
                                                           46.87.DONE
     35
                12 0550000014 +
                                                      NE
                                                           95.80. INMID
                                                      585 48
                              6150000060
4
                13 43214
                                                      MX2 12
                                                           GET60
                         0400000005 +
                                                      EQ
                                            INMID
                                                      LX2 48
                14 20260
                         6155777763
                                                      585
                                                           45-12
                                                      EQ
                                                           GET12
                15 0400000006 +
                                                      EQU IJNPAKI
                                            DONE
                16
                                                      END
                                                                      44 STATEMENTS
                                                                                          10 SYMBOLS
                                   46302
                                            STORAGE USED
```

6400 ASSEMBLY

0.338 SECONDS

COMPASS - VER 2.0 M 02/10/72 13.01.56.

23 REFERENCES

1.7

10

6.

.,

UNPAK 1

```
COMPASS - VER 2.0 M 02/10/72 13.01.57.
            UNPAK2
                                                      IDENT UNPAKE
7
                                                         INSERT LENGTHS OF PACKED AND UNPACKED ARRAYS
                                    1132
                                            LENGTHA
                                                      SET 602
                                                      SET 3000
3
                                    5670
                                            LENGTHB
      5
                                                      USE /UNPK2/
                                                      BSS LENGTHA
                                                      ASS LENGTHB
              1132
                                                      USE
                                                      ENTRY UNPAKZ
     10
                                            UNPAK2
                                                      BSS 1
                 1 7170000001
                                                      SX7 18
                              7100004000
                                                      SX0 4000B
                                                      MX2 12
                 2 43214
                                                                    A(1) --- FIRST WORD OF ARRAY (TIME WORD) IS IGNORED
                         5110000000 C
                                                      SAL NE
     15
                                                                    B(J) BASE
                 3 6160001131 C
                                                      586
                                                           9-1
                                                           P+LENGTHB-1 B(LAST)
                              6170007021 C
                                                      587
                                                      SB5
                                                           48
                   6150000060
                              6110000074
                                                      581
                                                           60
                                            GET60
                                                           A1 + 1
                                                                    GET A(I)
                 5 5011000001
                                                      SAI
     20
                                            GET12
                                                      586
                                                           86+1
                 6 6166000001
                              11621
                                                      BX6
                                                           x2*X1
                                                                    MASK OUT 12 BITS
                                   67515
                                                      585
                                                           81-85
                                                                          RIGHT SHIFT
                 7 22656
                                                      LX6
                                                           95.X6
                                                                           BUT
     25
                         67515
                                                      SHS
                                                           B1-85
                                                                          AVOID SIGN EXTENSION
                                                      BX7
                                                           X6#X0
                                                                          CK FOR SIGN BIT
                              11760
                                                      ZR
                                                           x7.STORB
                10 0307000011 +
                                                                          MASK OUT SIGN BIT
                              15660
                                                      BX6 -X0*X6
                                                      BX6
     30
                                   14666
                                                           -X6
                                            STORB
                                                      855
                11
                                                                    DELETE ZERO-BIT RIGHT-FILL
                11 21601
                                                      AX6
                                                           1
                                                      SAO
                                                           86
                                                                    STORE IN B(J)
                         56660
                              0467000000 +
                                                      EQ
                                                           46.87.DONE
     35
                                                      NE
                                                           45.80. INMID
                12 0550000014 +
                              6150000060
                                                      585
                                                           48
                                                      MX2
                                                           12
                13 43214
                                                           GET60
                         0400000005 +
                                                      EQ
                                            INMID
                                                      LX2
                                                           48
                14 20260
                                                           P5-12
                         6155777763
                                                      585
                                                      EQ
                15 0400000006 +
                                                           GET12
                                                      EQU
                                                           IJNPAK2
..
                                                      END
                16
                                                                       44 STATEMENTS
                                                                                           10 SYMBOLS
                                   43417
                                            STORAGE USED
4
                                                                                           23 REFERENCES
                                            6400 ASSEMBLY
                                                                    0.339 SECONDS
```

-

.

0

0

0

O

o

•

```
COMPASS - VER 2.0 M 02/10/72 13.01.59.
            UNLOADW
                                                                 UNLOADW
                                                       IDENT
2
                                                                                                                                                .
                                                                 UNLOADW
                                                       ENTRY
                                                       USE
                                                                 DATA.
               246 03111720000000000000
                                                                 18/3LCIO+2/1+40/0
                                                                                                                                                0
7
                                              CIOC
                                                       VFD
                    15230700000000000000
                                              MSGC
                                                       VFD
                                                                 18/3LMSG+42/0
      5
               247
               250 01022401000000000000
                                              ABTC'S
                                                       VFD
                                                                 18/3LABT.6/1.36/0
               251 01022400000000000000
                                              ABTC
                                                       VFD
                                                                 18/3LABT+42/0
                                                                                                                                                0
~
                                             MEMC
                                                       VFD
                                                                 18/3LMEM+42/0
               252 15051500000000000000
                                             RCLC
                                                       VFD
                                                                 18/3LRCL+42/0
               253 220314000000000000000
                                                                 18/3LEND+42/0
                                                                                                                                                •
                                             ENDC
                                                       VFD
     10
               254 05160400000000000000
                                                                 18/3LACE.2/1.22/0.18/CNTCC8
               255 01030520000000000256 •
                                             CNTCC
                                                       VFD
                                                                         . 10B READ FORWARD
                                                                                                 40B FOR BACKSP
                                             CNTCCB
               DATA
                                                                 C*FILE WAS REWOUND BEFORE RETURN .
                                                                                                                                                0
0
               257
                    06111405552701235522
                                             MSG1
                                                       DATA
               263 55251614170104551716
                                              MSG2
                                                       DATA
                                                                 C* UNLOAD ON NON-TAPE FILE *
                                              MSG3
                                                       DATA
                                                                 C* UNLOAD ON UNDEFINED FILE *
               266 55251614170104551716
      15
                                                                 C* PROGRAM CONTINUED *
                                                                                                                                                0
               271
                    55202217072201155503
                                              M564
                                                       DATA
                                                                 C* RUN ABORTED WITH SPEC PROCESSING *
                                              MS65
                                                       DATA
               214
                    55222516550102172224
                                              MSG6
                                                       DATA
                                                                 C. RUN ENTIRELY ABORTED - DUMP .
               300
                    55222516550516241122
                                                                 C. RUN ABORTED WITHOUT DUMP .
                                             MSG7
                                                       DATA
                                                                                                                                                .
               304
                    55222516550102172224
                                                                 C. WAITING FOR NEXT REEL - GO TO CONTINUE.
                                             MSG9
                                                       DATA
     20
               307
                    55270111241116075506
                                                       DATA
                                                                 C* RUN ENDED WITH NO DUMP -NORMAL CC STREAM *
                                             MSGB
               314
                    55222516550516040504
4
               321
                    000000000000000000000
                                             SAVEW
                                                      DATA
                                                      USE
                                                       MACRO
     30
                                             CALLPP
                                                                 NE . . . . 1
                                                       IFC
                                                       BX7
                                                                 X.A
                                                       SAS
                                                                 1
                                                       NZ
                                                                 45. *
                                                       SA7
                                                                 A5
      35
                                                       SA5
                                                                 A5
                                                       NZ
                                                                 X5.*
                                                       ENDM
                                             CLOSER
                                                       MACRO
     45 3
                                                                LOPE
                                                       LOCAL
                                                       SA3
                                                                 82+2
                                                                 A3+1
                                                       SA4
                                                                 X3-X4
                                                       IXS
     50
                                                       ZR
                                                                 X5.LOPE
                                                                               . IN EQ OUT
                                                       MXO
                                                                 18
                                                       LXO
                                                                 18
                                                       SA3
                                                                 RS
                                                                 -x0*x3
                                                       BX7
                                                       BX4
                                                                 x0*X3
      55
                                                       SXI
                                                                 38
                                                                 -X1-X4
                                                       BX3
```

	UNLOADW				COMPASS - VER 2.0 M 02/10/72	13.01.59.	PAGE	3
			ZR SX1 ZR SX1	X3.LOPE 48 X3.LOPE 5008	• FILE NOT OPENED • WRITE MASK •NOT OPEN FOR WRITE			
5		2	BX3 NZ SX0	X1•X4 X3•LOPE 2B	. SPECIAL FUNCTION CODE			
			SX5	X0+X4 248	. WRITE CODE	540		
10			BX6 BX6 SA6 SX6	X6+X5 X7+X6 B2 B2	ADD PARITY BIT ADD LOGICAL FILE NAME RESET FIRST WORD FET			
15			SAS BX7	C10C x5+x6	. ADD FET ADR TO CALL WORD			
		LOPE	CALLPP BSS ENUM	0	END INSTRUCTION IN MACRO			
25 3		REWIND	MACRO CLOSER SAS MXO	B2 18				
30			EXO BX6 SX0 BX5	18 -X0*X5 28 X5*X0	SAVE FILE NAME			
35	3 30		5X4 BX5 BX6 SA6 SX6	50B x4+X5 x6+X5 B2 B2	.REWIND CODE .ADD PARITY BIT .ADD FILE NAME	ŝ		
40			SA5 HX7 CALLPP SX6	C10C X5+X6 MSG1				8
			SAS BX7 CALLPP	MSGC A6+X5				
45			ENDM					
		WAITER	MACRO LOCAL	LOP				
55			SX4 SA5 BX7 CALLPP	MSG9 MSGC X4+X5	•GET WAIT DAYFILE MESSAGE •GET PP CALL WORD •ADD ADDRESS TO CALL WORD			
								•

```
COMPASS - VER 2.0 M 02/10/72 13.01.59.
       UNLOADW
                                                   SXO
                                                             10000B
                                                   SA5
                                                             B0
                                                             X5+X0
                                                   BX6
                                                             A5
                                                   SA6
                                                             RCLC
                                                   SAZ
                                         LOP .
                                                   CALLPP
                                                             2
                                                   SAS
                                                             .80
                                                   BX5
                                                             x5+X0
                                                   NZ
                                                             X5.LOP
10
                                                   ENDM
                                                   MACRO
   3
                                         UNLOAD
                                                   CLOSER
                                                   SAS
                                                             42
                                                   MXO
                                                             18
20
                                                   LXO
                                                             18
                                                                            .SAVE FILE NAME
                                                   BX6
                                                             -X0*X5
                                                   SXO
                                                             28
                                                             x5*X0
                                                   BX5
25
                                                   SX4
                                                             60B
                                                                            .UNLOAD CODE
                                                   BX5
                                                             X4+X5
                                                                            . ADD PARITY BIT
                                                             X6+X5
                                                                            . ADD FILE NAME
                                                   BXO
                                                   SA6
                                                             82
                                                   SX6
                                                             42
                                                   SAS
                                                             CIOC
30
                                                   BX7
                                                             X5+X6
                                                   CALLPP
                                                   ENDM
                                         PMSG
                                                   MACRO
                                                   SX6
                                                   SA5
                                                             MSGC
                                                   BX7
                                                             X6+X5
                                                   CALLPP
                                                   ENDM
                                                   LIST
                                          UNLOADW
                                                   BSSZ
            1 5021000001
2 0302000003 •
                                                             A1+1
                                                   SAZ
                                                             x2.*+1
                                                   ZR
                                                             X2
                          53220
                                                   SAZ
                                                             XZ
```

BX7

3 10722

0

.

.

322

5170000321 + SA7 SAVEW 582 X1+80 63210 582 B0-B2 4 67202 0100000000 X RJ =XGETBA 5 LT B2.B0.NTDEF 5 0720000105 + 5152000001 SAS B2+1 X5.NTTAPE 6 0325000106 + PL UNLOAD 5132000002 7140000307 + WAITER 10 5132000002 REWIND UNLOADW 104 0400000000 + EQ 7160000266 + NTDEF SX6 MSG3 0400000142 + EQ CONT. NTTAPE BSS 106 106 5132000002 REWIND 15 141 7150000263 • SX6 MSG2 CONT. MSGC 142 5150000247 + SAS 12765 BX7 X6+X5 CALLPP 143 5150000001 20 145 5150000321 • SA5 SAVEW SBZ x5 63250 SB3 58 147 6130000005 GE H3.82.*+1 150 0632000151 + SHZ HO. 66200 JP JMP+B2 25 151 0220000153 • EQ UNLOADW 152 0400000000 + EXITI 153 0400000161 + EQ 154 0400000167 + EQ EXITE 155 0400000201 • EQ EXIT3 EXIT4 0400000213 . EQ 30 156 EXITS 0400000234 + EQ 157 EQ UNLOADW 150 0400000000 + 7160000271 • EXITI PMSG MSG4 161 UNLOADW 04000000000 + EQ 166 PMSG MSG5 EXIT2 35 167 7160000274 + ABTC 5150000251 + SA5 10755 CALLPP > 200 0000000000 PS. EXIT3 PMSG MSG6 201 7160000300 + ABTCS 40 206 5150000250 + SAS CALLPP 5 PS 212 0000000000 213 7160000304 + EXIT4 PMSG MSG7 220 5140000255 . SA4 CNTCC 45 221 7160000010 LOOP SX6 108 CNTCCB 5160000256 + SA6 CALLPP 222 10744 SA5 70B 226 5150000070 0315000221 + NZ 45.LOOP 50 227 5120000254 . SAZ ENDC 10722 CALLPP 1 233 0000000000 PS 234 7150000314 . EXIT5 PMSG MSGB 241 5120000254 + SAZ ENDC 10722 CALLPD 2 PS 245 0000000000

END