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of the precipitation-microwave function. The fraction of pairs of output vectors that 

were closer than a specified distance was computed, and statistics were accumulated on 

the differences between the corresponding atmospheric states of these pairs. The relative 

importance of various sets of frequencies for precipitation retrieval was determined by 

performing the analysis for different combinations of frequencies. The analysis showed 

that low frequencies (::; 10 GHz) are crucial for accurate precipitation retrieval, and that, 

over both land and water surfaces, several frequencies (four or more) are required for a 

retrieval to be reasonably unique. 
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Chapter 1 

INTRODUCTION 

1.1 The Importance of Precipitation Measurements to Climate 

Besides being of critical importance to the well-being of mankind the distribution 

of precipitation across the globe is a major element of the climate system. The latent 

heat release associated with areas of precipitation in the Intertropical Convergence Zone 

(ITCZ) is a main driving force of the low-latitude circulation of the atmosphere. Precip­

itation is both an important climate element in its own right and a physical process of 

great significance to the general circulation of the atmosphere. An accurate global cli­

matology of precipitation is important for verifying general circulation models (GeMs). 

The physical processes leading to precipitation are below the grid resolution of GCMs, 

and semi-empirical parameterization schemes must be used to predict clouds and precip­

itation. The parameterizations in GCMs are currently rather crude, and detailed global 

precipitation data will be needed to make improvements in climate modeling. 

Of the processes making up the hydrological cycle (evaporation, water vapor trans­

port, and precipitation), precipitation is, perhaps, the least understood. The detailed 

global distribution of precipitation amounts and variabilities is inadequately known. Rain­

fall is spatially highly variable and point measurements, such as rain gauges, provide poor 

estimates of area averaged rainfall even in regions with networks of gauges (Thiele 1987). 

In sparsely inhabited regions and over the oceans rain gauge data are nearly non-existent. 

Well calibrated radars, especially polarization capable ones, accurately measure rainfall 

over an area, but the coverage is limited to areas with radar networks. Satellite remote 

sensing offers the most practical way of obtaining the global distribution of precipita­

tion. Rainfall retrieval algorithms based on geosynchronous IR data have been proposed 
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(Arkin 1979), but these methods are rather indirect and inaccurate. The Tropical Rain­

fall Measuring Mission (TRMM) (Simpson et al.,1988) is being planned to measure a 

rainfall climatology of the tropics during the mid-1990's. The low-earth orbit satellite 

will carry 19, 37, and 85 GHz passive microwave scanning radiometers, single frequency 

microwave radar, and visible and infrared radiometers. The TRMM passive microwave 

rainfall retrieval algorithm, however, has not yet been developed. 

1.2 Passive Microwave Remote Sensing of Precipitation 

Microwave wavelengths are suitable for the remote sensing of precipitation because 

the radiation interacts strongly with hydrometeors, which have sizes of the same order as 

microwaves. Microwaves penetrate through non-precipitating clouds with little attenua­

tion, whereas visible and infrared radiation are attenuated over relatively short distances. 

Raindrops absorb, and correspondingly emit, microwave radiation. Large raindrops also 

significantly scatter the higher frequency microwaves (>50 GHz). Precipitation sized ice 

particles, on the other hand, absorb very little and so interact with microwaves primarily 

through scattering. In general the higher the frequency the more attenuation, by absorp­

tion or scattering, the microwaves suffer. What these properties mean for remote sensing 

of precipitation depends on the circumstances. Over a water surface, which has a low 

emissivity and is thus radiometrically "cold", the emission from raindrops increases the 

microwave signal (increases the "brightness temperature"). As the rain layer thickens or 

the rainfall rate increases the attenuation increases and the increase in signal tapers off. 

This saturation occurs with lower rainfall rates at higher microwave frequencies. Unlike 

land surfaces, the emission from water surfaces is highly polarized, with the vertical com­

ponent larger than the horizontal one. Along with warming the brightness temperature 

over water, rain and clouds also reduce the degree of polarization. Over land, which usu­

ally has an emissivity near one, raindrops lower the brightness temperature very slightly 

because they are somewhat cooler than the surface. Convective rainfall is usually accom­

panied by significant amounts of large ice particles above the rain. The ice scatters the 

upwelling radiation away, and doesn't emit much to replace it, and so can greatly lower the 
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observed brightness temperature. This decrease in the microwave signal is especially large 

at high frequencies (85 GHz and above). The brightness temperature lowering due to ice 

particles occurs independent of the type of surface, but the ice is not directly related to 

the amount of precipitation reaching the ground. Along with the effects mentioned above, 

the rain or ice particle size distributions, particle shapes, cloud droplet mass, water vapor, 

temperature, surface emissivity, and vertical and horizontal inhomogeneities all affect the 

upwelling microwave radiation from a precipitating atmosphere. 

Since the early 1970's investigators have been using passive microwave radiometer 

data from earth orbiting satellites to infer information about precipitation (Njoku 1982). 

The 19 GHz ESMR (Electronically Scanned Microwave Radiometer) was launched on 

Nimbus-5 in 1972. Wilheit et al. (1977) used the ESMR data to sense rainfall over 

the ocean. A radiative transfer model with a simple precipitation structure retrieved the 

rainfall rate with an accuracy of about a factor of two. Microwave observations from space 

took a large step forward in 1978 with the SMMR (Scanning Multichannel Microwave 

Radiometer) instrument on Nimbus-7 and Seasat. SMMR had horizontally and vertically 

polarized channels at 6, 10, 18, 21, and 37 GHz. Work by Spencer et al. (1983) is an 

example of rainfall retrieval from SMMR data. They used multiple regression to relate 

the brightness temperatures of seven microwave channels (10 to 37 GHZ) to weather radar 

derived rain rates. The newest satellite microwave sensor is the SSM/I (Special Sensor 

Microwave/Imager) which was launched in 1987. This instrument has both polarizations 

at 19, 37, and 85 GHz and vertical polarization at 22 GHz. SSM/I has greater sensitivity 

than SMMR, and higher resolution at 85 GHz (15 km). Spencer et al. (1989) used the 

two channels at 85 GHz to define a precipitation indicator that uses the depolarization 

from precipitation to overcome the ambiguity of interpreting low brightness temperatures 

arising from low emissivity surfaces or scattering by ice. 

Observational studies either have not attempted to retrieve rainfall rates or have 

large uncertainties in the retrievals. Some of the errors are due to problems with ground 

truth accuracy and with inadequate horizontal resolution of the instruments. Given the 

many atmospheric variables that affect upwelling microwave radiation, however, it is to 
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be expected that precipitation retrieval would be difficult. Recent theoretical radiative 

transfer modeling (described in chapter 5) suggests that multiple frequencies could be used 

to improve the accuracy of rainfall retrieval. The most accurate microwave rainfall retrieval 

scheme currently proposed (Kummerowet al. 1989) uses this multi-frequency approach in 

a physical (i.e. radiative transfer based) method. The hypothesis that multiple frequencies 

will make precipitation retrieval accurate, leads to the question of how many and which 

frequencies are needed. And more fundamentally, is the precipitation-microwave radiance 

function invertible at all; will any number of frequencies be enough? 

1.3 Scientific Objectives 

This work is a part of the long term effort toward accurate remote sensing of pre­

cipitation from space-based platforms. The goals of this work are to develop a radiative 

transfer model that could be used by the microwave remote sensing community, and to 

add to the understanding of microwave radiative transfer in precipitation. 

The specific objectives of this research are: 

1. To develop a monochromatic polarized plane-parallel radiative transfer model for 

general purpose use in remote sensing. The model should be highly accurate (within 

the plane-parallel constraint) and treat polarization fully and correctly. It should be 

relatively simple, maintainable, reliable, and well tested. 

2. To determine to what degree such a radiative transfer model is an improvement over 

simple models in microwave radiative transfer. The microwave brightness tempera­

tures upwelling from simple precipitating atmospheres are calculated and compared 

between the model developed here and an Eddington-type two-stream model. 

3. To use the radiative transfer model to study the question of invertibility of the 

precipitation-microwave brightness temperature function. The relative importance 

of various frequencies and of polarization is determined. 
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1.4 Plan of This Research 

A detailed description of the radiative transfer model developed for this work is de­

scribed in chapters 2 and 3. Chapter 2 describes the microwave absorption and scattering 

methods. The general purpose radiative transfer model is described in chapter 3. This 

chapter presents the mathematics of the algorithm, while the appendices describe some 

new numerical quadrature schemes and give an outline of the radiative transfer algorithm. 

Chapter 4 develops the simple Eddington-type model and compares the output of the two 

models for simple precipitation structures. Chapter 5 presents the precipitation invertibil­

ity study. The radiative transfer modeling and the unique analysis of the model output 

is described. The issue of invertibility in microwave precipitation retrieval has not been 

previously studied in the systematic way done here. Chapter 6 summarizes the model and 

results and presents conclusions. 



Chapter 2 

MICROWAVE ABSORPTION AND SCATTERING 

Computing the upwelling microwave radiation from a precipitating atmosphere nat­

urally divides into two steps: calculating the constants in the radiative transfer equation 

(which are the properties of the medium), and solving the radiative transfer equation. 

The first step, described in this chapter, is computing the absorption by gases and cloud 

droplets and computing the single scattering properties of raindrops and ice particles. 

For this research the scattering particles are assumed to be spherical and have a Marshall­

Palmer (exponential) distribution of sizes. The second step, described in the next chapter, 

is computing the distribution of radiation emerging from the atmosphere due to emission, 

attenuation, and multiple scattering of radiation in the medium. 

2.1 Microwave Atmospheric Absorption 

In the microwave portion of the spectrum the significant atmospheric gaseous ab­

sorbers are oxygen and water vapor. Oxygen attenuates through its magnetic dipole 

moment in a band near 60 GHz and a line at 118.75 GHz. Water vapor has rotational 

bands due to its electric dipole moment at 22 and 183 GHz. In addition there is continuum 

absorption in the windows due to water vapor, presumably from the far wing contribution 

of many high frequency lines. Figure 2.1 shows the total vertical attenuation as a function 

of frequency for the US standard atmosphere with no moisture and also fully saturated. 

The absorption of microwaves by liquid cloud droplets can be combined with that 

due to gases. Cloud droplets (diameters less than 50 micron) are very small compared to 

the microwave wavelengths. In this part of the Rayleigh regime the scattering of radiation 

is negligible compared to the absorption. The amount of absorption is proportional to 
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droplet volume and so the attenuation is conveniently proportional to the liquid water 

content (units of gJm3
) of the cloud. 

The atmospheric absorption model used in this research is a modified version of 

Liebe's millimeter wave propagation model (Liebe 1985). The model can compute the 

attenuation due to oxygen, water vapor, and cloud water from 1 to 1000 GHz for heights 

up to 30 km. The meteorological variables specified are height, temperature, relative 

humidity, and cloud liquid water content for layers in the atmosphere. The temperature 

and humidity are linearly interpolated between the layer interfaces, while the pressure is 

found by integrating the hypsometric equation. Liebe's model has 48 oxygen lines and 30 

water vapor lines. The Van Vleck-Weisskopf line shape with modifications by Rosenkranz 

for line overlap is used. The model includes an empirically fitted continuum absorption 

for water vapor that is linearly proportional to frequency. A Debye model for liquid water 

permittivity is used to compute the cloud droplet absorption. 

2.2 Microwave Scattering by Hydrometeors 

To determine the effect of water and ice hydrometeors on the transfer of microwave 

radiation, the single scattering properties of the hydrometeors must be calculated. For 

this study the raindrops and ice particles are taken to be spherical. In reality raindrops are 

deformed oblately as they fall, and ice hydrometeors may take on a variety of shapes de­

pending on their meteorological environment. Aircraft and satellite observations show that 

in most cases the polarization signature from convective precipitation is small, perhaps 

indicating that the spherical hydrometeor approximation is useful. The particle scattering 

calculations are performed using an algorithm based on the Mie theory. The radiation 

scattering properties of a sphere depend on the size and on a bulk material property, the 

complex index of refraction. 

2.2.1 Complex Index of Refraction of Ice and Water 

The microwave scattering properties of water and ice particles are very distinct due 

to the large difference in the complex refractive index between water and ice. The real 

part of the index determines the speed of light in the material. Through interference 
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Figure 2.1: Optical depth as a function offrequency for the US standard atmosphere with 
no moisture and with 100% relative humidity. 

effects it is the real part, along with the particle size, that governs the amount of power 

scattered by the particle. The imaginary part of the index determines the absorption of 

the material. The most important difference in the index of refraction between ice and 

water at microwave frequencies is that water has a large imaginary part while that of ice is 

very small. Over the microwave frequencies relevant for remote sensing of the atmosphere 

(3 GHz to 300 GHz) the real part of the index for ice is virtually constant at 1.78 and 

the small imaginary part increases with increasing frequency. The real part of the index 

for water decreases with increasing frequency from about 9 at 3 GHz to 2.5 at 300 GHz, 

while the imaginary part peaks near 30 GHz at around 3. The index of refraction for ice 

and especially for water vary significantly with temperature. 



9 

The values for the index of refraction used in this research are derived from papers by 

Ray (1972) for water and Warren (1984) for ice. The model for water is a modified Debye 

equation with temperature dependent parameters. The index values for ice were linearly 

interpolated in wavelength and temperature from the table in Warren. Table 2.1 shows 

the index of refraction for water and ice for certain pertinent remote sensing frequencies. 

Table 2.1: Complex index of refraction of water and ice 

I Frequency (GHz) I Water (15 C) I Ice (-15 C) 

6.0 (8.556,-1.601) (1.785,-.0005) 
10.7 (7.762,-2.368) (1.785,- .0009) 
19.35 (6.393,-2.869) (1.784,-.0013) 
37.0 ( 4.776,-2.711) (1.784,-.0019) 
85.5 (3.325,-1.893 ) (1.783,-.0034) 
157.0 (2.755,-1.271 ) (1. 782,- .0050) 

2.2.2 Mie Theory 

The Mie scattering theory provides a method of calculating the extinction and scat-

tering cross-sections and the phase matrix for an ensemble of spherical particles. For a 

given radius r and index of refraction m the complex Mie coefficients (an and bn) may be 

calculated (see van de Hulst, 1957 or Bohren and Huffman, 1983). These are the coeffi-

cients of the vector spherical harmonic expansion of the outgoing scattered wave, and are 

determined from boundary condition matching of the electro-magnetic fields. In terms of 

the Mie coefficients the extinction and scattering cross-sections (with units of area) are 

Cext = 

Csca = (2.1) 

where A is the free-space wavelength. Nt is the number of terms in the Mie series that are 

required for high accuracy. Wiscombe (1980) showed that the number of terms needed 

depends on the size of the sphere, namely 

Nt ~ x + 4x1
/

3 + 2 , (2.2) 
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where x = 2~r is the size parameter. The angular scattering amplitude functions depend 

on the Mie coefficients and on angular basis functions related to Legendre functions (the 

7rn and Tn functions): 

Nt 2n + 1 
82(cos0) = I: ( ) [bn7rn(cos0) + anTn(cos0)] , 

n=l n n + 1 
(2.3) 

where 0 is the scattering angle. The four unique elements of the Stokes phase matrix are 

determined from the scattering amplitude functions 

812 = ~ (1 821
2 

- 1811
2
) 

834 = 1m [828;] . (2.4) 

The Mie theory equations described so far only pertain to a single particle. To 

calculate the scattering for an ensemble of particles, an integration over a size distribution 

is be performed. The size distribution is specified in terms of the number concentration 

of particles n(r)dr (units of inverse volume). The extinction and scattering coefficients 

(units of inverse distance) are calculated by integrating the cross-sections 

10
00 

Cext n( r )dr 

10
00 

Csea n( r )dr . (2.5) 

The phase matrix at any scattering angle is found by integrating over size and normalizing 

by the scattering coefficient 

,\2 100 P1,2,3,4 = -:;:;- 811 ,12,33,34 n( r )dr 
7r 1i sea 0 

(2.6) 

for each of the four unique elements of the scattering matrix. The integrals over the size 

distribution are done numerically using the trapezoidal integration formula, summing from 

a minimum radius to a maximum radius. 

A convenient way to store the angular information in the phase matrix is to use a 

Legendre series representation 

Nl 

Pi(cas0) = I:X~i)Pl (cos 0) (2.7) 
[=0 
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The Legendre coefficients Xz are found by projecting the phase matrix functions onto the 

Legendre polynomial basis with integration. The integration is performed numerically 

using Gauss-Legendre quadrature: 

(2.8) 

where the Legendre polynomials pz(J.l) are obtained using upward recurrence (Abramowitz 

and Stegun 1972). The number of terms in the quadrature sum (Nq ) is determined by 

the criterion that the sum should exactly represent the integral, i.e. the degree of the 

integrand must be less than or equal to 2Nq - 1. The degree of the phase matrix element 

is 2Nt , and the highest degree of the Legendre polynomial is Nz, so N z + 2Nt ::; 2Nq - 1. 

To capture the angular structure of the phase matrix completely requires that Nz = 2Nt . 

To limit the computation in the radiative transfer model, however, it may be desirable to 

reduce the number of terms in the Legendre series (Nz). In this case the number of terms 

in the Mie series may as well be reduced to Nt ::; Nz. 

The total extinction is the sum of gaseous absorption and extinction due to particles. 

The single scatter albedo is the particle scattering coefficient divided by the total extinction 

coefficient, that is 

K, = J(ext + J(gas 

W= (2.9) 

2.2.3 Particle Size Distribution 

The size distribution used in the Mie calculations was a flexible analytical fUIlction 

called the modified gamma distribution: 

n(r) = arQ exp (-br'Y) (2.10) 

A size distribution that is often used for precipitation is the Marshall-Palmer distribution. 

This is an exponential distribution which is a special case of the gamma distribution. 

n(r) = aexp (-br) a = 0.16 cm-4 ,b = 82R-o.21 cm-1 , (2.11) 
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where R is the rain rate in mm/hr. For a given type of hydrometeor the Marshall­

Palmer distribution is entirely specified by the rain rate and the maximum radius. The 

constants used in this distribution are most appropriate for stratiform rain. It should be 

remembered that, while the Marshall-Palmer distribution is very widely used, actual drop 

size distributions deviate significantly from the exponential form, and more importantly 

the parameters a and b vary widely in different types of rain. 



Chapter 3 

RADIATIVE TRANSFER MODEL 

3.1 Rational for the Radiative Transfer Model 

The radiative transfer model developed for this research is monochromatic, plane­

parallel, polarized, and multi-stream. Monochromaticity works well for precipitation re­

mote sensing applications in the microwave because scattering and absorption properties 

vary little over the bandwidths of instruments in use (in general, absorption line chan­

nels are not used for precipitation retrieval). The plane-parallel approximation is on less 

sturdy ground. It can be justified, however, by both physical arguments and practical 

concerns. If the microwave observations have spatial resolution comparable to the scale 

of precipitation (~ 10 km) (which TRMM will have), the beam filling problem is largely 

alleviated. When using data from radiometers the geometry of the observation must, of 

course, be taken into account. But for theoretical studies where the vertical structure 

of precipitation is simplified, it seems reasonable to simplify the horizontal structure as 

well. A full three-dimensional (3D) multi-stream model is impractical. Besides the daunt­

ing complexity of such a model, computers at this time are neither fast enough nor have 

enough memory for such calculations. There are also problems with getting a realistic 3D 

precipitation structure for a 3D model. 

A multi-stream model was chosen for its higher accuracy over simpler two- stream 

models. For microwave radiative transfer the axisymmetry and smooth phase functions 

allow the computer running times to be modest. Passive microwave observations have 

shown that polarization is mainly from wet surfaces rather than from particles (Spencer 

et al. 1989), presumably because precipitation sized particles are usually tumbling ran­

domly or approximately spherical. The radiative transfer model presented here deals with 
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scattering from randomly oriented particles with a plane of symmetry. For high accuracy 

the model treats polarization completely generally because there is some coupling between 

the polarizations. A modification of the model allows it to study oriented non-spherical 

particles where the polarization effects are very strong. The model can have solar as well 

as thermal sources of radiation. While only thermal sources are relevant for microwave 

radiative transfer, the solar source is used for testing of the model. 

3.2 Polarized Radiative Transfer 

3.2.1 Stokes Parameters 

The four Stokes parameters (1, Q, U, V) provide a complete description of the polar­

ization state of radiation. The Stokes parameters have units of intensity (or power, the 

square of the electric field amplitude). This allows the Stokes parameters of multiple in­

coherent waves to be simply added to get the total polarization state of a radiation field. 

Since multiple scattering radiative transfer is a incoherent linear process, it is natural to 

use Stokes parameters to describe polarized radiation. 

The Stokes parameters may be expressed in terms of the complex electric field vector 

(Ev,EH) for a simple wave by 

I IEvl2 + IEHI2 

Q IEvl2 - IEHI2 

U = 21EvllEHlcOSD 

V = 21EvilEHI sinD, 

where 8 is the phase difference between Ev and EH. 

(3.1) 

An alternative set of Stokes parameters, that separates the vertical and horizontal 

components, is related to the set used in this research (I, Q, u, V) by 

Iv = 1+ Q IH = 1- Q. (3.2) 

A radiation field is made up of a very large number of simple waves. Since the Stokes 

parameters of the simple waves are added, the total polarization may range anywhere from 
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unpolarized (Q = U = v = 0) to totally polarized (I2 = Q2 + U2 + V2). In general, pure 

polarized light is elliptically polarized, for which the Stokes parameters may be expressed 

in terms of the ellipticity tan f3 and the direction of polarization x: 

Q I cos 2f3 cos 2X 

U I cos 2f3 sin 2X 

v I sin 2f3 • (3.3) 

Two special cases are of interest: linear polarization has zero ellipticity and circular 

polarization has ellipticity of ±1. Parameters Q and U depend on X and therefore are 

dependent on the orientation of the coordinate axes. 

3.2.2 Plane-Parallel Radiative Transfer Equation for Polarized Radiation 

The monochromatic plane-parallel polarized radiative transfer equation for randomly 

oriented particles has the same form as the non-polarized equation, but with a vector 

of Stokes parameters replacing the scalar radiance and a scattering matrix replacing the 

phase function: 

where, 
I is the four vector of Stokes parameters, 

M is the four-by-four scattering matrix, 
(J is the Stokes vector of radiation sources, 
w is the single scatter albedo, 
T is the optical depth, 
J.L is the cosine of the zenith angle, and 
1> is the azimuth angle. 

(3.4) 

The coordinate system used here is that T increases downward and J.L is positive for 

downward directions. 

The radiation field is separated into a collimated component (from the sun) and 

a diffuse component. The radiative transfer equation above involves only the diffuse 

component. The collimated direct solar beam is attenuated according to Beer's Law (by 
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e-r / IJ'). The collimated component is scattered by the medium and becomes a "pseudo-

source" of diffuse radiation. Along with this solar source there is also the source of 

radiation due to thermal emission of the medium. Together, the two sources of radiation 

are expressed as a vector by 

_ ( ~ ) Fo W = ( ~ ) a({L,</» = (l-w)B(T) ~ + {L047rexp(-r/{L0)M({L,</>;{L0,</>0)' ~ (3.5) 

where B(T) is the Planck blackbody function, Fo is the direct solar flux at the top of the 

atmosphere, and ({LO, </>0) is the direction of the direct beam. The source terms contain 

the ( ~ ) vector because both thermal emission and solax radiation are unpolarized. In 

this formulation the reflection of the direct solar beam from a specular ground surface is 

not included. 

The Planck blackbody fUllction B(T) in units of Watts/(meter2 ster micron) is 

(3.6) 

where A is the wavelength in microns and T is the temperature in Kelvins. In the mi-

crowave portion of the spectrum, where the energy of a photon is much less than the 

thermal energy, the Rayleigh-Jeans approximation, 

2kc 
B(T) ~ ):4T , (3.7) 

may be used. Since the Planck function is proportional to temperature, radiation intensity 

may be expressed directly as a brightness temperature, in which case B(T) = T. The 

Rayleigh-Jeans approximation is accurate as long as ~f ~ 1 (e.g. for 11 = 157 GIlz and 

T = 2500 K the error is 1.5%). It is important to realize that brightness temperature is a 

separate scale of radiance, and its correspondence to (W m-2 sr-1 {Lm-1) is only tested 

upon emission from a source at a physical temperature. For example, discussion of a 1.0oK 

brightness temperature difference is valid even though 1.0oK is out of the Rayleigh-Jeans 

limit for frequencies considered here. 
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3.2.3 The Polarization Scattering Matrix 

Besides the radiance being a vector rather than a scalar, there is another complexity 

to polarized radiative transfer that occurs because the definition of the Q and U Stokes 

parameters requires a reference frame. For single scattering the reference frame is nat-

urally the scattering plane, while for a plane-parallel radiative transfer calculation the 

convenient reference frame is the meridional plane (defined by the z-axis and the direction 

of travel). More specifically, the polarization axes for single scattering are perpendicular 

to the scattering plane (H) and in the scattering plane, perpendicular to the direction of 

travel (V); in the radiative transfer model the polarization axes are perpendicular to the 

meridional plane (II) and in the meridional plane, perpendicular to the direction of travel 

(V). 

Since single scattering calculations (e.g. Mie calculations) provide the phase matrix in 

terms of the scattering plane, a polarization transformation is necessary before the phase 

matrix can be used in the radiative transfer model (see Chandrasekhar 1960 or Hovenier 

1969). The polarization reference plane is rotated from the incident meridional plane to 

the scattering plane; the single scattering transformation represented by the phase matrix 

is applied; and, the polarization is rotated to the outgoing meridional plane (see figure 

3.1). This transformation is expressed mathematically by 

(3.8) 

For the (I, Q, U, V) Stokes basis the polarization rotation matrix is 

(

1 0 0 0) L C) = 0 cos 2i - sin 2i 0 
Z 0 sin 2i cos 2i 0 ' 

o 0 0 1 

(3.9) 

where the rotation angle il is the angle between the incoming ray (()', 4>') and the scattering 

plane, and i2 is the angle between the outgoing ray ((), 4» and the scattering plane. 
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z 

I~~~----~--+---Y 

x 

Figure 3.1: Illustration of the rotation ofthe polarization reference frame. The polarization 
of the incident ray (8',<p') is in terms of the PIOZ plane, and of the outgoing ray (8,<p) in 
terms of the P20Z plane. The poiarizatioll is rotated into the scattering plane (PIOP2 ) 

by angle iI, the phase matrix is applied, and then the polarization is rotated out of the 
plane by i 2• 

The scattering angle 0 and the polarization rotation angles i l and i2 may be found 

from spherical trigonometry by 

cos 0 cos 8' cos 8 + sin 8' sin 8 cos( <p' - <p) 

sin i l = sin 8 sin( <p' - <p) / sin 0 

sin i2 = sin 8' sin( <p' - <p) / sin 0 

cos i l = (sin 8' cos 8 - sin 8 cos 8' cos( <p' - <p)) / sin 0 

cos i2 = (sin 8 cos 8' - sin 8' cos 8 cos( <p' - <p)) / sin 0 . 

(3.10) 

(3.11 ) 

(3.12) 

(3.13) 

(3.14) 

For randomly oriented particles with a plane of symmetry the sixteen element phase 

matrix has only six unique values (Hovenier 1969): 

(

PI P2 

= P2 Ps 
P (cos 0) = 0 0 

o 0 

(3.15) 

The phase matrix for spheres has Ps = PI and P6 = P3 . 
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After the polarization rotations have been done the scattering matrix has the form 

PI P2 cos 2iI -P2 sin 2iI 0 

P2 cos 2i2 P5 cos 2iI cos 2i2 - P5 sin 2h cos 2i2 -P4 sin 2i2 

.M= 
- P3 sin 2iI sin 2i2 - p., cos 2iI sin 2i2 

P2 sin 2i2 P5 cos 2iI sin 2i2 - P5 sin 2iI sin 2i2 P4 cos 2i2 
(3.16) 

+ P3 sin 2h cos 2i2 +P3 cos 2iI cos 2i2 
0 -P4 sin2iI -P4 cos2iI Ps 

3.3 Derivation of the Matrix Form of the Radiative Transfer Equation 

3.3.1 Fourier Transforming in Azimuth 

The azimuthal angle is discretized by expressing the azimuthal dependence in a 

Fourier series. A real function of azimuth F( ¢) is expanded in a finite series 

M 

F(¢) = L F~ cos ¢ + F~ sin¢ F~ = 0 (3.17) 
m=O 

with the sines and cosines forming an orthogonal set of functions 

r21r A.. , A.. c s: 
Jo cos mlf' cos m If' = cm Umm' 
r21r ' A..' , A.. s, 

Jo SIn mlf' sIn m If' = Cm umm' 

fg 1r cos m¢ sin m' ¢ = 0 
{ 

21r r = c, m = 0 
c~ = 0 r = s, m = 0 

1r m > 0 
(3.18) 

The integral over azimuth of a product of functions transforms to a sum of the product 

of the Fourier coefficients 

f21r M 
Jo A(¢)B(¢)d¢ = L L c~A~B~ 
o m=O r=c,s 

(3.19) 

The radiative transfer equation then transforms to 

(3.20) 

m=O,l, ... ,M, r = c,s 

where the m subscript refers to the azimuthal Fourier mode, and the r subscript refers to 

the cosine and sine terms. The Fourier expansion is done separately for each element of 

the Stokes radiance vectors and the scattering matrix. 
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3.3.2 Discretization in Zenith Angle 

The zenith angle variable, J.l, is divided up into a number of discrete angles chosen 

by a numerical quadrature scheme. A quadrature formula provides a set of abscissae (J.li) 

and weights (Wi) that are used to approximate an integral accurately, by 

1 N 11 F(J.l)dJ.l ';:j :; Wj [F( -J.lj) + F( +J.lj)] . (3.21) 

There are N angles in each hemisphere of solid angle (upward and downward). The radia-

tive transfer code has the choice of five quadrature schemes: Gaussian, double Gaussian, 

Lobatto, and two schemes where the user can choose the angles (see appendix A). For low 

enough powers in J.l the quadrature sum equals the integral exactly. 

Replacing the integral over J.l in the radiative transfer equation by the quadrature 

sum gives 

dlmr( T, ±P'j) ) 
±J.lj dT =-Imr(T,±J.lj) + O'mr(T,±J.lj 

- M N 

+~ I: I: I: c~,wj' [Mmm'rr'(±J.lj,+J.ljl) Im'r,(T,+J.lj') 
47r m'=O r'=c,s j'=1 

(3.22) 

j = 1, ... ,N m=O, ... ,M r = c,s 

There are two quadrature sums; one for each hemisphere of the scattering integral. 

3.3.3 Calculation of the Radiative Transfer Scattering Matrix 

As described in section 2.2 the single scattering phase matrix P is conveniently ex-

pressed as a Legendre series 

Nl 

P(cosG) = I:XlPl(COS G) , (3.23) 
1=0 

where PI is the ['th order Legendre polynomial and Xl is the ['th Legendre coefficient 

matrix. In the scalar (unpolarized) radiative transfer case the Fourier modes of the phase 

function Pm (p" p/) are calculated from the coefficients of the Legendre series using the 

addition theorem of associated Legendre functions. The rotation of the reference frame 

of the polarization precludes that method of finding the Fourier modes of the scattering 
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matrix. Dave (1970) invented a very complicated series method to calculate the modes of 

the scattering matrix. A new simpler method was used for this model. The method used 

here is to perform the polarization rotation explicitly in azimuth space and then Fourier 

transform the results to get the scattering matrix for each Fourier azimuth mode. This 

method is similar to that of Ishimaru et al. (1984), except the rotation is performed on 

the Stokes parameters rather than the scattering amplitudes. 

For each pair of quadrature angles J.Lj and J.Li' (outgoing and incoming directions) 

and for a number of azimuth angles 8¢k = ¢' - ¢, the scattering angle 0 is found, and 

the Legendre series is summed for the six unique elements of the phase matrix. Equation 

(3.16) is used to to obtain the scattering matrix M having the desired polarization reference 

frame. The azimuth angle differences are at equally spaced angles 

A "/"k = 27rk k 0 1 N 1 LJ.'f' = , , ... , '" - , 
N", 

(3.24) 

where N '" is chosen so that the highest frequency in 1l¢ is completely sampled, that is 

(3.25) 

The scattering matrix .M is then Fourier transformed to obtain the Fourier series 

representation 

M 

L [M:(/Lj,/Li')cosm(¢' - ¢) + M:(/Lj,/Lj/)sinm(¢' - ¢)] . 
m=O 

(3.26) 

This form of the scattering matrix M is not quite what is needed because it has one 

Fourier series in ¢' - ¢ rather than a Fourier series separately for ¢' and ¢, such as 

M M 
}.1(flj,lljl,¢,¢') = L L [M:m/cosm¢cosm'¢'+M:m/cosm¢sinm'¢' 

m=O m'=O 

+M:ml sin m¢cos m'¢' + M:ml sin m¢sin m'¢'] (3.27) 

U sing the angle addition formulae for cosine and sine it is easy to show that the coefficients 

for the double Fourier series are simply related to the single Fourier series coefficients by 

=cc =ss =c 
Mmml = Mmm' = MmDmm' 
=cs =sc =s 
}.If mm' = -Mmml MmDmml (3.28) 
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Since the scattering matrix only depends on the difference in azimuth between the 

incoming and outgoing angles, the azimuth Fourier modes separate (M depends only 

on m, rather than m and m'). This property allows the azimuth modes to be solved 

separately, thus reducing the computational burden. In the scalar radiative transfer case 
=cs =sc 

the scattering function depends only on cos m( ¢' - ¢), so the M mm' and M mm' terms are 

zero, and cosine and sine terms don't mix. 

The explicit form of the scattering matrix given in equation (3.16) shows some of its 

special symmetries. The upper left and lower right two by two blocks are even functions 

in b..¢, while the upper right and lower left blocks are odd functions. This means the 

cosine matrices have off-diagonal blocks of zeros, and the sine matrices have diagonal 

blocks of zeros. Another way of stating this symmetry is that negating ¢ and ¢' results in 

negating the off-diagonal blocks. This allows trivial calculation of the scattering matrix 

for 1r < b..¢ :::; 21r from the values for 0 < b..¢ :::; 1r. Another related symmetry is that 

negating fl and fl' results again in negating the off-diagonal blocks. This is due to the 

invariance of the scattering matrix under rotation of the coordinate system (fl --+ -fl and 

¢ --+ -¢): M(fl,fl',¢' - ¢» = M( -fl,-fl',¢> - ¢'). 

For a given azimuth mode m the cosine and sine scattering matrices can be combined 

into a single eight-by-eight scattering matrix showing the blocks that are repeated and 

those that are zero: 

IC Mil Mi2 0 0 0 0 Mi3 Mi4 Ie 
QC Mil Mi2 0 0 0 0 M23 M24 QC 
UC 0 0 Mj3 Mj4 M3l M32 0 0 UC 
VC 0 0 M~3 M~4 Nftl Mt2 0 0 V C 
fS 0 0 -M{3 -M{4 Mil Mi2 0 0 IS 
QS 0 0 -M23 -M24 Mil Mi2 0 0 QS 
Us -M3l -M32 0 0 0 0 M33 M34 Us 
VS 

out -Mtl -Mt2 0 0 0 0 M~3 M~4 V S 
in 

(3.29) 

where c refers to the cosine Fourier azimuth mode and s to the sine mode. 

The blocks of zeros in this scattering matrix suggest a computationally efficient rear-

rangement of the cosine and sine modes of the Stokes parameters. If the Stokes radiance 
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vectors are written as 

(3.30) 

then the i e and is radiance vectors decouple. The rows and columns of the scattering 

matrix rearrange to give two separate four-by-four matrices 

Mf2 
M22 

-M32 
-M42 

(3.31) 

(3.32) 

Conventionally the solar azimuth is set to zero, so both the solar and thermal sources 

of radiation are even functions and unpolarized (IC is the only non-zero element). Since 

the I C and is radiance vectors are decoupled, further scattering leaves the sine mode 

radiance vector zero. Therefore only the first four-by-four Fourier scattering matrix need 

be considered. For the azimuthally symmetric case (m = 0) the sine terms in the scattering 

matrix are zero and the U and V Stokes parameters are zero, so a two-by-two scattering 

matrix may be used. 

If the solar azimuth is zero the direction of the incident solar radiation is actually 

f.Lo = cos Bo, <Po = 7r. In terms of the rearranged Stokes vector the solar "pseudo-source"is 

then 

am(f.Lj) = F0 4w exp(-r/f.Lo) ( M~~:) , 
f.Lo 7r 31 

M41 

(3.33) 

where the scattering matrix elements are evaluated as described above for the quadrature 

angles f.Lj and the solar angle f.Lo. 
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3.3.4 Matrix Formulation of the Polarized Radiative Transfer Equation 

U sing the notation i;j = i~ (T, ±JLj) the discretized radiative transfer equation be-

comes 

(3.34) 

where the plus and minus superscripts refer to the quadrature angles in the downward 

( + ) and upward ( -) directions, respectively. 

The notation can be simplified by removing the decoration of subscripts and writing 

the transfer equation using matrices and vectors. First the dependence on T and Tn is taken 

to be understood (the radiative transfer equation will be numerically solved separately for 

each Fourier azimuth mode m). The Stokes radiance vectors for each quadrature angle in 

a hemisphere are combined into one long radiance vector. The structure of the radiance 

vectors is 

ij = ( ~ ) (3.35) 

ij=N 
The length of the radiance vector is thus 4 X N. The individual scattering matrices for each 

pair of angles l.lj, J.ljl are combined to form a scattering matrix that operates on a radiance 

vector to produce another vector (the discrete equivalent of integration over all angles). 

In matrix notation the plane-parallel polarized radiative transfer equation becomes 

-± 
=dI - ± = ±+- + = ±-- - ± 

±DTr = -I +C I +C I +0' . 

= =±± 
The elements of the matrices D and Care 

where the i and i' indices refer to the Stokes parameters. 

(3.36) 
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3.4 Integrating the Radiative Transfer Equation 

3.4.1 Finite Differencing of the Radiative Transfer Equation 

The transfer equation (3.36) is a matrix first-order ordinary differential equation. 

One method of numerically integrating the differential equation is to approximate the 

derivative (~~) by a finite difference scheme. The simplest difference scheme is 

dI I(r)-I(r+b.r) 
-

dr b.r 
(3.37) 

Although simple, this method of differencing, with little added computational burden, can 

be as accurate as desired by choosing b. r small enough. 

Defining 10:::: 1(T) and h :::: 1(T + b.r) equation (3.36) becomes 

It - TrJ :::: b.TD-1 [-It + C++ It + C+-It + (7+] 
11 - 10 b.TD-1 [-II + C-+ It + c-- II + (7-] (3.38) 

A finite differencing scheme requires that the right hand side of the equation be defined in 

terms of the discretized values 10 and h, which, of course, are nearly the same since b.T 

is assumed very small. The particular combination of 10 and II used on the right hand 

side is chosen for convenience in the next section. The last equation can be rearranged to 

express the radiation emerging from the thin layer in terms of the incident radiation 

It :::: [1- b.TD-1('1- c++)] It + b.TD-1C+- II + b.TD-1 (7+ 

10 :::: ['1- b.rD-1(1- C--)] II + b.TD-1C-+ It + b.TD-1(7-

3.4.2 The Interaction Principle 

(3.39) 

The interaction principle is an intuitively simple way of expressing the linear in-

teraction of radiation with a medium. The radiation emerging from any medium can 

be expressed in terms of the radiation incident plus the radiation generated within the 

medium (see figure 3.2). In the matrix formulation used here the interaction principle is 

It T+ It + R+ II + S+ 

10 :::: T-]:; + R-TrJ + S- , (3.40) 
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i 10 

iII 

Figure 3.2: A schematic illustration of the interaction principle. The It and II on the left 
represent the incident radiation, and the 10 and It on the right represent the emergent 
radiation. The R, T, and S are the reflection, transmission, and source terms, respectively, 
which describe how the medium interacts with the radiation. 

where T is called the transmission matrix, R is called the reflection matrix, and S is called 

the source vector. The finite difference form of the radiative transfer equation (3.39) is 

the same as the interaction principle. By making the obvious associations the reflection 

and transmission matrices and the source vectors for the infinitesimal layer can be related 

to the local properties of the medium by 

T± [1'- flrD-l(1'- C±±)] 

R± flrD-1C±"T 

(3.41) 

Relating of the radiative transfer equation to the interaction principle is usually called ini-

tialization. There are a number of different initialization methods (see Wiscombe 1976b), 

each corresponding to a particular type of finite difference scheme. The method used here 

is sometimes called infinitesimal generator initialization. 

3.4.3 The Adding Algorithm 

The previous sections have shown how the coefficients in the radiative transfer equa-

tion relate to the reflection and transmission matrices and source vectors for infinitesimal 

layers. What is needed now is an integration procedure to relate the properties of in-

finitesimallayers to the properties of an atmosphere containing many finite layers. With 

the reflection and transmission matrices and source vectors for the whole medium, the 

interaction principle can be applied to the incident radiation at the boundaries to ca1cu-

late the outgoing radiation. The radiation field inside the medium may also be calculated 
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from the incident radiation and the matrices for the medium above and below the level of 

interest. 

The interaction principle is used to derive a formula for combining (adding) two 

layers, i.e. to express the reflection and transmission matrices and source vectors for the 

combined layer in terms of the individual layer matrices and vectors. Starting with the 

interaction principles for two adjacent layers (see figure 3.3), the radiance at the interface 

(It, II) may be eliminated and the equations rearranged into the form of the interaction 

principle for the combined layer. The resulting reflection and transmission matrices and 

source vectors are 

si = st + Ttr+(st + Rt S2) , 

+ [ + _]-1 r = 1-RIR2 , 

Ti = T1-r-T2-

S:r = S:; + T1-r-(S2 + R"2 sf) 

r- = [1 - R2 Rt r1 
. (3.42) 

The adding formulae may be physically interpreted in terms of multiply reflected rays, 

with the r factors being the multiple reflection factors. 

By a similar manipulation of the interaction principles for two layers, the internal 

radiance (It ,I:;) may be expressed in terms of the radiance incident upon the two layers 

(3.43) 

3.4.4 The Doubling Algorithm 

The radiative properties for a finite layer could be calculated by using the adding 

algorithm to combine very many thin layers (millions of thin layers could be required, 

depending on the final optical depth and the desired accuracy). Fortunately there is a 

much faster method of building up a thick layer from many identical thin layers: the 

doubling algorithm. Doubling is really just the adding algorithm applied in a special way. 

Imagine many identical thin layers of optical depth fj.T. Combining two layers with the 
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1 It IIa 
R± 

1 
T± 

1 
S± 

1 I II 
R± r± s± 1 It 

2 2 2 

112" 1 Ii 

Figure 3.3: A schematic illustration of adding two layers. The reflection (R), transmission 
(1'), and source (S) terms which describe each layer (1 and 2) are combined to make the 
R, T, and S terms for the combined layer. 

adding method gives a layer with an optical depth of 2Llr. Since all of the thin layers are 

the same, all 2Llr thick layers will be the same, and the doubled layer can be added to 

itself to produce a 4Llr thick layer. After N of these doubling steps the layer is built up 

to an optical depth of 2N Llr (a million thin layers takes 20 steps). The doubling formulae 

for the reflection and transmission matrices are 

RtN = Rt + Ttr+ RtTN 

TiN = Ttr+Tt 

r+ = [1- RtRNrl 

1'- - T-r-T-2N - N N 

r- = [1- RNRt]-1 (3.44) 

The doubling, adding, and finite generator initialization algorithms presented here 

were developed by Grant and Hunt (1969). The doubling method described so far requires 

that the finite layer be uniform. The solar pseudo-source, however, has an exponential 

dependence with optical depth, and it also is desirable to have the thermal emission vary 

with depth. The doubling method has been extended by Wiscombe (1976a) to incorporate 

sources that vary exponentially with optical depth and sources that vary linearly with 

optical depth. With exponential sources the source at a deeper optical depth is the same 

as the source at a lower optical depth except for a multiplicative factor. This introduces 

a factor into the formulae for adding the sources of two layers 

SiN = IN st + Ttr+ (st + RtSNIN) 

S:;N = S- + T- r- (S- N + R- S+ ) N N NI N N 

I = exp( -Llr / J.lo) • (3.45) 
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For linear sources, the source at a deeper optical depth is the same as the source at a 

lower optical depth except for an additive factor. This introduces an extra complication 

of requiring a doubling sequence for a separate vector C±, which is what the source vector 

would be if the source did not vary with optical depth: 

SiN (st + NaCt) + T"Jr+ [st + Rt(SN + NaCN)] 

S-m = SiV + TNr- [(SiV + NaCiV) + RiVSt] 

CiN = C+ + T+r+ [C+ + R+C-] N N N N N 

C2N = C- + T-r- [C- + R- C+] N N N N N 

0: = [B(r1) ] D.r 
B(ro) - 1 (r1 - ro) 

(3.46) 

3.4.5 Purely Absorbing Layers 

For layers that have no scattering the reflection and transmission matrices and source 

vectors can be calculated directly without resorting to the doubling algorithm. For a non-

scattering layer there is no reflection, and the transmission is simply the transmission for 

the given optical depth. The radiation emitted by the layer is unpolarized and azimuthally 

symmetric. For a source that is linear in optical depth the following formulae apply 

IT±ljj1iil = exp( -D.r / J.Lj )OjjlOiil , 

IS+I;. = {Bo + ~! - [Bo + ~! 1'; (1+ ~;) 1 exp( -MIJL;)} om,OO',l , 

IS-Iji = { Bl - ~! - [Bl - ~! J.Lj (1 + ~;) 1 exp( -D.r / J.Lj)} Om,OOi,l , 

D.B = B(r1) - B(ro) , 

D.r = r1 - ro . (3.47) 

3.5 Reflection and Emission from Ground Surfaces 

The effect of the ground surface may be calculated using the interaction principle. 

The ground is treated as a layer with a transmission of unity, no source, and whatever 

reflection. The radiation emitted from the ground is the incident radiance on the lower 
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boundary. The internal radiance algorithm is used to calculate the downwelling radiance 

below the atmosphere (but above the ground) 

1+ a = r+I+' a 

1+' = T+ 1.+ + R+ 1- + S+ a a 0 a 9 a 

r+ = [ + r 1 
1- Ra Rg . (3.48) 

where the a subscription refers to the total atmosphere layer, and 9 refers to the ground. 

The downwelling radiation from the atmosphere is what the radiation would be with no 

ground 1+: multiplied by the multiple reflection factor r+. The radiation upwelling from 

the top of the atmosphere is found from adding the atmosphere layer to the ground layer, 

namely 

L-
0 = R"TTt + TiT; + S:r 

R-
T = R- + T-r-R T+ a a 9 a 

y,-
T = T;r-

Sy. = S- +T-r- R S+ a a 9 a 

r- [ +r1 
1- RgRa (3.49) 

3.5.1 Lambertian Surfaces 

By definition a Lambertian surface emits and reflects equally in all directions. The 

reflected radiance is the ground albedo times the incident flux divided by pi. The reflected 

radiation is assumed to be unpolarized. The matrix operator for a Lambertian surface is 

(3.50) 

where Ag is the ground albedo (Ag = 1 - fg where Eg is the ground emissivity). 

The thermal radiation emitted by a Lambertian surface is unpolarized and isotropic 

(3.51) 
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3.5.2 Fresnel Surfaces 

A flat dielectric surface behaves according to the Fresnel reflection formulae. The inci­

dent radiation is reflected specularly such that the incident zenith angle equals the reflected 

zenith angle. The perpendicular or horizontal polarization is reflected differently than the 

parallel or vertical polarization. The Fresnel reflection formulae for a vacuum/dielectric 

interface are 

(3.52) 

where J.L is the cosine of the incident zenith angle and m is the complex index of refraction 

of the dielectric surface. These reflection coefficients are in general complex and are for 

the electric field amplitudes. Put in terms of the radiation intensity, the Stokes reflection 

matrix is 

o 
o 

Re(RvR'H) 
Im(RvRiI) 

-Im(ivRH) ) Cjjl , 

Re(RvR'H) 
(3.53) 

where the reflection coefficients are at the angles J.L = J.Ljl (Tsang et al. 1985). 

The thermal radiation emitted by a semi-infinite absorbing Fresnel surface is polarized 

and angle dependent 

(3.54) 

3.6 The Radiative Transfer Model Algorithm 

The radiative transfer algorithm is coded as a Fortran subroutine. The input param­

eters are the properties of the atmospheric layers, the boundary conditions, and control 

parameters. The output is the radiances at the discrete quadrature angles for each az­

imuthal Fourier mode. The atmospheric parameters specified for each layer are the layer 
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thickness, layer boundary temperatures, extinction, single scatter albedo, and Legendre 

series coefficients for the six unique elements of the scattering matrix. The boundary 

conditions for the top boundary are the solar direction and flux and incident blackbody 

radiation from space. For the bottom boundary they are ground surface temperature, sur­

face type (Lambertian or Fresnel), and associated properties. For efficiency any number 

of boundary conditions may be applied to one atmosphere. 

Because the azimuthal Fourier modes decouple, the doubling and adding of layers 

proceeds separately for each mode. The method developed here of calculating the az­

imuthal modes for the scattering matrix, however, provides all of the Fourier modes at 

once (via an FFT). For this reason the scattering matrices for all of the atmospheric lay­

ers are computed and stored before doubling and adding begins. The computation of 

the scattering matrix from the Legendre coefficients is optimized by using the symmetries 

described in section 3.3.3 (4) ---+ 27r - 4>, j.l ---+ -j.l, and the packing of cosine and sine modes 

into one four vector). Another efficiency is that any number of Stokes parameters may be 

used (I; I, Q; I, Q, U; ,I, Q, U, V), since some applications do not require all four Stokes 

parameters. 

To assure that energy is conserved it is important that the scattering matrix be 

normalized. Since the quadrature integrations are exact for low enough powers of j.l, 

normalization is achieved by using enough quadrature angles for the number of terms in 

the Legendre series. Before a scattering matrix for a layer is used the normalization is 

checked by summing the Stokes I-I element over all outgoing angles for each incident angle. 

The atmospheric layers are processed from the top down. The scattering matrix for 

a layer is retrieved and the initial reflection and transmission matrices and source vectors 

are made for a specified small optical depth. The sources of diffuse radiation inside 

the medium may be thermal emission and/or scattered solar radiation. The doubling 

algorithm computes the reflection, transmission, and source for the full layer, and the 

layer is added to the rest of the atmosphere. The radiative transfer code assumes that all 

emitting species (gas and particles) are at the environmental temperature. A complete 

outline of the radiative transfer algorithm is given in appendix B. 
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3.7 Testing the Polarized Radiative Transfer Model 

There are few polarized radiative transfer results in the atmospheric science literature 

which can be used for model testing. Most results are for specific applications and the 

descriptions do not contain enough details to simulate the results accurately. Also many of 

the polarized models are Monte-Carlo models which preclude high accuracy comparisons. 

Besides internal consistency checks, the present model has been tested in two ways. First, 

it has been operated in a scalar mode (no polarization) and compared with the radiative 

transfer model of Stamnes et al. (1988). The two models agree to high accuracy (better 

than 1 part in 105). Second, to test the polarization aspects of the model, comparisons 

were made with tables by Coulson, Dave, and Sekera (1960). 

Coulson et al. contains tables of outgoing radiation from a conservative Rayleigh 

scattering layer. These tables list the upwelling and downwelling Stokes radiance vector 

(f,Q, U) as a function of angle for different optical depths, solar angles, and surface 

albedos. Comparisons were done for three cases of varying optical depth and solar angle. 

The radiative transfer model developed here was run with eight angles (out of the 16 angles 

in the tables) using the user defined quadrature scheme. The upwelling and downwelling 

radiances were compared at azimuth angles of 0, 90, and 180 degrees (U is zero at 0 and 

180 degrees). The incident solar beam is normalized to a flux of pi. Table 3.1 compares 

the upwelling radiation for one case. Note: Coulson et al. define Q with a sign opposite 

to that used here. The results in this table show the characteristic decline in agreement 

at large zenith angles (small J.l). Table 3.2 summarizes the radiative transfer comparison. 

It shows the average and maximum absolute difference between the Coulson et al. tables 

and the model results for the three cases. On average the results agree to a few places in 

the fourth decimal. 
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Table 3.1: Comparison of model output with results of Coulson et al. for a homoge­
neous Rayleigh atmosphere of optical depth of 1. The upwelling radiance as a function of 
!-L = cos () for an azimuth of 90 degrees is shown. The solar flux is normalized to IT, the 
cosine of the solar zenith angle is 0.8, and the ground albedo is 0.25. 

Present Model Coulson et al. 
I Q U I Q U 

.0600 .39769 -.05121 .24707 .39887 .05099 .24758 

.1600 .40860 -.03995 .23359 .40894 .03988 .23375 

.2800 .40477 -.02767 .20914 .40482 .02766 .20918 

.4000 .39384 -.01568 .18112 .39380 .01570 .18114 

.6400 .37258 .00779 .12477 .37248 -.00774 .12476 

.8400 .36158 .02686 .07591 .36147 -.02681 .07590 

.9600 .35787 .03813 .03609 .35776 -.03808 .03609 
1.0000 .35705 .04168 .00000 .35694 -.04181 .00000 

Table 3.2: Summary of differences between radiative transfer model and tables by Coulson 
et al. The average and maximum absolute difference of the radiances over the eight 
upwelling zenith angles at azimuths of 0, 90, and 180 degrees between the tables and 
model results for the three cases. The optical depth and cosine of the solar zenith angle 
are listed. 

Optical Solar Ground Average Error Maximum Error 
Depth !-La Albedo I Q u I Q U 

1 0.8 0.25 .00021 .00009 .00007 .00130 .00027 .00051 
1 0.2 0.25 .00021 .00013 .00002 .00160 .00100 .00018 

0.1 0.1 0.25 .00041 .00021 .00003 .00175 .00108 .00011 



Chapter 4 

MICROWAVE RADIATIVE TRANSFER MODEL COMPARISON 

Simple approximate radiative transfer models are often used in microwave radiative 

transfer studies. Models that simplify the scattering source integral (by a two stream 

approach, for example) are less complex and take much less computer time. This is 

important when modeling three-dimensional inhomogeneities or when speed is necessary 

for remote sensing retrievals. The question arises as to the accuracy of these simple models. 

The highly accurate radiative transfer model developed here can be used to check a simple 

model, albeit only in the plane-parallel domain. 

The simple model chosen for comparison is Eddington's second approximation which 

has been used extensively by Weinman (Weinman and Davies 1978, Wu and Weinman 

1984, Kummerow and Weinman 1988) and others. In this model the Eddington two-stream 

model is solved first. From the Eddington fluxes the scattering source term is derived. 

The radiative transfer equation is then simply integrated over optical depth at the desired 

observation angle. The two polarizations (horizontal and vertical) are treated separately 

with no interaction. To facilitate detailed comparisons a version of this Eddington model 

was programmed for the comparison. The method and results are presented in detail in 

this chapter to facilitate future duplication of results for checking of microwave radiative 

transfer computer codes. 

4.1 Eddington Model 

The appropriate radiative transfer equation for passive microwave applications is 

plane-parallel, azimuthally symmetric with only thermal sources. 

d1 W}+1 
J.L dr = -I +"2 -1 P(J.L,J.L')1(J.L')dJ.L' + (1- w)T , ( 4.1) 
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where 1 is the radiation intensity expressed in brightness temperature, P is the phase 

function, w is the single-scatter albedo, and T is the environment temperature. In this 

case polarization is not included, so the radiance is a scalar rather than a vector. 

The Eddington approximation expands the radiance field to first order in the cosine 

of the zenith angle (1 = Io + hf-l). Using the notation of Meador and Weaver (1980) the 

radiance field may be expressed as a function of the upward and downward fluxes (1+ and 

( 4.2) 

The phase function is also expanded to first order 

P(0) = 1 + 3gcos 0 = 1 + 3gf-lf-l' , ( 4.3) 

where 9 is the asymmetry parameter. Substituting these forms for the radiance and phase 

function and integrating over f-l from 0 to 1 gives 

which may be rearranged into a two-by-two matrix equation for the upward and downward 

fluxes: 

~ ( I+) 
dr I- = (~l ~r) ( i~ ) + ( ~~ ) (4.5) 

r = [1- w(4 - 3g)] /4 

t = [7-w(4+3g)]/4 

f3 = (1-w)T. 

For a uniform layer, where the coefficients rand t are constant, the two-stream radia-

tive transfer equation may be solved analytically to get solutions in terms of exponentials. 

The eigenvalues for the matrix operator are 

(4.6) 

and the eigenvectors are 

( -r) ( t + A ) 
t+A' -r 

(4.7) 
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where A is the positive eigenvalue. The homogenous solution, the solution for no source 

term, is then 

It = _rC+eAr + (t + A)C-e-Ar 

T;; = (t + A )C+ eAr - rC- e- Ar . (4.8) 

The full solution requires that the particular solution for the source term be added to the 

homogeneous solution. If the thermal source is linear in optical depth (/3 = /30 + /31 r) then 

the particular solution is 

( 4.9) 

The constants C+ and C- may be derived from the boundary conditions, i.e. the 

fluxes incident on the layer. For multiple layers the boundary conditions of all the layers 

must be simultaneously satisfied. One convenient approach is to use the doubling and 

adding algorithms. For a two stream model the transmission and reflection are scalars 

instead of matrices, but the doubling and adding algorithms are identical. The initial 

transmission, reflection, and source coefficients for an infinitesimal layer of thickness or 

are 

T = 1 - tor, R = -ror, S = /3or . ( 4.10) 

For a given set of boundary conditions the radiances at the layer interfaces are calculated 

from the internal. radiance equations (section 3.4.3). The boundary conditions are incident 

cosmic radiation at the top and surface emission and reflection at the bottom. For a 

Lambertian surface the emissivity is independent of angle and may be used directly for 

the two-stream reflectivity. For a Fresnel surface, however, the emissivity varies with angle 

and some averaged value must be used. The :F'resnel emissivities are numerically averaged 

over the two polarizations and over angle (16 quadrature angles are u.sed) 

(4.11) 
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The second part of this Eddington model is to use the internal Eddington fluxes to 

calculate the source term and integrate the radiative transfer equation. The source term 

has thermal emission and scattering components 

- +1 
J(r,J.L) = (1- w)T(r) +:::'1 P(J.L,J.L')Iedd(J.L')dfl,'· 

2 -1 

In terms of the Eddington fluxes 1+ and 1- for a layer the source term is 

which has the form 

( 4.12) 

(4.13) 

(4.14) 

The downwelling radiation at the surface is due to the cosmic radiation and the 

integral of the source term: 

1 'T* 

I+(r*,J.L) = Tcexp(-r*/J.L) + - r J(r,J.L)exp(-(r*-r)/J.L)dr, 
J.L Jo ( 4.15) 

where r* is the optical depth at the bottom of the atmosphere. The upwelling radiation 

at the top of the atmosphere is from the surface emission, reflection of the downwelling 

radiation, and the integral of the source term: 

110 

+ - J(r,-J.L)exp (-r/J.L) dr . 
J.L 'T* 

( 4.16) 

For a Fresnel surface the emissivity f. depends on polarization, and this is the only po­

larization dependence in this model. The simple form of the source term J( r, J.L) allows 

the integrals to be done analytically for each layer, and the results for each layer are then 

summed. 

4.2 Precipitation Modeling Comparison 

The multi-stream model and the Eddington model were compared by modeling the 

microwave radiative transfer through a simple precipitating atmosphere. The comparison 

was done to determine the accuracy of the Eddington model specifically in microwave 
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Table 4.1: Atmospheric parameters for model comparison 

Height Temperature ReI. Hum. Cloud LWC Gaseous Extinction (km 1) 
(km) (OK) (%) (g/m3

) 19 GHz 37 GHz 85 GHz 

15 205 0 0 .00045 .00106 .00166 
8 247 100 0.1 .01698 .04263 .12222 
4 273 100 0 .02775 .03325 .13149 
0 299 80 

Table 4.2: Some Mie calculation results for model comparison 

Frequency Type Temperature Rain rate Extinction Albedo Asymmetry 
(GHz) (C) (mm/hr) (km-I) 

19.35 Ice -15 2 .0005873 .8233 .0338 
19.35 Rain +15 2 .03299 .0918 -.0171 
85.5 Ice -15 50 3.222 .9872 .5347 
85.5 Rain +15 50 5.060 .5127 .3060 

precipitation retrieval applications, rather than in a general radiative transfer sense. The 

tests were performed at three microwave frequencies in remote sensing use today: 19.35, 

37.0, and 85.5 GHz. The atmosphere contained a four km thick rain layer and a four km 

thick ice and cloud layer. The atmospheric parameters of the layers and the corresponding 

gaseous (and cloud water) absorption for the three frequencies is given in Table 4.1. The 

rain and ice layers had the same Marshall-Palmer size distribution from 0.06 to 3.00 mm 

diameter hydrometeors. Three Marshall-Palmer rain rates (2, 10, 50 mm/hr) that cover 

a wide range of conditions were used. Results of some of the Mie scattering calculations 

for the rain and ice layers are given in Table 4.2. Simulations were also done with a cloud 

layer containing no ice hydrometeors. Two ground types were modeled: a Lambertian land 

surface having an emissivity of 0.90 and a Fresnel water surface, both at a temperature of 

299°1(, The water surface had a complex index of refraction of (7.004, -2.595) at 19 GHz, 

(5.408, -2.801) at 37 GHz, and (3.689, -2.187) at 85 GHz. The cosmic blackbody radiation 

of 2.7°K was incident from above. The multi-stream radiative transfer model used eight 

Lobatto quadrature angles, and the Eddington model was evaluated at the same angles. 
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The upwelling brightness temperatures from the multi-stream model and the bright­

ness temperature differences between the two models is given in two tables. Table 4.3 is 

for the land surface, which has no polarization, and Table 4.4 is for the water surface. Re­

sults are listed for nadir and at about 49 degrees zenith angle (cosine=.65239). Figure 4.1 

summarizes the brightness temperature difference results. In general, Eddington's second 

approximation reproduces the upwelling brightness temperatures from the multi-stream 

polarization model quite well. The simple model, however, has significant errors at inter­

mediate optical depths (near unity). This is to be expected from the Eddington model. At 

small optical depths the two-stream calculation is nearly irrelevant because there is little 

scattering. At large optical depths, where there is much scattering, the radiative transfer 

is near the diffusion regime which the two-stream Eddington model can duplicate. At 

optical depths near one, the brightness temperature differences have a wide range, from 

-1.5 to -8.5°K. To put these differences in terms of retrieved rain rate, the rain rate can 

be adjusted in the multi-stream model (leaving all other parameters unchanged) until the 

brightness temperature is the same as the Eddington model. For example, for the 37 GHz 

case with 10 mm/hr rain rate, ice layer, and land surface the Eddington model output 

at nadir look angle corresponds to a rain rate of 8 mm/hr. For the 37 GHz, 2 mm/hr 

rain rate case the Eddington model predicts a warmer brightness temperature than zero 

rain or ice produces. The brightness temperature difference graph also shows the warm 

bias to the Eddington model. The warm bias means that the Eddington model would 

systematically underestimate the precipitation for scattering based retrieval methods. 
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Upwelling Brightness Temperature Differences 
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Figure 4.1: Upwelling brightness temperature difference between models as a function of 
optical depth. The difference is the multi-stream model minus the Eddington model. All 
cases described in the text are plotted. Results are shown for the three frequencies, the 
three rain rates, both land surfaces, and the two viewing angles. 
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Table 4.3: Radiative transfer model comparison results for a land surface. The upwelling 
brightness temperature from the multi-stream model and the difference (multi-stream -
Eddington) between the two models at two zenith angles is tabulated. Simulations were 
performed for three frequencies and three Marshall-Palmer rain rates (R.R.). 

Freq R.R. Brightness Temp T B Difference Optical depth 
(GHz) (mm/hr) 1( 49°) 1(0°) 1( 49°) 1(0°) 

Rain and ice layers 
19 2 278.14 279.08 -.99 1.81 .32 
19 10 274.95 278.92 -4.53 -2.27 .92 
19 50 257.20 264.39 -.40 -1.36 3.28 
37 2 269.25 274.21 -8.53 -6.02 .89 
37 10 242.05 252.31 -1.38 -4.13 3.22 
37 50 189.41 208.30 -.21 -1.80 11.67 
85 2 242.93 255.53 -1.53 -5.68 3.60 
85 10 190.94 211.74 .69 -2.47 11.15 
85 50 138.70 158.83 .07 -1.73 34.15 

Rain layer only 
19 2 278.46 279.28 -.74 1.98 .31 
19 10 277.39 280.54 -3.82 -1.71 .91 
19 50 268.30 271.96 .10 -.98 3.20 
37 2 272.44 276.32 -7.22 -4.86 .86 
37 10 260.87 265.12 -1.16 -3.81 3.01 
37 50 253.68 256.32 1.63 .16 10.65 
85 2 263.94 268.84 -2.11 -4.78 3.07 
85 10 260.66 264.11 .51 -.30 8.05 
85 50 259.48 262.38 .58 -.31 21.27 
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Table 4.4: Radiative transfer model comparison results for a water surface. The upwelling 
brightness temperature from the multi-stream model and the difference (multi-stream 
- Eddington) between the two models at two zenith angles is tabulated. Vertical and 
horizontal polarizations are shown for 49 degrees; polarizations are the same at nadir. 
Model results are with both a rain layer and an ice layer. 

Freq R.R. Brightness Temp T B Difference 
(GHz) (mm/hr) V( 49 0

) H( 49 0
) (00

) V( 490
) H( 49 0

) (00
) 

19 2 234.70 203.82 193.89 -.45 -1.01 -.73 
19 10 267.16 260.60 250.19 --1.55 --2.85 -2.50 
19 50 257.76 256.56 263.93 .53 -.67 -.94 
37 2 261.17 252.25 244.39 -3.34 -5.80 -5.12 
37 10 243.31 240.55 251.66 1.05 -1.71 -2.69 
37 50 191.11 187.71 208.30 1.49 -1.91 -1.80 
85 2 243.74 241.94 255.13 .21 -1.59 -4.36 
85 10 191.53 190.35 211.74 1.29 .11 -2.46 
85 50 138.89 138.51 158.83 .26 -.12 -1.73 



Chapter 5 

PRECIPITATION INVERTIBILITY STUDY 

Since the late 1970's there has been a gradual increase in the sophistication of mod­

eling microwave radiative transfer through precipitating atmospheres. During this time 

there has been a corresponding realization of the complexities of accurate precipitation 

retrieval using passive microwave sensors. Wilheit et al. (1977) use a simple unpolar­

ized radiative transfer model to calculate upwelling 19 GHz radiation from a uniform 

rain layer over the ocean. There is no ice hydrometeors and the thickness of the rain 

layer is fixed by the freezing level. These numerous assumptions lead to a simple bright­

ness temperature-rain rate relationship showing an increase in TB with rain rate up to a 

saturation point. Huang and Liou (1983), using a more sophisticated radiative transfer 

model with polarization, simulate upwelling radiation at 19, 37, and 85 GHz from a pre­

cipitating atmosphere with variable thickness rain and ice layers. Their modeling of the 

horizontal and vertical brightness temperature over land and water shows how a rain layer 

depolarizes the radiation from the ocean and how scattering from an ice layer greatly de­

presses the brightness temperature at 85 GHz. Wu and Weinman (1984) develop a simple 

approximate polarized radiative transfer model to study the effects of non-spherical ice 

hydrometeors, showing that these ice particles can lead to significant polarization effects. 

Kummerow (Kummerow 1987, Kummerow and Weinman 1988) investigates the effects of 

a horizontally finite geometry in a precipitating atmosphere. This model has rain and ice 

layers with oblate spheroidal ice particles. The modeling results demonstrate the large 

errors introduced in observing precipitating systems with sensor resolutions much larger 

than the natural horizontal scale. This three dimensional modeling effort, although us­

ing a simplified radiative transfer model, indicates the extent to which the plane-parallel 



45 

geometry is an approximation. Recent work by Mugnai and Smith (Mugnai and Smith 

1.988, Smith and Mugnai 1988, Mugnai et al. 1990) uses numerical cloud models to derive 

realistic vertical distributions of water and ice hydrometeors for plane-parallel microwave 

radiative transfer modeling. They emphasize the importance of the vertical distribution 

of cloud liquid water in precipitation retrievaL Their use of weighting functions allows 

a detailed examination of the effects of cloud microphysics on the upwelling microwave 

radiation and demonstrates the necessity of having multiple frequencies to characterize 

the precipitating system. 

As the more recent research has shown, the upwelling microwave brightness tem­

peratures from a precipitating atmosphere vary significantly with many microphysical 

parameters, such as cloud liquid water, the concentration, size, and vertical distribution 

of liquid and solid hydrometeors, etc. Given the multi-dimensional nature of the relevant 

precipitation parameters and the wide range of parameters observed in real precipitating 

systems, it would seem necessary to have many independent measurements to character­

ize the precipitation accurately. For passive microwave observations these independent 

measurements would be brightness temperatures measured at different frequencies, po­

larization states, or observation angles. Having several independent measurements does 

not mean, however, that the desired atmospheric parameters can be uniquely determined. 

The passive microwave observation of a precipitating atmosphere may be thought of as 

a multi-dimensional non-linear function: the function domain is a vector of atmospheric 

parameters and the function range is the measured (or modeled) brightness temperatures. 

The function is the transfer of microwave radiation through a precipitating atmosphere, 

while the inverse of the function represents the microwave precipitation retrieval prob­

lem. If the function is multi-valued, i.e. a vector of brightness temperatures corresponds 

to more than one vector of atmospheric parameters, then retrieval is impossible. The 

purpose of the research described in this chapter is to explore the form of the forward 

function, specifically its degree of multi-valuedness, rather than to invent a particular 

retrieval scheme. 

By choosing a relatively small number of the most important precipitation parameters 

and making some simplifying assumptions about the precipitation structure it is possible 
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to model the forward radiative transfer function numerically. The microwave radiative 

transfer model described in chapters 2 and 3 was used to calculate the polarized brightness 

temperatures at a number of microwave frequencies for many (1800) atmospheric states. 

A very simple two-layer precipitation structure was assumed. Seven parameters were 

varied in the radiative transfer modeling: layer thickness and Marshall-Palmer rain rate 

for the rain and ice layers, cloud liquid water content, temperature lapse rate, and surface 

emissivity. The atmospheric variables were varied to completely explore the parameter 

space rather than to give a statistical representation of actual precipitation events. The 

radiative transfer results were analyzed by tabulating the number of atmospheric states 

(input vectors) that gave virtually identical brightness temperatures (output vectors). 

5.1 Radiative Transfer Modeling 

The simple precipitating atmosphere structure used for the radiative transfer model­

ing consisted of four layers. In increasing height there was a rain layer, a rain and cloud 

layer, an ice and cloud layer, and a clear layer. The boundary between the rain and ice 

was fixed at the freezing level, and the cloud layer extended to one-half kilometer below 

the freezing level. The ice layer thickness and the total rain thickness were parameters 

that varied in the model. The top of the clear layer was at 15 km with a temperature of 

205. The temperature of the layers depended on the uniform lapse rate. The relative hu­

midity was specified at the layer interfaces (section 2.1) and was fixed. The distribution of 

liquid and ice hydrometeors was vertically homogenous. Table 5.1 shows the atmospheric 

structure and the parameter values used in the modeling. 

The seven model parameters determining the atmospheric state were varied over a 

wide range of values. The rain layer thickness was varied in four steps from 1 km to 4 km, 

while the ice layer thickness was varied from 0 to 4 km, also in four steps. The rain layer 

had five values of Marshall-Palmer rain rate, from 2 to 40 mm/hr. The Marshall-Palmer 

"rain" rate for the ice layer was set to either 30% below, the same as, or 50% above 

that of the rain layer. There were three values of cloud liquid water and of temperature 

lapse rate. The surface emissivity was treated separately for the land and water cases. 
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Table 5.1: Structure of precipitation model and values of parameters varied. Zr and Zi are 
the thicknesses of the rain and ice layer respectively. Rr and Ri are the Marshall-Palmer 
rain rates for the rain and ice layers. f is the cloud liquid water content. , is the temper­
ature lapse rate. E is the land surface emissivity. 

level height temp R.H. LWC 
(km) (OK) (%) (gjm3 ) 

1 15 205 0 
moist air 0 

2 Zr + Zi 273 -,Zi 100 
ice and cloud f 

3 Zr 273 100 
rain and cloud f 

4 Zr - 0.5 273 + ,0.5 100 
rain 0 

5 0 273 + ,Zr 80 

Zr = 1,2,3,4 km Zi = 0,1,2,4 km 
Rr = 2,5,10,20,40 mmjhr Ri = -30,0, +50% of Rr 

f = 0.25,0.5,1.0 gjm2 ,= 5.0,6.5,8.0 Cjkm 
Land: E = 0.85,0.90,0.95 Water: E = 1.00,1.10 of Efresnel 

The three emissivities (0.85, 0.90, and 0.95) used for land were assumed independent of 

frequency. Two emissivities were used for water surfaces: the Fresnel value, and 1.10 

times the Fresnel value. The model parameters were varied independently of each other, 

so there were 1800 different atmospheric states, or 5400 land cases and 3600 water cases. 

The scattering properties of the hydrometeors was calculated from Mie theory as­

suming a Marshall-Palmer distribution (section 2.2). The scattering results depend on 

the particle temperature through the index of refraction. The temperature of the parti-

cles was set to that of the average environmental temperature of the layer, rounded to the 

nearest 5 C. The maximum diameter in the truncated Marshall-Palmer distribution was 

3 mm and there were 50 integration steps in the Mie calculation. Liebe's millimeter wave 

propagation code was used to calculate the absorption due to oxygen, water vapor, and 

cloud liquid water (section 2.1). The 2.7°K cosmic blackbody radiation was included. 

The radiative transfer model, the microwave gaseous absorption, and Mie scattering 

programs described above were combined with a control program to make the program 
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that ran all of the cases. The upwelling and downwelling polarized brightness temperatures 

(I and Q) were computed at six gaussian quadrature angles per hemisphere. For each 

atmospheric state the radiative transfer was calculated for seven frequencies: 6.0, 10.7, 

19.35, 22.235, 37.0,85.5, and 157.0 GHz. 

5.2 Model Output Analysis Method 

The radiative transfer modeling run produced polarized brightness temperatures at 

six upwelling angles for seven frequencies for 9000 distinct cases of atmospheric and sur­

face properties. J.<or the analysis only the 1 and Q brightness temperatures at 54 degrees 

zenith angle and the difference between the 1 brightness temperatures at 11 and 83 degrees 

zenith angle (1::::.1 = 1(11) - 1(83)) was utilized. This effectively gives three "observables" 

for each frequency (total brightness temperature, degree of polarization, and angular vari­

ation of brightness temperature) for a total of 21 for each case. The model output can 

be thought of as 9000 discrete points in a function that operates on a seven dimensional 

atmospheric/surface state vector to produce an output vector of up to 21 brightness tem­

peratures. 

The analysis attempted to measure the multi-valuedness of the precipitation­

microwave radiation function from the model output. The analysis method went through 

all output brightness temperature vectors and for each one determined how many output 

vectors were close to it (see figure 5.1). Two vectors were considered close if one fell within 

a multi-dimensional box of specified size around the other (i.e. the brightness temperature 

difference in all dimensions was less than the specified amount). For example, a brightness 

temperature box size of one Kelvin means that a multi-dimensional box with sides two 

Kelvin long is constructed around each point. The total number of pairs of vectors that 

were close was determined, and statistics were accumulated on the difference between the 

atmospheric states of those close pairs. The difference between the atmospheric states 

of cases that have close output brightness temperatures is an indication of the degree 

of multi-valuedness. There is less problem performing a precipitation retrieval if similar 

brightness temperatures correspond to similar atmospheric parameters than if they cor­

respond to much different parameters. For each atmospheric or surface parameter the 
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number of differences and the average difference were tabulated for all the close pairs of 

output vectors. For the 5400 land cases, for example, there are over 14 million pairs, and 

for a particular analysis there might be 2000 pairs that are judged to be close. Of those 

there might be only a few hundred that have different rain rates, because most of the 

differences were in the other parameters. 

Microwave Brightness 

Temperature Space 

Precipitation 

Parameter Space 
• 

Figure 5.1: Schematic drawing of the analysis method. The microwave-precipitation 
function relates points in precipitation parameter space to points in microwave brightness 
temperature space. If two separate points in precipitation parameter space are within llTb 
of each other then the function is not invertible at that point. The analysis method uses 
the total number of pairs of points that are close (within the n box) as a measure of the 
uniqueness and accuracy of microwave precipitation retrieval. 

Many analyses were performed with different numbers of brightness temperatures 

in the output vector and different size boxes for the closeness criterion. The bright-

ness temperature box size corresponds (to some degree) to the accuracy of measurement 

and modeling, in that two points are indistinguishable if they are closer than the errors. 

From probability considerations it would be expected that the larger the distance cutoff 

(greater the measurement error) the more close pairs would be found (the less unique 

the retrieval would be). Different combinations of model output brightness temperatures 

(i.e. different frequencies and polarizations) were used in the analyses. It is expected that 

the greater the number of independent "measurements" or vector dimensions the more 
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accurate and unique the retrievals would be. By adjusting the number of brightness tem­

peratures used, the number of frequencies needed for a reasonably unique retrieval can 

be determined. The importance of different frequencies and polarizations on retrievals 

of the various atmospheric parameters can be determined by performing analyses with 

different combinations of brightness temperatures. The analysis can be performed by se­

lecting any combination of frequencies, and using brightness temperature combinations: 

I; I,Q; I,Q,b..I; V; V,H; or V,H,b..I (V = 1+ Q and H = 1- Q). The land and 

water cases were analyzed separately. 

5.3 Results of Analysis 

Figure 5.2 shows how the brightness temperature close pair fraction (I) increases 

with increasing distance criterion (box size) for land and water surface cases with all 

seven of the frequencies used. Multi-valuedness increases greatly with uncertainty in 

brightness temperature. The slope of the plot of log f vs. log b..TB is a measure of the 

dimensionality of the brightness temperature space. Taking the higher points (to avoid 

sampling problems), the slope for the land cases is 3.75 and for water cases is 2.98. This 

measure of dimension is considerably less than the topological dimension of seven for 

the land cases and fourteen for the water cases because the frequencies are not entirely 

independent of each other. The measured dimensions also show that the radiative transfer 

process has lost some of the information in the seven dimensional atmospheric parameter 

space. Table 5.2 gives the detailed results of the TB box size analysis. 

How the fraction of close pairs of brightness temperatures varies with the number of 

frequencies is shown in figure 5.3. The degree of multi-valuedness increases dramatically 

with fewer frequencies, from a close pair fraction of 10-5 with all seven frequencies to 10-1 

for one frequency. The water surface cases are less multi-valued than the land cases for 

the same frequencies, due to the additional polarization information and the advantageous 

radiometrically cold surface. The graph shows a wide range in the number of close pairs for 

a given number of frequencies. This indicates that the uniqueness of the retrieval depends 

on the particular set of frequencies measured as well as the number of frequencies. 
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Figure 5.2: Close brightness temperature pair fraction versus brightness temperature dis­
tance criterion. Land and water surface analyses with all seven frequencies are shown. 
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Figure 5.3: Close brightness temperature pair fraction versus number of frequencies. The 
brightness temperature distance criterion is 1.0oK. 
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The detailed results of the multiple frequency analyses are given in tables 5.3 through 

5.6. These results are all from analyses with a brightness temperature distance criterion 

of 1.0oK. Tables 5.3 and 5.4 give the close pair fraction for the land and water surface 

cases respectively. They also contain, for each atmospheric parameter, the fraction of the 

close pairs that have a difference in that parameter. The atmospheric cases that have 

close brightness temperatures must, by design, have some difference in their parameters, 

but may have several parameters (rain rate, cloud LWC, etc.) that are the same. Thus 

of all the close pairs in an analysis, only some fraction will have a difference in a par­

ticular precipitation parameter. For certain applications only the number of cases with 

a difference in a particular parameter (e.g. rain rate) is relevant; this can be found by 

multiplying the parameter fraction by the close pair fraction. The second set of tables (5.5 

and 5.6) have different information for the same analyses, again separated into land and 

water cases. These tables contain the number of close pairs and the average difference in 

the atmospheric parameters. As described in the analysis methods section, a histogram 

of the differences in the atmospheric parameters is accumulated for the close pairs. The 

average difference in a parameter is the mean value of the parameter calculated from this 

histogram. All of the tables are sorted according to the close pair fraction. 

The results clearly show the importance of utilizing multiple frequencies for pre­

cipitation retrieval. Low frequencies (6 and 10 GHz) are crucial to an unique retrieval 

because of their ability to penetrate through the precipitation to the surface. Combina­

tions of frequencies which include a low frequency have a smaller close pair fraction even 

than combinations which have more frequencies but are without a low frequency (e.g. 

6,19,37,85 GHz with jpair = 9.25 X 10-5 vs. 19,22,37,85,157 GHz with jpair = 4.35 X 10-4 

over land). For water surfaces a combination of 10 and 85 GHz with both V and H polar­

izations does remarkably well for only two frequencies. The highest frequency (157 GHz) 

does not markedly reduced the multi-valuedness of the precipitation retrieval. Combi­

nations with frequencies further apart do better (e.g. 22 GHz is nearly redundant with 

19 GHz), confirming the notion that the brightness temperatures become more indepen­

dent as the frequencies separate. Single frequencies are very poor at uniquely determining 

the atmospheric state. 
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Polarization information is relevant only over water surfaces. The upwelling bright­

ness temperatures over land are nearly unpolarized, so using Q as well as I in the analysis 

gives the same close pair fraction. Over a water surface, which is radiometrically cold 

and highly polarized, the polarization information can be important. When using many 

frequencies the addition of the H channel to the V channel does not add much new in­

formation, but with just one frequency the additional channel can be highly significant 

(e.g. at 19 GHz /pair = 7.90 X 10-3 for V, H polarizations vs. /pair = 4.82 X 10-2 for 

Valone). A few of the analyses looked at using information about the angular varia­

tion of the upwelling radiation in the form of ~I described above. Comparing the close 

pair fraction for the same combination of frequencies with and without tlI shows that 

the angular information is fairly significant to the retrieval process. It is likely, however, 

that the utility of the angular structure of the radiation determined under plane-parallel 

assumptions would be masked by the inhomogeneities in many real precipitation fields. 

As would be expected the average difference in the parameters generally increases 

with the close pair fraction. This means that the atmospheric parameters of cases that 

result in similar brightness temperatures are further apart as the precipitation function 

becomes more multi-valued. For analyses with many frequencies the average difference 

in the rain rate, ice amount, and layer thicknesses is small compared to the range of 

variation, indicating that most of the close pairs had precipitation parameters that were 

similar. Over a water surface when many frequencies were used the temperature lapse rate 

was the source of most of the multi-valuedness with the other parameters having few or no 

differences. The analysis with 19, 37, and 85 GHz and the angular variation parameter ~I 

shows an interesting result. Most of the multi-valuedness came from the surface emissivity 

parameter, so for the other parameters the degree of multi-valuedness was down near that 

for the analysis with all seven frequencies. By comparing analyses done with and without 

a particular frequency the precipitation parameters most dependent on that frequency can 

be found. The surface properties are most keenly sensed by the 6 GHz frequency. The 

157 GHz frequency is only useful for sensing the overlay ice layer. The higher frequencies 

are important for retrieving cloud liquid water. These frequency-parameter relationships 
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are simply what would be expected from the known interactions of microwave radiation 

with precipitating atmospheres. 

Interpretation of these results should be tempered by acknowledging the shortcomings 

of the modeling. Since only a small number of atmospheric parameters could be varied 

the precipitation structure had to be very simple. There was little vertical structure in the 

model, just two homogeneous precipitating layers. The hydrometeors were solid spheres 

with a simple Marshall-Palmer size distribution. The freezing level determined the bound­

ary between the rain and ice layers. The assumptions caused there to be couplings between 

different physical parameters, e.g. surface temperature and rain layer thickness, cloud wa­

ter path and ice layer thickness, etc. The plane-parallel nature of the model avoided the 

issues of horizontal inhomogeneities and different footprint resolutions of the frequencies. 

The accuracy of determining the multi-valuedness of the precipitation function was hin­

dered by the coarseness of the discretization of the precipitation parameters. Even though 

the modeling, by necessity, had many simplifying assumptions, enough of the important 

parameters were varied to learn something about the precipitation retrieval function. If a 

retrieval is multi-valued with such a simple precipitation model then it is likely to be even 

more multi-valued in a real situation unless other constraining information is applied. 
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Table 5.2: Precipitation invertibility analysis results showing effect of changing the dis­
tance criterion. The number of close brightness temperature pairs and corresponding 
fraction of all pairs is given. All seven frequencies were used in the analysis of 5400 land 
and 3600 water cases. For each atmospheric parameter the fraction of the close pairs that 
have a difference in the parameter is tabulated. Zr and Zi are the thicknesses (km) of the 
rain and ice layer respectively. Rr and Ri are the Marshall-Palmer rain rates (mm/hr) for 
the rain and ice layers. f is the cloud liquid water content (g/m3). J is the temperature 
lapse rate (OK/km). E is the surface emissivity factor. 

TB's Sfc fl.TB Npair jpair (zr) (Rr) (Zi) (Ri) (f) (J) (E) 
I L .25 4 2.74x10 ·7 .00 1.00 .00 .00 .00 .00 .00 
I L .50 21 1.44x10-6 .00 .90 .10 .10 .00 .05 .00 
I L 1.00 233 1.60x10-5 .23 .49 .48 .62 .22 .33 .00 
I L 2.00 4099 2.81xlO-4 .26 .42 .46 .72 .30 .59 .03 
I L 4.00 46995 3.22xlO-3 .49 .54 .53 .78 .41 .70 .22 
V,H W .50 0 0 .00 .00 .00 .00 .00 .00 .00 
V,H W 1.00 123 8.44xlO-6 .00 .00 .01 .01 .01 .99 .00 
V,H W 1.40 261 1.79x10-5 .00 .00 .02 .08 .02 .98 .00 
V,H W 2.00 437 3.00xlO-5 .00 .00 .09 .19 .04 .94 .00 
V,1I W 4.00 3269 2.24xl0-4 .10 .14 .28 .52 .11 .79 .00 
V,H W 8.00 27117 1.86xl0-3 .44 .44 .48 .75 .32 .70 .03 
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Table 5.3: Precipitation invertibility analysis results showing effect of different frequency 
combinations. The fraction of brightness temperature pairs that are within the 1.0oK 
distance criterion is shown. For each atmospheric parameter the fraction of the close pairs 
that have a difference in the parameter is tabulated (parameters labeled as in table 5.2). 
Only land surface cases are included. 

Frequencies TB'S jpair (zr) (Rr) (Zi) (Ri) (l) (,) (f) 
6,10,19,22,37,85,157 1, /~.1 3.36x10 6 .02 .98 .00 .00 .00 .02 .00 
6,10,19,22,37,85,157 1,Q 1.60x10-5 .23 .49 .48 .62 .22 .33 .00 
6,10,19,22,37,85,157 1 1.60xlO-5 .23 .49 .48 .62 .22 .33 .00 
6,10,19,37,85,157 1 1.89x10-5 .26 .43 .50 .63 .24 .35 .00 
10,19,22,37,85,157 1 4.50xlO-5 .64 .28 .25 .38 .11 .31 .55 
6,10,19,22,37,85 1 4.56x10-5 .25 .28 .52 .73 .49 .37 .00 
6,10,19,37,85 1 5.47xlO-5 .27 .26 .54 .72 .50 .39 .00 
6,19,37,85 1 7.36x10-5 .32 .34 .50 .70 .47 .41 .08 
6,10,85,157 1 9.25x10-5 .30 .64 .44 .68 .29 .41 .08 
19,37,85 f,/)"f 1.34xlO-4 .21 .10 .01 .04 .02 .11 .92 
6,10,19,22,37 1 3.26x10-4 .16 .27 .61 .76 .48 .27 .01 
19,22,37,85,157 1 4.35xl0-4 .61 .15 .09 .19 .03 .23 .76 
6,19,37 1 5.97x10-4 .29 .45 .66 .80 .57 .39 .12 
19,22,37,85 1 6.88x10-4 .58 .21 .21 .34 .14 .43 .69 
10,19,37 1 7.48x10-4 .39 .46 .64 .77 .53 .52 .26 
19,37,85 f,Q 9.01x10-4 .62 .28 .29 .44 .22 .47 .70 
19,37,85 1 9.02x10-4 .62 .28 .29 .44 .22 .47 .70 
10,85 f 1.40xl0-3 .63 .66 .56 .81 .61 .63 .57 
37,85 1 5.33x10-3 .71 .43 .40 .59 .36 .56 .68 
19,37 1 5.34x10-3 .62 .57 .63 .77 .56 .62 .64 
85 1 2.66x10-2 .75 .65 .55 .79 .60 .64 .67 
37 1 4.77x10-2 .74 .64 .69 .82 .64 .66 .67 
19 1 8.56x10-2 .67 .76 .70 .90 .66 .66 .65 
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Table 5.4: Precipitation invertibility analysis results showing effect of different frequency 
combinations. The fraction of brightness temperature pairs that are within the l.OoK 
distance criterion is shown. For each atmospheric parameter the fraction of the close pairs 
that have a difference in the parameter is tabulated (parameters labeled as in table 5.2). 
Only water surface cases are included. 

Frequencies TB'S jpair (zr) (Rr) (Zi) (Ri) (f) (t) (f) 
6,10,19,22,37,85,157 V,II,~I 5.69x10-6 .00 .00 .00 .00 .00 1.00 .00 
6,10,19,22,37,85,157 V,H 8A4x 10-6 .00 .00 .01 .01 .01 .99 .00 
10,19,22,37,85,157 V, II 8.44xlO-6 .00 .00 .01 .01 .01 .99 .00 
6,10,19,37,85,157 V,H 8.44xlO-6 .00 .00 .01 .01 .01 .99 .00 
6,10,19,22,37,85,157 V 9.33x10-6 .00 .00 .06 .06 .06 .94 .00 
6,10,85,157 V,H 9.54xlO-6 .04 .00 .09 .12 .10 .91 .00 
6,10,19,22,37,85 V,H l.88x10-5 .00 .00 .08 .11 .07 .93 .00 
6,10,19,37,85 V,H 1.88x10-5 .00 .00 .08 .11 .07 .93 .00 
6,19,37,85 V,H l.89x10-5 .00 .00 .08 .11 .07 .93 .00 
19,37,85 V,H,~I 2.97xlO-5 .00 .00 .00 .00 .00 .42 .62 
10,85 V,H 3A6x10-5 .20 .28 .37 .47 .29 .81 .05 
19,22,37,85,157 V,H 6.96x10-5 .35 .02 .01 .03 .00 .20 .70 
6,10,19,22,37 V,H 8.68x10-5 .00 .00 .31 .67 .11 .12 .00 
6,19,37 V,H 8.98x10-5 .01 .01 .33 .68 .14 .43 .00 
10,19,37 V,H 9.35x10-5 .02 .02 .32 .66 .13 .14 .01 
19,22,37,85 V,H 9.67x10-5 .33 .05 .04 .09 .02 .10 .59 
19,37,85 V,H 1.10x 10-4 .35 .09 .07 .16 .04 .16 .58 
19,37,85 V 2.29xlO-4 .19 .25 .27 .12 .21 .56 .54 
19,37 V,H 3A3x10-4 .34 .21 .35 .54 .24 .52 .41 
37,85 V,H 1.07x10-3 .65 .32 .27 .13 .18 .53 .54 
19,37 V l.28x10-3 .55 .52 .58 .76 .52 .63 .48 
37,85 V 2.23x10-3 .68 .50 .43 .63 .39 .58 .52 
19 V,H 3.51x10-3 .19 .42 .60 .79 .61 .64 .45 
37 V,H 7.71x10-3 .71 .60 .61 .78 .54 .65 .50 
85 V,H 9.19x10-3 .75 .65 .53 .77 .54 .64 .51 
85 V 1.19x10-2 .75 .66 .55 .79 .60 .64 .51 
19 V 2.14x10-2 .64 .73 .67 .90 .65 .66 .19 
37 V 2.35xlO-2 .73 .70 .69 .85 .63 .66 .50 
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Table 5.5: Precipitation invertibility analysis results showing effect of different frequency 
combinations. The number of brightness temperature pairs that are within the LooK 
distance criterion is shown. The average of the difference in atmospheric parameters over 
the close pairs is tabulated (parameters labeled as in table 5.2). Only land surface cases 
are included. 

Frequencies TB'S Npair 8zr 8Rr 8Zi 8Ri 8£ 8'Y 8E 
6,10,19,22,37,85,157 1, b:.l 49 1.00 3.7 .00 .0 .00 1.50 .000 
6,10,19,22,37,85,157 I,Q 233 1.00 3.8 1.19 2.5 .39 1.90 .000 
6,10,19,22,37,85,157 1 233 1.00 3.8 1.19 2.5 .39 1.90 .000 
6,10,19,37,85,157 1 276 1.00 3.8 1.19 2.1 Al 1.93 .000 
10,19,22,37,85,157 1 656 1.05 5.9 1.29 3.2 Al 1.75 .066 
6,10,19,22,37,85 1 665 1.00 4.5 1.26 3.5 .10 1.92 .050 
6,10,19,37,85 1 797 1.00 4.5 1.28 3.4 .41 1.95 .050 
6,19,37,85 I 1073 1.17 6.9 1.38 4.4 .43 1.93 .053 
6,10,85,157 1 1348 1.18 7.2 1.50 5.8 .13 2.01 .050 
19,37,85 1, b:.l 1959 1.05 5.5 1.00 2.3 .44 1.58 .063 
6,10,19,22,37 1 4746 1.03 6.0 lAO 4.7 Al 1.97 .050 
19,22,37,85,157 1 6347 1.17 9.7 1.53 4.0 .13 1.74 .066 
6,19,37 1 8697 1.21 10.9 1.65 7.3 .16 2.02 .053 
19,22,37,85 1 10026 1.18 lOA 1.60 5.9 .15 1.77 .066 
10,19,37 1 10897 1.14 lOA 1.75 7.4 .16 1.92 .062 
19,37,85 I,Q 13136 1.22 10.8 1.73 6.3 .16 1.83 .066 
19,37,85 1 13148 1.22 10.9 1.74 6.1 .16 1.83 .066 
10,85 1 20369 1.41 12.5 1.81 11.0 .50 1.96 .061 
37,85 1 77717 1.53 9.3 1.80 6.9 .18 1.90 .066 
19,37 1 77864 1.32 13.1 1.96 10.5 .19 1.96 .065 
85 1 387789 1.64 12.5 1.78 10.8 .51 1.97 .067 
37 1 695414 1.64 11.5 1.96 9.3 .50 2.00 .067 
19 1 1247290 1.46 17.6 2.03 16.7 .50 1.99 .065 
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Table 5.6: Precipitation invertibility analysis results showing effect of different frequency 
combinations. The number of brightness temperature pairs that are within the LooK 
distance criterion is shown. The average of the difference in atmospheric parameters over 
the close pairs is tabulated (parameters labeled as in table 5.2). Only water surface cases 
are included. 

Frequencies TB'S Npair SZr SRr OZi SRi Of Of OE 
6,10,19,22,37,85,157 V,H,6.I 83 .00 .0 .00 .0 .00 1.50 .000 
6,10,19,22,37,85,157 V,H 123 .00 .0 1.00 2.0 .25 1.50 .000 
10,19,22,37,85,157 V,H 123 .00 .0 1.00 2.0 .25 1.50 .000 
6,10,19,37,85,157 V,H 123 .00 .0 1.00 2.0 .25 1.50 .000 
6,10,19,22,37,85,157 V 136 .00 .0 1.00 2.0 .25 1.50 .000 
6,10,85,157 V,H 139 1.00 .0 1.00 1.7 .25 1.56 .000 
6,10,19,22,37,85 V,H 274 .00 .0 1.00 2.7 .25 1.50 .000 
6,10,19,37,85 V,H 274 .00 .0 1.00 2.7 .25 1.50 .000 
6,19,37,85 V,H 275 1.00 3.0 1.04 2.8 .25 1.51 .000 
19,37,85 V,H,6.I 433 1.00 3.0 1.00 4.0 .25 1.50 .100 
10,85 V,H 504 1.17 8.5 1.60 6.3 .38 1.68 .100 
19,22,37,85,157 V,H 1014 1.05 16.0 1.63 7.0 .25 1.54 .100 
6,10,19,22,37 V,H 1266 .00 .0 1.05 3.7 .29 1.50 .000 
6,19,37 V,H 1309 1.06 15.2 1.09 4.2 .31 1.52 .100 
10,19,37 V,H 1363 1.00 6.6 1.15 4.1 .30 1.54 .100 
19,22,37,85 V,H 1409 1.04 17.8 1.24 7.6 .29 1.58 .100 
19,37,85 V,H 1609 1.05 16.5 1.53 7.3 .36 1.72 .100 
19,37,85 V 3335 1.16 11.3 1.64 7.1 .45 1.81 .100 
19,37 V,H 5000 1.06 15.7 1.56 10.3 .39 1.83 .100 
37,85 V,H 15557 1.46 12.6 1.85 7.9 .44 1.87 .100 
19,37 V 18685 1.22 13.4 1.86 10.5 .48 1.94 .100 
37,85 V 32531 1.49 11.0 1.79 8.4 .49 1.90 .100 
19 V,H 51200 1.20 17.7 1.83 15.4 .50 1.96 .100 
37 V,H 112327 1.55 14.3 1.88 11.5 .47 2.00 .100 
85 V,H 133998 1.63 12.7 1.79 10.9 .49 1.97 .100 
85 V 172785 1.65 12.5 1.77 10.8 .51 1.97 .100 
19 V 312344 1.37 19.1 2.04 18.6 .51 1.99 .100 
37 V 341936 1.60 12.2 1.97 10.3 .50 1.99 .100 
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SUMMARY AND CONCLUSIONS 

Precipitation is an important but ill-measured element of climate and the general cir­

culation. The hydrological cycle, through the heat of phase changes, is a large component 

of the energy budget of the earth, but the distribution of precipitation is poorly known 

Progress in climate modeling will require an accurate global climatology of precipitation 

for verification of the parameterizations used for clouds and precipitation. As a result of 

the inadequate coverage and sampling problems of rain gauges and weather radars, satel­

lite instruments offer the best possibility for a global precipitation dataset. Microwave 

sensors have a distinct advantage over visible and infrared instruments because microwave 

radiation penetrates clouds and interacts directly with the precipitation elements. Passive 

microwave radiometers with many frequency channels have been in earth orbit for over a 

decade, but there is still no widely accepted rainfall retrieval algorithm. This is due to the 

complicating effects of the many atmospheric parameters which modulate the upwelling 

microwave radiation. Recent theoretical radiative transfer modeling has indicated that 

using multiple microwave frequencies should improve precipitation retrieval accuracy. 

The purpose of the present research has been to develop a highly accurate radiative 

transfer model and to use the model to explore the issue of multiple frequencies in mi­

crowave radiative transfer in precipitating atmospheres. The tasks that were performed 

in this research are: 

1. The development and testing of a fully polarized plane-parallel radiative transfer 

model for general use in remote sensing. 

2. A comparison of the complex model with an Eddington-type two-stream model for 

simple precipitating atmospheres. 
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3. An examination of the invertibility of the precipitating atmosphere-microwave 

brightness temperature function. 

6.1 Summary of the Radiative Transfer Model 

The radiative transfer model developed for this research was designed to be highly 

accurate for use in remote sensing. Besides thermal emission, solar radiation was included 

for testing purposes and for use in visible and near IR remote sensing projects. A full 

polarization formulation was needed for model testing with solar scattering and for ac­

curate future computations with non-spherical particles. Fully polarized means that the 

completely general transformation of the polarization state upon scattering is calculated. 

A multi-stream discretization of the angular field was used to achieve high accuracy. The 

model was programmed to be efficient, maintainable, and reliable. It was tested by com­

parisons with a discrete ordinate unpolarized model and with the Rayleigh scattering 

tables of Coulson et al. 

The model developed for this research is a monochromatic plane-parallel polarized 

radiative transfer model. The model can solve the radiative transfer equation for vertically 

inhomogeneous atmospheres with solar and thermal sources of radiation. The full angular 

distribution of the radiance field is calculated, by discrete streams in zenith angle and by 

a Fourier series in azimuth angle. The angles of the discrete streams are chosen by one 

of five numerical quadrature scheme: Gaussian, double-Gaussian, Lobatto, and two new 

schemes which allow angles to be chosen at will. The polarization state of the radiance is 

represented by the four Stokes parameters (I, Q, U, V), and only the appropriate number 

of Stokes parameters need be used for a given calculation. If the Rayleigh-Jeans approx­

imation is invoked the radiances are expressed in brightness temperature, otherwise the 

radiances are in units of Wattsf(meter2 ster micron). For microwave radiative transfer the 

radiance is azimuthally symmetric, thermal emission is the only source of radiation, and 

the U and V Stokes parameters are zero. In the microwave region the radiance is often 

expressed as horizontal and vertical polarizations: Iv = I + Q, IH = I - Q. 

The version of the model described here assumes that the scattering particles have 

a plane of symmetry and are randomly oriented. In this case the polarized scattering 
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information is completely described by six functions of scattering angle. These functions 

are input to the model as Legendre series. Inside the model the bi-directional scattering 

information is contained in a scattering matrix. For each pair of zenith angles (incoming 

and outgoing) a four-by-four scattering matrix defines the transformation of the polarized 

radiance due to a single scattering. 

The major difficulty in implementing a polarized radiative transfer model as com­

pared to an unpolarized one is the calculation of the scattering matrix from the Legendre 

series scattering information. This difficulty arises from the necessity of rotating the frame 

of reference of the polarization. The Q and U Stokes parameters are defined in terms a 

reference plane. The scattering information input to the model has the scattering plane as 

the reference, whereas the radiative transfer model has the vertical axis as the reference. 

In both polarized and unpolarized radiative transfer models the multiple scattering com­

putations are performed independently for each Fourier azimuth mode (this is a result of 

the scattering depending only on the difference between the incident and outgoing azimuth 

angles). In an unpolarized model the addition theorem of associated Legendre functions 

provides a direct way to calculate the scattering for an azimuthal mode from the Legendre 

series coefficients. The polarization rotation prevents this method from working. Some 

previous models have used complicated series to transform from the Legendre series to the 

scattering matrix for each azimuth mode. 

For this research a simpler method of rotating the polarization was developed. The 

method is to rotate the polarization explicitly in physical space rather than in the Fourier 

space. For each pair of zenith angles (incident and outgoing) the Legendre series are 

summed and the polarizations rotated for a number of discrete azimuthal angle differences. 

This produces the four-by-four scattering matrix for each azimuth angle difference, which 

is then fast Fourier transformed to make the scattering matrices for all azimuth modes at 

once. Various symmetries of the scattering matrix are used to speed up the computation. 

Since all modes ofthe scattering matrix are computed at once, while the multiple scattering 

calculations are performed sequentially for each Fourier mode, the scattering matrices are 

pre-calculated and stored. As a result of the symmetries of the polarized scattering matrix, 



64 

even modes of I and Q couple only to the odd modes of U and V, so the radiance vector 

used in the model is (leos, Qeos, Usin, Vsin). 

The doubling and adding technique is used to solve the radiative transfer equation. 

Each input layer is divided into a number of homogeneous sublayers with each sublayer 

being thin enough for the finite differencing to be accurate. Infinitesimal generator initial­

ization is used to relate the scattering matrix to the reflection and transmission matrices. 

These matrices are a way of expressing the linear transformation of radiation incident on 

a layer to radiation emerging from the layer (the interaction principle). There may be 

thermal sources which are linear with optical depth, or the single scattering of solar radi­

ation which is exponential with optical depth. The sublayers are integrated up to the full 

layer with the doubling algorithm. The reflection and transmission matrices, and source 

vectors for the layer are combined with the previous layers with the addition algorithm. 

The reflection and transmission matrices, and source vectors for the whole atmosphere 

are combined with the reflection and emission from the ground below and blackbody ra­

diation from above to find the radiation upwelling from the top of the atmosphere and 

the radiation downwelling from the bottom. The surface reflection and emission may be 

either Lambertian or Fresnel (Fresnel is used for water surfaces in the microwave). Once 

the radiative properties of the atmosphere are found numerous boundary conditions may 

be applied at little additional cost. 

To perform calculations of microwave brightness temperatures the radiative transfer 

model must be coupled with a gaseous absorption model and with scattering calculations 

from precipitation size particles. Liebe's millimeter wave propagation model was used to 

calculate the absorption coefficients of oxygen, water vapor, and cloud droplets (which are 

too small to scatter microwaves). The absorption depends on the pressure, temperature, 

humidity, and cloud liquid water content. In this research the scattering hydrometeors 

were assumed to be spherical and Mie theory was implemented. The four Mie functions of 

scattering angle were stored as Legendre series. Standard sources were used for the index 

of refraction of water and ice. The Mie calculations were done for a Marshall-Palmer 

(exponential) distribution of particle sizes, although a modified gamma distribution was 

implemented. 



65 

6.2 Summary of Model Comparisons 

The complex radiative transfer model described above was compared with a simple 

model in use by the microwave remote sensing community. The purpose of the comparison 

was to determine the accuracy of the simple model and to find out if the gain in accuracy 

of the present model is worth the additional complexity and computer time. The simple 

model uses Eddington's second approximation. This involves solving the Eddington two­

stream model first, and then integrating the radiative transfer equation over optical depth 

using the two-stream solution in the scattering source term. This model treats the two 

polarizations separately, and polarization is only introduced by a polarized (water) surface. 

The comparisons were performed for microwave radiative transfer through very simple 

precipitating atmospheres. The system consisted of two homogeneous precipitating layers, 

one consisting of ice hydrometeors and cloud droplet and the other of raindrops, with 

the same Marshall-Palmer size distribution. Marshall-Palmer rain rates of 2, 10, and 

.50 mmjhr over both land and water surfaces were simulated. Three microwave frequencies 

in use today were considered (19, 37, and 85 GHz). 

The difference between the output of the two models is as large 8.5°K (the 2 mmjhr 

case at 37 GHz). The brightness temperature differences are less than about 2°K for 

small (~ 1) and large (~ 1) optical depths, but are larger at optical depths near one. 

The Eddington model usually produced brightness temperatures warmer than the multi­

stream model. In general, it is concluded that the Eddington model is accurate enough to 

be used successfully for some precipitation retrieval work. There is, however, significant 

error at optical depths near one, which is the regime that brightness temperatures are most 

sensitive to precipitation, below the saturation region. The warm bias of the Eddington 

model would lead to a systematic underestimation of precipitation for scattering based 

retrieval methods. 

'B.3 Summary of Precipitation Invertibility Study 

Recent work in precipitation retrieval suggests that multiple frequencies will be nec­

essary for accurate remote sensing of rainfall. How many and which frequencies will be 
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needed? Can precipitation be uniquely retrieved even with multiple frequencies? An 

answer to these questions was sought in a theoretical study using the radiative transfer 

model described above. For this study the transfer of microwaves through a precipitating 

atmosphere (the "forward" problem) was thought of as a multi-dimensional function. The 

input to the function is a vector of atmospheric parameters, while the output is a vector 

of the brightness temperatures at different frequencies. The inverse of this precipitation­

microwave function is the precipitation retrieval problem. If the function is multi-valued, 

then an observation of brightness temperatures does not uniquely determine an atmo­

spheric state. The purpose of the study was to explore the invertibility of this function, 

to find how its multi-valuedness changes with the set of frequencies in the output vector. 

The precipitation-microwave function was investigated by calculating the upwelling 

brightness temperatures for many different atmospheric cases and then analyzing the 

results. The simple atmospheric structure consisted of two homogeneous precipitating 

layers (a rain layer and an ice layer). Seven parameters were varied in the radiative 

transfer modeling: layer thickness and the Marshall-Palmer rain rate for the two layers, 

cloud liquid water content, lapse rate of temperature, and surface emissivity. A total of 

1800 different atmospheric states were modeled with 5400 cases over land and 3600 cases 

over water. The radiative transfer was calculated at seven frequencies (6, 10, 19, 22, 37, 

85, and 157 GHz). 

The large volume of model output was analyzed by calculating a measure of the 

multi-valuedness of the precipitation-microwave function. The analysis operated on the 

upwelling brightness temperatures at a zenith angle of 54 degrees, using lover land and 

V and H polarizations over water. For a particular analysis some subset of all of the 

brightness temperatures (frequencies and polarizations) was used. The analysis consisted 

of constructing a multi-dimensional box around each vector of brightness temperatures, 

and counting how many other model output vectors were inside the box. In other words, all 

of the pairs of brightness temperature vectors that were less than some distance apart were 

counted. The fraction of the total number of pairs that were within the distance criterion 

was called the close pair fraction. Statistics on the difference between the atmospheric 
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parameters of close pairs was also collected. A smaller close pair fraction means the 

precipitation-microwave function is less multi-valued and the precipitation retrieval would 

likely be more accurate. 

Obviously, as the size of the brightness temperature box is increased there are more 

close pairs. Thus precipitation retrieval becomes much less reliable as the uncertainty in 

the brightness temperatures increases. The slope of the log-log plot of close pair fraction 

vs. TB box size is a measure of the dimensionality of the brightness temperature space. 

When all seven frequencies were used the dimension was 3.75 for land cases and 3.0 for 

water cases. These relatively small dimensions indicate that the seven frequencies were 

not independent of each other and that some information about the seven dimensional 

atmospheric state had been lost. 

As more frequencies were used the retrieval became much more unique. There was, 

however, a wide range in the close pair fraction even with the same number offrequencies. 

Combinations that have frequencies further apart are better. Water cases were less multi­

valued than land cases because of polarization information and the cold background. 

Polarization was important over water only when a small number of frequencies were 

used. The analysis of water surface cases with 10 and 85 GHz and H and V polarizations 

had a remarkably low close pair fraction, lower than some analyses with five frequencies. 

Low frequencies (6 and 10 GHz) were very important for uniqueness in retrievals. Only the 

low frequencies actually sense the surface and lower parts of the precipitation structure. 

The results indicate that precipitation retrieval methods involving only one frequency 

would be very poor. 

This research had a number of assumptions and limitations which should be men­

tioned. The treatment of the hydrometeors was simplified in terms of the size distribution 

and physical properties. The vertical structure of the precipitation was very simple, and 

the discretization of the atmospheric parameter space was severely limited. These limi­

tations suggest that whether a given number of frequencies would be adequate in a real 

situation can't be determined. On the other hand, a retrieval that is inaccurate with such 

a simple precipitation model would be worse in actuality. 
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The precipitation invertibility study demonstrates that precipitation retrieval algo­

rithms should use all the available information, both multi-frequency and polarization. We 

agree with Mugnai et al. (1990) about the importance of microwave instruments having 

multiple channels over a wide range of frequencies, especially covering the lower frequen­

cies. Precipitation retrieval algorithms that incorporate multiple frequencies, like that of 

Kummerow et al. (1989), should continue to be developed. Given the upward trend in the 

frequencies of passive microwave instruments (driven by the desire for increased spatial 

resolution), these studies indicate the importance of theoretical modeling in the frequency 

selection process for future instruments. 
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Appendix A 

NUMERICAL QUADRATURE SCHEMES 

Numerical quadrature provides a method of accurately performing integrations nu-

merically. A quadrature scheme provides a set of abscissae (Xi) and weights (Wi) that are 

used to approximate an integral 

(A.1) 

For radiative transfer computations the integral to be approximated is the scattering 

integral over cosine of the zenith angle (p,). To check that radiation is being conserved an 

integral of the phase function over all outgoing directions is performed. The integrand of 

for this normalization check is a polynomial in p" because the phase matrix is expressed 

as a Legendre series. Quadrature schemes are chosen to be optimal, in the sense of being 

able to exactly integrate polynomials up to a certain degree. There is a trade off between 

j[lexibility in choosing the abscissae (Xi) and the highest degree for which the quadrature 

sum will be exact (see table A.1). The radiative transfer program described in chapter 3 

has the choice of five quadrature schemes: Gaussian, double Gaussian, Lobatto, and two 

schemes in which the user can choose the some or all of the angles. 

A.I Gaussian Quadrature 

The great mathematician Gauss developed the theory of numerical quadrature. The 

most powerful scheme, in that it exactly integrates the highest degree polynomial possible 

for the number of terms in the sum, is called Gauss-Legendre or Gaussian quadrature. In 

this scheme the abscissae are not constrained by the user, but are provided by the method. 

For an n- point quadrature the abscissae are the zeros of the n'th Legendre polynomial, 
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and the weights are related to the slope of the polynomial at the corresponding zero. For 

integration limits of -1 to 1 the abscissae and weights are defined by 

2 
i = 1,2, ... ,n/2 (A.2) 

(see Ambramowitz and Stegun, 1972 for quadrature formulae). 

The algorithm the radiative transfer program uses for Gauss-Legendre quadrature is 

due to Rybicki (see Numerical Recipes, Press et al. 1986). The approximate location of 

the abscissae is found from 

Xi = cos[7r(i - ~)/(n + ~)l , (A.3) 

and the Newton's method is used to zero in on the root of the polynomial. The Legendre 

polynomials are found by upward recursion. Gaussian quadrature can exactly integrate 

polynomials up to degree 2n - 1, which seems twice as high as might be expected. This 

can be explained by noting that since both the Xi and the Wi are free to be selected there 

are actually 2n variables to adjust. The integral of all odd powers is zero, and this forces 

the quadrature schemes to have abscissae symmetric around zero. 

The limits of the scattering integral are J-l = -1 to J-l = 1, representing both the 

downward hemisphere (-1 --t 0) and the upward hemisphere (0 --t 1). In order to avoid an 

angle at J-l = 0, only even n are used in the Gaussian quadrature. This gives the same angles 

in each hemisphere, so that for 8 angles in a hemisphere n = 16, but only the 8 positive 

Xi are found. This formulation of Gaussian quadrature is exact for integrations over both 

hemispheres, but not for integrations over just one hemisphere (as in a hemispheric flux 

calculation). 

A variation on the Gaussian scheme called double-Gaussian quadrature is used when 

accurate hemispheric fluxes are desired. For this scheme Gaussian quadrature is used but 

the integration limits are now 0 to 1. Thus for eight angles per hemisphere n = 8. The Xi 

are found by a linear transformation of the abscissae given above: 

i = 1,2, ... ,n 

(A.4) 
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A.2 Lobatto Quadrature 

Lobatto quadrature is similar to Gaussian quadrature except the limits of the integra-

tion are included among the abscissae. For radiative transfer this is convenient because 

one of the quadrature angles is pointing toward the zenith and another is pointing to­

ward nadir. For an n-point quadrature the abscissae are the zeros of the derivative of 

the (n - 1 )'th Legendre polynomial, and the weights are a function of the value of the 

polynomial at the abscissae. For integration limits of -1 to 1 the abscissae and weights 

are defined by 

i=1,2, ... ,n/2, (A.S) 

and the weights for the endpoint abscissae x = ±1 are w = n(n2_1)' 

The algorithm the program uses for Lobatto quadrature is a modification of the one 

used for Gaussian quadrature. The approximate location of the root is given by 

Xi = sin[7r(i - ~)/(n + ~)l (A.6) 

for even n. Again the root is found by Newton's method. Lobatto quadrature can exactly 

:mtegrate polynomials up to degree 2n - 3. 

A.S User Specified Quadrature 

One quadrature method developed for this research has the user select all of the 

abscissae. Being able to specify the angles is quite useful when comparing radiative trans­

fer calculations with tabulated values, as some of the uncertainties of interpolation are 

avoided. The scheme used here is quite straightforward and probably not original. The 

weights are found by requiring the quadrature sum to be exact for integrating polynomials 

up to degree n - 1: 

n 

LWiX~ = O!I , 1= O,l, ... ,n- 1 
i=l 

_ {1';1 I even 
O!z - 0 I odd (A.7) 
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Since the integral of the odd powers is zero, the system of equations may be expressed 

with less terms as 

n/2 1 
"'w·x~l - -- I 0 1 n/2 1 ~ l l - 21 + 1 ' =" ... , -. 
l=l 

(A.8) 

This series of equations is equivalent to a matrix equation and can be solved for the vector 

of weights Wi. The matrix is a special type called Vandermonde which can be solved in 

order N2 operations rather than the usual N3 operations (see Press et al. 1986) This type 

of system is the same as that for polynomial interpolation. 

For n/2 angles per hemisphere the quadrature scheme is exact for polynomials up to 

degree n-1, which is about half as powerful as Gaussian quadrature (something has to pay 

for the ability to select the abscissae). The user specified method is, unfortunately, limited 

by instability problems. Depending on the particular abscissae chosen the instability 

occurs when more than about ten quadrature angles per hemisphere are used in double 

precision computations. The instability is manifest by extremely large weights (the weights 

should be between 0 to 1). Vandermonde matrices are "notoriously ill-conditioned, by their 

very nature" (Numerical Recipes). 

A.4 Extra-angle Quadrature 

Another quadrature method developed for this research has the user select some 

extra angles to add to the rest of the abscissae which come from Gaussian quadrature. 

The weights associated with these extra angles are set to zero. Since the weights are zero, 

the radiative transfer computation is equivalent to that with plain Gaussian quadrature. 

The resulting radiances at the Gaussian quadrature angles are identical to the those from 

the plain Gaussian case, and the radiances at the extra angles are effectively interpolated. 

Remote sensing observations are often obtained at one or just a few angles, and it is 

convenient be able to produce model radiances at exactly these angles. 

For simplicity consider the unpolarized case of radiative transfer with one extra angle. 

Since the weight for the extra angle is zero the last column of the scattering matrix has 

all zeros. The last row is not zero, but contains the amount of radiation single scattered 
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into the extra angle for each of the incident Gaussian quadrature angles. The matrix 

ma.thematics of adding and doubling preserve the zeros in the last column (except for the 

last row in the last column which would be non-zero in the transmission matrix). This form 

of the final reflection and transmission matrices indicates that the extra angles behave as 

test angles, in that they only participate in the calculation of the output radiation. In fact, 

any radiation incident along an extra angle does not participate in scattering. The extra 

quadrature angles make the matrices bigger and thereby increase the computer running 

time, which goes as the cube of the number of angles. Usually only one or two extra angles 

is needed and the increase in computer time is not severe. 

Table A.1: The maximum degree polynomial for which the various numerical quadrature 
schemes are exact for N angles per hemisphere. Ne is the number of extra-angles. 

I Quadrature type I Maximum degree I 
Gauss-Legendre 4N -1 
Double Gauss 2N -1 
Lobatto 4N -3 
User specified 2N -1 
Extra-angle 4(N - Ne)-l 
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OUTLINE OF RADIATIVE TRANSFER MODEL ALGORITHM 

This appendix presents an outline of the model algorithm in order to illustrate how 

the equations and methods described in chapter 3 are put together into a structure that 

solves the radiative transfer equation. This outline will also aid in understanding the 

Fortran program. As described in section 3.6 the radiative transfer model is coded as a 

subroutine with input parameters of the properties of the atmosphere and the boundary 

conditions, and output parameters of the radiances emerging from the top and bottom of 

the atmosphere. As the outline proceeds, the relevant equation numbers from chapter 3 

and the Fortran subroutine names are listed . 

• Make quadrature abscissae and weights (appendix A). 
GAUSS_LEGENDRE_QUADRATURE, DOUBLE_GAUSS_QUADRATURE, 
LOBATTO_QUADRATURE, QUADRATURE_WEIGHTS. 

• Go through all of the layers and get a list of the scattering files. If a layer has only 
gaseous absorption then there is no scattering file. Determine if a temporary file is 
needed for the scattering matrices. 
Then for each scattering file: 

- Read in scattering file, retrieving extinction, albedo, and the Legendre coeffi­
cients for the six unique phase matrix elements (3.15, 3.23). READ_SCAT-FILE. 

- Make the Fourier modes of the scattering matrix (the C in equation 3.36, but 
without w). SCATTERING. 

* Find how many of the six Legendre series need to be summed. Rayleigh 
and Mie scattering are subsets of the general case and don't require all six 
series to be summed. Also, if less than four Stokes parameters are being 
used then not all series are summed. NUMBER_SUMS. 

* Loop over outgoing quadrature angles, incoming quadrature angles, and 
+ or - hemisphere. As equation 3.36 implies, there are four parts of the 
scattering matrix (e.g. C++ is forward scattering of downwelling radiation, 
C+- is backward scattering of upwelling radiation). Due to symmetry, only 
two of the four parts of the scattering matrix need to be calculated directly. 



78 

* Loop over azimuth angle differences b..¢>k (3.24,3.25). A symmetry is used 
so the only Nq,/2 + 1 points are calculated. For each pj, {lj', and b..¢>k: 

Calculate the scattering angle (cos 0) (3.10) and sum the needed Leg-
endre series (3.23). SUM..LEGENDRE. 

Calculate the polarization transformed scattering matrix (3.16, 3.11-
3.14). Depending on the number of Stokes parameters, only some of 
the matrix elements are calculated. ROTATE-PHASE-.MATRIX. 

Use the scattering matrix symmetry (¢> ~ -¢» to do two b..¢>k terms 
for the price of one. MATRIX_SYMMETRY. 

* Perform a fast Fourier transform in fl.¢> for each element of scattering ma­
trix (3.26). FOURIER-.MATRIX. 

* :Eor each azimuth mode combine the cosine and sine terms of the scattering 
matrix into the packed form (3.29,3.31,3.27,3.28). COMBINE-PHASE_MODES. 

* Store the scattering matrix for each azimuth mode either in memory or a 
temporary file. Only two out of the four parts of the scattering matrix are 
stored (C++ and C+-). 

- If there is a solar source then make the Fourier modes of the solar pseudo­
source vector. As indicated in equation (3.5) the direct source vector is just 
the first column of the scattering matrix evaluated for the solar incidence an­
gle. It is calculated by the same method described above for the scattering 
matrix, but there is only a sum over outgoing angles since the incident angle is 
fixed. The Mil part of (3.33) is stored (the scalar constant is multiplied later). 
DIRECT_SCATTERING . 

• Loop over azimuth modes m: 

- Loop over layers from the top down: 

* If the scattering file for this layer is a new one then retrieve the stored 
scattering matrix. Make the two parts of the scattering matrix that aren't 
stored (C-- from C++, and C-+ from C+-). If there is a solar source 
retrieve the direct source vector. GET _SCATTERING, SCATTER_SYMMETRY, 
GELDIRECT. 

* Check the normalization of the scattering matrix by integrating the Stokes 
I-I term over all outgoing angles for each incident angle. The sum must 
equal one. The normalization check is performed only for the O'th azimuth 
mode. CHECK....NORM. 

* Calculate the number of sub-layers (for doubling) based on the optical 
depth of the layer and the desired initial layer thickness. The number of 
sub-layers is a power of two. The initial sub-layer thickness b..z is also 
calculated. 

* If there is a solar source then initialize the solar source vector (3.33, 3.41). 
INITIAL-SOURCE. 

* If there is a thermal source then get the Planck function for the tem­
peratures at the top and bottom of the layer (3.6,3.7). Initialize the 
thermal source vector (3.41). THERMAL_RADIANCE, PLANCK-FUNCTION, 
INITIAL-SOURCE. 
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* If the layer has no scattering compute the reflection and transmission ma­
trices and thermal source vector for the whole layer (no doubling required) 
(3.4 7). NONSCATTER..LAYER. 

* Otherwise initialize the local reflection and transmission matrix (3.41), and 
double the reflection and transmission matrices and thermal and/or solar 
sources (3.44,3.45, 3.46). INITIALIZE, DOUBLING_INTEGRATION. 

* Add the layer onto the bottom of the rest of the atmosphere to get the 
atmosphere reflection, transmission, and source (3.42). COMBINE_LAYERS. 

- Loop over boundary conditions to apply to the whole atmosphere: 

* Calculate the ground surface reflection matrix and emission source vector 
for either Lambertian or Fresnel surfaces (3.50-3.54). LAMBERT_REFLECT, 
LAMBERTJRADIANCE, FRESNELJREFLECT, FRESNELJRADIANCE. 

* Produce a thermal radiance vector for the thermal radiance incident from 
above, if any (3.6, 3.7). 

* Combine the whole atmosphere layer with the ground layer, and using the 
interaction principle compute the upwelling radiance from the top of the 
atmosphere and the downwelling radiance from the bottom of the atmo-
sphere (3.49). GROUND-EFFECT . 

• Integrate the outgoing radiances over the quadrature angles to find the upwelling 
and downwelling fluxes. 


	0461_Bluebook_Page_01
	0461_Bluebook_Page_02
	0461_Bluebook_Page_03
	0461_Bluebook_Page_04
	0461_Bluebook_Page_05
	0461_Bluebook_Page_06
	0461_Bluebook_Page_07
	0461_Bluebook_Page_08
	0461_Bluebook_Page_09
	0461_Bluebook_Page_10
	0461_Bluebook_Page_11
	0461_Bluebook_Page_12
	0461_Bluebook_Page_13
	0461_Bluebook_Page_14
	0461_Bluebook_Page_15
	0461_Bluebook_Page_16
	0461_Bluebook_Page_17
	0461_Bluebook_Page_18
	0461_Bluebook_Page_19
	0461_Bluebook_Page_20
	0461_Bluebook_Page_21
	0461_Bluebook_Page_22
	0461_Bluebook_Page_23
	0461_Bluebook_Page_24
	0461_Bluebook_Page_25
	0461_Bluebook_Page_26
	0461_Bluebook_Page_27
	0461_Bluebook_Page_28
	0461_Bluebook_Page_29
	0461_Bluebook_Page_30
	0461_Bluebook_Page_31
	0461_Bluebook_Page_32
	0461_Bluebook_Page_33
	0461_Bluebook_Page_34
	0461_Bluebook_Page_35
	0461_Bluebook_Page_36
	0461_Bluebook_Page_37
	0461_Bluebook_Page_38
	0461_Bluebook_Page_39
	0461_Bluebook_Page_40
	0461_Bluebook_Page_41
	0461_Bluebook_Page_42
	0461_Bluebook_Page_43
	0461_Bluebook_Page_44
	0461_Bluebook_Page_45
	0461_Bluebook_Page_46
	0461_Bluebook_Page_47
	0461_Bluebook_Page_48
	0461_Bluebook_Page_49
	0461_Bluebook_Page_50
	0461_Bluebook_Page_51
	0461_Bluebook_Page_52
	0461_Bluebook_Page_53
	0461_Bluebook_Page_54
	0461_Bluebook_Page_55
	0461_Bluebook_Page_56
	0461_Bluebook_Page_57
	0461_Bluebook_Page_58
	0461_Bluebook_Page_59
	0461_Bluebook_Page_60
	0461_Bluebook_Page_61
	0461_Bluebook_Page_62
	0461_Bluebook_Page_63
	0461_Bluebook_Page_64
	0461_Bluebook_Page_65
	0461_Bluebook_Page_66
	0461_Bluebook_Page_67
	0461_Bluebook_Page_68
	0461_Bluebook_Page_69
	0461_Bluebook_Page_70
	0461_Bluebook_Page_71
	0461_Bluebook_Page_72
	0461_Bluebook_Page_73
	0461_Bluebook_Page_74
	0461_Bluebook_Page_75
	0461_Bluebook_Page_76
	0461_Bluebook_Page_77
	0461_Bluebook_Page_78
	0461_Bluebook_Page_79
	0461_Bluebook_Page_80
	0461_Bluebook_Page_81
	0461_Bluebook_Page_82
	0461_Bluebook_Page_83
	0461_Bluebook_Page_84
	0461_Bluebook_Page_85
	0461_Bluebook_Page_86
	0461_Bluebook_Page_87



