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Abstract

Imputed values in surveys are often generated under the assumption that the
sampling mechanism is non-informative (or ignorable) and the study variable
is missing at random (MAR). When the sampling design is informative, the
assumption of MAR in the population does not necessarily imply MAR in the
sample. In this case, the classical method of imputation using a model fitted to
the sample data does not in general lead to unbiased estimation. To overcome
this problem, we consider alternative approaches to imputation assuming MAR
in the population. We compare the alternative imputation procedures through
simulation and an application to estimation of mean erosion using data from
the Conservation Effects Assessment Project.
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1 Introduction

Imputation is widely used to handle item nonresponse in surveys. Imputed values

are often obtained by fitting parametric regression models relating the variable with

missing values to covariates observed for all sample units. The sampling scheme

is typically ignored when fitting these models and constructing the imputed values

(e.g. Rubin, 1987, sect. 3.6). In this paper, we investigate approaches to imputation

where sampling is non-ignorable. We suppose that the non-ignorability arises because

sampling is informative, that is sample inclusion is not independent of the variable

which is missing given the observed covariates (Pfeffermann, 1993, 2011; Fuller, 2009,

ch. 6).

A conventional assumption used to ensure the approximate unbiasedness of the

imputed estimator is that values are missing at random (MAR) given the values of the

covariates (e.g. Seaman et al., 2013). When sampling is informative, models applying

to the population may not apply to the sample and we argue that it is important to

distinguish the notions of missing at random in the sample (SMAR) and missing

at random in the population (PMAR). If one is willing to assume SMAR then, by

appropriately conditioning imputation on sample inclusion, the sampling scheme can

be ignored in the construction of the imputed values. In this paper, we suppose that

it is only reasonable to assume PMAR.

PMAR may be a more natural assumption than SMAR if the mechanisms un-

derlying the response propensity are conceptualized as inherent characteristics of the

units in the population. This perspective might garner support if expert knowledge

is available about the missingness process from other surveys, which may employ dif-

ferent sampling schemes. In this case, the knowledge about the missingness process

needs to be free of the sample design if this evidence is to be transportable to the

survey of interest, so viewing the missingness mechanism as a function of the popula-

tion characteristics alone is the more natural approach. Similarly, if the missingness

mechanism is viewed as a process amenable to scientific examination (e.g. Schafer,

1997, sect. 2.4) then it might be argued, as in the literature on survey analysis
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(e.g. Skinner, Holt and Smith, 1989), that it is natural to define and examine such

mechanisms in terms of population models rather than sample models. Applying

the SMAR assumption to the specific survey of interest would lack credibility if the

analyst adopts these perspectives on the response mechanism.

The multiple imputation literature recognizes that complex sampling schemes can

affect inference and, in particular, induce bias (Kott, 1995; Reiter et al., 2006). The

usual recommendation in this case is to augment the imputation model by including

design information, such as clustering and stratification indicators and sample design

weights in the covariates (Rubin, 1996; Schenker et al, 2006). Augmenting the impu-

tation model using design information might be expected to make it more likely for

SMAR to hold. Conditioning on design weights has been shown to overcome some

effects of informative sampling (Rubin, 1996) and we shall consider it as one approach

in this paper. However, we shall find that it does not ensure that SMAR holds when

PMAR holds and that it does not ensure that the usual imputed estimator is approx-

imately unbiased in the general case of PMAR. Seaman et al. (2012) and Carpenter

and Kenward (2013, Ch. 11) have considered other approaches to combining mul-

tiple imputation and survey weighting. Their focus is somewhat different, however.

They assume conditions under which the usual imputed estimator is approximately

unbiased and focus more on issues of multivariate missingness, bias in the multiple

imputation variance estimator and the effect of misspecification of the imputation

model. Given the potential bias of an approach which conditions on design weights,

we shall also consider an alternative design-weighted approach which is widely used

for fitting regression models under informative sampling (Pfeffermann, 2011).

The survey sampling literature considers imputation in different inferential frame-

works. Inference in the nonresponse model framework (Haziza, 2009) does not depend

upon the imputation model and thus avoids the kinds of biases arising from infor-

mative sampling considered so far. However, inference does depend upon stronger

assumptions about the nonresponse mechanism than a MAR-type assumption and

this approach will not be considered further here. The literature adopting an impu-

tation model approach, such as Särndal (1992), Deville and Särndal (1994) and Kim
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and Rao (2009), is closer to the approach adopted in this paper but has generally

seemed to make assumptions, e.g. Condition 4 of Chauvet et al. (2011), which re-

move the bias effect of informative sampling. The ideas in this paper are potentially

applicable to the methods in this imputation model literature.

In section 2, we consider approaches to imputation and associated assumptions,

including, in particular, the distinction between PMAR and SMAR. In the following

sections we extend the theory to fractional and multiple imputation frameworks. A

limited simulation study then provides evidence on the relative performance of differ-

ent approaches. An illustration with data from the Conservation Effects Assessment

Project, a survey designed to collect information related to water and wind erosion

from crop fields, exemplifies a situation in which the data support the use of the

survey weights in estimating the imputation model.

2 Framework, Assumptions and Single Imputation

To formalize the problem, assume that the finite population FN = {(xi, yi) ; i ∈ UN}

with UN = {1, · · · , N} is a random sample from an infinite population ζ with joint

density f (y | x) g (x), the conditional density f (y | x) and the marginal density g (x).

The marginal density g(x) is completely unspecified. From a realized finite popu-

lation, we select a sample A ⊂ UN by a probability sampling design. Let Ii be the

indicator function of sample selection for unit i, that is, Ii = 1 if unit i is selected

for the sample and Ii = 0 otherwise. From the sample, we collect information about

(xi, yi), where yi is the variable of interest and xi is a vector of auxiliary variables.

Let Ri be the indicator function of response on yi so that we observe yi if Ri = 1

and not if Ri = 0. We observe xi for all sample units. We assume that Ri is defined

throughout the finite population, following the stable response assumption of Rubin

(1987) or the extended definition of nonresponse used in Fay (1992) and Shao and

Steel (1999). We extend the earlier infinite population assumption to suppose that

the (yi, Ri, Ii,xi); i ∈ UN are identically distributed as (y,R, I,x).

We are interested in estimating θ =
∑N

i=1 yi, the population total of y, or some

other function of the finite population values. Assume that the first order inclusion
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probability πi = Pr(Ii = 1) is available throughout the sample and so we could use

θ̂n =
∑N

i=1 Iiπ
−1
i yi to estimate θ if yi were observed throughout the sample. In our

case, where yi is only observed if Ri = 1, we can estimate θ using a single imputation

approach by setting

θ̂I =
N∑
i=1

IiRiπ
−1
i yi +

N∑
i=1

Ii(1−Ri)π
−1
i y∗i , (1)

where y∗i is the imputed value for yi. A conventional rationale to achieve approxi-

mately unbiased imputed estimation is to generate y∗i which satisfy

E {yi − y∗i | xi, Ii = 1, Ri = 0} = 0. (2)

To achieve condition (2), we should like to generate imputed values from the

conditional distribution f(yi | xi, Ii = 1, Ri = 0) and, for this purpose, we often

assume that

f (y | x, I = 1, R = 1) = f (y | x, I = 1, R = 0) (3)

and generate imputed values from f(yi | xi, Ii = 1, Ri = 1), which can be estimated

from the observed data. Condition (3) is the usual missing at random (MAR) as-

sumption, as in the formulation of Little (2003), but to emphasize that it depends on

the realized sample (i.e. is conditional on I = 1) we refer to it as sample missing at

random (SMAR). Using the notation ⊥ from Dawid (1979) to denote (conditional)

independence, this condition may alternatively be expressed as

y ⊥ R | x, I = 1 (4)

and contrasted with

y ⊥ R | x (5)

which we refer to as population missing at random (PMAR), as discussed earlier.

In this paper, we consider approaches to imputation when PMAR holds but SMAR

does not. The following lemma identifies properties of the sampling or response

mechanisms for which these circumstances do not apply.
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Lemma 1 If PMAR holds, sufficient conditions for SMAR to hold also are either

1. I ⊥ Y | x, R or

2. R ⊥ (y, I) | x

Proof. When condition 1 holds, f(y | x, I = 1, R) reduces to f(y | x, R) which

reduces to f(y | x) under PMAR. Hence f(y | x, I = 1, R) is free of R and SMAR

holds. SMAR follows from condition 2 by Lemma 4.2 of Dawid (1979).

The first condition states that the sampling mechanism is non-informative given

x (Pfeffermann, 1993; Pfeffermann and Sverchkov, 1999) within both the responding

and nonresponding subpopulations. The second condition states that the response

mechanism is unrelated to either y or sample inclusion given x.

In general, however, PMAR will not imply SMAR, as is illustrated using the simple

example of a population of size 1000 in Table 1, where y is binary and x is suppressed

for simplicity. Taking the empirical proportions to represent probabilities, we see

that PMAR holds in the sense that P (R = 1 | y = 0) = P (R = 1 | y = 1) = 0.5

but that SMAR does not hold since P (R = 1 | y = 0, I = 1) = 0.8 differs from

P (R = 1 | y = 1, I = 1) = 0.2. This effect arises from a three-way association

between R, I and y, since we observe that all two-way associations are zero. Thus,

not only does PMAR hold, so that y ⊥ R, but also sampling is non-informative,

in the sense that I ⊥ y, since P (I = 1 | y = 0) = P (I = 1 | y = 1) = 0.2 and

response is unconfounded with sampling (Rubin, 1987) in the sense that R ⊥ I, since

P (R = 1 | I = 0) = P (R = 1 | I = 1) = 0.5.

In our simulation study, we shall give a further illustration of how PMAR may hold

but SMAR does not. For the simulation, in addition to (y,R, I,x), the population

contains a latent variable u that is never observed or is unidentified. An example

of u may be a design variable that is unavailable to the analyst at the estimation

stage. The latent u may introduce correlation in the conditional joint distribution of

(y,R, I) given the auxiliary variable x. Figure 1 provides a summary of the simulation

setup we consider using a Directed Acyclic Graph (DAG). In Figure 1, Y and R are
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Figure 1: A DAG for a setup where PMAR holds but SMAR does not hold. Variable
U is latent in the sense that it is never observed.

XY U

R I

conditionally independent given X, but they are not conditionally independent given

X and I.

In order to make SMAR hold, we may seek to include design information in x

to ensure that condition 1 of Lemma 1 holds. In this paper, we suppose that the

only additional design information that can be used for this purpose consists of the

design weights π−1i for sample units. We could include these weights in x but this

still does not ensure SMAR as the example in Table 1 illustrates. Let π−1i = 25 when

(yi, Ri) = (0, 0) or (1, 1) and π−1i = 6.25 when (yi, Ri) = (0, 1) or (1, 0), where these

values have been obtained simply by inverting the proportions with y = 1 in the

table. Then, we find that P (y = 1 | R, I = 1, π−1i = 25) takes the value 0 if R = 0

and 1 if R = 1 and so SMAR does not hold even if we condition on π−1i .

Our goal now is to construct imputed values for which the imputed estimator in

(1) is approximately unbiased under PMAR. Imputing from f(yi | xi, Ii = 1, Ri = 1),

as before, will generally lead to bias if SMAR does not hold. For example, using

this approach with the example in Table 1 will lead to only 20% of imputed values

taking the value 1, whereas we would need this percentage to be 80% for the imputed

estimator of the population proportion with y = 1 to be unbiased.

Imputing from f(yi | xi, Ii = 1, Ri = 0) and ensuring condition (2) does not

seem feasible when SMAR fails, certainly not by imputing from a fitted model of

f(yi | xi, Ii = 1, Ri = 1). Instead, we consider the alternative condition that the

imputed values y∗i satisfy

E {yi − y∗i | xi, Ri = 0} = 0. (6)
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The following lemma shows that condition (6) also leads to an unbiased imputed

estimator.

Lemma 2 Under (6), the imputed estimator of the form (1) is unbiased for θ in the

sense that E(θ̂I − θ) = 0.

Proof. Since

θ̂I − θ̂n =
∑
i∈A

π−1i (1−Ri){y∗i − yi},

we have

E(θ̂I − θ̂n | R1, · · · , RN ,FN) =
∑
i∈U

(1−Ri) (y∗i − yi)

where the expectation is taken with respect to the sampling design. By (6), we have

E{
∑
i∈U

(1−Ri) (y∗i − yi)} = 0 (7)

which gives the required result.

Condition (6) may be achieved under PMAR by noting that then

E(yi | xi, Ri = 0) = E(yi | xi, Ri = 1)

and so we have only to estimate the distribution f(yi | xi, Ri = 1), which is equal to

f(yi | xi) under PMAR. Specifying f(y | x) = f(y | x; β) as a parametric regression

model, we can estimate the parameter vector β under informative sampling by using

the sampling weights wi = π−1i and solving∑
i∈A

wiRiS(β;xi, yi) = 0, (8)

where S(β;xi, yi) = ∂ log f(yi | xi; β)/∂β (Pfeffermann, 1993; Fuller, 2009). Once β̂

is computed from (8), the imputed values y∗i are generated from f(yi | xi; β̂) and the

resulting estimator is approximately unbiased. This approach is referred to as the

Weighting Method.

Our second approach is to consider an augmented regression model for f(y | x, w),

where the sampling weight wi = 1/πi or some function of it enters now as an additional
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explanatory variable. The basic rationale for this approach is that conditioning on

w renders the sampling ignorable in the sense that f(y | x, w) = f(y | x, w, I = 1)

(Rubin, 1987). Thus, in principle, we could fit a model to sample observations under

informative sampling without any need for sample weighting. Since we are only

interested in prediction rather than model parameters directly it does not matter

that our model has changed.

A problem, however, is that we only have observations on y for R = 1. We can

still estimate the distribution f(y | x, w,R = 1) by fitting a parametric model f(y |

x, w,R = 1; γ) to cases with I = 1 and R = 1 without any need for sample weighting.

In this case, the imputed value y∗i can be generated from f(yi | xi, wi, Ri = 1; γ̂) and

we refer to this as the Augmented Model Method.

The problem is that in order to achieve condition (6), we should like PMAR to hold

for the augmented model, that is: f(y | x, w,R = 1) = f(y | x, w,R = 0). But this

does not follow necessarily from the PMAR assumption f(y |x,R = 1) = f(y |x,R =

0). Consider, for example, the set-up in Table 1, with values of wi as described

earlier. Then P (y = 1 | w = 25, R = 1) = 1 and P (y = 1 | w = 25, R = 0) = 0 so

that, although PMAR holds unconditionally, it does not conditional on w. We shall

illustrate the potential bias of the Augmented Model Method in the simulation study.

3 Fractional Imputation

Under either of the methods in the previous section, a single value y∗i is imputed

for each unit in the sample where yi is missing. Either approach can be extended

naturally to a fractional imputation approach where m imputed values y∗i1, · · · , y∗im
are generated, with a view to improving efficiency of estimation of θ and enabling the

use of replication variance estimation.

A general approach is obtained by taking y∗i1, · · · , y∗im to be generated from an

arbitrary proposal distribution f0(y | x). For a parametric model assumption, f(y |

x; β), a natural choice for the proposal distribution under the Weighting Method is

f0(y | x) = f(y | x; β̂), where β̂ is the solution to (8).

An alternative is to use a nonparametric proposal distribution. To generate m
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imputed values y∗i1, · · · , y∗im from a nonparametric f0(y | x), one can use the following

systematic sampling algorithm:

1. Generate u1 ∼ U(0, 1/m).

2. Compute uj = u1 + (j − 1)/m for j = 2, · · · ,m.

3. For j = 1, . . . ,m, choose

y∗ij = F−10 (uj | xi) (9)

where F0(y | x) is the cumulative distribution function derived from f0(y | x).

This approach removes the effect of Monte Carlo sampling by using the m quantiles

of the proposal distribution f0(y | x) for the imputed values. This reduces the

imputation variance to order 1/m2, rather than order 1/m. In practice, to remove

the discontinuity points of F0, we use an interpolation technique when computing

F0(y | x). That is, we can express the interpolated CDF F̃0(y | x) as,

F̃0(y | x) = F0(y(i) | x) + (y − y(i))
F0(y(i+1) | x)− F0(y(i) | x)

y(i+1) − y(i)
if y(i) ≤ y < y(i+1),

where y(i) is the i− th order statistic of {yi : Ri = 1, Ii = 1}.

The fractional weight associated with y∗ij is computed as

w∗ij =
f(y∗ij | xi; β̂)/f0(y

∗
ij | xi)∑m

k=1 f(y∗ik | xi; β̂)/f0(y∗ik | xi)
. (10)

Note that the fractional weight reduces to w∗ij = 1/m when f0(y | x) = f(y | x; β̂).

When m is small, the fractional weights can be further modified in the calibration

step. The proposed calibration equation for improving the fractional weights in this

case is ∑
i∈A

m∑
j=1

wi(1−Ri)w
∗
ijS(β̂;xi, y

∗
ij) = 0, (11)

and
∑m

j=1w
∗
ij = 1 for each i with Ri = 0, where β̂ is computed from (8). The

calibration condition (11) guarantees that the imputed score equation leads to the

same β̂ (Kim and Shao, 2014, pg. 86-87). Then the fractionally imputed estimator

of θ =
∑N

i=1 yi is obtained by

θ̂FI =
∑
i∈A

wi

{
Riyi + (1−Ri)

m∑
j=1

w∗ijy
∗
ij

}
.
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We now consider variance estimation for the fractionally imputed estimator using

a replication method. Replication variance estimation is very popular in practice. See

Chapter 4 of Fuller (2009) for a comprehensive overview of the replication method

for variance estimation. Let {w(k)
i | i ∈ A} be the k-th set of replication weights such

that

V̂rep =
L∑
k=1

ck(θ̂
(k) − θ̂)2 (12)

is consistent for the variance of θ̂ =
∑

i∈Awiyi, where L is the replication size, ck is

the k-th replication factor that depends on the replication method and the sampling

mechanism (Fuller, 2009, Ch. 4), and θ̂(k) =
∑

i∈Aw
(k)
i yi.

To apply the replication method to fractional imputation, we follow the approach

of Kim and Shao (2014, pg. 91). First, apply the replication weights to compute β̂(k)

in (8). This is used to compute the replication fractional weights

w
∗(k)
ij =

f(y∗ij | xi; β̂(k))/f0(y
∗
ij | xi)∑m

l=1 f(y∗il | xi; β̂(k))/f0(y∗il | xi)

but the same imputed values y∗ij are used for each replicate k. The following calibra-

tion equation ∑
i∈A

m∑
j=1

w
(k)
i (1−Ri)w

∗(k)
ij S(β̂(k);xi, y

∗
ij) = 0

with
∑m

j=1w
∗(k)
ij = 1 is then used to obtain the final replicate fractional weights, as

before. Once the replicated fractional weights are computed, then

θ̂
(k)
FI =

∑
i∈A

w
(k)
i

{
Riyi + (1−Ri)

m∑
j=1

w
∗(k)
ij y∗ij

}
can be used to compute the replication variance estimator

V̂rep(θ̂FI) =
L∑
k=1

ck(θ̂
(k)
FI − θ̂FI)

2. (13)

The replication method is very useful for multipurpose estimation. For example,

if another parameter of interest is φ = Pr(Y < 3), then the FI estimator of φ is

computed by

φ̂FI =
∑
i∈A

wi

{
RiI(yi < 3) + (1−Ri)

m∑
j=1

w∗ijI(y∗ij < 3)

}

10



and its replication variance estimator is computed by

V̂rep(φ̂FI) =
L∑
k=1

ck(φ̂
(k)
FI − φ̂FI)

2,

where

φ̂
(k)
FI =

∑
i∈A

w
(k)
i

{
RiI(yi < 3) + (1−Ri)

m∑
j=1

w
∗(k)
ij I(y∗ij < 3)

}
.

Remark 1 It appears to be much harder to handle informative sampling using mul-

tiple imputation (MI). In MI, the point estimator θ̂MI = m−1
∑m

j=1 θ̂Ij is essentially

the same as θ̂FI with w∗ij = 1/m, since θ̂Ij is defined as θ̂I for the j-th imputed data

set. The MI variance estimator is

V̂ (θ̂MI) = Um +

(
1 +

1

m

)
Bm, (14)

where Um = m−1
∑m

j=1 V̂Ij, Bm = (m−1)−1
∑m

j=1(θ̂
(j)
I − θ̂MI)

2, and V̂Ij is the variance

estimator, such as V̂rep in (12), using the j-th imputed data set.

To achieve consistency, it is usual to require that the imputation method obeys

E (Um) = V
(
θ̂n

)
, (15)

E (Bm) = V
(
θ̂MI − θ̂n

)
(16)

and

Cov
{
θ̂n, θ̂MI − θ̂n

}
= 0, (17)

where θ̂n is the full sample estimator that would be obtained if no data were missing.

An approach which at least leads to an approximately unbiased MI point estimator is

to use the Augmented model method, described in section 2, to generate the imputed

values, that is to generate them from f(y | x, w). However, even if f(y | x, w) is cor-

rectly specified and the MI point estimator is consistent, the MI variance estimator is

not necessarily consistent because conditions (15)-(17) do not hold under informative

sampling.
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4 Simulation study

We compare the alternative imputation procedures and corresponding variance es-

timators through simulation, focusing on the situation in which PMAR holds but

SMAR does not. The super-population model for the variable of interest yi is

yi = β0 + β1xi + ei, (18)

where ei ∼ N(0, σ2
e), β0 = −1.5, β1 = 0.5, σ2

e = 1.04, and xi ∼ N(2, 1). The response

indicator Ri satisfies, Ri ∼ Bernoulli(φi), where

logit(φi) = −1 + 0.5xi + 0.5ui, (19)

ui ∼ N(2, 1), and ui is independent of xi and ei. The sampling design is Poisson

sampling with sample membership indicator Ii ∼ Bernoulli(πi), where

logit(πi) = α0 + α1ui + α2yi, (20)

α0 = −3, α1 = −1/3, and α2 = 0.1. The generated finite populations in the simu-

lation are of size N = 50,000. The selection probabilities are such that the median

realized sample size is n̄ = 1257, and the response probabilities are such that the

median number of respondents in a selected sample is n̄r = 862.

It is supposed that no design variables which directly determine πi are observed.

Instead, expression (20) captures the indirect dependence of πi on yi and on an

unobserved variable ui which is also associated with the response propensity φi. This

implies a three-way association between y, I and R given x, as discussed in Section

2.

The following four estimation procedures are considered:

1. Procedure 1 (OLS, FI) is ordinary least squares (OLS) ignoring informative

sampling; that is, it is a version of fractional imputation without using sampling

weights to compute β̂ in (11). The imputed value y∗ij ∼ N(µ̂i,ols, σ̂
2
ols), where

µ̂i,ols = β̂0,ols + β̂1,olsxi, and (β̂0,ols, β̂1,ols, σ̂
2
ols) is the vector of OLS estimates of

the parameters of (18).
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2. Procedure 2 (WLS, FI) is the proposed fractional imputation (FI) procedure us-

ing the approach termed the Weighting Method in Section 2. The imputed value

y∗ij ∼ N(µ̂i,wls, σ̂
2
wls), where µ̂i,wls = β̂0,wls + β̂1,wlsxi, β̂wls = (β̂0,wls, β̂1,wls, σ̂

2
wls)

satisfies Sw(β̂wls) = 0, Sw(β) =
∑N

i=1 π
−1
i RiIiSi(β), β = (β0, β1, σ

2
e), and Si(β)

is the contribution from unit i to the score function corresponding to (18).

3. Procedure 3 (AUG, FI) is fractional imputation procedure using the approach

termed the Augmented Model Method in Section 2. The extended model un-

derlying Procedure 3 is

yi = z′iβaug + ei, (21)

where zi = (1, xi, logit(πi)), and ei ∼ N(0, σ2
e,aug). The imputed value y∗ij ∼

N(z′iβ̂aug, σ̂
2
e,aug), where β̂aug and σ̂2

e,aug are OLS estimates of the parameters of

the augmented model (21).

4. Procedure 4 (AUG, MI) is multiple imputation, assuming the augmented model

(21). The multiple imputation procedure is implemented with the software

JAGS (Plummer, 2003). The priors for regression coefficients are independent

normal distributions with mean zero and variance 106, and the prior for σ is

uniform on the interval [0, 106].

Table 2 and Table 3 provide summaries of the distributions of one simulated

population. The πi range from approximately 0.01 to 0.15, with an average sampling

rate of 0.03. Because ui is independent of yi given xi, the PMAR assumption holds.

However, the partial correlation between yi and logit(φi) given xi and logit(πi) is 1,

indicating that SMAR is severely violated.

The Monte Carlo (MC) sample size in the simulation is B =5,000. The vari-

ance of the simulation represents the joint design-model variance. The parameters of

interest, θ, for the simulation are the finite population parameters E(Y ), P (Y ≤ 2),

B0, and B1, defined by E(Y ) = N−1
∑N

i=1 yi, P (Y ≤ 2) = N−1
∑N

i=1 I(yi ≤ 2),

and (B0, B1)
′ = (X ′NXN)−1X ′NyN , where XN = ((1, x1)

′, . . . , (1, xN)′)′ and yN =

(y1, . . . , yN)′. The variances in Table 4 are variances of deviations between estimators
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and parameters of interest. Because the parameters are functions of the finite popula-

tion, the parameters vary between MC samples. In Procedures 1-3, these parameters

are estimated by solving

∑
i∈A

wi

{
RiU(θ;xi, yi) + (1−Ri)

m∑
j=1

w∗ijU(θ;xi, y
∗
ij)

}
= 0

for the relevant estimating function U(θ;x, y), where wi = 1/πi, y
∗
ij is the j-th imputed

value in fractional imputation, and w∗ij = 1/m. In Procedure 4, estimates are obtained

as described in Rubin (1987). We used m = 100 for all imputation methods.

Table 4 summarizes the properties of the four estimation procedures. Pro-

cedure 2, the FI procedure using weighted least squares (WLS, FI), leads to ap-

proximately unbiased estimators of all parameters considered. The bias based on

Procedure 1 (OLS, FI) is approximately two orders of magnitude larger than the bias

based on Procedure 2 (WLS, FI) for E(Y ) and P (Y ≤ 2). Procedure 1 is biased be-

cause SMAR is violated in the simulation; that is, f(y |x, I = 1, R) 6= f(y |x, I = 1).

The estimators based on the augmented model, procedures 3 (FI) and 4 (MI), are

also biased because PMAR does not hold for the augmented model in this setup. In

particular, f(y |x,w,R = 1) 6= f(y |x,w). To see that f(y |x,w,R = 1) 6= f(y |x,w),

note that the covariance matrix of (y, logit(φ)) given x and logit(π) is

C{(y, logit(φ)) |x, logit(π)} =

(
σ2
e 0

0 0.25σ2
z

)
− 1

α2
1σ

2
z + α2

2σ
2
e

(
α2
2σ

4
e α2α1σ

2
eσ

2
z

α2α1σ
2
eσ

2
z α2

1σ
4
z

)
,(22)

which has non-zero off-diagonal elements.

Replication variance estimators are computed for Procedures 2-4. The replicate

weights for Poisson sampling are computed by

w
(k)
i = wi + (1− πi)0.5wi − (1− πi)0.5w2

i , i = k (23)

= wi − (1− πk)0.5wkwi, i 6= k,

for k = 1, . . . , n, where n is the realized sample size. The procedure defined in (13)

is used to estimate the variance of the FI estimators, and the MI variance estimator

defined in (14) is used for Procedure 4.
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Table 5 contains the MC means of the variance estimators and the MC vari-

ances of the estimators in the simulation. The column “Ratio” in Table 5 is the ratio

of the MC mean of the variance estimator to the MC variance of the corresponding

estimator, and the column “t-stat” is an approximate t−test of the null hypothesis

that E[V̂ (θ̂)]− V {θ̂} = 0, where V̂ (θ̂) is the estimator of the variance of estimator θ̂

of θ, and the form of the test statistic is defined in Kim (2004). A t−statistic larger

than 1.96 in absolute value suggests that the difference between E[V̂ (θ̂)] and V {θ̂}

exceeds the effect of MC variability. The variance estimators for Procedures 2 and 3

are approximately unbiased for the variances of the estimators of all the parameters

considered. As explained by Yang and Kim (2016), the MI estimator of the variance

of the estimator of the CDF has a large positive bias.

For the simulation model defined by (18-20), the conditional correlation be-

tween yi and logit(φi) given xi and logit(πi) is 1. To analyze a range of correlations,

we consider a generalization of the model (18-20), where πi = cpi,

logit(pi) = α0 + α1ui + α2yi + ηi, (24)

logit(φi) = γ0 + γ1xi + γ2ui + δi, (25)

c ∈ [0, 1], δi ∼ N(0, σ2
δ ), ηi ∼ N(0, σ2

η), ui ∼ N(0, 1.25), and xi ∼ N(2, 1.25). The role

of c is to control the magnitude of πi, while permitting flexible choices for α1 and α2

and avoiding extreme negative α0. The critical components of (24) and (25) are the

additional error terms δi and ηi, which allow the conditional correlation between yi

and logit(φi) given xi and logit(pi) to be less than 1. For the simulations discussed

below, we set c = 0.05 and ση = σδ = 0.2. We consider four parameter configura-

tions that generate a full factorial defined by high and low levels of |Cor(πi, φi)| and

|Cor(yi, logit(φi) |xi, logit(pi))|. Table 6 gives the parameter configurations and cor-

responding sample correlations and partial correlations. The setting denoted (A, B)

in Table 6 indicates that Cor(πi, φi) is at level A, and Cor(yi, logit(φi) |xi, logit(pi))

is at level B, where (A,B) ∈ {High,Low} × {High,Low}.

To conserve space, we summarize the MC properties of the estimators of the

mean of yi and present tabular output in online supplementary material. The (High,
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High) setting is similar to the first simulation model defined by (18)-(19) in that

Cor(πi, φi) and Cor(yi, logit(φi) |xi, logit(pi)) are both large in absolute value. As

expected, the Weighting Method (WLS, FI) dominates the other procedures in terms

of MC MSE for the (High, High) setting. The OLS estimator is biased for the (High,

High) configuration because SMAR is strongly violated, and the augmented model

procedures (both MI and FI) are biased because PMAR does not hold for the aug-

mented model. The (High, Low) parameter configuration is informative because the

partial correlation between yi and logit(φi) given xi and logit(pi) is 0. For the (High,

Low) setting, the SMAR assumption holds, although the correlation between πi and

φi is relatively large. Because SMAR holds, the OLS estimator is more efficient

than the other estimators for the (High, Low) setting. This simulation configuration

demonstrates that although the correlation between πi and φi is related to whether

or not the design is informative for the response model, this correlation is less rel-

evant to a study of the SMAR assumption. To explain why, consider α2 = 0. For

α2 = 0, increasing α1 can increase the conditional correlation between logit(pi) and

logit(φi) given xi, although SMAR is satisfied for any α1. The (Low, High) parame-

ter configuration demonstrates the impact of the partial correlation between yi and

logit(φi) given xi and logit(pi). Although the correlation between φi and πi is low, the

estimator based on the Weighting Method (WLS, FI) has smaller MC MSE than the

alternative estimators for the (Low, High) parameter configuration. For the (Low,

Low) parameter set, the procedures that incorporate the weights are more efficient

than the OLS procedure. The OLS procedure is biased because SMAR is violated,

though weakly. The Augmented Model Methods (both MI and FI) have MC MSEs

modestly smaller than that of the Weighting Method for the (Low, Low) parame-

ter configuration because the MC variances of the augmented model estimators are

smaller than the MC variance of the WLS FI estimator, and the variance dominates

the bias for the (Low, Low) simulation configuration. However, the absolute MC

biases of the augmented model estimators are approximately one order of magnitude

larger than the absolute MC bias of the WLS FI estimator for the (Low, Low) setting.

16



5 Comparison of Fractional Imputation Estima-

tors for the Conservation Effects Assessment Project

The Conservation Effects Assessment Project (CEAP) is a survey that collects

data intended to quantify different types of water and wind erosion. The sample

design for CEAP is a two-phase sample. The first phase is based on the National

Resources Inventory (NRI), a larger survey that monitors characteristics related to

agriculture and natural resources, such as land cover, land use, and erosion, on non-

federal US land. The CEAP sample is a subset of locations (longitude, latitude)

classified as cultivated cropland in the NRI. Because typical sampling rates are less

than 5%, approximating the CEAP sample as a with replacement sample is consid-

ered reasonable. Berg and Yu (2015) provides further detail on the sample design for

CEAP and explains how first and second order inclusion probabilities are calculated.

The unit of analysis in CEAP is the crop field containing the sampled location.

The farmer who operates the selected crop field is asked to complete an extensive

questionnaire that requests detailed information on crops planted and conservation

practices employed. Nonresponse arises in CEAP when farmers refuse to complete

the questionnaire.

The data from the farmer interview survey, in conjunction with NRI data

and administrative information on soil characteristics, are input to a physical process

model called the Agricultural Policy Environmental Extender (APEX) that outputs

several measures of erosion. One component of the APEX model is the Revised

Universal Soil Loss Equation (RUSLE2). The RUSLE2 computer model transforms

the collected data to a measure of a particular type of water erosion called sheet

and rill erosion. The RUSLE2 model for sheet and rill erosion is an advancement of

a traditional approximation called the Universal Soil Loss Equation (USLE). USLE

is a product of five indexes related to crop managements, conservation practices,

rainfall, soil erodibility, and slope length and steepness. RUSLE2 extends USLE by

incorporating daily weather and more detailed information on cropping systems, for

example. While RUSLE2 is only available for the respondents to the CEAP survey,
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the NRI provides USLE for the full CEAP sample.

This analysis explores imputation of RUSLE2 using USLE as a covariate for

a subset of the data from a national CEAP survey conducted over the period 2003-

2006. We restrict to data collected during 2003-2005 because the sample design for

2006 differs from that used for the previous three years, and information to calculate

selection probabilities for the 2006 sample is unavailable. We consider seven states

that comprise the majority of the Corn Belt region, one of ten CEAP Production

Regions defined for purposes of sampling and estimation. Table 7 gives the sample

sizes and number of respondents for the seven Corn Belt states. The response rates

range from 60% to 70% in these seven states.

Because the erosion measurements have skewed distributions, the imputation

model is applied after transforming both RUSLE2 and USLE. Visual inspection and

experimentation suggest a transformation of a power of 0.2. In the left panel of

Figure 2, RUSLE20.2 is plotted against USLE0.2 for the complete cases in the Indiana

data. The right plot of Figure 2 contains the corresponding normal quantile-quantile

plot of the residuals from the ordinary least squares regression of RUSLE20.2 on

USLE0.2 for the Indiana data. The linearity of the plots in Figure 2 suggest that the

assumption of a linear relationship between RUSLE20.2 and USLE0.2 with normally

distributed errors may be reasonable.

5.1 Evaluating the Need for Weights in Estimating the Im-
putation Model for CEAP

Several aspects of the sample design and potential nonresponse mechanisms may

cause one to question an assumption of SMAR. For example, one of the essential

components of the design of the second-phase sample that defines the 2003-2005

CEAP sample is a stratification of the locations in the NRI first phase sample. One

of the strata used for the second phase sample contains NRI sampling units with

characteristics of high erosion. As a result of this definition of the stratification, a

nontrivial relationship between the selection probabilities and the measures of sheet

and rill erosion (USLE and RUSLE2) may be expected. Other features of the NRI
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sample design are more complex and involve detailed stratification. We view the

sample weights as the best available information on the NRI sample design to use in

modeling.

Because the OLS and WLS estimators of the parameters of the super-population

model are highly correlated, the standard error of either estimator is a poor indication

of whether the means of the OLS and WLS estimators differ. To formally evaluate

the need to use the weights to estimate the imputation model in the CEAP survey,

we consider two test procedures. The first test procedure is based on the distribution

of the difference between the weighted and unweighted estimators of regression coef-

ficients. The second uses an expanded model motivated by the simulation model of

Section 4.

To define the procedures, we formalize the imputation model for CEAP. In

the superpopulation, assume

yi = β0 + β1xi + ei, (26)

where ei ∼ N(0, σ2
e), yi = RUSLE20.2, and xi = USLE0.2. Assume the PMAR condi-

tion (5) holds.

The null hypothesis for the first test procedure is

H0 : E[β̂w − β̂ols] = 0, (27)

where β̂w = H−1wls
∑n

i=1 xiRiπ
−1
i yi, β̂ols = H−1ols

∑n
i=1 xiRiyi, Hwls =

∑n
i=1 xix

′
iRiπ

−1
i ,

Hols =
∑n

i=1 xix
′
iRi, xi = (1, xi)

′, and the sample size is n. Define the test statistic

Q1 = (β̂ols − β̂wls)′V̂ −1(β̂ols − β̂wls), (28)

where V̂ is a design consistent estimator of the variance of
∑n

i=1Riπ
−1
i (ξ̂i,ols− ξ̂i,wls),

ξ̂i,ols = H−1olsπidi(β̂ols), ξ̂i,wls = H−1wlsdi(β̂ols), and di(β̂ols) = (yi − x′iβ̂ols)xi. Repli-

cation procedures may be used instead to obtain V̂ . Under the null hypothesis (27),

Q1 has an approximate chi-squared distribution with 2 degrees of freedom.

For the second test procedure, we consider the extended model

yi = θ0 + θ1xi + θ2logit(πi) + θ3logit(πi)xi + bi, (29)
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where bi ∼ N(0, σ2
b ). The null hypothesis for the second test procedure is

H0 : E[θ̂2] = E[θ̂3] = 0, (30)

where θ̂2 and θ̂3 are the OLS estimators of θ2 and θ3. To define the test statis-

tic for (30), let θ̂ be the OLS estimator of (θ0, θ1, θ2, θ3)
′, and let V̂a be an esti-

mator of the variance of θ̂. One choice of V̂a is a design consistent estimator of

the variance of
∑n

i=1Riπ
−1
i H

−1
a di,a(θ̂), where di,a(θ̂) = πi(yi − z′iθ̂)zi, and zi =

(1, xi, logit(πi), logit(πi)xi)
′. Replication procedures may be used instead to obtain

V̂a. Define the test statistic

Q2 = θ̂′23V̂
−1
23 θ̂23, (31)

where θ̂23 is the the OLS estimator of (θ2, θ3)
′, and V̂23 is the sub-matrix of V̂a

corresponding to (θ2, θ3)
′. Under the null hypothesis (30), Q2 has an approximate

chi-squared distribution with 2 degrees of freedom.

The simulations with the (High, Low) and (High, High) parameter settings

defined in Table 6 vet the test procedures defined by (28) and (31). For the (High,

Low) setting, the null hypotheses (27) and (30) hold, and the statistics (28) and

(31), respectively, exceed the 95th percentile of a chi-squared distribution with two

degrees of freedom in 4.1% and 5.2% of the 5,000 MC samples. For the (High,

High) simulation, the test procedures reject at the nominal 5% level for all 5,000 MC

samples.

Table 8 contains several statistics related to the use of weights in estimating the

imputation model for the CEAP data. The columns p(Q1) and p(Q2), respectively,

are the p−values corresponding to Q1 and Q2, using a chi-squared distribution with

2 degrees of freedom as a reference distribution. Both tests reject the respective

null hypotheses at the 5% level for the same states. The columns Cor(vi, πi) give

the correlation between variable vi and πi for vi = yi, ri(β̂ols), and ri(β̂ols)xi, where

ri(β̂ols) = (yi − x′iβ̂ols). As expected, Cor(ri(β̂ols), πi) and Cor(ri(β̂ols)xi, πi) are

relatively small for the states where neither null hypothesis is rejected. That the null

hypotheses are rejected at the 5% level for three states (IL, IN, WI) and that the
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p−values are close to 5% for OH provide support for using the weights to estimate

the imputation model.

An examination of the estimates of the coefficients in the expanded model

(29) is interesting. Table 9 contains estimates of (θ0, θ1, θ2, θ3)
′ and corresponding

t−statistics. For IL and WI, the t−statistics indicate that the null hypothesis (30)

is rejected because the coefficient associated with logit(πi)xi differs significantly from

0, rather because the coefficient associated with logit(πi) differs significantly from 0.

This indicates that an expanded model with only logit(πi) as the additional explana-

tory variable may be inadequate.

5.2 Estimates of Mean RUSLE2

The parameter of interest is the mean RUSLE2 soil loss for the state defined,

θ = E[y5i ]. The number of imputed values J = 100. We compare estimates of

mean RUSLE2 based on the three FI procedures used for the simulation: 1 (OLS –

least squares, ignoring informative sampling), 2 (WLS – Weighting Method), and 3

(Augmented Model Method, with logit(πi) as the explanatory variable and ordinary

least squares estimates).

Table 10 contains estimates of mean RUSLE2 and corresponding estimated

standard errors based on the three FI procedures. Taylor linearization is used to

calculate the standard errors (Kim and Shao, 2014, pg. 69). The differences between

the estimates based on weighted least squares and the estimates based on ordinary

least squares are larger for IL, IN, and WI than for IA, MI, MN, and OH. This pattern

is consistent with the test statistics in Table 8 and the observation that IL, IN, and

WI are the states for which the correlations between the residuals of the ordinary

least squares regressions of yi on xi and the selection probabilities are relatively large.

With the exception of IA and MN, the augmented model estimators lie between the

corresponding OLS and WLS estimators.

The t−statistics provide only marginal support for the augmented model. The

t−statistics for θ2 are less than 2 for all states. The t−statistic for θ3 for Indiana is

less than 1.96. Because RUSLE2 and USLE measure the same kind of erosion, the
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theoretical relationship between RUSLE2 and USLE does not intuitively support the

the expanded model (29).

With the exception of MI, the weighted least squares procedure produces

smaller estimates of mean RUSLE2 than ordinary least squares. Figure 3 illustrates

how this difference in estimated means relates to the estimated regression coefficients

and imputed values. The black points in Figure 3 are the pairs (xi, yi) for CEAP

respondents. The red and green lines are the regression lines based on ordinary least

squares and weighted least squares, respectively. The red points correspond to the

pairs (xi, ỹi,ols), where ỹi,ols = J−1
∑J

j=1 yij,ols, and yij,ols is the jth imputed value

for nonrespondent i based on ordinary least squares. The green points correspond

to the pairs (xi, ỹi,wls), where ỹi,wls = J−1
∑J

j=1 yij,wls, and yij,wls is the jth imputed

value for nonrespondent i based on weighted least squares. For IL, IN, and WI, the

ordinary least squares estimate of the slope is larger than the weighted least squares

estimate, resulting in larger imputed values for larger xi.

6 Concluding Remarks

In this paper, we have considered imputation in a setting where missingness is ignor-

able in the population (PMAR) but not in the sample (SMAR). Such a circumstance

might arise when the sample inclusion probabilities πi are related not only to survey

outcome variables yi of interest but also to response probabilities φi, after condi-

tioning on observed covariates. This covariance structure may arise via some shared

dependence on an unobserved variable, such as ui in the simulation study. In such a

setting, we have observed that bias may arise not only for conventional imputation

which ignores the sampling scheme but also for the augmented model approach which

has been used for informative sampling, in which the imputation model is augmented

to include the sampling weight. The empirical results demonstrate that procedures

based on augmented models that incorporate the selection probabilities may lead to

biased estimators if the assumption of population missing at random does not hold

for the extended model. A current practice of multiple imputation under informative

sampling, based on the augmented model approach, is still subject to this problem.
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We have shown that such bias can be avoided by appropriately incorporating the

sampling weights into the estimating equation for imputation model parameters. We

accomplish this through fractional imputation and demonstrate how to obtain design

consistent variance estimators for the imputation based estimators through replica-

tion procedures. We compare estimators of mean erosion based on the three fractional

imputation methods using data from CEAP. Test procedures support the use of the

weighted estimator for the CEAP data.

Supplementary Material

Please see the online supplement titled “Supplement to Imputation under infor-

mative sampling” for tabular output corresponding to the second set of simulations.
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Y = 0 Y = 1
R = 0 R = 1 R = 0 R = 1

I = 0 240 210 210 240
I = 1 10 40 40 10

Table 1: Frequency table illustrating how PMAR may hold but SMAR does not

Min. 1st Qu. Median Mean 3rd Qu. Max.

xi -1.23 1.35 2.01 2.01 2.69 5.43
yi -4.90 -1.21 -0.51 -0.48 0.25 3.80
πi 0.01 0.02 0.02 0.03 0.03 0.15
φi 0.15 0.63 0.73 0.71 0.81 0.97

Table 2: Summaries of distributions of variables in the simulation for one generated
population.

xi yi πi φi

xi 1.000 0.441 0.143 0.697
yi 0.441 1.000 0.318 0.305
πi 0.143 0.318 1.000 -0.550
φi 0.697 0.305 -0.550 1.000

Table 3: Sample correlation matrix of variables in the simulation for one generated
population.

Parameter Procedure MSE Variance Bias

E(Y )

1 (OLS, FI) 0.00241 0.00154 0.02952
2 (WLS, FI) 0.00163 0.00163 0.00042
3 (AUG, FI) 0.00318 0.00148 0.04119
4 (AUG, MI) 0.00317 0.00148 0.04102

P (Y ≤ 2)

1 (OLS, FI) 0.00033 0.00023 -0.00980
2 (WLS, FI) 0.00024 0.00024 -0.00004
3 (AUG, FI) 0.00042 0.00023 -0.01382
4 (AUG, MI) 0.00042 0.00023 -0.01384

B0

1 (OLS, FI) 0.00999 0.00755 0.04937
2 (WLS, FI) 0.00804 0.00804 0.00129
3 (AUG, FI) 0.01182 0.00724 0.06765
4 (AUG, MI) 0.01177 0.00726 0.06715

B1

1 (OLS, FI) 0.00141 0.00132 -0.00975
2 (WLS, FI) 0.00139 0.00139 -0.00027
3 (AUG, FI) 0.00145 0.00128 -0.01307
4 (AUG, MI) 0.00144 0.00128 -0.01290

Table 4: Monte Carlo MSE, variance, and bias of estimation procedures.
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Parameter Procedure Ratio “t-stat”

E[Y ] 2 (WLS, FI) 0.9920 -0.4063
P (Y ≤ 2) 2 (WLS, FI) 0.9769 -1.1670

B0 2 (WLS, FI) 0.9703 -1.4524
B1 2 (WLS, FI) 0.9735 -1.2961

E[Y ] 3 (AUG, FI) 0.9813 -0.9538
P (Y ≤ 2) 3 (AUG, FI) 0.9997 -0.0150

B0 3 (AUG, FI) 0.9629 -0.8185
B1 3 (AUG, FI) 0.9787 -1.0413

E[Y ] 4 (AUG, MI) 1.0017 0.0828
P (Y ≤ 2) 4 (AUG, MI) 1.1789 9.0506

B0 4 (AUG, MI) 1.0339 1.6818
B1 4 (AUG, MI) 1.0398 1.9884

Table 5: Comparison of MC means of estimators of variances to MC variances of
estimators based on Procedures 2-4. The column “Ratio” is the ratio of the MC
mean of the variance estimator to the MC variance of the estimator. The column
“t-stat” is an approximate t-test of the null hypothesis that the ratio of the mean of
the variance estimator to the variance of the estimator is 1.

Setting γ2 α1 α2 Cor(πi, φi) Cor(yi, logit(φi) |xi, logit(pi))

(High, High) 1 0.5 0.5 0.54 -0.86
(High, Low) 1 1 0 0.54 0
(Low, High) 1 1 -2.5 0.11 0.97
(Low, Low) 0.1 0.75 -0.15 0.07 0.10

Table 6: Parameter values and corresponding correlations for the model defined by
(18), (24), and (25). For all four sets, β0 = −1.5, β1 = 0.5, γ0 = 0.5, γ1 = 0.5, and
α0 = −3.5.

State Sample Size Number of Respondents

Illinois (IL) 1823 1275
Indiana (IN) 1151 751

Iowa (IA) 1492 1011
Michigan (MI) 935 585

Minnesota (MN) 1649 1008
Ohio (OH) 1053 698

Wisconsin (WI) 662 414

Table 7: Sample sizes and number of respondents for the seven Corn Belt states.
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Figure 2: Illustration of relationships between RUSLE2 and USLE for IN. Left:
RUSLE20.2 vs. USLE0.2. Right: Residuals from the ordinary least squares regression
of RUSLE20.2 on USLE0.2 vs. the quantiles of a normal distribution.

ST Cor(yi, πi) Cor(ri(β̂ols), πi) Cor(ri(β̂ols)xi, πi) Q1 p(Q1) Q2 p(Q2)
IL 0.242 0.126 0.131 19.643 0.000∗ 21.924 0.000
IN 0.219 0.205 0.200 32.839 0.000 38.917 0.000
IA 0.110 0.054 0.056 0.997 0.608 0.984 0.611
MI 0.170 -0.045 -0.063 2.436 0.296 3.522 0.172

MN 0.143 0.051 0.063 3.121 0.210 4.558 0.102
OH 0.085 0.044 0.031 5.653 0.059 4.974 0.083
WI 0.097 0.143 0.158 15.923 0.000 18.625 0.000

Table 8: Sample correlations, test statistics defined in (28) and (31), and correspond-
ing p−values for the CEAP data. Here, ri(β̂ols) = yi − x′iβ̂ols. A ∗0.000 means
p-value<0.001.
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Estimates t-statistics

θ̂0 θ̂1 θ̂2 θ̂3 θ̂0 θ̂1 θ̂2 θ̂3
IL 0.040 0.645 -0.032 0.040 0.332 6.717 -1.345 2.103
IN 0.025 0.726 -0.012 0.042 0.189 6.705 -0.433 1.850
IA 0.318 0.352 0.014 -0.006 1.734 2.368 0.398 -0.212
MI 0.404 0.306 0.045 -0.047 3.256 2.724 1.591 -1.781

MN 0.206 0.443 -0.022 0.027 2.401 5.766 -1.214 1.601
OH 0.450 0.332 0.050 -0.037 3.034 2.339 1.595 -1.214
WI 0.139 0.701 -0.060 0.080 0.727 4.534 -1.452 2.383

Table 9: Estimates and t−statistics for the parameters of the expanded model (29).

OLS WLS AUG
ST Mean SE Mean SE Mean SE

IL 0.336 0.009 0.327 0.009 0.332 0.009
IN 0.300 0.013 0.285 0.013 0.290 0.013
IA 0.345 0.011 0.339 0.011 0.343 0.011
MI 0.313 0.015 0.315 0.015 0.315 0.015

MN 0.166 0.004 0.166 0.004 0.164 0.004
OH 0.365 0.016 0.360 0.016 0.362 0.016
WI 0.516 0.024 0.490 0.024 0.500 0.024

Table 10: Comparison of estimates of mean RUSLE2 based on three FI procedures: 1
(OLS), 2 (WLS), and 3 (AUG). The three procedures are defined as in the simulation.
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Figure 3: RUSLE20.2 vs. USLE0.2 for Corn Belt states. Black = observed. Red
= imputed values and regression line based on OLS. Green = imputed values and
regression line based on WLS.
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