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Abstract

We study the stability and welfare properties of merit-based (meritocratic) group-matching
mechanisms in voluntary contribution games. Meritocratic matching in this context means
that players tend to be assortatively grouped according to their contributions. We let
regimes differ from one another with respect to their matching fidelity. The stability anal-
ysis summarizes as follows. When there is not enough meritocracy, the only equilibrium
state is universal free-riding. Above a first threshold, several Nash equilibria above free-
riding emerge, but only the free-riding equilibrium is stochastically stable. There exists a
second meritocratic threshold, above which an equilibrium with high contributions becomes
the unique stochastically stable state. This operationalization of meritocracy sheds light on
critical transitions, that are enabled by contribution-assortative matching, between equilib-
ria related to “tragedy of the commons” and equilibria with higher expected payoffs for all
players. Transitions to the more efficient equilibria come at small inequality costs, so that
welfare is typically maximized at the second meritocracy threshold.
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1 Introduction

The argument in favor of meritocracy is that meritocratic incentives, such as rewarding effort
or performance, promise efficiency gains. In environments such as education, job matching, or
marriage markets, however, the downside of meritocracy is that these incentives may exacerbate
inequalities (Young 1958, Greenwood et al. 2014). A meritocratic regime in these environments
may therefore turn out to be ultimately undesirable from the perspective of a social planner
who is averse to inequality (Arrow et al. 2000). In this paper, we study a class of meritocratic
regimes in the context of voluntary contributions games where players first commit to individual
contribution levels and are then matched based on their decisions. We shall consider regimes
in which players are assortatively but imperfectly grouped by their contributions, and shall
refer to this as meritocratic matching. A version of such a matching mechanism was first
introduced in the group-based mechanism of Gunnthorsdottir et al. (2010a). In contrast to the
standard voluntary contributions mechanism (Isaac et al. 1985), where the only equilibrium
state is zero contributions, meritocratic matching can enable equilibria with high contribution
levels. In this paper, we shall demonstrate that sufficient levels of meritocracy not only enable
these new equilibria but also stabilize them in an evolutionary sense, even if the regime is
imperfect. Moreover, we shall show that, other than in the aforementioned social contexts,
such as education, job matching, or marriage markets, an intermediate but substantial level
of meritocracy almost unambiguously maximizes welfare in such public goods situations. An
important assumption in our welfare analysis is related to our stability analysis, namely that
the social planner selects only amongst the states that are stochastic stability (Foster and Young
1990, Young 1993).

Meritocratic matching incentivizes contributing by the promise of grouping contributors with
other contributors, and mitigates the incentive to free-ride by the threat of grouping free-riders
with other free-riders. This opens a route out of the non-provision impasse, which is the only
equilibrium under the standard voluntary contribution mechanism (Isaac et al. 1985).1 Indeed,
Gunnthorsdottir et al. (2010a) show that additional near-efficient equilibria may emerge.2 In
this paper, we shall build on Gunnthorsdottir et al. (2010a)’s mechanism and on the standard
voluntary contributions mechanism (Isaac et al. 1985, Isaac and Walker 1988) by making the
following three contributions. First, we analyze how robust the predictions concerning equilibria
are with respect to imperfections in the meritocratic matching process. Second, we study the
stability of the different equilibria including mixed strategy Nash equilibria from an evolutionary
game theory perspective. Third, we assess the different candidate equilibria in terms of their
efficiency and inequality properties and use these assessments to make welfare comparisons
between meritocracy regimes.

The robustness and stability characteristics of meritocratic matching can be summarized in
terms of two thresholds. Below a first threshold of meritocratic matching fidelity (“necessary
meritocracy”), the only equilibrium state is universal free-riding. Above necessary meritocracy,
several Nash equilibria other than free-riding emerge, but only the free-riding equilibrium is

1Universal free-riding/ non-provision is related to “tragedy of the commons” in common-pool resource prob-
lems (Hardin 1968, Ostrom 1990), Ostrom et al. 1992, but one should not think of them as equivalent due to
important psychological differences (Andreoni, 1995b).

2We shall refer to the group-based mechanism in Gunnthorsdottir et al. (2010a) as “full meritocracy” in our
model, because our regimes are all “group-based” in the sense of Gunnthorsdottir et al. (2010a) but vary in the
degree of meritocracy.
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stochastically stable. Above necessary meritocracy there exists a second threshold (“sufficient
meritocracy”), above which an equilibrium with high contributions becomes the unique stochas-
tically stable state. This operationalization of meritocracy sheds light on critical transitions
between universal free-riding and equilibria with high contributions.

The comparison of the different equilibria reveals that high contributions equilibria ex-ante
payoff-dominate (Harsanyi and Selten, 1988) the zero contributions equilibrium. However, there
is perfect payoff equality in the latter, while there is payoff heterogeneity in the former. Com-
paring the high contributions equilibria with the zero contributions equilibrium ex post, all
free-riders are strictly better-off, and under certain conditions all contributors are also better-
off. Hence, an increase of meritocratic matching fidelity at or above sufficient meritocracy under
these conditions promises unambiguous welfare gains relative to less meritocratic regimes. In-
deed, the social planner maximizes social welfare by setting the meritocratic matching fidelity at
sufficient meritocracy. Any level of meritocracy beyond that would increase inequality without
increasing efficiency. Any level of meritocracy below that would lead to perfect equality but
also to maximum inefficiency.

The remainder of this paper is structured as follows. Next, we discuss the related literature,
including related models of public goods provision and the broad conceptual approach. In
section 3, we develop a formal model of meritocratic matching, calculate its equilibria, and
detail their stability and welfare properties. We conclude in section 4.

2 Related literature

Contributions mechanisms in experimental economics. As mentioned above, the model
that is most closely related to ours is the group-based mechanism by Gunnthorsdottir et al.
(2010a). In fact, the meritocratic matching regimes that we propose in this paper fill the space
between the standard voluntary contributions mechanism with random rematching (Isaac et al.
1985, Andreoni 1988) and the group-based mechanism. Our model can be understood to provide
evolutionary and welfare underpinnings for these two models that we shall now detail.

The voluntary contributions mechanism as introduced in Isaac et al. (1985), Isaac and Walker
(1988) and as adapted to random group re-matching by Andreoni (1988) is the “no meritocracy”
regime in our model. It proceeds as follows. First, players in a finite population make voluntary
contributions. Second, they are randomly sorted into a finite number of equal-sized groups.
Importantly, players’ chosen contributions have no effect on which group they will be part of.
Finally, payoffs are realized dependent on the underlying marginal per capita rate of return,
which aggregates the contributions in each group, multiples the sum by a coefficient (which is
greater than one but smaller than the size of the group), and then evenly divides the product
among the group members. With rates of return between one and the group size, total welfare
is highest if everybody makes the maximal contribution, but, given any vector of contributions
by others, each player maximizes his own payoff by contributing nothing; as a result, free-riding
is the unique dominant strategy.

The group-based mechanism by Gunnthorsdottir et al. (2010a) proposes an alternative group-
formation regime. Instead of random rematching, players are ranked in order of magnitude
of contributions and subsequently matched into groups based on that order. The group-based
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mechanism represents “full meritocracy” in our model. The ranking is such that no player
who contributes less than another is ranked higher than him and possible ties are randomly
broken.3 As in the voluntary contributions mechanism, equal-sized groups form, but now this
takes place according to rank. Suppose the group size is s. Then given the ranking, the top
s contributors form group one, the next s contributors form group two, etc. Finally, payoffs
realize as previously. Under full meritocracy, the free-riding Nash equilibrium continues to exist,
but other equilibria may emerge depending on relative group size and rate of return. The focus
of the paper by Gunnthorsdottir et al. (2010a) is the near-efficient Nash equilibrium in which a
large majority of players contributes everything and only a small fraction of players free-rides,
which is also what actually is experimentally observed. This has since been validated in other
studies (see Gunnthorsdottir and Thorsteinsson 2010; Gunnthorsdottir et al. 2010b). See also a
related experimental investigation of pairwise tournaments à la Becker (1973); Cole et al. (1992)
played in this fashion by Rabanal and Rabanal.

More generally, our model and that of Gunnthorsdottir et al. (2010a) contribute to the theoret-
ical underpinnings of group formation in the literature on voluntary contributions mechanisms
in experimental economics; see Ledyard 1995 and Chaudhuri 2011 for reviews of that literature.
The first formal model of a voluntary contributions game was introduced in Isaac et al. (1985),
Isaac and Walker (1988), and this type of mechanism will represent the “no meritocracy” regime
in our model. In these models, groups within which public goods are provided remain fixed
(Isaac et al., 1985). To disentangle learning from reputation effects in repeated games, this
mechanism was extended to random group re-matching (e.g. Andreoni, 1988).4 The important
feature in both fixed and random group matching is that group matching is exogenous, and
contributions have no effect on this. An important avenue has been to model how groups form
endogenously under different, non-random, mechanisms. Cinyabuguma et al. (2005) and Char-
ness and Yang (2008) consider endogenous group formation and group-size determination via
voting. Ehrhart and Keser (1999) and Ahn et al. (2008) study the effects of free group entry and
exit. Coricelli et al. (2004) analyze roommate-problem stable matching in pairwise-generated
public goods. Page et al. (2005) study rematching in repeated games based on reputation, and
Brekke et al. (2007), Brekke et al. (2011) consider the effects of group coordination with signal-
ing. A common feature of the endogenous-group-formation literature is that non-random group
formation dynamics can stabilize high contributions equilibria under certain conditions. It is
an avenue for future research to study the stability and welfare properties of these other group
formation dynamics and under institutional imperfections, as we study here for the group-based
mechanism of Gunnthorsdottir et al. (2010a).

Also related to but separate from our approach is the literature on team-based reward schemes in
labour market applications (e.g. Dickinson and Isaac 1998; Irlenbusch and Ruchala 2008) where
employee team outputs but not individual contributions are observable. In these schemes groups
whose aggregate output is above the average are rewarded by bonuses paid to all team members
and/ or that groups whose aggregate output is below the average are sanctioned by fines to
all team members. It has been shown, theoretically and in the laboratory, that such schemes

3Note that this mechanism bears an element of chance due to random tie-breaking, which means that it is
possible that ‘unlucky’ contributors end up in groups with players who contribute less, despite contributing equal
amounts to other ‘lucky’ contributors matched in better groups.

4Indeed, most of the literature on learning in public goods games uses variants of Andreoni’s random re-
matching (e.g. Andreoni, 1988, 1993, 1995a; Bayer et al., 2013; Ferraro and Vossler, 2010; Fischbacher and
Gaechter, 2010; Goeree et al., 2002; Nax et al., 2013; Palfrey and Prisbrey, 1996, 1997).
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provided the employer uses the right ‘manipulation’ of rewards and sanctions can overcome the
free-riding problem in a similar manner to ours. The important difference with our approach is
that we generalize the matching procedure, but do not introduce payoff transfers.

Meritocracy and welfare. On a conceptual level, our paper contributes to the literature in
political philosophy on meritocratic forms of rule. In political philosophy, “meritocracy” refers
to the selection and promotion of individuals (or groups of individuals) based on earned creden-
tials, rather than other principles, such as lineage, luck, looks, or other subjective or arbitrary
characteristics that are not directly relevant to assess a person’s performance or capacity. Al-
though the term “meritocracy” is relatively recent (Young, 1958), the principle underlying such
institutional mechanisms can be traced back to ancient history and has been identified in many
independent cultures. Indeed, several institutions of early modern civilizations (e.g. China and
Greece) were meritocratic, and meritocratic practice was advocated explicitly by their thinkers
(e.g. Confucius, Aristotle, and Plato). Historically, these institutions included the selection of
officials and councilmen, reward and promotion schemes, and access to education.5 Until today,
meritocratic institutions like the Chinese civil service examination are in place. Other current
examples include honorary circles, bonus wage schemes, etc.

The scope of this paper is limited to a class of public goods games based on voluntary contribu-
tions. These games are strategic interactions that are, on the one hand, non-constant sum, and,
on the other, group-based rather than individual-based. In other situations, where there is a
constant sum of resources and/ or when meritocratic incentives require welfare transfers between
individuals, there exists an inherently difficult trade-off between efficiency and equality. Previ-
ous research has identified precisely this feature as the main weakness of meritocratic regimes;
i.e. that meritocracy increases heterogeneity of payoffs. Indeed, most of the modern political
philosophy of meritocracy has focussed on this issue by analysis of situations with efficiency-
equality tradeoffs (Young 1958, Arrow et al. 2000). In the often-discussed context of education,
for example, it is argued that merit-based rewards first lead to inequality of opportunities and
ultimately to growing inequality in wealth. Similarly, an increasing income-assortative matching
on the marriage market is shown to contribute to growing income inequality at household levels
(Greenwood et al., 2014). As Amartya Sen points out in Arrow et al. (2000), however, the in-
equality feature of meritocracy is not a general characteristic of meritocratic institutions per se,
but rather the result of interpreting what constitutes “merit” without distributional concerns
in these situations. This distinguishes our study of non-constant-sum situations. Naturally,
distributive costs are substantial when meritocracy induces little efficiency gains or even none
as in constant-sum environments. In strictly non-constant sum contexts such as contributions
games, as we shall consider in this paper, however, meritocratic matching turns out to be a
mechanism that is able to promote large efficiency gains at little distributive cost, and under
certain conditions even none.

Assortative matching and preference evolution in public goods games. Our paper
complements research on cooperative phenomena that arise from non-selfish preferences and
altruism (Simon 1990, Bowles and Gintis 2011), in particular in public goods games (e.g. Fehr
and Camerer, 2007).6 It is a well-established finding in evolutionary biology that kin selection

5See, for example, Lane (2004) for a description of the reward and promotion scheme in Genghis Khan’s army.
Another famous example, also in place to the present day, is China’s civil service examination (Miyazaki, 1976).

6To use the terminology of Allchin (2009), our paper studies a ‘system’ rather than moral ‘acts’ or ‘intentions’
as is the terminology from other papers.
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can lead to pro-social behavior in many situations (e.g. Hamilton 1964a, Hamilton 1964b,
Nowak 2006). There are recent papers studying the evolution of such preferences under different
assortative matching mechanisms in public goods games (Alger and Weibull 2013, Grund et al.
2013).7 These papers focus on the evolution of preferences that are not purely self-regarding
in the neoclassic sense (i.e., homo oeconomicus), and show that non-selfish/ other-regarding
concerns are evolutionarily stable if interactions amongst agents in the population are sufficiently
assortative. Such studies complement the analysis of biological mechanisms of kin selection in
human interactions.

The interesting link with our model is that the phenomena in terms of players’ decisions in, for
example, Alger and Weibull (2013) could be re-interpreted as if players with homo-oeconomicus
preferences interacted in our kind of meritocratic world without preference assortativity in
matching. If one interpreted only the correlation between players’ chosen actions and result-
ing interactions, it is as if assortative preference matching generated our kind of meritocratic
matching: essentially, contributors and free-riders have a tendency to be rematched with players
doing likewise in ours as well as in Alger and Weibull (2013)’s model. However, in Alger and
Weibull (2013) this is not driven because players’ actions are evaluated by some exogenous insti-
tution (as in our model), but due to the population’s homophilic matching tendencies. The as-if
meritocratic matching phenomenon is then a consequence of emergent non-homo-oeconomicus
preferences and the mixing constraints. As in our model, Alger and Weibull (2013) consider a
range of regimes between no assortativity (matching parameter is zero) and full assortativity
(matching parameter is one).

The key difference between their model and ours, however, is that if a player was to mutate
from a non-selfish player into homo oeconomicus again, he would always choose to free-ride.
In our model, the homo oeconomicus rationally chooses to contribute. Meritocratic matching
drives this result. Thus, we complement previous studies by analysis of matching processes that
explicitly assort agents based on a meritocratic measure of their chosen actions. In principle,
we are agnostic as to the origins of that institution.8 We simply assume that it exists and study
the resulting regime’s properties as a function of the meritocratic fidelity. We shall show that
sufficient meritocracy implements high levels of stable contributions in a homo-oeconomicus
population. Meritocratic matching is therefore a mechanism that solves the tragedy of the
commons while populated with homines oeconomici, without changing the basic payoffs of
the game. Players contribute based on purely egoistic and fully rational motivations, without
reputation-sensitive concerns, and without hope to be “recognized” for contributing or fear to
be “stigmatized” for free-riding (e.g. Andreoni and Petrie 2004, Samek and Sheremeta 2014).
Our mechanism therefore works without any non-selfish motivations or non-material incentives.
It is an avenue for future research to extend the analysis of social preferences from standard
environments (e.g. Fehr and Camerer, 2007; Fehr and Gaechter, 2000, 2002; Fehr and Schmidt,
1999) to our kind of meritocratic matching environment.

7In Grund et al. (2013) this is the main focus of the paper, in Alger and Weibull (2013) it is an example of a
class of games.

8Even though there is some supportive evidence that players endogenously may be able to rank each other in
a way that approaches such an exogenous system (Ones and Putterman, 2007).
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3 Meritocratic matching in voluntary contributions games

Before we proceed to formalize the set-up of our model, we would like to provide more intuition
for the basic flavour of meritocratic matching. While none of the following real-world institutions
coincides one-to-one with meritocratic matching as it will be instantiated in our model of a
simple, linear, symmetric public goods game, all of them mirror meritocratic matching’s key
features. Entrance examinations to schools or universities, for example, assort individuals based
on an imperfect measure of applicants’ adequacies for different streams of education and to
different schools. An important feature of this sorting mechanism is that the resulting differences
in educational quality amongst the different schools are not only determined by the institutional
design, but also by the different quality levels of students present in them. Better students
tend to study with better students, and worse students with worse students. The incentive
to work hard for the examinations is getting into a good school. For an alternative example,
imagine an assortative employment regime with team-based payments that rewards employees
for performance by matching them with similarly performant employees. Real-world situations
with this structure include trading desks in large investment banks, and again this type of
competitive grouping incentivizes hard work in order to get into better teams. Finally, we
would like to point out the similarity in spirit to the nature of team formation in professional
sports, where performant athletes tend to be rewarded by joining successful teams with better
contracts. Importantly, all of these real-world examples of meritocratic matching mechanisms
are typically both noisy and not always fair. Our model shows how such a mechanism may work,
and why a degree of inherent imperfection may indeed be the welfare-optimal mechanism.

3.1 A voluntary contributions game with meritocratic matching

Suppose population N = {1, 2, ..., n} plays the following game, of which all aspects are common
knowledge. The game is divisible in three steps. First, players make simultaneous voluntary
contributions. Second, players receive ranks that imperfectly represent their contributions.
Third, groups and payoffs realize based on the ranking.

Step 1. Voluntary contributions

Player i ∈ N decide simultaneously whether to contribute or free-ride; we shall write ci = 0
for free-riding and ci = 1 for contributing, yielding the contribution vector c = {ci}i∈N . Given
some player i, denote by c−i the contribution vector excluding him.

Step 2. Ordering as a function of contributions

An authority imperfectly observes the contribution vector c and/ or imperfectly ranks players
according to observed contributions. The measure of ranking precision is given by parameter
β ∈ [0, 1]. The characteristics of the regimes summarize as follows: (i) no meritocracy (β =
0), all rankings are equally likely, and all players have the same expected rank; (ii) in full
meritocracy (β = 1), only “perfect” rankings are possible so that all contributors will have a
higher rank than all free-riders; (iii) in the intermediate meritocracy range, when β ∈ (0, 1), all
rankings have positive probability, but enough contributors have a higher expected rank than
free-riders.

Formally, let Π = {π1, π2, ..., πn!} be the set of orderings (permutations) of N . Given any π ∈ Π,
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denote by ki the case when rank k ∈ {1, 2, ..., n} is taken by player i ∈ {1, 2, ..., n}. Write π̂ for a
perfect ordering if, for all pairs of players i, j, ki < kj ⇒ ci ≥ cj , that is, all free-riders are ranked
below contributors. Any other ordering is called a mixed ordering, and is denoted by π̃ (i.e.
at least one free-rider is ranked above a contributor). Given regime β ∈ [0, 1], the probability

distribution over orderings, P (Π), is a function of β and c, P (Π) = F (c, β). Write fβπ for the

probability of a particular ordering, π ∈ Π, under β. Similarly, write fβik for the probability that

agent i takes rank k given β, and k
β
i for i’s expected rank. We shall write k

β
i (ci) to indicate that

i’s expected rank is a function of his contribution. Finally, define E
[
k
β
i (ci = 0)− kβi (ci = 1)

]
as the expected rank difference from contributing versus free-riding.

We shall assume that all functions f are continuous in β, and that the following properties are
the key ingredients to constitute a ‘meritocratic matching’ mechanism:

(i) no meritocracy. if β = 0, then, for any c, f0π = 1/n! for all π ∈ Π; hence k
β
i = (n+1)

2 ∀i

(ii) full meritocracy. if β = 1, then, for any c with
∑

i∈N ci = m, f1π̃ = 0 for all mixed orderings

π̃, and f1π̂ = 1
m!(n−m)! for all perfect orderings π̂; hence kβi (ci = 1) = m+1

2 for all i with

ci = 1, and kβj (cj = 0) = n+m+1
2 for all j with cj = 0

(iii) imperfect meritocracy. if 0 < β < 1, then, for all players i and for any c−i,

E
[
k
β
i (ci = 0)− kβi (ci = 1)

]
> 0, (1)

∂E
[
k
β
i (ci = 0)− kβi (ci = 1)

]
/∂β > 0. (2)

We shall also require some regularities in terms of the effects of meritocratic matching on
expected payoffs (see appendix). Next, we shall discuss several instantiations that satisfy our
requirements.

Step 3. Grouping as a function of orderings

Groupings. Finally, groups form based on the ranking and payoffs realize based on the con-
tributions made in each group. Given π, we assume that m groups {S1, S2, ..., Sm} of a fixed
size s < n form the partition ρ of N (where s = n/m > 1 for some s,m ∈ N+): every group
Sp ∈ ρ (s.t. p = 1, 2, ...,m) consists of all players i for whom ki ∈ ((p− 1)s+ 1, ps].

Payoffs. Given contributions c and partition ρ, each i ∈ N receives φi(ci|c−i, ρ). Let φ =
{φi}i∈N be the payoff vector. When i ∈ S, given the marginal per capita rate of return R := r/s,
i receives

φi(ci|c−i, ρ) = (1− ci)︸ ︷︷ ︸
remainder from budget

+ (R) ∗
∑
j∈S

cj .︸ ︷︷ ︸
return from the public good

(3)

It is standard to assume that R ∈ (1/s, 1), in which case contributing is socially beneficial under
all mechanisms, but a strictly dominated strategy under “no meritocracy” (details are provided
in the analysis of the Nash equilibria in the next section).
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3.1.1 Meritocratic matching examples

Under meritocratic matching, a player’s expected rank difference (expression (1)) is always
positive and increasing in β (expression (2)). There are many functional assumptions that
satisfy these requirements, one of which is the following:

Meritocratic matching via logit. Given β and c, let li := βci
1−β . Suppose ranks are assigned

according to the following logit-response ordering: if any arbitrary number of (k−1) ranks from
1 to (k − 1) < n have been taken by some set of players S ⊂ N (with |S| = k − 1), then any
player’s i ∈ {N \ S} probability to take rank k is

pi(k) =
eli∑

j∈N\S e
lj
. (4)

Meritocratic matching via logit is one instantiation of meritocratic matching where the rank
ordering is achieved only imperfectly even if the contributions are perfectly observable. Other
interpretations of β ∈ [0, 1] are (i) β represents the fraction of every contributed unit to enter
the group-based mechanism and 1− β to enter the voluntary contributions mechanism, or (ii)
(1 − β)/β represents some normally distributed noise δ2 added to the contribution vector c
so that contributions are only imperfectly observable, after which the group-based mechanism
(with β = 1) is applied to x ∼ N(c, δ2).

3.2 Nash equilibria

From expression (3), the expected payoff of contributing ci given c−i for any i is

E [φi(ci|c−i)]︸ ︷︷ ︸
expected return from ci

= 1︸︷︷︸
(i) budget

− (1−R) ∗ ci︸ ︷︷ ︸
(ii) sure loss on own contribution

+ R ∗E

 ∑
j 6=i: j∈Sπi

cj |ci

 ,
︸ ︷︷ ︸

(iii) expected return from others’ contributions

(5)
where Sπi ∈ ρ is the subgroup into which player i is grouped. Note that term (iii), the expected
return from others’ contributions, is a function of one’s own contribution due to meritocratic
matching, which, if ci = 1, is increasing in both c−i and β.

First, let us consider candidates for Nash equilibria in pure strategies. Write 1m for “m players
contribute, all others free-ride”, and 1m−i for the same statement excluding player i. The following
two conditions must hold for 1m to constitute a Nash equilibrium:

E
[
φi(1|1m−i)

]
≥ E

[
φi(0|1m−1−i )

]
(6)

E
[
φi(0|1m−i)

]
≥ E

[
φi(1|1m+1

−i )
]

(7)

A special case is 10 when all players free-ride, and we shall reserve the expression 1m to refer
to cases with m > 0. It is easy to verify that 10 is always a Nash equilibrium (see Appendix
A, proposition 6). Gunnthorsdottir et al. (2010a) show that, when β = 1, there exists a Nash
equilibrium of the form 1m with m > 0 provided R ≥ n−s+1

ns−s2+1
=: mpcr. We shall extend

9



this analysis to show that, given any R > mpcr, there exists a β < 1 such that there exists
a Nash equilibrium of the form 1m with m > 0. The minimum level of β, denoted by β, for
which such a Nash equilibrium exists, is an implicit function that is decreasing in R provided
R > mpcr.

Second, we consider Nash equilibria in symmetric mixed strategies. Write 1p for “all players
contribute with probability p > 0”, and 1p−i for the same statement excluding some player
i. Again we require p > 0 to distinguish from the universal free-riding state. The following
condition must hold for 1p to constitute a Nash equilibrium:

E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
. (8)

We shall prove that, for every β, there exists a R ∈ (mpcr, 1) such that there exist two Nash
equilibria of the form 1p with p > 0, one with a high p and one with a low p. Write mpcr for
the necessary marginal per capita rate of return when β = 1. Expressed differently, given any
R > mpcr, there exists a β < 1 such that there exist two Nash equilibria of the form 1p with
p, p such that 1 > p > p > 0.

The following figure and table qualitatively summarize the existence of different Nash equilibria
as a function of R and β (see Appendix A for details).9 In the table, 4 indicates that there
exists a Nash equilibrium with this structure, 5 indicates that there exists no Nash equilibrium
with this structure:

low

medium

high

r/s

1

0 1

1/s

9Note that, due to the discreteness of the problem, the lines represented as well-behaved lines (smooth and
monotonic), are actually quite different-looking step functions for concrete cases.
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Appendix A contains detailed proofs for the existence results. It should be noted that the
particular interest of this paper is the analysis of the evolutionary stability and welfare analysis
of the system’s equilibria as a function of the meritocratic matching parameter β. We shall
therefore assume that our implicit bound mpcr is satisfied, meaning that all equilibria are at
least guaranteed to exist. Thus, our work complements the analysis of Gunnthorsdottir et al.
(2010a), where the focus of analysis is the dependence of equilibria existence on the model
parameters including the rate of return for the case when β = 1.

For the case when R > mpcr, the following observations summarize the arguments from Ap-
pendix A:

A. Free-ride trumps contribute (unconditional case):
E
[
φi(0|1m−i)

]
> E

[
φi(1|1m−i)

]
for β < β and for any 1m ≥ 0

Observation A states that, when there is not enough meritocracy, then free-riding is a better
reply given any set of actions by the other players.

B1. Free-ride trumps contribute (conditional case).
E
[
φi(0|1p−i)

]
> E

[
φi(1|1p−i)

]
for β ≥ β and for any p < p or p > p

B2. Contribute trumps free-ride (conditional case).
E
[
φi(0|1p−i)

]
< E

[
φi(1|1p−i)

]
for β ≥ β and for any p ∈ (p, p)

Observation B states that, when meritocracy is above a “necessary meritocracy” level (β ≥ β),
then contributing is a better reply for intermediate proportions of contributing of contributions
(the range of which is given by the symmetric mixed strategy Nash equilibria probabilities),
and free-riding is a better reply outside that range.

C. Contribute-free-ride indifference.
E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
for β ≥ β and for p = p or p

Observation C is the condition for a symmetric mixed strategy Nash equilibria to exist. We
shall refer to p as the “near-efficient” symmetric mixed strategy Nash equilibrium, and to p as
the “less efficient” symmetric mixed strategy Nash equilibrium.

3.3 Stability

In this section, we shall analyze the stability properties of states in terms of evolutionary stability
(Maynard Smith and Price, 1973) under replicator dynamics (Helbing, 1996; Taylor and Jonker,
1978; Weibull, 1995) and in terms of stochastic stability (Foster and Young, 1990) under constant
error rates (Kandori et al., 1993; Young, 1993). The motivation for this analysis is that we view
β as a policy choice. We want to understand how the stability of different equilibria depends
on the level of meritocracy in matching.

We shall begin by defining the following dynamic game played by agents that we shall assume
act myopically. A large population N = {1, 2, ..., n} plays our game in continuous time. Let a
state of the process be described by p, which is a proportion of players contributing, while the
remaining (1− p) free-ride. Let Ω = [0, 1] be the state space.

11



3.3.1 Replicator dynamics

Suppose the two respective population proportions grow according to the following replicator
equation (Maynard Smith and Price 1973, Taylor and Jonker 1978, Helbing 1996):

∂p/∂t = (1− p)p (E [φi(1|1p)]−E [φi(0|1p)]) (9)

Evolutionarily stable states. A state where a proportion p̄ of players plays ci = 1 is evolu-
tionarily stable (ESS) if, for all p ∈ [0, 1] in some arbitrarily small ε-neighbourhood around p̄,
∂p/∂t > 0 at p < p̄, ∂p/∂t = 0 at p = p̄, and ∂p/∂t < 0 at p > p̄.10

Lemma 1. Given population size n, group size s such that n > s > 1 and rate of return r
such that R ∈ (mpcr, 1), there exists a β > 0 below which the only ESS is the free-riding Nash
equilibrium. When β > β, the free-riding Nash equilibrium remains ESS, and, in addition, the
population proportions given by the near-efficient symmetric mixed-strategy Nash equilibrium is
also an ESS.

Proof. The proof of Lemma 1 and the cut-off structure of the ESS as given by the analysis of
symmetric mixed strategy Nash equilibria in Proposition 7 (see Appendix A for both) led to
the summary of best replies as given by Observations A-C. Denote by β the necessary mer-
itocracy level in Proposition 7. Observation A implies that the the only ESS when β < β is
given by the free-riding Nash equilibrium because there is only one Nash equilibrium. Obser-
vations B1 implies that the free-riding Nash equilibrium is also ESS when β ≥ β. Observation
B1, B2 and C, jointly, imply that population proportions given by the near-efficient symmetric
mixed-strategy Nash equilibrium also describe an ESS since it is a local attractor.

Remark 2. As replicator dynamics increase the population size (population becomes ‘large’), the
possible interval for R converges to (1/s, 1) (as is proven in Proposition 12 in Appendix A). In
that sense, Lemma 1 is a general observation about the near-efficient symmetric mixed-strategy
Nash equilibrium for any rate of return.

Figure 1 illustrates the implied replicator phase transitions for proportions of players contribut-
ing as a function of β under meritocratic matching via logit (Equation 4) for s = 4 and r = 1.6
starting with n = 16 (note that the phase transitions assume the long-run behavior as the
population becomes large). In particular, the figure shows how, for large enough values of β, a
relatively small ‘jump up’ is needed starting at the free-riding equilibrium to reach the basin of
attraction of the high-contribution equilibrium. By contrast, for low values of β, a small ‘draw
down’ is sufficient to fall out of the high equilibrium into the free-riding equilibrium.

10We shall speak of evolutionarily stable ‘states’ here instead of evolutionarily stable ‘strategies’ because of the
asymmetry of the state.
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Figure 1: Evolutionary stability of population strategies for an economy initialized with s = 4,
r = 1.6 and n = 16.
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In any case when β < β, and when β > β then if p is either in excess of the near-efficient
symmetric mixed-strategy Nash equilibrium (p > p) or short of the less-efficient symmetric
mixed-strategy Nash equilibrium (p < p), ∂p/∂t < 0 (replicator tendency is down). When

β > β and p > p > p, then ∂p/∂t > 0 (replicator tendency is up). Depending on the location
along the bifurcation, the evolutionarily stable states are therefore when either p = 0

(free-riding Nash equilibrium) and when p is set according to the near-efficient symmetric
mixed-strategy Nash equilibrium (p = p). Solid lines in the figure indicate stable equilibria,

dashed lines indicate unstable equilibria.
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3.3.2 Perturbed dynamics

Instead of replicator dynamics, suppose population N remains fixed, but that the dynamics are
perturbed by individual errors. Suppose further that individuals are activated by independent
Poisson clocks. The distinct times at which one agent becomes active will be called time steps
t = 1, 2, ... When individual i at time t is activated (the uniqueness of only one agent’s activation
is guaranteed by the independence of the Poisson clocks), all agents j 6= i continue playing their
previous strategy (ctj = ct−1j ), while i plays a best reply with probability 1 − ε, but takes the
opposite action with probability ε. When both actions are best replies, i replies by playing
ctj = ct−1j with probability 1− ε and ctj = 1− ct−1j with probability ε.

State. Let a state of the process be defined by pt = 1
n

∑
i∈N c

t
i.

Let us begin with a couple of observations. First, the perturbed process (when ε > 0) is ergodic,
that is, it reaches every state from any state with positive probability in finitely many steps (at
most n). The process, therefore, has a unique stationary distribution over Ω. Second, for any
given level of β, the absorbing states of the unperturbed process (when ε = 0) are the various
Nash equilibria in pure strategies of the game as identified in section 3.2 (and in particular the
free-riding Nash equilibrium and the near-efficient pure-strategy Nash equilibrium).

Stochastically stability. A state p is stochastically stable (Foster and Young, 1990) if the
stationary distribution as ε→ 0 places positive weight on p.

It will be useful to define the “critical mass” necessary to destabilize a given state p.

Critical mass. Let the critical mass, Mβ
p ∈ [0, n− 1], necessary to destabilize state p given β

be the minimum number of players |S| needed to switch strategy simultaneously corresponding
to an arbitrary set of players, S ⊂ N , such that as a result of their switch playing current
strategy for at least one player in N \ S ceases to be a best reply.

Lemma 3. The stochastically stable state is the near-efficient pure-strategy Nash equilibria if
Mβ

0 <M
β
p , the free-riding Nash equilibrium when Mβ

0 >M
β
p , and both when Mβ

0 =Mβ
p .

Proof. When pure strategy Nash equilibria exist, stochastically stable states must be pure strat-
egy Nash equilibria of the unperturbed process. Candidates are the free-riding Nash equilibrium
and the (nm) near-efficient pure-strategy Nash equilibria.

Obviously, the critical mass for any non-equilibrium state p is Mβ
p = 0 for all values of β.

When β < β, there exists no critical mass to destabilize the unique equilibrium which is the

free-riding Nash equilibrium; Mβ
0 = ∅. In other words, the free-riding Nash equilibrium is the

only absorbing state and therefore the unique stochastically stable state. When β = β, the

near-efficient pure-strategy Nash equilibrium has a critical mass of Mβ
p = 1. When β > β,

for all less-efficient p ≥ p, the critical mass is Mβ
p = 1 because one more contribution of some

player incentivizes other non-contributors to contribute (see Observations A, B1, B2), or one

contribution fewer incentivizes all to not contribute. Moreover, for β > β, ∆Mβ
0/∆β < 0 and

∆Mβ
p/∆β > 0 provided ∆β is large enough. If M1

p >M1
0 at β = 1, then, since Mβ

p <M
β

0 ,
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it must be that there exists a β ∈ (β, 1) above which the near-efficient pure-strategy Nash
equilibrium has a larger critical mass than the free-riding Nash equilibrium.

The proof of the lemma is now a direct application of Theorem 3.1 in Young (1998), and follows
from the fact that the resistances of transitions between p = p and p = 0 are given by the
critical masses, thus yielding the stochastic potential for each candidate state.

3.4 Efficiency and welfare

Outcome. Let (ρ, φ) describe an outcome, that is, realized groups and payoffs.

Social welfare. Given outcome (ρ, φ), let We(φ) be the social welfare function measuring its
welfare given the inequality aversion parameter e ∈ [0,∞):

We(φ) =
1

n(1− e)
∑
i∈N

φ1−ei (10)

When e = 1, it is standard that W1(φ) = 1
n

∏
i∈N φi, i.e. be the Nash product. Expression

(10) is a variant of the social welfare function introduced by Atkinson (1970). It nests both
the Utilitarian (Benthiam) and Rawlsian social welfare functions.11 When e = 0, expression
(10) reduces to W0(φ) = 1

n

∑
i∈N φi, i.e. a Utilitarian social welfare function measuring the

state’s efficiency. When e→∞, expression (10) approaches W∞(φ) = min(φi), i.e. a Rawlsian
social welfare function measuring the state’s worst-off utility. Obviously, a Utilitarian social
planner prefers the near-efficient pure-strategy Nash equilibrium to the free-riding equilibrium.
The ex-post Rawlsian-optimal equilibrium, however, could be the free-riding Nash equilibrium
with perfect equality of payoffs (equal to one for every player) if any player in the near-efficient
pure strategy Nash equilibrium receives a payoff of less than one. Harsanyi’s social welfare
approach (Harsanyi, 1953), on the other hand, would always prefer the near-efficient pure-
strategy Nash equilibrium if every contributor and every free-rider is in expectation (i.e. ex
ante) better-off.12

Which equilibrium is preferable in terms of social welfare for any given social welfare function
depends on the social planner’s relative weights on efficiency and equality and is related to
whether an ex ante or an ex post view is taken with regards to payoff dominance (Harsanyi
and Selten, 1988).13 Critical for this assessment is the inequality aversion e. For the economy
illustrated in Table 1 (with n = 16, s = 4 and r = 1.6), suppose a social planner considers
moving from β = 0 to β = 1. To assess this, he makes an ex-post We-comparison. It turns
out that for any We with e < 10.3 he prefers the near-efficient pure-strategy Nash equilibrium,
while for a We with e ≥ 10.3 he prefers the free-riding Nash equilibrium.14

Welfare assessment assumption. Suppose the social planner sets β ∈ [0, 1] so as to max-
imize E[We(φ)], where φ are expected to be realizations of stochastically stable states.

11See, for example, Jones-Lee and Loomes (1995) for a discussion of this generalization.
12Harsanyi’s social welfare function is WH(φ) = 1

n

∑
i∈N E[φi]. See, for example, Binmore (2005) for a discus-

sion of the Rawlsian and Harsanyi’s ‘original position’ approach.
13φ payoff-dominates φ′ if φi ≥ φ′i for all i, and there exists a j such that φj > φ′j .
14With e = 10.3, We requires efficiency gains of more than twice the amount lost by any player to compenstate

for the additional inequality.
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Moreover, assume the social planner expects the near-efficient pure strategy Nash equilib-
rium (here denoted by p) to be played when Mβ

0 =Mβ
p (both are stochastically stable).

Proposition 4. For any R > max{mpcr, 1/(s− 1)}, there exists a population size n <∞ such
that E[We(φ);β = β] > E[We(φ);β] at “sufficient meritocracy” (β = β) for all β 6= β given any
parameter of inequality aversion e ∈ [0,∞).

Proof. Suppose there exists a β ∈ (β, 1) above which the near-efficient pure-strategy Nash
equilibrium is stochastically stable. Write qn1 for the probability of having more than one free-
rider in any group for a realized outcome (ρ, φ) given n < ∞. Since the number of free-riders
does not increase as n increases, ∂qn1 /∂n < 0. Since contributors in groups with at most one
free-rider receive a payoff strictly greater than one ((s − 1)R > 1), we have E[We(φ);β] >
(1− qn1 )×We(φi = (s− 1)R ∀i). Because, given any β < 1, ∂qn1 /∂n < 0, there therefore exists
n <∞ above which E[We(φ)] > We(φi = 1 ∀i).

Remark 5. E[We(φ);β = β] > E[We(φ);β] at “sufficient meritocracy” (β = β) is also the case
for n smaller than implied by the proposition when (a) e is set below some bound e < ∞ and/
or (b) set above some bound R > 1/(s− 1).

Table 1: Stem-and-leaf plot of individual payoffs for the free-riding Nash equilibrium when
β = 0 and for the near-efficient pure-strategy Nash equilibrium when β = 1 with n = 16, s = 4,
r = 1.6 and β = 1.

near-efficient pure-strategy NE payoff free-riding NE
when β = 1 when β = 0

0 0.0 0
0 0.2 0
0 0.4 0
0 0.6 0

13 14 (ci = 1) 2 0.8 0
0 1.0 16 (ci = 0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1.2 0
0 1.4 0

1 2 3 4 5 6 7 8 9 10 11 12 (ci = 1) 12 1.6 0
15 16 (ci = 0) 2 1.8 0

24.4 efficiency 16

The stem of the table are payoffs. The leafs are the number of players receiving that payoff
(with their contribution decision), and the individual ranks of players corresponding to payoffs
in the two equilibria. At the bottom, the efficiencies of the two outcomes are calculated. Note
that the near-efficient pure-strategy Nash equilibrium is more efficient, whereas the free-riding

Nash equilibrium is more equitable.

4 Conclusion

In this paper, we have addressed three issues. First, we assessed the robustness of equilibrium
predictions for meritocracy levels in between “no meritocracy” and “full meritocracy”. We
found that the minimum meritocracy threshold (“necessary meritocracy”) necessary to enable
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equilibria with high contributions decreases with the rate of return in excess of the minimum rate
of return threshold, below which not even “full meritocracy” enables such equilibria. Second,
we analyzed the stability properties of the equilibria. It turned out that there exists a second
threshold (“sufficient meritocracy”) between “necessary meritocracy” and “full meritocracy” at
which both the equilibrium with zero contributions and the near-efficient equilibria are stochas-
tically stable. Above “sufficient meritocracy”, the high contributions equilibria are stable, below
the zero contributions equilibrium is stable. Finally, we assessed the relative welfare properties
of the candidate equilibria and used this to identify the welfare-maximizing meritocracy regime.
We demonstrated that setting the meritocracy at “sufficient meritocracy” maximizes welfare for
any inequality-averse social welfare functions when the population is large enough. For smaller
populations, this is also true when (a) the inequality aversion is not extreme and (b) the rate of
return is high. Otherwise, meritocracy should be set to zero, in which case equality is achieved
perfectly but all contributions will be zero in equilibrium.
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Appendices

Appendix A: Nash equilibria

Proposition 6. For any population size n > s, group size s > 1, rate of return r ∈ (1, s), and
meritocratic matching factor β ∈ [0, 1], there always exists a free-riding Nash equilibrium
such that all players free-ride.

The proof of Proposition 6 follows from the fact that, given any β and for c−i such that∑
j 6=i cj = 0, we have:

1 = E [φi(0|c−i)] > E [φi(1|c−i)] = R. (11)

Equation 11, in words, means that it is never a best response to be the only contributor for
any level of β. If, for any level of β, given any c−i, E [φi(0)|c−i] > E [φi(1)|c−i] holds for all
i, then we have a situation where free-riding is the strictly dominant strategy. In that case,
for any level of meritocracy (β), universal free-riding is the unique Nash equilibrium. We shall
proceed to show that this is not the case if the marginal per capita rate of return (R) and the
meritocratic matching fidelity (β) are high enough.

Recall that 1m stands for “m players contribute, all others free-ride”, 1m−i for the same statement
excluding player i, and that mpcr = n−s+1

ns−s2+1
.

Proposition 7. Given population size n > s, group size s > 1 and rate of return r such that
R ∈ (mpcr, 1), there exists a necessary meritocracy level, β ∈ (0, 1), above which there is a
pure-strategy Nash equilibrium, where m > 0 agents contribute and the remaining n −m
agents free-ride.

Proof. The following two conditions must hold for Proposition 7 to be true:

E
[
φi(1|1m−i)

]
≥ E

[
φi(0|1m−1−i )

]
(12)

E
[
φi(0|1m−i)

]
≥ E

[
φi(1|1m+1

−i )
]

(13)

The proof for the existence of an equilibrium in which some appropriate (positive) number
of contributors m exists for the case when β = 1 and R ≥ mpcr follows from Theorem 1 in
Gunnthorsdottir et al. (2010a), in which case both equations (12) and (13) are strictly satisfied.

The fixed point argument behind that result becomes clear by inspection of terms (ii) and
(iii) in expression (5): namely, the decision to contribute rather than to free-ride is a trade-off
between (ii), ‘the sure loss on own contribution’, which is zero for free-riding, versus (iii), ‘the
expected return on others’ contributions’, which may be larger by contributing rather than by
free-riding depending on how many others also contribute. Obviously, when c−i is such that∑

j 6=i cj = 0 or
∑

j 6=i cj = (n − 1) (i.e. if either all others free-ride or all others contribute), it
is the case that φi(0|c−i) > φi(1|c−i). Hence, in equilibrium, 0 < m < n.

Now suppose 1m describes a pure-strategy Nash equilibrium for β = 1 with 0 < m < n and
R ∈ (mpcr, 1) in which case equations (12) and (13) are strictly satisfied. Note that β has
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a positive effect on the expected payoff of contributing and a negative effect on the expected
payoff of free-riding:

∂E
[
φi(1|1m−i)

]
/∂β > 0 (14)

∂E
[
φi(0|1m−i)

]
/∂β < 0 (15)

When β = 0, we know that φi(1|1m−i) = R < φi(0|1m−i) = 1 for any m. However, by existence
of the equilibrium with m > 0 contributors when β = 1, provided that R > mpcr is satisfied,
there must exist some maximum value of β ∈ (0, 1), at which either equation (12) or equation
(13) first binds due to continuity of expressions (14) and (15) in β. That level is the bound on
β above which the pure-strategy Nash equilibrium with m > 0 exists.

Remark 8. Note that, for a finite population of size n, a group size s larger than one implies
that mpcr > 1/s for Proposition 7 to be true, but as n→∞, mpcr converges to 1/s.15

A special case of a pure-strategy Nash equilibrium is the near-efficient pure-strategy Nash
equilibrium (see Gunnthorsdottir et al., 2010a): in our set-up, the near-efficient pure-strategy
Nash equilibrium generalizes to the the pure-strategy Nash equilibrium in which m is chosen
to be the largest value given n, s, r for which equations (12) and (13) hold. For that m to be
larger than zero β needs to be larger than β (Proposition (7)).

Now we shall compare the asymmetric equilibria in pure strategies (in particular the near-
efficient pure-strategy Nash equilibrium) with symmetric mixed-strategy Nash equilibria. For
this, we define pi ∈ [0, 1] as a mixed strategy with which player i plays ‘contributing’ (ci = 1)
while playing ‘free-riding’ (ci = 0) with (1 − pi). Write p = {pi}i∈N for a vector of mixed
strategies. Write 1p for “all players play p”, and 1p−i for the same statement excluding some
player i.

In section 3.1, we characterized the key ingredients regarding what constitutes a meritocratic
ranking/ matching mechanism in our setting. We shall also require, for sufficiently large n,
the case for which the subsequent mixed-strategy arguments apply (replicator equations), the
following regularity effects of β on expected payoffs. The ranking/ matching methods that we
propose in section 3.1.1 in particular satisfy these assumptions, but the class is more general.
Recall that we assumed all functions f to be continuous in β. Moreover we assume the following
two regularities:

∂E
[
φi(0|1p−i)

]
/∂p ≥ 0 and ∂E

[
φi(1|1p−i)

]
/∂p ≥ 0.

∂2E
[
φi(0|1p−i)

]
/∂p2 ≥ 0 and ∂2E

[
φi(1|1p−i)

]
/∂p2 ≤ 0.

Proposition 9. Given population size n > s and group size s > 1, there exists a rate of
return r such that R ∈ [mpcr, 1) beyond which there exists a necessary meritocracy level,
β ∈ (0, 1), such that there always are two mixed strategy profiles, where every agent places
weight p > 0 on contributing and 1 − p on free-riding, that constitute symmetric mixed-
strategy Nash equilibrium. One will have a high p (the near-efficient symmetric mixed-

15It is easy to check that limn→∞mpcr = 1/s.
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strategy Nash equilibrium) and one will have a low p (the less-efficient symmetric mixed-strategy
Nash equilibrium).

Proof. The symmetric mixed-strategy Nash equilibrium exists if there exists a p ∈ (0, 1) such
that, for any i,

E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
, (16)

because, in that case, player i has a best response also playing pi = p, guaranteeing that
1p is a Nash equilibrium. Proposition 7 implies that, if R > mpcr, equations (12) and (13)
are strictly satisfied when β = 1 for m contributors corresponding to the near-efficient pure-
strategy Nash equilibrium. Indeed, expressions (12) and (13) imply lower and upper bounds
(see Gunnthorsdottir et al. 2010a) on the number of free-riders given by

l =
n− nR

1−R+ nR− r
, u = 1 +

n− nR
1−R+ nR− r

. (17)

Part 1. First, we will show, given any game with population size n and group size s, for the
case when β = 1, that there is (i) at least one symmetric mixed-strategy Nash equilibrium when
R → 1; (ii) possibly none when R = mpcr; and (iii) a continuity in R such that there is some
intermediate value of R ∈ [mpcr, 1) above which at least one symmetric mixed-strategy Nash
equilibrium exists but not below.

(i) Because ∂E
[
φi(ci|1p−i)

]
/∂p > 0 for all ci, there exists a p ∈ (m−1n , m+1

n ) such that expression
(16) holds if R → 1. This is the standard symmetric mixed-strategy Nash equilibrium, which
always exists in a symmetric two-action n-person game where the only pure-strategy equilibria
are asymmetric and of the same kind as the near-efficient pure-strategy Nash equilibrium (see
the proof of Theorem 1 in Cabral 1988). In this case, the presence of the free-riding Nash
equilibrium makes no difference because the incentive to free-ride vanishes as R→ 1.

(ii) If R = mpcr, one or both of the equations, (12) or (13), bind. Hence, unless expression
(16) holds exactly at p = m/n (which is a limiting case in n that we will address in proposition
12), there may not exist any p such that expression (16) holds. This is because the Binomially
distributed proportions of contributors implied by p, relatively speaking, place more weight on
the incentive to free-ride than to contribute because universal free-riding is consistent with the
free-riding Nash equilibrium while universal contributing is not a Nash equilibrium. In this
case, the incentive to free-ride is too large for a symmetric mixed-strategy Nash equilibrium to
exist.

(iii) ∂E
[
φi(ci|1p−i)

]
/∂r is a different linear, positive constant for both ci = 0 and ci = 1. At and

above some intermediate value of R, therefore, there exists a p ∈ (0, 1) such that, if played in a
symmetric mixed-strategy Nash equilibrium, the incentive to free-ride is mitigated sufficiently
to establish equation (16). We shall refer to this implicit minimum value of R by mpcr.

Finally, for any p > 0 constituting a symmetric mixed-strategy Nash equilibrium when β = 1,
E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
> 1. Because of this, a similar argument as in Proposition 7

applies to ensure the existence of some β ∈ (0, 1) above which the symmetric mixed-strategy
Nash equilibrium continues to exist when R > mpcr: because, at β = 1, equations (12) and
(13) are strictly satisfied and E

[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
> 1, there therefore must exist some
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Figure 2: Expected payoffs of contributing versus free-riding if all others play p and the meri-
tocratic matching fidelity is β for the economy with n = 16, s = 4, r = 1.6.
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Expected values of φi(0|1p−i) and φi(1|1p−i) are plotted as functions of probability p and
meritocratic matching fidelity β under meritocratic matching via logit (equation 4). The two
planes intersect at the bifurcating symmetric mixed-strategy Nash equilibrium-values of p and p
(see Proposition 9). Notice that the expected values of both actions increase linearly in p when

the meritocratic matching fidelity is zero but gain in curvature for larger values, until they
intersect at p and p. Note that Figure 1 is a birds-eye view of this figure.

β < 1 and p′ < p satisfying equation (16) while still satisfying E
[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
> 1.

Note that this implicit bounds here may be different from that in Proposition 7.

Part 2. If R > mpcr and β > β, existence of two equilibria with p > p > 0 is shown by analysis
of the comparative statics of equation (16).

First note that, for anyR > mpcr and β > β, ∂E
[
φi(0|1p−i)

]
/∂β < 0 while ∂E

[
φi(1|1p−i)

]
/∂β >

0. p therefore has to take different values for equation (16) to hold for two different values of
β above β. Unclear is whether it has to take a higher or lower value. Note also that both

∂E
[
φi(0|1p−i)

]
/∂p > 0 and ∂E

[
φi(1|1p−i)

]
/∂p > 0 for all β ∈ (0, 1). We can rearrange the

partial derivative with respect to β of Expression 16, and obtain

∂p/∂β =
∂E
[
φi(1|1p−i)

]
/∂β − ∂E

[
φi(0|1p−i)

]
/∂β

∂E
[
φi(0|1p−i)

]
/∂p− ∂E

[
φi(1|1p−i)

]
/∂p

. (18)

Expression 18 is negative if the denominator is negative, because the numerator is always
positive.

Observation 10. The denominator of Equation 18 is negative when p is low, and positive when
p is high.

25



Figure 3: Expected payoffs of contributing versus free-riding if all others play p and the meri-
tocratic matching fidelity is β > β.
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Expected values of φi(0|1p−i) and φi(1|1p−i) are plotted as functions of probability p for some
fixed β > β. The two planes intersect at the bifurcating symmetric mixed-strategy Nash
equilibrium-values of p and p (see Proposition 9). The relative slopes of the two curves

illustrate the proposition. Note that this figure is a slice through Figure 2 along a value of
β > β.

First, note that the decision to contribute/ free-ride imply the following expected values at
the boundaries: E

[
φi(0|1

p
−i)
]

= 1 when 1p−i = 0 and E
[
φi(0|1

p
−i)
]

= s ∗ R + (1 − R) when

1p−i = 1; E
[
φi(1|1

p
−i)
]

= R when 1p−i = 0 and E
[
φi(1|1

p
−i)
]

= s ∗ R when 1p−i = 1. (Figure
3 illustrates.) Due to our continuity assumptions on β and the assumed regularities in terms
of the effects of p, we know that ∂E

[
φi(0|1p−i)

]
/∂p ≤ ∂E

[
φi(1|1p−i)

]
/∂p when p is low, and

∂E
[
φi(0|1p−i)

]
/∂p ≥ ∂E

[
φi(1|1p−i)

]
/∂p when p is high. Moreover, notice that the existence

of the pure-strategy Nash equilibrium with high contribution for high levels of β ensures that
E
[
φi(0|1p−i)

]
is not always larger than E

[
φi(1|1p−i)

]
. It therefore follows from continuity in β

that the RHS of the denominator exceeds the LHS of the denominator when p is low, and that
the LSE of the denominator exceeds the RHS of the denominator when p is high, hence the
denominator of Equation 18 is negative when p is low, and positive when p is high.

Remark 11. Note that the necessary meritocracy level β in Propositions 7 and 9 need not
be the same. We shall write β for whichever level is larger.

Proposition 12. Given group size s > 1, then, if β = 1, as n → ∞ (i) 1m/n of the near-
efficient pure-strategy Nash equilibrium and p of the near-efficient symmetric mixed-strategy
Nash equilibrium converge, and (ii) the range of R for which these equilibria exist converges to
(1/s, 1).
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Proof. Suppose R > mpcr, i.e. that both symmetric mixed-strategy Nash equilibrium and
near-efficient pure-strategy Nash equilibrium exist. Let 1m describe the near-efficient pure-
strategy Nash equilibrium and 1p describe the near-efficient symmetric mixed-strategy Nash
equilibrium. Recall that expressions under (17) summarize the lower and upper bound on the
number of free-riders, (n − m) in the near-efficient pure-strategy Nash equilibrium. Taking
limn→∞ for those bounds implies a limit lower bound of 1

1+n
R−r/n
1−R

, and a limit upper bound

of the expected proportion of free-riders of 1
n + 1

1+n
R−r/n
1−R

, and thus bounds on the number of

free-riders that contain at most two integers and at least one free-rider. (Notice that the limits
imply that exactly one person free-rides as R→ 1.) We know that, if there is one more free-rider
than given by the upper bound, then equation (13) is violated. Similarly, if there is one fewer
free-rider than given by the lower bound, then equation (12) is violated.

With respect to the near-efficient symmetric mixed-strategy Nash equilibrium, recall that Ex-
pression 16 must hold; i.e. E

[
φi(0|1p−i)

]
= E

[
φi(1|1p−i)

]
. We can rewrite E

[
φi(ci|1p−i)

]
as

E [φi(ci|B)], where B is the number of other players actually contributing (playing ci = 1), which
is distributed according to a Binomial distribution Bin(p, n) with mean E [B] = np and variance
V [B] = np(1−p). As n→∞, by the law of large numbers, we can use the same bounds obtained
for the near-efficient pure-strategy Nash equilibrium to bound (B/n) ∈ [(n − u)/n, (n − l)/n],
which converges to the unique p at which expression (16) actually holds.16

Suppose all players contribute with probability p corresponding to the near-efficient symmetric
mixed-strategy Nash equilibrium limit value. Then, limn→∞V [(B/n)] = limn→∞

p(1−p)
n = 0

for the actual proportion of contributors. Hence, the limit for the range over R necessary to
ensure existence converges to that of the near-efficient pure-strategy Nash equilibrium, which
by Remark 8 is (1/s, 1).

Remark 13. In light of the limit behavior, it is easy to verify, ceteris paribus, that the value
of the marginal per capita rate of return necessary to ensure existence of the symmetric mixed-
strategy Nash equilibrium is decreasing in population size n, but increasing in group size s; i.e.
decreasing in relative group size s/n.

16Details concerning the use of the law of large numbers can be followed based on the proof in Cabral (1988).
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