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1 Abstract

One of the fundamental tradeoffs underlying society is that between efficiency and equality. The
challenge for institutional design is to strike the right balance between these two goals. Game-theoretic
models of public-goods provision under ‘meritocratic matching’ succinctly capture this tradeoff: un-
der zero meritocracy (society is randomly formed), theory predicts maximal inefficiency but perfect
equality; higher levels of meritocracy (society matches contributors with contributors) are predicted
to improve efficiency but come at the cost of growing inequality. We conduct an experiment to
test this tradeoff behaviorally and make the astonishing finding that, notwithstanding theoretical
predictions, higher levels of meritocracy increase both efficiency and equality, that is, meritocratic
matching dissolves the tradeoff. Fairness considerations can explain the departures from theoretical
predictions including the behavioral phenomena that lead to dissolution of the efficiency-equality tradeoff.

Keywords: public-goods, meritocratic matching, efficiency, fairness, inequality.

JEL Codes: C92, D02, D63, H41.

Online Material: http://nodegame.org/games/merit/

2 Introduction

Making policy decisions often requires tradeoffs between different goals. One of the most fundamental
tradeoffs is that between efficiency and equality. The basic idea of institutional meritocracy (Young,
1958) is to devise a system of rewards that “is intended to encourage effort and channel it into socially
productive activity. To the extent that it succeeds, it generates efficient economy. But that pursuit
of efficiency necessarily creates inequalities. And hence society faces a tradeoff between equality and
efficiency.” (Arthur M. Okun, Equality and efficiency, the big tradeoff, The Brookings Institution, 1975,
p. 1.)

One could argue that inherent to this statement is the view that a certain type of societal activity can
be modeled in the language of game theory as a public-goods provision/ voluntary contributions game
(Isaac, McCue, and Plott, 1985; Ledyard, 1997; Chaudhuri, 2011). The resulting tradeoff summarizes as
follows. In the baseline model, voluntary contributions games create no incentives for contributors and
universal free-riding is the only stable equilibrium (Nash, 1950). In such a setting, the “tragedy of the
commons” cannot be circumvented (Hardin, 1968). However, even if this outcome is maximally inefficient,
one positive thing about it is that it comes with a very high degree of equality (at the cost of low average
payoffs). For this reason, the outcome of universal free-riding has been controversially associated with
extreme forms of socialism (Mises, 1922; Hayek, 1935). Fortunately, an array of mechanisms exists with the
potential to foster contributions to public goods. One such mechanism that has been extensively studied
in the literature is punishment (Fehr and Gächter, 2000; Ledyard, 1997; Chaudhuri, 2011). However,
mechanisms such as punishment tend to be “leaky buckets” (Okun, 1975), in the sense that some of the

http://nodegame.org/games/merit/
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efficiency gains generated by the increase in contributions are spent in order to uphold them (e.g. on
punishment costs).

An alternative mechanism, discussed here, is ‘meritocratic matching’ (Nax, Murphy, and Helbing,
2014) which is inspired by a recent, seminal paper introducing the “group-based meritocratic mecha-
nism” (Gunnthorsdottir et al., 2010). Meritocratic matching generalizes the group-based meritocratic
mechanism by introduction of an additional parameter that measures the degree of imprecision inherent
to the mechanism’s basic functioning and thus bridges the no-mechanism and group-based meritocratic
mechanism continuously. Matching is said to be “meritocratic” because cooperators are matched with
cooperators, and defectors are matched with defectors (Gunnthorsdottir et al., 2010; Nax, Murphy, and
Helbing, 2014), hence “merit” is associated with contribution decisions.

Meritocratic matching differs from what is commonly associated with meritocratic mechanisms, which
often feature explicit rewards/punishments, while meritocratic matching works only through action assor-
tativity and not via payoff transfers. Nevertheless, in the real world, many mechanisms and institutions
exist that are based on the logic of meritocratic matching. Admissions to schools or types of education,
for example, are often based on rewards of past school or exam performances which are a function of
the work/effort applicants had invested. An important determinant of what makes places that are more
competitive to enter ‘better’ is the promise of being matched with others who also performed well in
the best. Similarly, in professional team sports, clubs aim to hire athletes with good track records, and
athletes join teams in order to matched with others. Basically, meritocratic matching mirrors the key
features of many systems that feature team-based payments such as on trading desks.

Under meritocratic matching, near-efficient outcomes are supported by payoff-dominant equilibria
(Nash, 1950; Harsanyi and Selten, 1988) provided the rate of return (Gunnthorsdottir et al., 2010) and
the level of meritocracy exceed certain thresholds (Gunnthorsdottir et al., 2010). The reason for this is
that agents have incentives to contribute more in order to be grouped with other high-contributors. As a
result, only a small fraction of free-riders continues to exist in these equilibria. Such equilibria are excellent
predictors of the population’s distribution of play under ‘full meritocracy’ (Gunnthorsdottir et al., 2010;
Gunnthorsdottir and Thorsteinsson, 2011; Gunnthorsdottir, Vragov, and Shen, 2010; J.P. And Rabanal,
2015). Unfortunately, the new equilibria, however desirable in terms of efficiency vis-à-vis tragedy of the
commons, typically feature a higher degree of inequality.1 The contrast between these two outcomes is
well illustrated by the tensions that would exist between an ideal Benthiam (utility-maximizing) social
planner, on the one hand, and an ideal Rawlsian (inequality-minimizing) social planner on the other: in
many games, the Benthiam (Bentham, 1907) would strictly favor perfect action-assortativity, while the
Rawlsian (Rawls, 1971) would rather prefer complete non-assortativity. In comparison, a real-world social
planner typically exercises a certain degree of ‘inequality aversion’, aiming for an outcome between these
two extremes (Atkinson, 1970).

Essentially, the efficiency-equality tradeoff in designing a meritocratic matching regime boils down to
the choice of a systemic degree of assortativity, i.e. the selection of a certain degree of meritocracy. This
tradeoff is at the heart of social choice theory (see e.g. (Arrow, 1951; Sen, 1970; Gauthier, 1986; Arrow,
Bowles, and Durlauf, 2000)) and welfare economics (see e.g. (Samuelson, 1980; Feldman, 1980; Atkinson,
2012)). Zero meritocracy represents maximal equality, but also minimal efficiency; full meritocracy repre-
sents the opposite. For any degree of inequality aversion away from the two extremes (given by (Bentham,
1907) and (Rawls, 1971)), there exist, at least in theory, an intermediate degree of meritocracy that max-
imizes social welfare (Nax, Murphy, and Helbing, 2014). Unfortunately, this is a difficult tradeoff as the
buckets are leaky in both directions: reducing meritocracy increases equality at the expense of efficiency,
and increasing meritocracy increases efficiency at the expense of equality.

In this paper we set out to test this tradeoff experimentally by analysis of intermediate regimes of

1The new equilibria always have positive variance, while the free-riding equilibrium has variance zero. In what cases
this translates into more inequality depends both on the particular structure of the equilibrium given a game and on the
measure of inequality that is applied.
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meritocracy. We are thus the first to bridge the rich experimental literature on public-goods games under
random interactions (zero meritocracy) (Ledyard, 1997; Chaudhuri, 2011) with the more recent literature
on full meritocracy (group-based mechanisms) (Gunnthorsdottir et al., 2010; J.P. And Rabanal, 2015).
The experiments reveal that the strict tradeoff implied by theory is dissolved in practice. Higher degrees
of meritocracy turn out to increase welfare for any symmetric and additive objective function (Atkinson,
1970), including Benthiam utility-maximization (Bentham, 1907) and Rawslian inequality minimization
(Rawls, 1971). In other words, meritocracy increases both efficiency and equality, leading to unambiguous
welfare improvements as we illustrate for a variety of measures. We argue that the dissolution of the
tradeoff is driven by the agents’ distastes of ‘meritocratic’ unfairness, and by the corrections to their
actions that these considerations imply. The view of fairness that we adopt and test here generalizes the
concept of distributive fairness/ inequity aversion (Fehr and Schmidt, 1999; Ockenfels and Bolton, 2000)
to settings with positive levels of meritocracy. This fairness definition is a game-theoretic application of
a notion related to systemic fairness (Adams, 1965; Greenberg, 1987), which has been long recognized
in organizational theory, but not previously applied to game theory (and the problem of public-goods
provision in particular). The patterns associated with reactions to between-group comparisons, however,
have been noted as robust phenomena without being interpreted as driven by norms of fairness (Bornstein,
Erev, and Rosen, 1990; Erev, Bornstein, and Galili, 1993; Bornstein and Erev, 1994; Bornstein, Gneezy,
and Nagel, 2002; Bohm and Rockenbach, 2013).

Among our results are the following key findings:

1. Efficiency increases with meritocracy. Perfect meritocracy is near-efficient and coincides with the
theoretically predicted levels. The zero meritocracy regime lies above the efficiency levels implied
by the theoretical equilibrium assuming self-regarding rational choice. For intermediate meritocracy
levels, efficiency is above that of zero meritocracy, but below the theoretically expected equilibrium
values.

2. Equality, in contrast to theoretical predictions, also increases with meritocracy. This finding is ro-
bust with regard to several inequality measures, including the payoff of the worst-off subject. In
our settings, the often-cited tradeoff between equality and efficiency turns out to be a theoretical
construct, rather than a behavioral regularity.

3. Fairness considerations can explain the dissolution of the tradeoff between efficiency and equality.
According to our definition, agent A considers the outcome of the game “unfair” if another agent B
contributed less than A, but B was placed in a better group. As a consequence, agent A is assumed
to respond by decreasing his/her contribution.

4. Higher meritocracy levels increase agents’ sensitivity to unfair group matching in lower meritocracy
levels. Our experimental setup expose each participant to two distinct levels of meritocracy. When
the second part of the experiment is restarted at a lower meritocratic regime, it turns out that
agents’ distaste for unfair group matching is magnified.

3 The experiment

3.1 The underlying meritocracy game

A fixed population of n agents plays the following public-goods game repeatedly through periods T =
{1, 2, ..., t}. First, each agent i simultaneously decides to contribute any number of coins ci between zero
and his full budget B > 0. The amount not contributed goes straight to his/her private account. The
ensemble of players’ decisions yields the contribution vector c. Second, Gaussian noise with mean zero
and variance σ2 ≥ 0. Third, k groups of a fixed size s < n (such that s ∗ k = n) are formed according to
the ranking of the values c′ (with random tie-breaking). That is, the highest s contributors form group
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G1, the next highest s contributors form G2, etc. The resulting group partition is ρ = {G1, G2, ..., Gk}.
Finally, based on the grouping and the initial contributions vector c, payoffs φ are computed. Each player
i in a group Gi with other players j 6= i receives:

φi(c)︸ ︷︷ ︸
payoff

= (B − (1−m) ∗ ci)︸ ︷︷ ︸
return from private account

+
∑
j∈G−i

m ∗ cj ,︸ ︷︷ ︸
return from group account

(1)

where m represents the marginal per capita rate of return, and G−i indicates the members of group
Gi excluding i.

Note that the game is equivalent to play under the group-based mechanism (here, ‘perfect meritoc-
racy’) (Gunnthorsdottir et al., 2010) if σ2 = 0, and that the case of σ2 → ∞ corresponds to random
re-matching (here, ‘zero meritocracy’) (Andreoni, 1988).

Equilibrium play

To highlight the structure of the Nash equilibria (Nash, 1950) for this class of games, it is useful to evaluate
the value of the expected payoff E [φi(c)] during the decision stage, i.e. before groups are formed. In Eq.
(1), the first term, i.e. the private-account return, is completely determined by the agent’s contribution
choice. The second term, i.e. the group-account return, however, depends on the players’ contributions
in a probabilistic way. In the case of zero meritocracy (i.e. random re-matching) (σ2 = ∞), E [φi(c)] is
strictly decreasing in the player’s own contribution because the marginal per capita rate of return is less
than one. Under zero meritocracy, the player’s own contribution has no effect on group matching, and,
therefore, the only equilibrium is universal free-riding. Conversely, for positive levels of meritocracy, the
player’s contribution choice influences the probability of being ranked in a high group. Hence, making
a positive contribution is a tradeoff between the sure loss on the own contribution and the promise of
a higher return from the group-account. However, the chances of being ranked in a better group are
decreasing with growing variance. As a result, new Nash equilibria with positive contribution levels may
emerge: indeed, Nax, Murphy, and Helbing (2014) generalizes the results by Gunnthorsdottir et al. (2010)
showing that, if the level of meritocracy stays sufficiently large in addition to some bound on r, there
exist a near-efficient pure-strategy Nash equilibria in which a large majority of players contributes the
full budget B and a small minority of players contributes nothing.2

3.2 Choice of experimental parameters

In order to ensure comparability with the literature on voluntary contributions games under random
re-matching (Andreoni, 1988) (as reviewed by Ledyard 1997; Chaudhuri 2011) and particularly under the
group-based mechanisms (Gunnthorsdottir et al., 2010), we set the group size s = 4 and the marginal per
capita rate of return m = 0.5 (as in Gunnthorsdottir et al. 2010). Due to laboratory capacity restrictions
and as also chosen in many prior experiments, we set n = 16. Finally, we need to set different meritocracy
levels as represented by variance σ2 other than σ2 = 0 and σ2 =∞.

In order to determine the right and meaningful levels of variance levels, we conducted a series of
16 experimental sessions on Amazon’s Mechanical Turk (AMT) with a total of 242 participants using
our new NodeGame software (Balietti, 2014). Details about the experiment can be found in Appendix
A.2. In each session, all participants played a game with different variance levels which were σ2 =
{0, 2, 4, 5, 10, 20, 50, 100, 1000,∞}. For all variance levels below σ2 = 100, the near-efficient Nash equilibria

2Universal free-riding continues to be an equilibrium too. See Theorem 1 in Ref. (Gunnthorsdottir et al., 2010) and
Propositions 6 and 7 in Ref. (Nax, Murphy, and Helbing, 2014) for detailed proof and game-theoretic characterization of
these equilibria.
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exist in the stage game. For higher variance levels, the free-riding Nash equilibrium is the unique Nash
equilibrium of the stage game.

Each game was repeated for 25 (or 20) successive rounds. Given σ2 = 0, play basically coincided with
the levels implied by the near-efficient Nash equilibria almost from first to last round. We evaluated the
level of variance starting at which the mechanism started (i) to display contribution levels that differed
from the levels implied by the near-efficient Nash equilibria under σ2 = 0 initially but reached those
over time, and (ii) to exhibit contribution levels that did not stabilize at such levels at all. We found
these variance levels to be (i) σ2 = 3 and (ii) σ2 = 20. Appendix A.3 (Fig. 7) contains further details.
Hence, we settled for the following four variances for our laboratory experiment: σ2 = {0, 3, 20,∞}. We
use the following terminology. We labeled σ2 = 0 as PERFECT-MERIT, and σ2 = ∞ as NO-MERIT.
Intermediate values are labeled as HIGH-MERIT (σ2 = 3) and LOW-MERIT(σ2 = 20).

Note that in the case of these four levels of variance tested in this study, the predicted stage-game
Nash equilibria are as follows. For σ2 = ∞ (NO-MERIT), the unique stage-game Nash equilibrium is
universal free-riding, which is also a Nash equilibrium for all the other variance levels. For σ2 = {0, 3, 20},
moreover, there exist

(
n
2

)
alternative pure-strategy equilibria where exactly two players free-ride while all

others contribute fully. Details on equilibria can be found in Appendix A.1.

3.3 The laboratory experiment

We ran 12 experimental sessions with a total of 192 participants at the ETH Zürich Decision Science
Laboratory (DeSciL) using the same NodeGame software as in the pre-tests (Balietti, 2014). Details about
the experiment can be found in Appendix A.2. In each session, all participants played two repeated games,
one after the other, each one with one of the different variance level σ2 = {0, 3, 20,∞}. Each session,
therefore, represented a unique order of two of the four possible variance levels (leading to 12 sessions
to account for every possible ordered pair). Each repeated game was played for 40 successive rounds
(T = {1, 2, ..., 40}), with population size n = 16, group size s = 4, and marginal per capita rate of return
m = 0.5.3

4 Results

Overall, we found a significant difference in the mean level of contributions among the four treatments
(linear mixed model LMM: F3,8 = 36.8, P < 0.0001), as Fig. 1 illustrates. Furthermore, Fig. 2 shows how
the contribution patterns observed in the laboratory are part of a coherent picture with the results of the
AMT pre-tests for different level of variance.

In the following, we first study efficiency, inequality and fairness, focusing on the first part of the
experiment. Then, we use the second part of the experiment to determine the agents’ sensitivity to
changes in meritocracy levels.

4.1 Efficiency

In this section, we evaluate the effect of meritocracy on total payoffs generated, i.e. on efficiency. The-
ory predicts (Gunnthorsdottir et al., 2010; Nax, Murphy, and Helbing, 2014) that equilibria supported
by higher meritocracy levels are more efficient, and we shall show that this predictions holds true in
the lab, confirming previous experimental results (Gunnthorsdottir et al., 2010; Gunnthorsdottir and
Thorsteinsson, 2011; Gunnthorsdottir, Vragov, and Shen, 2010). Indeed, the levels of efficiency sup-
ported by the payoff-dominant equilibria under meritocracy regimes LOW-MERIT, HIGH-MERIT and

3We would have liked to reproduce the 80 rounds of play by Gunnthorsdottir et al. (2010), but due to time restrictions
as in how long we could keep subjects in the laboratory, we decided to halve this amount in order to be able to run two
variance levels per person. Each session lasted roughly one hour.
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Figure 1. Average contribution levels for perfect-, high-, low-, and no-meritocracy,
respectively associated with the values of σ2 = {0, 3, 20,∞}. Contribution levels increase as
meritocracy increases. In perfect meritocracy, contribution levels are near efficient and approximately
coincide with theoretical predictions. Meritocratic treatments are mostly stable over the forty rounds of
the game, and do not follow the contribution decay of the random treatment. Error bars represent the
95%-confidence intervals.
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Figure 2. Average contribution levels for different variance levels of online and lab
experiments. Contribution levels decrease as variance increases, that is contribution levels increase as
meritocracy increases.
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PERFECT-MERIT represent relatively accurate predictions, while the complete inefficiency prediction
of the unique, zero-contribution Nash equilibrium under no-meritocracy (NO-MERIT) understates the
achieved efficiency levels in the order of standard magnitudes (Ledyard, 1997; Chaudhuri, 2011).

We measure efficiency as the average payoff over players, φ =
∑

i∈N φi

n , over the forty rounds. As
shown in Fig. 3, when climbing up the meritocracy ladder we find increases in efficiency from σ2 = ∞
(NO-MERIT) through σ2 = {20, 3} to σ2 = 0 (PERFECT-MERIT).

Overall, we observe significant differences in the mean of realized payoffs among the four treatments
(linear mixed model LMM: F3,8 = 36.95, P < 0.0001). Taking NO-MERIT as a baseline, LOW-MERIT
led to an increase in the average realized payoff of 7.1611 (Likelihood Ratio Test LRT: χ(1) = 12.7, P =
0.0004), HIGH-MERIT to an increase of 8.1964 (LRT: χ(1) = 17.48, P < 0.0001), and PERFECT-
MERIT to an increase of 8.8287 (LRT: χ(1) = 16.22, P < 0.0001). These levels correspond to roughly
double those of NO-MERIT. Computing the most conservative (Bonferroni) adjusted p-values on all pair-
wise differences reveals that the treatment with variance ∞ is significantly different (P < 0.0001) from
the other three variance levels σ2 = {0, 3, 20}, which are themselves not significantly different from each
other.

For intermediate meritocracy regimes σ2 = {20, 3}, efficiency is significantly below the level implied by
the respective payoff-dominant equilibria (Harsanyi and Selten, 1988), but only by less than five percent.
Conversely, under full meritocracy σ2 = 0, efficiency is above and within five percent of equilibrium. Note
that contribution levels resemble the levels implied by the symmetric mixed-strategy Nash equilibrium
identified in Ref. (Nax, Murphy, and Helbing, 2014), but do not perfectly coincide with them, as inter-
mediate contribution levels continue to be selected under σ2 = {20, 3}, which are dominated even in the
mixed equilibrium.

The contribution patterns under σ2 = 0 confirm the qualitative patterns of contributions found in
(Gunnthorsdottir et al., 2010), instead now we have n = 16. For σ2 = ∞, we have the same pattern
of contributions that, on average, roughly halve every 10-20 rounds as found in many related studies
(Ledyard, 1997; Chaudhuri, 2011).

4.2 Equality

Recall from the theory predictions in Ref. (Nax, Murphy, and Helbing, 2014) that equilibria supported by
higher meritocracy levels feature more inequality in the distribution of payoffs. In this section, we shall
show that laboratory evidence yields diametrically opposite results; namely, higher meritocracy levels
lead to outcomes that are more equal in terms of payoff distributions.

One can identify two measures of payoff inequality directly from the moments of the payoff distri-
bution: (i) the payoff of the worst-off (Rawls, 1971), φ = min{φi}, and (ii) the variance of payoffs,

σ2 =
∑

i∈N (φi−φ)2

n . A more sophisticated third alternative is (iii) the Gini coefficient. In terms of all
measures, our analysis shows that equality increases with meritocracy. Note that the following results are
also robust to other measures of inequality (Cowell, 2011) (see appendix).

Fig. 4 shows that, like efficiency, equality also increases from σ2 = ∞ (NO-MERIT) through σ2 =
{20, 3} to σ2 = 0 (PERFECT-MERIT). These increases are reflected by differences in the Gini coefficient,
and by the order of the payoff of the worst-off – Rawlsian inequality. Under NO-MERIT, equality is
significantly below the level implied by equilibrium. For all three positive levels of meritocracy, equality
is above that achieved by NO-MERIT and above the theoretically implied levels. Details about the
statistical tests can be found in Appendix A.3.

4.3 Fairness

We have found that Nash predictions worked well in approximating efficiency levels in the meritocratic
regimes LOW-MERIT, HIGH-MERIT and PERFECT-MERIT, but not in NO-MERIT. In this section,
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Figure 3. Analysis of efficiency based on smoothed distributions of average payoffs over 40
rounds for perfect-, high-, low-, and no-meritocracy, respectively associated with the
values of σ2 = {0, 3, 20,∞}. Efficiency, measured as average payoff, increases as meritocracy increases.
Black solid lines indicate the mean payoff as implied by the respective payoff-dominant Nash equilibria,
red solid lines indicate the mean payoff observed in the experiment, red-shaded areas indicate the
95%-confidence intervals of the mean. Blue dots indicate the payoff of the worst-off player (note that
the worst-off player in every equilibrium receives twenty ‘coins’).
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Figure 4. Level of payoff equality for perfect-, high-, low- and no-meritocracy, respectively
associated with the values of σ2 = {0, 3, 20,∞}. Inequality, measured by the variance of payoff and
by the Gini coefficient, decreases, as meritocracy increases. Left panel: Smoothed distributions of
average payoffs over 40 rounds. Black solid lines indicate the variance of the payoffs as given by the
respective payoff-dominant Nash equilibria, red solid lines indicate the mean variance observed in the
experiment, red-shaded areas indicate the 95%-confidence intervals of the mean variance. Right panel:
Average Gini coefficient of the distribution of payoffs with 95%-confidence intervals. Black solid lines
and and red dots indicate the Gini coefficient implied by the equilibrium (without fairness
considerations).
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we explore the role of individuals’ fairness considerations in explaining these deviations. We shall find
evidence for meritocratic fairness concerns that could explain these phenomena and that generalize well-
known fairness considerations (Fehr and Schmidt, 1999; Ockenfels and Bolton, 2000) in the meritocracy
context, allowing for a systemic understanding of the payoff structure.

Meritocratic fairness: definition

In public-goods games with completely random interactions, i.e. in environments with zero meritocracy,
a payoff allocation is considered unfair if players contribute different amounts and therefore obtain dif-
ferent payoffs (Fehr and Schmidt, 1999). From the perspective of an individual player, unfairness can be
advantageous, if he/she contributed less than the average, or disadvantageous in the opposite situation.

In public-goods games with positive levels of meritocracy, we define an outcome as fair if all players
are matched into group with contributions that are compatible, that is, there are no players contributing
less (more) than others that get matched into a better (worse) group. Conversely, a payoff allocation is
considered unfair from the viewpoint of a player if there exists at least one other player who contributed
less (more) than him/her who is matched into a group with a lower (higher) average contribution level.
The more players are matched into such incompatible groups, and the larger the difference in average
group payoffs, the higher the level of meritocratic unfairness perceived by that player. More formally,
meritocratic unfairness of a given payoff allocation is measured by the following two quantities:

MUDis = 1
n−s ∗

∑
j∈N max(∆ij , 0) ∗max(∆GjGi

, 0),

MUAdv = 1
n−s ∗

∑
j∈N max(∆ji, 0) ∗max(∆GiGj

, 0),
(2)

where for any pair of players, i and j in groups Gi and Gj (i 6= j), ∆ij represents the difference in
contributions ci−cj , and ∆GiGj is the difference in average group contributions 1

4

∑
k∈Gi

ck− 1
4

∑
k∈Gj

ck.

Contribution decisions: meritocratic fairness and strategic concerns

It has been shown that under random interactions unfair allocations influence players’ utilities negatively
and that agents respond to unfairness by adjusting their contributions, especially to disadvantageous
unfairness (Fehr and Schmidt, 1999; Ockenfels and Bolton, 2000). Disadvantageous unfairness has an
accentuated negative effect on a player’s utility, while advantageous unfairness has a negative but weaker
effect. This gain-loss asymmetry is of course related to some of the most robust findings in experimental
economics (Kahneman and Tversky, 1979; Tversky and Kahneman, 1991; Erev, Ert, and Yechiam, 2008).
The consequences of the distaste for unfairness are such that, on average, a player responds by decreasing
(increasing) his/her contribution after experiencing disadvantageous (advantageous) unfairness (Fehr and
Schmidt, 1999; Ockenfels and Bolton, 2000). Importantly, the tendency to decrease is stronger than the
tendency to increase due to the asymmetry in distastes. The typical contribution pattern found in repeated
public goods experiments (intermediate contribution levels at the beginning, followed by a decay over
time) can therefore be explained by heterogeneities in social preferences and the asymmetric reactions to
advantageously and disadvantageously fair outcomes related to reciprocity (Ledyard, 1997; Chaudhuri,
2011).

It is reasonable to conjecture that fairness considerations continue to matter in the presence of meri-
tocracy. In line with previous behavioral findings in studies investigating distributional fairness (Fehr and
Schmidt, 1999; Ockenfels and Bolton, 2000), we assume that disadvantageous unfairness has a more ac-
centuated negative effect than advantageous unfairness. The consequences of the distaste for meritocratic
unfairness in repeated random interactions are assumed to be such that, on average, a player responds by
decreasing (increasing) his/her contribution after experiencing disadvantageous (advantageous) merito-
cratic unfairness. Note that, under this definition, every outcome is meritocratic and fair with probability
one under perfect meritocracy (when σ2 = 0).
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However, an additional subtlety comes from the fact that contributions under meritocratic matching
play a double role. On the one hand, they determine a player’s payoff within a given group. On the other
hand, they also determine the group into which the player is matched. Therefore, players’ contribution
decisions are a result of fairness considerations and strategic concerns:

Contribution Decision = Meritocratic Fairness + Strategic Concerns.

Our assumptions regarding meritocratic fairness and strategic concerns lead to the following predic-
tions:

• In environments with zero meritocracy, our predictions coincide with those of Ref. (Fehr and
Schmidt, 1999; Ockenfels and Bolton, 2000), that is, we expect the typical contribution pattern
(intermediate contributions levels at the beginning, then decay over time). The decay is driven by
the asymmetry in behavioral responses to disadvantageous versus advantageous unfairness.

• Under perfect meritocracy, starting at the near-efficient Nash equilibrium prediction, we do not
expect significant departures from such a best-response state as there is no inherent meritocratic
unfairness (by definition).

• For the intermediate meritocracy levels (HIGH-MERIT and LOW-MERIT), starting at the near-
efficient Nash equilibrium prediction, we expect decreases as unfairness is expected to occur even
in equilibrium. However, other than under zero meritocracy, downward corrections of contributions
will not trigger an overall downward decay of contributions because higher amounts become better
and fair replies again than contributing zero once substantial decreases of contributions occurred,
which were themselves triggered by disadvantageous unfairness. This is due to the fact that there
are then new strategic concerns.

Meritocratic fairness: results

Fig. 5 shows the distributions of meritocratic unfairness across different treatments. Similarly to effi-
ciency and inequality, we find increases in fairness from NO-MERIT through all meritocracy levels up to
PERFECT-MERIT, and these increases are significant (LMM: F3,8 = 53.74, P < 0.0001).

Meritocratic unfairness translates directly into departures from the levels of contribution predicted by
theory. In particular, we studied how the unfairness level experienced in the previous round impacts the
decision to contribute in the following round. To do so, we performed a multilevel regression of between-
rounds contribution adjustments with subject and session as random effects, and we tested several models
for both distributional (Fehr and Schmidt, 1999) and meritocratic fairness (statistical details are given
in the Statistical Analysis section in Materials and Methods section and regression tables are available
in the Supplementary Information). As expected, applying the notion of distributional fairness as it is
to a meritocratic environment is not straightforward: the results of the regressions for distributional
fairness are often inconsistent across treatments, and, even in many cases contrary to the predictions
of the theory. On the other hand, meritocratic unfairness proved a good predictor of the contribution
adjustments between rounds across all treatments. Therefore, meritocratic fairness can be seen as natural
generalization of distributional fairness in games with positive levels of meritocracy.

4.4 Sensitivity

So far, we have shown that (i) both efficiency and equality increase with meritocracy, and that (ii) con-
siderations of ‘meritocratic’ fairness can explain deviations from the theoretically expected equilibrium.
In this section, we show that changes in the level of experienced meritocracy have significant implications
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Figure 5. Meritocratic unfairness for perfect-, high-, low-, and no-meritocracy,
respectively associated with the values of σ2 = {0, 3, 20,∞}. Smoothed distribution of average
meritocratic unfairness per round. Unfairness decreases as meritocracy increases. Red solid lines
indicate the mean level of meritocratic unfairness observed in the experiment, red-shaded areas indicate
the 95%-confidence intervals of the mean.
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as well. In particular, we test whether participants coming from a higher (lower) meritocracy level in part
1 are more (less) sensitive to meritocratic unfairness in part 2.

For this analysis, we used the data pertaining of part 2 of the experiment, controlling for which
meritocracy level was played in part 1. We divided the dataset in two subsets, depending on whether
participants in part 2 experienced a higher or lower meritocracy level than in part 1. In order to obtain
a balanced design with respect to the direction of meritocracy changes, we further sampled the data
from part 2 to include only the intermediate regimes of meritocracy (σ2 = {3, 20}). In this way, both
conditions could be tested against perfect meritocracy, zero meritocracy, and one intermediate regime.
We created a dummy variable for “contribution goes down” (0;1) and performed a multilevel logistic
regression with subject and session as random effects. We used the level of disadvantageous meritocratic
unfairness experienced in the previous round as a predictor of whether contribution is expected to go up
or down in the next round.

Our main finding is that the distaste for meritocratic unfairness is exacerbated after having played a
more meritocratic regimes in part 1. That is, if a participant experienced meritocratic unfairness in the
previous round, he/she is more likely to reduce the own contribution in the current round if the level of
meritocracy in part 2 is lower than in part 1 (Logistic Mixed Regression LMR: Z = 2.521, P = 0.0117).
The effect in the opposite direction – a lower meritocracy level in part 1 than in part 2 – is not significant
(LMR: Z = 1.522, P = 0.128).

The different sensitivity to meritocratic unfairness leads to different levels of efficiency and equal-
ity overall. Sessions in part 2 with higher sensitivity to meritocratic unfairness – i.e. descending
the meritocracy ladder – have significantly lower average payoff (One-sided Kolmogorov-Smirnoff KS:
D+ = 0.1531, P < 0.0001), and significantly higher inequality – measured by the average Gini coefficient
per round (D+ = 0.1583, P = 0.0494). These results confirm once again that, in our settings, increases in
efficiency are followed by inequality reduction, and that meritocratic fairness considerations can explain
the dissolution of the classical efficiency-equality tradeoff.

5 Discussion

Economic theory has identified the efficiency-equality tradeoff as one of the most fundamental tradeoffs
underlying society (Arrow, 1951; Sen, 1970; Okun, 1975; Gauthier, 1986; Arrow, Bowles, and Durlauf,
2000). In our study, we decided to analyze an environment that succinctly captures the essence of this
tradeoff. The well-known public-goods (voluntary-contribution) game (Isaac, McCue, and Plott, 1985)
perfectly suited our task, since it naturally relates to many important real-life issues such as climate
change, collective action, common-pool resource problems, etc. (Ostrom, 1990; Ostrom, 1999). For this,
it has received tremendous attention in the theoretical and experimental literature in and outside of
economics (Chaudhuri, 2011).

The standard case of random re-matching and a recently proposed and seminal group-based mech-
anism (Gunnthorsdottir et al., 2010) were generalized to a class of mechanisms called “meritocratic
matching” (Nax, Murphy, and Helbing, 2014). Here, we test these mechanism, we made the astonishing
finding that agents seem to be able to ‘make the better system work’. That is, meritocratic mechanisms
that promise higher efficiency from a theoretic point of view, also turn out to benefit the worst-off and to
improve overall distributional equality, despite theory predicting the opposite (Nash, 1951). The reason
for this unexpected finding lies in agents’ attempts to improve ‘fairness’ by adjustments of their actions in
order to counter situations in which particular agents are better-off (worse-off) despite being associated
with low (high) ‘merit’. This fairness concept not only explains our results in the new class of assor-
tative games studied by us, but also remains a significant explanatory variable in games with random
interactions, and is consistent with previous results for this class of games. The criterion of ‘meritocratic’
fairness is formally different from the standard formulation of ‘distributional’ fairness (Fehr and Schmidt,
1999; Ockenfels and Bolton, 2000), but for random interaction environments their predictions agree qual-
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itatively. In meritocratic environments, due to the double-role of contributions inherent in the matching
mechanism (both as a group-sorting device and as a payoff determinant within groups), the concept of
‘meritocratic‘ fairness is indeed a natural extension of classical fairness criteria when agents are aware of
this double-nature.

The results of our study show that meritocracy can dissolve the fundamental tradeoff between effi-
ciency and equality. Creating a public good does not necessarily generate inefficiencies, nor it requires the
intervention of a central coercive power for their suppression. Fairness preferences and suitable institu-
tional settings, such as well-working merit-based matching mechanisms, can align agents’ incentives, and
shift the system towards more cooperative and near-efficient Nash equilibria. Overall, the results of our
experiment lend credibility to agents’ sensitivity to the famous quote associated with Virgil that “The
noblest motive is the public good.”
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A Materials and Methods

A.1 Equilibrium structure

Our stage games with n = 16, s = 4, B = 20 and m = 0.5 have the following equilibria dependent on
which variance level of σ2 = {0, 3, 20,∞} is played. When σ2 = ∞ (NO-MERIT), the only equilibrium
is ci = 0 for all i. ci = 0 for all i is also an equilibrium for all other variance levels. In that equilibrium,
all players receive a payoff of φi = 20. However, when σ2 = {0, 3, 20}, there also exist exactly

(
n
k

)
unique

pure-strategy equilibria such that ci = 0 for exactly two agents and cj = 20 for the remaining fourteen.
In that equilibrium, for the case when σ2 = 0 (PERFECT-MERIT), payoffs are such that twelve of the
fourteen players who contribute ci = 20 are matched in groups with each other and receive φi = 40. The
remaining four players are matched in the worst group. Of those, the two players who contribute ci = 0
receive a payoff of φi = 40, while the two players who contribute ci = 20 receive a payoff of φi = 20. For
the cases when σ2 = 3 (HIGH-MERIT)/σ2 = 20 (LOW-MERIT), payoffs in the last group are as in the
case when σ2 = 0 (PERFECT-MERIT) in over 99.9%/ 99% of all cases. In the remaining cases, payoffs
are such that 6 out of fourteen players who contribute ci = 20 are matched in groups with each other
and receive φi = 40. The remaining 6 players who contribute ci = 20 are matched in a group with one
player who contributes ci = 0 and receives a payoff of 30. The two players who contribute ci = 0 receive
a payoff of φi = 50 each. The near-efficient Nash equilibrium collapses when the variance reaches a level
of about σ2 = 100 (see propositions 6 and 7 in Ref. (Nax, Murphy, and Helbing, 2014)).

A.2 Experimental design

A total of 192 voluntary participants took part in one session consisting of two separate games each.
Each session lasted roughly one hour. There were 16 participants in each session and 12 sessions in total.
All sessions were conducted at the ETH Decision Science Laboratory (DeSciL) in Zürich, Switzerland,
using the experimental software NodeGame (Balietti, 2014). DeSciL recruited the subjects using the
Online Recruitment System for Economic Experiments (ORSEE). The experiment followed all standard
behavioral economics procedures and meets the ethical committee guidelines. Decisions, earnings and
payments were anonymous. Payments were administered by the DeSciL administrators. In addition to a
10 CHF show-up fee, each subject was paid according to a known exchange rate of 0.01 CHF per coin.
Overall, monetary rewards ranged from 30 to 50 CHF, with a mean of 39 CHF.

Each session consisted of two games, each of which was a forty-round repetition of the same underlying
stage game, namely a public-goods game. The same fixed budget was given to each subject every period.
Each game had separate instructions that were distributed at the beginning of each game. After reading
the instructions, all participants were quizzed to make sure they understood the task. The two games differ
with respect to the variance level that is added to players’ contributions. There were four variance levels
(σ2 = {0, 3, 20,∞}), and each game had equivalent instructions. Instructions contained full information
about the structure of the game and about the payoff consequences to themselves and to the other agents.
We played every possible pair of variance levels in both orders to have an orthogonal balanced design,
which yields a total of 12 sessions. As the game went on, players learnt about the other players’ previous
actions and about the groups that formed. Each of our 192 participants made forty contribution decisions
in each of the two games in his session. This yields 80 choices per person per session, hence a total of
15,360 observations. More details, including a copy of a full instructions set, are provided in the following
subsections.

Instructions of the lab experiment

Each experimental session consisted of two separate games (part 1, part 2), each played with a different
variance level. We exhausted all possible pair of variance levels in both orders, for a total of 12 different
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combinations. Consequently, we prepared 12 different instruction texts that took into account whether a
variance level was played in the first or in the second part, and in the latter case also considered which
variance level was played in part 1.

Together with the main instructions sheet, we provided an additional sheet containing tabulated
numerical examples of fictitious game-rounds played at the current variance level. This aimed to let
participants get an intuitive feeling of the consequences of noise on contributions and final payoffs.

All instructions texts can viewed at the address http://nodegame.org/games/merit/. Here we report
the instruction text for variance level equal 20 played in the part 1.

Instructions for Variance Level = 20, Part 1

Welcome to the experiment and thanks for your participation. You have been randomly assigned to an
experimental condition with 16 people in total. In other words you and 15 others will be interacting via
the computer network for this entire experimental session.

The experiment is divided into two parts and each part will last approximately 30-40 minutes long.
Both parts of the experiment contribute to your final earnings. The instructions for the first part of the
experiment follow directly below. The instructions for the second part of the experiment will be handed
out to you only after all participants have completed the first part of the experiment. It is worth your
effort to read and understand these instructions well. You will be paid based on your performance in this
study; the better you perform, the higher your expected earnings will be for your participation today.

Your decision.
In this part you will play 40 independent rounds. At the beginning of each round, you will receive

20 “coins”. For each round, you will have to decide how many of your 20 coins to transfer into your
“personal” account, and how many coins to transfer into a “group” account. Your earnings for the round
depend on how you and the other participants decide to divide the coins you have received between the
two accounts.

Group matching with noise.
For each round you will be assigned to a group of 4 people, that is, you and three other participants.

In general, groups are formed by ranking each individual transfer to the group account, from the highest
to the lowest. Group 1 is generally composed of those participants who transferred the most to the group
account; Group 4 is generally composed of those who transferred the least to the group account. The
other groups (2 and 3) are between these two extremes.

However, the sorting process is noisy by design; contributing more will increase a participant’s chances
of being in a higher ranked group, but a high ranking is not guaranteed. Technical note- The noisy ranking
and sorting is implemented with the following process:

1. Step 1: Preliminary ordering. A preliminary list is created in which transfers to the group account
are ranked from highest to lowest. In case two or more individuals transfer the same amount, their
relative position in the ranking will be decided randomly.

2. Step 2: Noisy ordering. From every participant’s actual transfer to the group account, we obtain
a unique noisy contribution by adding an i.i.d. (independent and identically distributed) normal
variable with mean 0 and variance 20. The noisy contributions are then ranked from 1 to 16 from
highest to lowest, and a final list is created.

3. Step 3: Group matching. Based on the final list created at Step 2 (the list with noise), the first
4 participants on that list form Group 1, the next 4 people in the list form Group 2, the third 4
people in the list form Group 3, and the last 4 people form Group 4.

Return from personal account.

http://nodegame.org/games/merit/
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Each coin that you put into your personal account results in a simple one-to-one payoff towards your
total earnings.

Return from group account.
Each coin that you put into the group account will pay you back some positive amount of money,

but it depends also on how much the other group members have transferred to the group account, as
described below.

The total amount of coins in your group account is equal to the sum of the transfers to the group
account by each of the group members. That amount is then multiplied by 2 and distributed equally
among the 4 group members. In other words, you will get a return equal to half of the group account
total.

Final Earnings
Your total earnings for the first part of the experiment are equal to the sum of all your rounds’

earnings. One coin is equal to 0.01 CHF. This may not appear to be very much money, but remember
there are 40 rounds in this part of the experiment so these earnings build up.

Example
Here is an example of one round to demonstrate this decision context, the noisy sorting into different

groups, and the different resulting payoffs. In the table below, pay attention to the following facts:

• Groups are roughly formed by ranking how much participants transferred to the group account,
but this is not a perfect ranking. For example, participant #8 transferred less to the group account
than participant #10, but the noisy sorting process placed him in a higher ranked group.

• Participant #7 transferred 14 of his coins to the group account. This means that he transferred 6
to his personal account. Due to noisy sorting he was ranked first, and assigned to Group 1. The
other participants in Group 1 transferred a total of 64 coins to the group account. This amount is
doubled and redistributed evenly back to the 4 members of the groupthis is 32 for each participant.
So then participant #7 earned 38 coins for this round.

• Participant #12 transferred 7 coins to the group account and transferred the remaining 13 coins to
his personal account. He was sorted (with noise) into Group 3 and this group transferred 46 coins
in total. This resulted in 23 coins being returned to each of the group members, and thus his total
payoff is 36 coins (23 returned

from the group account and the 13 he kept in his personal account).



MATERIALS AND METHODS 21

Player
ID

Group
Transfer
to group
account

Transfer
to personal

account

Total
to group
account

Amount
returned
to player

Total
earnings

for the round
7 1 14 6 64 32 38
6 1 13 7 64 32 39
14 1 16 4 64 32 36
4 1 8 12 64 32 44
1 2 14 6 51 25.5 31.5
3 2 20 0 51 25.5 25.5
8 2 11 9 51 25.5 34.5
11 2 19 1 51 25.5 26.5
10 3 17 3 46 23 26
12 3 7 13 46 23 36
16 3 6 14 46 23 37
5 3 16 4 46 23 27
9 4 10 10 18 9 19
2 4 1 19 18 9 28
13 4 5 15 18 9 24
15 4 2 18 18 9 27

Additional examples are provided in a separate sheet for your own reference.

Quiz

Subjects were given a quiz after instructions to test their understanding of the game. Only after “passing”
the quiz were subjects allowed to begin play. Details about the quiz can be found at http://nodegame.
org/games/merit/.

Graphical interface of the experiment

The experiment was implemented using the experimental software nodeGame (Balietti, 2014). Besides,
offering a textual response of the actions of the players, we also offer a visual summary with contributions
bars ordered by group, as shown in Fig. 6. More details about the interface, and the implementation are
available at the url: http://nodegame.org/games/merit/

http://nodegame.org/games/merit/
http://nodegame.org/games/merit/
http://nodegame.org/games/merit/
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Figure 6. Game interface for displaying the results. Participants’ contribution decisions are
displayed as horizontal bars of variable length sorted according to their ranking after noise has been
applied.
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A.3 Statistical analyses

Equality analysis

Overall, we found a significant difference in the variance of realized payoffs in each round among the
four treatments (LMM: F3,8 = 7.27, P < 0.0113). When computing Bonferroni adjusted p-values, the
treatment with variance ∞ was found significantly different (P = 0.0003;P = 0.0004;P = 0.0086) from
the other three variance levels (σ2 = {0, 3, 20}), which are themselves not significantly different from each
other. Taking NO-MERIT as a baseline, LOW-MERIT led to a decrease in the variance of realized payoffs
in each round of -13.546 (LRT χ(1) = 8.13, P = 0.0043), HIGH-MERIT to a decrease of -16.914 (LRT
χ(1) = 9.89, P = 0.0016), and PERFECT-MERIT to a decrease of -17.122 (LRT χ(1) = 6.78, P = 0.0091).

Similarly, the Gini index differs significantly among the four treatments (LMM: F3,20 = 42.0, P <
0.0001). Taking NO-MERIT as a baseline, LOW-MERIT led to a decrease in the variance of realized
payoff in each round of -0.058901 (LRT χ(1) = 18.18, P < 0.0001), HIGH-MERIT to a decrease of -
0.071843 (LRT χ(1) = 22.28, P < 0.0001), and PERFECT-MERIT to a decrease of -0.075453 (LRT
χ(1) = 22.06, P < 0.0001). Computing Bonferroni adjusted p-values for all pair-wise differences reveals
that the treatment with variance ∞ is significantly different (P < 0.0001) from the other three variance
levels (σ2 = {0, 3, 20}), which are themselves not significantly different from each other (see Fig. 4).

Fairness analysis

We find a significant difference in the experienced levels of meritocratic unfairness in each round among
the four treatments (LMM: F3,8 = 53.74, P < 0.0001). When computing Bonferroni adjusted p-values we
find that – excluding PERFECT-MERIT for which meritocratic unfairness is always zero by definition
– all treatments are statistically significantly different from each other (HIGH-MERIT vs LOW-MERIT
P = 0.0071, all the other pair-wise comparisons P < 0.0001). Taking NO-MERIT as a baseline, LOW-
MERIT led to a decrease in the experienced meritocratic unfairness in each round of -1.66 (LRT χ(1) =
11.76, P = 0.0006), HIGH-MERIT to a decrease of -2.36 (LRT χ(1) = 18.92, P < 0.0001).

We also analyzed the effect of meritocratic (dis)advantageous unfairness on contribution adjust-
ments between rounds, by performing a multilevel regression with subject and session as random ef-
fects. Our findings reveal that disadvantageous unfairness leads to decreases in treatments LOW-MERIT
−0.18∗∗∗(0.05), and NO-MERIT −0.25∗∗∗(0.03)). For HIGH-MERIT the decrease is consistent in sign
and size, but not statistically significant −0.39(0.21). However, if HIGH-MERIT and LOW-MERIT are
pooled together the effect turns out to be significant −0.25∗∗∗(0.03). Meritocratic disadvantageous fair-
ness can, therefore, originate significant differences between the theoretical equilibrium predictions and
experimentally observed behavior. Advantageous unfairness leads to increases under some but not under
all regimes. Full regression tables are available in the remainder of this Appendix.

Fairness regressions

Here we report the results of the mixed-effects regressions of meritocratic and distributional fairness
on contributions adjustments between rounds in part 1 and part 2 of the experiment. As we argued in
the main text, distributional fairness cannot easily be generalized to the case of assortative matching.
Here we show that a näive extension of the formula in (Fehr and Schmidt, 1999) fails to reproduce the
results predicted by theory. In fact, both within-group and across-groups distributional fairness under
assortativity often lead to the contradictory result that disadvantageous fairness implies an increase in
the contribution levels. However, by taking into account assortativity in the formula of distributional
fairness, we developed an extension that is able to reproduce the results predicted by the theory for all
treatments.
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Figure 7. Average contribution levels over time for different levels of variance in
experiments played online. Approximately four contribution regimes were found: (i) from 0 to 2
players’ contributions stabilize immediately; (ii) from 4 to 10 players’ contributions are increasing
tending towards the high-efficiency Nash equilibrium; (iii) from 20 to 50 players’ contributions are
declining towards the zero-efficiency equilibrium; (iv) for extremely high-levels from 1000 to Infinity, the
decline of players’ contributions is even steeper. The red line shows a fitted linear regressions on the
data excluding the first five rounds where players are still learning the dynamics of the game.
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Meritocratic fairness

In tables 1 and 2, meritocratic unfairness is used as a predictor. lag.merit.fair.dis and
lag.merit.fair.adv are respectively the amount of disadvantageous and advantageous meritocratic
unfairness experienced by a player in the previous round, measured according to the equations in Section
2 of the main text.

Table 1. Meritocratic fairness predicts contribution differential. (Part 1) The sign of the
regression coefficient is always consistent with theory predictions. HIGH-MERIT is significant if pooled
together with LOW-MERIT.

HIGH-MERIT LOW-MERIT HIGH-MERIT&LOW-MERIT NO-MERIT
(Intercept) 0.25 0.15 0.03 0.03

(0.16) (0.16) (0.19) (0.19)
lag.merit.fair.dis −0.39 −0.18∗∗∗ −0.25∗∗∗ −0.25∗∗∗

(0.21) (0.05) (0.03) (0.03)
lag.merit.fair.adv −0.91∗∗ 0.06 0.15∗∗∗ 0.15∗∗∗

(0.30) (0.06) (0.03) (0.03)
AIC 12314.36 12284.05 12359.50 12359.50
BIC 12347.56 12317.24 12392.70 12392.70
Log Likelihood -6151.18 -6136.02 -6173.75 -6173.75
Num. obs. 1872 1870 1872 1872
***p < 0.001, **p < 0.01, *p < 0.05

Table 2. Meritocratic fairness predicts contribution differential. (Part 2) The sign of the
regression coefficient is always consistent with theory predictions. HIGH-MERIT is significant if pooled
together with LOW-MERIT.

HIGH-MERIT LOW-MERIT HIGH-MERIT&LOW-MERIT NO-MERIT
(Intercept) 0.13 0.16 0.11 0.38∗

(0.16) (0.17) (0.11) (0.18)
lag.merit.fair.dis −0.45 −0.29∗∗∗ −0.29∗∗∗ −0.26∗∗∗

(0.28) (0.07) (0.06) (0.02)
lag.merit.fair.adv −0.57 0.00 −0.02 0.04

(0.32) (0.07) (0.07) (0.02)
AIC 12288.63 12419.05 24699.24 12123.03
BIC 12321.83 12452.25 24736.60 12156.23
Log Likelihood -6138.31 -6203.53 -12343.62 -6055.51
Num. obs. 1872 1871 3743 1872
***p < 0.001, **p < 0.01, *p < 0.05

Distributional fairness

The results of the regressions for distributional fairness are shown in tables 3, 4, 5 and 6. Based on the
original formula in Ref. (Fehr and Schmidt, 1999), we tried two different extensions of the notion of
distributional fairness for meritocratic environments. First, we computed distributional fairness for each
player only taking into account the other players within the group into which he/she was matched (Within-
group distributional fairness). The regressors in this case are called: lag.distr.fair.group.dis and
lag.distr.fair.group.adv. Then, we also computed distributional fairness across all players, regardless



MATERIALS AND METHODS 26

of the group they belonged to (Across-group distributional fairness). The regressors for across-group
distributional fairness are called: lag.distr.fair.dis and lag.distr.fair.adv.

Table 3. Within-group distributional fairness predicts contribution differential. (Part 1)
The sign of the regression coefficient is often inconsistent with theory predictions.

PERFECT-
MERIT

HIGH-
MERIT

LOW-
MERIT

HIGH-
MERIT &

LOW-
MERIT

NO-MERIT

(Intercept) −0.79∗∗∗ −1.39∗∗∗ −1.32∗∗∗ −1.39∗∗∗ 1.40∗∗

(0.23) (0.22) (0.21) (0.15) (0.45)
lag.distr.fair.group.dis −0.03 0.13∗∗ 0.01 0.06∗ −0.70∗∗∗

(0.04) (0.05) (0.05) (0.03) (0.04)
lag.distr.fair.group.adv 0.76∗∗∗ 0.99∗∗∗ 0.77∗∗∗ 0.88∗∗∗ 0.28∗∗∗

(0.04) (0.04) (0.04) (0.03) (0.04)

AIC 11682.40 11933.18 12025.27 23952.86 11968.23
BIC 11715.59 11966.38 12058.46 23990.22 12001.43
Log Likelihood -5835.20 -5960.59 -6006.64 -11970.43 -5978.12
Num. obs. 1872 1872 1870 3742 1872
***p < 0.001, **p < 0.01, *p < 0.05

Table 4. Within-group distributional fairness predicts contribution differential. (Part 2)
The sign of the regression coefficient is often inconsistent with theory predictions.

PERFECT-
MERIT

HIGH-
MERIT

LOW-
MERIT

HIGH-
MERIT &

LOW-
MERIT

NO-MERIT

(Intercept) −0.93∗∗∗ −1.54∗∗∗ −1.25∗∗∗ −1.43∗∗∗ 1.60∗∗∗

(0.25) (0.40) (0.23) (0.22) (0.38)
lag.distr.fair.group.dis −0.10∗ 0.05 −0.06 0.00 −0.61∗∗∗

(0.04) (0.04) (0.05) (0.03) (0.03)
lag.distr.fair.group.adv 0.88∗∗∗ 1.19∗∗∗ 0.86∗∗∗ 1.02∗∗∗ 0.15∗∗∗

(0.04) (0.04) (0.04) (0.03) (0.03)

AIC 11856.01 11799.36 12109.33 23935.12 11827.92
BIC 11889.21 11832.55 12142.53 23972.48 11861.12
Log Likelihood -5922.01 -5893.68 -6048.67 -11961.56 -5907.96
Num. obs. 1871 1872 1871 3743 1872
***p < 0.001, **p < 0.01, *p < 0.05
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Table 5. Across-group distributional fairness predicts contribution differential. (Part 1)
The sign of the regression coefficient is often inconsistent with theory predictions.

PERFECT-
MERIT

HIGH-
MERIT

LOW-
MERIT

HIGH-
MERIT &

LOW-
MERIT

NO-MERIT

(Intercept) −1.42∗∗∗ −2.40∗∗∗ −2.20∗∗∗ −2.23∗∗∗ 1.04∗

(0.26) (0.34) (0.34) (0.24) (0.40)
lag.distr.fair.dis 0.22∗∗∗ 0.39∗∗∗ 0.33∗∗∗ 0.35∗∗∗ −0.44∗∗∗

(0.03) (0.04) (0.04) (0.03) (0.05)
lag.distr.fair.adv 0.44∗∗∗ 0.59∗∗∗ 0.43∗∗∗ 0.48∗∗∗ 0.13∗

(0.08) (0.10) (0.08) (0.06) (0.05)

AIC 11934.03 12223.59 12225.86 24434.15 12277.90
BIC 11967.23 12256.79 12259.05 24471.51 12311.10
Log Likelihood -5961.02 -6105.80 -6106.93 -12211.07 -6132.95
Num. obs. 1872 1872 1870 3742 1872
***p < 0.001, **p < 0.01, *p < 0.05

Table 6. Across-group distributional fairness predicts contribution differential. (Part 2)
The sign of the regression coefficient is often inconsistent with theory predictions.

PERFECT-
MERIT

HIGH-
MERIT

LOW-
MERIT

HIGH-
MERIT &

LOW-
MERIT

NO-MERIT

(Intercept) −2.15∗∗∗ −1.98∗∗∗ −2.19∗∗∗ −2.01∗∗∗ 1.96∗∗∗

(0.30) (0.30) (0.35) (0.23) (0.48)
lag.distr.fair.dis 0.21∗∗∗ 0.29∗∗∗ 0.30∗∗∗ 0.29∗∗∗ −0.49∗∗∗

(0.03) (0.03) (0.04) (0.02) (0.04)
lag.distr.fair.adv 0.65∗∗∗ 0.54∗∗∗ 0.46∗∗∗ 0.48∗∗∗ −0.04

(0.09) (0.09) (0.09) (0.06) (0.04)

AIC 12162.64 12222.36 12374.95 24584.87 12068.03
BIC 12195.83 12255.56 12408.15 24622.23 12101.23
Log Likelihood -6075.32 -6105.18 -6181.48 -12286.43 -6028.02
Num. obs. 1871 1872 1871 3743 1872
***p < 0.001, **p < 0.01, *p < 0.05
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A.4 Additional inequality indexes

As stated in the main text, inequality decreases as meritocracy increases. In this section, we show that
our finding is robust to the type of inequality measurement chosen. Fig. 8 displays the payoff inequality
as measured by a number of different indexes commonly found in the literature of inequality studies
(Atkinson, 1970).

Figure 8. Battery of indexes measuring payoff inequality over the forty rounds for
perfect-, high-, low-, and no-meritocracy, respectively associated with the values of
σ2 = {0, 3, 20,∞}. Inequality decreases with meritocracy for a large number of distinct inequality
indexes. Error bars represent the 95%-confidence intervals

A.5 Implications

Our model implies that situations consistent with our model assumptions would benefit from higher de-
grees of meritocracy, both in terms of efficiency and in terms of equality. This positive result relies on
several features of the underlying model. It is an avenue for future research to consider these general-
izations. First, our model describes an ex ante homogeneous population. Differences in payoff are driven
by differences in actions and by neutral stochastic elements alone. Heterogeneity in priority given by the
matching mechanism and/or heterogeneities in the individual rates of return could influence the results.
This is true for any public-goods game including the standard models with random interactions (e.g.
(Buckley and Croson, 2006; Fischbacher, Schudy, and Teyssier, 2014)). However, it should be noted that
meritocracy may actually mitigate the associated inequality problems. Second, related to heterogeneity,
our model allows for no wealth creation, that is, individuals receive a new budget every period and the
size of this budget is fixed and constant over time. Players cannot accumulate wealth. The role of wealth
creation in public-goods games has received some attention and has been shown to lead to the emergence
of different classes of contributions and income (e.g. (Tamai, 2010), see also (King and Rebelo, 1990;
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Rebelo, 1991)). Under assortative matching, wealth creation can be problematic as it allows rich players
to block out poor players. Third, group sizes are fixed. Alternative models have been proposed (e.g.
(Cinyabuguma, Page, and Putterman, 2005; Charness and Yang, 2008; Ehrhart and Keser, 1999; Ahn,
Isaac, and Salmon, 2008; Coricelli, Fehr, and Fellner, 2004; Page, Putterman, and Unel, 2005; Brekke,
Nyborg, and Rege, 2007; Brekke et al., 2011)).
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