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ABSTRACT 

 

 

PERFORMANCE ASSESSMENT OF MULTI-WALLED CARBON NANOTUBE USING 

ADVANCED POLYNOMIAL CHAOS SCHEMES 

 

With the continuous miniaturization in the latest VLSI technologies, manufacturing 

uncertainties at nanoscale processes and operations are unpredictable at chip level, packaging 

level and at board levels of integrated systems. To overcome such issues, simulation solvers to 

model forward propagation of uncertainties or variations in random processes at device level 

to the network response are required. Polynomial Chaos Expansion (PCE) of the random 

variables is the most common technique to model the unpredictability in the systems. Existing 

methods for uncertainty quantification have a major drawback that as the number of random 

variables in a system increases, its computational cost increases in a polynomial fashion. 

In order to alleviate the poor scalability of standard PC approaches, predictor-corrector 

polynomial chaos scheme and hyperbolic polynomial chaos expansion (HPCE) scheme are 

being proposed in this thesis. In predictor-corrector polynomial scheme, low-fidelity meta-

model is generated using Equivalent Single Conductor (ESC) approximation model and then 

its accuracy is enhanced using low order multi-conductor circuit (MCC) model called as 

corrector model. In HPCE, sparser polynomial expansion is generated based on hyperbolic 

criterion. These schemes result into immense reduction in CPU cost and speed. This thesis 

presents the novel approach to quantify the uncertainties in multi-walled carbon nanotubes 

using these schemes whose accuracy and validation are shown using numerical examples. 
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CHAPTER 1: INTRODUCTION 

 

 

In the world of miniaturization and scaling technology, hundreds of cores are embedded on a single 

chip. Enhanced performance and better power consumption are the major consideration for 

designing the chip [1]. Nowadays, microelectronic circuits are popular and are used in many 

pursuits for both personal as well as professional use like communication, entertainment, spatial 

exploration, and many other examples. The rapid advancement in high-speed integrated circuits 

(ICs) is supported by the technological innovations enabling integration of various sub-devices on 

a single chip. However, with the development in the integration level of ICs, the complexity of 

these circuits will increase resulting in an exponential growth of the fabrication cost and 

quantifying uncertainties [3]. Manufacturing uncertainties at nanoscale processes and operations 

are unpredictable at chip level, packaging level and at board levels of integrated systems. These 

uncertainties can arise in any circuit due to fabrication process variations, unpredictable 

environmental factors like temperature, human error and many more and may result into the 

unpredictable behaviour of the circuits. To overcome such issues, simulation solvers to model 

forward propagation of uncertainties or variations in random processes at device level to the 

network response are required. At sub-nano-technology scaling, numerous challenges like CPU 

time, speed, accuracy and others are raised which motivates new research area. This thesis work 

targets to some of the stated challenges.  

1.1 Problem Statement 

With continuous miniaturization of integrated circuits to sub-nano scale system and enhancement 

in the packaging density, uncertainties in random processes have increased which results in 

unpredictable behaviour in performance of the high-speed circuits. Therefore, advanced computer-
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aided design (CAD) tools are in great demand as they are flexible enough to predict the impact of 

parametric uncertainty in any of the network responses. Traditionally, this unpredictability has 

been modelled using Monte Carlo (MC) method. In MC method, the large number of inputs are 

being generated or created based on the probability density functions (PDF) of the random 

variables and then every input is simulated through some circuit solver like SPICE [2]- [7]. The 

generated results of the simulations are collected and statistical information about the circuit's 

response is obtained. However, despite being a simple approach this method has a slow 

convergence rate i.e. it requires a large number of simulations to attain accuracy in statistical 

results. Therefore, for large networks, MC is computationally infeasible and expensive.    

Now-a-days, techniques based on generalized Polynomial Chaos (gPC) are robust and model 

uncertainty in the system response as orthogonal polynomial basis functions of the input random 

variables expansion. The polynomial coefficients from PC expansion are now called as system’s 

unknowns which are then calculated and evaluated using intrusive approach or non-intrusive 

approach.  

In intrusive approaches, the Stochastic Galerkin (SG) approach is often used because it generates 

the PC coefficients which are used to provide statistics with better accuracy [8]- [22]. However, 

the computational cost for creating coupled deterministic network model increases exponentially 

with the increase in number of random variables in the network. Thus, the applicability of the SG 

approach is limited to the problems containing only low-dimensional random spaces. 

In non-intrusive approaches, most widely used approaches are pseudo-spectral collocation method 

[24], the linear regression, [23], [26], [27] and non-intrusive stochastic collocation approach [25]. 
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Intrusive methods are more accurate for a fixed cost, however, non-intrusive approaches can use 

commercial circuit-solvers like SPICE. Since, the meta-models (model of a model or guessed of 

the exact model through simulation) of the original systems are created in non-intrusive methods, 

any value of the random variable situated within the random space can be probed into the PC 

expansion equation and statistical outputs of the circuit can be generated, with negligible loss of 

accuracy. Also, the individual simulation can be parallelized which can be an added advantage. 

Among non-intrusive methods, linear regression approach is widely used [28], [29], [33]. This 

approach analyse the PC expansion of the circuit responses at a set of over-sampled multi-

dimensional nodes situated within the random space, which leads to the over determined set of 

linear algebraic equations which can be solved in a least-square sense to evaluate directly the PC 

coefficients of the responses [33]. Generally, the multi-dimensional regression nodes are selected 

from the grid of the tensor product of one dimensional (1D) quadrature nodes [28], [29]. As the 

number of nodes in the tensor product grid increases in an exponential manner with the increase 

in the number of random dimensions, so a subset of the nodes, also known as design of experiments 

(DoE), can be selected. In the work of [30], it was demonstrated that selecting the DoE blindly can 

result in an inaccurate evaluation of the PC coefficients. But, the current literature on linear 

regression based PC analysis of EM and circuit problems have not identified any specific criterion 

for selecting the best set of DoE [27], [28]. Lately, a stochastic testing approach has developed a 

reliable technique to choose possible DoE in which the number of DoE is equal to the number of 

unknown PC coefficients [31], [32]. However, this technique does not choose the DoE using any 

optimal criterion and hence does not assure the maximum accuracy of the results. 

As the number of random variables increases, conventional or standard PC methods become 

computationally more expensive. In particular to multi-walled carbon nanotube (MWCNT), as the 
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number of conducting shells are increased, number of deterministic simulations increases to best 

fit the coefficients. Thus, CPU cost for the deterministic simulation increases. To overcome this 

problem, in the work of [36] an ESC model (equivalent Single Conductor) of MWCNT network 

is being used. Despite being numerically efficient, this method came with the cost of accuracy of 

its created meta-model.  

1.2 Goals  

Advancements in VLSI technology results in the evolution of complex high-speed integrated 

circuits in the nanoscale regime. Due to the reduction in area and size, increased clock frequency, 

interconnect plays a significant role in defining the overall performance of the chip. In the 

prevailing situation, delay in interconnect dominates over the delay in the gate. The traditional 

material for interconnects at the global level like Al or Cu is sensitive to electro migration due to 

the high current density which extensively affects the fidelity of high-speed circuits. To avoid or 

overcome such problems, an alternative solution has been found by the researchers. An alternative 

material for interconnects can be Carbon Nanotubes (CNT) for the current nanoscale technologies 

[34].  

Modelling of a carbon nanotube interconnect is fundamentally dependent on its parameters like 

diameter, length, height, metallic and semiconducting properties and many more. The most 

versatile numerical technique for the modelling, calculation, and verification of the performance 

of high-speed interconnects in the presence of manufacturing as well as fabrication variabilities is 

Polynomial Chaos approach. Recently, these have been applied for the performance assessment of 

multi-walled carbon nanotube (MWCNT) interconnects to approximate the variability in the 

network responses by using linear combination of polynomial basis functions. The coefficients of 

the linear combination form the new unknowns of the network. The linear combination behaves 
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as a closed-form meta-model of the network after the coefficients have been evaluated [35]. Then 

it can be used to obtain the statistical information for signal integrity assessment of the network.  

In MWCNTs as the number of shells increases, each SPICE simulation become computationally 

very expensive. As discussed before, in gPC, as the number of dimensions’ increases, computation 

is very expensive.  

This thesis presents a new technique in order to construct more accurate PC meta-models for 

MWCNT like predictor-corrector polynomial chaos scheme and hyperbolic polynomial chaos 

expansion (HPCE) scheme. In predictor-corrector polynomial scheme, low-fidelity meta-model is 

generated using Equivalent Single Conductor (ESC) approximation model and then its accuracy is 

enhanced using low order multi-conductor circuit (MCC) model called as corrector model. The 

sparse PC metamodel is obtained from the corrector function which is generated using fewer 

deterministic solutions of the rigorous MCC model. Thus, the total number of deterministic 

MWCNT system simulations needed is the summation of a large number of compact ESC model 

simulations (for constructing the predictor) and relatively small number of the rigorous MCC 

model simulations (for constructing the corrector). As a result, CPU cost of this sum of 

deterministic system simulations is considerably smaller than that required compared to directly 

construct a standard PC metamodel from MCC simulations only [36]. In HPCE, sparser 

polynomial expansion is generated based on hyperbolic criterion. These schemes result into the 

same accuracy as in standard PC meta-model but with immense reduction in CPU cost and speed. 

1.3 Organization of The Thesis 

Most of the state of the art PC approaches are reviewed in this thesis and does not require any 

previous knowledge about the topic. Exploited techniques are explained in details while novel 
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ideas are supported using numerical examples and their discussions. The rest of the thesis is 

organized as follows:  

Chapter 2 provides a review of basics of the generalized PC (gPC) theory and some common 

nonintrusive uncertainty quantification approaches like stochastic collocation method, stochastic 

Galerkin and the linear regression approach. And finally, it concludes with an overview of sparse 

polynomial chaos schemes. A discussion of major pros and cons of these approaches are also 

provided in this chapter. The main aim of this chapter is to familiarize the reader with few existing 

methods which are used to address the complications of uncertainty quantification. 

Chapter 3 provides the details of one of the novel techniques used in the thesis, i.e. Predictor-

Corrector Polynomial Chaos method. The work is compared to the results generated using the 

Polynomial Chaos technique to show the accuracy of the proposed technique. 

Chapter 4 is dedicated to improvements in the CPU time costs and speed compared to Predictor-

Corrector method. For this, sparser polynomial expansion is generated based on hyperbolic 

criterion rather than based on linear criterion. This chapter includes the details of the method 

Hyperbolic Polynomial Chaos technique for uncertainty quantification. The proposed scheme is 

mainly compared with the standard PC technique. The validation of the contributions is done with 

the help of numerical examples. 
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CHAPTER 2: EXISTING METHODS OF UNCERTAINTY QUANTIFICATION 

 

 

This chapter explains some of the existing methods of uncertainty quantification in detail. Firstly, 

an overview of Monte Carlo method is discussed with some of its drawbacks. Next, review of the 

basics of the generalized PC (gPC) theory is presented and then some common nonintrusive 

uncertainty quantification approaches like the stochastic collocation method, stochastic Galerkin 

and the linear regression approach are discussed. Linear regression technique is used extensively 

in solving the problems in this thesis so we discuss this in much detail.  And finally, we conclude 

with an overview of sparse polynomial chaos schemes. Major pros and cons of these approaches 

are also discussed in this chapter. These techniques assist as the basis for coming chapters in this 

thesis. 

2.1 Stochastic Modified Nodal Analysis 

A general non-linear network consists of distributed and lumped circuit elements characterized by 

the modified nodal analysis (MNA) equations. After random variables λ are introduced to the 

network, the stochastic variant of the MNA equation would be [16], [22], [27]: 

G(λ) Z(t , λ) + C(λ)𝑑𝑍(𝑡 ,λ)𝑑𝑡  + F(Z(t, λ)) + ∑ (𝑁𝑖=1  TiYi(t, λ)Ti 
T )*Z(t, λ) = B(t) 

where, λ are the random variables, G matrix contains the stamp of all memoryless circuit elements, 

C matrix contains the stamp of all memory lumped circuit elements, Z is the vector of stochastic 

current/voltage responses, F has the stamp of all the non-linear circuit elements, Ti represents the 

selector matrix mapping the vector of port currents ii (t) for the ith distributed network into nodal 

space of the circuit, Yi represents the time-domain 𝑌-parameter macro model of 𝑖 𝑡ℎ distributed 

2.1 
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network, 𝐵 denotes the input vector of independent current and voltage sources, ‘∗’ signifies the 

transient or temporary convolution performed in a recursive manner in SPICE. 

Expansion of stochastic quantities in equation 2.1 is done using multi-variate orthogonal 

polynomial bases as following: 

             G(λ) = ∑ 𝐺𝑃𝑘=0 k φk(λ) , C(λ) = ∑ 𝐶𝑃𝑘=0 k φk(λ),  

           Z(t, λ) = ∑ 𝑍𝑃𝑘=0 k(t) φk(λ), Yi(t, λ) = 𝑌ik(t) φk(λ) 

The matrices Gk, Ck and Yk of equation 2.2 can be obtained from the knowledge of G(λ), C(λ) and 

Y(λ) respectively. The expansion of equation 2.2 is then replaced in equation 2.1 thereby 

transforming the stochastic equations of 2.1 into a set of augmented deterministic coupled 

equations as [16]: 

         Ga Za(t)+ Ca 
𝑑𝑍𝑎(𝑡)𝑑𝑡  + Fa(Za(t)) + ∑ (𝑁𝑖=1  TiaYia(t)Tia 

T )*Za(t) = Ba(t)  

where, Ga is the augmented matrix constructed using Gk block matrix, Ca is the augmented matrix 

constructed using Ck block matrix, Tia denotes diagonal matrix composed of Ti , Yia(t) is 

augmented time domain macro model of ith distributed network constructed from Yik block matrix, 

Ba = [B,0, …. , 0]T, Za = [Z0 , Z1 , …… , ZP]T and Fa(.) is augmented vector of non-linear circuit 

elements. 

The overall MNA equations of 2.3 express an augmented deterministic network which is solved 

within a SPICE environment. Once the PC coefficients Zk(t) are evaluated, the statistical moments 

of the system can be easily obtained by the PC expansion of equation 2.2 

 

2.2 Monte Carlo (MC) 

2.2 

2.3 
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Monte Carlo techniques were traditionally used to quantify uncertainty in high-speed circuit 

systems. In this method, pseudo-random multi-dimensional samples are collected in large number 

based on the probability density function of the input parameters [2]. The simulations of the 

network at each of these samples are done and the group of the output response is generated. Any 

required statistical information can be estimated from these responses. If 'N' observations of a 

quantity Z represented by { z1, z2 , z3,… zN }are achieved , the mean value of Z estimated by MC 

method as the expected value of the set {𝑧𝑖}ⅈ=1𝑁  is : 

μZ   = 
1𝑁 ∑ 𝑧𝑁𝑖=0 i 

The variance of Z is given by: 

VarZ = 
1𝑁 ∑ (𝑧𝑁𝑖=1 i – μZ )2  

The major disadvantage of MC method is that number of required simulations for convergence are 

very large ~ O( 
1√𝑁 ). Therefore, in a network if the time taken for each simulation is very large 

then computational cost becomes expensive. 

2.3 General Polynomial Chaos (gPC)  

The orthogonal polynomials concept has been into existence for a long time. Polynomial Chaos 

(PC) Theory was initially presented for Hemite orthogonal polynomials only and was known as 

‘Hermite-Chaos’ or also Wiener-Chaos expansion. However, due to the requirement for 

determining differential equations in the presence of uncertainty for extensive engineering 

disciplines, the polynomial chaos was extended to incorporate other orthogonal polynomials and 

then it was renamed as generalized Polynomial Chaos (gPC) theory.  

2.5 

2.4 



10 

 

Suppose, a network or a system has uncertainties and that input uncertainty is represented by a 

random variable, λ defined in the probability space Ω. The uncertainty in the network response 

Z(t,λ) is modelled using gPC theory [37]; provided the variables have finite second-order moments 

and is expressed as an expansion of orthogonal polynomials and their coefficients. 

Z(t, λ) = ∑  𝑐∞𝑘=0 k (t) φk (λ)  

where, ck is the PC coefficient (scalar quantity) at kth time point and φk are the bases with respect 

to PDF of input random variable in the expansion of orthogonal polynomial. The truncated 

expansion is expressed as: 

Z(t, λ) = ∑  𝑐𝑚𝑘=0 k (t) φk (λ)  

Where m is the order of polynomial expansion and (m+1) terms are present in the expansion. The 

polynomials φk (λ) are orthogonal to PDF of random input variable λ. 

< φi (λ) φj (λ) > =  ∫ φ.Ω i (λ) φj (λ) ρ(λ) dλ =  αi
2 δij 

Where < > symbolizes inner product, Ω represents the sample space, ρ is the PDF of random 

variable λ, δij is the delta function and αi
2  is scalar constant. For i ≠ j inner product of the bases is 

always zero. Here, normalization is done by the factor αi   and hence they are known as orthonormal 

polynomials.  

Table shown below shows the Weiner-Askey polynomials which are chosen according to the 

probability density function of the random variables.  

 

 

 

 

2.6 

2.7 

2.8 
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Table 2.1: Weiner-Askey Polynomials and their Distributions 

Distribution of  λ Orthogonal Polynomials Support Range 

Gaussian Hermite (-∞,+∞) 

Uniform Legendre [-1, 1] 

Beta Jacobi [-1, 1] 

Gamma Laguerre [0, +∞) 
 

Weiner-Askey scheme [37] is the way of deciding which basis gives better convergence rate for 

certain distributions. Some common distributions with their corresponding Wiener-Askey chaos 

polynomials are shown, however, orthogonal polynomials can be obtained from any random 

distribution.  

2.3.1 Statistics calculation using PC coefficients 

Main aim of the thesis is to find the statistical moments (mean and standard deviation) of the 

systems using PC metamodels and these statistical moments are obtained by integration over 

random space and placing PC expansions in the integration formulae.  

Probability Density Function (PDF) and other higher order statistics can be acquired from the 

evaluated PC metamodel using an extensive number of MC samples. 

2.3.1.1 Calculation of arithmetic mean of the outputs 

Expected value or the mean value of the response is the first order statistical moment. Mean is that 

central value of the network response which has random outputs spread around it. For output Z(λ), 

expected value is given as: 

E(Z(λ))  =  ∫ Z .Ω (λ) ρ(λ) dλ  2.9 
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Replacing Z(t, λ) = ∑  𝑐𝑃𝑘=0 k (t) φk (λ) in the above equation, we get: 

E(Z(λ))  =  ∑  𝑃𝑘=0 ∫  .Ω ck   φ0 (λ) φk (λ) ρ(λ) dλ 

It should be noted that φ0 (λ) is 1 for all orthonormal polynomials and it is in the above equation 

to make further derivation simpler. Now, above equation can be written as: 

E(Z(λ))  =  ∑  𝑃𝑘=0 ∫  .Ω ck   < φ0 (λ), φk (λ) > = c0   

In above equation 2.20, when k ≠ 0 then all the expansion terms are zero. So, mean of the output 

is denoted by zeroth order PC coefficient. 

  2.3.1.2 Calculation of standard deviation and variance of the outputs 

Variance (σ2) is the 2nd order statistical moment which shows the deviation from the mean value 

of the response. 

Mathematically, it can be expressed as: 

Var (Z(λ)) =   E[(Z(λ) – E(Z(λ)))2] 

          =   ∫  .Ω ( ∑  𝑃𝑘=0  ck φk (λ) – c0 φ0 (λ))2 ρ(λ) dλ 

          =  ∑  𝑃𝑘=0 ∑  𝑃𝑗=0  ck cj  ∫  .Ω  φk (λ) φj (λ) ρ(λ) dλ – c0
2   

           = ∑  𝑃𝑘=0  ck
2 – c0

2   

           = ∑  𝑃𝑘=1  ck
2 

In all the equations of 2.12, RHS gives all the possible combination of φi φj . However, the inner 

product is non-zero when k=j. As a result, variance is the summation of squares of all the 

coefficients except the first term. 

2.10 

2.12 

2.11 
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Standard deviation is also one of the most important statistical parameter and is denoted by σ. 

Standard deviation is calculated by square root of variance and is given as: 

σ =  [ ∑  𝑃𝑘=1  ck
2 ]1/2   

Standard deviation has the same order as of mean and therefore is more favourable than variance. 

In stochastic systems, most of the results are located in +/- 3σ of the mean.  

2.3.1.3 Probability density function (PDF) and other higher order moments 

Higher-order statistical moments give more information about the random behaviour of the output 

of the system.  

General formula for Mth order moment is expressed as [4]: 

μM (Z(λ)) = E (Z(λ) - E (Z(λ))) M 

           = ∫  .Ω (Z(λ) - E (Z(λ))) M  ρ(λ) dλ  

Skewness is the third order moment which measures the asymmetry of probability distribution of 

output about its mean.  

Figure 2.1 below is taken from [38] and it shows the asymmetry in distributions i.e. positive and 

negative skew: 

2.13 
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Figure2.1: Skew Illustration 

Considering the two distributions in the above figure, they taper differently (known as tail) and 

one can observe that response distribution has positive, negative or no skew.  

Kurtosis is the fourth order moment and it provides the information about the shape of the tail of 

the response distribution [39]. By producing a large number of Monte Carlo samples, the higher-

order moment can be computed based on the distribution of the input. It is not needed to simulate 

the network at every sample points as the PC metamodel is known already. The PC metamodel is 

probed at all the samples and the values of the response Z(λ) is replaced in equation 2.14 to readily 

get any of the higher-order statistical moment. 

Probability Density Function or PDF holds the information of all the other statistical moments 

discussed, therefore it is also one of the most important moments. It is also known as zeroth order 

moment. To obtain PDF from a PC expansion, one has to begin with an extensive and arbitrary set 

of MC samples and then probe the PC metamodel to create the responses at every sample node. 

After that, normalized histogram of all the data is generated to get the PDF of the response at all 

given time points. Conversely, one can achieve network simulations at each of those sample nodes 
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to get the responses; although it has to be noted that running a large number of simulations may 

need an ample amount of time, mainly when single simulation itself takes a while to finish. 

2.3.2 One dimensional orthonormal polynomials 

Standard normal distribution N(0,1) has a PDF ρ(λ) which is given as: 

ρ(λ) = 
1√2𝜋 exp( λ2 /2)  

Now, by using equation, it can be proved that Hermite polynomials are orthogonal w.r.t 

distribution [3]: 

Φk (λ) = (-1)k 𝑒λ22  
𝑑𝑘𝑑λ𝑘 𝑒−λ22    

Recursively, it can be written as:  

Φk+1 (λ) = λ Φk (λ) - k Φk-1 (λ) 
Where, Φ1 (λ)= λ, Φ0 (λ)= 1 and k>1. Every polynomial here is normalized by αi

2 factor and 

it is given as: 

αi
2 = < Φi (λ) , Φi (λ) > = i!         

Uniform distribution U(-1,1) is given as: 

ρ(λ) = {0.5,   − 1 ≤  λ ≤ 1  1,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           
Similarly, by using the above equation 2.8, it can be proved that Legendre polynomials are 

orthogonal w.r.t distribution [3]: They are generated analytically as: 

Φi (λ)= 
1 k! 2𝑘  𝑑𝑘𝑑λ𝑘  (λ2 - 1)k       

2.15b 
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Recursively, it can be written as: 

Φk +1 (λ) = 
2𝑘+1𝑘+1   λ Φk (λ) - 𝑘𝑘+1  Φk-1 (λ)  

Here, Φ1 = λ, Φ0 = 1 and k > 1. Every polynomial here is normalized by αi
2 factor and it is 

given as: 

αi
2 = < Φi (λ) , Φi (λ) > = 

12𝑖+1    

First 6 univariate orthonormal Legendre polynomials and Hermite polynomials are 

demonstrated below: 

Table 2.2: Starting 6 Univariate Orthonormal Legendre and Hermite Polynomials 

Bases Legendre Polynomial Hermite Polynomial Φ0 (λ) 1 1 Φ1 (λ) √3 λ λ Φ2 (λ) √5 (
32 λ2 - 

12 ) (λ2 – 1)/ √2 Φ3 (λ) √7 (
52 λ3 - 

32 λ) (λ3 – 3 λ)/ √6 Φ4 (λ) 3 (
358  λ4 - 

308  λ2 + 
38 ) (λ4 – 6 λ2 + 3)/ 2√6 Φ5 (λ) √7 (638  λ5 - 

708  λ3 + 
158  λ) (λ5 – 10 λ3 + 15 λ)/ 2√30 

 

2.3.3 Multi-dimensional orthonormal polynomials generation 

In real uncertainty quantification problems, there are several random variables so to analyse them, 

multi-dimensional polynomials are to be considered.  

Now, λ will change to λ = [λ1, λ2, λ3 …… λn]T, which signifies n mutually uncorrelated random 

variables. It can also be written as: 

2.20 

2.21 
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Z(t,λ) ≈ ∑ 𝑐𝑃+1𝑖=0 i(t) Φi (λ)  

Here, Φi (λ) signifies multi-dimensional orthonormal polynomials, P+1 is the number of 

polynomial bases and is given by: 

P+1 = (𝑚+𝑛𝑚 ) = 
(m+n)! m!n!   

Where, m is the order or expansion degree of each random variable and n is the number of random 

variables. PDF ρ(λ) now is joint PDF of all the random variables and the random space Ω converts 

to multi-dimensional random space. Now, for multi-D orthonormal polynomial bases we have: 

 

Figure 2.2: Graphical representation of the scheme for selecting multivariate polynomials. Here 
n=2, m=3 
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In this thesis, αi
2 = 1 since normalization is done for univariate polynomials. Multi-variate 

polynomials are chosen from the tensor product of univariate polynomials.  

< φi (λ) , φj (λ) > =  ∫ φ.Ω i (λ) φj (λ) ρ(λ) dλ =  δij  

Now each polynomial can be given as: 

φd (λ) = ∏ φ𝑛𝑗=1 dj (λj)  

It should be noted that φdj can be from different types. The standard approach to determine dj 

indices of polynomials is [3]: 

d1 +  d2 + d3 + ….+ dn  ≤ m  

The graphical illustration of this approach for m=3 and n=2 is shown above in the figure 2.1. Its 

expansion for general ‘n’ RVs where polynomials are situated at a positive coordinates and are 

constrained by n-D surface is given as ∑𝑑i = m 

Illustration of 2-D fourth order PC expansion is shown below: 

 

Figure2.3: Illustration of 2-D fourth order PC Expansion 
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In the above Figure 2.3, the bivariate basis is shown and the total degree or order of these 

polynomials of the above approach in each row is consistent, and is incremented row by row [4]. 

In practice, the series is truncated by using a finite number of (P + 1) rows into consideration, and 

the total number of terms in the expansion Z(t, λ) = ∑  𝑐𝑃𝑘=0 k (t) φk (λ) for ‘n’ number of random 

dimensions.  

Therefore, in the table 2.3 below, first ten bivariate bases and total degree is shown and the degree 

is incremented row by row as explained above.  

Table 2.3: First Ten 2-D Orthonormal Legendre and Hermite Polynomials 

Bases Legendre Polynomials Hermite Polynomials Total Degree 

Φ0 (λ) 1 1 0 

Φ1 (λ) √3λ1 λ1 1 

Φ2 (λ) √3λ2 λ2 1 

Φ3 (λ) √5 (
32 λ12 - 

12 ) (λ1
2-1) /√2 2 

Φ4 (λ) 3* λ1 * λ2 λ1 * λ2 2 

Φ5 (λ) √5 (
32 λ22 - 

12 ) (λ2
2-1) /√2 2 

Φ6 (λ) √7 (52 λ13 - 
32 λ1) (λ1

3-3λ1) /√6 3 

Φ7 (λ) √15 * λ2 * (
32 λ12 - 

12 ) λ2*(λ1
2-1) /√2 3 

Φ8 (λ) √15 * λ1 * (
32 λ22 - 

12 ) λ1*(λ2
2-1) /√2 3 

Φ9 (λ) √7 (52 λ23  - 
32 λ2) (λ2

3-3λ2) /√6 3 
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2.4 Non-Intrusive and Intrusive PC Methods 

PC coefficients are the key to perform uncertainty quantification and there are numerous ways to 

find these coefficients. They are mainly constituting of non-intrusive and intrusive methods which 

are discussed in details below.  

2.4.1 Intrusive methods 

The methods which require coding and cannot be done in a black box fashion is known as Intrusive 

methods [8]- [22]. Different circuit solver is typically needed for the development of these methods 

and they manifest a higher accuracy in contrast to the non-intrusive methods. One of the widely 

used intrusive approaches is Stochastic Galerkin (SG) projection which generates augmented 

deterministic network, based on the equations governing the system. Then by one simulation of 

this system, PC coefficients can be determined. As the accuracy of the SG method is higher, 

therefore, it uses low order expansion. However, computation time and cost for this method scale 

exponentially when the number of random variables is increased since P+1 terms are augmented. 

Besides, non-linear elements further add to the augmentation as they are modelled using lumped 

dependent sources [15]. Hence, the SG approach is generally good for small networks with less 

number of random variables. 

The insufficiencies of the SG approach are discussed by the intrusive Stochastic Testing (ST) 

formulation [31], [32]. The ST approach determines the coupled system of equations of the 

augmented network, but in a decoupled way at every time point. These coupled equations are 

determined at P+1 sampling nodes, however, the selection of nodes affects its accuracy. Bad choice 

of nodes gives ill-conditioned matrices, which results in an inaccurate solution or solution may be 

impossible to obtain. So, to generate a better set of sampling nodes, a node-selection algorithm is 
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used. The first step is to create a tensor product of (m + 1) n nodes according to the Wiener-Askey 

polynomial scheme. From this tensor product, the 1st node is selected which has the highest 

quadrature-weight amongst all the other nodes. Similarly, the other P nodes are chosen based on 

their quadrature weights but with an added requirement that the node needs to have a large 

orthogonal component to the previously created set of nodes. Since the basis of evaluation is 

quadrature weights, so this algorithm does not assure the best selection of nodes, particularly for 

high dimensional problems.  

Furthermore, ST approach can't make use of commercial solvers like SPICE as it is an intrusive 

formulation. The major advantage of ST approach over SG approach is that it can be solved in a 

decoupled fashion and hence, P+1 simulations required which can be accomplished in a 

parallelized manner. As ST approach is intrusive and intrusive coding is not applied in all of the 

cases so this problem obstructs the application of ST for sophisticated systems and tries to address 

the concern of being intrusive may not be precise because of the selection criteria of the nodes.  

2.4.2 Non-intrusive methods 

Non-Intrusive methods doesn't require any necessity to design simulation tool, changes in the 

circuit or even understanding of any internal equations governing the network. Major benefit of 

non-intrusive approach over intrusive approach is that the present circuit-solvers (like SPICE etc.) 

can be used to obtain the output at the selected node.  

2.4.2.1 Pseudo spectral polynomial chaos approach 

In this method, the PC expansion of Z(λ) ≈  ∑ 𝑐𝑃+1𝑖=0 i Φi (λ) is directly utilized to the response of 

the system and using numerical integration techniques like Gaussian quadrature, PC coefficients 

are found which are then used to find any statistical information. Approximation of integral of 
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function G(λ) as a weighted sum of function w(λ) is done at already determined sample points 

using Gaussian quadrature. 

∫  .Ω G(λ) ρ(λ) dλ  =  ∑  𝑄𝑖=1 G(λi) w(λi)  

where, Q is number of sample nodes, in λi , superscript i is the ith node in space and is given as λi 

= [λ1
(i) , λ2

(i) , λ3
(i) , ……….. λn

(i)] , w(λi) denotes quadrature weight to λi node, G(λi) denotes 

function response at λi.  

λi are the roots of the polynomials obtained as per Wiener-Askey scheme for 1-D problems. 

Consequently, there are m+1 one dimensional roots generated where m is the maximum degree or 

order of expansion. Q number of nodes are obtained for multi-dimensional problems by forming 

the tensor product of all the one-dimensional nodes. Hence 𝑄= (𝑚+1) n. Likewise, 𝑤(𝜆i) is the 

multiplication of all the weights comparing to those one-dimensional nodes which are part of 𝜆i. 

From the roots of polynomials, one-dimensional nodes can be obtained.  

Another way of obtaining nodes and their corresponding weights is by solving an eigenvalue 

problem which is called the Golub-Welch algorithm [40]. The technique to obtain nodes and 

weights for Hermite and Legendre polynomials using this algorithm is shown below. 

For Hermite polynomials, A-matrix is constructed as: 

A(i,j)(q+1)*(q+1) = {√𝑖         𝑗 = 𝑖 − 1√𝑗         𝑖 = 𝑗 − 1 0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

When Eigen-value decomposition is done on matrix; A = W∧WT , then the nodes will coincide 

with the Eigen values of matrix A i.e. 𝜆i =  ∧ (𝑖, 𝑖) and their corresponding weights are the 

squares of 1st element of every Eigen-vector i.e. w(𝜆i) = w1i
2 . Here W denotes unitary matrix. 

2.27 
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For Legendre polynomials, A-matrix is constructed as following: 

A(i,j)(q+1)*(q+1) = {  
  0.5√1− 1(2(𝑗−1))2          , 𝑗 = 𝑖 − 1

0.5√1− 1(2(𝑖−1))2          , 𝑖 = 𝑗 − 10                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

In Legendre polynomials, alike Hermite polynomials, when Eigen-value decomposition is done 

on matrix; A = W∧WT , then the nodes will coincide with the Eigen values of matrix A which is 

given as 𝜆i =  ∧ (𝑖, 𝑖) and their corresponding weights are the squares of 1st element of every 

Eigen-vector i.e. w(𝜆i) = w1i2 . Using orthogonal projection method, unknown PC coefficients ck 

are calculated which also has inner product calculation of a function and a polynomial. 

ck = < Z , φk > =  ∫ 𝑍.Ω (t, λ) φk(λ) ρ(λ) dλ =  ∑  𝑄𝑘=1 Z(t, λi) φk(λi) w(λi)  

The pseudo-spectral method is beneficial for determining problems having a lower number of 

dimensions since the number of simulations needed is (m+1) n. For higher dimensional problems, 

total terms in PC expansion and finally, the total number of simulations needed to compute the 

coefficients ascends in an exponential fashion and therefore, this approach doesn't contribute 

towards any notable advantages over MC method for high-dimensional problems. 

2.4.2.2 Standard linear regression method 

Linear regression is a linear approach which is used to fit the model to a collected data. It is mainly 

used for predictive analysis of the systems.  

Figure 2.4 below shows how the data is fitted to a model using this approach. 

2.29 
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Figure 2.4: Demonstration of data-fitting to a model  

 

The network response can be modelled using Polynomial Chaos approach and is given by: 

 Z(t, λ) = ∑  𝑐𝑀𝑘=0 k (t) φk (λ)  

Where, M = 2(P+1) represents the set of over-sampled nodes within the random space and for M 

nodes, this equation in matrix form can be expressed as: 

Ac + Ԑ = B  

 

Here,  

A = [φ0(λ(1)) ⋯ φ𝑁(λ(1))⋮ ⋱ ⋮φ0(λ(𝑀)) ⋯ φ𝑁(λ(𝑀))]  
                  c = [𝑐0⋮𝑐𝑁] ; B = [𝐵(1)⋮𝐵(𝑀)] ;  Ԑ = [Ԑ1⋮Ԑ𝑀]  
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Ԑ is the random truncation error which is ideally zero but in practical cases, it has some non-zero 

small value, B contains network responses generated by probing original stochastic system at 

multi-dimensional M nodes. Also, linear least squares method does data-modeling in a way that 

the maximum number of nodes are approximated to fit the model.  

Once this model is created, it can be then probed to produce an output for any of the input 

pertaining to the random space. For instance, shown in the figure where a linear model is 

constructed from a discrete set of points, so as to minimize the approximation error. The linear 

least-squares algorithm [28], [29] doesn't give a single solution to the given problem and the final 

selection of nodes is partially based on the primary random selection of nodes, although it is 

created to assure that the most optimum model is constructed, by minimizing the terms of the sum 

of squares of errors.  

�̃� = argcminS(c)  

Where, 

       S(c) = | |𝐵 − 𝐴𝑐| | 2 = ∑  𝑟𝑀𝑘=1 k
2 =  ∑  𝑀𝑘=1 ( | y(k) -  ∑  𝑁𝑗=1 cj φj (λ(k) ) | ) 2   

Here, Ԑ is taken as zero, assuming it to be an ideal case. Since, it is a convex function; therefore, 

above equation is minimum when gradient of the equation is zero. Hereafter 

𝛿𝑆𝛿𝑐𝑗 = 2 ∑  𝑟𝑀𝑘=1 k 
𝛿𝑟𝑖𝛿𝑐𝑗 = 2 ∑  𝑀𝑘=1 (y(k) - ∑  𝑁𝑗=1 cj φj (λ(k) )) (- φj (λ(i) )) = 0  

 On simplification, we get 

∑  𝑀𝑘=1 ∑  𝑁𝑗=1 �̃�j φj (λ(k) ) φk (λ(k) ) =  ∑  𝑀𝑘=1  φk (λ(k) ) Bk   
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In matrix form, it can be written as: 

(ATA) �̃� = AT B  

This matrix form of the equation has solution when AT is full column rank and this makes ATA as 

positive definite.  

Hence, coefficients vector can be presented as: 

�̃� = (ATA)-1 AT B  

Here, ATA is information matrix (also known as Fisher information matrix). On solving the 

equation above, it gives PC coefficients. From these coefficients, information regarding statistical 

moments can be determined. 

2.4.2.2.1 Advantages and drawbacks of linear regression 

The primary benefits of the linear regression method are that several popular circuit-solvers can 

be applied to obtain the values of the outputs needed in �̃� = (ATA)-1 AT B without any requirement 

of extensive coding. Furthermore, simulations can also be parallelized as the simulation of a 

specific node is independent of the other. The number of simulations also scale in a polynomial 

manner with the number of random numbers M=2(𝑃+1). It is important to note that the matrix A 

can be evaluated and saved once, and can be used again for the same or any other problem later, 

having the same number of random variables and maximum expansion order. These factors play a 

vital role in speedup over any intrusive method or MC method. Also, by over-sampling the primary 

set of nodes, it is guaranteed that this method will give the results with adequate accuracy. 

In contrast, standard linear regression [28],[29] approach has some disadvantages as well i.e. it 

does not present a way of optimizing the subset of chosen nodes. Randomly picking M number of 
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nodes from the tensor product without any optimization, may or may not produce good results 

depending on the selection of nodes. Therefore, there are several techniques like D-optimal 

criterion and many others are used in addition to the linear regression method that acts upon 

optimizing some attributes of the equation mentioned above. 

2.4.2.2.2 Selecting regression nodes 

Linear regression method starts by approximating the uncertainty in the system’s output using PC 

expansion and then coefficients are computed at the sample node λ(k) using known polynomials φk. 

The equations are expressed as: 

Z(t, λ) = ∑  𝑍𝑃𝑘=0 k (t) φk (λ)  

Aj = [ φ0 (λ(j)) I, φ1 (λ(j)) I, φ2 (λ(j)) I, …. , φP (λ(j))I ] 

Here, identity matrix is denoted as I and the above equation can be simplified and expressed as: 

Aj �̃� = Z(t, λ(j) )  

Where, �̃� = [ Z0(t), Z1(t),……, ZP(t)]T, Z(t, λ(j) ) represents the result of the simulation 

at λ(j) 

Standard linear regression method uses M=2(P+1) or 3(P+1) nodes situated within the random 

space which results into the construction of overdetermined system of linear algebraic equations 

i.e. A�̃� = Z 

2.4.3 D-optimality criterion  

As discussed above that selection of M regression nodes plays a vital role in the accuracy of 

response of the system. One of the most prevalent technique for selecting optimized nodes is D-
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optimality criteria [41],[42]. This method is used to minimize (ATA)-1 term so as to maximize the 

determinant of the information matrix. 

As discussed above, linear regression method solves Ac + Ԑ = Z system of algebraic equation. 

Following lemma shows the accuracy of calculated PC coefficients using D-optimal technique: 

Lemma: Assuming that the truncation error Ԑj, 1 ≤ 𝑗 ≤ M at all M DoE of (2.30) are independent 

of each other and exhibit a normal distribution of zero mean and same variance σ2, then in order 

to achieve the maximum accuracy of the PC coefficients the DoE must be chosen such that the 

determinant of the information matrix ATA is maximized. 

Proof: Due to the presence of random truncation error, PC coefficients based on the PC expansion 

of the system responses make themselves random dimensions. Variance is evaluated as: 

Var( �̃� ) =  var((ATA)-1 AT B ) =  (ATA)-1 AT var(B)((ATA)-1 AT)T   

As the truncation error Ԑj for every Design of Experiments (DoE) is independent and 

has constant variance σ 2. Replacing var(B) = σ 2 I in the above equation, we get: 

Var( �̃�) =  (ATA)-1 σ 2  

It is important to decrease the uncertainty in the solution �̃� (i.e. variance of �̃�) to guarantee 

maximum accuracy of PC coefficients. As variance of �̃� is inversely proportional to the 

determinant of the information matrix 𝐴T𝐴, so to minimize the value of the variance of �̃�, the best 

way is to maximize the determinant. Hence, M DoE for the linear regression must be picked in 

such a way that the maximized determinant of the information matrix can be achieved. This 

criterion is known as the D-optimal criterion. Numerous optimality criteria do exist, yet the D-

optimal criterion has been considered the most efficient and widespread till date. The next 
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challenge is to generate a search-algorithm that can effectively distinguish the D-optimal nodes 

from the tensor product space of nodes. 

2.4.4 Fedorov search algorithm 

D-optimal criterion is based on Fedorov Search algorithm which is greedy-search algorithm to 

select D-optimal nodes [43], [44]. Estimation theory, data analysis, and many such fields use 

greedy search algorithm quite often. In this algorithm, first, a set of 𝑀=2(𝑃+1) nodes are 

considered which are picked from the tensor product grid of (𝑚+1) n multi-dimensional quadrature 

nodes and then corresponding information matrix 𝐴T𝐴 is constructed. Consequently, from the 

remaining (𝑚+1) n −𝑀 quadrature nodes, each DoE in the initial set is replaced by the best possible 

substitute DoE in such a way that the determinant of the information matrix increases by the 

maximum amount in the procedure. This refinement process of the starting DoE continues step-

by-step till all the starting set of nodes has been replaced [26], [30]. 

As per the earlier explanation, at the j𝑡ℎ step, it is assumed that the first j−1 nodes have been 

replaced by their best possible substitutes. Now if the j𝑡ℎ DoE of the starting set is eliminated from 

A, then the new determinant of the information matrix can be represented as: 

det(𝐴T𝐴)new = det((𝐴T𝐴) – R(λ(j) ) R’(λ(j) )) 

      = det((𝐴T𝐴)(1- R(λ(j))( 𝐴T𝐴)-1 R’(λ(j) ))  

Where, R(λ(r)) represents a row vector added by jth DoE in matrix A. Similarly, for any kth arbitrary 

DoE from remaining (𝑚+1) n –𝑀 quadrature nodes, new determinant of the new information 

matrix is evaluated and it is expressed as: 
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det(𝐴T𝐴)new = det((𝐴T𝐴) + R(λ(j) ) RT(λ(j) ))  

      = det((𝐴T𝐴)(1+ R(λ(j))( 𝐴T𝐴)-1 R’(λ(j) )) 

Adding the results of above 2 equations and then exchanging jth DoE of the initial set with any 

random kth DoE from the remaining (𝑚+1) n −𝑀 quadrature nodes, recursive function of new 

determinant is given as: 

det(𝐴T𝐴)new = det(𝐴T𝐴)(1+dkk –djj + 𝑑𝑘𝑗2  - dkkdj)  

dkj = R(λ(k)) ψ(j-1) RT(λ(j))  

Where, ψ(j-1) denotes inverse of information matrix generated after preceding exchange (j-1). Now, 

kth node λ(k) needs to be selected such to satisfy optimization criteria: 

Max(dkk –djj + 𝑑𝑘𝑗2  - dkkdj)  

Using above mentioned steps, best possible node λ(k) is selected to satisfy above optimization 

criteria and then replacement is done. New determinant obtained can be updated directly using 

equation 2.43 and this replacement-substitution process moves on to the (j+1)th node. When all the 

initial DoE are replaced, then new set of DoE will represent D-optimal selection. 

2.4.5 Cost of computation for search algorithm 

Computation cost of the search algorithm is mainly due to 2 reasons: 

a. It requires searching through (m+1) n – M quadrature nodes in initial set for each DoE i.e. 

total searches would be M((m+1) n – M. So the related CPU cost would be: 

Ca  = 2(P+1) ((m+1) n  - 2(P+1)) C1 ≈ 2(P+1)(m+1)n C1   
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Where, C1 represents CPU cost of computing the terms (dkk –djj + 𝑑𝑘𝑗2  - dkkdj) with an assumption 

that ψ(j-1) is already known. C1 is expressed as:  

C1 = 3k ((P+1)2 + (P+1)  

Here, first term is the cost due to matrix-vector multiplication i.e. ψ(j-1) RT(λ(j)) and second term is 

the cost due to vector-vector multiplication i.e. R(λ(k)) and ψ(j-1) RT(λ(j)) and the above operations 

are to be performed for three scaler quantities djj , dkk , dkj so factor 3 is used in the cost 

computation. Here, k is assumed to be the cost due to each floating point operation. After 

combining 2 equations i.e. 2.48 and 2.49, overall coat of the search algorithm (Ca) scales in an 

exponential way with the number of random variables (n) and it is computed as: 

O((P+1)3(m+1)n) ≈ O( n3m (m+1)n)  

b. Another factor for computational cost is due to each substitution as information matrix 

changes every time and therefore, inverse ψ(j-1) has to be evaluated again. CPU cost is 

expressed as: 

Cb = 2(P+1) C2  

Where, C2 represents CPU cost of each matrix inversion. C2 scales as O((P+1)3) for direct inversion 

methods; thereby confirming that collective cost of matrix inversion methods (Cb) scales as 

O((P+1)4) ≈ O( n4m) w.r.t number of random variables (n). When 2 ≤ m ≤ 5, for typical PC 

problems, then CPU cost scales to near exponential. 

The above two peculiarities of the search algorithm significantly slow down its performance for 

high-dimensional problems and can even render it infeasible for some of the problems.  

2.52 

2.53 

2.51 
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The cost of executing the search algorithm can usually become an important part of the cost of 

performing the M deterministic SPICE simulations. 

2.4.6 Accelerating search-algorithm for high dimension random spaces  

This approach is based on the basis that once a fairly large determinant of the information matrix 

has been accomplished, any further enrichment of the determinant will change to negligible 

improvement in the accuracy of the calculated PC coefficients. Therefore, here only the K worst 

DoE in the initial set of nodes will be identified and replaced instead of replacing all M DoE as 

proposed in previous approach. The replacement of the K worst DoE will result in an adequately 

great increase of the determinant of the information matrix, through eliminating the requirement 

for replacing the remaining M-K DoE. Therefore, this approach will diminish the number of 

searches from M((m+1) n - M) to K((m+1) n - M). Due to this, cost computation will have reduction 

by a factor of M/K. Here, K is originally set to [M/5] where [.] is the ceiling function. Next, from 

equation 2.45 it is seen that the reduction in the value of the determinant caused by removing the 

jth DoE (λ(j)) is proportional to the term djj. 

djj = R(λ(j)) ψ(0) R(λ(j))T   

where, inverse of original information matrix [26] containing starting M DoE is represented by 

ψ(0). Consequently, the K worst DoE are distinguished as those DoE in the starting set that have 

the smallest plausible value of the scalar quantity drr. It is acknowledged that estimation of the 

term drr of all 2(P+1) DoE can be achieved inexpensively since the matrix inverse ψ(0) requires to 

be computed just once and once the K worst DoE have been distinguished, the search algorithm 

of the previous subsection is meant for only these DoE. Consequently, an analysis is made to 

determine if the determinant of the information matrix ATA is fairly high. If not, then the next 

2.54 
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worst DoE (i.e., K+1th worst DoE) is identified using equation 2.54 and replaced as in earlier case. 

This sequential method proceeds until the determinant of the information matrix ATA is considered 

to be large enough. It is observed from various examples that K = [M/5] is a reliable starting 

assumption for K and rarely does this value need to be extended further [26]. 

2.4.6.1 Efficiency of K-worst node substitution in search algorithm 

Substitution of K-worst DoE has two major advantages. First, total number of searches will reduce 

from [M(m+1) n – M] to [k((m+1) n – M] ; where k = 
𝑀5   . Due to this reason, cost of computation 

is reduced by factor 5 and is given as: 

Ca ≈ k((m+1)n – 2(P+1)) C1 = [2(𝑃+1)5 ](m+1)n C1   

Second, CPU cost due to matrix inversion performance will also be reduced significantly 

according to the following lemma: 

Lemma 2: Utilization of the Sherman-Morrison-Woodbury formula of 2.51 and 2.53 will ensure 

that the total CPU costs to perform the matrix inversions in the k-worst node substitution search 

algorithm will scale as O((P+1)3) ≈ O(n3m) with respect to the number of random variables (n). 
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CHAPTER 3: PREDICTOR-CORRECTOR POLYNOMIAL CHAOS SCHEME 

 

 

This chapter demonstrates a novel predictor-corrector scheme to expedite the construction of 

polynomial chaos (PC) metamodel for the performance assessment of multi-walled carbon 

nanotube (MWCNT) interconnects. The proposed method is divided into two main steps. Firstly, 

a low-fidelity predictor PC metamodel of the MWCNT system is formed using the equivalent 

single conductor (ESC) estimate model. Consequently, the accuracy of the predictor model is 

adequately enhanced by using low-order corrector function based on the multi-conductor circuit 

(MCC) model. The total CPU costs by combining the predictor and corrector functions come out 

to be much smaller than the CPU costs for creating a traditional PC metamodel of similar accuracy. 

3.1 Introduction  

Polynomial Chaos schemes have been employed for the performance assessment of multi-walled 

carbon nanotube (MWCNT) interconnects [12], [36] to approximate the variability in the MWCNT 

network responses using a linear combination of orthonormal polynomial basis functions. These 

basis functions, in particular, are orthonormal with respect to the joint probability density function 

of the network's input random variables [47].  Then the coefficients of the linear combination have 

been evaluated which are the new unknowns of the network. This linear combination acts as a 

closed-form metamodel of the network, which is then probed in an analytic way to do an 

assessment of the network. 

Despite, the advantage of being fast convergent and reliable, the chief limitation of PC approach 

is that it normally requires an excessive number of deterministic simulations of the MWCNT 

network to best fit the coefficients [36]. Moreover, this problem is worsened by the fact that the 
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number of conducting shells in MWCNT network is usually very large, and thus, the CPU time 

cost for even a single deterministic simulation can be too expensive. Therefore, in order to avoid 

this issue, an equivalent single conductor (ESC) approximation of the more rigorous multi-

conductor circuit (MCC) model [48] of the MWCNT network was used in the work of [36]. With 

the use of ESC model, simulation of each deterministic network model was significantly expedited, 

however, this efficiency came at the cost of accuracy of the created metamodel.  

In this thesis, a novel and even more effective approach is presented to create very accurate PC 

metamodels for MWCNT networks. In this approach, firstly, a numerically reasonable predictor 

PC metamodel is constructed using the ESC model, also called as low-fidelity metamodel because 

of the ESC approximation of the MWCNT network. Next, the accuracy of this low-fidelity 

predictor metamodel is enhanced by combining a corrector function to it. The corrector function 

takes the form of a very sparse PC metamodel which is constructed using a very little number of 

deterministic solutions of the rigorous MCC model. Therefore, the total number of deterministic 

MWCNT network simulations needed is the sum of a large number of compact ESC model 

simulations (for constructing the predictor) and a small number of the rigorous MCC model 

simulations (for constructing the corrector). The CPU cost of this sum is also considerably smaller 

than the CPU cost of directly constructing a traditional PC metamodel from MCC simulations 

only. The proposed predictor-corrector scheme still presents similar accuracy as the traditional PC 

metamodel. 

3.2 Proposed Predictor-Corrector Scheme 

Consider a common MWCNT network which consists of 'n' number of concentric shells as shown 

in Figure 3.1 below. In the network, each shell can be represented by an equivalent resistance-

inductance-conductance-capacitance (RLGC) based lumped SPICE model as demonstrated in 



36 

 

Figure 3.2. Here, Rm is the imperfect metal contact resistance of the shells. Figure 3.2 represents 

the rigorous multiconductor circuit (MCC) model of the complete network.  

 

Figure 3.1: MWCNT interconnect network 

 

 

                                    Figure 3.2: MCC model of the network 
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MCC model is the hi-fidelity model for MWCNT network. Here, for 1 line it is represented by 

multiple conducting lines which is much more realistic characterization of the circuit. So this 

model actually generates an accurate result but it takes a while to simulate as each line has R-C 

components so to simplify this, we approximate the circuit by considering the input voltage Vin 

and voltage at end to be the same. So in this way we can compress all these lines into one and 

which is known as ESC model which is much faster with less accuracy than MCC model. The 

performance of this MCC model is described by the stochastic modified nodal analysis (MNA) 

equations as: 

G(λ)Z(t, λ) + C(λ) 𝑑𝑍(𝑡,λ)𝑑𝑡  + F(Z(t, λ)) = B(t)  

where, C and G are the matrices which contain RLGC stamps of lumped circuit, Z represents the 

vector of stochastic current or voltage responses and vector of independent current or voltage 

sources is denoted by B. Due to N mutually uncorrelated random parameters λ = [λ1, λ2,…..,λN], 

the variability is introduced into the model located within the multi-dimensional space Ω. The 

foremost purpose of PC approaches is to approximate the total or resultant variability in the 

network responses using a linear combination of orthonormal basis functions [12], [36] as: 

Z(t, λ) ≈ ∑ 𝑍𝑃𝑘=0 k(t) φk(λ)  

where,  φk(λ) is the kth degree N-dimensional polynomial, Zk(t) is the coefficient and the number 

of terms in the expansion is truncated to P+1 = 
(N+m)!N!m!  , here m is the maximum degree of the 

expansion of equation 3.2. Normally, a large O(P+1) = O(Nm) number of deterministic SPICE 

simulations of the MCC model of Figure 3.2 is needed to accurately estimate the coefficients of 

equation 3.2 [12], [36]. To reduce the excessive CPU time costs required for these many SPICE 

simulations, a more efficient predictor-corrector method is proposed. 

3.1 

3.2 
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3.2.1 Construction of low-fidelity predictor model  

In the predictor-corrector approach, firstly, the MCC model as shown in Figure 3.2 is replaced by 

its equivalent single conductor (ESC) model which is shown below in Figure 3.3 [48]. The ESC 

model is based on the hypothesis that the voltage on each shell positioned at the same longitudinal 

distance from one end of the network is always equal. This hypothesis, while not specifically true, 

however, gives a more compact SPICE model without incurring many errors [48]. 

 

Figure 3.3 ESC model of MWCNT interconnect network 

 

Non-intrusive linear regression approach is being used in constructing PC metamodel of the 

network. In this approach, ESC model is used for each deterministic SPICE simulation of the 

network needed to estimate the PC coefficients. This PC metamodel is also called as the low 

fidelity predictor metamodel on account of the ESC approximation and is represented as: 

Zpred(t , λ) =  ∑ 𝑍𝑘(𝐸𝑆𝐶)𝑃𝑘=0 (t) φk(λ)  

Where, 𝑍𝑘(𝐸𝑆𝐶)(𝑡) is the kth predictor coefficient, φk(λ) is the kth degree N-dimensional polynomial. 

In equation 3.2 and 3.3, the number of coefficients are same, however, for each ESC simulation, 

CPU cost is very small when compared to each MCC simulation.  

3.3 
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Therefore, predictor metamodel of equation 3.3 can be constructed very fast compared to standard 

PC metamodel of equation 3.2. Beside this, it has a drawback that predictor metamodel of equation 

3.3 is less accurate than standard PC metamodel of equation 3.2. 

3.2.2 Construction of corrector metamodel  

Enrichment of the low-fidelity predictor metamodel is the next step after it is constructed as 

expressed in equation 3.3. Enrichment is done till it reaches close enough in accuracy to standard 

PC metamodel. For this purpose, the difference between the actual network solution Z(t,λ) and the 

predictor metamodel of equation 3.3 is defined which is known as corrector factor. It is expressed 

as: 

F(t,λ) = Z(t, λ) – Zpred(t, λ)  

As ESC model is a reasonable approximation of MCC model so the Euclidean norm of the 

corrector function in equation 3.4 is small. Therefore, the corrector function F(t,λ) is 

approximated using sparse PC metamodel as: 

Z(t, λ) - Zpred(t, λ) = ∑ 𝑍𝑘(𝑀𝐶𝐶)𝑄𝑘=0 (t) φk(λ) 

In the above equation, 𝑍𝑘(𝑀𝐶𝐶)(𝑡) denotes kth coefficient of the corrector function, Zpred(t, λ) is the 

predictor approximation nodes calculated in equation 3.3 above. Here, Q+1 is the number of terms 

which is lesser than P+1 terms i.e. Q+1 << P+1. The reason for this is that Q+1 basis functions 

contain all 1-D basis functions and only those 2-D basis functions of order two present in original 

metamodel of equation 3.2.  

Here also, Q+1 coefficients are calculated using non-intrusive linear regression method. In this 

linear regression method, for each regression node λ = λ(j) = [λ1(𝑗) , λ2(𝑗), λ3(𝑗) , …… , λ𝑛(𝑗)], the 

3.4 

3.5 
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predictor solution Zpred(t, λ = λ(j)) is directly calculated from equation 3.3 and the network solution 

Z(t, λ = λ(j))  is evaluated from SPICE simulations of MCC model.  

Lastly, once the coefficients of equation 3.5 are calculated, the accurate and high-fidelity PC 

metamodel of the response can be recovered easily by adding the predictor and corrector function 

from equation 3.4 as: 

Z(t,λ) = Zpred (t, λ) + F(t, λ) 

≈ ∑ (𝑍𝑘(𝐸𝑆𝐶)𝑄𝑘=0 (𝑡) +  𝑍𝑘(𝑀𝐶𝐶)(t)) φk(λ) + ∑ (𝑍𝑘(𝐸𝑆𝐶)(𝑡)𝑃𝑘=𝑄+1  φk(λ)  

It is noted that the total number of deterministic SPICE simulations needed for the predictor-

corrector method are 2(P+1) ESC simulations plus the 2(Q+1) MCC simulations. The CPU costs 

for these multiple SPICE simulations are typically much smaller than that of the 2(P+1) MCC 

simulations required to estimate the PC coefficients of 3.2. This is verified using a numerical 

example in further section. 

3.3 Carbon Nanotubes (CNT) 

Numerical example to validate predictor-corrector method is based on carbon nanotubes (CNT). 

Therefore, before jumping to the example, parameters and properties of CNT are important. 

Carbon nanotubes are very small tubes, about ten-thousand times finer than a human hair and they 

are made up of rolled-up sheets of carbon hexagons.  

Generally, there are two kinds of CNTs with high structural perfection viz single-walled CNTs 

(SWNTs) and multi-walled CNTs (MWNTs). SWNTs are made up of just a single graphite sheet 

seamlessly encased into a cylindrical tube. Multi-walled CNTs (MWNTs) consist of an array of 

such nanotubes which are concentrically nested like rings of a trunk of a tree. 

3.6 
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Figure 3.4 a) Single-walled CNT b) Multi-walled CNT 

Due to such small size, parameters of CNTs are more prone to uncertainties. Several physical 

parameters like diameter, length, tunnelling conductivity, metallic, and semiconducting properties 

are also essential for modeling of CNT interconnects [50]. 

3.3.1 Properties of carbon nanotubes 

1. Electrical Conductivity: The inter-wall interactions of MWNTs non-uniformly spread the 

current over each tube, hence making their electrical conductivity pretty complex. The resistivity 

of SWNTs are generally in the order of 10-4 𝛺 cm at 27 degree C. 

2. Elasticity and Strength: Every carbon atom in one individual film of graphite is attached via a 

robust chemical bond to 3 neighbouring atoms. Therefore, CNTs can manifest the strongest basal 

plane elastic modulus and consequently are supposed to be an ultimate high-strength fibre. CNTs 

return to their original state as soon as the force is removed from them, therefore they are very 

useful for high resolution scanning probe microscopy. 

3. Thermal Conductivity: Due to the substantial in-plane C–C bonds of graphene, CNTs can show 

super-conductivity below 20 K (approx. −253 ºC). This C-C bond gives exceptional strength and 

robustness against axial strains. Therefore, CNTs has interesting prospects in nanoscale 
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electronics, sensing and actuating devices, strengthening additive fibres in composite materials, 

etc. 

4. Field Emission: Due to the strong electric field, tunnelling of electrons from metallic tip to 

vacuum leads to field emission phenomenon. High aspect ratio and small diameter of CNTs causes 

field emission. For MWNTs, the field emission properties happen because of the emission of 

electrons and light. With no applied potential, the light emission happens through the electron field 

emission and the visible part of the spectrum 

5. Aspect Ratio: CNTs have a high aspect ratio, indicating that lower CNT load is expected 

compared to different conductive additives to attain comparable electrical conductivity. The high 

aspect ratio of CNTs holds novel electrical conductivity when compared to the standard additive 

materials like carbon black, or stainless steel fibre. 

6. Absorbent: CNTs have been rising as perspective absorbing materials due to their light weight, 

super flexibility, high mechanical strength, and excellent electrical properties. Hence, CNTs 

appear to be the ideal applicant for use in gas, water, and air filtration. 

3.4 Numerical Example 

To verify the accuracy and efficiency of the proposed predictor-corrector method, MWCNT 

network shown in figure 3.2 is considered for MCC model and Figure 3.3 is considered for ESC 

model. The goal is to develop hi-fidelity PC model based on predictor PC model which captures 

coarse features of the response and a corrector PC model which captures finer details.  

So, predictor PC model is based on the simulations from ESC model which is a low-fidelity model, 

thus it runs really fast and captures the broad output. Corrector PC model is based on the 

simulations from MCC model so it takes longer (here, for specific CNT problem it is around 100 
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times slower than ESC model). So here, this has an advantage is that both of them are working 

with relatively small CPU cost which is better than directly developing PC model from MCC 

model. 

The output that we are testing is the voltage at Node 1 denoted by N1, so we will find the transient 

response at that node for 0.2ns. Here, the total number of shells taken are n = 30. The uncertainty 

in the network is described using the N = 9 random variables and maximum order of 4 i.e. m=4 

 

 

 

Figure 3.5: MWCNT interconnect inner view 
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Here, in Figure 3.5, Dmin is the inner diameter of CNT, d is the inter-shell distance, H is the height 

of the dielectric, L is the length of the conductor, Ԑr is the dielctric constant.  

Random variables with their mean values and standard deviation (SD) are shown below in Table 

3.1: 

 

Table 3.1 Mean and Standard Deviation of the Random Variables 

Random Parameter Mean SD 

Din (inner diameter of CNT) 2.28 nm 

20% 

d (inter-shell distance) 0.34 nm 𝜎 (tunneling conductivity) 20 

Cin (driver capacitance) 0.14 fF 

Cout (load capacitance) 0.049 fF 

H (hight of the dielectric) 50nm 𝜀𝑟 (dielectric constant) 2 

Rm (contact resistance) 1000 Ohms 

L (length of conductor) 100 um 5% 

 

In the example, we have considered nine random parameters which have their own mean values 

and standard deviation. As we are using normal distribution in the example, so hermite 

polynomials are being used in the expansion as per the Weiner-Askey scheme, discussed in chapter 

2.  
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Voltage source with a saturated ramp waveform of rise/fall time Tr = 0.1 ps and an amplitude of 

1V is used to excite the network. Two methods i.e. predictor-corrector scheme and PC full-blown 

metamodel are used for the performance assessment of the network.  

Statistics calculated are plotted in MATLAB and are shown below in figure 3.6 and 3.7. 

 

 

                       Figure 3.6: Statistics Comparison of transient response at node N1 

 

In the above Figure 3.6, middle curve is the mean of standard PC and the mean from the proposed 

predictor-corrector method.  
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The mean calculated from both the methods overlap with each other. Then, mean +/- 3 standard 

deviation curves are shown for both of the methods which are very similar and are pretty close to 

each other. Probability density function (PDF) of this output is also computed at the time point of 

maximum standard deviation i.e. SDmax = 0.071ns with 40,000 samples and 40 number of bins. 

The PDF of proposed predictor-corrector method is shown in red outline curve is compared with 

PDF of standard PC shown in grey bins. The PDF curves are almost similar to each other depicting 

the accuracy of the method. 

 

        Figure 3.7: PDF comparison at the time point of maximum standard deviation  

 

After plotting the statistics of the MWCNT network response, CPU time and speedup is being 

calculated. Important formulae to calculate CPU time and speedup is given below: 
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(CPU Time) proposed = Time for Predictor + Time for Corrector 

             = [2(P+1)] * [T1 + T0]   

(CPU Time) standard = 2(P+1) T0 

Where, T1 is the time for 1 MCC simulation, T0 is the time for 1 ESC simulation. Speedup can be 

expressed as:  

Speedup = 
CPU Tⅈme for Standard PCCPU Tⅈme for Proposed PC  

Each SPICE simulation of the ESC model is approximately 700 times faster than the MCC model 

in the proposed predictor-corrector method, therefore, the total CPU time to construct the 

predictor-corrector metamodel takes only 3199.9 seconds i.e. 2(P+1) = 1430 ESC simulations 

takes 14.3 seconds and the remaining 2(Q+1) = 440 MCC simulations takes 3185.6 seconds.  

On the other hand, the CPU time to construct the standard PC metamodel of equation 3.2 needs 

2(P+1) = 1430 MCC simulations which take 10353.2 seconds to finish.  

Table 3.2: CPU Time and Speedup Comparison of HPCE and Standard PC method 

Approach # of SPICE simulations CPU time (s) Speedup 

Monte Carlo 40000 (hi) 135200 - 

Standard PC 1430 (hi) 10353.2 13x faster than 

Monte Carlo 

Predictor-Corrector 1430 (low) + 440 (hi) 3199.9 3x faster than 

Standard PC 

 

Hence, the proposed predictor-corrector method is approximately 3 times faster than the standard 

PC metamodel for the MWCNT example explained here. The accuracy of the statistical responses 

3.7 

3.8 

3.9 
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achieved using the proposed predictor-corrector method gives a good agreement with that 

accomplished using the standard PC metamodel of equation 3.2.  
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CHAPTER 4: HYPERBOLIC POLYNOMIAL CHAOS EXPANSION (HPCE) 

 

This chapter presents a novel methodology for implementing the PC theory to uncertainty 

quantification problems. In a conventional PC approach, orthogonal polynomial bases are picked 

based on a linear criterion, however, in HPCE, the hyperbolic criterion is proposed [51]. This 

criterion determines the most significant polynomial bases based on the sparsity of effects [52], 

[49]; therefore, it gives a sparse set of polynomial bases which is much smaller than the original 

set of bases with no or negligible loss of accuracy. 

The chapter begins with a discussion on constructing the multidimensional polynomial bases 

which is required for a better understanding of the proposed method. Afterward, the criterion for 

the hyperbolic PC method is presented. Furthermore, the CPU cost of the proposed method and its 

scaling with respect to the number of random variables is assessed and it is then compared with 

other PC schemes. Lastly, the accuracy and CPU costs scaling of the proposed HPCE method is 

validated with a numerical example. 

4.1 Construction of Multidimensional Polynomial Bases 

Formation of multidimensional orthonormal polynomial bases are obtained as a product of 1-D 

polynomial bases: 

Φk (λ) = ∏ Φ𝑘𝑗𝑛𝑗=1  (λj)  

where, jth random variable is denoted by λj, n represents number of random variables, λ shows all 

random variables in a vector, λ = [λ1, λ2 ,…., λn] T, kj is the order of the jth 1-D polynomial, Φ𝑘𝑗 is 

4.1 
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the jth 1-D polynomial, d denotes all dj values in a vector as V = [k1, k2,…, kn]T, and Φk is the 

multidimensional polynomial basis made up of 1-D polynomials whose order is specified in V. 

In standard methods the criterion used to determine the order of each 1-D polynomial in a 

multidimensional polynomial basis is given by: 

|| V ||1 = k1 + k2 + …… + kn ≤  m  

where ||.||1 denotes the L1 norm, and m is the maximum expansion order for 1-D polynomials. 

 

Figure 4.1: a) Conventional Linear Truncation Method b) Proposed Hyperbolic method 

 

In figure 4.1, number of random variable n=2 and order m =5 is considered for graphical 

presentation. Here, blue dots represent indices of chosen polynomial bases and red empty dots 

represents indices of polynomial bases which are not selected. Φ[3,1] (λ) = Φ3 (λ1) Φ1 (λ2) is chosen 

as || [3,1] ||1 = 4 ≤ 5. Moreover, Φ[2,4] (λ) = Φ2 (λ1) Φ4 (λ2) is not chosen as || [2,4] ||1 = 6 > 5. The 

number of polynomial bases given by equation 4.2 and illustrated in Fig 4.1 (a) is equal to P+1 in 

equation 2.14 

4.2 
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The standard method provides a moderately good scaling of computational cost with respect to the 

number of random variables, however, it still bears cumbersome computational costs for problems 

with a reasonably high number of random variables. According to P+1 = 
(𝑚+𝑛)!𝑚!𝑛! , the scaling rate is 

O(P+1) ≈ O(nm). The near-exponential increment in computational cost is known as the curse of 

dimensionality and in order to address this issue, a novel method for selection of multidimensional 

bases is proposed in the next section. 

4.2 Hyperbolic PC Expansion Truncation Method 

As low order polynomial bases have more impact on the network’s response, so HPCE selection 

scheme results in the selection of M < P+1 bases which have the ability to approximate the 

response as: 

Z(λ) = ∑ 𝑐𝑀−1𝑖=0 i  Φi (λ)  

In this method, the major constraint is to put on the Lu
th norm of the indices vector V, where u ≤ 

1, and the Lu
th norm is randomly assigned as the uth root of summation of each term of V to the 

power of u. Replacing the L1 norm in equation 4.2 with Lu
th gives: 

|| V || u = (𝑘1𝑢+ 𝑘2𝑢 + …. +𝑘𝑛𝑢 )1/u  ≤  m  

Where, 0 ≤ u ≤ 1, here k1 varies from 0 to m , k2 varies from 0 to m and so on. Therefore, there 

would be (m+1) n total possible combinations. Now, we have to vary k1 to kn to get (m+1) n bases 

such that it satisfies the equation 4.4. By selecting u < 1, we automatically guarantee that when 

constructing the HPCE higher priority is given to the low-degree interactions when compared to 

their higher-degree equivalents. It is important to note that by increasing the number of random 

variables, the number of eliminated polynomials in Figure 4.3(b) would also increase very fast, 

4.3 

4.4 
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thus enhancing the sparsity of the HPCE. Therefore, HPCE is highly recommended for high-

dimensional problems.  

Here polynomial bases are restricted between hyperbolic function ||V||u = m and positive axis and 

is given by: 

(𝑘1𝑢+ 𝑘2𝑢 + …. +𝑘𝑛𝑢 )1/u = m  

Thus, this method is known as hyperbolic and u is known as hyperbolic factor. This method would 

significantly decrease the number of chosen indices while maintaining accuracy in PC approaches. 

To demonstrate the HPCE scheme, Figure 4.1 (b) illustrates the graphical presentation of an 

example where n=2, m=5 and u=0.7. Here, in the figure filled blue dots denote indices of chosen 

polynomial bases and empty red dots denote indices of not chosen polynomial bases. For example, 

in Fig. 4.1(b), Φ[3,1] (λ) = Φ3 (λ1) Φ1 (λ2) is chosen because || [3,1] ||0.7 = 4.98 ≤ 5. Moreover, Φ[2,2] 

(λ) = Φ2 (λ1) Φ2 (λ2) is not chosen as || [2,2] ||0.7 = 5.17 > 5. It is important to note that Φ[3,1] (λ)  

and Φ[2,2] (λ) both are of the equivalent degree of 4, and they also have the similar rank of 2; hence 

they cannot be distinguished using methods discussed in previously which has constraint on the 

degree or the rank. It is worth to note that the proposed HPCE method does not depend on which 

uncertainty quantification scheme is being used.  

In fact, all PC methods discussed previously are either intrusive or non-intrusive, can be used. This 

is mere because HPCE is another orthonormal expansion which does not influence the process of 

determining the coefficients and obtaining statistics. 

4.5 
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Figure 4.2: Graphical illustration showing standard linear truncation, proposed hyperbolic 
truncation method and effect of reducing hyperbolic factor on HPCE method (Left to Right) 

 

Different values of the hyperbolic factor u results into a different number of polynomials. This is 

illustrated in Figure 4.2 for an instance, having n=5 and m=4, where the standard truncation 

method is described on the left side of the figure while the two other plots explain that decreasing 

u gives a sparser set of polynomial bases. We can also say that u=1 is equal to the standard PC 

expansion since with u=1 in equation 4.4 converts to equation 4.2; furthermore, a larger value of 

u results in higher number of polynomial bases and much better accuracy whereas a smaller value 

of u results in lower number of polynomials and also lower accuracy. Based on this, the foremost 

purpose of HPCE is to obtain the hyperbolic factor u as it determines the accuracy and efficiency. 

Hence, a novel technique to obtain the different values of u discussed in the next section. 

4.3 Hyperbolic Factor (u) 

The hyperbolic factor u has a great impact on the accuracy-sparsity trade-off in creating the HPCE. 

When u = 1, the HPCE converges to the full-blown PCE which has very high accuracy but also 
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computationally expensive to construct. However, on the other hand, if the value of u is very small 

then all the multi-dimensional bases are ignored and only the 1-D bases are considered.  

This results in the sparsest expansion yet is limited in its predictive accuracy. Here, by 1-D bases, 

it means polynomial bases which have a rank up to 1 which are located on the multidimensional 

axis in the graphical presentation. As the order of expansion is m and n random variables, so the 

total number of 1-D bases are ((m*n) +1), where the single basis at the centre of the graphical 

presentation is loosely described as 1-D too. Hence, the range of the hyperbolic factor u is equal 

to (0,1], where 0 is not included because equation 4.4 would not have any answer at u=0. The 

variation of u on its spectrum is presented in Figure 4.3. 

 

Figure 4.3: Effect of increasing the value of u from near zero to 1 on selection of polynomial bases 

 

Therefore, the foremost challenge of the proposed PC method is to tune the hyperbolic factor u for 

a general circuit problem. So, a greedy iterative approach is used to increase the hyperbolic factor 
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u from a very small initial value u0 till un, where PC expansion is enriched sufficiently to satisfy a 

predefined error tolerance. Therefore, for any jth iteration, the value of u is increased as: 

uj = uj-1 + Δu  

Where, Δu is the step size which is fixed and subscript j is the iteration count. When the value of 

u is increased, it enriches the expansion from previous iteration (j-1) th by adding new PC bases 

terms. The new bases terms have a constraint: 

||V||uj-1  > m ;  ||V||uj  ≤ m  

The coefficients of new bases terms are such selected to minimize the residual error from the 

previous iteration; so that can be calculated using linear regression. Furthermore, the coefficients 

calculated from the previous iterations are retained always and do not have to be recomputed. Once 

the coefficients of the current iteration are calculated, then the variance enrichment the circuit 

response due to the added new bases is measured as: 

Sj (t) = ∑𝑍𝑖(𝑗)2(t)  

The enrichment should be greater than a prescribed tolerance, for the iteration to continue. Once 

the enrichment of the above equation falls below that tolerance, it is then believed that the point of 

diminishing return has reached and the iterations will stop. The resultant PC expansion is known 

as the HPCE. It is important to note that given u < 1 when the iterations are stopped, it is guaranteed 

to have sparsity in the HPCE. Furthermore, by increasing the value of hyperbolic factor u in the 

iterative process, the HPCE is guaranteed to converge to the full-blown PC expansion. 

 

 

4.6 

4.7 
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4.4 Statistical Information using HPCE Coefficients 

Statistical information is the most important part to obtain. HPCE task is done similarly to standard 

PC methods which are discussed in previous chapters; nonetheless, in this method, a more confined 

set of polynomial bases are used. The first statistical moment also known as an arithmetic mean is 

given by: 

E(z(λ)) = ∫ 𝑧.𝛺 (λ) ρ(λ)dλ = ∑ 𝑐𝑀𝑖=0 i φi (λ) ρ(λ)dλ =  ∑ <𝑀𝑖=0  ci φi (λ), φ0 (λ) > = c0  

Standard deviation is the square root of variance and variance is the sum of square of all the 

coefficients upto cM except the first one and is expressed as: 

Var(z(λ)) = E[z(λ) – E(z(λ)))2] = ∫ (.𝛺  ∑ 𝑐𝑀𝑖=0 i φi (λ))2 ρ(λ)dλ 

                                                                 = ∑ ∑ <𝑀𝑗=1𝑀𝑖=1  ci φi (λ), cj φj (λ) > 

               = ∑ <𝑀𝑖=1  ci φi (λ), ci φi (λ) > 

               = ∑ 𝑐𝑖2𝑀𝑖=1      

To find the PDF and other higher order statistical moments, like skewness and kurtosis, the 

technique similar to Monte Carlo is used. In this approach, the 1st Q random sample nodes are 

generated. The number of dimensions and distribution of the sample nodes is similar to the random 

variables λ in the system. Once we have the coefficients, polynomials φ0 to φM-1, and random 

samples, the right hand side of equation 4.4 is known; so, after finding the coefficients c0 to cM−1 

the result of Q instances of the experiment can be approximated. The final step is to compute the 

PDF and other higher-order statistical moments from these approximated results. 

 

4.9 

4.10 
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4.5 Numerical Example 

In this section, the same MWCNT network is used for validating HPCE results which was used 

for proposed predictor-corrector method. Then proposed HPCE scheme results are compared with 

standard PC approach.  

 

Figure 4.4: MWCNT interconnect inner view 

 

In this example, number of random variables n = 9, order m = 4 and number of shells = 50. Random 

variables for uncertainity quantification with their mean values and standard deviation (SD) are 

shown below: 
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Table 4.1: Mean and Standard Deviations of Random Variables 

 

 

 

 

 

 

 

 

 

Voltage source with a saturated ramp waveform of rise/fall time Tr = 0.1ps and an amplitude of 

1V is used to excite the network. In the example, we have considered nine random parameters 

similar to the previous example which have their own mean values and standard deviation. As we 

are using normal distribution in the example, so hermite polynomials are being used in the 

expansion as per the Weiner-Askey scheme 

Firstly, values of hyperbolic factor u are calculated. If the step size of hyperbolic factor i.e. Δu is 

very small then there would be no difference in the number of polynomial bases at some steps, and 

if Δu is very big then there would be a significant change in the number of polynomial bases at 

some steps which could be split into 2 steps by taking finer steps. 

Values and corresponding number of bases for n=9 and m=4 are given as: 

Random Parameter Mean SD 

Din (Inner diameter of CNT) 2.28 nm  

 

 

 

 

20% 

d (inter-shell distance) 0.34 nm 𝜎 (tunneling conductivity) 20 

Cin (driver capacitance) 0.14 fF 

Cout (load capacitance) 0.049 fF 

H (hight of the dielectric) 50nm 𝜀𝑟 (dielectric constant) 2 

Rm (Contact resistance) 1000 Ohms 

L (length of conductor) 100 um 5% 
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Table 4.2: Hyperbolic Factor and Corresponding Number of Bases 

Hyperbolic Factor, u Number of Bases 

u ≈ 0 37 

0.5 73 

0.69 145 

0.79 229 

1 715 

 

Here, in this case, there are 5 hyperbolic factors u and these u values can be arranged in a vector 

as u = [u0, 0.5, 0.69, 0.79, 1] where u0 ≈ 0 and greater than zero, this will lead to L = [37, 73, 145, 

229, 715] bases respectively. By taking a very fine Δu, it can be shown that it is not possible to 

distinguish polynomial bases to groups smaller than what is stated in the second column of Table. 

4.3. Hence, if Δu < 0.1 there would be iterations with negligible change in the expansion; 

furthermore, if Δu > 0.1, number of chosen polynomials may directly jump from 73 to 229 and 

thereby forcing the algorithm to do extra computations because multidimensional bases are located 

on the integer coordinates. Hence, it is feasible to satisfy all bases coordinates using limited 

number of hyperbolas. Here, only 5 hyperbolas are required, and they can be expressed using 

equation 4.5 and hyperbolic factors of u = [u0, 0.5, 0.69, 0.79, 1]; therefore, we call these u values 

as critical hyperbolic factors. 

Next, for u = u0 , we find optimal nodes B0 using linear regression method. Here, B0 is a 37x1 row 

vector and evaluate PC coefficients X0 

A0 X0 = B0  

PC0 = X(t, λ) – X(ESC)(t, λ)  

4.11 



60 

 

= ∑ 𝑋𝑃𝑖=0 i (t) φi (λ) 

Similarly, for u = u1 , we find optimal nodes B1 using linear regression method A1 X1 = B1. Here, 

B1 is a 73x1 row vector and again evaluate PC coefficients 

X(t, λ) = ∑ 𝑋𝑃𝑖=0 i (t) φi (λ)  

Here, P+1 = 73 i.e. 37 old bases + 36 new bases.  

PC1 = X(t, λ) – X(ESC)(t, λ)PC0 +   ∑ 𝑋73𝑖=37 i (t) φi (λ)  

 

Similarly, the process will continue for u2, u3, … un, by expanding information matrix, more 

SPICE simulations and solving for the new set of HPCE coefficients. Therefore, the general form 

of the system of linear algebraic equations at step j can be formulated as: 

Aj Xj = Bj  

where,  

Xj = [ X0 (t), …. , XMj-1] 

Bj = [[ Bj-1]T , …… , X(t,λ(Mj)) ]T 

4.12 

4.13 

4.14 

4.15 
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Statistics for u=0.69 are calculated are plotted in MATLAB and are shown below in Figure 4.5 

and 4.6. 

 

Figure 4.5: Statistics Comparison of transient response at node N1 
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In the above Figure 4.5, middle curve is the mean of standard PC and the mean from the proposed 

predictor-corrector method.  The mean obtained from both of the methods overlap with each other. 

Then, mean +/- 3 standard deviation curves are shown for HPCE (dotted red) and Standard PC 

scheme (dotted blue) which are very similar and are pretty close to each other. Probability density 

function (PDF) of this output is also computed at the time point of maximum standard deviation 

i.e. SDmax = 0.072ns with 40,000 samples and 40 number of bins. The PDF of proposed HPCE 

scheme is shown in red outline curve is compared with PDF of standard PC shown in grey bins. 

The PDF curves are almost similar to each other depicting the accuracy of the method. 

 

Figure 4.6: PDF Comparison at the time point of maximum standard deviation 
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After plotting the statistics of the MWCNT network response, CPU time and speedup is being 

calculated with the formulae stated in previous chapter. Standard deviation error is expressed as: 

SDerror = 
√∑(𝑆𝐷𝑀𝐶 − 𝑆𝐷𝑃𝑟𝑜𝑝𝑜𝑠𝑒𝑑 )2𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠   

Similarly, HPCE model is constructed for different number of shells in MWCNT network for 

u=0.69 and then compared to standard PC method. This is shown below in the following table:  

     Table 4.3: CPU Time and Speedup Comparison of HPCE and Standard PC Method 

Shells Standard PC Proposed Speedup 

CPU Time (s) SD Error CPU Time (s) SD Error 

30 10353.2 1.19E-04 839.35 1.03E-04 12.3x 

35 10624.9 1.19E-04 951.01 1.03E-04 11.2x 

40 11311.3 1.18E-04 1036.55 1.06E-04 10.9x 

45 11640.2 1.21E-04 1081.50 1.01E-04 10.8x 

50 12326.6 1.20E-04 1152.55 1.04E-04 10.7x 

 

Here, the proposed HPCE scheme combined with predictor-corrector method is approximately 12 

times faster for 30 shells than standard PC scheme which is even faster than proposed predictor-

corrector method for same number of shells and same MWCNT example.  As the number of shells 

of MWCNT will increase, the speedup will be saturated to around 10 times than standard PC 

scheme. The accuracy of the statistical responses achieved using the proposed HPCE method gives 

a good agreement with that accomplished using the standard PC metamodel. 

 

 

 

4.16 
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CONCLUSION 

 

With the continuous miniaturization in the latest VLSI technologies, the impact of random 

fabrication process variations and unpredictable operating requirements on the performance of 

integrated circuits can no longer be neglected. In order to overcome such issues, simulation solvers 

to model forward propagation of uncertainties or variations in random processes at the device level 

to the network response are required. The generalized polynomial chaos (PC) theory has evolved 

as a very robust and versatile method for the statistical analysis of high-speed circuits. Typically, 

Polynomial Chaos Expansion (PCE) of the random variables is the most common technique to 

model the unpredictability in the systems. 

In this thesis, an overview of standard and contemporary schemes to analyse parametric 

uncertainty is presented. Then, predictor-corrector polynomial chaos scheme and hyperbolic 

polynomial chaos expansion (HPCE) scheme are being proposed in order to alleviate the poor 

scalability of standard PC approaches which are validated using multi-walled carbon nanotubes 

network as an example. The proposed predictor-corrector method is approximately 3 times faster 

and HPCE method combined with predictor-corrector method is predictor-corrector method 12 

times faster than the standard PC metamodel for MWCNT network having 30 shells. If the 

conducting shells are increased further, then the proposed technique will still be faster than 

standard PC scheme and the speedup will be saturated to approximately 10 times. Furthermore, 

the accuracy of the statistical responses achieved using the proposed methods gives a good 

agreement with that accomplished using the standard PC metamodel. 
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