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The complexity of interacting automata∗

Olivier Gossner† Penélope Hernández‡ Ron Peretz§

November 26, 2015

Abstract

This paper studies the interaction of automata of size m. We char-
acterise statistical properties satisfied by random plays generated by a
correlated pair of automata with m states each. We show that in some
respect the pair of automata can be identified with a more complex au-
tomaton of size comparable to m logm. We investigate implications
of these results on the correlated min-max value of repeated games
played by automata.

1 Introduction

Automata are a central model in Game Theory when it comes to modeling
agents with bounded cognitive abilities (see e.g. Aumann [1981], Abreu and
Rubinstein [1988], Neyman [1997], Ben-Porath [1993]). But how complex are
they? Early on, Neyman [1998] and Kalai and Stanford [1988] noted that if
a repeated game strategy σ includes exactly m continuation strategies, then
m is also the size of the smallest automaton that can implement σ. This
gives a foundation for automaton size as a measure for strategic complexity.
In this paper, we take a different look at the same question by asking: how
complex are phenomena that can be generated by one or several automata?

If we consider an isolated automaton of size m that generates a series of
outputs in an alphabet A, then we know that this sequence is periodic of
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period at most m, and in fact, automata of size m can generate all such se-
quences. Since there are roughly speaking mm such automata and Am � mm

such sequences, the automaton model is not economical when it comes to
describing the behaviour of a single agent. The situation becomes more in-
teresting when looking at interacting automata, which is the issue studied of
this paper. Consider two agents interacting. Agent 1 is represented by an au-
tomaton σ1 of size m and output space A1 while agent 2 uses a repeated game
strategy σ2 with output space A2. The pair (σ1, σ2) generates a sequence of
outputs a1, a2, . . . , at. An outside observer of the sequence who initially does
not know (σ1, σ2), but knows that σ1 is an automaton of size at most m,
forms beliefs at every stage on the next action of σ1. Since σ1 is chosen in a
finite set, the outside observer is, as t grows, eventually able to predict every
action of agent 1. Actually, we show a stronger result. Theorem 2.1, called
the information constraint, holds: the total per stage entropy of the outside
observer’s prediction on agent 1’s action is bounded by the logarithm of the
number of strategies of agent 1.

We prove several results showing that the information constraint is tight.
Since the information constraint is obtained by looking solely at the number
of automata of a given size, these converse results show that automata are
as rich as any other model with the same number of strategies. In terms of
complexity, automata generate phenomena of maximal randomness for the
smallest possible number of strategies. In this sense, automata are a very
economical model, i.e., do not have too many redundancies.

Our first converse result, Theorem 2.2, shows that, for any given distri-
bution of beliefs P of an outside observer on the pair of actions of agents 1
and 2, there exist distributions over automata for agent 1 and strategies for
agent 2 such that the average expected distribution of beliefs of an outside
observer on both agents’ actions between stages 1 and r is arbitrarily close
to P , as long as r is small enough so that the information constraint is sat-
isfied. This result considers an outside observer who observes the actions of
both agent 1 and 2, while the information constraint only considers agent 1’s
action. However, Theorem 2.2 particularized to distributions P in which the
action of agent 2 is a function of the action of agent 1 shows that the infor-
mation constraint provides a tight characterization of the beliefs an outside
observer may have on the actions of an automaton that interacts with an
outside strategy.

How about the complexity of two interacting automata, instead of one
automaton interacting with an arbitrary strategy? Our second converse re-
sult shows that, when both agents are restricted to using automata of size
at most m, the information constraint is tight up to a multiplicative con-
stant that depends on the distribution of beliefs of the outside observer to be
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achieved. In particular, a pair of interacting automata of size m can generate
a large subset of the set of sequences of period less than or equal to m logm.
We observe that m logm is much larger than the period m to which a single
automaton is constrained. In terms of orders of magnitude, the logarithm
of the number of pairs of automata is a constant times m logm, and so is
the logarithm of the number of sequences that can be generated. Therefore,
this result shows that automata are not only a rich model when interacting
with arbitrary strategies, but also when interactions are restricted within the
model.

Therefore, it appears that while an automaton in isolation is unable to
produce much complex phenomena, two interacting automata can. One may
wonder what is the minimal complexity of a stream of inputs that an au-
tomaton requires in order to generate complex phenomena. Our Theorem
2.4 shows that an automaton of size m provided with a deterministic periodic
stream of inputs whose period length is of order logm can generate random
sequences of length of order m logm.

The proof of our impossibility result relies on entropy techniques intro-
duced by Lehrer [1988] and substantially developed by Neyman and Okada
[1999, 2000, 2009] and then pursued by e.g. Gossner et al. [2006] and Peretz
[2012, 2013]. The converse results rely on extensions of the construction of
automata whose states are elements of De Bruijn sequences [Gossner and
Hernández, 2003, 2006]. In contrast to Gossner and Hernández [2003, 2006],
we are not interested here in constructing an automaton that matches a
given sequence, but in the construction of a random automaton or a pair
of automata that achieve desired statistical properties. We rely on a result
proven independently by Ornstein [1970] and Shapira [2007] showing that
the desired property is satisfied when the entropy of the generated sequence
is sufficiently close to the target.

The min-max values of two-player repeated games played by automata
[Ben-Porath, 1993, Neyman, 1985, 1998, Kalai, 1990, Neyman and Spencer,
2010, Neyman, 2008] or by strategies of bounded recall [Lehrer, 1988, Peretz,
2012] is relatively well understood. However, little is known about min-
max values of games played with three or more finite automata, while a few
results have been obtained on three players with bounded recall [see Bavly
and Neyman, 2014, Peretz, 2013]. Our results on the set of random plays
generated by finite automata have natural consequences on the min-max
values of repeated games played by three automata, that was one of the
question which originally motivated our study.

The paper is organised as follows. Section 2 presents the model and the
main results, which are then proven in Section 3. Section 4 examines the
min-max values of repeated games played by finite automata.
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2 Model and statement of the results

Let A1 and A2 be finite action sets for agents 1 and 2, and A = A1 × A2.
It is assumed throughout that |A1|, |A2| ≥ 2. A (pure, reduced) strategy for
agent i ∈ {1, 2} in the repeated interaction is a function from ∪t≥0(A−i)t to
Ai, and the set of strategies for agent i is denoted Σi. A pair of strategies
(σ1, σ2) ∈ Σ1 × Σ2 induces a play (a1, . . . , at, . . .) ∈ AN, where at = (a1

t , a
2
t )

is defined recursively by ait = σi(a−i1 , . . . , a
−i
t−1).

A (reduced) automaton of size m for agent i is given by a state space
S of cardinality m, an initial state q0, an action function f : S → Ai, and
a transition function h : S × A−i → S. An automaton for agent i and a
sequence (a−i1 , . . . , a

−i
t ) ∈ (A−i)t induce a sequence of states q0, q1, . . . , qt given

recursively by

q0,

q1 = h(q0, a
−i
1 ),

...

qt = h(qt−1, a
−i
t ).

Thus, an automaton defines a strategy σi by

σi(a−i1 , . . . , a
−i
t ) = f(qt).

We let Σi(m) be the set of strategies of agent i induced by automata of size
m.

For a compact metric space X, the set of probability measures on X
endowed with the weak-* topology is a compact metric space which is denoted
∆(X). We abbreviate ∆(∆(X)) by ∆∆(X). It is noted that throughout the
paper we mainly consider finitely supported probability measures, so the
weak-* topology does not play a crucial role.

Shannon’s entropy of a probability measure over a finite space, Q ∈ ∆(X),
is the quantity

H(Q) = −
∑
x∈X

Q(x) log (Q(x)) ,

where log = log2 and 0 log 0 = 0 by continuity. The entropy of a random
variable x ∈ X, denoted H(x), is the entropy of its distribution. If x ∈ X
and y ∈ X are two finitely valued random variables H(x, y) denotes the
entropy of the random variable (x, y) ∈ X×Y . The entropy of x conditional
on y is defined by the chain rule H(x|y) = H(x, y) − H(y). The inequality
of conditional entropy asserts that H(x) ≥ H(x|y) ≥ 0, where the first
inequality is equality if and only if x and y are independent. By taking π
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to be a uniform random permutation on X, the inequality of conditional
entropy implies that H(x) = H(π(x)|π) ≤ H(π(x)) = log |X|, with equality
if and only if x has the uniform distribution. The mutual information of x
and y is defined as I(x; y) = H(x) − H(x|y) = I(y;x). By the inequality
of conditional entropy, I(x; y) ≥ 0 with equality if and only if x and y are
independent.

For P ∈ ∆∆(X), we denote the expected entropy of P by

H̄(P) =

∫
H(Q) dP(Q).

A correlated strategy is a probability distribution τ ∈ ∆(Σ1 × Σ2). Such
τ induces a probability distribution Pτ over the set of infinite histories AN.
For any finite history (a1, . . . at−1) such that Pτ (a1, . . . , at−1) > 0 we let

pt,τ (a1, . . . , at−1) = Pτ (at|a1, . . . , at−1),

pit,τ (a1, . . . , at−1) = Pτ (a
i
t|a1, . . . , at−1).

That is, pt,τ (a1, . . . , at−1) and pit,τ (a1, . . . , at−1) represent the beliefs of an out-
side observer on at and on ait given a1, . . . , at−1. We denote by Pt(τ) ∈ ∆∆(A)
and P i

t (τ) ∈ ∆∆(Ai) the laws of the random variables pt,τ (a1, . . . , at−1) and
of pit,τ (a1, . . . , at−1) when (a1, . . . , at−1) is drawn according to Pτ .

Finally, for r ≥ 0, we define the r-stage expected empirical frequency of
beliefs [Gossner and Tomala, 2006, 2007] induced by τ , Pr(τ) ∈ ∆∆(A) and
P ir(τ) ∈ ∆∆(Ai), by

Pr(τ) =
1

r

r∑
t=1

Pt,

P ir(τ) =
1

r

r∑
t=1

P i
t .

Note that we can express H̄(Pr(τ)) = 1
r

∑r
t=1H(at|āt−1) and H̄(P ir(τ)) =

1
r

∑r
t=1 H(ait|āt−1).

Clearly, the sets of all possible Pr(τ) and P ir(τ) when r ≥ 0 and τ is an
unrestricted correlated strategy are dense in ∆∆(A) and ∆∆(Ai) (since any
P ∈ ∆∆(A) can be approximated by an average of Dirac measures Pr =
1
r
(δQ1 + · · · δQr), and such Pr can be implemented by correlated strategies

that play Qi at each stage i = 1, . . . , r independently of the history up to
stage i). Our aim is to investigate what restrictions are imposed on these
sets when either or both strategies are taken among subclasses of bounded
complexity.

By considering the cardinality of Σi(m) we obtain the following constraint
on the possible P ir(τ) when σi is restricted to take values in Σi(m).
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Theorem 2.1 (information constraint). For every m ∈ N, τ ∈ ∆(Σ1(m) ×
Σ2), and r ∈ N,

H̄(P1
r (τ))

|A2| − 1
≤ m logm+ o(m logm)

r
.

Our main effort is dedicated to obtaining converse results showing that
the bounds provided by the information constraint are tight. In order to state
possibility results precisely, it will be convenient to consider a metric that
induces the weak-* topology on ∆∆(A). The Wasserstein metric d̄ serves this
purpose. Let 〈X, d〉 be a metric space, e.g., 〈∆(A), ‖·‖1〉. For P, P ′ ∈ ∆(X),
the d̄ distance between P and P ′ is defined by

d̄(P, P ′) = inf
Q∈∆(X×X),Q1=P,Q2=P ′

∫
d(x, y) dQ(x, y),

where Q1 and Q2 denote the first and second marginals of Q respectively.
We are now in a position to state our first converse result to Theorem

2.1.

Theorem 2.2. For every P ∈ ∆∆(A) and ε > 0 there exists r0 ∈ N such
that for every r ≥ r0 there exists m ∈ N and τ ∈ ∆(Σ1(m)× Σ2) such that

H̄(P)

|A2| − 1
+ ε ≥ m logm

r

and
d̄(P ,Pr(τ)) < ε.

Theorem 2.2 shows that the information constraint of Theorem 2.1 is
tight when particularized to distributions P such that H̄(P) = H̄(P1), i.e.,
H(a2|a1) = 0 (P a.s.). In terms of expected distributions of beliefs, the
set of strategies Σ1(m) is as rich as any other set of strategies of the same
cardinality can be. A natural question to ask is whether this richness still
holds when the set in which σ2 is chosen is also restricted.

In order to address this question we restrict both agents to strategies
implementable through finite automata of size m. The information constraint
shows that for every correlated τ ∈ ∆(Σ1(m)× Σ2(m)),

max
i∈{1,2}

{
H̄(P−ir (τ))

(|Ai| − 1)

}
≤ m logm+ o(m logm)

r
.

The next theorem asserts that the above bound is tight up to a constant
multiplier that depends on P . It shows that the information constraint is
tight even when agent 2’s strategy comes from the same (space) complexity
class as that of agent 1.
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Theorem 2.3. For every P ∈ ∆∆(A) there exists C(P) > 0 such that for
every ε > 0 there exists r0 ∈ N such that for every r ≥ r0 there exist m ∈ N
and τ ∈ ∆(Σ1(m)× Σ2(m)) such that

C(P) + ε ≥ m logm

r

and
d̄(P ,Pr(τ)) < ε.

Note that C(P) does not depend on ε. It does, however, depend on P .
Whether one could replace C(P) by a constant that does not depend on P
(but rather just on A) is unknown. The information constraint implies that

we cannot replace C(P) by a constant C < maxi∈{1,2}

{
log(|A−i|)
|Ai|−1

}
.

The next theorem provides a sense in which the information constraint
is still tight under two further restrictions. First, the strategy of agent 2 is
pure, i.e. constant on the support of τ . In particular, the strategies of 1 and
2 are now independent. Second, agent 2 uses a strategy in a much smaller
space than Σ2(m), namely the space of periodic sequences1 of period at most
O(logm). On the other hand, Theorem 2.4 considers only the distribution
of predictions of agent 1, and not of both 1 and 2’s actions. In this result,
the sequence of actions of agent 2 can be considered a “source” which, albeit
deterministic, allows agent 1 to look more unpredictable from the point of
view of an outside observer.

To fix notations, for x > 0 we denote by A2
p(x) the set of sequences of

period at most x and identify each sequence (a2
t ) ∈ A2

p(x) with the strategy
σ2 given by σ2(a1

1, . . . , a
1
t−1) = a2

t for every (a1
1, . . . , a

1
t−1).

Theorem 2.4. For every P1 ∈ ∆∆(A1) there exist C = C(P1) > 0 such
that for every ε > 0 there exists r0 ∈ N such that for every r ≥ r0 there exist
m ∈ N and τ ∈ ∆(Σ1(m))× A2

p(C logm) such that

H̄(P1)

|A2| − 1
+ ε ≥ m logm

r

and
d̄(P1,P1

r (τ)) < ε.

1Or, equivalently, in the space of oblivious automata of size at most O(logm), i.e. those
that ignore the actions of the other agent.
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3 Proofs of the Main Results

3.1 Information constraint

Theorem 2.1 is a consequence of the following upper bound on the number
of finite automata.

Lemma 3.1.
|Σi(m)| ≤ m(|A−i|−1)m+o(m).

Proof. All elements of Σi(m) are induced by automata with state space
{1, . . . ,m}, thus are described by q0 ∈ {1, . . . ,m}, f : {1, . . . ,m} → Ai,
and h : {1, . . . ,m} × A−i → {1, . . . ,m}. This gives m|Ai|mm|A−i|m differ-
ent descriptions. Since strategies are invariant to permutations of states in
{1, . . . ,m}, by Stirling approximation, we have:

|Σi(m)| ≤ |Ai|mm|A−i|m/(m− 1)! = m(|A−i|−1)m+o(m).

To complete the proof of Theorem 2.1 we rely on a slight generalization
of a result due to Neyman and Okada [Neyman and Okada, 1999, Section 5]
showing that the strategic entropy of a strategy is at most its entropy:

Lemma 3.2. Let τ ∈ ∆(Σ′1 × Σ2), where Σ′1 is any finite set and r ≥ 1,
then,

H̄(P1
r (τ)) ≤ 1

r
log
∣∣Σ′1∣∣ .

Proof. Let τ ∈ ∆(Σ′1×Σ2) be a correlated strategy. Denote by σ = (σ1, σ2) a
random variable with values in Σ′1×Σ2 with distribution τ and by a1, . . . , ar,
where at = (a1

t , a
2
t ), the play induced by σ. We abbreviate āit := ai1, . . . , a

i
t

(i = 1, 2), and āt := (ā1
t , ā

2
t ). By the chain rule of entropy, the inequality

of conditional entropy, and the fact that ā1
t is a function of ā2

t−1 and σ1, we
have:

r∑
t=1

H(a1
t |āt−1) +H(a2

t |āt−1, a
1
t ) = H(ār)

≤ H(σ1, ā2
r) = H(σ1) +H(ā2

r|σ1)

= H(σ1) +
r∑
t=1

H(a2
t |āt−1, a

1
t , σ

1).
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And therefore:

H̄(P1
r (τ)) =

1

r

r∑
t=1

H(a1
t |āt−1) ≤ 1

r
H(σ1) ≤ 1

r
log
∣∣Σ′1∣∣ .

Theorem 2.1 is an immediate consequence of Lemmata 3.1 and 3.2.

3.2 Concatenable strategy pairs

The proofs of Theorems 2.2, 2.3, 2.4 rely on the construction of adequate
automata. These constructions are built in blocks, and larger automata are
obtained by concatenation of smaller ones. We introduce a condition that
ensures that such concatenations can be implemented by automata of size
equal to the sum of the smaller ones.

We say that a pair given by an automaton σ1 of agent 1 and a strategy σ2

of agent 2 is r-concatenable if there exists a transition (s1, a2) such that, in
the play induced by σ1 and σ2, the first hitting time of (s1, a2) is r. We denote
by (Σ1(m1)×Σ2)r the subset of Σ1(m1)×Σ2 consisting of all r-concatenable
pairs formed by an automaton of agent 1 of size m1 and a strategy of agent
2.

A pair of automata (σ1, σ2) is r-concatenable if there exists a pair of
transitions (s1, a2) for σ1 and, (s2, a1) for σ2 such that, in the play induced
by σ1 and σ2, the first hitting time of both (s1, a2) and of (s2, a1) is r. We
denote by (Σ1(m1)× Σ2(m2))r the subset of Σ1(m1)× Σ2(m2) consisting of
all r-concatenable pairs of automata σ1 of size m1 and σ2 of size m2.

A pair given by an automaton σ1 of agent 1 and an r-periodic sequence of
actions ā2 = a2

1, . . . , a
2
r, a

2
1 . . . of agent 2 is r-concatenable if there exists a state

s1 of σ1 such that, in the play induced by σ1 and ā2, the first hitting time of
(s1, a2

r) is r. We denote by (Σ1(m1)×A2
p(m

2))r the subset of Σ1(m1)×A2
p(m

2)
consisting of all r-concatenable pairs formed by an automaton of agent 1 of
size m1 and a periodic sequence of actions of agent 2 whose period is at most
m2 (in particular, the period must divide r).

An r′-concatenable pair of an automaton and another strategy can be
concatenated to an r′′-concatenable such pair by redirecting the last transi-
tion of the former automaton to the initial state of the latter automaton. The
result is an r′+ r′′-concatenable pair whose automaton size is the sum of the
sizes of the two automata. This idea is formally expressed by the following
three lemmata.
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Lemma 3.3 (Concatenation Lemma 1). Let (σ1
k, σ

2
k)1≤k≤n be a family of

strategy pairs such that for every k, (σ1
k, σ

2
k) ∈ (Σ1(m1

k) × Σ2(m2
k))

rk . Let
r =

∑
k rk, m1 =

∑
km

1
k, and m2 =

∑
km

2
k. Then, there exists a strategy

pair (σ1, σ2) ∈ (Σ1(m1)× Σ2(m2))r such that the play induced by (σ1, σ2) is
the concatenation of the length rk plays induced by (σ1

k, σ
2
k)1≤k≤n respectively.

Lemma 3.4 (Concatenation Lemma 2). Let (σ1
k, σ

2
k)1≤k≤n be a family of

strategy pairs such that for every k, (σ1
k, σ

2
k) ∈ (Σ1(m1

k) × Σ2)rk . Let r =∑
k rk, and m1 =

∑
km

1
k. Then, there exists a strategy pair (σ1, σ2) ∈

(Σ1(m1)×Σ2)r such that the play induced by (σ1, σ2) is the concatenation of
the length rk plays induced by (σ1

k, σ
2
k)1≤k≤n respectively.

Lemma 3.5 (Concatenation Lemma 3). Let (σ1
k)1≤k≤n be a family of strate-

gies for agent 1 and ā2 an m2-periodic sequence for a agent 2. Suppose that
for every k, (σ1

k, ā
2) ∈ (Σ1(m1

k) × A2
p(m

2))rk . Let r =
∑

k rk, m
1 =

∑
km

1
k.

Then, there exists a strategy σ1 for agent 1 such that (σ1, ā2) ∈ (Σ1(m1) ×
A2
p(m

2))r and the play induced by (σ1, ā2) is the concatenation of the length
rk plays induced by (σ1

k, ā
2)1≤k≤n respectively.

The next lemma, Lemma 3.6, utilises the concatenation lemmata in order
to reduce Theorems 2.2, 2.3, and 2.4, to considering only r’s in a sequence
that does not increase too fast. Formally, Lemma 3.6 consists of three lem-
mata, referring to the three theorems. Since the three lemmata are very
similar both in their formulation and in their proofs, we state and prove
them as one result.

Lemma 3.6. Let {mk}, {rk}∞k=1 be sequences of natural numbers, and let
τk ∈ ∆(Σ1(mk)×Σ2)rk (respectively, ∆(Σ1(mk)×Σ2(mk))

rk , or ∆(Σ1(mk)×
A2
p(f(mk)))

rk for some non-decreasing f : N → N and with pure marginal
τ 2
k ).

If

(i) supk∈N rk =∞, and

(ii) supk∈N
rk+1

rk
<∞,

then, for every P ∈ ∆∆(A) and every ε > 0 there exists r0 ∈ N such that for
every r > r0 there are r′ ≤ r, m ∈ N, and τ ∈ ∆(Σ1(m),Σ2)r

′
(respectively,

∆(Σ1(m)× Σ2(m))r
′
, or ∆(Σ1(m)× A2

p(f(m)))r
′

with τ 2 pure) satisfying

(a) τ is the concatenation of
⌊
r
rk

⌋
independent copies of τk, for some k ∈ N,

(b) r′ =
⌊
r
rk

⌋
· rk > (1− ε)r,
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(c) m =
⌊
r
rk

⌋
·mk,

(d) m logm
r′

< lim supk→∞
mk logmk

rk
+ ε,

(e) d̄(P ,Pr′(τ)) < lim supk→∞ d̄(P ,Prk(τk)) + ε.

Proof. Assume w.l.o.g. that {rk} is increasing (otherwise consider an increas-
ing sub-sequence). Let P ∈ ∆∆(A), 1 > ε > 0, and k0 ∈ N (later, k0 will be
assumed to be sufficiently large). Let r0 = dε−1rk0e. For r ≥ r0, let k be the

largest integer such that rk ≤ εr. Let C = supk∈N
rk+1

rk
. Let r′ = rk

⌊
r
rk

⌋
. It

follows that
r′ > (1− ε)r.

Let τk be the strategy assumed by the lemma. Set τ to be the concate-

nation of
⌊
r
rk

⌋
independent copies of τk. It follows that

Pr′(τ) = Prk(τk),

and so, choosing k0 large enough ensures the requirement

d̄(P ,Pr′(τ)) < lim sup
k→∞

d̄(P ,Prk(τk)) + ε.

Let m =
⌊
r
rk

⌋
mk. The concatenation lemma ensures that τ ∈ ∆(Σ1(m)×

Σ2)r
′
. Respectively, τ ∈ ∆(Σ1(m) × Σ2(m))r

′
, or ∆(Σ1(m) × A2

p(f(m)))r
′

with τ 2 pure. The latter holds because m ≥ mk, f is non-decreasing, and
the definition of Ap(x) requires that the period is at most x.

It remains to verify that m logm
r′

< lim supk→∞
mk logmk

rk
+ ε, for an appro-

priate choice of k0. Since Crk ≥ rk+1 > εr ≥ εr′, we have
⌊
r
rk

⌋
= r′

rk
< ε−1C.

Therefore,
m logm

r′
<
mk logmk

rk
+
mk

rk
log(ε−1C).

Assuming lim supk→∞
mk logmk

rk
<∞, for any k large enough, we have mk logmk

rk
<

lim supk→∞
mk logmk

rk
+ ε

2
and mk

rk
log(ε−1C) < ε

2
.

3.3 Building blocks

We define a few building blocks that will be used in the construction of the
strategies required for Theorems 2.2, 2.3, and 2.4 . For l ∈ N and x ∈ (A)l,
the empirical frequency, emp(x) ∈ ∆(A), is defined by

emp(x)(a) =
1

l
|{t ∈ [l] : xt = a}| ,

11



where [n] := {1, . . . , n}.
For a rational distribution Q over A, we let TQ(l) be the set of sequences

of elements of A of length l with empirical frequency Q. We say that l is
a common denominator of Q if TQ(l) 6= ∅. We use the fact that if l0 is a
common denominator of Q, then [Cover and Thomas, 2006, Chapter 11]

log |TQ(l0)|
l0

≤ H(Q), and

lim
u→∞

log |TQ(ul0)|
ul0

= H(Q).

(3.1)

Throughout, an alphabet is a set that contains at least two distinct ele-
ments. A De Bruijn sequence of order k over a finite alphabet B is a |B|k-
periodic sequence of B symbols x1, x2, . . ., such that for every (b1, . . . , bk) ∈
Bk there exists a unique 1 ≤ t ≤ |B|k such that (b1, . . . , bk) = (xt, . . . , xt+k−1).
The existence of De Bruijn sequences was shown, e.g., by de Bruijn [1946]
through the existence of Eulerian cycles in De Bruijn’s graph.

The empirical frequency of De Bruijn sequences is always uniform. In
order to obtain sequences with similar properties, but whose empirical fre-
quency is arbitrary we define De Bruijn sequences over compound alpha-
bets. For l ≥ 1, let Y be a subset of Bl with at least two distinct element,
called the set of words. A compound De Bruijn sequence of order k over
Y is an l|Y |k-periodic sequence of B elements obtained by the concatena-
tion of the |Y |k words forming a De Bruijn sequence of order k over the
alphabet Y . It is, therefore, an l|Y |k-periodic sequence x1, x2, . . . of elements
in B such that for every sequence (y1, . . . , yk) ∈ Y k, there exists a unique
1 ≤ j ≤ |Y |k such that (y1 · · · yk) = (xjl+1, . . . , xjl+kl) (where uv denotes the
concatenation of u and v). The item xt ∈ B is the t-th element, while we call
yj = (xjl+1, . . . , xjl+l) ∈ Bl the j-th word, and (yj, . . . , yj+k−1) ∈ Bkl the j-th
block. When Y = TQ(l), the compound De Bruijn has empirical frequency
Q.

The following definition provides a simple upper bound on the amount
of information needed to describe a finite string of symbols given another
string. We define a variant of Levenshtein’s edit distance. For a set X we
let X<∞ be the set of finite sequences of elements of X. Given a finite
alphabet B, the simple edit operations on B<∞ are the following 2|B| + 2
operations: appending one symbol at the end or the beginning of a string,
and deleting the first or last element of a string. We define the simple edit
distance between two words w, u ∈ B<∞, denoted e(w, u), to be the minimal
number of simple edit operations needed in order to transform w to u. As
usual, the distance between a string w and a set of strings K, e(w,K), is the

12



minimal distance between w and some u ∈ K. Note that, up to a multiplier
of log(2|B| + 2), the simple edit distance is an upper bound on the amount
of information content of one string given another string.

The strategies required for Theorems 2.2, 2.3, and 2.4 all have a common
structure. We next describe the common structure of the random plays
induced by these strategies.

Definition 3.7. Let Y ⊂ Al, for some l ≥ 1. A random enumeration
scheme over Y is a sequence of tuples 〈Lk, Gk〉∞k=1, where for every k, Lk =
(w1, . . . , w|Lk|) is a finite sequence of strings in A<∞ and Gk is a group of
permutation on [|Lk|]. In addition, there is a constant C (that does not
depend on k) such that

(i) | {s ∈ [|Lk|] : ws = wt} | ≤ C ∀t ∈ [|Lk|],

(ii) e(wt, Y
k) ≤ C ∀t ∈ [|Lk|],

(iii) |Y |k/|Lk| ≤ C,

(iv)
(
|Lk|!
|Gk|

) 1
|Lk| ≤ C,

for all k ∈ N.

Each element of the group Gk acts on the sequence Lk by re-ordering its
elements. That is, every π ∈ Gk transforms Lk into

(wπ(1), . . . , wπ(|Lk|)).

When π ∈ Gk is random and uniformly distributed, the corresponding
random sequence ā(k) := wπ(1) · · ·wπ(|Lk|) is called the induced random play.

Informally, the idea is that Lk is approximately an enumeration of Y k and
Gk contains a substantial portion of all the permutations of Lk, so that the
induced random play ā(k) approximates a sequence of i.i.d. random variables
drawn uniformly from Y . The two processes are similar in two ways: they
produce similar sequences and they have similar entropy rates. Since for
each element wt of Lk, e(wt, Y

k) ≤ C, wt is almost entirely composed of a
concatenation of strings from Y , and hence so is ā(k). The next lemma says
that the entropy rate of ā(k) is also similar to that of a uniformly distributed
independent sequence of Y -valued random variables.

Lemma 3.8. Let 〈Lk, Gk〉∞k=1 be a random enumeration scheme over a com-
pound alphabet Y ⊂ Al. Let rk be the total length of the random play ā(k).
Then,

lim inf
k→∞

1

rk
H(ā(k)) ≥ log |Y |

l
.

13



Proof. Let π be a uniformly random permutation from Gk, and ā(k) =
a1, . . . , ark the corresponding induced play. We first estimate 1

rk
H(π) and

then compare it to 1
rk
H(ā(k)).

Let C be as in Definition 3.7. Since the length of any word in Lk is at
least kl − C and at most kl + C, we have

|Lk|(kl − C) ≤ rk ≤ |Lk|(kl + C).

Since |Gk| ≥ C−|Lk||Lk|! and |Lk| ≥ C−1|Y |k,

1

rk
H(π) =

1

rk
log(|Gk|) ≥

log(|Lk|!)
rk

− |Lk| logC

rk
≥ log(|Lk|!)
|Lk|(kl + C)

− logC

kl + C

≥ log(|Lk|)(1− o(1))

kl + C
≥ k log(|Y |)(1− o(1))

kl + C
≥ log |Y |

l
(1− o(1)).

We now compare 1
rk
H(ā(k)) to 1

rk
H(π) by coupling ā(k) with additional

random variables of low entropy, such that π can be read off from ā(k) and
the additional random variables. Recall that

ā(k) = wπ(1)wπ(2) · · ·wπ(|Lk|),

where Lk = (w1, w2, . . . , w|Lk|). Denote by |w| the length of the word w. For
each j ∈ [|Lk|], let

bj = |wπ(j)|, and

cj =
∣∣{i < π(j) : wi = wπ(j)

}∣∣ .
Note that from ā and b1, . . . , b|Lk| one can read off the words wπ(1), . . . , wπ(|Lk|),
and further from c1, . . . , c|Lk| the permutation π itself. Notice that the se-
quence w1, . . . , w|Lk| is not random, and therefore is treated as given infor-
mation. The values of each bj range between kl − C and kl + C, and the
values of each cj are in [C]. It follows that

1

rk
H(ā(k)) ≥ 1

rk
H(π)− 1

rk

[
H(b1, . . . , b|Lk|) +H(c1, . . . , c|Lk|)

]
≥ log |Y |

l
(1− o(1))− |Lk|

rk
log((2C + 1)C) ≥ log |Y |

l
(1− o(1)).

We now describe a framework within which one can construct schemes
of automata that are naturally associated with certain random enumeration
schemes.

14



Definition 3.9. A De Bruijn automaton scheme for agent i is a tuple Ξ =〈
P , l,

{
x(k), Lk, (st(k), zt(k), a−it (k))

|Lk|
t=1 , Gk

}∞
k=1

〉
where

• P =
∑

j qjδQj
∈ ∆∆(A) is a finitely supported rational distribution

over rational beliefs.

• l ∈ N is such that each lj := qjl is a common denominator of Qj (in
particular, lj is an integer).

Let Y =×j
TQj(lj). For every k ∈ N,

• x = x(k) = (x1, . . . , xmk
) is a compound De Bruijn sequence of order k

over Y , where mk = l|Y |k.

• Lk = (w1, . . . , w|Lk|) is a sequence ofA-words such that supk∈Nmk/|Lk| <∞.

• For t = 1, . . . , |Lk|,

– st = st(k) ∈ [mk],

– zt = zt(k) ∈ [lk] \ [l(k − 1)], and

– a−it = a−it (k) ∈ A−i \
{
x−ist
}

,

such that
wt = xst−zt · · ·xst−1 (xist , a

−i
t ),

and (st, a
−i
t ) 6= (st′ , a

−i
t′ ) for all t 6= t′.

• Gk is a group of permutations on [|Lk|], with supk∈N

(
|Lk|!
|Gk|

) 1
|Lk| <∞.

Definition 3.10. Given a De Bruijn automaton scheme Ξ, an automaton
σiΞ(k) ∈ Σi(mk) is defined by2:

• the state space [mk];

• the initial state s1 − z1 mod mk;

• the action function f(s) = xis;

• the transition function

h(s, a−i) =


s+ 1 mod mk if a−i = x−is ,

st+1 − zt+1 mod mk if s = st and a−i = a−it for some t ∈ [|Lk|],
unspecified otherwise.

2Here and throughout, s mod m is defined as the number in [m] which is equal to s
modulo m.
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A transition of the first type is called a +1 transition and a transition of the
second type a jump transition.

Note that the jump transitions are well defined, since it is assumed that
the pairs (st, a

−i
t ) are distinct.

The rest of Section 3.3 presents relevant properties of random enumera-
tion schemes. For readability, the De Bruijn automaton schemes are assumed
to be for agent 1. Of course, similar properties hold for random enumeration
schemes for agent 2.

With the notation of Definition 3.9, the concatenation of the elements of
Lk is denoted

āΞ(k) = w1w2 · · ·w|Lk|.

The next lemma ensures that the strategy σ1
Ξ(k) generates the desired play

āΞ(k), has the necessary concatenability properties, and provides the relevant
upper bound on the state space cardinality.

Lemma 3.11. Let Ξ =
〈
P , l,

{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉
be

a De Bruijn automaton scheme for agent 1, then:

(i) the induced strategy σ1
Ξ(k) is consistent with the play āΞ(k),

(ii) the induced strategies σ1
Ξ(k) coupled with (any strategy consistent with)

āΞ(k) is rk-concatenable, and

(iii) lim supk→∞
mk logmk

rk
≤ H̄(P) lim supk→∞

mk

|Lk|
.

Proof. Part (i) follows from the definition of σ1
Ξ(k). In the beginning and

after each jump transition, σ1
Ξ(k) is in state st − zt. In the next zt+1 periods

āΞ(k) prescribes the action profiles (xst−zt+j−1 : j ∈ [zt]). Provided σ1
Ξ(k) is

at state st− zt + j− 1 it plays x1
st−zt+j−1, as required. Provided agent 2, too,

plays as required, x2
st−zt+j−1, a “+1” transition to st − zt + j occurs. After

zt steps, σ1
Ξ(k) is at state st. At that time āΞ(k) prescribes the action profile

(x1
st , a

2
t ). If agent 2 plays a2

t , then a jump transition to st+1 − zt occurs, and
the result follows by induction on t.

Part (ii) holds since the play ends at a jump transition and each jump
transition occurs at most once by Definition 3.9.

For Part (iii) note that rk =
∑|Lk|

t=1 zt + 1 ≥ |Lk|(k − 1)l. Thus,

mk logmk

rk
≤ logmk

kl

k

k − 1

mk

|Lk|
.

16



It remains to show that lim sup logmk

kl
≤ H̄(P). Recall that mk = l|Y |k. Since

log |Y | =
∑

i log |TQi(li)| ≤
∑

i liH(Qi) = lH̄(P),

logmk

kl
=

log |Y |
l

+
log l

kl
≤ H̄(P) +

log l

kl
−−−→
k→∞

H̄(P).

A permutation π ∈ Gk acts on the k-th component of Ξ by transforming
Lk = (w1, . . . , w|Lk|) into (wπ(1), . . . , wπ(|Lk|)), st into sπ(t), zt into zπ(t), and a2

t

into a2
π(t) for t = 1, . . . , |Lk|. This transformation defines another De Bruijn

automaton scheme denoted π.Ξ. The following lemma describes the relation
between De Bruijn automaton schemes and random enumeration schemes.

Lemma 3.12. Let

Ξ =

〈
P =

∑
j

lj
l
δQj

, l,
{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉

be a De Bruijn automaton scheme for agent 1. Then:

(i) 〈Lk, Gk〉∞k=1 is a random enumeration scheme over Y =×j
TQj(lj), and

(ii) σ1
π.Ξ is consistent with the play wπ(1)wπ(2) · · ·wπ(|Lk|) (where Lk = (w1, w2, . . . , w|Lk|)).

Proof. Part (ii). By the definition of π.Ξ,

āπ.Ξ(k) = wπ(1)wπ(2) · · ·wπ(|Lk|).

By Lemma 3.11, σ1
π.Ξ is consistent with āπ.Ξ(k).

Part (i). We need to verify (i)-(iv) from Definition 3.7. (iii) and (iv) follow
from Definition 3.9, since mk = l|Y |k and supk∈Nmk/|Lk| <∞.

We prove (ii). Let Lk = (w1, . . . , w|Lk|). Each word wt consists of zt
consecutive elements xst−zt , . . . , xst−1 of x followed by a single symbol. Since
|zt−kl| ≤ l, there is some block B = [(u+k)l]\ [ul] such that the symmetric
difference between B and {st − zt, . . . , st − 1} is at most 2l; therefore the
simple edit distance between wt and xB is at most 2l + 1. (ii) then holds
since xB ∈ Y k.

We finally show (i). We must bound from above the multiplicity of el-
ements in Lk. Fix a mapping t 7→ B(t) as described above, i.e., B(t) =
[(u+ k)l] \ [ul] such that st ∈ [(u+ k)l] \ [(u+ k− 1)l]. We must bound from
above

max
t0∈[|Lk|]

| {t : wt = wt0} |,
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which is clearly not more than(
max
B
| {t : B(t) = B} |

)(
max
t0∈[|Lk|]

| {B(t) : wt = wt0} |
)
.

We bound each one of the above factors from above by functions of l and |A|
that do not depend on k. We begin with the first factor, the number of indices
t mapped to any given block B. Since st ∈ [(u+k)l]\ [(u+k−1)l], there are
only l possible values for st. Since each (st, a

2
t ) is unique, the multiplicity of

each st is at most |A2| − 1; therefore the number of indices mapped to any
given B is at most l(|A2| − 1).

Now, fix t0 ∈ [|Lk|]. We bound from above the cardinality of {B(t) : wt = wt0}.
Since the simple edit distance between wt and xB(t) is at most 2l+ 1, for any
t, we have that if wt = wt0 then xB(t) belongs to the ball of radius 4l + 2
around xB(t0). Since the size of that ball is a function of l and |A| (but not k)
and since xB determines B, the cardinality of {B(t) : wt = wt0} is bounded
(by a function of l and |A|).

A De Bruijn automaton scheme allows us to implement a random play
with certain properties. Lemma 3.13 shows that these properties guarantee
that the expected distribution of beliefs induced by the play is close to the
target distribution P .

Lemma 3.13. Let Ξ be a De Bruijn automaton scheme for agent 1 and
P =

∑n
i=1 qiδQi

. Let rk be the length of āΞ(k). For every k ∈ N, let ā(k) =
āπ.Ξ(k) be the random play obtained by taking a uniform random permutation
π ∈ Gk. The corresponding mixture of strategies σ1

π.Ξ(k) coupled with any
āπ.Ξ(k) consistent strategies for agent 2 defines a correlated strategy τk.

(i) The play induced by τk is ā(k).

(ii) The strategy τk is in ∆(Σ1(mk)× Σ2)rk .

(iii) Let Q ∈ ∆(A× [n]) be given by Q(a, i) = qiQi(a). The random play ā =
ā(k) can be coupled with a random [n]-valued sequence b̄ = b1, . . . , brk ,
such that

• limk→∞
∥∥Q− E

[
emp(ā, b̄)

]∥∥ = 0,

• limk→∞
1
rk
H(b̄) = 0.

(iv) lim infk→∞
1
rk
H(ā(k)) ≥ H̄(P) − f(l), where f(l) → 0, as l → ∞, and

f depends only on P.
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(v) lim supk→∞
mk logmk

rk
≤ H̄(P) lim supk→∞

mk

|Lk|
.

Proof. Parts (i), (ii), and (v) immediately follow from Lemmata 3.11 and
3.12.

We prove Part (iv). Lemma 3.12(i) says that 〈Lk, Gk〉∞k=1 is a random enu-
meration scheme over Y ; therefore, by Lemma 3.8, lim infk→∞

1
rk
H(ā(k)) ≥

log|Y |
l

. By Equation (3.1), liml→∞
log|Y |
l

= H̄(P).
It remains to verify Part (iii). Associate with any state of s ∈ [mk] a

number i = i(s) ∈ [n], defined by

s ∈ [l1 + . . .+ li] \ [l1 + . . .+ li−1] mod l.

Recall that the induced play is of the form ā = w1w2 · · ·w|Lk|, where wt =
(xs1t−zt , . . . , xst−1, at), for some at ∈ A. Let bt = i(st − zt) · · · i(st − 1) 1, and

b̄ = (b1, b2, . . . , b|Lk|). Since |wt| = |bt| = zt + 1 > (k − 1)l, and since the em-
pirical distribution of any word xtl+1 . . . xtl+l coupled with i(tl+1) . . . i(tl+ l)
is Q, ‖emp(wt, bt)−Q‖ = O(k−1); therefore

∥∥Q− E
[
emp(ā, b̄)

]∥∥ = O(k−1).
The sequence b̄ can be read off from the random variables {zt} and

{st mod l}, t = 1, . . . , |Lk|. Since these random variables take values in
sets of size l,

1

rk
H(b̄) ≤ 1

rk
H(zt, st mod l : 1 ≤ t ≤ |Lk|) ≤

2|Lk| log l

rk
≤ 2 log l

(k − 1)l
→ 0,

as k →∞.

3.4 Information criterion

The following lemma will allow us to determine whether a distribution of
beliefs is d̄-close to a target Dirac distribution.

Lemma 3.14. Let A be a finite set and H : ∆(A) → R continuous and
strictly concave. For every ε > 0 there is δ > 0 such that for every Q ∈ ∆(A)
and P =

∑
i qiδQi

∈ ∆∆(A), if

(i) ‖Q−
∑

i qiQi‖ < δ, and

(ii)
∑

i qiH(Qi) > H(Q)− δ,

then
d̄(δQ,P) < ε.
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Lemma 3.14 has been shown by several authors independently, see for
instance Lemma 1 in Ornstein [1970] and Lemma 22 in Shapira [2007].

A distribution over beliefs can be represented by a pair of random vari-
ables. Let x be a random variable taking values in a finite set X. Define
p(x) ∈ ∆∆(X) to be the Dirac measure supported on the distribution of x.
For an event of positive probability E, define p(x|E) ∈ ∆∆(X) to be the
Dirac measure supported on the distribution of x conditional on E. Let y
be another random variable taking values in a finite set Y . The distribution
over beliefs p(x|y) ∈ ∆∆(X) is defined by∑

y∈Y

P(y = y)p(x|y = y).

Lemma 3.14 implies that for every ε > 0 there is δ = δ(ε, |X|), such that

I(x; y) < δ ⇒ d̄(p(x), p(x|y)) < ε.

Let z be a third random variable. By Markov’s inequality we have

I(x; y|z) < δ2 ⇒ d̄(p(x|z), p(x|y, z)) < ε+ δ. (3.2)

Explanation: assume the left hand side of (3.2) holds. Let Z = {ζ : I(x; y|z = ζ) < δ}.
By Markov’s inequality, P(z /∈ Z) ≤ δ−1I(x; y|z) < δ. For every ζ ∈ Z, there
is a couplingQζ ∈ ∆(∆(X)×∆(X)) with marginals p(x|z = ζ) and p(x|y, z =
ζ), such that

∫
‖x− y‖ dQζ(x, y) < ε. For ζ 6∈ Z, let Qζ ∈ ∆(∆(X)×∆(X))

be an arbitrary coupling of p(x|z = ζ) and p(x|y, z = ζ). The distribution
Q =

∑
ζ P(z = ζ)Qζ is a coupling of p(x|z) and p(x|y, z), and∫

‖x− y‖ dQ(x, y) =
∑
ζ∈Z

∫
‖x− y‖ dQζ(x, y)

< P(z ∈ ζ)ε+ P(ζ 6∈ Z) < ε+ δ.

Lemma 3.15 (Information Criterion). Let A be a finite alphabet. For every
ε > 0 there is δ > 0 such that for every n ≥ 1, every Q ∈ ∆(A× [n]), every
r > 0, and every random play ā = a1, . . . , ar, if ā can be coupled with an
[n]-valued random sequence b̄ = b1, . . . , br such that

(i)
∥∥Q− E

[
emp(ā, b̄)

]∥∥ < δ,

(ii) 1
r
H(ā|b̄) > H(x|y)− δ, where (x, y) ∼ Q,

(iii) 1
r
I(ā; b̄) < δ,
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then
d̄(p(x|y),Pr(ā)) < ε.

Note that the conclusion of Lemma 3.15 refers to the distribution of beliefs
of an observers who observes only ā and does not observe the auxiliary ran-
dom variable b̄. Also note that the case of n = 1 is equivalent to Lemma 3.14
by setting P = Pr(ā).

Proof. Since the mapping that maps the distribution of (x, y) to p(x|y) is
continuous as a function form ∆(A× [n]) to ∆∆(A), we may assume w.l.o.g.
that E[emp(ā, b̄)] = Q. Let ε > 0. By (3.2) we can take δ > 0 such that

I(a; b|c) < δ ⇒ d̄(p(a|c), p(a|b, c)) < 1
2
ε,

for any random variables a, b, c, where a takes values in A.
Let t be a random variable uniformly distributed in [r] independently of

(ā, b̄). Let Ht = a1, . . . , at. Note that (at, bt) ∼ Q, and Pr(ā) = p(at|Ht−1, t).
By the triangle inequality

d̄(p(at|bt), p(at|Ht−1, t)) ≤ d̄(p(at|bt), p(at|bt,Ht−1, t))

+d̄(p(at|bt,Ht−1, t), p(at|Ht−1, t)).

By the choice of δ, the proof will be concluded if we prove two inequalities:

I(at;Ht−1, t|bt) < δ, (3.3)

I(at; bt|Ht−1, t) < δ. (3.4)

For (3.3):

I(at;Ht−1, t|bt) = H(at|bt)−H(at|Ht−1, t, bt)

≤ H(at|bt)−H(at|Ht−1, t, b̄)

= H(at|bt)−
1

r
H(ā|b̄)

< δ

where the last inequality is provided by condition (ii) of the lemma.
For (3.4):

I(at; bt|Ht−1, t) = H(at|Ht−1, t)−H(at|Ht−1, t, bt)

≤ 1

r

[
H(ā)−H(ā|b̄)

]
=

1

r
I(ā; b̄)

< δ

where the last inequality is provided by condition (iii) of the lemma.
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3.5 Main constructive lemma

The next lemma plays an important role in the proofs of Theorems 2.2, 2.3,
and 2.4.

Lemma 3.16. Let P ∈ ∆∆(A) be a finitely supported rational distribution
over rational beliefs. For every ε > 0, there is l0 ∈ N, such that for every
l ≥ l0 and every De Bruijn automaton scheme for agent 1

Ξ =
〈
P , l,

{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉
,

the following holds:
With the notation of Definition 3.9, denote the induced joint strategy τk ∈
∆(Σ1(mk),Σ

2)rk . Suppose C = lim inf
k→∞

|Lk|
mk

> 0. There is r0 ∈ N such

that for every r ≥ r0, there is k ≥ 1 such that r′ =
⌊
r
rk

⌋
· rk ≥ (1 − ε)r

and the concatenation of
⌊
r
rk

⌋
independent copies of τk, τ ∈ ∆(Σ1(m),Σ2)r

′

(m =
⌊
r
rk

⌋
·mk), satisfies

H̄(P )

C
+ ε ≥ m logm

r

and
d̄(P ,Pr(τ)) < ε.

Proof. Let P =
∑n

i=1 qiδQi
be a finitely supported rational distribution over

rational beliefs, and let ε > 0. Let δ = δ( ε
3
) > 0 be given by Lemma 3.15.

Let l be a common denominator of P , such that f(l) of Lemma 3.13 (iv) is
less than δ.

Let
Ξ =

〈
P , l,

{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉
be De Bruijn automaton scheme for agent 1.

Lemma 3.13 provides strategies τk ∈ ∆(Σ1(mk)×Σ2)rk . The same lemma

ensures that lim supk→∞
mk logmk

rk
≤ H̄(P)

C
. Lemma 3.13(iii)-(iv) and the choice

of l ensure that the antecedents of Lemma 3.15 hold w.r.t. δ, for every k large
enough. The choice of δ was made such that Lemma 3.15 guarantees that
d̄(P ,Prk(τk)) <

ε
3
, for every k large enough.

We next utilise Lemma 3.6 to extends the construction to strategies that
induce a play of any length r > r0, for some r0 > 0. The antecedents of
Lemma 3.6

(i) supk∈N rk+1 =∞, and
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(ii) supk∈N
rk+1

rk
<∞

hold since, by Definition 3.9,

(k − 1)lLk ≤ rk ≤ klLk,

(C − o(1))mk ≤ Lk ≤ (
∣∣A2
∣∣− 1)mk,

mk = l|Y |k,
and |Y | depends only on l and P .

It follows that there is r0 ≥ 0 such that for every r ≥ r0, there is k ≥ 1 such

that r′ =
⌊
r
rk

⌋
· rk ≥ (1 − ε)r and the concatenation of

⌊
r
rk

⌋
independent

copies of τk, τ ∈ ∆(Σ1(m),Σ2)r
′

(m =
⌊
r
rk

⌋
·mk) satisfies

m logm

r
≤ m logm

r′
<
H̄(P)

C
+
ε

3
,

and
d̄(P ,Pr′(τ)) < lim sup

k→∞
d̄(P ,Prk(τk)) +

ε

3
<
ε

3
+
ε

3
.

The same τ satisfies

d̄(P ,Pr(τ)) < d̄(P ,Pr′(τ)) + d̄(Pr′(τ),Pr(τ)) <
ε

3
+
ε

3
+
ε

3
,

as desired.

3.6 One automaton

The stage is set for proving Theorem 2.2.

Proof of Theorem 2.2. Let P ∈ ∆∆(A) and ε > 0. Since the function H̄(·)
is continuous and the set of distributions with finite support and rational
coefficients is dense in ∆∆(A), we may assume w.l.o.g. that P is a rational
distribution over rational beliefs. Let l0 = l0(ε) be given by Lemma 3.16. Let
l ≥ l0 be a common denominator of P .

We define a De Bruijn automaton scheme for agent 1

Ξ =
〈
P , l,

{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉
with

• x(k) = x1, . . . , xmk
an arbitrary compound De Bruijn sequence as spec-

ified by Definition 3.9,
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• |Lk| = (|A2| − 1)mk,

• zt(k) = kl − 1 for every t ∈ [|Lk|],

• {(st(k), a2
t (k))} an arbitrary enumeration of all pairs (s, a2) such that

s ∈ [mk] and a2 6= x2
s(k),

• Gk the entire symmetry group on [|Lk|].

Since |Lk|
mk

= |A2| − 1, Lemma 3.16 ensures that there is r0 ∈ N, such that

for every r ≥ r0, there is m ∈ N and τ ∈ ∆(Σ1(m)× Σ2) such that

H̄(P )

C
+ ε ≥ m logm

r

and
d̄(P ,Pr(τ)) < ε.

3.7 One automaton, one sequence

In this section we prove Theorem 2.4. Theorem 2.4 refers only to P1
r (τ), and

so we can take any coupling P ∈ ∆∆(A) such that P1 = P1
r (τ); therefore

H(P) = H(P1). In particular, P can be taken such that P 2 = δa2 , for some
a2 ∈ A2 (P a.s.).

We prove Theorem 2.4 with C(P1) = |A2|−1

H̄(P)
+ .00001, assuming w.l.o.g.

that H̄(P) > 0. Otherwise, we can approximate P by a pure periodic se-
quence with period logm and consider any r sufficiently large. By continuity,
we assume w.l.o.g. that P is finitely supported and has rational coefficient.

Given ε > 0 and a rational distribution over rational beliefs P ∈ ∆∆(A)
with P2 = δδa2 . Let l0 be given by Lemma 3.16 and let l ≥ l0 be a common
denominator of P .

Define a De Bruijn automaton scheme for agent 1

Ξ =
〈
P , l,

{
x(k), Lk, (st(k), zt(k), a2

t (k))
|Lk|
t=1 , Gk

}∞
k=1

〉
with

• x(k) = x1, . . . , xmk
an arbitrary compound De Bruijn sequence as spec-

ified by Definition 3.9,

• |Lk| = (|A2| − 1)mk,
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• zt(k) = kl − 1 for every t ∈ [|Lk|],

• {(st(k), a2
t (k))} an enumeration of all pairs (s, a2) ∈ [mk] × A2 \ {a2},

such a2
t (k) is (|A2| − 1)-periodic (in t),

• Gk is the group of all the permutations π on [|Lk|] such that π(t) = t
mod |A2| − 1, for all t ∈ [|Lk|].

We show is that Gk is large enough, so that supk∈N

(
|Lk|!
|Gk|

) 1
|Lk| <∞, and

so Ξ is a De Bruijn automaton scheme. Indeed,

|Gk| =
(
|Lk|
|A2| − 1

!

)|A2|−1

and therefore,(
|Lk|!
|Gk|

) 1
|Lk|

=

( |Lk|
|Lk|
|A2|−1

, · · · , |Lk|
|A2|−1

) 1
|Lk|

≤ (|A2| − 1)
|Lk| 1

|Lk| = |A2| − 1.

Let τk ∈ ∆(Σ1(mk) × A2
p(rk))

rk be the induced mixed strategies, i.e.,
the uniform distribution over {(σπ.Ξ(k), āπ.Ξ(k)) : π ∈ Gk} (as prescribed by
Lemma 3.13).

We claim that τ 2
k is pure and that its period is in fact kl(|A2| − 1) which

divides rk. The choice of the jump transition {(st(k), a2
t (k))} was made such

that the period of the induced play ā2
Ξ(k) is kl(|A2| − 1) which divides rk

since rk = kl|Lk| and |Lk| = (|A2| − 1)mk. The definition of Gk is such that
ā2
π.Ξ(k) = ā2

Ξ(k), for all π ∈ Gk; therefore τ 2
k is pure. Since mk = l|Y |k, we

can take C = |A2|−1

H̄(P1)
+ .00001 and get ā2

Ξ(k) ∈ A2
p(C logmk), for any k large

enough.
Lemma 3.16 provides r0 ∈ N such that for any r ≥ r0 there are m ∈ N

and τ ∈ ∆(Σ1(m),Σ2) such that

H̄(P )

C
+ ε ≥ m logm

r

and
d̄(P ,Pr(τ)) < ε.

Furthermore, τ is the concatenation independent copies of τk, for some k ∈ N,
and m is a multiple of mk; therefore τ 2 is pure and periodic with period
kl(|A2| − 1) which is at most C log(mk) ≤ C log(m), for all k large enough.
For finitely many small values of k, choosing r0 large enough allows us to
choose m so large that kl(|A2| − 1) ≤ C log(m).
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3.8 Pairs of automata

In this section we prove Theorem 2.3. Recall that it is assumed throughout
that |A1|, |A2| ≥ 2.

The set of beliefs ∆(A) is divided into two regions:

∆I(A) = {Q ∈ ∆(A) : “Q is supported on either one row or one column”} ,
∆II(A) = ∆(A) \∆I(A).

Every P ∈ ∆∆(A) can be (uniquely) represented as λPI + (1 − λ)PII ,
where PI,II ∈ ∆∆I,II(A) and 0 ≤ λ ≤ 1. The constant C(P) of Theorem 2.3
is defined as λCI(PI)+(1−λ)CII(PII), with CI,II : ∆∆I,II(A)→ R+ defined
by

CI(P) =
H̄(P)

n− 1
, (where n = min

{
|A1|, |A2|

}
)

CII(P) =
H̄(P)

D̄(P)
.

Where, D̄(P) =
∫
D(Q) dP(Q) and D : ∆(A) → [0, n − 1] is a continuous

function whose zeros are exactly ∆I(A). The definition of D is deferred to
Section 3.8.2.

The following lemma allows us to consider each one of the cases P ∈
∆∆I(A) and P ∈ ∆∆II(A) separately.

Lemma 3.17. Let P1,P2 ∈ ∆∆(A), C1, C2 ≥ 0, and 0 ≤ λ ≤ 1. Suppose
that for every ε > 0 and every l ∈ {1, 2} there exists r0 ∈ N such that for
every r ≥ r0 there exist r′ ≤ r, m ∈ N, and τ ∈ ∆(Σ1(m) × Σ2(m))r

′
such

that
r′

r
≥ 1− ε,

m logm

r′
≤ Cl + ε,

and
d̄(Pl,Pr′(τ)) < ε.

Then, for every ε > 0 there exists r0 ∈ N such that for every r ≥ r0 there
exist r′ ≤ r, m ∈ N and τ ∈ ∆(Σ1(m)× Σ2(m))r

′
such that

r′

r
≥ 1− ε,
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m logm

r′
≤ λC1 + (1− λ)C2 + ε,

and
d̄(λP1 + (1− λ)P2,Pr′(τ)) < ε.

Proof. Let ε > 0 and λ ∈ (0, 1). Set λ1 = λ and λ2 = 1 − λ1, and P =
λ1P1 + λ2P2. Let r0 > 0 be large enough so that for every r ≥ r0 and
l ∈ {1, 2}, there are rl ≤ λlr, ml ∈ N, and τl ∈ ∆(Σ1(ml) × Σ2(ml))

rl such
that

rl
λlr
≥ 1− ε,

ml logml

rl
≤ Cl + ε,

and
d̄(Pl,Prl(τl)) < ε.

Let r′ = r1 + r2 and m = m1 +m2. Let τ be the concatenation of τ1 and τ2.
We have,

τ ∈ ∆(Σ1(m)× Σ2(m))r
′
,

r′

r
≥ 1− ε,

and
d̄(P ,Pr′(τ)) < ε.

It remains to verify

m logm

r′
=
∑
l=1,2

ml logm

r′
=
∑
l=1,2

ml logml

r′
+
∑
l=1,2

ml log m
ml

r′

≤ r

r′

∑
l=1,2

λl
ml logml

rl
+
m

r′

∑
l=1,2

ml

m
log

m

ml

≤ 1

1− ε

[∑
l=1,2

λlCl + ε

]
+
m

r′
H
(m1

m
,
m2

m

)
≤
∑
l=1,2

λlCl +
ε

1− ε
(λ1C1 + λ2C2 + 1) + o(1).

By Lemmata 3.6 and 3.17, it is sufficient to prove the following lemma.
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Lemma 3.18. For every ε > 0 and every P ∈ ∆∆I(A) ∪ ∆∆II(A) there
exist sequences rk,mk ∈ N and τk ∈ ∆(Σ1(mk)× Σ2(mk))

rk satisfying

sup
k∈N

rk =∞, (3.5)

sup
k∈N

rk+1/rk <∞, (3.6)

lim sup
k→∞

mk logmk

rk
≤ C(P) + ε, (3.7)

lim sup
k→∞

d̄(P ,Prk(τk)) < ε. (3.8)

3.8.1 CI(P)

In this section we prove Lemma 3.18 in the case P ∈ ∆∆I(A). We partition
∆I(A) into finitely many regions. By virtue of Lemma 3.17, we assume
w.l.o.g. that P is supported in one of these regions.

There are |A1||A2| + |A1| + |A2| regions as follows: Dirac beliefs, beliefs
supported on any single row, and the beliefs supported on any single column:

{δa} a ∈ A,{
Q ∈ ∆(

{
a1
}
× A2) : H(Q) > 0

}
a1 ∈ A1,{

Q ∈ ∆(A1 ×
{
a2
}

) : H(Q) > 0
}

a2 ∈ A2.

The case P = δδa is simple. Let b ∈ (A1 \ {a1}) × (A2 \ {a2}). Let σ1
k

be an automaton with k states that k-periodically outputs k− 1 consecutive
a1s followed by a b1 when it reaches state k. Let σ2

k be an automaton that
k + 1-periodically outputs k consecutive a2s followed by a b2 at state k + 1.
The transitions (k, b2) and (k + 1, b1) are both first hit at time k(k + 1);
therefore this pair of automata is rk = k(k + 1) concatenable. Lemma 3.18
holds with mk = k + 1.

It remains to consider the case P ∈ ∆∆(A1 × {a2}) with H̄(P) > 0 (the
case P ∈ ∆∆({a1} × A2) is symmetric). The construction builds on the
construction in the proof of Theorem 2.4. We consider mk, rk, Lk and the
automata σ1(k) and σ2(k), as given in the proof of Theorem 2.4.

We construct an (rk + kl)-concatenable pair of automata with mk + kl
states that generate the same sequence as (σ1(k), σ2(k)) in the first kl steps.
Since kl � mk, rk, the conditions of Lemma 3.18 are satisfied.

Agent 1’s automaton is the concatenation of σ1(k) with an oblivious au-
tomaton with kl states. The oblivious automaton starts at state 1 and moves
to state 2 and then 3, and so on until it reaches state kl, while always out-
putting some fixed action a1 ∈ A1. Note that Lk does not include a sequence
where agent 1 always plays a1.
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The kl(|A2| − 1)-periodic oblivious automaton σ2 is paired with an au-
tomaton that looks for the ending sequence of kl consecutive a1 actions.
Formally, suppose the states of σ2, [kl(|A2|− 1)], are visited in increasing or-
der 1, 2, . . . , kl(|A2|−1). The states of the new automaton are [kl(|A2|−1)]×
{0, 1}. The transitions are of the form (i, b, a1) 7→ (i+ 1 mod kl(|A2|−1), x),
where x = 1 if and only if either i = kl(|A2| − 1), or b = 1 and a1 = a1.

After rk steps the automaton of agent 1 reaches the final transition of σ1
k

and moves to the initial state of its second automaton. At the same time
agent 2’s automaton is at state (1, 1). In the next kl steps agent 1 plays a1

which result in both agents reaching certain states for the first time: agent 2 –
state (kl, 1), and agent 1 – the last state of its second automaton. Therefore,
our construction is rk + kl concatenable.

3.8.2 CII(P)

In this section we prove Lemma 3.18 in the case P ∈ ∆∆II(A). Recall that
the definition of C(P) = CII(P) depends on an appropriate definition of a
function D : ∆II(A)→ (0, n− 1]. We begin by defining3 the function D.

We think of A as the complete bipartite graph with colour sets A1, A2. A
set of action profiles J ⊂ A is called a matching if for every (a1, a2), (b1, b2) ∈
J , a1 = b1 if and only if a2 = b2.

Definition 3.19. We define D : ∆(A)→ [0, n− 1] by

D(Q) = max
matching J

|J |(|J | − 1) min
a∈J

Q(a).

Note thatD is continuous and its range is indeed [0, n−1]. The maximum,
n− 1, is attained when Q is a uniform distribution on a perfect matching.4 5

The minimum, 0, is attained exactly when Q is supported on either a single
row or a single column.

The construction is based on the existence of a pair of De Bruijn automa-
ton schemes, one for each agent, such that the two schemes induce exactly
the same play.

Definition 3.20. A De Bruijn bi-automata scheme is a tuple

Φ =
〈
P , l,

{
x(k), Lk, (s

1
t (k), s2

t (k), zt(k))
|Lk|
t=1 , Gk

}∞
k=1

〉
3The function D is not the largest possible. Its concavification cav D is also possible

as discussed in Section 3.8.3.
4A perfect matching is a matching of size n.
5Section 3.8.3 suggests that D can be replaced by cav D which implies that n−1 can be

attained whenever the two marginals of Q, Q1 and Q2, are uniform distributions supported
on sets of size n.
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such that for each i ∈ {1, 2},

Φi =
〈
P , l,

{
x(k), Lk, (s

i
t(k), zt(k), x−i

s−i
t (k)

(k))
|Lk|
t=1 , Gk

}∞
k=1

〉
is a De Bruijn automaton scheme for agent i.

The definiton of a De Bruijn bi-automata scheme requires that both Φ1

and Φ2 have the same Lk and Gk; therefore they induce exactly the same play
āΦ1(k) = āΦ2(k). This requirement is quite demanding. It says that along
the play the two automata always either perform a +1 transition together or
a jump transition together. I.e., if at some stage the automata are at states s
and t respectively, then either xs = xt, or x1

s 6= x1
t and x2

s 6= x2
t . In the latter

case we say that the pair (s, t) is good. Identifying large sets of good pairs
of states (that satisfy some further independence property) will be crucial in
our construction of a bi-automaton scheme. The pair of random automata
induced by Φ are correlated by using the same π ∈ Gk for both σ1

π.Φ1
(k) and

σ2
π.Φ2

(k).
Let P ∈ ∆∆II(A). By continuity, we may assume w.l.o.g. that P =∑
i qiδQi

is finitely supported rational distribution over rational believes. Let
l be an arbitrary common denominator of P . By Lemma 3.16, it is sufficient
for the proof of Lemma 3.18 to construct a De Bruijn bi-automata scheme

Φ =
〈
P , l,

{
x(k), Lk, (s

1
t (k), s2

t (k), zt(k))
|Lk|
t=1 , Gk

}∞
k=1

〉
with

lim inf
k→∞

|Lk|
mk

≥ D̄(P)− ε(l),

where ε(l)→ 0, as l→∞.
Denote lj = qjl, a common denominator of Qj. Let Y =×j

TQj(lj), and

x(k) = x1, . . . , xmk
an arbitrary compound De Bruijn sequence of order k

over the alphabet Y . The group Gk is the entire symmetry group on [|Lk|].
It remains to specify |Lk|, s1

t (k), s2
t (k), and zt(k).

In what follows we sometimes suppress the index k when it causes no
confusion. For a state s ∈ [mk], let {lt+ 1, . . . , lt+ l} 3 s be the unique
non-overlapping interval of l consecutive states containing s. We consider
the chunk of x that begins (k− 1)l places before that interval and ends at s.
That is, let u = u(s) be the unique integer such that (k − 1)l ≤ u < kl and
s = u+ 1 mod l. We call the chunk of the De Bruijn sequence x[s−u,s−1] :=
(xs−u, . . . , xs−1) the stem of s, denoted stem(s). We call the state s− u the
origin of s, denoted orig(s).

For states s, t ∈ [mk] corresponding to elements of the compound De
Bruijn sequence xs = (a1, a2) and xt = (b1, b2), we say that (s, t) is a good
pair of states if
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(i) stem(s) = stem(t), and

(ii) a1 6= b1 and a2 6= b2.

The played action at (s, t) is (a1, b2) and we use the notations:

act(s, t) = (a1, b2),

act1(s) = a1,

act2(t) = b2.

A set of good pairs of states X is independent if for every (s, t), (s′, t′) ∈ X

s = s′ ⇒ act2(t) 6= act2(t′), and

t = t′ ⇒ act1(s) 6= act1(s′).
(3.9)

In graph theoretic terminology, X is an independent set of vertices in an
auxiliary graph whose vertices are the good pairs of states and whose edges
are given by (3.9).

From an independent set of good pairs of states of size L, {(s1
t , s

2
t )}

L
t=1,

we construct the remaining components of Φ by setting |Lk| = L, and zt =
u(s1

t ) = u(s2
t ), for all t = 1, . . . , L. Condition (3.9) ensures that the fifth item

of Definition 3.9 is satisfied.
Therefore, it remains to find an independent set of size ≥ (D̄(P)−ε(l))mk

for every l and every k large enough, where ε(l)→ 0, as l→∞.
With a tolerable abuse of notation define

D(J,Q) = |J |(|J | − 1) min
a∈J

Q(a),

for a matching J and a distribution Q ∈ ∆(A). Recall that

D(Q) = max
J

D(J, q).

Let J∗j be a matching such that D(Qj) = D(J∗j , Qj).
It will be convenient to consider two partitions of the states: a coarser one

and a finer one. The coarser partition is made by grouping together states
with the same stem. We say the two states s, t ∈ [mk] are equivalent if they
have the same stem. Namely, s ∼ t if stem(s) = stem(t). The equivalence
class of s ∈ [mk] is denoted 〈s〉. The finer partition is given by further
considering the action xs. For a ∈ A and J ⊂ A, we define

〈s〉a = {t : t ∼ s, xt = a}, and

〈s〉J =
⋃
a∈J

〈s〉a .
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These partitions induce conditional distributions q(·|s) ∈ ∆(A) defined by

q(a|s) =
| 〈s〉a |
| 〈s〉 |

.

Denote Lj = l1 + · · · + lj. Note that if s = i mod l, i ∈ [Lj] \ [Lj−1], then
q(·|s) depends only on x[s−i+Lj−1+1,s−1]. Explicitly,

q(a|s) =
|{y ∈ TQj(lj) : y[1,i−Lj−1−1] = x[s−i+Lj−1+1,s−1], yi = a}|
|{y ∈ TQj(lj) : y[1,i−Lj−1−1] = x[s−i+Lj−1+1,s−1]}|

.

Explanation: the states in 〈s〉 correspond to blocks of x whose prefix is
stem(s), which are exactly all the sequences in Y k beginning with stem(s).
Since the first k − 1 Y -words of these sequences are determined by stem(s),
we have

| 〈s〉 | = |{y ∈ Y : y[1,i−1] = x[s−i+1,s−1]}|
= |{y ∈ TQj(lj) : y[1,i−Lj−1−1] = x[s−i+Lj−1+1,s−1]}| × |×

j′>j

TQj′ (lj′)|,

and similarly,

| 〈s〉a | = |{y ∈ Y : y[1,i−1] = x[s−i+1,s−1], yi = a}|
= |{y ∈ TQj(lj) : y[1,i−Lj−1−1] = x[s−i+Lj−1+1,s−1], yi = a}|× |×

j′>j

TQj′ (lj′)|.

For a state s ∈ [mk], let q(s) = q(·|s) and let j(s) be the index such that
s ∈ [Lj(s)] \ [Lj(s)−1] mod l. When s is drawn uniformly at random from
[mk], q = q(s) and j = j(s) become random variables (functions of s). We
denote ql = p(q|j), emphasizing the dependence of the distribution of (q, j)
on l (and not on k or the choice of x).

Note that ql is the expected distribution of beliefs of a uniform random
sample from Y . Lemma 3.15 implies that ql → P in (as l → ∞). Here,
Lemma 3.15 is applied with r = l, ā ∼ Unifom(Y ), and b̄ = b1, . . . , br being
the fixed sequence where bt is the index j such that t ∈ [Lj] \ [Lj−1]. Since

lim
l→∞

log |TQj (lj)|
lj

= H(Qj), for all j, we have H(ā|b̄) = H(ā) → H̄(P), as

l→∞.
Let J∗ = J∗(s) := J∗j(s). Since, for any J , the function D(J, ·) is continu-

ous on the compact domain ∆(A), the proof will be concluded if we construct
an independent set of size

mkE [D (J∗, q)] .
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We turn now to construct an independent set of size mkE [D (J∗, q)]. For
s ∈ [mk], let d(s) = mina∈J∗(s) | 〈s〉a |. It suffices to find d(s)|J∗(s)|(|J∗(s)|−1)
independent good pairs of states from 〈s〉J∗ , since by doing so we obtain an
independent set of pairs I〈s〉 ⊂ 〈s〉×〈s〉 of size | 〈s〉 |D(J∗(s), q(s)). Summing
over all the equivalence classes {〈s〉 : s ∈ [mk]} gives an independent set of
the desired size,∣∣∣∣∣∣

⋃
〈s〉:s∈[mk]

I〈s〉

∣∣∣∣∣∣ =
∑
s∈[mk]

∣∣I〈s〉∣∣
|〈s〉|

=
∑
s∈[mk]

D(J∗(s), q(s)) = mkE[D(J∗, q)].

Fix s ∈ [mk]. For every a ∈ J∗(s), let Sa ⊂ 〈s〉a, |Sa| = d(s). For every
ordered pair (a, b) ∈ J∗(s) × J∗(s), a 6= b, let ϕa,b : Sa → Sb be a bijection.
The following set is an independent set of good pairs all coming from 〈s〉J∗(s)
whose size is d|J∗(s)|(|J∗(s)| − 1):⋃

(a,b)∈J∗(s)×J∗(s),a 6=b

{(t, ϕa,b(t)) : t ∈ Sa} .

3.8.3 Improving CII

We suggest an improvement of CII , by replacing the function D by its con-
cavification cav D. Our proof that shows that D(Q) is achievable could be
slightly modified in order to show that (cav D)(Q) is achievable. For the sake
of simplicity and clarity of the proof, we chose to prove the slightly weaker
statement, while only sketching the proof of the stronger statement.

The quantity (cav D)(Q) is the solution of the following linear programme:

max
∑

matching J

xJ |J |(|J | − 1) subject to∑
matching J :

a∈J

xJ ≤ Q(a) for every a ∈ A,

xJ ≥ 0 for every matching J .

As before, the idea is to find an independent set of good pairs of states of
size mkE [(cav D)(q(s))] − o(mk). Take a random state s ∈ [mk]. Associate
with s a bipartite multi-graph Ms whose colour sets are A1 and A2, and
the multi-edges between each a1 ∈ A1 and a2 ∈ A2 correspond to 〈s〉(a1,a2).
Let {xJ} be an optimal solution for the linear programme (cav D)(q(s)).
Let dJ = bxJ | 〈s〉 |c, for every matching J . Note that dJ/| 〈s〉 | is a feasible
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solution for the linear programme, and it is nearly optimal, if | 〈s〉 | is large.
The multi-graph Ms contains dJ copies of each matching J . For every copy
of J , take the ordered pairs of states that correspond to any ordered pair of
multi-edges in J . Do the same for every J . The union of these collections of
pairs of states is an independent set of good pairs of states of size d∗(s) =∑

J dJ |J |(|J | − 1), with

d∗(s)

〈s〉 (cav D)(q(s))
→ 1, as | 〈s〉 | → ∞.

Remark 3.21. Since cav D(Q) is a linear programme, it could be interesting
to find a meaningful interpretation to the dual program, which could possibly
lead to tightness results.

4 Values of repeated games

We present a few implications of our main results on the min-max values of
repeated games played by finite automata.

We consider a class of three-player repeated games, parameterized by a
one-shot strategic-form game, automaton size constraints, and game dura-
tion.

Formally, G = (A = A1 × A2 × A3, g : A → R) is a three-player game,
where g is the payoff to Player 3. The payoff function extends to g : ∆(A)→
R linearly. Given such a game, we define different min-max values depending
on whether the team of players 1 and 2 are restricted to pure strategies, or
can randomize independently, or play correlated strategies. The correlated
min-max is defined as

cor min maxG = min
τ1,2∈∆(A1×A2)

max
τ3∈∆(A3)

g(τ 1,2 ⊗ τ 3).

The pure min-max and max-min are defined as

pure min maxG = min
a1∈A1,a2∈A2

max
a3∈A3

g(a1, a2, a3),

pure max minG = max
a3∈A3

min
a1∈A1,a2∈A2

g(a1, a2, a3).

The r-stage repeated version of G is denoted Gr(m1,m2,m3), where each
player i is restricted to strategies of automaton size mi, and the payoff is the
average per-stage payoff (or the limiting average, if r = ∞). We allow for
at most one of the parameters to be infinite. In this case, either all player’s
strategy sets are finite, or r is finite, which guarantees that the game has a
finite strategic form.
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Since Gr(m1,m2,m3) is a finite game in strategic form, the three values,
cor min max, pure min max and pure max min are well defined. For example

cor min maxGr(m1,m2,m3) =

min
τ1,2∈∆(Σ1(m1)×Σ2(m2))

max
τ3∈∆(Σ3(m3))

Eτ1,2,3
1

r

r∑
t=1

g(a1
t , a

2
t , a

3
t ).

We study asymptotic properties of the min-max values of Gr(m1,m2,m3)
and compare them to the min-max values of G.

In what follows {mk}, {nk}, and {rk} are sequences of natural numbers.
If Players 1 and 2 could implement a random play of rk independent Q-
distributed actions, then they could guarantee, in the rk-stage repeated game,
the value that Q guarantees in the one-shot game. Since implementing an
i.i.d. play is not always possible under automaton size constraints, we need a
notion of approximation to i.i.d. play that guarantees similar strategic power.

Definition 4.1. For Q ∈ (A1×A2), an approximation of rk independent Q-
distributed random actions (approximate i.i.d. play, for short) is a sequence of
distributions Pk ∈ ∆((A1×A2)rk) such that the expected empirical frequency
of beliefs of Pk converges to δQ w.r.t. the d̄ distance (as k →∞).

Theorems 2.2, 2.3, and 2.4 provide conditions under which Players 1 and
2 can implement such approximate i.i.d. plays. These conditions translate to
three Propositions regarding the correlated min-max value.

Theorem 2.2 provides an implementation of an approximate i.i.d. play in
situations where Player 1 is restricted and Player 2 is fully rational.

Proposition 4.2. If limk→∞ rk =∞ and

lim inf
k→∞

mk logmk

rk
≥ log(|A1 × A2|)

(|A2| − 1)
,

then
lim
k→∞

cor min maxGrk(mk,∞,∞) = cor min maxG.

When both players, 1 and 2, are restricted, Theorem 2.3 provides a similar
result, only that in this case the ratio between rk and mk logmk depends on
the one-shot payoff function.

Proposition 4.3. There exists a constant C > 0, that depends on G, such
that if limk→∞ rk =∞ and

lim inf
k→∞

mk logmk

rk
≥ C,
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then
lim
k→∞

cor min maxGrk(mk,mk,∞) = cor min maxG.

When the actions of Player 2 do not influence the payoff, the correlated
min-max of the one-shot game is equal to the (uncorrelated) min-max. By
Theorem 2.4, the situation is asymptotically the same w.r.t. the repeated ver-
sion. Furthermore, Player 2’s automaton can be very simple: pure, oblivious,
and with just O(logm) states.

Proposition 4.4. If the payoff function g does not depend on Player 2’s
actions, then there is C > 0 such that if limk→∞ rk =∞ and

lim inf
k→∞

mk logmk

rk
≥ log |A1|
|A2| − 1

,

then6

lim
k→∞

min
τ1∈∆(Σ1(mk))

σ2∈A2
p(dC log(mk)e)

max
σ3∈Σ3

g(τ 1, σ2, σ3) = cor min maxG.

Proofs of Propositions 4.2, 4.3, and 4.4. Let Q ∈ ∆(A1×A2) be a correlated
min-max strategy for players 1 and 2 in the game G. By Theorem 2.3,
there exist a constant C = C(Q) and correlated strategies τk ∈ ∆(Σ1(mk)×
Σ2(mk)) whose induced play of length Cmk logmk approximates a sequence
of independent Q-distributed random variables. This proves Proposition 4.3.
Similarly, resorting to Theorems 2.2 and 2.4 proves Propositions 4.2 and 4.4
respectively.

Conversely to Propositions 4.2, 4.3, and 4.4, Player 3 has a pure strategy
that guarantees the pure one-shot-game min-max value when the duration
of the game is much more than m logm.

Proposition 4.5. If mk logmk

rk
→ 0, as k →∞, then

lim
k→∞

pure max minGrk(mk,mk,∞) = pure min maxG.

Proof. By Lemma 3.1, log |Σ1(mk) × Σ2(mk)| = O(mk logmk); Theorem 1
from Neyman and Okada [2009] implies that if one player is restricted to
strategies in a set whose size is sub-exponential in the duration of the game
and the other player is unrestricted, then the other player can asymptotically
guarantee the pure-min-max value using pure strategies.

6Note that cor min maxG = minx1∈∆(A1) maxa3∈A3 g(x1, ·, a3)
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We turn now to settings in which Player 3’s automaton size is bounded
and the duration of the game rk is not necessarily finite.

Proposition 4.6. If lognk

mk logmk
→ 0, as k →∞, then

lim
k→∞

cor min maxGrk(mk,mk, nk) = cor min maxG.

Proof. Let Q ∈ ∆(A1 × A2) be an optimal correlated strategy for Play-
ers 1 and 2 in G. By Lemmata 3.6 and 3.18, there exists C(Q) > 0 and
r′k ∼ C(Q)mk logmk, such that Players 1 and 2 can implement an approxima-
tion of a r′k-periodic sequence of independent Q-distributed random actions.
We assume w.l.o.g. that the induced play is stationary, because it can be
made stationary by taking the average of r′k shifts of the play; therefore any
window of T consecutive actions, T ≤ r′k, an approximation of independent
Q-distributed random actions.

Divide the duration of the game rk into time intervals of length r′k with
a possible remainder in the beginning. Namely, intervals [tn+1] \ [tn], where

t0 = 0, t1 = rk − r′k

⌊
rk
r′k

⌋
(or 0 if rk = ∞), and tn = t1 + (n − 1)r′k. Let

σ3 be a pure strategy for player 3 (possibly, a best response). For any n =
0, 1, . . . let σ3

tn be Player’s 3 strategy induced on the game starting at time
tn. The random variable σ3

tn (n > 0) assumes values in a set of size nk
depending on the state of Player 3’s automaton at time tn, and σ3

t0
= σ3 is

a fixed strategy. By [Peretz, 2012, Corollary 4.3] (also, [Neyman, 2008, pp.
9, 15-16]), the expected average per-stage payoff between time tn and time
tn+1 − 1 is asymptotically at most the correlated min-max value of G, as k
goes to infinity. Since this is true for any n, the expectation of the payoff is
asymptotically at most the correlated min-max value of G.

Conversely to Proposition 4.6, if mk logmk is not large enough compared
to log nk then Player 3 can beat players 1 and 2.

Proposition 4.7. For every C > |A3|(|A1|+|A2|)−2, if log nk ≥ Cmk logmk

and rk ≥ nk →∞, as k →∞, then

lim
k→∞

cor min maxGrk(mk,mk, nk) = pure min maxG.

Proposition 4.7 strengthens Proposition 4.5 in that Player 3 needs only
be exponentially smarter than Players 1 and 2 and the duration of the game
is allowed to be proportional to mk logmk. Nevertheless, Proposition 4.5 is
stronger in that Player 3 can do with a pure strategy. Conversely, Players 1
and 2 have a winning pure strategy when they are much smarter than Player
3, as shown in Proposition 4.8 below.
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Propositions 4.3 and 4.5 together show that around a duration propor-
tional to m logm a phase transition occurs. The correlated min-max value of
the repeated game changes from the correlated to the pure min-max values
of the one-shot game.

Proof of Proposition 4.7. The proof is similar to the proof of [Neyman, 1997,
Theorem 3]. Let γ : A1 × A2 → A3 be a best-response function. That is,
g(a1, a2, γ(a1, a2)) = maxa3∈A3 g(a1, a2, a3), for every a1 ∈ A1, a2 ∈ A2. The
definition of γ extends to strategies in the repeated game recursively by

γ : Σ1 × Σ2 →
(
A3
)N
,

γt(σ
1, σ2) = γ(σ1,2(γl(σ

1, σ2)t−1
l=0)),

where σ1,2 is the reduced strategy of the team of players 1 and 2 induced
by σ1 and σ2. Let X(m) = {γ(σ1, σ2) : σ1 ∈ Σ1(m), σ2 ∈ Σ2(m)}. Since
every pair of automata (σ1, σ2) ∈ Σ1(m)×Σ2(m) can be regarded as a single
automaton with m2 states, every x ∈ X(m) can be implemented through an
oblivious automaton with m2 states.

We next construct an automaton for Player 3 with m3|X(m)| states. By
Lemma 3.1, log(m3|X(m)|) ≤ (|A3|(|A1| + |A2|) − 2)m logm + o(m logm).
The strategy of Player 3 is the following strategy:

(i) Choose x ∈ X(m) uniformly at random. Play x as long as it best
responds to the actions of players 1 and 2.

(ii) Repeat Step (i) m|X(m)| times or until the end of the game.

(iii) Continue arbitrarily.

The implementation of x in Step (i) requires m2 states, and so implement-
ing m|X(m)| repetitions of Step (i) requires m3|X(m)| states, as promised.

The probability of “guessing” the best response in each iteration of Step
(i) is at least |X(m)|−1, therefore the probability getting to Step (iii) is at
most (1− |X(m)|−1)m|X(m)| → 0, as m→∞.

It remains to verify the expected payoff. In each iteration of Step (i) there
is at most one non-best-response stage. Since the duration of the game is
much longer than the number of iterations, and the probability of getting to
Step (iii) is negligible, the expected payoff is guaranteed to be asymptotically
at least the pure min-max of the one-shot game.

If players 1 and 2 are much “smarter” than Player 3, they can implement
a fixed play that looks like a sequence of optimal correlated mixed actions in
the eyes of Player 3.
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Proposition 4.8. If nk

mk
→ 0, as k →∞, then

lim
k→∞

pure min maxGrk(mk,mk, nk) = cor min maxG,

for any rk ≥ mk logmk.

Proof. Let Q ∈ ∆(A1 × A2) be an optimal correlated strategy for Play-
ers 1 and 2 in G. By Lemmata 3.6 and 3.18, there are C(Q) > 0, r′k ∼
C(Q)mk logmk, and τk ∈ ∆(Σ1(mk)×Σ2(mk))

r′k such that Pr′k(τk) converges

to δQ (as k →∞) w.r.t. the d̄ metric. We assume w.l.o.g. that rk is a multiple
of r′k (otherwise we prove the Proposition with a nk � m′k � mk, such that
dividing rk by r′k leaves a negligible reminder).

Let β : support(τk) → Σ3(nk) be any function. It suffices to show that
for any such β (possibly a best-reply for Player 3) there is at least one
a ∈ support(τk) such that grk(a, β(a)) ≤ cor min maxG + o(1). We show
a stronger statement

Egrk(σ, β(σ)) ≤ cor min maxG+ o(1), (4.1)

where σ is a random strategy that distributes according to τk. We may
assume that rk = r′k, since otherwise we can divide [rk] into intervals of
length r′k and prove the statement in each one of these intervals.

Inequality (4.1) follows from [Peretz, 2012, Corollary 4.3], sinceH(β(σ)) ≤
log(|Σ3(nk)|) = o(r′k).
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