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ABSTRACT 

The development of atmospheric cyclones is studied from the view­

point of the instability of large-scale wave perturbations superimposed 

on a zonal current. The stability properties of the observed mean 

January flow are investigated and the linear results are extended to 

include the effects of nonlinear processes on the growth of a cyclone­

scale wave. The initial-value aspect of the problem receives special 

attention. An hemispheric model is employed in this investigation and 

solutions are obtained by spectral techniques. 

It is found that the observed atmospheric zonal current is highly 

unstable in a hydrodynamic sense. The instability is of a baroclinic 

character with barotropic stabilizing effects. The nonlinear computa­

tions show that the growth of the most unstable waves is brought to a 

halt when the perturbation kinetic energy reaches a level consistent 

with atmospheric observation. The barotropic energy exchanges are 

found to play a major role in this process by feeding a large amount 

of kinetic energy into the zonal flow when the baroclinic energy 

conversions reach a maximum. The damping effect of the nonlinear 

processes on the growth of the unstable wave is found to be slightly 

reduced when the horizontal resolution of the model is increased in 

either zonal or latitudinal direction. On the other hand, the growth 
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rate of the cyclone-scale wave is reduced under influence of the self­

interaction of a long9uasi-permanent wave, the wave number of which 

is one half that of the cyclone wave. 

The effects of the initial configuration of a wave are found to 

be comparable to the effects of the scale of the perturbation with 

regard to the subsequent growth of the wave. The baroclinic develop­

ment of a perturbation is found to exhibit a maximum when the initial 

disturbance is centered around the 600-mb level. 

iv 



ACKNOWLEDGEMENTS 

The author is indebted to Dr. F. Baer, his thesis supervisor, 

for the advice and guidance given throughout the course of this 

study. In addition, the author wishes to thank Drs. J. E. Cermak, 

B. Haurwitz, and H. Riehl for serving as members of his thesis 

committee and for offering their valuable criticism of this paper. 

Special thanks are extended to Dr. D. B. Rao for stimulating 

and enlightening discussions on the subject of dynamic instability. 

With regard to the computational aspect of the present study, the 

author has greatly benefited from the expertise of his colleagues, 

Messrs. F. N. Alyea and R. L. King. 

This research was supported by the National Science Foundation, 

Grant NSF GA-11637. 

v 



Chapter 

I. 

II. 

III. 

IV. 

V. 

VI. 

TABLE OF CONTENTS 

INTRODUCTION • 

A. Historical Background 

B. Outline of Present Study • 

MATHEMATICAL MODEL • . 

A. 

B. 

C. 

The Quasi-Geostrophic System of Equations 

The Simplified Atmospheric Flow Pattern 

Energy and Energy Conversions 

LINEAR ANALYSIS 

A. Computational Technique 

B. Basic State Parameters • . 

C. Results of Linear Analysis • 

D. Variation of Model Parameters 

NONLINEAR INTEC;RATIONS 

1 

1 

5 

12 

12 

17 

21 

26 

26 

29 

34 

43 

51 

A. Observed Energy Spectra 51 

B. Interaction of the Zonal Flow and One Planetary Wave 54 

C. Interaction of Two Planetary Waves with the Zonal Flow 66 

INITIAL STRUCTURE OF PERTURBATION 

A. Outline of Initial-Value Study • 

B. Normal Mode Solutions ..•. 

C. Linear Initial Value Problem • 

D. General Baroclinic Development • 

SUMMARY AND CONCLUSIONS 

REFERENCES . 

APPENDIX A: 

APPENDIX B: 

APPENDIX C: 

APPENDIX D: 

APPENDIX E: 

Horizontal-Spectral Representation. • 

Spectral Representation in the Vertical • • • 

Layered Representation in the Vertical 

Energy Conversions in the Spectral Domain • • 

Spectral Equations for the Linear Model • 

vi 

83 

83 

88 

96 

104 

114 

117 

122 

126 

131 

134 

136 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

LIST OF FIGURES 

Inverse of standard static stability employed in the 
following. Solid line: mean static stability for 
year; dashed line: winter static stability. Dash-dot 
lines to be discussed in Chapter V •••••.•••• 

Horizontal and vertical profiles of climatological 
mean zonal wind for January. West winds to the right 
of the vertical coordinate. . • • • . • • • • . 

Horizontal and vertical profiles of zonal wind component 
for January averaged over 60 degrees of longitude . . . 

Convergence of unstable normal modes for basic current 
of Fig. 2 • • • • • . • . . • • • • • . • • • • • • • • 

Unstable modes for climatological-mean January zonal 
wind shown in Fig. 2. • •••••• 

Energy conversions of three most unstable modes for 
waves shown in Fig. 5. Conversion of potential to 
kinetic energy (above) and release of kinetic energy 
from the wave to the zonal flow (below) • • • • • • • • 

Vertical profiles of energy and energy conversions for 
most unstable normal modes of waves 6 and 12 •• 

Dynamic instability of the basic currents shown in 
Fig. 3. .•.• . . . • • . . . 

Instability properties of January mean zonal wind shown 
in Fig. 2 for two profiles of static stability and for 
various quasi-baroclinic models • • • • • . • • • 

Baroclinic instability of January mean zonal wind at 
450 N with respect to wave perturbations without 
lateral variations on the beta-plan (Simons, 1969) •• 

Spectral distribution of mean kinetic energy per unit 
mass for the northern hemisphere. Dashed line: 
energy of climatological-mean January flow; solid line: 
average of daily energy for January 1-10, 1969 ••• 

Kinetic energy and energy conversions for system of 
zonal (subscript 0) and wave 6 (subscript 1). Hori-
zontal truncation N = 8 . . . . . . . . . . . . . . . 

vii 

30 

31 

33 

35 

37 

40 

42 

44 

46 

49 

53 

58 



Fig. 

13 Vertical profiles of kinetic energy and energy conver­
sions shown in Fig. 12 after 6 and 7 days respectively. 

14 Wave kinetic energy and energy conversions for system 
of zonal and wave 6 as a function of horizontal-

15 

spectral truncation • 

Vertical-mean kinetic energy in each of the horizontal­
spectral components of wave (above) and zonal flow 
(belo~ for system of zonal and wave 6 • 

16 Kinetic energy and energy conversions for system of 
zonal (subscript o) and wave 6 (subscript I) with or 

61 

64 

65 

without wave 12. Horizontal-spectral truncation N 11.. 68 

17 Kinetic energy' conversions for wave 12 as part of 
system of zonal, wave 6, and wave 12, and for various 
horizonta1-spec:tral truncations • • • . • • • • 70 

18 Rate of growth, ~(dK/dt}/K, of wave 6 as part of system 
of zonal and wave 6, with or without 'Nave 12, and as 
a function of horizontal-spectral truncation (above). 
Instability of basic flow with respect to perturbations 
of wave number 6 as a function of tim.e (below), repre­
sented by the growth rates of the ten most unstable 
modes • • • • .' • • • • • • • • • • • • • • • 73 

19 Wave kinetic energies and growth rates for system of 
zonal, wave 3, and wave 6, for various values of initial 
wave kinetic energy. Initial wave structures corres-
ponding to most unstable modes. • • • • • • • •• 77 

20 Same as Fig. 19 but initial configuration of wave 3 
corresponding to second unstable mode •••• 79 

21 Stability properties of basic current with respect to 
waves 3 and 6 as a function of time for nonlinear 
system of Fig. 19 (above) and system of Fig. 20 (below). 
Actual growth rate of perturbations denoted by dashed 
lines . .. . . . . . . . . . . . . . . . . . . . . . . 82 

22 

23 

Latitudinal and vertical profiles of basic current 
employed in this chapter. • • • • • • • • 

Growth rates (per day) of perturbations in two­
parameter model for zonal profiles corresponding to 
curve I of Fig. 22a (above) and curve II of Fig. 22a 
(below) • . •• .•.•••..••••• • • • • 

viii 

90 

93 



I. INTRODUCTION 

A. Historical Background 

The theory of atmospheric development can be traced back to in­

vestigations of the stability of hydrodynamic flow by Thomson, Rayleigh, 

and Helmholtz. Thus the growth of cyclone-scale disturbances in the 

atmosphere is visualized in terms of the stability properties of zonal 

currents. The instabilities arising from the general shearing motions 

in the free atmosphere are naturally divided into two classes, since 

the main cause of the instability may be either the vertical shear or 

the latitudinal variation of the zonal wind. The physical processes 

responsible for the growth of the large-scale perturbations on the basic 

flow are accordingly of two types. In the case of a zonal flow without 

lateral shear the only source of energy for the atmospheric eddies is 

the potential and internal energy of the zonal current available for 

conversion into perturbation energy. This energy is known as the 

"available potential energy" and may be related to the vertical shear 

of the zonal wind. Development of this type is referred to as baro­

clinic instability. On the other hand, if the perturbations grow due 

to the latitudinal variations of the basic flow, the source of energy 

is the kinetic energy of this flow and the instability is of a baro­

tropic nature. 

Most of our knowledge concerning the stability properties of the 

atmosphere is the result of theoretical investigations of zonal currents 

possessing either vertical or lateral shear. Charney (1947) and Eady 

(1949) presented the first mathematical treatments of cyclone waves in 

terms of the baroclinic character of the general shearing motions in 

the free atmosphere. Previous studies had focused attention on 
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perturbations at the interface between two air masses of different 

density and velocity. Subsequent investigations of the baroclinic 

stability problem by Kuo (1952), Burger (1962), and Miles (1964), were 

concerned principally with elaborations of Charney's model. Under 

normal atmospheric conditions a maximum of instability has been shown 

to exist for wavelengths corresponding to the scale of cyclone pertur­

bations. Kuo (1953) found that the shorter unstable baroclinic waves 

are shallow while the longer ones have maximum amplitudes in the upper 

atmosphere. 

The barotropic instability problem was considered by Kuo (1949), 

who applied Rayleigh's theory of the stability of parallel flows to 

zonal currents in the atmosphere. The barotr\)pic basic current was 

shown to be stable if the meridional gradient of absolute vorticity has 

the same sign everywhete. Kuo's work was extended by Howard and Drazin 

(1964) and by Lipps (g,62, 1965). Lipps (1963) also made an analysis of 

the barotropic stabi1it:y for a two-layer incompressible fluid and Jacobs 

and WHn-Nielsen (1966> discussed the stability of the barotropic zonal 

current in a stratified atmosphere. An important theorem concerning 

the stability of a general barotropic-baroc1inic zonal current was de­

rived by Charney and Stern (1962). By using integral techniques, they 

showed that a necessary condition for instability of an internal jet is 

that the meridional profile of the "potential vorticity" has an extre­

mum at some place in the basic flow. The potential vorticity is a 

quantity incorporating both the effects of the absolute vorticity and 

the vertical shear and will be defined in the following. Ped10sky 

(1963, 1964a) and Blumen (1968) generalized the stability theorem above. 
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Pedlosky (1964b) also made a detailed investigation of unstable per­

turbations in a two-layer barotropic-baroclinic model. 

Along with these analytical investigations of the atmospheric 

instability problem, numerous studies have taken a numerical approach 

to the problem. Green (1960) considered the baroclinic problem as de­

fined by Charney and Eady and his work has been extended by Hirota 

(1968). The computational aspect of the problem was the subject of 

studies by Wiin-Nielsen (1962) and Rosenthal (1964). Numerical methods 

were applied to obtain the stability characteristics of barotropic flows 

by Eliasen (1954), Wiin-Nielsen (1961), Haltiner and Song (1962), and 

recently by Yanai and Nitta (1968). Haltiner (1963) and Gary (1965) 

proceeded to numerical investigations of basic currents containing both 

vertical and lateral shears. The most comprehensive study of the 

general barotropic-baroclinic problem was recently completed by Brown 

(1969a, 1969b). A numerical model of high horizontal and vertical 

resolution was used to obtain instability results for zonal basic flows 

possessing both vertical and lateral shears. These results were com­

pared with those of the purely baroclinic and purely barotropic atmos­

pheres in order to obtain estimates of the effects of one type of 

instability upon the other. The following is a summary of Brown's 

results. 

Consider meridionally symmetric, jet-type westerly currents which 

have vertical profiles representative of atmospheric winds at middle 

latitudes. The basic wind profiles either have absolute vorticity 

extrema within each layer (cosine jets), or they do not have such 

extrema (parabolic jets). For the cosine jet two distinct wavelengths 

of maximum instability are evident in most cases. By obtaining the 
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energy conversions it is determined that the relatively short waves 

amplify due to a dominating baroclinic effect. These waves are simul­

taneously subject to a barotropic stabilizing influence and thus 

strengthen the zonal kinetic energy of the basic current. For the 

relatively long unstable waves both the basic flow kinetic and available 

potential energies act as sources of perturbation energy. On the other 

hand, the parabolic jet does not satisfy the criteria for barotropic 

instability and consequently all unstable waves are characterized by a 

dominating baroclinic effect with a tendency for barotropic damping. 

A basic assumption underlying all the investigations above is that 

the large-scale motions of the atmosphere are described to a satisfacto­

ry degree by the so-called quasi-geostrophic system of equations. A de­

tailed discussion of this approximation has been presented by Phillips 

(1963). The main purpose of the quasi-geostrophic approximation is to 

filter out the gravitational modes of oscillation while retaining the 

rotational modes of oscillation in the atmosphere. Supposedly the 

latter are responsible for the development of atmospheric cyclones 

while the former are meteorologically insignificant. More recently the 

effects of departures from quasi-geostrophic balance on the stability 

properties of the atmosphere have been subjected to a critical evalua­

tion. The non-geostrophic baroclinic problem was studied by Arnason 

(1963) and Derome and Wiin-Nielsen (1966), and for the two-layer model 

by Wiin-Nielsen (1963) and Magata (1964). Phillips (1964) suggested 

that the most important non-geostrophic effects in baroclinic stability 

studies might be related to the lateral variations of the perturbations. 

Stone (1966) and Sela and Jacobs (1968) tried to incorporate these 

effects by assuming wave solutions periodic in the lateral direction 
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normal to the basic current. Simons (1970) evaluated the instability 

of non-geostrophic baroclinic perturbations in a channel with two verti­

cal walls. The computations were performed on a particular two-layer 

model which incorporates all the effects of the north-south dependence 

present in more sophisticated models. The results of all these studies 

indicate that the major baroclinic instability of cyclone-scale per­

turbations is not significantly altered by non-geostrophic effects. 

Nevertheless it should be realized that the quasi-geostrophic approxi­

mation does eliminate any instability which could be induced by non­

rotational modes of oscillation. Simons and Rao (1970) showed that the 

internal gravity modes may combine with the rotational modes in a two­

fluid model to produce instability of perturbations having the dimen­

sions of a few thousand kilometers. The same mechanism had been shown 

to be responsible for jnstability in a frontal model by Rao and Simons 

(1969). Again, howevel, such instabilities were found to exist outside 

the region of the majOl. quasi-geostrophic instability without signifi­

cantly modifying the latter. 

B. Outline of Present Study 

The present investigation is concerned with the interaction of 

finite wave perturbations with a barotropic-baroclinic basic current as 

observed in the atmosphere. This study does not consider the problem of 

atmospheric instability for its own sake, but rather is directed toward 

an interpretation of such instability in terms of the actual development 

of atmospheric cyclones. The atmosphere is always unstable in a hydro­

dynamic sense. This might of course be inferred from the cyclone per­

turbations which are seen to develop persistently in the earth's 
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atmosphere. However, there is also ample evidence that any zonal 

current, obtained in some fashion from atmospheric data, is unstable 

with respect to small wave perturbations superimposed on such, a current 

in a numerical model. Furthermore the atmosphere displays at any moment 

an abundance of large-scale eddies, and new perturbations are created 

continuously by thermal processes and the effects of the earth's 

topography. The problem at hand is then to study the development of 

these disturbances under such conditions and to determine why certain 

eddies grow while others do not. Clearly the cause of such growth is 

not necessarily the unstable character of the zonal current but may also 

lie in the interactions among various perturbations. In the second 

place it seems unrealistic that the growth of an eddy would for a given 

basic state be determined only by its scale as predicted by stability 

theory. Obviously the configurations of some of the perturbations 

present in the atmosphere at any given time are more favorable for de­

velopment than others. 

There are many ways to approach the above problem. The approach 

taken in the present investigation is to start from the theory of atmos­

pheric instability and extend such studies to include the effects of 

nonlinear interactions between the zonal flow and the eddies and the 

effects of the initial eddy structure. The purpose is not to reproduce 

the actual behavior of the atmosphere but only to simulate certain 

large-scale processes in the atmosphere. Thus the model incorporates 

no effects of dissipation or diabatic heating which would in the present 

context only obscure the interpretation of the results. Furthermore 

the model is quasi-geostrophic since we will restrict ourselves to 

scales of motion corresponding to perturbations of major instability. 
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The spherical geometry of the earth is incorporated in order to include 

the effects of this geometry on the flow and to deal with natural later­

al boundaries. 

The field of atmospheric motions may be represented by a complete 

spectrum of planetary waves. The basic assumption underlying the study 

of dynamic instability of the atmosphere is that one individual wave 

can be studied independently from its interaction with the remaining 

part of the spectrum. This procedure can be justified mathematically by 

disturbing a basic zonal flow by a perturbation which is sufficiently 

small for terms of second and higher order to be negligible. In a non­

linear model the interactions of the various planetary waves cannot be 

ignored and consequently the complete spectrum of waves should be con­

sidered. It is however possible to consider a particular initial state 

which renders the problem considerably more tractable. This initial 

state consists of a zonal flow and one individual planetary wave. The 

nonlinear effects will indeed modify the zonal flow and also introduce 

new waves, but all these waves will be higher harmonics of the original 

wave. This may be considered to constitute the first step of the non­

linear extension of the study of atmospheric instability and may shed 

some light on the development of a mature cyclone. 

The nonlinear aspects of the baroclinic instability problem have 

received some attention in the past. Phillips (1954) computed the 

second-order changes in the basic current resulting from an unstable 

wave superimposed on this current in a two-layer model. Baer (1968) 

presented an exact solution for the nonlinear interaction between the 

zonal flow and a finite-amplitude wave in a two-layer purely baroclinic 

system. This solution is periodic for all values of the basic state 
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parameters and for all wavelengths. Thus the growth of the perturbation 

will be reduced and finally halted when the wave amplitude becomes suf­

ficiently large. But the solution also implies that the amplitude of 

the wave will subsequently decrease and become at least as small as its 

initial value. Precisely the same conclusions were reached recently by 

Pedlosky (1970) who adopted the same physical model but a different 

mathematical approach. It may be anticipated that the second half of 

the nonlinear cycle will be drastically altered if the barotropic energy 

exchange processes are allowed to come into play. These effects and the 

effects of the higher harmonic of the primary wave perturbation consti­

tute a major subject of the present investigation. 

One of the most significant aspects of a nonlinear study is the 

initial-value problem. In a study of the present type one might solve 

this problem by invoking the results of linear instability theory. If 

the amplitude of the wave is sufficiently small for nonlinear effects 

to be negligible the perturbation will grow toward the structure of the 

most unstable normal mode. This particular configuration can therefore 

be adopted for the initial perturbation in the nonlinear extension of 

the instability problem. Clearly then, the implicit assumption is that 

the time-scale of the quasi-linear development is such that the pertur­

bation has an opportunity to adjust to the normal mode structure. In 

case of atmospheric development, however, we are dealing with finite 

initial disturbances which might cause the nonlinear effects to become 

active very rapidly. In such case the initial configuration might be 

more important than the character of the linear growth of the wave. 

This brings out the need for adequate information concerning the effects 

of the initial structure of a perturbation on its subsequent growth. 
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Aside from this, the latter problem might also have some bearing on the 

preference of certain types of perturbations with respect to atmospheric 

development. Other important aspects of the initial value problem in 

the theory of hydrodynamic instability have been stressed by Case 

(1960, 1962) and Pedlosky (1964c). This initial-value problem is there­

fore another major subject of this investigation. 

The following presentation consists of three parts in addition to 

a description of the mathematical model. The first part consists of a 

study of the linear stability properties of the basic flow to be used 

in the nonlinear study. This basic flow is the climatological-mean 

zonal current for January. The same chapter also includes a brief 

description of the stability properties of the mean January flow as a 

function of longitude. The latter is of interest since the development 

of atmospheric cyclones is doubtless determined more by local conditions 

than by the zonally-averaged character of the mean flow. The next 

chapter is concerned with the nonlinear aspects of the stability problem. 

First we consider the development of the most unstable waves under in­

fluence of the nonlinear interactions with the zonal flow. Subsequently 

we allow for the higher harmonic of the primary wave and finally we 

consider the interaction of a highly-unstable cyclone wave with a quasi­

permanent long wave. The final part of this paper is devoted to the 

initial-value problem. A general solution of this problem has not been 

attempted. Instead we have followed the course outlined by linear 

instability studies and considered first the baroclinic aspects of the 

problem. The barotropic nonlinear initial-value problem has been con­

sidered to some extent by Baer (1968) and King (1970). 
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Due to the complexity of the flow patterns the solutions are ob­

tained by numerical methods. There are two numerical techniques availa­

ble by which our equations can be integrated. The most widely used is 

the gridpoint method whereby the vertical and lateral derivatives are 

replaced by finite differences. A draw-back of this method as applied 

to nonlinear equations is the occurrence of nonlinear computational 

instabilities (Phillips, 1959) which can be only suppressed by certain 

smoothing or damping operations or by simulating the effects of dif­

fusion. Since it is the purpose of the present study to obtain a 

solution to the given initial value problem which is not effected by 

such artificial means, we have turned to the other alternative, known 

as the spectral method. In this case the atmospheric flow field is 

represented in terms of a series of orthogonal polynomials. It is 

clearly advantageous if such polynomials are chosen to be character­

istic functions of certain operators which occur in the dynamical 

equations. Useful horizontal representations of this type have been 

introduced in numerical meteorology by Silberman (1954) and later by 

Lorenz (1960) and P1atzman (1960). Their polynomials are characteristic 

functions of the horizontal Laplace operator occurring in the quasi­

geostrophic relationship between vorticity and height field. In the 

present problem one of the two horizontal coordinates will be eliminated 

from the outset (Section lIB) and the appropriate orthogonal functions 

are simply the associated Legendre functions of the first kind. 

The vertical representation of the atmosphere in terms of ana­

lytical functions is by no means original either. In the early years 

of numerical forecasting, Eady (1952) and Eliassen (1952) introduced 

the two-parameter models in which the vertical layered structure of the 
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atmosphere was rejected in favor of a representation in terms of given 

functions of the vertical coordinate. A few attempts have been made to 

extend this representation to more parameters but a general solution 

has not yet been proposed. However, for a model with standard static 

stability such as the one dealt with in the following, the present 

author has suggested an expansion in terms of orthogonal polynomials 

which are eigenfunctions of a vertical operator occurring in the quasi­

geostrophic potential vorticity (Simons, 1968). This method has been 

applied in the last part of this study for reasons of the special nature 

of the problem. In the first part, which includes the linear studies, 

we have adopted the usual atmospheric modeling in terms of layers. 



II. MATH&'1ATICAL MODEL 

A. The Quasi-Geostrophic System of Equations 

It is most important that any simplified system of equations meets 

certain integral requirements which are satisfied by the complete 

equations (Hollmann, 1956; Wiin-Nie1sen, 1959; Lorenz, 1960). In the 

absence of friction and diabatic heating, the equations governing the 

motions in the atmosphere conserve the total vorticity and the total 

energy of the earth's atmosphere. The following quasi-geostrophic 

equations are consistent in this respect. This simplified system of 

equations has been treated in detail by Phillips (1963) and therefore 

we will restrict ourselves to a brief review of the relevant equations. 

The horizontal wind can be written as .the sum of a nondivergent and 

an irrotationa1 component V = k x ~~ + ~X where ~ is the stream-

function, X is the velocity potential, k is the vertical unit vector 

and V is the horizontal gradient operator. If ~ and 0 denote the verti-

cal component of vorticity and the horizontal divergence, respectively, 

then clearly ~ = V2~ and 0 = ~2X. The horizontal equations of motion 

may be transformed into the vorticity equation and the divergence 

equation. When pressure is used as the vertical coordinate the quasi-

geostrophic simplified form of the divergence equation is 

o (1) 

where ~ is the geopotential and f is a constant value of the Coriolis 
o 

parameter f = 2Qsin¢. If now the vorticity equation is truncated to 

the form 

o (2) 
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where J denotes the Jacobian operator, then these equations satisfy the 

consistency requirements mentioned above. 

The atmosphere is assumed to be in quasi-hydrostatic balance. 

Under this condition the continuity equation in pressure coordinates 

becomes 

'l2X + ~ = 0 
ap (3) 

where p is pressure and w = dp/dt is a measure of the vertical com-

ponent of velocity. The vertical equation of motion reduces then to 

the hydrostatic equation which may be combined with the equation of 

state to give 

+ o (4) 

where T is temperature and R is the specific gas constant. 

The thermodynamic equation for adiabatic motion is used in the 

following form 

aT + J (1/J ,T) + (21:. - :!. !) w 
at ap p c 

p 
= o (5) 

where the term in the parentheses is a measure of the static stability 

of the atmosphere. The second term of (5) results from the assumption 

that the temperature is advected by the nondivergent part of the wind-

field similar to the advection of vorticity in (2). Now the static 

stability must be replaced by a standard value depending on pressure 

alone if the system of equations is to conserve the sum of kinetic 

energy and available potential energy (Lorenz, 1960). 

All the terms of (5) involve the temperature T and therefore are 

related to the height field by (4) and to the stream field by (1). 
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Since however the static stability is not allowed to vary in time or in 

the horizontal, the streamfunction and the static stability must be 

uncoupled. It is therefore useful to define the streamfunction as a 

deviation of the geopotentia1 height from its standard value, i.e., 

f ~ = ~-~(p) which satisfies (1). From (4) the temperature is then 
o 

related to the streamfunction as follows 

T (6) 

where T = -(p/R) d~/dp. Now the second term on the right of (6) should 

be neglected in computing the static stability. The static stability 

parameter used in the following is defined 

a(p) (7) 

The basic equations for the present model are now obtained by 

substituting (3) into (2) and (6) into (5). The resulting equations 

are 

L. 2.1 + at ap 
a + - w 
f o 

(8) 

o (9) 

where it is understood that a is only a function of pressure as given 

by (7). For the actual prediction of the streamfie1d we eliminate w by 

differentiating (9) with respect to pressure and adding the resulting 

equation to (8). We then obtain the following 
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a (V2~ + f2 ~!~») + J(~ V2~ + f + f2 ~(! a~») = 0 (10) 
at 0 ap a ap , 0 ap a ap 

This is the quasi-geostrophic potential vorticity equation. 

The spherical geometry of the earth is taken into account in the 

present model, together with the lateral boundary conditions imposed 

on the flow by nature. It is convenient to choose our basic units 

accordingly and to normalize the depth and width of the model. The 

earth's radius is chosen as the unit of length and the reciprocal of 

the earth's angular rotation speed as the unit of time. The lateral 

coordinate is defined ~ = sin ~ where ~ is latitude and therefore ~ 

ranges from 0 at the equator to 1 at the North Pole. A new vertical 

coordinate is introduced which increases upward from the surface of the 

earth. 

where p is the lower pressure surface of the model and PI is its upper 
o 

pressure level. Again z ranges from 0 at the surface to 1 at the top 

of the model atmosphere. The longitude is denoted by A. 

The Corio lis parameter becomes simply f = 2n sin ~ = 2~ and the 

Laplace operator and the Jacobian operator become respectively 

aa ab 
J(a,b) = aI ~ .-

(12) 

(13) 

The basic equations (8) and (9) may then be written in the following 

form 
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(14) 

o (15) 

where we have defined a new measure for the vertical velocity component 

(16) 

and a new measure for the gravitational stability of the atmosphere 

which is again a functfon of pressure only according to (7). For 

completeness we will also write down the expression for the temperature 

deviation from its standard value which is denoted by T = T-r(p) and 

which by (6) and (11) becomes 

fo p 
T=-(-O--z)~ 

R Po-PI dZ 
(18) 

The boundary cond:Ltions which are consistent with the quasi-

geostrophic equations and a flat surface (Phillips, 1963) are that 

w = 0 at the top and bottom of the model atmosphere. In the lateral 

direction we impose the condition of symmetry of the flow field with 

respect to the equator. Since in the quasi-geostrophic model the zonal 

velocity u = - cos~ a$/a~ and the meridona1 velocity component 

v = (l/cos~) a$/aA, it follows that $ is an odd function of the lateral 

coordinate ~ and consequently $ = 0 at the equator, if the pressure-

dependent integration constant is incorporated in the first term on the 

right of (6). The global atmospheric model is herewith reduced to an 

hemispheric model (0 < ~ < 1) with boundary conditions 
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( itA 2itX) 
w(X,~,z,t) = w (~,z,t) + 2Re wl(~,z,t)e + w2(~,z,t)e 

o 

substituting now (21), (22) and (25) into (14) we obtain an 

equation of the form C + Cl exp(itX) + Cl exp(-itX) + C2 exp(2itX) 
o 

(25) 

+ ... = 0, which can be satisfied only if the coefficients Cj(~,z,t) 

are individually equal to zero. 

C2 give the equations 

The three coefficients C , CI, and 
o 

j 0,1,2 (26) 

where G
j 

and H
j 

resulting from the Jacobian term in (14) are given 

below. The coefficients Cl and C2 produce two equations which are the 

complex conjugates of the equations for Cl and C2 and therefore can be 

dispensed with. The equations resulting from C. = ° for j>2 must be 
J 

discarded since these equations tend to generate the waves of wave 

numbers 3R. and 4R. whicl. are precluded by equation (21). A similar 

procedure applied to (15) results into the set of equations 

j 0,1,2, (27) 

Finally, the potential vorticity equation (20) becomes 

(28) 

It should be noted that the new set of prediction equations (26), (27) 

and (28) do not involve the longitudinal coordinate A. All of the 



20 

dependent variables are functions of only ~,z, and t, and the nonlinear 

functions Gj and Hj may be easily found from (14) 

G 1 = iR. (tJ; ~ - ~ A ) 
1 a~ a~ 1 

* * 
G = -2R. Im(Wllli- 21l. Ad G2 = 2iR. (W 2.& - 2.h A ) 

0 a~ a~ 2 d~ all 2 

* * 
H = -4R. 1m(W2 ~ - lli A2) H2 = U(W lli - ~ A ) (29) 

0 all ell 1 dll all 1 

* * * H iR.(2W2 .& + lli A - 2 lli. A _ W* aA2~ 
1 all a~ 1 ell 2 1 all J 

where 1m denotes the imaginary part of a complex number and the asterisk 

indicates the complex conjugate. The nonlinear function P. is obtained 
J 

from Gj and Qj is obtained from H
j 

by simply replacing Aj by 

(l/s)aw/az. 

The significance of the nonlinear terms Gj , Hj , Pj , and Q
j 

is 

evident from an inspection of (28) and (29). Starting from a small 

perturbation of wave number R. superimposed on the zonal flow, the terms 

Gl and PI represent the effect of the basic zonal flow Wo on the 

developing wave WI' Only these two terms are therefore retained in the 

linear study discussed in the next chapter. The nonlinear effects of 

the developing wave upon the zonal flow are represented by G and P , 
o 0 

and this problem will be considered in Section 1VB. Finally, if the 

primary wave has become sufficiently large, the nonlinear functions H2 

and Q2 will generate the secondary wave of wave number 2R., which will 

then interact with the zonal flow by virtue of the functions G2 and P2 , 

and with t~e primary wave through Hl and Ql' while its nonlinear 

effects on the zonal flow are represented b,Y Hand Q (section IVC). 
o 0 
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In order to extrapolate the streamfunctions in time we apply two 

well-known numerical techniques. Spectral expansions are used in the 

horizontal and either layered or spectral representations are employed 

in the vertical. The horizontal-spectral representation is discussed 

in Appendix A, the vertical-spectral representation in Appendix B, and 

the layered model equations are derived in Appendix C. 

C. Energy and Energy Conversions 

The development of unstable perturbations on a zonal current is 

studied most easily by determining the generation of the kinetic energy 

of the perturbations arId the exchange of energy between the zonal flow 

and the eddies. The ftrst quantity we are concerned with is the kinetic 

energy per unit mass which is defined 

(31) 

For the present purposl~s it is sufficient to consider the mean energy 

quantities for the hemisphere. Thus averaging (31) with respect to 

longitude and latitude, substituting (21), and integrating by parts 

using the lateral boundary condition (19), we obtain 

2n I 

K - ~TIOfof (KE) dAd~ 

I 1 

K - - f ~ ~ A d~ o 0 0 0 
Kj :: -of ~j*Aj d~, j = 1,2 (32) 

where the asterisk denotes the ~omplex conjugate, Ajis defined by (23), 

and K , KI, and K2 can be easily shown to be real quantities. Clearly 
o 
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then K , KI, and K2, represent the area-mean kinetic energy per unit 
o 

mass in the zonal flow, the first wave, and the second wave, respec-

tively. 

Another energy quantity which has been shown by Lorenz (1960) to 

be very useful for a study of the present type is inversely proportional 

to the atmospheric Richardson number. This quantity is known as the 

"available potential energy" and represents in our model the only source 

of kinetic energy. Following Lorenz, recalling the definition for the 

static stability (7), and using (6), (11), and (17), we may write this 

available energy as 

AE 
R 2 f2 2 1 2 ....!. (-(T-I») =.!:.Q. (all!) = _ (~) 

20 p 20 apJ 2s a~J (33) 

Again averaging over the hemisphere and substituting (21), we arrive at 

1 2'1f I 
A = --2 f f (AE) dAd~ = A + Al + A2 

'If 0 0 0 

(34) 

1 1 all!. all!~ 
Aj :: of - ~ _J dll s az az .. , j = 1,2 

The main advantage of this available potential energy lies in the fact 

that the vertical average of the sum K+A is conserved by the present 

system of equations as we shall see in the sequel. 

The time rate of chang~ of the area-mean kinetic energy is 

obtained by differentiating (31) with respect to time, averaging over 

the hemisphere, and integrating by parts. The results are 

1,2 (35) 
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and similarly for the available energy 

The energy conversions are then obtained by substituting the vorticity 

equation (26) into (35) and by using the thermodynamic equation (27) in 

(36). Let us denote the exchange of kinetic energy between wave j and 

wave k by CKjk , their exchange of available energy by CAjk, and the 

conversion of potential to kinetic energy by CAK. The energy equations 

may then be written 

~= CKIO + CKLO +CAK 3A 
at 0 

F = CAIO + CALO + CKAo 

lli = CKOI + CK2.1 + CAKI 
aA] 

+ CALI + CKAI (37) = CAOI at at 

aK
2 

_ 
CK02 + CKl2 + CAKL 

aA? 
at at = CA02 + CAl2 + CKA2 

where from (26), (27), (35), and (36) we obtain readily 

Jl Jl * CKI0 = 1jJ G dlJ CKOI 2Re 1/ilGl dlJ 
0 o 0 0 

I / * CK20 J 1/i H d)J CK02 2Re 1/i2G2d)J (38) 
0 00 0 

1 '* I '* CK2.1 = 2Re J IjJIHldlJ CK12 ::0 2Re J 1/I2H2d)J 
0 0 

12.to.. Jl * 
CAl 0 = - J P dlJ CAOI = - 2Re ~~l Pld)J o Clz 0 0 

1 I '* 
CAL 0 - J 2.:k Q dlJ CAOL = - 2Re f ~ PLdlJ (39) 

o dZ 0 o Z 

1 '* 1 '* 
CA21 = -2Re J ~~l QldlJ CAl2 = - 2Re J ~ Q2d lJ 

0 o az 
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II 1/1 ~d 1 d1/l 
CAK = CKA I ~w dll 

0 o 0 dZ II 0 o az 0 

II * aWl II a * 
CAKI 2Re o 1/11 az dll CKAI = 2Re a~l wldll (40) 

0 

I 
* ~d 

1 d * 
CAK2 2Re I 1/12 CKA2 2Re I ~W2dll 

0 az II 0 

By using the expressions for the nonlinear functions (29) it can be 

shown easily that CK10 = - CKO} , CK20 = - CK02, CK21 = - CKI2, and 

similarly for CA. This is true at each level in the vertical since 

no vertical integration has yet been performed. After vertical inte-

gration we find also by virtue of the vertical boundary condition (19) 

that CAK
j 

= - CKA
j 

for j = 1,2,3. This is' used as a check on the 

numerical computations. Furthermore it follows then immediately that 

dA/dt + dK/dt = 0 if the bar denotes a vertical average. Thus A+K is 

a conservative quantity for the present model, which may be 'computed at 

regular time intervals as a check on the time extrapolation by finite 

difference methods. 

The meaning of the various energy conversion terms follows 

immediately from an inspection of (37) and (38). A common way of 

representing such energy processes is shown below 

, CA02 
• 

CAOI CAI2 A2 

Al • 

1~2 teAK 1 

CKI2 
KI .. 

KO K2 

CK02 
.. 
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It should be recalled that the kinetic energy and the potential 

energy are defined per unit mass, and hence the same is true for the 

energy conversions. The energies will be expressed in units of m2/sec2 

and the energy conversions in units of m2 /sec2 per day. The actual 

energy in a vertical atmospheric column is related in a simple manner 

to our energy quantities. Using the definition (11) we obtain for 

instance for the kinetic energy in a vertical column 

1 Po 
J K dp = 

g 0 

_ 1 
po Pl J Kdz 

g 0 

Taking p = 103 mb, PI = 0, and g = 10 m2/sec 2 , we have (p -Pl)/g 
o 0 

= 104 kg/m2. Thus if we multiply the vertical-mean energy per unit 

mass by 104 we obtain the energy per unit of surface area in units of 

joules/m2• 



III. LINEAR ANALYSIS 

A. Computational Technique 

The linear study is concerned with a small periodic disturbance 

superimposed on a zonal flow which is constant in time. The total 

streamfunction is 

( itA) ~(A,~,Z,t) = ~ (~,z) + 2Re ~l(~,z,t)e 
o 

(41) 

where it has been assumed that the perturbation consists of a single 

planetary wave of wave number 1, and clearly ~I is a complex quantity. 

The development of the wave in time is described by (28) for j=l, where 

the nonlinear terms HI and Ql are to be discarded since they represent 

interactions with the wave of wave number 21 which is ignored in the 

linear model. Owing to the time-independent character of the zonal 

flow ~o' the functions G1 and Pl become linear in the time-dependent 

variables and (28) reduces to an equation with time-independent co-

efficients. From (23), (28), and (29) we have 

~ + L (1:.~) + 2it ~ at az s azat 1 + Gl + ~= 0 az (42) 

GI H. (aAo ~ - ~ A ). PI iR,(~ _ ~lli) (43) - a~ 1 a~ 1, - S a~az ~I a~ dZ 

a lli ~ h(l- 2)~ Al = -- (1-~2) - • A - (44) 
a~ a~ l-~' 0 d~ ~ a~ 

Since the coefficients of (42) are arbitrary functions of the lateral 

and vertical coordinates we must have recourse to numerical techniques 

in order to obtain the solution. 

For the present computations we have combined a spectral technique 

in the horizontal direction (Appendix A) with a layered representation 
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In the vertical (Appendix C). The details of this procedure are given 

in Appendix E, and we will here restrict ourselves to an outline of the 

numerical method, which may clarify the subsequent discussion. Thus the 

perturbation streamfunction ~l is represented by a series of polynomials 

which are functions of ~ only 

(45) 

The polynomials Ye (~) are the associated Legendre functions whose 

properties are discussed in Appendix A. The coefficients of the ex-

pansion (45) are clearly functions of z and t, and we refer to these 

coefficients as "horizontal-spectral components". Each of these com-

ponents is now defined at regular intervals in the vertical, which 

means that each component is itself represented by a number of 

"parameters" which are fll.Llctions of time only. If the horizontal ex-

pansion is truncated after N terms, and the atmosphere is divided 

vertically into 11 layers, then we are dealing effectively with L=N x M 

time-dependent wave parameters, which are complex quantities since ~l 

is complex. 

The governing equation (42) for the wave perturbation ~l is noW 

replaced by a system of L ordinary differential equations with time as 

the only independent variable. The latter equations are obtained by 

substituting (45) into (42) to (44), using the orthogonality of the 

polynomials Ye, and applying the resulting horizontal-spectral equations 

at the midpoints of the layers. This procedure involves an integration 

with respect to the lateral coordinate ~, which requires a knowledge of 

the variation of the basic state streamfunction ~ with~. Given this 
o 

function ~ , the integrations may be either carried out numerically, 
o 
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or the streamfunction ~ may be first expanded in a series similar to 
o 

(45) but with time-independent coefficients. The latter method has 

been used here in view of the subsequent nonlinear study. The relevant 

equations are derived in Appendix E, where it is shown that the 

resulting system of equations may be written as 

d -+ -+ 
dt ~l + i D ~l = 0 (46) 

-+ Where ~l is the array of the L time-dependent wave parameters discussed 

before, and D is the coefficient matrix of order L made up of basic 

state constants such as static stability and zonal flow parameters. 

The linear system of equations above allows for solutions of the 

form exp (-ivt) and thus the linear problem reduces to an eigenvalue 

problem where v is the eigenvalue. It follows from (41) that if 

~l """ exp (-ivt) (47) 

then the eastward angular propagation speed of the wave perturbation 

equals 

w = viR, (48) 

and consequently the eigenvalue is directly related to the wave speed. 

At the same time it is seen that if the eigenvalue is complex, 

v = vr + iVi' then the perturbation grows in time with "growth rate" 

vi. Such perturbations with exponentially increasing amplitude are 

called unstable. 

Since (46) represents a system of L coupled equations, there 

will be L eigenvalues. Most of these eigenvalues are real numbers and 

do not correspond to unstable wave solutions. In general however we 

will find a number of complex eigenvalues. Owing to the character 
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of the coefficient matrix, the complex eigenvalues can only be found as 

complex conjugate pairs. In this case a growing and a decaying mode 

will exist simultaneously, and we are, of course, mainly concerned with 

the growing wave. The total solution for the wave perturbation ~1 is a 

linear combination of the normal mode solutions and it follows that the 

most unstable mode will eventually take over and determine the structure 

of the wave. The horizontal and vertical structure of the unstable wave 

will therefore be given by the eigenvector associated with the eigen-

value which has the largest imaginary part. 

B. Basic State Parameters 

It follows from (28) and (29) that the basic state is completely 

determined by the parameters s(z) and ~o(~,z), that is, by the (standard) 

static stability and the zonal flow. The reciprocal of the standard 

static stability adopted for most of the prese.nt calculations is shown 

in Fig. 1. This inverse static stability is obtained by averaging the 

values for summer and winter presented by Gates (1961). In the same 

figure we have included Gates' static stability profile for the winter 

months which will be used later to study the quantitative effects of 

variations of static stability. 

The basic zonal streamfunction ~ is obtained from climatological 
o 

mean zonal wind data for January. In order to contribute to an easier 

interpretation of the subsequent results, we will describe'the character 

of the zonal flow by presenting the horizontal wind profiles at vertical 

intervals of 100 mb. and the vertical profiles at horizontal intervals 

of 10 degrees of latitude. Fig. 2 thus shows the climatological-mean 

zonal component of the wind for January averaged zonally around the earth. 
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Fig. 1 

Inverse of standard static stability employed in the following. 
Solid line: mean static stability for year; dashed line: winter 
static stability. Dash-dot lines to be discussed in Chapter V. 
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Horizontal and vertical profiles of climatological mean zonal wind 
for January. West winds to the right of the vertical coordinate. 
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The zonal average of the wind field smooths out significant local 

patterns of the flow. In particular it is noticed that the profiles 

of the time-averaged zonal wind component over the Pacific are dis-

tinctly different from those over the Atlantic. If it is assumed that 

a developing cyclone is largely affected by the local "basic flow" 

pattern, then it seems worthwhile to investigate the stability character 

of such flows. We have therefore averaged the climatological-mean zonal 

component of the wind over 60 degrees of longitude, thus obtaining 

January mean zonal wind profiles representative for Europe, Asia, the 

West-Pacific, East-Pacific, North America, and the Atlantic, respec-

tively. These profiles of course do not represent a basic zonal flow 

in the sense defined in Chapter II, i.e., a flow averaged zonally 

around the world, but they will in the following be treated as such. 

This may be an acceptable procedure for waves of cyclone scale and 

shorter waves. The 60-degree average zonal wind profiles are shown in 

Fig. 3. Of particular interest as compared with Fig. 2 are the averages 

for l20-l80E (extremely strong jet at low latitudes) and for 0-60W 

(double jet over the Atlantic). 

The zonal wind component does not figure directly in our pertur-

bation equation (42) but rather the basic state streamfunction ~o(~,z) 

does. The latter follows directly from the mean zonal wind by virtue 

of the relationship u = - a~ lay where y is the south-to-north coordi-
o 0 

nate. The arbitrary constant of integration must be chosen such that 

~ = 0 at the equator, in view of the boundary condition (19). 
o 
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c. Results of Linear Analysis 

In this section we present the normal mode instability associated 

with the climatological-mean zonal wind for January which is shown in 

Fig. 2. The basic static stability is the average for the year shown 

by the solid curve of Fig. 1. The effect of the winter static stability 

represented by the dashed curve will be discussed in IIID, but this 

stability profile has been obtained over the American continent and may 

be too stable for our global model. 

The resolution of the numerical model is comparable for the 

horizontal and the vertical. Unless stated otherwise, the horizontal­

spectral expansion includes B components (N=B) and the number of layers 

in the vertical is M = 10. The coefficient matrix (46) is therefore of 

order BO. The vertical resolution has been s'~udied frequently in con­

nection with the baroclinic stability problem. Most recently this 

problem has been consic.ered by Gary (1965), B-cown (196B), and Simons 

(1969). A resolution of 10 layers seems to be satisfactory, at least 

for determining the most unstable normal mode of cyclone-scale pertur­

bations. The horizontal truncation is justified presently by evaluating 

the convergence of the. most unstable roots as a function of an increasing 

number of terms in expansion (45). 

Fig. 4 shows all the unstable modes for wave numbers t=3,6,B, and 

16, and for horizontal truncations N=6,7, and B. The unstable roots are 

presented in terms of the growth rates per day and the angular wave 

speed in degrees of longitude per day. It is seen that in general we 

find about 10 complex eigenvalues out of a total number of 60 to BO 

eigenvalues (for N = 6 to B, respectively). The tail end of the 
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eigenvalue spectrum is modified considerably as the resolution in-

creases. This is particularly obvious for the wave speeds since the 

roots have been arranged according to the growth rate and therefore 

may switch positions. However, the convergence of the most unstable 

modes is very satisfactory except for the very short waves. The latter 

waves show also a poor convergence with respect to the vertical reso-

tion and, of course, the quasi-geostrophic approximation is not well 

justified for such waves either. The results for the very short waves 

should therefore be viewed with a critical eye. 

The instability of the January mean zon~l wind has been determined 

for planetary wave numbers 1 through 16. The computations were made 

for a horizontal trunca.tion N=8 and a vertical truncation M=lO. All 

unstable modes are sho~n in Fig. 5 in terms of growth rates per day and 

eastward angular wave E.peeds in degrees per d.ay. The growth rate is 

defined as the imaginary part of the eigenvalue V., thus according to 
~ 

(47) the amplitudes of our most unstable waves will grow in one day by 

a factor of about ~ = 1.65. The waves of maximum instability show one 

mode which is distinctly more unstable than the other growing modes. 

For these waves it seems therefore plausible that the most unstable 

modes will eventually take over and will determine the structure of the 

waves. For the longer waves and certainly for the short waves such 

governing unstable modes do not exist, at least not in the present model. 

The angular wave speeds of the most unstable modes are of the order of 

10 degrees of longitude per day. This is important in the light of our 

later discussion of basic state flows obtained by averaging the zonal 

wind component over 60 degrees of longitude. The assumption there is 

that the wave is effected mainly by the local character of the basic 
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flow, and a prerequisite of such a study is clearly that the wave stays 

for some days in a given sector. 

The instabilities presented in Fig. 5 give, of course, no infor­

mation about the nature of the instability of our observed mean wind. 

Thus the instability may be due partly to the vertical shear and partly 

to the horizontal shear of the zonal flow, i.e., we may be dealing with 

both baroc1inic and barotropic instability. To establish the character 

of the instability we consider the energy conversion processes which are 

responsible for the growth of the waves. The baroclinic instability is 

characterized by a conversion of available potential energy into pertur­

bation kinetic energy. On the other hand, in a barotropic atmosphere a 

perturbation can only amplify as a result of a transfer of basic flow 

kinetic energy to the wave. Considering the energy-cycle discussed in 

Chapter IIC we notice that, in the absence of the second wave, the 

sources of wave kinetic energy are given by the terms CAK and CKOI' 

Obviously the first term represents the baroc1inic process, while the 

second term is a measure of barotropic instability. 

In order to determine the energy processes we must first establish 

the horizontal and vertical structure of the wave perturbation. The 

energy cycle associated with a given unstable mode may be studied by 

determining the structure of this particular mode, i.e., by computing 

the eigenvector associated with this unstable root. The initial ampli­

tude of the perturbation in a linear model is arbitrary in the sense 

that a change·of amplitude without a change of structure results into 

a multiplication of all energies and their conversions by the same 

constant factor for all times. It is therefore convenient to divide all 

energy quantiti·es by one basic parameter such as the wave kinetic energy, 
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cycle may be represented as follows, if the arrows are made to point 

into the direction of the flow of energy 

CAOI 
A ----------------~. Al 

o j 
CKOI 

K ~ • .----------------- KI o 

The cycle is of course interrupted on the left since the zonal flow is 

not allowed to change in the linear model. 

The vertical distributions of the various energy conversions in 

the unstable wave are presented in Fig. 7. The unit of energy is the 

vertical-mean wave kin~tic energy. Two waves are shown: wave 6 and 

wave 12. The first is typical for all long and cyclone-scale waves in 

our model. This means that we do not have any waves with the typical 

structure found for the very long waves in other studies (e.g. Gary, 

1965; Brown, 1968; Sim()Os, 1969). In all other respects, the vertical 

profiles are typical for baroclinic unstable waves. The wave kinetic 

energy and its time rate of change have two maxima, one at the surface 

and one at the jetstream level, the first of which increases with wave 

number while the second one decreases. It is of interest to note that 

the generation of kinetic energy (CAK) has two maxima while the loss of 

potential energy (-CKA) shows one maximum at the level of zero diver-

gence. Integrated in the vertical the two must cancel and the implica-

tion is that the source of kinetic energy is basically located in the 

mid-troposphere, from where the energy is transported upward and down-

ward such that it becomes available for the growth of the perturbation 

at these levels. It may be recalled here that the term CKA is related 
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of the mean wind for a 60-degree sector. The variations of instability 

from one sector to the next are as large as expected from Fig. 3. 

Sectors of pronounced cyclone-scale instability are the North-American 

continent, Asia and the West-Pacific. Over the East-Pacific, and 

especially over the Atlantic, we find a shift of instability towards 

the shorter waves and the cyclone-scale instability is reduced consider-

ably. In fact, the one pronounced mode of maximum instability dis-

appears completely over the Atlantic Ocean. 

Another basic flow parameter which certainly varies horizontally 

in the actual atmosphere is the static stability. However its effect 

is rather straight-forward in the sense that a larger static stability 

tends to reduce the instability of the basic flow. As an example we 

have computed the instc~ility corresponding t~ the winter static sta-

bility shown by the dashed line in Fig. 1. The results are shown in the 

upper part of Fig. 9. For easy comparison we have reproduced our 

previous results of Fig. 5 on the same scale and included them in Fig. 

9. Indeed the more stable winter atmosphere shows smaller growth rates 

and possibly a shift of maximum instability towards longer wavelengths. 

However, the general characteristics are quite similar. 

The remainder of Fig. 9 is concerned with quasi-baroclinic cal-

culations, the results of which have been included in the same figure 

for easy comparison with our previous result. A purely baroclinic model 

is characterized by the absence of horizontal shears in the basic flow. 

The present spherical model becomes purely baroclinic if the basic state 

streamfunction ~ is a linear function of the lateral coordinate~. It o 

follows from (43) that in this case the coefficients of the perturbation 

equation become independent of the lateral coordinate. The mathematical 
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implication is that the equations for the spectral components defined 

by (45) become uncoupled, that is, the coefficient matrix appearing in 

(46) reduces to N matrices of order M each. In other words if the ini­

tial perturbation has a latitudinal structure corresponding to a single 

associated Legendre polynomial, the perturbation will preserve such a 

structure, and no spectral components other than the initial one will be 

generated. 

Let us now consider the baroclinic equivalent of our previous 

model. A linear variation with ~ of the basic state streamfunction 

implies a mean zonal wind of constant angular velocity. This is clearly 

quite different from our observed latitudinal profiles. However, as a 

matter of interest we will adopt a rather common procedure and consider 

the zonal wind profile at 45 degrees North. The basic state stream­

function is now chosen such that its derivative with respect to ~ is a 

constant corresponding to the zonal wind at 450 N. The instability of 

this wind is now determined with respect to each of the spectral com­

ponents for a given wave. Th~ results are given at the bottom of Fig. 9 

arranged according to the order of the components in the spectral 

expansion (45). It is seen that the lowest components, that is, the 

largest latitudinal scales, are the most unstable ones except for the 

very long waves. This is an agreement with similar studies for a 

B-plane. 

A comparison of the baroclinic results of Fig. ge with our previous 

results shown in Fig. 9b is not encouraging. This is due largely to the 

fact that a constant angular velocity wind profile overestimates the 

basic flow velocity at low lati-tudes if it is made to represent the 

flow at high and middle latitudes. We m9Y of course reduce the 
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baroclinic instabilities by reducing the basic flow velocity arbitrarily, 

but this still does not remove the relatively high instabilities of the 

shorter waves. Instead we have devised another type of quasi-baroclinic 

model. In this model we simply preclude the barotropic energy exchange 

between the zonal flow and the wave by considering one single term of 

the wave expansion (45). The zonal flow is completely arbitrary which 

implies that each spectral component of the wave perturbation "sees" 

a different vertical zonal wind profile. In a mathematical sense this 

quasi-baroclinic model is inconsistent since the initial latitudinal 

structure of the wave cannot be conserved owing to the lateral variation 

of the basic flow. However, we will find in this manner whether the 

coupling between the various baroclinically unstable modes in one wave 

is so important as to change the overall instability of the wave. The 

results of these quasi-baroclinic calculations are shown in Figs. 9c 

and 9d, arranged, respectively, according to the growth rates and by the 

order of the spectral components within one wave. Comparison of 9b and 

9c indicates that the coupling of the baroclinic modes in our general 

model is not so strong as to obscure the purely baroclinic instapilities. 

The major coupling effect seems to be the growth of the most unstable 

mode in a given wave. In general, however, this particular quasi­

baroclinic model seems to give a good indication of the major insta­

bilities, and consequently we will use this method for the baroclinic 

calculations of Chapter V. 

In conclusion of this section we have reproduced a figure from an 

earlier study by the author (Simons, 1969). Fig. 10 shows the baro­

clinic instability of the mean January zonal wind at 45°N as computed 



-u 
Q) 

~ 
E -0 
LLJ 
LLJ a.. 
(/) 
LLJ 

~ 
~ 

-, 
~ 
CJ 

49 

12 

10 

6 

~ 0.5 
LLJ 
~ 0.4 
~ 

:I: 
t-

~ 
~ 
(!) 

0.3 

0.1 

o~~------~------------~------------2 3 4 5 6 

WAVELENGTH (I000 km) 

Fig. 10 

Baroc1inic instability of January mean zonal wind 
at 4SoN with respect to wave perturbations without 
lateral variations on the beta-plane (Simons, 1969). 



50 

with a 6-plane model without lateral variations of the perturbations. 

Considering these approximations, the agreement with our results of 

Fig. 5, both with respect to growth rates and wave speeds, is striking. 
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is of the order of magnitude observed in the atmosphere. At that point 

the wave amplitude decreases and the wave starts returning the available 

potential energy which it extracted before from the unstable zonal flow. 

The second half of this nonlinear cycle is a necessary consequence 

of the prescribed latitudinal profile of the wave perturbation. Thus, 

as mentioned at the end of Chapter III, the stability problem is of a 

purely baroclinic nature if the series expansion for the wave (45) is 

truncated after one term, independent of the latitudinal profile of the 

zonal wind. This implies that no barotropic exchange of kinetic energy 

can take place in the baroclinic low-order system described above. We 

may extend this system by allowing a more complete spectrum of expansion 

coefficients in the wave, and integrate the resulting equations by 

numerical time extrapolation starting from the same one-component 

initial perturbation. We observe then that when the growth of this 

component slows down due to nonlinear processes, it tends to feed its 

energy to the higher-order components in the wave. This in turn will 

cause a barotropic energy exchange between the zonal flo~ and the eddy 

which drastically alters the behavior of the mature perturbation, as we 

will see in the following more general study. However, the actual 

conversion process of available potential energy into wave kinetic 

energy appears to be quite well described by the baroclinic low-order 

system for the period during which this conversion is growing to its 

maximum. 

Let us now turn to wave perturbations superimposed on the basic 

zonal flow described by the cross-sections in Fig. 2. In particular we 

are interested in the nonlinear effects on the growth rates of the most 

unstable cyclone-scale waves. The normal mode instabilities for our 
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zonal wind were shown in Fig. 5 and the energy conversion associated 

with the most unstable modes have been presented in Fig. 6. Since Fig. 5 

shows that each of the most unstable wave numbers is characterized by one 

dominating unstable mode, we will concentrate on the latter. Thus we 

have determined the strpcture of the perturbation corresponding to the 

most unstable normal mode, and set the perturbation energy initially 

equal to the energy level represented by the d~shed line of Fig. 11. 

The subsequent development of the perturbation and the zonal flow is 

then described by the equations derived in Chapter II, where all terms 

relating to the interaction with the second wave are discarded for the 

calculations of the present section. As in the previous chapter we 

have used a spectral representation in the horizontal (Appendix A) and 

a layered representation in the vertical (Appendix C). For the time 

extrapolation we employed a centered-differencing scheme, starting with 

a forward time step and one centered time step using one half of the 

regular time interval. 

The computations described in the present section were carried out 

for the wave numbers 6,7, and 8. No significant differences were found 

from one wave to the next. Therefore the discussion will be restricted 

to one wave. In connection with subsequent discussions in Section IVC 

we have chosen the perturbation of wave number 6. Fig. 4 shows that the 

most unstable mode of wave 6 has converged quite well for the horizontal 

truncation N = 8, which we consider first. The vertical profiles of the 

energy distributions have been presented in the upper part of Fig. 7, 

from which it is clear that the instability is of a baroclinic character, 

with stabilizing barotropic effects. Fig. 12 illustrates the develop­

ment of the wave with time. The curves show the vertical-mean of the 
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kinetic energy per unit mass and the conversions of such energy per day. 

Note that all energy parameters are always averaged horizontally as 

shown in Section IIC. The dashed lines represent the linear development 

without changes of the zonal wind. The solid curves represent the non-

linear behavior of the wave and the dash-dot lines show the nonlinear 

variations of the zonal flow. The notation is defined in Section IIC. 

Consider first the wave kinetic energy (bottom right). Owing to 

2 2 the small initial amplitude (Kl = .13 m /sec ) the wave behaves quasi-

linear for 3-4 days. From that time on, the growth of the wave is 

reduced by the nonlinear effects and it stops growing after three more 

days. 2 2 The perturbation kinetic energy is then about 20 m /sec which 

exceeds the energy shown by the solid curve of Fig. 11, but which is of 

the same order of magnitude and which is found on individual days 

although not in the lO-day average. The processes by which the wave 

growth comes to a halt are illustrated by the other curves of Fig. 12. 

The conversion of potential energy to eddy kinetic eneTgy, CAKl, is 

reduced by the nonlinear interactions as indicated by the nonlinear 

baroclinic solutions discussed at the beginning of this section. Most 

interesting, however, is the increase of the stabilizing barotropic 

energy release from the wave to the zonal flow, CKIO' beyond the linear 

values. Thus while Fig. 6 shows that in the linear model the conversion 

CKIO is only about .125 Kl as compared to CAKI = 1.02 KI' it is apparent 

that the barotropic energy transfer becomes comparable to the baroclinic 

conversion in the nonlinear model. It is this combination of nonlinear 

effects which results in the drastic reduction of the net energy con-

version dKl!dt shown at the bottom left of Fig. 12. At the same time 

the increased release of kinetic energy to the zonal flow is a 
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tremendous source of energy for the latter, as shown by the curve labeled 

6K which represents the change of zonal kinetic energy. This increase 
o 

2 2 of zonal kinetic energy becomes of the order of 20 m Isec which may be 

- 2 2 compared with the initial zonal energy K = 96.3 m Isec (see Fig. 11). o 

The energetics are presented as a function of height in Fig. 13 

for day 6 and day 7. By comparison with Fig. 7 it is seen that the 

vertical profiles of the wave energy and its conversions are quite well 

preserved. The barotropic transfer CKIO shows two maxima corresponding 

to the maxima of the baroc1inic conversion CAKI. Note however that the 

rate of change of zonal kinetic energy does not show the maximum at the 

jet-stream level. The only source of zonal kinetic energy in addition 

to CKIO is its own baroc1inic conversion CAKo. The remarkable fact is 

that this conversion is negative at upper levels and positive at lower 

levels, therefore transporting the kinetic energy received from the 

wave to the surface layers. Recalling from Section IIC that the conver-

sion CAK is directly related to the cross-isobaric flow -W.v'~, the 

above implies that the zonal wind tends to deviate from the geostrophic 

wind toward higher pressure at upper levels and toward lower pressure at 

lower levels. This particular process is not indicative of any sym-

metric overturning of the zonal flow which is in this model represented 

by the loss of potential energy-CKA and which is related to the corre-

lation of vertical motion and temperature. To show this we have entered 

the conversion CKAo into Fig. 13, from which it follows that the contri-

bution from this term is small. 

It is suggested that our model describes the development of atmos-

pheric perturbations from a linearly unstable wave to a mature cyclone 

in considerable detail. The break-down of the growing perturbation is 
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accomplished at a reasonable value of the amplitude without invoking 

the effects of frictional dissipation. The mature perturbation is 

found to release a very large amount of kinetic energy to the zonal 

flow, thus bringing its own growth to a halt but at the same time 

maintaining the zonal flow against frictional losses. The zonal flow 

is of much assistance in this process by transporting the kinetic 

energy downwards. This support of the zonal flow by barotropic energy 

exchange was discussed by Kuo (1951) and has since been verified by 

many computations on the energetics of the mid-latitudes. Recent 

calculations by Kung (1970) also show that the actual energy conversions 

calculated from the cross-isobaric flow w.v~ are relatively small at 

higher levels in the belt of atmospheric Westerlies. According to 

Fig. 13 the present model produces a similar result due to the cancel­

lation of the positive wave conversion CAKl by the negative zonal 

conversion CAKo at these levels. 

The results discussed so far were obtained by integration of a 

numerical model which necessarily incorporates the errors introduced by 

truncation in space and time. Considering first the time-truncation we 

integrated the equations for time steps varying from .5 to 1.5 hours 

and compared the solutions. The total wave energy and the zonal energy 

shown in Fig. 12 are found to be practically the same. However, as 

pointed out by Baer and Simons (1968), the errors in the energy of the 

individual spectral components have a tendency to cancel one another, 

and we should also take a close look at these energies. Owing to the 

small time interval we find in the present case that the component 

energies vary by less than 1 per cent after 7 days if the time step 

varies from .5 to 1.S hours. Further we may also recall that for all 
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integrations the total energy (available + kinetic) should be conserved 

which is verified at all times. Here the error does not exceed one 

hundredth of one per cent. 

A far more serious problem is the space truncation. Actually it 

is the space truncation which forces us to break off the present cal­

culations after 7 days when the wave stops growing. As mentioned 

before, the results shown in Fig. 12 and Fig. 13 were obtained for a 

horizontal-spectral truncation of 8 terms in the series (45), that is 

for N = 8. The linear calculations shown in Fig. 4 indicated a perfect 

convergence of the most unstable mode for this truncation. We have found 

however (Simons, 1969) in testing the convergence of solutions as a 

function of vertical truncation, that an arbitrary perturbation does 

not converge at the same rate as the normal mode solution. We have 

therefore extended the present spectral truncation up to N = 11 to 

investigate this problem. The results are shown in Fig. 14. It is 

apparent that the convergence becomes extremely poor as the wave 

approaches its maximum amplitude. In effect there are indications that 

the rate of change of wave kinetic energy dKl/dt does not become 

negative but merely very small, to increase again at a later time. For 

this reason we cannot put any confidence into the present calculations 

beyond the time period shown in Figs. 12-14. In spite of this, however, 

we do observe that the basic processes described before in connection 

with the breakdown of the growth of the wave are found for all trunca­

tions. Further we have also found exactly the same energy patterns for 

the waves of wave number 7 and Sfor which the present calculations were 

performed. 
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The spectral truncation problem is investigated in some more detail 

in Fig. 15. Here we present the distribution of the kinetic energy over 

all horizontal-spectral components starting with day 5 and continuing 

through day 9. The initial perturbation is the one described in the 

previous pages, but the upper row of Fig. 15 is for a truncation N = 8 

while the second row if for N = 11. The components have been arranged 

within the wave according to their order in the series (45) from left 

to right. Consider first the truncation N = 8. After 5 days the energy 

distribution over the spectral wave components is still very similar to 

the normal mode distribution from which we started. Thus most of the 

energy is concentrated in the second component which is the most 

unstable one in a baroc1inic sense according to Fig. 9. After day 6 

the second wave component starts to decline and, since the actual con­

version of potential to kinetic energy, CAKl, reaches a maximum accord­

ing to Fig. 12, it is indicated that the remaining wave components are 

mainly growing by transfer of kinetic energy. It is apparent that the 

latter process is impeded by the severe truncation. On the other hand 

we notice that the truncation N = 11 allows us to extend the integration 

at least to day 7 before the flow of energy appears to be obstructed by 

the truncation. Further computations indicate that the required hori­

zontal resolution is proportional to the vertical resolution, which is 

consistent with the damping of the smaller scales of motion in, for 

instance, a two-level model. 

C. The Interaction of Two Planetary Waves with the Zonal Flow 

It has been shown in Chapter II that a perturbation of wave number ~ 

superimposed on a basic zonal current may eventually generate a higher 
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harmonic of ~ave number 2t which can no longer be neglected. In the 

present section we consider the effects of this nonlinear process on the 

growth of a cyclone-scale perturbation. The system of equations which 

describes the behavior of two waves of wave numbers t and 2t, respec­

tively, superimposed on a zonal flow, has been derived in Chapter II. 

The same system of equations may also be used to study the interaction 

of a long wave of quasi-permanent character with a cyclone-scale wave. 

This problem will be considered briefly at the end of this chapter. 

The numerical results were obtained from the model described in 

Appendix C, i.e., a spectral representation in the horizontal given by 

(45) is combined with a vertically-layered representation. The calcul­

ations were performed for the three waves of wave numbers t = 6, 7, and 

8, including in each case the wave of wave number 2t, i.e., waves 12, 

14, and 16, respectively. The initial structure of the primary wave 

corresponds to the most unstable normal mode and its amplitude is taken 

from the dashed curve of Fig. 11 which assures an initially linear 

growth of the perturbation. The secondary wave of wave number 2t is 

initially set equal to sero and must therefore be generated by nonlinear 

processes. 

The effects of the waves of wave number 2t on the primary waves was 

found to be quite consistent for the three cyclone-waves here considered. 

Again, we will therefore restrict the discussion to the wave of wave 

number 6. The effects of 'the presence of wave 12 on the energy conver­

sions in wave 6 and between the zonal and wave 6 are indicated in 

Fig. 16. These results have been taken from a numerical model with a 

horizontal-spectral truncation of N ~ 11, which has been shown in 

Fig. 15 to possess a sufficiently convergent solution for the time 
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period shown in Fig. 16. The rate of convergence was also tested after 

including wave 12 and was found to be quite comparable to the convergence 

without wave 12. For comparison with the case discussed in the previous 

section, Fig. 16 shows the energy conversions for the system including 

wave 12 and the system without wave 12. All energy conversions in both 

the zonal flow and wave 6, and the energy exchange between the zonal 

flow and wave 6, show a considerable increase in magnitude ow~ng to the 

presence of wave 12. Generally speaking, this is consistent with the 

effect of higher horizontal resolution within the primary wave as pre­

sented in Fig. 14. From both Fig. 14 and Fig. 16, however, it is 

apparent that the general character of the solution is preserved. Since 

this solution has been discussed in considerable detail in connection 

with Fig. 12, there is no need to repeat the discussion here. 

The complete solution of the present system includes of course a 

number of additional energy conversions which have not been included in 

Fig. 16. These are the conversion of potential to kinetic energy by 

wave 12, the exchange of energy between the zonal and wave 12, and the 

exchange between wave 6 and wave 12. Fig. 17 presents a few of these 

energy conversions and the kinetic energy in wave 12. The rate of 

convergence of these quantities as a function of the horizontal reso­

lution is not as good as the convergence of the corresponding quantities 

for the zonal and the primary wave. This is in particular true for the 

baroclinic energy conversion CAK
2

, as was also observed in the normal 

mode study (Fig. 4). However, this particular conversion does not seem 

to exert much influence on the zonal flow and the primary wave as 

indicated by the much better convergence of CK
02 

and CK
12

• 
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The conversions of energy related to wave 12 are an order of magni-

tude smaller than those shown in Fig. 16. The conversion of potential 

to kinetic energy by wave 12 appears to be positive at least till the 

primary wave reaches its maximum rate of growth. The transfer of 

kinetic energy from the primary wave to the secondary wave is positive, 

and the exchange of kinetic energy between the zonal flow and wave 12 

is initially in the direction of the zonal flow but is later reversed. 

It is clear from Fig. 17 that most of the kinetic energy of wave 12 

results from the release of kinetic energy from the zonal flow and 

wave 6. An inspection of Fig. 16 and Fig. 17 shows further that the 

net result of the barotropic exchange of kinetic energy is that the 

zonal kinetic energy and the energy of the secondary wave increase at 

the expense of the primary wave, such that the flow of energy to the 

zonal flow is larger than that to the secondary wave (compare Fj~rtoft, 

1953). 

The preceding results shown in Figs. 12-17 indicate the decrease 

of the rate of growth of an unstable wave-perturbation as a result of 

the nonlinear interactions between the zonal flow and the wave. It 

would then be convenient to have a certain parameter by which such non-

linear effects could be measured and compared. Let us therefore 

consider the rate of change of wave kinetic energy expressed in terms 

of the actual wave kinetic energy. If we divide this quantity by two, 

then it follows from (49) that the result is equal to the growth rate of 

a linearly unstable perturbation. It is thus suggested to define the 

growth rate of any perturbation, linear or nonlinear, as follows 

growth rate (50) 
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As pointed out before, the quantity above is independent of the initial 

amplitude of the perturbation in a linear model, and the growth rate is 

constant with respect to time if we are dealing with one single unstable 

normal mode solution. In the nonlinear case, however, the growth rate 

will be a function of time and it will depend upon the initial energy of 

the wave. In addition, of course, the growth rate is a function of the 

basic state parameters and the wave length as in the linear case. 

Fig. 18 presents the growth rates of the wave of wave number 6 for 

the various models discussed in this and the previous sections. The 

horizontal line represents the growth of the most unstable normal mode 

of wave 6 as shown in Fig. 5. Since the initial configuration of wave 6 

in all cases has been chosen according to this normal mode, the horizon­

tal line represents the growth of wave 6 in the absence of nonlinear 

processes. The dash-dot line gives the growth rate for the nonlinear 

case with a horizontal truncation of N = 8 and without wave 12, that is, 

the solution shown in Fig. 12. The thin solid line and the dashed line 

represent the model including wave 12 for a truncation N = 8, and the 

model without wave 12 but for N = 11, respectively. These two curves 

tend to show a similar deviation from the first curve which indicates 

that a larger resolution in either zonal or meridional direction tends 

to reduce the nonlinear damping of the wave. The heavy solid line is 

for the case N = 11, with wave 12 included, and seems to combine the 

effects above for a number of days until after day 7 the growth rate 

is reduced. The curves shown in Fig. 18 will not vary significantly 

with the initial wave amplitude - except for a shift to the left - as 

long as the initial wave energy does not exceed Kl = 1 m2/sec2• In the 
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wave 6, with or without wave 12, and as a function of horizontal­
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to perturbations of wave number 6 as a function of time (below), 
represented by the growth rates of the ten most unstable modes. 
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present calculations this energy was reached after about 2 days at which 

time the nonlinear effects are still negligible as seen from Figs. 12 

and 18. 

One of the most interesting aspects of the nonlinear problem is the 

modification of the stability properties of the zonal flow as a result 

of the growth of the perturbation. It is to be expected that the 

instability of the basic current is in some way released as the wave 

extracts zonal energy for conversion into wave energy. In the purely 

baroclinic problem it is seen indeed that the vertical shear of the zonal 

current - and therefore the instability - decreases while zonal available 

potential energy is released to the wave. In the general barotropic­

baroclinic case the relationship between zonal instability and wave 

growth is not necessarily so straight-forward. We have therefore com­

puted the stability character of the zonal wind at various stages of the 

nonlinear integration by employing the methods of Chapter III. The lower 

part of Fig. 18 shows the results for the nonlinear system consisting of 

the zonal flow, wave 6, and wave 12, for a horizontal-spectral truncation 

of N = 8. Only the instability of the zonal flow with respect to wave 6 

is shown, and the actual growth rate of wave 6 is denoted by the crosses 

corresponding to the thin solid line in the upper part of Fig. 18. 

Initially the instability of the basic current decreases faster than the 

actual decrease of the growth rate of the wave. After 5 days, however, 

the instability of the zonal flow starts to increase again. By tracking 

the various normal modes it can be established that the new mode of 

maximum instability is not the same as the originally most unstable 

mode. This then, in turn, is clearly related to the modification of 
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which exhibits a high degree of instability in a linear model. Again 

we may then assume that this perturbation - which was before the primary 

wave and which is now the second wave of the system - has been able to 

grow toward the structure of its most unstable normal mode before the 

onset of our integration. This assumption is supported by the obser­

vation that the first unstable mode of a wave of major instability shows 

a considerably larger growth rate than the remaining modes. This 

feature is not observed, however, for the longer waves in Fig. 5, and 

hence the initial structure of the first wave in the present system is 

not immediately obvious. One might even ask the question whether the 

linear behavior of the long waves is of any relevance in view of the 

continuous forcing effect of the earth's surface upon these quasi­

permanent waves, which necessarily must be reflected in their structure. 

We have therefore considered various initial configurations for the 

long wave in the present study, including the structure obtained from 

the climatological-mean flow pattern for January from which we have 

derived our basic current. 

The second proble~ associated with the initialization procedure 

lies in the initial amplitudes of the waves in the present system of a 

zonal flow and two waves. As before we take initial values of the 

wave kinetic energies such that the waves grow toward observed energy 

levels within the time period for which our results are meaningful, 

supposedly of the order of 5 days. The relative magnitude of the 

initial amplitudes of the waves seems to have a fairly consistent 

effect as illustrated in Fig. 19. This figure shows the kinetic 

energy and the growth rate as defined by (50) for each of the waves of 

the system consisting of the zonal flow, wave 3, and wave 6, for 
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different values of the initial wave kinetic energies. The initial 

configuration of each wave corresponds to the structure of the most 

unstable mode of the wave. For comparison the thin solid line for 

wave 3 represents the system of the zonal flow and wave 3 only, and 

the thin solid line for wave 6 shows the results for the zonal flow 

plus wave 6 without wave 3. It follows therefore that the addition of 

the second wave reduces the growth rate of the first and vice versa. 

If the initial amplitude of the second wave is increased while the 

initial value of the first is kept constant we go from the dashed curves 

to the heavy solid curves and both growth rates are reduced. The same 

effect is observed if we increase the initial amplitude of the first 

wave, i.e., if we proceed from the solid curves to the dash-dot curves. 

A great many numerical experiments have been performed concerning 

the present problem. Various initial amplitudes and initial configura­

tions were tested for the system of wave 3 and wave 6. Furthermore, 

similar calculations were performed for a system containing wave 4 and 

wave 8. From these computations it would appear that the nonlinear 

effects illustrated in Fig. 19 are typical for the majority of the 

cases. Nevertheless, another effect seems to occur rather frequently, 

namely the long wave may derive additional growth from the cyclone wave. 

This is illustrated in Fig. 20 which differs from Fig. 19 only in that 

the initial configuration of the first wave corresponds to the second 

unstable mode. An analysis of the energy conversions shows that the 

difference between Fig. 19 and Fig. 20 is caused by a different sign 

of the energy conversion CK12 between the first and second wave, at 

least initially. In the first case the energy flows from the long wave 

to the cyclone wave and in the second case the direction of the energy 
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flow is reversed. The second case would therefore correspond to the 

atmospheric observations by Saltzman and Teweles (1964). In fact a 

flow of energy from wave 6 to wave 3 is also observed for the case of 

Fig. 19 after about two days. Furthermore, the exchange of kinetic 

energy with the zonal flow represented by CKIO and CK20 is always in the 

direction of the zonal flow for both waves in accordance with actual 

observations. 

The results of all our calculations appear to be consistent with 

respect to the reduction of the initial growth of the cyclonic wave 

under the influence of the long wave. This does not imply however that 

the subsequent growth rate of the unstable wave is continuously below 

its value derived from linear theory. However, if we want to consider 

their later development we run again into the problem of the numerical 

truncation. Consider for instance again Fig. 19 and Fig. 20 which 

represent the results of numerical models with a horizontal-spectral 

truncation of N D 8. The same computations were repeated for trunca­

tions N = 9, 10, and 11, at least for the cases represented by the solid 

curves. The convergence was fair up to about 4 days but after 5 days 

the growth rates varied by 10 to 20 per cent which is the reason for 

showing only the results for the first 5 days in Figs. 19 and 20. In 

this context let us consider the interesting behavior of the dash-dot 

curves for wave 6, especially in Fig. 20. Such explosive growth is 

observed in many cases if the amplitude of the second wave becomes 

sufficiently large. For instance, the solid line for wave 6 in Fig. 20 

shows a similar increase at day 6 which is not included in the figure. 

Such nonlinear wave growth might be suggestive for the development of a 

"short" wave interacting with a long wave in the atmosphere. However, 



81 

the convergence tests above tend to indicate that these large growth 

rates are reduced if the horizontal resolution increases. At any rate, 

the convergence of the solutions after 5 to 6 days is virtually non­

existing and hence we must restrict ourselves to the initial nonlinear 

effects in the present study. 

In summary, we may conclude that the results of the investigation 

above are consistent with respect to the nonlinear effects on the growth 

of a cyclone-scale wave resulting from the self-interaction of a long 

wave. At least during the first three or four days the growth rate of 

the second wave of the nonlinear system is considerably reduced as a 

result of the presence of the first. This damping effect increases with 

increasing initial amplitudes of the waves. If the initial amplitude 

of the second wave increases, the resulting reduction of the growth rate 

is simply the reflection of an increase of the nonlinear effects studied 

in the first part of this section. On the other hand, if the initial 

amplitude of the first wave becomes larger, the effect may be a direct 

result of an increased interaction of the two waves but it is probably 

more an indirect effect of the interaction of the first wave and the 

zonal flow. Again we should not conclude, however, that the growth 

rates are simply reduced as a result of the loss of zonal flow instab­

ility. Fig. 21 shows the stability properties of the zonal wind with 

respect to perturbations of wave numbers 3 and 6 for the two cases 

shown in Figs. 19 and 20. As before in Fig. 18 we observe again the 

remarkable lack of correlation between the actual growth rates of the 

waves and the potential growth rates represented by the normal modes. 
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Fig. 21 

Stability properties of basic current with respect to waves 
3 and 6 as a function of time for nonlinear system of Fig. 19 
(above) and system of Fig. 20 (below). Actual growth rate 
of perturbations denoted by dashed lines. 



V. INITIAL STRUCTURE OF PERTURBATIONS 

A. Outline of Initial-Value Study 

One of the most significant aspects of a nonlinear study is the 

initial-value problem. If the study is concerned with the nonlinear 

effects on the growth of a dynamically unstable perturbation, the 

initial-value problem may be treated by invoking the results of linear 

instability theory. According to the latter, the unstable perturbation 

will grow toward one particular configuration corresponding to the most 

unstable normal mode. In the nonlinear extension of the instability 

problem this configuration can therefore be adopted for the initial 

wave, if the latter is sufficiently small for nonlinear effects to be 

negligible initially. This procedure was followed in the previous 

computations. 

Two important assumptions enter into the above treatment of the 

initialization problem. The first one is that a given unstable per­

turbation possesses one normal mode which is distinctly more unstable 

than the remaining normal modes. As we have seen in the foregoing this 

is not always the case and there may be some ambiguity as to which 

unstable normal mode should be adopted for the initial wave. Recalling 

our discussion of Figs. 19 and 20 it is abundantly clear that such 

ambiguity can make it very difficult to establish the direction of 

certain nonlinear effects. The second assumption is that the time­

scale of the quasi-linear development is such that the perturbation has 

an opportunity to adjust to its unstable normal mode structure. In the 

case of atmospheric development we are dealing with finite initial 

disturbances which might cause the nonlinear effects to become active 
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before this adjustment can take place. In such case the initial con­

figuration of a disturbance may be more important than the normal mode 

behavior. 

The foregoing illustrates the need for adequate information con­

cerning the effects of the initial structure of a perturbation on its 

subsequent growth from the viewpoint of the initial-value aspect of a 

nonlinear study. The problem is also of somewhat more physical interest 

if it is considered that the atmosphere at any time displays an abun­

dance of large-scale eddies of all scales and configurations. The 

question is then why certain eddies grow while others do not and part of 

the answer may well lie in that the structure--rather than the scale-­

of some of the perturbations is more favorable for development than 

others. Obviously we enter here into the realm of operational weather 

prediction which from the viewpoint of theoretical physics must be 

regarded as an initial-value problem (see e.g., Thompson, 1961; Shuman 

and Hovermale, 1968). Actually, the computational techniques and 

modeling procedures employed in a study of the present type have been 

mostly developed for the purpose of numerical weather prediction. 

The purpose of the present part of this report, then, is to 

investigate the effects of various initial wave configurations on the 

subsequent growth rates of the perturbations. A general solution of 

this problem is difficult to obtain because of the large number of 

degrees of freedom in the initial structure of the wave. It is there­

fore advisable to follow a course outlined by previous studies of atmos­

pheric instability, and deal first with purely barotropic or purely 

bar04:linic models. The barotropic initial value problem has been 

discussed recently by Baer (1968) and King (1970). In the present paper 
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we consider the baroclinic problem in view of our earlier observation 

that the instabilities of the general barotropic-baroclinic model are 

rather well approximated by certain quasi-baroclinic models. Such 

models are quasi-baroclinic by virtue of the prescribed latitudinal 

configuration of the perturbation, although the zonal flow has an arbi-

traI'y variation with latitude. As shown in Section IIID the justifi-

cation for such models lies more in a physical than a mathematical 

argument. 

For this study we use a numerical model which is different from 

the previous one in that the layered representation in the vertical is 

replaced by a spectral expansion. This model enables US to select an 

initial wave structure which can be represented by only a few "para-

meters" of the vertical expansion, such that an inspection of the sub-

sequent generation of smaller vertical scales gives a good indication 

of the effects of truncating the vertical expansion. A similar proce-

dure was followed for the horizontal-spectral representation in the 

previous chapter (see e.g., Fig. 15). 

The basic equation is again the quasi-geostrophic potential 

vorticity equation (20)of Chapter II. It will be recalled that the 

stab:i.1ity parameter, s, in that equation takes on a standard value 

depending upon z alone in order for the model to satisfy the consistency 

requirements with respect to energy. It has been shown by Simons (1968) 

that approximately 

1 1 
.... = - (l-z) 
s s 

o 
(51) 

where the subscript 0 denotes the value of s at the ,lower boundary, the 
-12 -2 

reciprocal of which was determined to range from 1.2 to 1.5 10 m 
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In order to arrive at the linear relationship (51) it was assumed that 

the effects of the stratosphere on the tropospheric motions could be 

simulated by a relatively thin mathematical upper layer in which the 

static stability approaches an infinitely large value. The latter 

assumption was justified to a satisfactory degree in a normal mode study 

of baroclinic instability by Simons (1969). As an example, the dash-

dot lines in Fig. 1 represent the static stability variation and the up-

per boundary for a model of this type. For the present computations we 
_12 _2 

have adopted the numerical value l/s = 1.5 10 m which may be o 

interpreted to correspond to a troposphere with a lapse rate of about 

6.5 o C/km and a tropopause level of 225 mb. A detailed description of 

the relationship between the numerical value of s and the physical 

model parameters may be found in the paper by Simons (1968). 

Before proceeding to the vertical representation let us first 

recall the horizontal-spectral equations. Further let uS restrict our-

selves to a quasi-baroclinic system as defined in Section IIID. Thus 

the zonal streamfunction ~ is represented by a series of Legendre o 

functions but the perturbation streamfunction has a meridional variation 

corresponding to a single associated Legendre polynomial. Thus we have 

~ = L ~ (z,t)Y (~) o a a (52) 
a 

These expansions and the resulting horizontal-spectral equations are 

discussed in Appendix A. It can be shown immediately that as a result 

of the simple horizontal wave configuration the nonlinear processes will 

not generate a wave of wave number 2£ as they did before. Thus we do 

not consider the secondary perturbation streamfunction ~2. The coef-

ficients of the expansion (52) will be referred to as the horizontal-
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spectral components or briefly "components". The components are 

functions of the time and the vertical coordinate and they were speci-

fied before at regular intervals in the vertical (layered model). In 

the present model, however, each of the components itself is represented 

by a series of orthogonal polynomials as follows 

~ - l ~ (t) Z (z) a a,m m m 
~Q - L ~Q (t) Z (z) 

p .."m m m 
(53) 

where now the expansion coefficients are only time-dependent. The latter 

coefficients will be called "parameters" because of the similarity 

between the present model and the historical two-parameter models (e.g., 

Eliassen, 1952). 

The vertical polynomials Z (z) which are appropriate for the m 

expansions (53) have been derived by Simons (1968). The choice of the 

functions depends upon the specified vertical variation of the static 

stability and for the particular variation given by (51) the polynomials 

are the well-known Bessel functions of the first kind of order zero. 

The properties of these functions are reviewed in Appendix B, and the 

spectral prediction equations for the expansion parameters are formu-

1ated. It will be helpful for the following discussion if we here 

reproduce the equations for the present simple case of a quasi-baroclinic 

model. From Appendix B we obtain immediately the following equations for 

the zonal parameters ~ (a - 1,2,3 •• , N ~ m = 0,1,2, ••• , M-1) and the a,m a 

wave parameters ~8 (m - 0,1,2 ••• , M-1) ,m 
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(55) 

+ i ~ KSSa ~ f J mkj (cS-ca) + !o (d~-dk») (~a,k ~S,j) 

where ca ' cs' dm, d
j

, ~, and also KSBa and J mkj , are certain constants 

defined in Appendix A and Appendix B. The numerical values of these 

constants are irrelevant for the purpose of the following discussion 

except for the fact that (dj-dk) Jmkj = 0 for m = O. It follows then 

from (54) that the first parameter of any zonal component ~ is a a,o 

constant. Since the first polynomial Z = 1, this simply means that 
o 

the vertical average of the zonal flow does not change, which is a basic 

property of the simple system (52). 

B. Normal Mode Solutions 

Before going to the initial value problem we must establish the 

linear stability characteristics of the spherical spectral model des-

cribed in the previous section. It is then advantageous to consider 

certain zonal wind profiles which are reasonable in the light of 

observed winds but at the same time simple enough for a meaningful 

interpretation of the results of our study. Now the general expression 

for the zonal wind corresponding to (52) and (53) is 

dY 
U(~,z,t) = - 463. \ \ ,I, Z d~a 

't' [. [. 'I'a,m m 't' 
am 

(56) 

where the number 463 represents the equatorial speed of rotation of the 

earth's surface in m/sec and hence converts from the non-dimensional 
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units of velocity defined in Chapter II to units of m/sec •. Fig. 22a 

shows a few latitudinal profiles. The points represent the observed 

mean zonal wind profile at 500 mb for December 1 through 5, 1960, on 

the same scale. Vertical zonal wind profiles are plotted in Fig. 22b 

against a linear height scale. The vertical mean wind can be assigned 

any value by adding the polynomial Z = 1 with its coefficient. o 

It will be seen from (56) that it would be difficult to compare 

the results of various experiments if we would vary all coefficients 

in an arbitrary manner. It seems advisable to select only a few coeffi-

cients as basic parameters of the flow and to let the remaining ones be 

specified with respect to these basic coefficients. The latitudinal 

profile should represent in some general way the belt of westerlies at 

middle latitudes. More detail is irrelevant for the purpose of the 

present baroc1inic study and thus the curves II and III in Fig. 22a may 

be considered satisfactory. The variation of the coefficients is 

restricted by requiring that the latitudinal profiles are the same at 

all levels which again seems a reasonable convention in a study of baro-

clinic instability. Thus if we take curve III in Fig. 22a as an example 

1 1 
then ~ = - ~ and ~ = -- ~ for all values of m and hence the 2,m 3 I,m 3,m 12 I,m 

zonal wind is then specified completely by the coefficients ~~,m for 

m = 0,1,2, ••• , M-l. In turn we choose one of the latter coefficients 

as our baaie Variable. An appropriate choice is ~l,I since it specifies 

the over-all vertical shear in our model. The corresponding polynomial 

Zl is represented by curve I in Fig. 22b. All other parameters except 

for ~ will then be known once the vertical profile has been specified, a,o 

e.g., ~ 2=.2 ~ 1 and ~ 3 = -1. ~a 1 if profile II of 'ig. 22b is a, a, a, , 

adopted. The coefficient ~ finally will be chosen such that the 
1,0 
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vertical-mean winds assume reasonable atmospheric values, but it is 

well known that this mean wind is irrevelant for the stability 

characteristics of our model. 

The zonal wind profiles have now been established for easy 

reference, and we can proceed to the actual stability computations. 

Since this section is concerned with linear normal mode studies, the 

first step is to linearize the equations by setting the zonal wind 

constant with respect to time. Let us briefly review the solution of 

the two-parameter model as an example. In the two-parameter model the 

series (53) are truncated after two terms, thus m = 0,1. The zonal 

equations (54) may be discarded and the wave equations (55) may be 

written 

dWo 
~,o 

dt 

(57) 

where the matrix elements ajk are real constants which follow immediately 

from (55) for m = 0,1. For the present discussion it is only important 

to realize that these matrix elements depend upon the static stability 

and the shear parameters W 1 of the basic flow. 
a, 

The solution of (57) is of the form exp (-ivt). After substitution 

into (57) we obtain two homogeneous equations, the solution of which can 

only exist if the determinant equals zero. This condition is satisfied 

for 

v a,b 
(58) 
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The solution will grow exponentially if the wave speeds become complex, 

thus the condition for instability is 

in which case we can write 

v b = v + iVi a, r -
v = vta a - L(a -a )2 

i 01 10 ~ 00 11 

(59) 

(60) 

The solution above may be compared with baroclinic instability studies 

presented by Eliassen (1952) for a two-parameter model and by Phillips 

(1954) for a two-layer model. 

The wave perturbation involves two wave numbers: the zonal wave 

number i occurring in (21) and a latitudinal wave number associated 

with the particular associated Legendre function YS(U) in (52). Follow­

ing the usual notation we denote the degree of the polynomial by n, 

and we recall that the difference n-i gives the number of zeros between 

the poles (see also Appendix B). Clearly both wave numbers will occur 

in the solution, together with basic state parameters such as the static 

stability and the zonal shear. Since the effects of the latter para-

meters are sufficiently well known, we will here consider the results only 

as a function of both wave numbers. Fig. 23 shows the growth rates per 

day; Vi' of the unstable wave components in the two-parameter model for 

lIs = 62.9 and ~ = .00919 (non-dimensional units defined in Chapter II). 
o 1,1 

The points in the figures represent the wave components here considered, 

i.e., n-i is odd since we are dealing with Legendre functions of odd 

parity as explained in Appendix A. The lower right parts of the 
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figures are empty because n>~ by definition of the associated Legendre 

polynomials. The upper part of Fig. 23 represents the case where the 

zonal wind is a linear function of ~, that is the purely baroclinic 

model. Note that the instability criterion is independent of the 

zonal wave number i, but the growth rate is proportional to t for given 

n. The lower part of Fig. 23 shows the effect of introducing a second 

zonal polynomial into the same model such that we go from curve I to 

curve II in Fig. 22a. The growth rates look now far more reasonable 

in view of atmospheric observations. This feature was noted also in 

Chpater lIID and constitutes the main argument for defining the quasi­

baroclinic model in the present manner. 

Having discussed the two-parameter model in great detail, we will 

now briefly review the effects of increased vertical resolution. Since 

the solutions of the present stability problem for a continuous atmos­

phere (Charney, 1947; Kuo, 1952) do not show the short wave cut-off of 

the two-level model, one might expect that the instability of the short 

waves increases if the number of layers or the number of vertical 

parameters is increased. This feature was indeed observed by Kuo (1953) 

and recently has been shown in much detail by Brown (1968). The upper 

and lower parts of Fig. 24 show the growth rates of the unstable waves 

for the present three-parameter and four-parameter models, respectively. 

The zonal wind and the static stability are the same as those considered 

in the lower part of Fig. 23. Indeed there is a tendency for the 

smaller scales (larger n and t ) to become more unstable with increasing 

vertical resolution. 
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Fig. 24 

Growth rates (per day) of perturbations in three-parameter 
(above) and four-parameter model (below). Zonal profile 
corresponding to curve II of Fig. 22a. 
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C. Linear Initial Value Problem 

The normal mode instabilities of the previous section may be inter-

preted as the behavior of certain wave perturbations in the atmosphere 

under the condition that nonlinear effects may be neglected. The basic 

assumption is then that such perturbations can approach the normal mode 

structure corresponding to the unstable mode, before the nonlinear 

effects will drastically alter the development of the wave. This was 

the assumption made in the nonlinear study of Chapter IV, where the 

initial perturbation was made to fit the configuration of the most 

unstable normal mode. If we are dealing with atmospheric cyclone 

development we note, however, that the atmosphere is a turbulent fluid 

in which we may find an abundance of relatively large perturbations at 

any moment. The emphasis is therefore on the development of such 

perturbations during the relatively short time scales associated with 

cyclone developments. The asymptotically different behavior of neutral 

and unstable waves is irrelevant and it may be of more importance to 

determine what initial wave configurations are most suitable for develop-

mente To gain a first insight into this problem we consider here the 

solution of the linear initial value problem. Again the two-parameter 

model will be considered in detail to serve as an example. 

The solutions for the linearized two-parameter model (57) may be 

written 

where va and vb are given by (58) and the constants Co and C
1 

are 

obtained by substituting (61) into (57), thus 

(61) 
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v +a a 00 

-a01 
(62) 

The constants A and B are determined by the initial conditions for the 

wave, since from (61) we have 

(63) 

For an unstable wave, the wave speeds are of the form (60) and thus 

all constants are complex numbers. Moreover, the first parts of the 

solutions (61) will grow indefinitely while the second part will soon 

damp out. Thus with increasing time, the ratio between the shear para-

meter and the mean parameter of the wave becomes equal to C
1

• Let us 

interpret this in terms of the perturbation at the earth's surface and 

the perturbation at upper levels. The polynomial Zo is a constant 

equal to unity, while the function Z equals 1 at the surface and -1 at 
1 

the 350 mb level. Taking the latter as the upper level denoted by 

subscript u and denoting the surface by subscript s we obtain from (53) 

~B,u • ~B,o - ~B,l (64) 

for the present two-parameter model. The ratio between upper and lower 

wave for the unstable perturbation approaches then 

(65) 

It follows then from (21) of Chapter II and from (52) that the upper 

wave stays behind if 6
1 

is positive. Actual evaluation of (65) shows 
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o that r
1
>1 and 0<6

1
<90 for all unstable waves. Therefore the upper wave 

perturbation is larger than the lower one and is behind by 0-900 if 

there is sufficient time for the perturbation to attain the structure 

of the unstable mode. This result was derived by Phillips (1954) for 

a two-layer model on a beta-plane. 

An interesting feature of (63) is that the constant A becomes zero 

if ~Q /~Q 1 = C at the initial time, which means that the wave energy 
P,o P, 0 

will go to zero even though the wave is unstable. Clearly then the 

vertical distribution of the initial wave energy is of major importance 

for the subsequent growth of the perturbation and an interesting 

question is at what level a given wave perturbation should be introduced 

in the atmosphere in order to cause a maximum conversion of potential 

into kinetic energy. This problem can be solved readily for the case 

of the present linearized two-parameter model. We have here the freedom 

to introduce a perturbation either at the surface or in the upper layer, 

or we may distribute the given initial perturbation energy over lower 

and upper levels. In the latter case we have an additional freedom in 

the form of the phase difference between initial upper and lower waves. 

The surface perturbation and the upper level perturbation have been 

defined by (64) in terms of the vertical-mean and shear parameters of 

the two-parameter model. Since we are dealing with only the difference 

of the initial phases of the upper and lower perturbations, we may 

choose one phase angle equal to zero. We define thus initially 

~ (t-O) = x 8,s ~ (t=O) = y 8,u 
i6 

e 

Now the kinetic energy in the wave component has been derived in 

Appendix D. For a two-parameter model we obtain 

(66) 
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(67) 

Thus from (64) and (66) we have for the initial time 

(68) 

The problem is to find the values of x, y, and 9, for which K becomes 
1 

a maximum after a given time for a given value of k defined by (68). 

Consider first an unstable wave with complex wave speeds. Then 

according to (60) the second part of the solutions (61) will decrease 

with time and after a few days this part becomes negligible. We have 

already noted that only the constants A and B are dependent upon the 

initial energy distribution within the wave. We then conclude from (61) 

and (67) that Kl attains its largest value with increasing time if IAI 
assumes a maximum. Consequently from (63), (64), and (66) it follows 

that we must determine the maximum value of 

where we have defined 

C + 1 o 
C - 1 -

1 

i90 r e 

(69) 

(70) 

2 since x, y, and r are by definition positive, the maximum value of a 

2 2 is obtained for given x and y if 9 = ~ - 9 in which case a = (x + ry) • 
o 

For this value of 9 we find the maximum of a2 by setting &a2/9x = 0 

after substituting (68). For positive x, y, and r, the only solution is 

y = rx and thus we find from (68) the following initial conditions which 
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are most favorable for the growth of the wave kinetic energy 

8 os '11'-8 
o 

2 x k 
= 1+r2 

y = rx; (71) 

If the solutions (60) and (62) are substituted into (70)it can be shown 

that for all unstable waves r<l and 0<8 <900 and therefore the increase 
o 

of the perturbation energy is a maximum if the initial amplitude of the 

surface wave exceeds that of the upper level wave, and if the initial 

o 0 upper wave is behind by 90 -180. We may recall here that according to 

(65) the unstable upper level wave will eventually become larger than 

the lower wave and that the upper wave will be behind by 0-900
• This 

implies that even an initial surface disturbance will ultimately 

propagate to upper levels. 

So far we have discussed the growth of unstable wave perturbations. 

Since such waves grow without bounds in a linear model, there is a sharp 

distinction between their asymptotic behavior and the long-term behavior 

of neutral perturbations. On the other hand, if we are interested in 

the initial development of a perturbation for a period of a few days, we 

do not notice a sudden transition from a set of unstable waves to a set 

of neutral waves. Just as unstable waves may decay due to their initial 

vertical distribution, so a neutral wave can grow over a given period 

of time. This may be seen immediately by considering the sum of two 

complex number zl and z2. From the triangle rule in the theory of 

complex numbers we have 

(72) 

Thus although we have solutions of the type (61) where each individual 
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exponential solution has a constant amplitude for the case of neutral 

waves, the amplitude of their sum can vary with time between the two 

limits given by (72). Considering the neutral solutions for our two-

parameter model we may write (58) in the form v b = v ±v where vI 
a, 1 2. 

and Vz are real numbers. while also Co and C
I 

are real according to (62). 

Depending on the initial conditions A and B may be complex. thus we 

write the general expressions A = IAI exp (ia), B = IBI exp (ie) and 

obtain from (61) and (67) 

Similar to the case of the unstable waves we may again determine the 

conditions under which Kl reaches a maximum growth for a given time. 

The typical dependence of the initial rate of growth of the pertur-

bation amplitude upon the initial vertical configuration of the wave is 

illustrated in Fig. 25 for an arbitrary wave component in a two-

parameter model. The figure shows the ratio of the kinetic energy 

after 5 days over the initial wave kinetic energy as a function of the 

amplitude ratio and the phase difference of the initial upper and lower 

wave, i.e., as a function of y/x and e defined by (66). We may for a 

given day and for each wave perturbation. neutral and unstable alike, 

construct a figure like Fig. 25 and pick off the maximum value of the 

kinetic energy. These maxima are shown in Fig. 26 for all wave compo-

nents and for two different days. The zonal wind is the same as the one 

used in the lower part of Fig. 23. By compariD~F the latter with 

Fig. 26 it is seen that the normal mode study tends to underestimate 

the instability of the shorter waves. We may also determine the 

amplitude ratio and the phase difference of the initial upper and 
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Perturbation kinetic energy after 5 days in terms of its initial 
value in a two-parameter model as a function of the amplitude 
ratio·.and phase difference of initial upper and lower waves. 
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Maximum kinetic energy of perturbations in a two-parameter model after 
2 days (above) and 5 days (below) in terms of initial kinetic energy. 
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The chosen initial wave configurations and the relatively short periods 

of integration allow only very little energy to flow into the highest 

parameter and the series expansion along the vertical is therefore 

effectively not truncated. We will consider initial disturbances 

which are more or less coneentta~ed at certain levels in the vertical. 

A study of the development of such perturbations will indicate at which 

level a perturbation should be introduced in order for the generation of 

kinetic energy to reach a maximum. We adopt three basic perturbations, 

the maxima of which occur at upper, middle, and lower levels, respect­

ively. The phases will be assumed to be uniform with respect to height, 

which is reasonable for shallow distunbances. In addition, we consider 

a few distuubances which represent smooth transitions from one basic 

profile to the next. Fig. 27 shows the initial wave profiles normalized 

such that all profiles represent the same perturbation kinetic energy. 

The basic zonal flow varies with 1atitudse according to profile II 

of Fig. 22a. The three vertical profiles of Fig. 22b are considered in 

turn. The second profile causes always much larger growth rates than 

the first and the third. This is probably due to a larger effective 

shear between the surface and jet-stream levels. Therefore, the shear 

parameter for this profile has been reduced by 15 per cent as compared 

to the other zonal profiles. Otherwise the value assigned to the basic 

vertical shear is the same as before. Furthermore, all wind profiles 

have been made to contain the same kinetic energy by varying the 

vertical-mean zonal wind. The influence of the latter on the stability 

properties of the flow is found to be negligible. The advantage of 

this normalization is that the total kinetic energy is the same for all 

experiments and hence can be used as the unit of energy. The 
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kinetic energy of the basic flow and the perturbation at any time 

will be expressed in per cent of this unit. 

For all subsequent experiments the relevant parameters will be 

given in the following manner. The vertical zonal wind profile used 

in a particular experiment will be denoted by ZP1, ZP2, or ZP3, 

according to the numbers of the curves in Fig. 22b, but where the 

average shear of profile III has been reduced by 15 per cent. The 

initial vertical wave profiles will be denoted by WPl.to WP9 according 

to Fig. 27. The initial wave kinetic energy is always 1 per cent of 

the initial total kinetic energy. Owing to this small initial amplitude 

of the perturbation, the nonlinear effects are relatively small for the 

few days over which the present integrations extend. 

Let us now consider the development of a wave perturbation as a 

function of the initial vertical wave profiles shown in Fig. 27. Com­

putations were carried out for all components of waves 3, 6, 9, and 12, 

and for all three vertical zonal wind profiles. Since the effects of 

the initial perturbation structure are very similar for the various 

zonal profiles we will restrict ourselves to a discussion of the first 

zonal profile, ZP1. Fig. 28 shows the kinetic energy of the pertur­

bation after 5 days (abscissa) as a function of the initial wave 

profile (ordinate). The point values obtained for the 9 initial wave 

profiles, WPI through WP9, have been connected by straight lines for 

easier interpretation of the diagrams. The energy is again expressed 

in per cent of the initial total kinetic energy such that the initial 

wave kinetic energy equals unity. The spectral wave components have 

been numbered according to their order of appearance in the series 

for ~l given by (52) such that the first component represents the 
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A final point of interest is the history of the development of the 

perturbations from the initial profiles shown in Fig. 27 to the final 

vertical profiles of the steadily growing waves. As noted before, the 

initial amplitude is sufficiently small for the wave to behave quasi­

linear for a number of days and hence the wave tends to its unstable 

normal mode structure. Fig. 30 represents the vertical profile of the 

amplitude of the third component of wave 6 after 3.5 days for a few 

different initial wave profiles and for the three zonal wind profiles 

ZP1, ZP2, and ZP3. The unit of horizontal scale is the vertical average 

of the amplitude of the initial wave. Indeed, the final wave profile 

of this highly unstable wave is nearly independent of the initial 

profile after these few days. On the other hand the vertical zonal 

wind profile tends to force its profile upon the wave profile. The 

same is observed for all other wave components and all initial vertical 

wave profiles. As indicated by Fig. 20 the actual increase of wave 

kinetic energy is fairly independent of the vertical zonal wind profiles 

here considered. This suggests that the instability is mainly deter­

mined by the over-all vertical shear (which is about the same for 

the three zonal profiles) rather than the curvature of the profile. 

It has been found, however, that the growth rates associated with 

profile ZP2 are in general smaller for the perturbations of larger 

scales and larger for the smaller scales. 

The position of the wave as a; funetion,)D·f· time: is "'acroasty 

dependent upon the initial wave profile. This is of course related 

to the well-known tilt of the unstable wave such that the surface 

perturbation is well ahead of the upper level wave. Thus during the 
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Amplitude of wave perturbation after 3.S days, in terms of initial 
vertical-mean, as a function of zonal profiles and initial wave 
profiles (shown by thin solid lines). 
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first three days or so, the wave moves about twice as far for the 

case WPl (tropopause disturbance) than for the case WP9 (surface 

perturbation). These differences in wave position are largely due 

to the initial development of the wave. The upper level perturbation 

starts moving immediately - or so it appears - because it tends to 

establish a surface perturbation ahead of the upper level wave. 

The initial surface disturbance on the other hand must first generate 

the upper level wave behind and stays at the same place for about 

ad~. 



VI. SUMMARY AND CONCLUSIONS 

In this paper we have investigated the development of atmospheric 

cyclones from the viewpoint of the instability of large scale wave 

perturbations superimposed on a basic zonal current. The stability 

properties of an observed atmospheric mean zonal flow were evaluated 

and the linear results have been extended to include the nonlinear 

effects resulting from the self-interaction of the wave perturbation. 

Furthermore, the initial value problem associated with the present 

study has been considered in some detail. The model employed in this 

investigation is quasi-geostrophic, adiabatic, inviscid, and hemispheric. 

The numerical methods used are the spectral technique in the horizontal 

and either a ,spectral or a layered representation in the vertical. 

In the linear part of this study we have considered a basic current 

corresponding to the zonal average of the climatological-mean flow for 

January. The current is found to be unstable with respect to pertur­

bations of all wave numbers 1 through 16 here considered. The cyclone­

scale waves show a maximum growth rate and furthermore these waves 

exhibit one normal mode which is distinctly more unstable than the 

others. By considering the energy conversion processes it is estab­

lished that the instabilities are almost completely of a baroclinic 

nature with barotropic stabilizing effects, in accordance with general 

atmospheric observations. The linear investigation shows also that the 

stability properties of the January zonal flow vary strongly with 

longitude which might affect the development of cyclones as a function 

of geographical location. Finally it is shown that the dynamic 
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instability of the general barotropic-baroclinic current can be studied 

rather well with the help of a special quasi-baroclinic model. 

The investigation of the effects of nonlinear processes on the 

growth of an unstable wave perturbation is based on a system consisting 

of the zonal flow and two planetary waves, the second of which is the 

higher harmonic of the first. The first problem concerns the develop­

ment of a highly-unstable cyclone-scale wave interacting with the zonal 

flow and producing a secondary wave as a result of the self-interaction 

of the primary wave. Owing to the nonlinear interactions with the zonal 

flow the growth rate of the unstable perturbation is reduced to a very 

small value or it may become negative when the wave kinetic energy 

reaches the order of magnitude of observed atmospheric wave energies. 

It is found that at this time the conversion of potential to kinetic 

energy in the wave (baroclinic growth) starts decreasing while at the 

same time the release of wave kinetic energy to the zonal flow (baro­

tropic dampiag) increases tremendously. This combination of energy 

conversion processes causes the wave growth to come to a halt while 

building up the zonal kinetic energy by an amount up to 20 percent of 

the initial zonal kinetic energy. This process will maintain the zonal 

flow against frictional dissipation as also indicated by the energy 

conversions within the zonal flow which tend to transport the kinetic 

energy downwards after receiving it from the wave. The general effect 

of the secondary wave is found to be a slight increase of the gyowth 

rates above the values obtained in the absence of this wave. A similar 

effect is observed when the horizontal resolution of the numerical model 

is increased. 
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The second problem investigated in the nonlinear extension of the 

atmospheric stability studies is concerned with the effects on a 

cyclone-scale unstable perturbation resulting from the self-interaction 

of a long quasi-permanent wave. It is found that the initial growth 

rate of the cyclone wave is considerably reduced as a result of the 

presence of the long wave. This damping effect increases with in­

creasing initial amplitude of either wave. An investigation of the 

linear stability properties of the zonal current at various stages during 

the nonlinear integrations indicates that the nonlinear damping effects 

on the growth rates of the perturbations are not directly related to a 

loss of dynamic instability of the zonal flow. Actually it is found 

that the degree of instability of the zonal flow is comparable to the 

initial instability by the time the growth rate of the unstable wave 

reaches a minimum. 

The final part of the present investigation is devoted to the 

initialization problem associated with the theory of atmospheric 

development. A baroc1inic two-layer model is discussed in detail in 

order to demonstrate the effect of the initial wave structure on the 

subsequent growth of a perturbation. It is shown that for cyclone waves 

of major instability the perturbation energy will exhibit a maximum 

growth if the initial amplitude of the lower wave exceeds that of the 

upper wave by a factor of about 2 and if the lower wave lags behind 

initially. This is just opposite to the structure of the unstable 

normal mode. Models with higher vertical resolution indicate that an 

initial perturbation centered around the 600-mb level is most favorable 

for development. 
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and the functions of odd parity are orthogonal over one hemisphere, thus 

1 

o 
€ - 6 

where € = 6 implies that both i€ = i6 and n
E 

= n6 • 

(A6) 

Each of the three streamfunctions ~O,~l and ~2' defined by (21) 

may now be expanded in a series of these orthonormal polynomials. To 

distinguish the three streamfunctions from one another let us identify 

any zonal spectral component by a subscript a, and the components of the 

first and second wave by subscripts a and y, respectively. We may write 

then (24) in the form 

i = 0 ia = i JI. = 2J1. 
a y 

(A7) 

and the expansions for the streamfunctions become 

~O = L ~a Y ~1 = L ~8 Ys ~2 = L ~y Y 
a y 

a a y 
(AB) 

where the expansion coefficients ~ , ~s' and ~ are functions of z and 
a y 

t only, and will be referred to in the sequel as the horizontal-spectral 

components. In exactly the same way we will expand the vertical motion 

parameters w
j

' the linear functions Aj' and the nonlinear functions 

G
j

, H
j

, P
j 

and Q
j

, in terms of the polynomials Ya , Ya, and Yy for 

j = 1,2, and 3, respectively. From (23) and (AS) we obtain then 

innnediately 

A - - c ~ a a a 
A=-­y 

(A9) 

After substituting the horizontal expansions of the type (AB) into 

the model equations (26-28) and applying the orthogonality relationship 

(A6) we obtain the following set of spectral equations 
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dW 
2it 1/1 + G + H +_E: 

E:E E E: az 

a al/iE -at = - s(p + Q - w ) az E E: E 

(AlO) 

(All) 

(Al2) 

where E: • a, 8, or y and therefore £ stands for any component of the 

horizontal-spectral expansion, whether the spectral component is an 

element of the zonal flow (a), the first wave (8), or the second wave 

(y). Thus if N is the total number of horizontal-spectral components, 

then E: .. 1, 2, 3, ••• , N. Note, that all the dependent variables in 

(AlO-12) are functions of z and t only, and that they are real numbers 

for E = a (zonal components) but complex quantities for E = 8 or E: = Y 

(wave components). 

The derivation of the spectral expressions for the nonlinear 

functions (29) has been discussed in detail by P1atzman (1960), and will 

be omitted here. Using the series expansions for I/Ij , Aj , G
j

, and Hj' 

(j = 1, 2, 3) and applying the orthogonality relationship (A6) one 

obtains from (29) 

G .. 1m L L. K88 .. (1/18 A;.. - 1/J: .. A 8) a 8 8 a 

H .. 1m I L K yy"a (I/Iy 
A* 

a y y" 
y" 

G8 .. iLL K88 .. (1/J8 .. A -
a s" a a 

H • i 8 

- 1jJ* .. A ) 
y y 

1/J A .. ) 
a 8 

(Al3) 
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L L 
a y~ 

where by partial integration we have reduced all interaction coefficient 

to the following three types. 

dy 
a -djJ 

djJ K yy"'a 

1 

= 2R. of 

(A14) 

The expressions for P
E 

may be obtained from GE,and QE can be obtained 

from Hby replacing A by (l/s) a~ /az for E ranging over all 
E E E 

a, S, and y. In (A 13-14) the prime attached to a symbol denotes a 

dummy component of the wave indicated by that symbol. Thus the two 

summations in the double sum G extend over the same components such 
a 

that each pair of components occurs twice, except for the diagonal terms 

s = S~. It is seen however that the pair renders twice the same con-

tribution and therefore the double sum for G may be written as a single a 

non-redundant summation over 411 combinations (rather than permutations) 

of S and B~. The same if true for H , H , P , Q , and Q . a y a a y Further 

details concerning the computations of the nonlinear functions (A13) 

and the interaction coefficients (A14) may be found in Baer and Platzman 

(1960). 
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APPENDIX B: Spectral Representation in the Vertical 

We seek the eigen functions of the vertical operator in (28) 

L = (Bl) 

which satisfy the boundary condition (19) at the top and the bottom 

of the model atmosphere. By virtue of (27) the vertical boundary 

conditions to be imposed on the eigenfunctions for the streamfield may 

be stated 

o for z. 0, 1 (B2) 

Once the eigensolutions of (Bl) and (B2) have been determined, the 

appropriate polynomials for the vertical representation of the vertical 

motion field follow from (26) and (27). Alternatively, one may first 

derive the omega equation by eliminating a$/at between (26) and (27) 

and then determine the characteristic functions for the vertical 

operator occurring in that equation with boundary conditions w = 0 

for z = 0, 1. In that case that polynomials for the streamfunction 

follow from (26) and (27) and the resulaare, of course, the same. 

Clearly, the eigenfunctions are dependent upon the vertical 

variation of s. The author has shown previously (Simons, 1968) that 

the in.verse static stability lIs may be represented by a linear function 

of pressure if one is mainly concerned with the troposphere and if the 

effects of the stratosphere are simulated by a mathematical upper layer. 

Thus we write (see also equation (51) of Chapter V) 

1 
s 

1 
• - (l-z) 

So 
(B3) 
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In that case the eigenvalue problem allows for a simple solution and the 

vertical polynomials for the expansion of the streamfunction have been 

determined to be 

(B4) 

where Jo is Bessel's function of the first kind of order zero and 

d '"' il/4, where x , m • 0, 1, 2, ••• , are the zeros of the Bessel m m m 

function of order one, Jl' These functions are defined, respectively, 

Jo(x) (B5) 

For linear variation of lIs with pressure, the polynomials (B4) are the 

characteristic functions of the operator (Bl) which satisfy the boundary 

conditions (B2), while d , m = 0, 1, 2, ••• , are the characteristic 
m 

numbers, thus 

The polynomials are orthogonal and have been normalized such that 

I
I 

Z Z o m n dz • 
1 m=n 

o 

The orthogonal functions for the representation of the vertical 

(B6) 

(B7) 

motion field are related to Bessel's function of order one as follows 

x (z) • - Il-z m 

J 1 (2/dm U-z») 

Jo~~) 
The functions X are zero for z=O and z=l and therefore satisfy the 

m 

(B8) 

vertical boundary condition (19). By virtue of the relationships between 
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the Bessel functions of order zero and of order one, the functions 

Zm and Xm are related as follows 

dX 
m I(f"" Z di'"'" .. m m 

dZ 
m 

(l-z) dz = - Idx m m 

By inspection of (26) and (27) one may verify immediately that an ex-

(B9) 

pansion of the streamfield in terms of Zm is indeed consistent with an 

expansion of the vertical motion in terms of X. It follows further 
m 

that the functions Z are also the required eigenfunctions for the non­
m 

linear functions G
j 

and H
j

, while the polynomials Xm are to be used for 

an expansion of P
j 

or Q
j

. 

Let us apply the present spectral representation to the horizontal-

spectral equations (A 10-13). Each of the horizontal-spectral components 

defined by (A8) may then be expanded in a series of polynomials (B4). 

If again the subscript E denotes any spectral component of the horizontal 

expansion, then 

W (z,t) • L w (t) Z (z) 
€ m E,m m 

(BlO) 

and a similar expansion holds for G and H. On the other hand, the 
E E 

vertical motion components w , and the components P and Q are to be e e e 

expanded in terms of the polynomials (B8), thus for instance 

w (z,t) = L w (t) X (z) E E,m m 
m 

(Bl1) 

Upon substituting these expansions into (A 10-12) and applying the 

orthogonality relationship (B7) we obtain the system of spectral 

equations 
dWE,m 

c dt - = 211 W + G + H + Ici w E e E,m E,m E,m m e,m (B12) 
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rr 
m 

So 
d1/l E,m _ P + Q _ w 
dt E,m E,m E,m (B13) 

dm) d1Ji E m r.- ( ) 
(c + - • - 2it 1/1 + G + H + vd P + Q E So dt E E,m E,m E,m m E,m E,m 

(B14) 

where E ranges over all horizontal-spectral components, E = 1.2,3 ••••• ,N, 

and m extends over all vertical-spectral parameters. m = O.1,2, ••• ,M-l) 

and therefore each of the equations above represents of system of N x M 

equations. Note, however, that the space-dependence has been removed 

completely from the equations. which is. of course the prime target of 

the spectral technique. 

The spectral expressions for the nonlinear functions are also 

obtained by substituting the expansions (B10) and applying the ortho~ 

gonality conditions. Since the nonlinear functions in (A13) are all of 

the same form there is no need to reproduce the expansion coefficients 

for all of them. Therefore we will restrict ourselves to the system 

of a zonal flow and one wave, which is considered in Chapter 4 of this 

report, and which only involves the functions Ga' Ge, Pat and Pe. The 

spectral components for these functions are 

(B15) 

Id P -! \ \ K \ \ 
m ~ So L L ee~a L L 

a e~ k j 

where the interaction coefficients are defined 

1 

J mkj - of Zm Zk Zj dz (B16) 
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A more detailed treatment of the nonlinear functions and the interaction 

coefficients with regard to the vertical spectral expansion may be found 

in the paper by Simons (1968). 
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APPENDix c: Layered Representation in the V,rtica1 

Following the usual procedure in numerical modeling we divide the 

model atmosphere into M layers of depth 6z • 11M each, and define the 

streamfunction at the midpoints of the layers and the vertical motion 

between two successive layers. Applying this technique to the horizontal-

spectral equations (A 10-13) we define a set of time-dependent functions 

~&.m (t) ~ ~E (t,z - (~)6z) m = 1,2,3, ••• ,M, (el) 

and similarly 

w -LL(t) = w (t,z - ~z) e:,1UT"'2 £ 
m - O,l,2, ••• ,M, (e2) 

where again £ denotes any horizontal-spectral component as defined in 

Appendix A. In accordance with (A 10-11) we represent the nonlinear 

functions G and H at the ~-levels and the functions P and Q at the 
£ £ £ £ 

w-levels. The vertical boundary conditions (19) are satisfied by 

requiring 

W L-W u.....L -
£ , "2 £ , 1'1."2 

o (e3) 

Applying the vorticity equation (AlO) at the ~-levels and the thermo-

dynamic equation (All) at the w-levels, we obtain 

d",£ m 
c£ dt ' - 2it£ ~£,m + G£,m + H£,m + M (w£,~ - w&,m_~) (e4) 

(e5) 

Eliminating the vertical motion components and using the boundary condi-

tions (e3) we arrive at 

(e6) 
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+ 

m ... 2,3 •• ,M-1, 
+ = R 

£ ,M 

where we have defined 

m ... 1,2, ••• , M-l, (C7) 

and the R.H.S. of (C6) are obviously 

(C8) 

m = 2,3, •• , M-l, 

The nonlinear time-dependent functions G and H are obtained by 
£ ,m £,m 

applying (A13) at the $-1evels, and P -LL and Q -LL are derived by £,WT'2 e:,WT'2 

applying the equations for P and Q at the w-levels. We will only e: e: 

write down the expressions for GS and Pe which are used in the linear 

analysis of Chapter 3. 

(C9) 

The system of equations (C4-6) is equivalent to the spectral system 

(B 12-14). However, the latter can be solved immediately for the time-

derivatives of the streamfunction components, while the system (C6) 

requires a matrix inversion. In order to solve for the unknown 
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d~ Idt, m - 1,2 ••• , M, from the M equations (C6) we define for every 
E,m 

component E the following constants 

C _ (c + S + S - S2 C )-1 
E,m E m-~ ~ m-~ €,m-l m - 2,3, •• ,M-l 

and the following time-dependent variables 

B _ C R 
€,1 e:,1 e:,1 

The solution is then 

B 
€,M 

dlj/€,m+l 
S C - + B 
~ e:,m dt €,m 

m =- 2,3, ••• , M 

m = M-l, M-2, ••• ,2,l 

(ClO) 

(Cll) 

(Cl2) 
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APPENDIX D: Energy Conversions in the Spectral Domain 

The kinetic energy, given by (32), the available potential energy 

(34), and the various energy conversions (39-40), will be written here 

in a form suitable for numerical computation. First we substitute the 

horizontal-spectral expansions of the type (A8-9) and apply the ortho-

gonality relationships (A6) to obtain 

L ~ Ca1/la1/la L caWaWs 
* 

L CyWyWy 
* (Dl) K = KI = K2 = 0 

a a y 

* 1 ow 01/1 1 ow 01/1* lOWe oWa 
A • 

l a a Al = ~;azaT A2 = L -~~ (D2) 0 2s aT az- s dZ OZ a 

CKIO ... l 1/IaG
a CK20 = 

a 

CKOI - 2ie L * lP a
G

s a 

L * CK21 ... 2ie "'aHs 
a 

OW* 
CAKI - 2ie lWa 0/ a 

CAOI .. - 2Re 

CA2I ... - 2Re 

y 

oW 
r waHa CAK ... l a 

Wa az-0 
a a 

2ie L W G * CK02 = 
y y y 

r * CKl2 .. 2ie WyHy 
y 

ow* 
CAK2 = 2ie l Wy~ 

y 

aW 
CKAo = \ ---2. w 

L. B"z a 
a 

oW * 
CA02 ... - 2Re r af P 

Y Y 

OlP * 
CA 12 ... - 2Re r r Q 

y z y 

a", * 
CKA2 = 2ie \ ....;;:L w 

I.. oz y 
Y 

(D3) 

(D4) 

It can be shown that CKIO ... - CKOl, CAIO = - CAOI, etc., for any horizon-

tal-spectral truncation. and hence the spectral equations conserve the 

quantity K + A just as the original equations (26-28) do. 
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The computations of the energy quantities at various heights in the 

layered model is straight forward if we recall the procedure outlined in 

Appendix C. Similarly, if the spectral representation in the vertical is 

employed, the energy in the vertical-spectral components is obtained by 

substituting (BIO-ll) into (Dl-2) and applying the orthogonality condition 

(B7). For example, the results for KI and Al are 

Al - _1_ ~ ~ d ./. ./.* 
- s L. L. m 'I' 8m 'I' Am 

0j3m ,...,.. 
(05) 

where we have used (B3) and (B6) after an integration by parts with respect 

to the vertical coordinate. 
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APPENDIX E: Spectral Equations for the Linear Model 

The equations for a combination of the horizontal-spectral and the 

vertically-layered representations have been derived in Appendix C. Again 

we will identify a zonal spectral component by the subscript a and a 

wave component by the subscript 8. The second wave (denoted before by 

subscript y) is not considered in the linear model and the zonal flow is 

not allowed to vary with time. The wave equations are then obtained from 

(C 6-8) by replacing E by 8 and by discarding the nonlinear terms He 

and Q
a 

which represent the interaction with the second wave. To simplify 

matters somewhat, we will however first define a "static stability" at 

the lower and upper model boundaries as follows 

S~ - S~ :: 0 (EI) 

These constants have been only introduced for notational purposes and no 

physical interpretation should be attached to them. An obvious advantage 

of the definitions (EI) is that the wave equations may now be simply 

written as follows 

dt/J 
S 8,tn+l = R 
m¥oi dt a,m 

(E2) 

Ro - 2ilot/Jo + Go + M(Po -iL - Po _L) p,m p p,m p,m l->,urr'2 I->,m '2 
(E3) 

where now m extends over all layers m = 1,2,3, ••• , M. 

Substituting the expressions for the nonlinear functions (C9) and 

rearranging terms we obtain from (E3) 

+ t/Ja"",m ~ Kas""a (Sm_~ t/Ja,m-l + (cS,-ca)t/Ja,m + S~ t/Ja,m+J + 

+ 1j!S"",m+l ~ KSS'a (-Sm+~ 1j!a,m)] 
(E4) 



137 

where S~ represents a wave component and therefore both S and S~ range 

over the same array of component. If N is the number of spectral wave 

components and M is the number of layers in the vertical, then 

~ - 1,2, ••• ,N, and m .. 1,2, ••• , M, and we are dealing with NxM time-

dependent variables $S • After substituting (E4) into (E2) we will ,m 

obtain a system of NxM coupled equations which are linear since $ are a.,m 

constant, and this system can therefore be solved without difficulty. 

The variables Wo are to be arranged in a specified order. It is 
.."m 

convenient to define a new index as follows 

k • M(S-l) + m k~ = M(S~-l) + m (ES) 

The array of variables WS,m may then be written $k' k = l,2, ••• ,K where 

K - NxM, and the system of equations may be written in the following form 

(E6) 

~ IS 2iR.SWk + i ~~ ( ak,k~-l $k~-l + ak,k~ $k'" + ak.k~+l$k"'+l) 

where we have defined the constants 

(E7) 

- I Kso, (s L W + (co~-e ) W + s~~ W m+l) .., a. m-~ a,m-l .., a. a.,m WT~ a, a. 

where it is understood that with every k we have associated one Band 

one m, and this index m together with the index S'" determine k'" 

according to (ES). 

The system of equations may be written in matrix notation as follows 

(E8) 
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-+ where A and IS are matrices with constant elements, and ~ is the array 

of time-dependent variables ~k' k = 1,2, ••• , K. By inversion of matrix 

IA one obtains finally 

: t ~ .. i VA-I IS) "' :: i ID ~ (E9) 

which is the equation referred to in Chapter 3. Owing to the form of the 

maxtrixA, the latter may be inverted forevery component B individually 

such that we may apply again the inversion technique outlined by (C10-12). 

The system of equations given by (E9) allows for solutions of the 

form exp (-ivt). Upon substituting such a solution, (E9) reduces to 

or I ID + v][1 = 0 (E10) 

where I is the unit matrix. Therefore the v's are equal to the eigen-

values of the matrix D with reversed sign. The complete solution for 

the vector ~ is then obtained in the following form 

-iv t 
e j k = 1,2, ••• , K 

where bk,j (k = 1,2, •••• , K) is the eigenvector associated with the 

eigenvalue Vj and in physical terms represents the structure of the 

normal mode vj • 

(Ell) 

Since ID is a coefficient matrix of order K there will be a total 

of K eigenvalues. Most of these will be real numbers, but one may 

find a number of complex eigenvalues. Due to the character of the co-

efficient matrix the complex values will occur in conjugate pairs and 

the eigenvalue with positive imaginary part corresponds to an exponen-

tially growing solution. 
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