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ABSTRACT OF DISSERTATION 
 
 
 
 

DESIGN OF A NONHYDROSTATIC ATMOSPHERIC MODEL BASED ON A 
GENERALIZED VERTICAL COORDINATE 

 
 
 

The isentropic system of equations has particular advantages in the numerical 

modeling of weather and climate.  These include the elimination of the vertical velocity 

in adiabatic flow, which simplifies the motion to a two-dimensional problem and greatly 

reduces the numerical errors associated with vertical advection.  Vertical resolution is 

enhanced in regions of high static stability which leads to better resolving of features 

such as the tropopause boundary.  Also, sharp horizontal gradients of atmospheric 

properties found along frontal boundaries in traditional Eulerian coordinate systems are 

nonexistent in the isentropic coordinate framework. 

The extreme isentropic overturning that can occur in fine-scale atmospheric 

motion presents a challenge to nonhydrostatic modeling with the isentropic vertical 

coordinate.  This dissertation presents a new nonhydrostatic atmospheric model based on 

a generalized vertical coordinate.  The coordinate is specified in a similar manner as 

Konor and Arakawa, but elements of arbitrary Eulerian-Lagrangian methods are added to 

provide the flexibility to maintain coordinate monotonicity in regions of negative static 

stability and return the coordinate levels to their isentropic targets in statically stable 
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regions.  The model is mass-conserving and implements a vertical differencing scheme 

that satisfies two additional integral constraints for the limiting case of z-coordinates. 

The hybrid vertical coordinate model is tested with mountain wave experiments 

which include a downslope windstorm with breaking gravity waves.  The results show 

that the advantages of the isentropic coordinate are realized in the model with regards to 

vertical tracer and momentum transport.  Also, the isentropic overturning associated with 

the wave breaking is successfully handled by the coordinate formulation. 
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ABSTRACT OF DISSERTATION 
 
 
 
 

DESIGN OF A NONHYDROSTATIC ATMOSPHERIC MODEL BASED ON A 
GENERALIZED VERTICAL COORDINATE 

 
 
 

The isentropic system of equations has particular advantages in the numerical 

modeling of weather and climate.  These include the elimination of the vertical velocity 

in adiabatic flow, which simplifies the motion to a two-dimensional problem and greatly 

reduces the numerical errors associated with vertical advection.  Vertical resolution is 

enhanced in regions of high static stability which leads to better resolving of features 

such as the tropopause boundary.  Also, sharp horizontal gradients of atmospheric 

properties found along frontal boundaries in traditional Eulerian coordinate systems are 

nonexistent in the isentropic coordinate framework. 

The extreme isentropic overturning that can occur in fine-scale atmospheric 

motion presents a challenge to nonhydrostatic modeling with the isentropic vertical 

coordinate.  This dissertation presents a new nonhydrostatic atmospheric model based on 

a generalized vertical coordinate.  The coordinate is specified in a similar manner as 

Konor and Arakawa, but elements of arbitrary Eulerian-Lagrangian methods are added to 

provide the flexibility to maintain coordinate monotonicity in regions of negative static 

stability and return the coordinate levels to their isentropic targets in statically stable 
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Chapter 1  INTRODUCTION 

The theoretical framework for atmospheric modeling with the isentropic vertical 

coordinate was first worked out over 60 years ago (e.g., Starr 1945).  This coordinate has 

particular advantages in improving the accuracy of numerical weather forecasting and 

climate models.  Despite this, its use has been slow to develop, due in part to the 

technical challenges of handling the quasi-Lagrangian isentropic surfaces.  These 

challenges are more difficult in nonhydrostatic models designed to simulate fine scale 

motion where isentropic overturning often occurs.  It has only been in the last decade that 

the isentropic coordinate has been implemented in nonhydrostatic models. 

The isentropic vertical coordinate is classified as quasi-Lagrangian because, under 

adiabatic processes, surfaces of constant potential temperature are material surfaces.  

Therefore, numerical errors associated with vertical transport across coordinate surfaces 

are virtually eliminated.  One of the drawbacks to modeling with the isentropic 

coordinate is the intersection of potential temperature surfaces with the ground.  Hybrid 

vertical coordinate models provide a means to overcome this issue by incorporating a 

terrain-following Eulerian coordinate near the surface.  They combine the optimum 

features of the quasi-Lagrangian and Eulerian coordinate systems. 

This dissertation presents a new approach to nonhydrostatic finite-difference 

modeling with a hybrid vertical coordinate.  It combines the generalized vertical 

coordinate technique of Konor and Arakawa (1997) with the arbitrary Lagrangian-
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Eulerian methods used in previous hybrid models.  With the former method, a smooth 

transition between the coordinate types is specified, while the latter method provides the 

flexibility to allow the coordinate to adapt “on the fly” to changing atmospheric 

conditions.  The result is that the benefits of the isentropic coordinate are achieved as 

much as possible while allowing nonmonotonic vertical profiles of potential temperature 

to exist in the free atmosphere.  

1.1  The quasi-Lagrangian θ  coordinate 

The benefits of transforming the equations of atmospheric motion into the 

isentropic (θ ) coordinate were recognized as early as the 1930’s (e.g., Montgomery 1937, 

Rossby 1938).  Potential temperature increases monotonically with height in the standard, 

stably stratified atmosphere, making it useable as a vertical coordinate.  Furthermore, the 

fact that air parcels conserve their value of θ  under adiabatic processes means that there 

is no vertical velocity in isentropic coordinates.  Here, the potential temperature is 

defined as 

 
  

! " T
p
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p

#

$%
&

'(
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, (1.1) 

where T is temperature, p is pressure, p0 is a reference pressure (usually 1000 mb), and 

κ  ≡ R/cp , where R is the gas constant and cp is the specific heat at constant pressure.  

Isentropic weather charts, which are plotted on surfaces of constant θ, provided a new 

way of visualizing atmospheric motion since the flow on isentropic surfaces is 

two-dimensional for adiabatic processes. 
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The physical insight gained from the isentropic coordinate framework led to the 

advancement of PV theory (see Rossby 1940).  In θ  coordinates, the effect of stretching 

on the absolute vorticity of vertical cylindrical fluid elements bounded by material 

surfaces can be clearly expressed.  Ertel (1942) derived a form of the PV that is 

materially conserved for adiabatic, frictionless motion.  It is written as 

 
  

P =
!

a
"#$

%
, (1.2) 

where P is Ertel’s potential vorticity, ζa is the absolute vorticity vector, ∇ is the three-

dimensional gradient operator, and ρ is density.  In isentropic coordinates, Ertel’s PV 

takes on a simple form when the hydrostatic assumption is applied.  It becomes 
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where g is gravity, f  is the Coriolis parameter, and ζ
θ
 is the isentropic relative vorticity 

given by 

 
 
!
"
= k #$

"
% v , (1.4) 

where k is the unit vertical vector, ∇
θ
 is the horizontal gradient operator on constant-θ 

surfaces, and v = (u,v,0) is the horizontal wind velocity.  When P is plotted on isentropic 

charts, the visualization of the flow field evolution is aided since both θ and P are nearly 

conserved.  Through the invertibility principle, the complete three-dimensional motion 

field can be diagnosed from the PV field.  A history of the development of PV theory and 

isentropic potential vorticity maps can be found in Hoskins et al. (1985). 
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The merits of performing dynamical analysis with the isentropic vertical 

coordinate led to the development of a quasi-Lagrangian system of hydrodynamical 

equations (Starr 1945).  In his paper, Starr combined the Eulerian Cartesian coordinate in 

the horizontal, and a Lagrangian coordinate in the vertical.  Isosurfaces of the vertical 

coordinate (referred to as c) are fixed to a particular set of fluid particles.  The vertical 

velocity   !c  in the system is identically zero, so all motion is horizontal in the coordinate 

framework.  Over the years the term “quasi-Lagrangian vertical coordinate” has been 

used to describe quasi-conservative vertical coordinates for which the vertical velocity is 

usually small.  These include isopycnal coordinates used in ocean dynamics, and 

isentropic coordinates used in dry atmospheric dynamics. 

1.2 Numerical modeling with the θ  coordinate 

The advent of digital computing in the 1940’s and 1950’s made numerical 

methods for solving the hydrodynamical equations practicable.  The first weather 

forecasting and general circulation models (GCMs) used Eulerian vertical coordinate 

systems based on geometric height and pressure.  (See Randall (2000) for a historical 

overview of GCM development.)  The use of material layers in a model was proposed by 

Eliassen (1962), in part to reduce the numerical error associated with vertical advection. 

Eliassen and Raustein (1968) built a two-layer finite-difference θ -coordinate 

model based on the primitive equations.  In their model, the lower boundary was a model 

surface, and the lower isentropic model surface would intersect the ground.  The 

intersection of model layers with the lower boundary required special attention and it 

became one of the most challenging design features of subsequent θ -coordinate models.  



 5 

In Eliassen and Raustein (1968, 1970) and Shapiro (1975), the Exner function, 

Π ≡ cp(p/p0)
κ, and also the velocity components were linearly extrapolated below the 

surface.  These subterranean values were used in the horizontal difference terms. 

Bleck (1984) implemented an alternative to the “linear extrapolation” technique 

of handling intersecting θ -coordinate surfaces at the ground.  In this “massless-layer” 

approach, which originated from Lorenz (1955), isentropic surfaces intersecting the lower 

boundary are extended along the ground, as shown in Figure 1.1.  These may be 

collocated with adjacent isentropic layers and they are filled identically by zero mass.  

With this technique, the surface value of potential temperature, which is needed to 

determine the horizontal position of ground intersection in the “linear extrapolation” 

method, need not be calculated from the thermodynamic energy equation.  Instead, the 

location of layer intersection is determined from the mass continuity equation with the 

lower boundary condition
   
!!

S
= 0 , where θS is an arbitrarily assigned lower bound of 

potential temperature. 

The massless-layer approach was also used by Hsu and Arakawa (1990), hereafter 

HA90, in the development of their θ -coordinate model.  They formulated a vertical 

 
 

Figure 1.1: Illustration of massless isentropic layers along the lower boundary [Fig. 2 
from Hsu and Arakawa (1990)]. 
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discretization scheme which conserved total energy and angular momentum, and they 

achieved long-term simulations of baroclinic wave growth on a β -plane with a 25-layer 

model.  Randall et al. (2000) developed a θ -coordinate global model using the scheme of 

HA90. 

1.3 Advantages and disadvantages of isentropic-coordinate modeling 

HA90 discussed advantages and disadvantages of the isentropic coordinate.  

Some of the advantages are summarized below. 

1)  The vertical velocity is zero for adiabatic flow, which simplifies the motion to 

a two-dimensional problem and greatly reduces the numerical errors associated with 

vertical advection. 

2)  Sharp horizontal gradients of atmospheric properties, which are found along 

frontal boundaries in traditional Eulerian coordinate systems, are nonexistent in the 

isentropic coordinate framework. 

3)  Ertel’s potential vorticity, given by equation (1.3), is more easily expressed 

since it does not involve vertical derivatives of v.  This makes the conservation of PV 

more straightforward in the discrete, quasi-static framework. 

4)  A quasi-Lagrangian view of the general circulation of the atmosphere is 

readily obtained with the isentropic coordinate.  This follows from the fact that mean 

vertical transport is due only to diabatic heating with no contribution from eddy transport.  

For example, under adiabatic conditions, the pressure form drag acting on isentropic 

surfaces is the only mechanism for the vertical transfer of momentum. 
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Some of the disadvantages pointed out by HA90 are listed below.  The solutions 

to these will be addressed later. 

1)  As pointed out earlier, isentropic coordinate surfaces can intersect the lower 

boundary, even without topography.  These intersections are difficult to handle in a 

discrete model. 

2)  The mass between adjacent isentropic layers can become infinitesimally small 

which can cause computational difficulties. 

3)  In the planetary boundary layer (PBL), isentropic surfaces can become vertical 

due to mixing, resulting in a lack of vertical resolution. 

4)  Unstable layers with ∂θ /∂z < 0 cannot be represented in the model because of 

the requirement that the vertical coordinate be a monotonic function of height. 

1.4 Hybrid vertical coordinate models 

The disadvantages listed above can be solved with the hybrid vertical coordinate 

approach.  In this method, the θ coordinate is used in the free atmosphere, where the 

static stability is generally positive, and an Eulerian p- or z-based coordinate is used near 

the surface.  The latter is typically a terrain-following (σ) coordinate, which eliminates 

the issue with intersecting coordinate surfaces with the lower boundary.  Also, the PBL 

can be well resolved with an arbitrary number of model levels.  The hybrid method was 

developed in the 1970’s (e.g., Deaven 1976, Friend et al. 1977, Uccellini et al. 1979).  In 

these early hybrid models there was an interface between the isentropic and σ coordinate 

domains (see Figure 1.2).  In general, isentropic model surfaces would intersect the 

interface, and, therefore, the finite-difference schemes would have to handle this in a 
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similar manner to isentropic ground intersections with the “pure” θ coordinate models.  

In Deaven (1976), this was done using a linear extrapolation method where θ -surfaces 

are extrapolated into the σ-domain.  Uccellini et al. (1979) designed their model to 

conserve mass, momentum and energy in association with transport across the interface 

between the isentropic and sigma domains.  This reduced the pressure and wind 

perturbations caused by truncation errors with the discrete handling of the interface. 

Bleck (1978a) introduced a method of joining the isentropic and sigma domains 

that avoids the intersection of isentropic surfaces with the interface (see Figure 1.2).  This 

was to have the interface coincide with an arbitrary isentropic surface which is high 

enough to avoid intersection with the lower boundary (310 K was chosen).  While this 

method has the advantage of avoiding coordinate surface intersections, it has the 

 
 

Figure 1.2: Four ways of joining the σ and θ domains:  (A) Friend et al. (1977), 
(B) Uccellini et al. (1979), (C) Deaven (1976), and (D) Bleck (1978a) 
[Fig.1 from Bleck (1978a)]. 
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disadvantage that the interface height would vary considerably with latitude.  For the 

choice of θINTERFACE  = 310 K, the height would typically be about 3  km in the tropics, 

while near the poles, it is located at almost 10  km.  Therefore, the benefit of the θ 

coordinate would not be realized throughout most of the troposphere in the higher 

latitudes. 

The method of transition from the σ coordinate to the θ coordinate in Bleck’s 

model logically led to the use of a generalized vertical coordinate.  In two subsequent 

papers, Bleck (1978b, 1979) formulated a system of finite-difference equations based on 

the generalized vertical coordinate for use in hybrid coordinate models.  Under this 

framework, the vertical coordinate may be specified as a function of two or more 

variables.  For example, Zhu et al. (1992) defined their coordinate in terms of σ, θ and p. 

The generalized vertical coordinate is also used in the NOAA Rapid Update Cycle (RUC) 

operational weather prediction model for regional forecasts (Bleck and Benjamin 1993; 

Benjamin et al. 2004).  In this model, the coordinate is specified as purely isentropic in 

the free atmosphere, while near the surface, a minimum pressure spacing between 

coordinate surfaces is maintained through a process of regridding.  Therefore, the 

coordinate behaves as a pressure-based terrain-following σ coordinate near the surface.  

The coordinate-relative vertical velocity associated with the regridding process is 

calculated and used in the vertical advection terms of the prognostic equations.  Another 

quasi-static atmosphere model based on this coordinate is the Flow-following finite-

volume Icosahedral Model (FIM) global model developed at NOAA/ESRL 

(documentation at http://fim.noaa.gov/fimdocu_rb.pdf). 
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Konor and Arakawa (1997), hereafter KA97, used a coordinate defined as a linear 

function of σ and θ, with a smooth transition from the σ coordinate near the surface to the 

θ coordinate.  The functional relationship was specified to maintain vertical coordinate 

monotonicity for a given degree of static instability, i.e., ∂θ /∂z < 0, without the need for 

regridding.  Models based on the vertical coordinate of KA97 include Heikes et al. (2006) 

and Dowling et al. (2006). 

1.5 Nonhydrostatic modeling with hybrid vertical coordinates 

In the quasi-static models discussed so far, the folding of isentropic surfaces in the 

free atmosphere was generally not considered a major difficulty.  Eliassen and Raustein 

(1968) stated that there was no reason to believe that these surfaces would fold during 

integration of their isentropic coordinate model.  HA90 pointed out that in θ -coordinate 

models, mass is automatically redistributed in such a way as to prevent unstable layers 

from developing, which is equivalent to a built-in dry convective adjustment process.  

These are valid arguments for large-scale quasi-static motion.  However, on the small 

scales resolved by nonhydrostatic models, the existence of statically unstable layers and 

isentropic overturning are common physical features which must be accommodated.  

In the last decade, nonhydrostatic models using the quasi-Lagrangian θ  

coordinate have been developed.  Skamarock (1998) and He (2002) extended the hybrid 

coordinate method of Bleck and Benjamin (1993).  In their regridding algorithms they 

imposed both minimum and maximum Δz requirements on adjacent layers to prevent 

layers from crossing and to provide vertical resolution in statically unstable regions, 
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respectively.  Therefore, the generalized vertical coordinate used in these nonhydrostatic 

models are hybrids of potential temperature and a height-based terrain-following 

coordinate.  In addition to the layer thickness requirements, coordinate surfaces were 

horizontally and vertically filtered to maintain grid smoothness and to prevent layers 

from having infinite slope.  Successful two-dimensional mountain wave breaking 

experiments were achieved by both Skamarock (1998) and He (2002).  With the latter 

model, a three-dimensional simulation of baroclinic wave growth on a β -plane was also 

performed. 

Zangl (2007) developed an adaptive vertical coordinate formulation with flux-

form equations and implemented it in the nonhydrostatic Weather Research and 

Forecasting Model (WRF) (Skamarock et al. 2005).  The value of the vertical coordinate, 

which is based on WRF’s terrain-following hydrostatic-pressure vertical coordinate (see 

Laprise 1992), is calculated at each grid point using a prognostic equation.  This equation 

is a relaxation-diffusion equation that applies a Newtonian relaxation toward a “target” 

field.  The specification of the target field determines the nature of the coordinate.  Zangl 

specified it to be terrain-following near the surface and isentropic in the free atmosphere.  

The diffusive aspect of the prognostic equation maintains a smooth layer spacing and 

smoothness in the horizontal, in addition to maintaining coordinate monotonicity in 

regions of isentropic overturning. 

The handling of the vertical coordinate in these nonhydrostatic models, as well as 

the quasi-static models that use a regridding method, are characteristic of arbitrary 

Lagrangian-Eulerian (ALE) methods (Hirt et al. 1974) and adaptive grid techniques 

(Dietachmayer and Droegemeier 1992).  With the ALE method, the three dimensional 



 12 

model grid is attached to grid points whose positions in space are predicted in a 

Lagrangian manner.  To prevent the grid from becoming too irregular, mass is allowed to 

cross grid cell walls in an Eulerian manner.  The hybrid coordinate models apply these 

techniques only in the vertical dimension.  In contrast, the hybrid coordinate method of 

KA97 is not derivative of ALE or adaptive grid techniques as the combination of the 

quasi-Lagrangian (i.e., θ ) and Eulerian (i.e., σ) components are strictly prescribed at each 

model level. 

1.6 A new approach to nonhydrostatic modeling with a hybrid 
vertical coordinate 

For the nonhydrostatic model developed in this dissertation we started with the 

hybrid vertical coordinate of KA97.  We did so because of the straightforwardness of its 

formulation and the smoothly prescribed transition from terrain-following (sigma) to 

isentropic coordinates.  In the final design, however, we ended up incorporating elements 

of ALE.  Therefore, our formulation can be viewed as an “adaptive” version of the 

statically-defined coordinate of KA97.  Next, we briefly explain the development process 

of the vertical coordinate used in the model. 

Recall that in KA97, a specified degree of static instability can be accommodated 

while maintaining the monotonicity of the vertical coordinate.  This is achieved by 

retaining some “sigma-ness” in the vertical coordinate and not allowing it to become 

exactly isentropic, which results in sacrificing some of the quasi-Lagrangian nature of the 

θ  coordinate.  In testing their model, KA97 allowed for a small enough amount of static 

instability that the deviation from isentropic coordinates was small.  In their model, dry-
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convective adjustment helped to maintain statically stable vertical profiles as is observed 

on the large scale. 

When we implemented the KA97 hybrid vertical coordinate in our nonhydrostatic 

model, it functioned well for small-scale cases in which static stability is maintained, 

such as gravity wave formation in flow over a small obstacle.  For more severe cases, 

such as nonlinear wave breaking over a taller obstacle, we ran into problems.  Our hope 

had been that it would be possible to achieve a numerical solution to the pure 

θ -coordinate representation of wave breaking.  We had theorized that the waves would 

amplify to the point mathematically allowed with a monotonic θ coordinate, that is just 

before isentropes overturn and the static stability becomes zero, and then they would die 

out.  Instead, the model would not run unless enough of a σ-component remained in the 

vertical coordinate to allow the waves to develop and break as they do in the physical 

realm.  In fact the coordinate had to deviate from θ to the point that the generalized 

vertical velocity, and therefore the dispersion error associated with vertical advection, 

was indistinguishable from a pure σ coordinate.  This, of course, defeats the purpose of 

the hybrid-coordinate. 

The problem that occurred in the pure θ -coordinate runs was that large-amplitude 

noise would develop in the motion field which caused coordinate surfaces to cross each 

other, resulting in negative mass.  We implemented an upstream mass-advection scheme 

to try to prevent negative values of mass, but this merely delayed the problem.  We then 

imposed a minimum layer thickness by using a “regridding” method, but this only further 

delayed the model crash.  We speculate that the root problem was that the spatial 

gradients of the prognostic variable fields in the coordinate space became too sharp for 
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the numerical schemes to handle, particularly the advection schemes.  The way to get past 

the barrier was to prevent these sharp gradients from developing by spatially smoothing 

the coordinate surfaces, that is by incorporating an adaptive grid technique.  We will 

show evidence of the reduction of these gradients in the next chapter, where the details of 

the smoothing method will be described.   

1.7 Design of the vertical discretization 

This section outlines the design criteria for the vertical discretization used in the 

model.  A description of the vertical staggering of the prognostic variables will be given.  

This will be followed by a discussion of the integral constraints, such as mass 

conservation, that will be used as a guide in developing the discrete form of the 

governing equations. 

1.7.1 Vertical staggering 

Determining the spatial grid distribution of the predicted variables is an important 

early step in the design of a numerical model.  The way these variables are staggered with 

respect to each other directly affects the forms of the discrete difference terms in the 

model equations.  These, in turn, affect the accuracy of the model solutions, as well as the 

satisfaction of conservation properties.  They also can determine whether or not 

nonphysical computational modes exist.  Various grid staggerings on horizontal, 

quadrilateral grids, and their effects on gravity wave motion, are analyzed in Arakawa 

and Lamb (1977) and Randall (1994).  Their results provide a framework for determining 

the optimal grid staggering for representing geostrophic adjustment. 
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Proper prognostic variable staggering in the vertical is also important for the 

accurate representation of wave propagation and the avoidance of computational modes.  

The various arrangements for quasi-static models have been analyzed (e.g., Tokioka 

1978, Arakawa and Moorthi 1988, Arakawa and Konor 1996).  Two general classes of 

vertical grids exist for the primitive equation models using a pressure-based vertical 

coordinate – the Charney-Phillips (CP) grid and the Lorenz grid.  These are illustrated in 

Figure 1.3.  The CP grid was used in Charney and Phillips (1953) for a discrete three-

dimensional quasigeostrophic model.  In this grid, the thermodynamic variable θ is 

vertically staggered with respect to the horizontal velocity (v).  Lorenz (1960) placed θ at 

 
 

Figure 1.3: Variable staggerings of (a) the Lorenz grid and (b) the Charney-Phillips 
grid for a σ coordinate. 
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the same level as the horizontal velocity in order to facilitate conservation of total energy, 

mean potential temperature and potential temperature variance.  The Lorenz grid became 

the typical standard in GCMs because of these conservation properties.  However, this 

grid supports a computational mode in the potential temperature field which is described 

in Arakawa and Moorthi (1988).  This mode was found to cause spurious baroclinic wave 

growth in discrete models.  The computational mode does not exist in the CP grid, as 

demonstrated by Arakawa and Konor (1996).  In that paper, it was also shown that total 

energy conservation can be achieved with the CP grid. 

In nonhydrostatic modeling, the replacement of the hydrostatic relation with a 

prognostic equation for the vertical velocity w, changes the analysis of the vertical 

staggering.  In this system of equations, there is an additional vertical wave mode – the 

acoustic mode – which, although not of meteorological significance, has an important 

role in the hydrostatic adjustment process (e.g., Bannon 1995).  The choice of vertical 

coordinate also has a role in determining the optimal grid staggering.  Woollings (2004) 

and Thuburn and Woollings (2005) analyzed the discrete linear normal modes for various 

staggerings with the compressible, nonhydrostatic system of equations expressed in three 

different coordinate systems – the height coordinate, the isentropic coordinate and a 

terrain-following mass-based coordinate.  The staggerings which provided the most 

accurate representation of wave motion as well as being free of computational modes 

were those in which potential temperature is staggered with respect to horizontal velocity, 

i.e., the CP-like grids. 

Partly based on the results of Thuburn and Woollings, we chose to implement the 

CP grid in the height-based coordinate domain of the hybrid vertical coordinate model.  
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There is also precedent for using the CP grid in nonhydrostatic atmospheric models based 

on a terrain-following height-based vertical coordinate in the “unified model” developed 

at the United Kingdom’s Met Office (Davies et al. 2005). 

1.7.2 Integral constraints 

The discrete forms of the governing equations used in numerical models are often 

designed to satisfy various integral properties found in the continuous system of 

equations.  These properties include the conservation of mass, momentum, total energy, 

potential temperature, and concentrations of water and chemical species.  As there is a 

limited number of degrees of freedom in the algebraic model equations, it is not possible 

to satisfy all of the integral properties found with the continuous system.  Therefore, 

trade-offs must be made in designing the vertical discretization.  The vertical 

discretization we developed for the model conserves the total mass through the direct 

prediction of the mass variable with a flux-form of the continuity equation.  Total energy 

and the vertically integrated momentum circulation about a closed contour of topography 

is also conserved under the special case of pure height coordinates and centered-

differencing schemes.  The  satisfaction of these constraints for the generalized vertical 

coordinate is traded-off in order to avoid the existence of a computational mode in the 

thermal field.  Another constraint that is compromised is the conservation of potential 

temperature, which appears to be due to the use of the CP grid. 
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1.8 Outline of the dissertation 

The purpose of this dissertation is to present the design and tests of a new 

nonhydrostatic atmosphere model which takes advantage of a quasi-Lagrangian vertical 

coordinate.  The tests demonstrate its capability to represent fine-scale nonhydrostatic 

motions including those involving isentropic overturning.  Results with the hybrid 

coordinate are compared to those with the conventional σ coordinate, revealing both 

advantages and disadvantages of the hybrid coordinate. 

In Chapter 2 the continuous system of equations is presented.  The governing 

equations in z coordinates are transformed into the generalized vertical coordinate (η).  

We then derive some of the integral properties of the continuous system in this 

coordinate.  The details of the vertical coordinate specification and the method of 

diagnosing the generalized vertical velocity 
 
!!  are presented.  Finally, the vertical flux of 

horizontal momentum is analyzed and the Eliassen-Palm flux in a generalized vertical 

coordinate is derived.  This expression is used for the analysis of the momentum transport 

in the model. 

Chapter 3 describes the design of the vertical discretization scheme.  The vertical 

staggering and the discrete form of the governing equations are presented.  Various 

integral constraints are satisfied by these equations under certain conditions.  

Compromises made between the various design criteria are highlighted.  The method of 

diagnosing the generalized vertical velocity in the model is detailed in Chapter 4.  Also, 

we will describe the special handling of the vertical advection of potential temperature 

and geopotential. 
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In Chapter 5, a series of two-dimensional mountain wave experiments are 

performed with the model.  Results from runs with the hybrid vertical coordinate and the 

σ coordinate are compared in regard to the overall fields, as well as momentum and tracer 

transport.  Finally, Chapter 6 provides a summary of the dissertation along with 

concluding remarks. 
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Chapter 2  CONTINUOUS EQUATIONS 

2.1 Introduction 

This chapter describes the compressible Eulerian equations of fluid motion in a 

generalized vertical coordinate on which the model is based.  We develop the 

nonhydrostatic equations starting in z coordinates, and transform them to the generalized 

vertical coordinate following the work of Kasahara (1974) for the quasi-static equations.  

The integral constraints that will form the basis of the vertical discretization scheme are 

then derived.  The vertical coordinate is presented, along with the method for diagnosing 

the generalized vertical velocity.  Finally, we will analyze the vertical flux of horizontal 

momentum in the generalized vertical coordinate, and derive an expression for the 

Eliassen-Palm flux in this coordinate. 

2.2 Governing equations 

We start with the governing equations in z-coordinates.  The laws of momentum, 

energy and mass conservation make up the prognostic equations.  The horizontal 

momentum equation is 

 
   

Dv

Dt
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1
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$

z
p + F , (2.1) 
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where ∇ is the horizontal gradient operator, F is the horizontal friction force, and D/Dt is 

the material time derivative given by 
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The subscript z on the differential operators denotes derivatives at constant geopotential 

height.  The vertical momentum equation is 
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where Fz is the vertical component of the friction force. 

Mass conservation is given by 
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The first law of thermodynamics for quasiequilibrium, frictionless processes can be 

expressed as 
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where Q is the rate of diabatic heating and Π  is the Exner function defined below. 

The diagnostic equations that close the system are the ideal gas law, 

  p = !RT , (2.6) 

the definition of the Exner function, 
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and the definition of potential temperature, 
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To transform these equations to a generalized vertical coordinate η we use the 

following chain-rule identities: 
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and 
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Applying equations (2.9) - (2.13) in equations (2.1) - (2.4) gives the governing equations 

in the generalized vertical coordinate η.  First, the horizontal momentum equation 

becomes 
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Note that the horizontal pressure gradient force has become a two-term expression, and a 

new quantity is introduced – the pseudo-density (m) given by 
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This is the analog of the conventional density, referred to the generalized vertical 

coordinate, i.e., the amount of mass per unit volume of the generalized space.  Using the 

expression 
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where 
 
!!  is the generalized vertical velocity, the material time derivative becomes  
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The vertical momentum equation is 
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Finally, the flux form of the mass continuity equation is written as 
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where we used 
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At this point, it is illustrative to consider these equations in the framework of 

some commonly used vertical coordinate systems, and to briefly discuss the formulation 

of the generalized vertical velocity in each.  For the z-coordinate (η = z), the original 

governing equations are recovered, as equation (2.15) becomes m = ρ, and the vertical 

velocity, as given by (2.16), becomes
  
!! = w .  In this system, the vertical velocity is 

simply the prognostic quantity governed by (2.18).  This is in contrast to the diagnosis of 
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w in the z-coordinate, quasi-static system of equations, which is quite complicated 

(Richardson 1922). 

In pressure coordinates (η = p), the vertical velocity 
  
!! = !p  is not straightforward 

to calculate in the nonhydrostatic system.  In the quasi-static system, it can readily be 

diagnosed from the vertically integrated horizontal divergence (Sutcliffe 1947; 

Eliassen 1949).  The reason for the complication in the nonhydrostatic system is that 

pressure is no longer tied to the mass through the hydrostatic equation.  Also, the 

continuity equation is prognostic instead of diagnostic as in the quasi-static system. 

In isentropic coordinates (η = θ ), the vertical velocity is 
 
!! = !" , which is 

diagnosed from the diabatic heating rate through equation (2.5).  In θ -coordinates the 

vertical velocity diagnosis is the same in both the nonhydrostatic and quasi-static 

systems. 

In summary, the vertical velocity calculation in the nonhydrostatic system is 

simple with z-coordinates, while in the quasi-static system it is simpler to use the 

p-coordinate.  For the θ -coordinate, the vertical velocity diagnosis is the same in both the 

nonhydrostatic and quasi-static systems. 

2.3 Integral constraints 

The equations numerical models solve are approximations of the continuous 

governing equations.  Usually there is sufficient freedom in the finite difference 

approximations of the governing equations to not only satisfy the convergence criterion, 

i.e., that as the grid size becomes infinitely small the equations converge to the 

continuous form, but also to satisfy certain integral properties of the continuous 
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equations, such as conservation of the global sum of mass, potential temperature, 

vorticity and total energy.  An example of this “mimetic” method can be found in 

Arakawa and Lamb (1977).  This section describes the integral constraints that our 

numerical scheme will be designed to mimic. 

The upper and lower boundaries are assumed to be impermeable; therefore, the 

boundary conditions are that the vertical mass flux is zero at these boundaries.  The 

generalized vertical coordinate, as well as the generalized vertical velocity, are left 

undefined in the derivation of the integral properties.  The mathematical expression for 

the impermeable upper and lower boundary conditions will be presented in the following 

analysis of mass conservation.  (Note that in the following derivations, the time and 

horizontal derivatives will be on constant η-coordinate surfaces, so the subscript η will 

be omitted from the differential operators unless otherwise necessary.) 

2.3.1 Conservation of mass (“Constraint 0”) 

The global conservation of mass is easy to demonstrate when the flux form of the 

continuity equation given by (2.19) is used.  The goal is to show that
   

d
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V
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where V  is the total volume of the domain, and dV = dA dη is a differential volume 

element in η-space.  Using the Leibniz integral rule we can write 
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where the subscripts S and T represent the bottom and top boundaries respectively.  

Applying equation (2.19), this becomes 
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The first term on the right-hand side of (2.22) vanishes when integrated over any closed 

surface or any horizontal domain in which there is no horizontal mass flux at the 

boundaries.  The integrands of the second and third terms on the right-hand side are the 

vertical mass fluxes at the top and bottom boundaries respectively.  We consider that 

there is no mass flux across the top and bottom boundaries, so these terms are zero, and 

therefore we have proven that mass is conserved. 

2.3.2 Vertically integrated momentum circulation constraint on the HPGF 
(“Constraint I”) 

The horizontal pressure gradient force term of the horizontal momentum equation 

is the largest contributor to the momentum tendency on many scales of atmospheric 

motion.  Therefore its accurate representation in numerical models is important.  As will 

be shown in Section 2.3.3, the HPGF plays an important role in total energy conservation 

through the conversion term between thermodynamic and kinetic energy.  In the design 

of the discrete system of equations, while we have limited control over the accuracy of 

the HPGF at a given location, we can express the HPGF in a form which mimics the 

continuous form in its satisfaction of integral constraints.  This is especially important for 

two-term expressions of the HPGF in the generalized vertical coordinate, as in equation 

(2.14), in which the error between the opposition of the two large terms with opposite 
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sign can be large.  We now discuss the effect of surface topography, through the HPGF, 

on the vertically integrated circulation of momentum about a closed contour. 

Following Arakawa and Lamb (1977), we wish to derive a useful expression for 

the HPGF that will facilitate the calculation of the vertically integrated momentum 

tendency.  The horizontal pressure gradient force is represented by the first two terms on 

the right-hand side of the horizontal momentum equation (2.14).  Using (2.15) we can 

express it in the form 
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where φ ≡ g z is the geopotential.  Now multiply (2.23) by m and integrate across the 

vertical domain to get 
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where we neglected the upper boundary and used the identity 
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When the line integral of the tangential component of (2.24) is taken along any closed 

curve, the first term on the right-hand side has a zero contribution because it is a gradient 

vector.  The only contribution to the vertically integrated circulation of momentum comes 

from the last term, which is called the “mountain torque” term.  When the closed curve is 

a contour of surface topography, it is zero.  Also, for ps = ps(zs), the contribution to the 

line integral is zero. 
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2.3.3 Conservation of total energy (“Constraint II”) 

In the absence of diabatic heating and friction the total energy of a fluid system is 

constant.  Total energy is defined as the sum of mechanical and internal energy.  

Mechanical energy is the sum of the kinetic energy associated with the macroscopic 

motion of the fluid (i.e., the wind) and the gravitational potential energy.  Internal energy 

is the energy associated with the molecular motion of the fluid.  Various conversions can 

take place between the forms of energy.  The rate at which these conversions take place 

appear in the derivation of the total energy equation as “conversion” terms which cancel 

out to keep the total energy constant.  A method to conserve total energy in a numerical 

model is to ensure that the discrete analogs of these conversion terms cancel.  In the 

formulation of the discrete equations, which will be shown in the following chapter, the 

energy conversion terms will be analyzed.  For now we derive the continuous form of the 

energy equations. 

2.3.3.1 Kinetic energy equation 

The kinetic energy associated with the three-dimensional bulk motion of the air is 
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In the nonhydrostatic system, the vertical velocity w contributes to the kinetic energy, so 

we must include the work done by the vertical pressure gradient force (VPGF) in our 

analysis.  From the vertical momentum equation (2.18) we can write 
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Note that in the hydrostatic approximation VPGF = + g. 

In the development of the vertical discretization, we will consider alternate forms 

of the HPGF and VPGF expressed in terms of the Exner function instead of pressure.  

Using the definition of the Exner function given by equation (2.7), we can write 
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Using (2.6) and (2.8), the vertical pressure gradient force then becomes 
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Similarly, the horizontal pressure gradient force may be written 
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The flux form of the kinetic energy equation is derived from the momentum 

equations by taking the dot product of mv and (2.14), and adding mw times (2.18) which, 

using the notation above, gives 
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where we have neglected friction.  The first two terms on the right-hand side represent 

the kinetic energy generated by the pressure gradient forces.  These terms deserve special 

focus as they have an important role in the consistency of the energy conversion terms in 

the discretization scheme.  The last term on the right-hand side is the rate of energy 

conversion between kinetic and geopotential energy. 

Now we analyze the work done by the pressure-gradient force.  From equations 

(2.15), (2.20) and (2.23) we get 
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where 
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From equation (2.27), the work done by the vertical pressure gradient force is simply 
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Adding equations (2.32) and (2.34) we get the work done by the pressure gradient force 

as 
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Plugging (2.35) into (2.31), the kinetic energy equation becomes 
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As will be seen shortly, the first term on the right-hand side is the conversion term 

between thermodynamic and kinetic energy, and the last term on the right-hand side is 

the conversion term between kinetic and geopotential energy. 

2.3.3.2 Internal energy equation 

The processes that directly affect the internal energy of a fluid parcel are heating 

and work done by the parcel through expansion.  The first law of thermodynamics states 

that the rate of change of the internal energy is equal to the difference between the heat 
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added to the parcel and the work done by the parcel.  For quasiequilibrium, frictionless 

processes this is expressed as 
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where α is the specific volume.  Here e is the internal energy which can be expressed as 

cv  T, where cv  is the specific heat at constant volume.  Equation (2.37) can be converted 

to a flux form by multiplying by the pseudo-density m, applying equations (2.15), (2.19), 

and the product rule of differentiation to get 
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Note that the second term on the right-hand side is the conversion term between 

thermodynamic and kinetic energy which now appears with the opposite sign as in 

equation (2.36).  Equation (2.38) can be rewritten in terms of enthalpy, defined as 

h ≡ e + pα, for which dh = cp dT.  It becomes 
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Finally, it can be shown that the internal energy equation can be written as the 

potential temperature prediction equation (2.5), which is the form of the thermodynamic 

energy equation used in the model.  This is done by using the relation de =  cv dT in 

equation (2.37), and using the ideal gas law pα = RT and the definition of potential 

temperature 
  
! = T p

0
p( )

"

, which gives equation (2.5). 
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2.3.3.3 Geopotential energy equation 

The rate of  change of a fluid parcel’s geopotential is calculated by multiplying 

mg by equation (2.20) and using the continuity equation (2.19) to get 

 
    

!

!t
(m") +# $ (mv") +

!

!%
(m !%") = mwg . (2.40) 

Now note the energy conversion term between kinetic energy and geopotential energy 

mwg which appears with the opposite sign as in equation (2.36). 

2.3.3.4 Total energy equation 

The total energy equation is obtained by adding equations (2.36), (2.38), and 

(2.40), and canceling terms to get 
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where ε ≡ cvT + K + φ is the total energy.  The last two terms on the right-hand side are flux 

divergence terms that represent the spatial redistribution of energy.  When integrated over 

the domain, they contribute nothing to the global total energy budget except for 

contributions from the boundaries.  The time rate of change of the global mass-weighted 

integral of total energy for an adiabatic atmosphere is obtained by integrating (2.41) over 

the domain and requiring that no mass cross the upper and lower boundaries.  A 

necessary identity is 
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The result is 
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 (2.43) 

For a closed surface, the first two terms are identically zero.  The last two terms are the 

work done by the pressure force at the upper and lower boundaries.  These terms would 

have a contribution over the ocean where waves keep the lower boundary in motion, but 

we will assume that the boundaries are fixed, so these terms are zero.  Therefore, we have 

proven that for an adiabatic, frictionless atmosphere, the global total energy is conserved. 

2.4 A summary of the continuous system of equations 

Here we summarize the governing equations in the generalized vertical coordinate 

as well as the boundary conditions.  We discuss system closure and begin to introduce the 

specification of the generalized vertical coordinate η and diagnosis of the generalized 

vertical velocity 
 
!! .  From this point forward we will assume that the top and bottom 

boundaries are generalized vertical coordinate surfaces, i.e., ηT = constant and 

ηS = constant.  Therefore, from equation (2.22), the impermeable upper and lower 

boundary conditions are expressed as 

 
   

m !!( )
T
= m !!( )

S
= 0 . (2.44) 

 

Continuity equation: 

 
    

!m

!t
+" # (mv) +

!

!$
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Horizontal momentum equation: 
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where 
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Vertical momentum equation: 

 
  

Dw

Dt
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1

m
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"#
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z
. (2.48) 

Thermodynamic energy equation: 

 
 

D!

Dt
=

Q

"
. (2.49) 

Geopotential equation: 

 
 

D!

Dt
= wg . (2.50) 

Ideal gas law: 

  p = !RT . (2.51) 

Definition of the Exner function: 
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Definition of potential temperature: 

 
 
! "

c
p
T

#
. (2.53) 

Definition of pseudo-density: 
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m !
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g

#$

#%
. (2.54) 

Relation between geopotential and height: 

  ! = gz . (2.55) 

We introduce a normalized height variable: 

 
 

! "
z # z

S

z
T
# z

S

. (2.56) 

This is a terrain-following variable which has the value σ = 0 at the surface and σ = 1 at 

the model top.  It is based on the pressure-based σ coordinate of Phillips (1957), and is 

similar to the z -based terrain-following coordinate of Gal-Chen and Somerville (1975). 

Finally, we introduce the definition of the vertical coordinate in terms of a 

relationship between θ and σ  to be specified in the next subsection: 

   ! " f (# ,$ ). (2.57) 

Equations (2.45), (2.46), and (2.48)-(2.57) represent a system of 12 equations in 

12 unknowns, i.e., the dependent variables:
    v,w,m,! ,", z, p,#,T ,$,% , !& .  The 

independent variables are the three spatial coordinates x, y and η, and time t.  In the 

present dynamical analysis we do not consider the heating (Q) and friction (F and Fz) to 

be unknowns as these are obtained from physics parameterizations. 

2.5 Specification of the vertical coordinate and diagnosis of the 
vertical velocity 

Up to this point, we have not specified the form of the vertical coordinate η, other 

than prescribing the upper and lower boundaries as coordinate surfaces.  In this section 
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we describe how it is defined in the model and explain the method for diagnosing the 

vertical velocity 
 
!! . 

2.5.1 The vertical coordinate 

The starting point for designing our vertical coordinate is the work of Konor and 

Arakawa (1997), hereafter KA97.  As with various hybrid vertical coordinate models, 

they take advantage of the quasi-Lagrangian nature of the θ -coordinate as much as 

possible in the free atmosphere.  Near the surface, the coordinate is terrain-following to 

avoid coordinate intersections with the lower boundary.  Also, since θ may have a 

vertically constant value due to a mixed layer, the σ coordinate provides vertical 

resolution for resolving boundary layer processes.  Like KA97, the basis for our vertical 

coordinate is a prescribed function (equation (2.57)) of θ and the terrain-following 

height-based coordinate σ defined in equation (2.56). 

In the free atmosphere, on the fine scales that we wish to resolve with our 

nonhydrostatic model, localized turbulence can develop in which the vertical profile of θ 

is highly nonmonotonic.  Although the vertical coordinate of KA97 can remain 

monotonic for such cases, it does so at a significant expense to the quasi-Lagrangian 

quality of the coordinate throughout the domain.  Therefore, we have generalized their 

method to accommodate localized static instabilities, i.e., where ∂θ ⁄∂z < 0, while 

elsewhere retaining the coordinate as pure θ.  Our method includes techniques similar to 

the arbitrary Lagrangian-Eulerian (ALE) scheme of Hirt et al. (1974), and is influenced 

by the adaptive vertical coordinate approach of Zangl (2007). 
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Before fully describing the method, we briefly review the vertical coordinate 

developed by KA97.  (Note that we denote the coordinate by η in place of their 

designation of ζ ).  KA97 defines the vertical coordinate as 

   ! " F(# ,$ ) " f ($ ) + g($ )# , (2.58) 

where the functions f (σ) and g(σ) are chosen such that 
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They also must facilitate the condition that the coordinate increase monotonically with 

height, that is 
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!#
> 0 . (2.60) 

The monotonicity requirement (2.60) can be achieved if f (σ) and g(σ) satisfy the relation 
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where g(σ) is chosen as a monotonically increasing function of σ, and θmin and (∂θ/∂σ)min 

are suitably chosen constants representing the lower bounds of the potential temperature 

and static stability, respectively.  Equation (2.61) is solved for the function f (σ).  The 

form of g(σ) that we use in the model is 

   g(! ) = 1" (1" ! )r , (2.62) 

where r is a constant greater than unity.  This choice satisfies (2.59), and the thickness of 

the σ -like domain near the surface can be controlled by the value of r – the larger its 

value, the nearer the surface the coordinate becomes fully isentropic.  In KA97, the 
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function g(σ ) is expressed in terms of an exponential function.  The power function we 

use in (2.62) achieves basically the same result. 

In KA97 the derivation of the vertical mass flux diagnosis is based on the 

requirement that the value of F given by (2.58) remain constant on level surfaces, that is 

 
  

!
!t

"
#$

%
&'(

F() ,* ) = 0 . (2.63) 

  This maintains the monotonicity of the vertical coordinate η in time. 

In our generalized method, we allow F(θ,σ) to deviate from η, as needed, to allow 

the vertical profile of η to remain monotonic for non-monotonic F.  We do so by 

employing an adaptive vertical grid technique similar to He (2002) and Zangl (2007), 

which allows the coordinate to be fully isentropic except where isentropes tend to 

overturn or become irregularly distributed horizontally.  The vertical coordinate η is 

therefore a “target value” for the function F(θ,σ), instead of its specification.  The 

starting point for diagnosing the vertical mass flux, corresponding to equation (2.63), is 

 
   

!
!t

"
#$

%
&'(

F() ,* ) =
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,
+ !(

S

!F

!(
, (2.64) 

where τ  is a relaxation time constant, and η is the vertical coordinate, which behaves as 

the target value for F(θ,σ ).  The first term on the right-hand side serves to relax the value 

of F toward the target value.  The second term on the right-hand side acts to force F away 

from η in order to maintain coordinate monotonicity.  The specification of 
  
!!

S
, which is 

the “smoothing” portion of the total vertical velocity 
 
!! , will be described below.  When 
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the target has been met, and 
   
!!

S
= 0 , then the right-hand side of (2.64) is zero and we 

have equation (2.63).  The system is then equivalent to KA97. 

We now discuss the mechanisms by which F(θ,σ) is forced away from η.  

Basically the coordinate system and vertical mass flux diagnosis follows KA97 until 

either the geopotential height on coordinate surfaces becomes horizontally irregular, i.e., 

when 
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4
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4
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, (2.65) 

or when the “relative vertical curvature” of the z-profile becomes large, i.e., when 
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The ( )max values in the above equations are specified maximum limits.  Equation (2.65) 

describes the “horizontal smoothness” criterion, and is designed to limit the existence of 

sharp horizontal gradients and their associated truncation errors in the discrete model.  

Equation (2.66) is the “vertical smoothness” criterion which eliminates the possibility of 

z and therefore η from becoming non-monotonic (overturning) with height, and in the 

discrete model, it prevents the relative difference in thickness of adjacent layers from 

becoming too large.  It basically serves to keep the distribution of layer thicknesses in a 

model column evenly distributed. 

 The mathematical form of the “vertical smoothness” criterion of equation (2.66) 

is derived from the above statement about the relative difference in thickness of adjacent 

layers in a discrete model.  Figure 2.1 shows a representative continuous relationship 
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between z and η.  Three points are shown along the curve which represent discrete model 

locations.  The relative difference in thickness of adjacent layers is expressed by the 

nondimensional parameter 
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where the δ 2 operator refers to the difference operator δ recursively applied twice.  

Applying a Taylor series expansion to (2.67) we get 
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where the subscript “2” denotes continuous derivatives at the discrete point “2”, 

(δη)A ≡ η2 − η1 and (δη)B ≡ η3 − η2.  For (δη)A = (δη)B  = (δη), and truncating the Taylor 

series, we have 

 
 

Figure 2.1: Three discrete points along a continuous profile of z as a function of η.  
Used to derive the mathematical form of the “vertical smoothness 
parameter”. 
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which is the mathematical representation of the “vertical smoothness” parameter. 

As mentioned in Chapter 1, one of the reasons for spatially smooth the coordinate 

isolines is to limit the magnitude of spatial gradients in the prognostic variable fields.  

This is to avoid large truncation errors associated with the representation of sharp 

gradients in the model’s numerical schemes.  We speculate that this is the root cause of 

problems with the model run with pure θ coordinates in regions where isentropes are 

about to overturn.  Figure 2.2 shows model results of a two-dimensional mountain wave 

experiment to be presented in Chapter 5.  The pseudo-density field is plotted in 

        Without coordinate smoothing         With coordinate smoothing 

 

 
 

Figure 2.2: Pseudo-density (kg m -2 K -1) at time t = 78 minutes in a region of wave-
breaking from the 11 January 1972 Boulder, Colorado windstorm 
simulation to be presented in Chapter 5.  Panel (a) shows results without 
coordinate smoothing, and panel (b) is with coordinate smoothing applied. 
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η-coordinate space, with and without coordinate smoothing applied, in a region where 

gravity waves are about to break in the θ -coordinate domain.  The spatial gradients in the 

field are reduced as a result of coordinate smoothing.  Therefore, we expect that the 

numerical accuracy of processes such as mass advection to be improved. 

We point out here that the smoothing applied to the geopotential height field does 

not affect the governing equations, and therefore, the representation of physical processes 

in the model.  That is, we are not adding artificial terms to the geopotential equation 

(2.50).  Instead, we adjust the fields through the appropriate values of vertical velocity 

and the associated vertical advection.  The method of calculating the vertical velocity is 

the topic of the following subsection.  Also, we point out that in smoothing the 

geopotential we break the relationship given by (2.58), yet the vertical coordinate could 

still be expressed as some function ( f  ) of θ and σ, as in (2.57), to mathematically close 

the system.  However, it is not necessary to formally calculate this relationship since the 

equations are self-consistent and they share the same vertical velocity field 
 
!! . 

2.5.2 Diagnosis of the vertical velocity 

In this subsection we describe the diagnosis of the vertical velocity that is 

consistent with the above treatment of the vertical coordinate.  As the vertical velocity 

has multiple roles to play, it is best to subdivide it into separate components.  The 

broadest distinction of the roles is between:  1) the “target seeking” component which 

maintains the relationship (2.58) (as in KA97) or relaxes the system back toward this 

relationship, which we designate as 
  
!!

T
, and 2) the “smoothing” component which is 
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responsible for smoothing the geopotential height field, which we designate as 
  
!!

S
.  Note 

that this second component appeared in equation (2.64).  The total vertical velocity is 

expressed as 

 
  
!! = !!

T
+ !!

S
. (2.70) 

2.5.2.1 “Target-seeking” component of the vertical velocity 

First we consider the tendencies of θ and σ due to 
  
!!

T
.  Applying the chain rule of 

differentiation to equation (2.64), letting 
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S
= 0 , we have 
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Combining equations (2.47), (2.49), (2.50), (2.55) and (2.56) in (2.71), and solving for 

the vertical velocity, we get 
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where 
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and 

 
 
H ! z

T
" z

S
, (2.74) 

is the height of the model column.  Note that ∂F/∂η is equal to unity when F 

meets its target value, i.e., for F = η.  However, when the target value is not met, it is 

possible for this term to equal zero in the case of F ≅ θ, and neutrally static environments 
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where ∂θ/∂η ≅ 0.  In this case the vertical velocity becomes infinite.  (A physical 

interpretation for the case of a passing gravity wave, in which isentropes are nearly 

vertical, is that the vertical velocity tries to become infinite in order to vertically advect z 

fast enough to keep the level “stuck” to its target isentrope.)  Therefore, we must modify 

the expression for the vertical velocity given by (2.72) to avoid the existence of such a 

singularity.  We have considerable freedom in such a modification, so we can choose to 

have it effect the vertical velocity to position isolines of constant η in a particular 

manner.  A straightforward choice is to “freeze” the isolines in space, such that ∂φ /∂t = 0, 

as ∂θ /∂η approaches zero and for ∂θ /∂η < 0.  In other words, the coordinate becomes a 

stationary, Eulerian coordinate in regions of negative static stability.  The value of the 

vertical velocity which maintains ∂φ /∂t = 0, which we will use for ∂F/∂η ≤ 0, is given by 
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For ∂F/∂η ≥ β we use equation (2.72), where β has a value, which we choose, between 0 

and 1.  For the transition zone where 0 < ∂F/∂η < β, we use a linear combination of (2.75) 

and (2.72) evaluated with ∂F/∂η = β, i.e., 
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This gives 
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2.5.2.2  “Smoothing” component of the vertical velocity 

The vertical velocity field required to smooth the geopotential height fields, per 

the criteria described in subsection 2.5.1, can be calculated from 
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where the two terms in brackets are the geopotential height tendencies due to horizontal 

and vertical smoothing respectively. 

We quantify the horizontal smoothing tendency in the form of a “del-4” diffusion 

equation 
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where κh is a constant diffusion coefficient.  This equation differs from typical diffusion 

equations in that diffusion acts not to eliminate the fourth-spatial derivative, but instead 

to limit its absolute value at a specified amount.  Unlike He (2002) and Zangl (2007), 

diffusion only occurs where it is a necessary.  In regions where the target vertical 

coordinate is isentropic, this allows the coordinate to be almost exactly isentropic as long 

as isentropes are reasonably smooth in the horizontal.  The choice of ∇4 over ∇2 for the 
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horizontal diffusion follows from traditional numerical smoothing methods where higher 

order diffusion is used to selectively remove noise at the smaller scales. 

The vertical smoothing tendency is described similarly, except second-order 

diffusion is used instead.  In this case, the lower order-diffusion provided better results.  

We express the tendency as 

 

  

!z

!t

"
#$

%
&'

smoothing,v

= max 0,(
v

!2
z

!)2
*
!z

!)

!2
z

!)2

!z

!)

"

#
$
$

%

&
'
'

max

+

,

-
-
-

.

/

0
0
0

1

2
3

4
3

5

6
3

7
3

sgn
!2

z

!)2

"

#$
%

&'
, (2.80) 

where κv is a constant diffusion coefficient.  Vertical diffusion only acts when the 

absolute value of the ratio of the second and first derivatives of z with respect to η 

exceeds the specified limit. 

2.6 Vertical flux of horizontal momentum in a generalized vertical 
coordinate 

The interaction of atmospheric waves with the mean flow has important 

implications in weather and climate.  Waves transport energy and momentum vertically 

throughout the atmospheric column.  For example, the drag imparted by a mountain 

range on the airflow can be transported, via gravity waves, through the tropopause and 

into the stratosphere (and beyond) influencing the strength of the zonal flow (i.e., 

x-component winds) at these heights.  In their influential paper, Eliassen and Palm (1960) 

analyzed linear wave-mean flow interactions and proposed a theory which determines 

conditions in which waves will or will not influence the mean flow. 

In this section we perform a nonhydrostatic analysis of the vertical momentum 

transport in a generalized vertical coordinate.  In the process, we derive a generalized 
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form of the Eliassen-Palm (EP) flux.  The divergence of the EP flux is an important term 

in the tendency equation for the mean zonal flow.  This will illustrate the different 

mechanisms in which momentum is transported vertically in the Eulerian (z-coordinate) 

versus the quasi-Lagrangian (θ -coordinate) frameworks.  In the former, it is transported 

through the vertical eddy mass flux, while in the latter it is through the pressure form 

drag on isentropic (material) surfaces.  Our work follows that of Andrews (1983) who 

derived the EP flux in isentropic coordinates for quasi-static flow. 

In Chapter 5, we will use the expression for the EP flux, derived here, to diagnose 

the vertical momentum flux in two-dimensional (x-z) mountain wave model simulations.  

Such model simulations are useful in developing gravity wave drag parameterizations in 

general circulation models (e.g., Kim 1992, Kim and Arakawa 1995).  Performing these 

experiments using a quasi-Lagrangian vertical coordinate provides a new view of the 

phenomenon which may be useful for GCM’s based on such a coordinate. 

We begin by writing the zonal momentum equation.  Combining (2.14), (2.17), 

(2.23) and (2.55) we have 
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where Fu is the zonal component of the friction force.  Combining equation (2.81) with 

the continuity equation (2.19), the zonal momentum equation in flux form can be written 

as 
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The next step is to take the zonal average of the above equation.  The zonal average of a 

given property a is defined as 
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where L is the length of the horizontal domain.  Applying (2.83) to equation (2.82) we 

have 
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Here we used 
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In a similar manner, the zonally averaged continuity equation (2.19) is 

 
   

!

!t
m +

!

!y
(mv) +

!

!"
(m !") = 0 . (2.86) 

Each fluid property can be divided into a mean and perturbation component.  That 

is 

  a = a + !a , (2.87) 

where the prime notation represents perturbations from the mean.  Under Reynolds 

averaging, the zonal mean of the perturbation quantities are zero, i.e., 

   !a = 0 . (2.88) 

This results in the relation 

 
 
ma = ma + !m !a . (2.89) 

Applying (2.89) to the combination of equations (2.84) and (2.86), and rearranging terms, 

we can write the following expression for the tendency of the zonal momentum: 
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 (2.90) 

It is useful to introduce the “residual” mean velocities, defined as the mass-weighted 

means 

 
  

v
*
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mv

m

 (2.91) 

and 
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"
m !!

m

. (2.92) 

Using these relations, equation (2.90) is then written as 
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, (2.93) 

where F(η) ≡ [0, F(η)
y , F(η)

η
 ] is the EP flux vector in generalized vertical coordinates, which 

has the meridional and vertical components 

 
  
F

(!)

y
= (mv ") "u  (2.94) 

and 

 
   
F

(!)

!
= "p

# "z

#x
$ (m !! ") "u , (2.95) 

respectively.  Equation (2.93) shows that the EP flux is non-divergent for steady-state, 

uniform, frictionless flow. 

The vertical component of the EP flux given by (2.95) is the vertical flux of 

horizontal momentum.  In z coordinates, the first term on the right-hand side is zero, 
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which leaves the eddy flux term   !("w #) #u  as the means of vertical momentum transport.  

In θ coordinates, for adiabatic conditions, 
  
!!" = !!# = 0 , which means the vertical 

momentum transport occurs through the first term on the right-hand side of (2.95), i.e., 

the pressure form drag term. 

2.7 Summary 

The nonhydrostatic, compressible Eulerian equations of fluid motion were 

transformed from z coordinates to a generalized vertical coordinate η.  From these 

governing equations, we demonstrated various conservation properties such as the 

conservation of mass, total energy and the vertically integrated circulation of momentum 

about a closed contour of topography.  In the following chapter these integral constraints 

will guide in the design of the vertical discretization scheme. 

The vertical coordinate is terrain-following near the surface and transitions 

smoothly to θ  with height.  In the diagnosis of the generalized vertical velocity 
 
!! , a 

special contribution is calculated and included in the vertical advection terms; its purpose 

is to maintain smoothness of the coordinate surfaces.  In this “smoothing” process, the 

values of geopotential and potential temperature on the coordinate surfaces deviate from 

their defined “target” values.  However, these values are returned back to their target 

values through a Newtonian relaxation term. 

The vertical flux of horizontal momentum and its effect on the mean flow was 

analyzed with the generalized vertical coordinate.  In the θ  coordinate, a quasi-

Lagrangian interpretation is provided in which the vertical momentum flux is a result of 
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the horizontal component of pressure forces on material coordinate surfaces.  This feature 

will be shown in the results of a mountain wave simulation in Chapter 5. 
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Chapter 2  CONTINUOUS EQUATIONS 

2.1 Introduction 

This chapter describes the compressible Eulerian equations of fluid motion in a 

generalized vertical coordinate on which the model is based.  We develop the 

nonhydrostatic equations starting in z coordinates, and transform them to the generalized 

vertical coordinate following the work of Kasahara (1974) for the quasi-static equations.  

The integral constraints that will form the basis of the vertical discretization scheme are 

then derived.  The vertical coordinate is presented, along with the method for diagnosing 

the generalized vertical velocity.  Finally, we will analyze the vertical flux of horizontal 

momentum in the generalized vertical coordinate, and derive an expression for the 

Eliassen-Palm flux in this coordinate. 

2.2 Governing equations 

We start with the governing equations in z-coordinates.  The laws of momentum, 

energy and mass conservation make up the prognostic equations.  The horizontal 

momentum equation is 

 
   

Dv

Dt
+ f k ! v = "

1

#
$

z
p + F , (2.1) 
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where ∇ is the horizontal gradient operator, F is the horizontal friction force, and D/Dt is 

the material time derivative given by 

 
  

D

Dt
=

!
!t

+ v "#
$
%&

'
()

z

+ w
!
!z

. (2.2) 

The subscript z on the differential operators denotes derivatives at constant geopotential 

height.  The vertical momentum equation is 

 
  

Dw

Dt
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1

"
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#z
! g + F

z
, (2.3) 

where Fz is the vertical component of the friction force. 

Mass conservation is given by 
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The first law of thermodynamics for quasiequilibrium, frictionless processes can be 

expressed as 

 
 

D!

Dt
=

Q

"
, (2.5) 

where Q is the rate of diabatic heating and Π  is the Exner function defined below. 

The diagnostic equations that close the system are the ideal gas law, 

  p = !RT , (2.6) 

the definition of the Exner function, 
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#
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, (2.7) 

and the definition of potential temperature, 
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To transform these equations to a generalized vertical coordinate η we use the 

following chain-rule identities: 
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and 
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. (2.13) 

Applying equations (2.9) - (2.13) in equations (2.1) - (2.4) gives the governing equations 

in the generalized vertical coordinate η.  First, the horizontal momentum equation 

becomes 

 
   

Dv

Dt
+ f k ! v = "

1

#
$

%
p +

1

m
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%
z + F . (2.14) 

Note that the horizontal pressure gradient force has become a two-term expression, and a 

new quantity is introduced – the pseudo-density (m) given by 

 
 

m ! "
#z

#$
. (2.15) 
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This is the analog of the conventional density, referred to the generalized vertical 

coordinate, i.e., the amount of mass per unit volume of the generalized space.  Using the 

expression 
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=
#!
#t

$
%&
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()

z

+ v *+
z
! + w
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, (2.16) 

where 
 
!!  is the generalized vertical velocity, the material time derivative becomes  
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The vertical momentum equation is 
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Finally, the flux form of the mass continuity equation is written as 
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where we used 
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At this point, it is illustrative to consider these equations in the framework of 

some commonly used vertical coordinate systems, and to briefly discuss the formulation 

of the generalized vertical velocity in each.  For the z-coordinate (η = z), the original 

governing equations are recovered, as equation (2.15) becomes m = ρ, and the vertical 

velocity, as given by (2.16), becomes
  
!! = w .  In this system, the vertical velocity is 

simply the prognostic quantity governed by (2.18).  This is in contrast to the diagnosis of 
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w in the z-coordinate, quasi-static system of equations, which is quite complicated 

(Richardson 1922). 

In pressure coordinates (η = p), the vertical velocity 
  
!! = !p  is not straightforward 

to calculate in the nonhydrostatic system.  In the quasi-static system, it can readily be 

diagnosed from the vertically integrated horizontal divergence (Sutcliffe 1947; 

Eliassen 1949).  The reason for the complication in the nonhydrostatic system is that 

pressure is no longer tied to the mass through the hydrostatic equation.  Also, the 

continuity equation is prognostic instead of diagnostic as in the quasi-static system. 

In isentropic coordinates (η = θ ), the vertical velocity is 
 
!! = !" , which is 

diagnosed from the diabatic heating rate through equation (2.5).  In θ -coordinates the 

vertical velocity diagnosis is the same in both the nonhydrostatic and quasi-static 

systems. 

In summary, the vertical velocity calculation in the nonhydrostatic system is 

simple with z-coordinates, while in the quasi-static system it is simpler to use the 

p-coordinate.  For the θ -coordinate, the vertical velocity diagnosis is the same in both the 

nonhydrostatic and quasi-static systems. 

2.3 Integral constraints 

The equations numerical models solve are approximations of the continuous 

governing equations.  Usually there is sufficient freedom in the finite difference 

approximations of the governing equations to not only satisfy the convergence criterion, 

i.e., that as the grid size becomes infinitely small the equations converge to the 

continuous form, but also to satisfy certain integral properties of the continuous 
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equations, such as conservation of the global sum of mass, potential temperature, 

vorticity and total energy.  An example of this “mimetic” method can be found in 

Arakawa and Lamb (1977).  This section describes the integral constraints that our 

numerical scheme will be designed to mimic. 

The upper and lower boundaries are assumed to be impermeable; therefore, the 

boundary conditions are that the vertical mass flux is zero at these boundaries.  The 

generalized vertical coordinate, as well as the generalized vertical velocity, are left 

undefined in the derivation of the integral properties.  The mathematical expression for 

the impermeable upper and lower boundary conditions will be presented in the following 

analysis of mass conservation.  (Note that in the following derivations, the time and 

horizontal derivatives will be on constant η-coordinate surfaces, so the subscript η will 

be omitted from the differential operators unless otherwise necessary.) 

2.3.1 Conservation of mass (“Constraint 0”) 

The global conservation of mass is easy to demonstrate when the flux form of the 

continuity equation given by (2.19) is used.  The goal is to show that
   

d

dt
mdV

V

! = 0 , 

where V  is the total volume of the domain, and dV = dA dη is a differential volume 

element in η-space.  Using the Leibniz integral rule we can write 
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where the subscripts S and T represent the bottom and top boundaries respectively.  

Applying equation (2.19), this becomes 
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The first term on the right-hand side of (2.22) vanishes when integrated over any closed 

surface or any horizontal domain in which there is no horizontal mass flux at the 

boundaries.  The integrands of the second and third terms on the right-hand side are the 

vertical mass fluxes at the top and bottom boundaries respectively.  We consider that 

there is no mass flux across the top and bottom boundaries, so these terms are zero, and 

therefore we have proven that mass is conserved. 

2.3.2 Vertically integrated momentum circulation constraint on the HPGF 
(“Constraint I”) 

The horizontal pressure gradient force term of the horizontal momentum equation 

is the largest contributor to the momentum tendency on many scales of atmospheric 

motion.  Therefore its accurate representation in numerical models is important.  As will 

be shown in Section 2.3.3, the HPGF plays an important role in total energy conservation 

through the conversion term between thermodynamic and kinetic energy.  In the design 

of the discrete system of equations, while we have limited control over the accuracy of 

the HPGF at a given location, we can express the HPGF in a form which mimics the 

continuous form in its satisfaction of integral constraints.  This is especially important for 

two-term expressions of the HPGF in the generalized vertical coordinate, as in equation 

(2.14), in which the error between the opposition of the two large terms with opposite 
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sign can be large.  We now discuss the effect of surface topography, through the HPGF, 

on the vertically integrated circulation of momentum about a closed contour. 

Following Arakawa and Lamb (1977), we wish to derive a useful expression for 

the HPGF that will facilitate the calculation of the vertically integrated momentum 

tendency.  The horizontal pressure gradient force is represented by the first two terms on 

the right-hand side of the horizontal momentum equation (2.14).  Using (2.15) we can 

express it in the form 

 

   

HPGF =
1

mg
!
"#
"$

%p +
"p

"$
%#

&
'(

)
*+

=
1

mg
!% p

"#
"$

&
'(

)
*+
+

"
"$

p%#( )
,

-
.

/

0
1 ,

 (2.23) 

where φ ≡ g z is the geopotential.  Now multiply (2.23) by m and integrate across the 

vertical domain to get 
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where we neglected the upper boundary and used the identity 
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When the line integral of the tangential component of (2.24) is taken along any closed 

curve, the first term on the right-hand side has a zero contribution because it is a gradient 

vector.  The only contribution to the vertically integrated circulation of momentum comes 

from the last term, which is called the “mountain torque” term.  When the closed curve is 

a contour of surface topography, it is zero.  Also, for ps = ps(zs), the contribution to the 

line integral is zero. 
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2.3.3 Conservation of total energy (“Constraint II”) 

In the absence of diabatic heating and friction the total energy of a fluid system is 

constant.  Total energy is defined as the sum of mechanical and internal energy.  

Mechanical energy is the sum of the kinetic energy associated with the macroscopic 

motion of the fluid (i.e., the wind) and the gravitational potential energy.  Internal energy 

is the energy associated with the molecular motion of the fluid.  Various conversions can 

take place between the forms of energy.  The rate at which these conversions take place 

appear in the derivation of the total energy equation as “conversion” terms which cancel 

out to keep the total energy constant.  A method to conserve total energy in a numerical 

model is to ensure that the discrete analogs of these conversion terms cancel.  In the 

formulation of the discrete equations, which will be shown in the following chapter, the 

energy conversion terms will be analyzed.  For now we derive the continuous form of the 

energy equations. 

2.3.3.1 Kinetic energy equation 

The kinetic energy associated with the three-dimensional bulk motion of the air is 

 
   

K =
1

2
v ! v + w

2( ) . (2.26) 

In the nonhydrostatic system, the vertical velocity w contributes to the kinetic energy, so 

we must include the work done by the vertical pressure gradient force (VPGF) in our 

analysis.  From the vertical momentum equation (2.18) we can write 

 
  

VPGF = !
1

m

"p

"#
. (2.27) 
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Note that in the hydrostatic approximation VPGF = + g. 

In the development of the vertical discretization, we will consider alternate forms 

of the HPGF and VPGF expressed in terms of the Exner function instead of pressure.  

Using the definition of the Exner function given by equation (2.7), we can write 

 
 

d! =
" !

p
dp . (2.28) 

Using (2.6) and (2.8), the vertical pressure gradient force then becomes 
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m
#
$%

$&
. (2.29) 

Similarly, the horizontal pressure gradient force may be written 
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m
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&$
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#( . (2.30) 

The flux form of the kinetic energy equation is derived from the momentum 

equations by taking the dot product of mv and (2.14), and adding mw times (2.18) which, 

using the notation above, gives 

 
    

!

!t
(mK ) +" # (mvK ) +

!

!$
(m !$K ) = mv # (HPGF)+mw(VPGF) % mwg , (2.31) 

where we have neglected friction.  The first two terms on the right-hand side represent 

the kinetic energy generated by the pressure gradient forces.  These terms deserve special 

focus as they have an important role in the consistency of the energy conversion terms in 

the discretization scheme.  The last term on the right-hand side is the rate of energy 

conversion between kinetic and geopotential energy. 

Now we analyze the work done by the pressure-gradient force.  From equations 

(2.15), (2.20) and (2.23) we get 
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where 
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From equation (2.27), the work done by the vertical pressure gradient force is simply 
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Adding equations (2.32) and (2.34) we get the work done by the pressure gradient force 

as 
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Plugging (2.35) into (2.31), the kinetic energy equation becomes 
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As will be seen shortly, the first term on the right-hand side is the conversion term 

between thermodynamic and kinetic energy, and the last term on the right-hand side is 

the conversion term between kinetic and geopotential energy. 

2.3.3.2 Internal energy equation 

The processes that directly affect the internal energy of a fluid parcel are heating 

and work done by the parcel through expansion.  The first law of thermodynamics states 

that the rate of change of the internal energy is equal to the difference between the heat 
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added to the parcel and the work done by the parcel.  For quasiequilibrium, frictionless 

processes this is expressed as 

 
 

De

Dt
= Q ! p

D"

Dt
. (2.37) 

where α is the specific volume.  Here e is the internal energy which can be expressed as 

cv  T, where cv  is the specific heat at constant volume.  Equation (2.37) can be converted 

to a flux form by multiplying by the pseudo-density m, applying equations (2.15), (2.19), 

and the product rule of differentiation to get 
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 (2.38) 

Note that the second term on the right-hand side is the conversion term between 

thermodynamic and kinetic energy which now appears with the opposite sign as in 

equation (2.36).  Equation (2.38) can be rewritten in terms of enthalpy, defined as 

h ≡ e + pα, for which dh = cp dT.  It becomes 
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Finally, it can be shown that the internal energy equation can be written as the 

potential temperature prediction equation (2.5), which is the form of the thermodynamic 

energy equation used in the model.  This is done by using the relation de =  cv dT in 

equation (2.37), and using the ideal gas law pα = RT and the definition of potential 

temperature 
  
! = T p

0
p( )

"

, which gives equation (2.5). 
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2.3.3.3 Geopotential energy equation 

The rate of  change of a fluid parcel’s geopotential is calculated by multiplying 

mg by equation (2.20) and using the continuity equation (2.19) to get 
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(m !%") = mwg . (2.40) 

Now note the energy conversion term between kinetic energy and geopotential energy 

mwg which appears with the opposite sign as in equation (2.36). 

2.3.3.4 Total energy equation 

The total energy equation is obtained by adding equations (2.36), (2.38), and 

(2.40), and canceling terms to get 
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where ε ≡ cvT + K + φ is the total energy.  The last two terms on the right-hand side are flux 

divergence terms that represent the spatial redistribution of energy.  When integrated over 

the domain, they contribute nothing to the global total energy budget except for 

contributions from the boundaries.  The time rate of change of the global mass-weighted 

integral of total energy for an adiabatic atmosphere is obtained by integrating (2.41) over 

the domain and requiring that no mass cross the upper and lower boundaries.  A 

necessary identity is 
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The result is 
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For a closed surface, the first two terms are identically zero.  The last two terms are the 

work done by the pressure force at the upper and lower boundaries.  These terms would 

have a contribution over the ocean where waves keep the lower boundary in motion, but 

we will assume that the boundaries are fixed, so these terms are zero.  Therefore, we have 

proven that for an adiabatic, frictionless atmosphere, the global total energy is conserved. 

2.4 A summary of the continuous system of equations 

Here we summarize the governing equations in the generalized vertical coordinate 

as well as the boundary conditions.  We discuss system closure and begin to introduce the 

specification of the generalized vertical coordinate η and diagnosis of the generalized 

vertical velocity 
 
!! .  From this point forward we will assume that the top and bottom 

boundaries are generalized vertical coordinate surfaces, i.e., ηT = constant and 

ηS = constant.  Therefore, from equation (2.22), the impermeable upper and lower 

boundary conditions are expressed as 
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Continuity equation: 
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Horizontal momentum equation: 
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where 
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Vertical momentum equation: 
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Thermodynamic energy equation: 
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Geopotential equation: 
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Ideal gas law: 

  p = !RT . (2.51) 

Definition of the Exner function: 
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Definition of potential temperature: 
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Definition of pseudo-density: 
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Relation between geopotential and height: 

  ! = gz . (2.55) 

We introduce a normalized height variable: 
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z # z

S

z
T
# z

S

. (2.56) 

This is a terrain-following variable which has the value σ = 0 at the surface and σ = 1 at 

the model top.  It is based on the pressure-based σ coordinate of Phillips (1957), and is 

similar to the z -based terrain-following coordinate of Gal-Chen and Somerville (1975). 

Finally, we introduce the definition of the vertical coordinate in terms of a 

relationship between θ and σ  to be specified in the next subsection: 

   ! " f (# ,$ ). (2.57) 

Equations (2.45), (2.46), and (2.48)-(2.57) represent a system of 12 equations in 

12 unknowns, i.e., the dependent variables:
    v,w,m,! ,", z, p,#,T ,$,% , !& .  The 

independent variables are the three spatial coordinates x, y and η, and time t.  In the 

present dynamical analysis we do not consider the heating (Q) and friction (F and Fz) to 

be unknowns as these are obtained from physics parameterizations. 

2.5 Specification of the vertical coordinate and diagnosis of the 
vertical velocity 

Up to this point, we have not specified the form of the vertical coordinate η, other 

than prescribing the upper and lower boundaries as coordinate surfaces.  In this section 
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we describe how it is defined in the model and explain the method for diagnosing the 

vertical velocity 
 
!! . 

2.5.1 The vertical coordinate 

The starting point for designing our vertical coordinate is the work of Konor and 

Arakawa (1997), hereafter KA97.  As with various hybrid vertical coordinate models, 

they take advantage of the quasi-Lagrangian nature of the θ -coordinate as much as 

possible in the free atmosphere.  Near the surface, the coordinate is terrain-following to 

avoid coordinate intersections with the lower boundary.  Also, since θ may have a 

vertically constant value due to a mixed layer, the σ coordinate provides vertical 

resolution for resolving boundary layer processes.  Like KA97, the basis for our vertical 

coordinate is a prescribed function (equation (2.57)) of θ and the terrain-following 

height-based coordinate σ defined in equation (2.56). 

In the free atmosphere, on the fine scales that we wish to resolve with our 

nonhydrostatic model, localized turbulence can develop in which the vertical profile of θ 

is highly nonmonotonic.  Although the vertical coordinate of KA97 can remain 

monotonic for such cases, it does so at a significant expense to the quasi-Lagrangian 

quality of the coordinate throughout the domain.  Therefore, we have generalized their 

method to accommodate localized static instabilities, i.e., where ∂θ ⁄∂z < 0, while 

elsewhere retaining the coordinate as pure θ.  Our method includes techniques similar to 

the arbitrary Lagrangian-Eulerian (ALE) scheme of Hirt et al. (1974), and is influenced 

by the adaptive vertical coordinate approach of Zangl (2007). 
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Before fully describing the method, we briefly review the vertical coordinate 

developed by KA97.  (Note that we denote the coordinate by η in place of their 

designation of ζ ).  KA97 defines the vertical coordinate as 

   ! " F(# ,$ ) " f ($ ) + g($ )# , (2.58) 

where the functions f (σ) and g(σ) are chosen such that 
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. (2.59) 

They also must facilitate the condition that the coordinate increase monotonically with 

height, that is 
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> 0 . (2.60) 

The monotonicity requirement (2.60) can be achieved if f (σ) and g(σ) satisfy the relation 
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where g(σ) is chosen as a monotonically increasing function of σ, and θmin and (∂θ/∂σ)min 

are suitably chosen constants representing the lower bounds of the potential temperature 

and static stability, respectively.  Equation (2.61) is solved for the function f (σ).  The 

form of g(σ) that we use in the model is 

   g(! ) = 1" (1" ! )r , (2.62) 

where r is a constant greater than unity.  This choice satisfies (2.59), and the thickness of 

the σ -like domain near the surface can be controlled by the value of r – the larger its 

value, the nearer the surface the coordinate becomes fully isentropic.  In KA97, the 
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function g(σ ) is expressed in terms of an exponential function.  The power function we 

use in (2.62) achieves basically the same result. 

In KA97 the derivation of the vertical mass flux diagnosis is based on the 

requirement that the value of F given by (2.58) remain constant on level surfaces, that is 

 
  

!
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%
&'(

F() ,* ) = 0 . (2.63) 

  This maintains the monotonicity of the vertical coordinate η in time. 

In our generalized method, we allow F(θ,σ) to deviate from η, as needed, to allow 

the vertical profile of η to remain monotonic for non-monotonic F.  We do so by 

employing an adaptive vertical grid technique similar to He (2002) and Zangl (2007), 

which allows the coordinate to be fully isentropic except where isentropes tend to 

overturn or become irregularly distributed horizontally.  The vertical coordinate η is 

therefore a “target value” for the function F(θ,σ), instead of its specification.  The 

starting point for diagnosing the vertical mass flux, corresponding to equation (2.63), is 
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S
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, (2.64) 

where τ  is a relaxation time constant, and η is the vertical coordinate, which behaves as 

the target value for F(θ,σ ).  The first term on the right-hand side serves to relax the value 

of F toward the target value.  The second term on the right-hand side acts to force F away 

from η in order to maintain coordinate monotonicity.  The specification of 
  
!!

S
, which is 

the “smoothing” portion of the total vertical velocity 
 
!! , will be described below.  When 
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the target has been met, and 
   
!!

S
= 0 , then the right-hand side of (2.64) is zero and we 

have equation (2.63).  The system is then equivalent to KA97. 

We now discuss the mechanisms by which F(θ,σ) is forced away from η.  

Basically the coordinate system and vertical mass flux diagnosis follows KA97 until 

either the geopotential height on coordinate surfaces becomes horizontally irregular, i.e., 

when 
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4
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, (2.65) 

or when the “relative vertical curvature” of the z-profile becomes large, i.e., when 
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The ( )max values in the above equations are specified maximum limits.  Equation (2.65) 

describes the “horizontal smoothness” criterion, and is designed to limit the existence of 

sharp horizontal gradients and their associated truncation errors in the discrete model.  

Equation (2.66) is the “vertical smoothness” criterion which eliminates the possibility of 

z and therefore η from becoming non-monotonic (overturning) with height, and in the 

discrete model, it prevents the relative difference in thickness of adjacent layers from 

becoming too large.  It basically serves to keep the distribution of layer thicknesses in a 

model column evenly distributed. 

 The mathematical form of the “vertical smoothness” criterion of equation (2.66) 

is derived from the above statement about the relative difference in thickness of adjacent 

layers in a discrete model.  Figure 2.1 shows a representative continuous relationship 
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between z and η.  Three points are shown along the curve which represent discrete model 

locations.  The relative difference in thickness of adjacent layers is expressed by the 

nondimensional parameter 
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where the δ 2 operator refers to the difference operator δ recursively applied twice.  

Applying a Taylor series expansion to (2.67) we get 
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where the subscript “2” denotes continuous derivatives at the discrete point “2”, 

(δη)A ≡ η2 − η1 and (δη)B ≡ η3 − η2.  For (δη)A = (δη)B  = (δη), and truncating the Taylor 

series, we have 

 
 

Figure 2.1: Three discrete points along a continuous profile of z as a function of η.  
Used to derive the mathematical form of the “vertical smoothness 
parameter”. 
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which is the mathematical representation of the “vertical smoothness” parameter. 

As mentioned in Chapter 1, one of the reasons for spatially smooth the coordinate 

isolines is to limit the magnitude of spatial gradients in the prognostic variable fields.  

This is to avoid large truncation errors associated with the representation of sharp 

gradients in the model’s numerical schemes.  We speculate that this is the root cause of 

problems with the model run with pure θ coordinates in regions where isentropes are 

about to overturn.  Figure 2.2 shows model results of a two-dimensional mountain wave 

experiment to be presented in Chapter 5.  The pseudo-density field is plotted in 

        Without coordinate smoothing         With coordinate smoothing 

 

 
 

Figure 2.2: Pseudo-density (kg m -2 K -1) at time t = 78 minutes in a region of wave-
breaking from the 11 January 1972 Boulder, Colorado windstorm 
simulation to be presented in Chapter 5.  Panel (a) shows results without 
coordinate smoothing, and panel (b) is with coordinate smoothing applied. 
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η-coordinate space, with and without coordinate smoothing applied, in a region where 

gravity waves are about to break in the θ -coordinate domain.  The spatial gradients in the 

field are reduced as a result of coordinate smoothing.  Therefore, we expect that the 

numerical accuracy of processes such as mass advection to be improved. 

We point out here that the smoothing applied to the geopotential height field does 

not affect the governing equations, and therefore, the representation of physical processes 

in the model.  That is, we are not adding artificial terms to the geopotential equation 

(2.50).  Instead, we adjust the fields through the appropriate values of vertical velocity 

and the associated vertical advection.  The method of calculating the vertical velocity is 

the topic of the following subsection.  Also, we point out that in smoothing the 

geopotential we break the relationship given by (2.58), yet the vertical coordinate could 

still be expressed as some function ( f  ) of θ and σ, as in (2.57), to mathematically close 

the system.  However, it is not necessary to formally calculate this relationship since the 

equations are self-consistent and they share the same vertical velocity field 
 
!! . 

2.5.2 Diagnosis of the vertical velocity 

In this subsection we describe the diagnosis of the vertical velocity that is 

consistent with the above treatment of the vertical coordinate.  As the vertical velocity 

has multiple roles to play, it is best to subdivide it into separate components.  The 

broadest distinction of the roles is between:  1) the “target seeking” component which 

maintains the relationship (2.58) (as in KA97) or relaxes the system back toward this 

relationship, which we designate as 
  
!!

T
, and 2) the “smoothing” component which is 
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responsible for smoothing the geopotential height field, which we designate as 
  
!!

S
.  Note 

that this second component appeared in equation (2.64).  The total vertical velocity is 

expressed as 

 
  
!! = !!

T
+ !!

S
. (2.70) 

2.5.2.1 “Target-seeking” component of the vertical velocity 

First we consider the tendencies of θ and σ due to 
  
!!

T
.  Applying the chain rule of 

differentiation to equation (2.64), letting 
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S
= 0 , we have 
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Combining equations (2.47), (2.49), (2.50), (2.55) and (2.56) in (2.71), and solving for 

the vertical velocity, we get 
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where 
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and 

 
 
H ! z

T
" z

S
, (2.74) 

is the height of the model column.  Note that ∂F/∂η is equal to unity when F 

meets its target value, i.e., for F = η.  However, when the target value is not met, it is 

possible for this term to equal zero in the case of F ≅ θ, and neutrally static environments 
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where ∂θ/∂η ≅ 0.  In this case the vertical velocity becomes infinite.  (A physical 

interpretation for the case of a passing gravity wave, in which isentropes are nearly 

vertical, is that the vertical velocity tries to become infinite in order to vertically advect z 

fast enough to keep the level “stuck” to its target isentrope.)  Therefore, we must modify 

the expression for the vertical velocity given by (2.72) to avoid the existence of such a 

singularity.  We have considerable freedom in such a modification, so we can choose to 

have it effect the vertical velocity to position isolines of constant η in a particular 

manner.  A straightforward choice is to “freeze” the isolines in space, such that ∂φ /∂t = 0, 

as ∂θ /∂η approaches zero and for ∂θ /∂η < 0.  In other words, the coordinate becomes a 

stationary, Eulerian coordinate in regions of negative static stability.  The value of the 

vertical velocity which maintains ∂φ /∂t = 0, which we will use for ∂F/∂η ≤ 0, is given by 
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For ∂F/∂η ≥ β we use equation (2.72), where β has a value, which we choose, between 0 

and 1.  For the transition zone where 0 < ∂F/∂η < β, we use a linear combination of (2.75) 

and (2.72) evaluated with ∂F/∂η = β, i.e., 
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This gives 
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2.5.2.2  “Smoothing” component of the vertical velocity 

The vertical velocity field required to smooth the geopotential height fields, per 

the criteria described in subsection 2.5.1, can be calculated from 
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where the two terms in brackets are the geopotential height tendencies due to horizontal 

and vertical smoothing respectively. 

We quantify the horizontal smoothing tendency in the form of a “del-4” diffusion 

equation 
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where κh is a constant diffusion coefficient.  This equation differs from typical diffusion 

equations in that diffusion acts not to eliminate the fourth-spatial derivative, but instead 

to limit its absolute value at a specified amount.  Unlike He (2002) and Zangl (2007), 

diffusion only occurs where it is a necessary.  In regions where the target vertical 

coordinate is isentropic, this allows the coordinate to be almost exactly isentropic as long 

as isentropes are reasonably smooth in the horizontal.  The choice of ∇4 over ∇2 for the 



 46 

horizontal diffusion follows from traditional numerical smoothing methods where higher 

order diffusion is used to selectively remove noise at the smaller scales. 

The vertical smoothing tendency is described similarly, except second-order 

diffusion is used instead.  In this case, the lower order-diffusion provided better results.  

We express the tendency as 
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where κv is a constant diffusion coefficient.  Vertical diffusion only acts when the 

absolute value of the ratio of the second and first derivatives of z with respect to η 

exceeds the specified limit. 

2.6 Vertical flux of horizontal momentum in a generalized vertical 
coordinate 

The interaction of atmospheric waves with the mean flow has important 

implications in weather and climate.  Waves transport energy and momentum vertically 

throughout the atmospheric column.  For example, the drag imparted by a mountain 

range on the airflow can be transported, via gravity waves, through the tropopause and 

into the stratosphere (and beyond) influencing the strength of the zonal flow (i.e., 

x-component winds) at these heights.  In their influential paper, Eliassen and Palm (1960) 

analyzed linear wave-mean flow interactions and proposed a theory which determines 

conditions in which waves will or will not influence the mean flow. 

In this section we perform a nonhydrostatic analysis of the vertical momentum 

transport in a generalized vertical coordinate.  In the process, we derive a generalized 
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form of the Eliassen-Palm (EP) flux.  The divergence of the EP flux is an important term 

in the tendency equation for the mean zonal flow.  This will illustrate the different 

mechanisms in which momentum is transported vertically in the Eulerian (z-coordinate) 

versus the quasi-Lagrangian (θ -coordinate) frameworks.  In the former, it is transported 

through the vertical eddy mass flux, while in the latter it is through the pressure form 

drag on isentropic (material) surfaces.  Our work follows that of Andrews (1983) who 

derived the EP flux in isentropic coordinates for quasi-static flow. 

In Chapter 5, we will use the expression for the EP flux, derived here, to diagnose 

the vertical momentum flux in two-dimensional (x-z) mountain wave model simulations.  

Such model simulations are useful in developing gravity wave drag parameterizations in 

general circulation models (e.g., Kim 1992, Kim and Arakawa 1995).  Performing these 

experiments using a quasi-Lagrangian vertical coordinate provides a new view of the 

phenomenon which may be useful for GCM’s based on such a coordinate. 

We begin by writing the zonal momentum equation.  Combining (2.14), (2.17), 

(2.23) and (2.55) we have 
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where Fu is the zonal component of the friction force.  Combining equation (2.81) with 

the continuity equation (2.19), the zonal momentum equation in flux form can be written 

as 
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The next step is to take the zonal average of the above equation.  The zonal average of a 

given property a is defined as 
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#  (2.83) 

where L is the length of the horizontal domain.  Applying (2.83) to equation (2.82) we 

have 
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Here we used 
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In a similar manner, the zonally averaged continuity equation (2.19) is 
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Each fluid property can be divided into a mean and perturbation component.  That 

is 

  a = a + !a , (2.87) 

where the prime notation represents perturbations from the mean.  Under Reynolds 

averaging, the zonal mean of the perturbation quantities are zero, i.e., 

   !a = 0 . (2.88) 

This results in the relation 

 
 
ma = ma + !m !a . (2.89) 

Applying (2.89) to the combination of equations (2.84) and (2.86), and rearranging terms, 

we can write the following expression for the tendency of the zonal momentum: 
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It is useful to introduce the “residual” mean velocities, defined as the mass-weighted 

means 
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and 
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Using these relations, equation (2.90) is then written as 
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where F(η) ≡ [0, F(η)
y , F(η)

η
 ] is the EP flux vector in generalized vertical coordinates, which 

has the meridional and vertical components 
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respectively.  Equation (2.93) shows that the EP flux is non-divergent for steady-state, 

uniform, frictionless flow. 

The vertical component of the EP flux given by (2.95) is the vertical flux of 

horizontal momentum.  In z coordinates, the first term on the right-hand side is zero, 
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which leaves the eddy flux term   !("w #) #u  as the means of vertical momentum transport.  

In θ coordinates, for adiabatic conditions, 
  
!!" = !!# = 0 , which means the vertical 

momentum transport occurs through the first term on the right-hand side of (2.95), i.e., 

the pressure form drag term. 

2.7 Summary 

The nonhydrostatic, compressible Eulerian equations of fluid motion were 

transformed from z coordinates to a generalized vertical coordinate η.  From these 

governing equations, we demonstrated various conservation properties such as the 

conservation of mass, total energy and the vertically integrated circulation of momentum 

about a closed contour of topography.  In the following chapter these integral constraints 

will guide in the design of the vertical discretization scheme. 

The vertical coordinate is terrain-following near the surface and transitions 

smoothly to θ  with height.  In the diagnosis of the generalized vertical velocity 
 
!! , a 

special contribution is calculated and included in the vertical advection terms; its purpose 

is to maintain smoothness of the coordinate surfaces.  In this “smoothing” process, the 

values of geopotential and potential temperature on the coordinate surfaces deviate from 

their defined “target” values.  However, these values are returned back to their target 

values through a Newtonian relaxation term. 

The vertical flux of horizontal momentum and its effect on the mean flow was 

analyzed with the generalized vertical coordinate.  In the θ  coordinate, a quasi-

Lagrangian interpretation is provided in which the vertical momentum flux is a result of 
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the horizontal component of pressure forces on material coordinate surfaces.  This feature 

will be shown in the results of a mountain wave simulation in Chapter 5. 
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Chapter 3  VERTICAL DISCRETIZATION  

3.1 Introduction 

The design of the model’s vertical discretization scheme includes determining the 

optimal arrangement of the prognostic variables on the grid and determining the 

vertically discrete governing equations.  Our design goals for the vertical staggering are 

to avoid the existence of computational modes and to facilitate the accurate 

representation of wave motion.  These goals are met through a normal mode analysis of 

the linearized system of discrete equations.  A detailed analysis along these lines is 

provided in Thuburn and Woollings (2005), whose results we use as a guide. 

The principal criterion for the formulation of the vertically discrete governing 

equations is that they satisfy certain integral properties found in the continuous system of  

equations discussed in Chapter 2.  The integral constraints we seek to satisfy are 

conservation of mass (Constraint 0), conservation of the vertically integrated circulation 

of momentum about a closed contour of topography (Constraint I), and conservation of 

total energy (Constraint II).  At that point, no degrees of freedom will remain; it turns out 

that the conservation of potential temperature (Constraint III) will not be met.  The 

methods we follow include those developed by Arakawa and Lamb (1977), Simmons and 
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Burridge (1981), Hsu and Arakawa (1990), Arakawa and Konor (1996) and KA97 for 

quasi-static models. 

As is often the case in numerical model design, it will turn out not to be possible 

to meet all of the design criteria simultaneously.  We will derive two alternative schemes 

– the first scheme, which we refer to as the “η-scheme”, satisfies integral Constraints 0, I, 

and II for any form of the generalized vertical coordinate, but has a computational mode 

involving the thermodynamic variables; the second scheme, referred to as the 

“z-scheme”, supports no computational mode, but integral Constraints 0, I, and II are 

satisfied only for the case of non-sloping coordinate surfaces, i.e., z-coordinates.  In both 

schemes, however, the mass conservation constraint is satisfied.  The discretization we 

actually decided to implement in the model is the z-scheme.  This was to achieve 

integrations free of computational modes, which we considered to be more important 

than unconditionally satisfying the integral Constraints I and II. 

3.2 Vertical grid 

The vertical staggering of the prognostic variables in the model is based on the 

Charney-Phillips (CP) grid (Charney and Phillips 1953).  With this grid, the potential 

temperature is staggered with respect to the horizontal velocity (see Figure 1.3).  The 

other commonly used staggering is the Lorenz (L) grid (Lorenz 1960) in which the 

potential temperature is carried at the same levels as the horizontal velocity (see 

Figure 1.3).  The advantages of the CP grid over the L grid have been analyzed in various 

papers (e.g., Arakawa and Moorthi 1988; Arakawa and Konor 1996).  These advantages 

pertain to quasi-static models based on the pressure coordinate and they involve the 
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avoidance of a computational mode in the θ field seen in the L grid, but not the CP grid.  

In the following analysis we show that these advantages carry over to nonhydrostatic 

z-coordinate models, which are relevant to the lower domain of our model.  We also 

analyze the grid staggering for the θ-coordinate domain of the model. 

3.2.1 Linearized, steady-state equations 

We now test various vertical staggerings for the existence of zero-frequency 

computational modes in order to justify the use of the CP grid.  The equations of motion 

are linearized with respect to a hydrostatic, horizontally homogeneous basic state at rest.  

Since steady-state solutions are sought, we can ignore partial time derivatives.  The 

steady-state vertical momentum equation in generalized vertical coordinates can be 

obtained from equation (2.18).  It is the hydrostatic relation given by 

 
 

!p

!"
= #mg . (3.1) 

We will refer to this as the “p-form” hydrostatic relation.  We will also consider an 

alternate “Π-form”, written in terms of the Exner function.  It is obtained from equations 

(2.15) and (2.29), and is written as 
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Expressing the dependent variables as the sum of the basic state and perturbation values, 

the linearized form of the p-form hydrostatic relation (3.1) is 
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where the prime notation refers to the perturbation values.  Here we used the hydrostatic 

relation on the basic state given by 

 
 

d p
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= "mg , (3.4) 

where the overbars represent the basic state.  Similarly, the linearized form of the Π-form 

hydrostatic relation (3.2) is 
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where we have neglected products of perturbation variables. 

The linearized diagnostic pseudo-density equation (2.15) is 
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where we have used the following expression for the basic state pseudo-density: 
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The linearized equation of state (2.6) is 
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The linearized expression for the potential temperature, given by the combination of (2.7) 

and (2.8), is 
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The linearized definition of the Exner function, given by equation (2.7), is 

 
 

!" =
#"

p
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 56 

In (3.9) and (3.10) we used the linear approximation
  
1+ !p p( )

±"

# 1±" !p p . 

3.2.1.1 Discrete linearized equations in z coordinates 

In height coordinates, η = z, m = ρ and, by definition, z′ = 0.  We use these 

expressions in the vertically discrete forms of the linearized equations (3.3)-(3.10).  In 

our analysis, we consider both the CP and L grids, each using the p-form and Π-form 

hydrostatic relations.  The resulting discrete equations for the four combinations are 

presented below: 

〈CP grid + p-form hydrostatic relation〉 
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〈CP grid + Π-form hydrostatic relation〉 
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〈L grid + p-form hydrostatic relation〉 
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〈L grid + Π-form hydrostatic relation〉 
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The subscripts k are whole number indices representing layer centers where mass and 

horizontal velocity are located.  The half-integer indices are layer interfaces.  Note that 

the CP and L grids are distinguished by differing θ grid indices.  Note that the hydrostatic 

relations are defined at layer interfaces where the vertical velocity w resides.  Arithmetic 

means are used to interpolate physical variables to levels where they are undefined.  We 

assume that the grid spacing δ z is constant.  In each system of equations, the prognostic 

variables are θ and ρ.  The variables p, T and Π, which reside at layer centers, are 

obtained from the prognostic variables through the diagnostic equations. 

The discrete systems of equations (3.11)-(3.14) can be used to check for the 

existence of computational modes.  This is done by considering the pressure field to be 
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unperturbed, i.e., p′ = 0 at all levels.  In z coordinates (z ′ = 0), the physical solution, given 

by the continuous equations (3.3)-(3.10), is that the remaining thermodynamic fields are 

also unperturbed, i.e., θ ′ = ρ′ = Π′ = T ′ = 0.  (Similarly, in θ coordinates (θ ′ = 0), the 

solution is that the remaining thermodynamic fields are unperturbed, i.e., 

z ′ = ρ′ = Π′ = T ′ = 0.)  Therefore, solutions in which any of these fields are not identically 

zero are nonphysical computational modes.  In general, these computational modes tend 

to appear as “zigzag” patterns in one or more of the thermodynamic fields.  

Figure 3.1 summarizes the computational mode analysis for each of the four 

systems of equations shown above.  With the L grid there are zero-frequency 

computational modes in both the perturbation density and potential temperature fields.  

With the CP grid, the existence of a computational mode depends on the form of the 

vertical pressure gradient force – there is no computational mode when the Π-form is 

used.  This appears to be due to the absence of interpolated variables in the hydrostatic 

relation.  Therefore, the use of the CP grid to avoid computational modes in z coordinates 

is justified, as long as the Π-form of the vertical pressure gradient force is used in the 

vertical momentum equation. 

3.2.1.2 Discrete linearized equations in θ coordinates 

In isentropic coordinates, η = θ, and, by definition, θ ′ = 0.  We use these 

expressions in the vertically discrete forms of the linearized equations (3.3)-(3.10).  As in 

the z-coordinate analysis, we consider both the CP and L grids, each using the p-form and 

Π-form hydrostatic relations.  In θ  coordinates, the vertical thermal structure is 
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determined by the height field (z).  Therefore, we define an analogous CP grid in θ  

coordinates which carries z at layer edges (i.e., staggered with respect to horizontal 

velocity), and an analogous L grid which has z located at layer centers.  The resulting 

discrete equations for the four combinations are shown below: 

 
 

Figure 3.1: Analysis of zero-frequency computational modes in z coordinates.  The 
CP and L grids are compared (rows), as well as the effect on the form of 
the discrete vertical pressure gradient (columns). 
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〈CP grid + p-form hydrostatic relation〉 
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〈CP grid + Π-form hydrostatic relation〉 
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〈L grid + p-form hydrostatic relation〉 
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〈L grid + Π-form hydrostatic relation〉 
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 (3.18) 

The computational mode analysis is summarized in Figure 3.2.  With the θ  

coordinate, there appear to be computational modes associated with p′ = 0 which involve 

the perturbation pseudo-density and height fields.  Note that the computational mode in z′ 

for the “CP grid + Π-form hydrostatic relation” combination is a result of the 2 Δz 

difference in z′ of the hydrostatic relation in (3.16).  With the CP grid, we speculate that 

the computational modes may be suppressed by the upper and lower boundary conditions 

z′ = 0.  This is not the case with the L grid because z is defined at layer centers where the 

boundary conditions do not apply.  In the model we will use the CP grid in the 

θ -coordinate domain. 

3.2.1.3 Closing remarks 

In the previous analysis, we linearized the forms of the governing equations that 

are used in the model.  These are based on the integral constraint analysis presented in the 

following section.  There are other forms of the equations, not analyzed here, that might 
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avoid computational modes.  Potentially, these could satisfy the integral constraints as 

well.  For example, in θ coordinates, the hydrostatic relation can be expressed in terms of 

the Montgomery potential (M ) as ∂M/∂θ = Π, where M  ≡  cpT + φ.  Alternative forms of the 

equations, such as these, deserve future consideration. 

 
 

Figure 3.2: Analysis of zero-frequency computational modes in θ coordinates.  The 
CP and L grids are compared (rows), as well as the effect on the form of 
the discrete vertical pressure gradient (columns).  We speculate that the 
CP grid computational modes may be suppressed by the upper and lower 
boundary conditions z′ = 0. 



 63 

3.2.2 Model grid 

Figure 3.3 shows the vertical staggering of the prognostic variables used in the 

model for the three coordinate domains – a) z-based sigma coordinates, b) isentropic 

coordinates, and c) the hybrid coordinate.  These staggerings are based on the CP grid.  

This places θ and z together at layer edges – the appropriate location for the hybrid 

vertical coordinate which is a function of these two variables.  The indexing convention 

used in the discretization is the same as that used in the linearized analysis, i.e., layer 

centers are numbered by whole integers k and layer edges by half-integers.  The 

 
 

Figure 3.3: Layer indexing and vertical staggering of prognostic variables and 
diagnosed vertical velocities for (a) σ-coordinate, (b) θ-coordinate and (c) 
hybrid coordinate discretizations. 
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numbering of the K layers is from bottom to top. 

3.3 Governing equations 

3.3.1 Continuity equation 

The discretization of the continuity equation is straightforward and is written for 

the mass at layer centers as 
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Note that the vertical velocity 
 
!!  is defined at layer edges, and that for vertical 

coordinates in which the top and bottom boundaries are coordinate and material surfaces 
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Mass conservation (Constraint 0) is guaranteed due to the flux form of equation (3.19). 

Following Arakawa and Konor (1996), hereafter AK96, a flux form continuity 

equation can be written in terms of mass interpolated to layer edges.  This facilitates 

developing conservation properties of layer-edge quantities.  The equation is 
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and 
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where the interpolated masses are 
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The horizontal mass flux interpolated to layer edges is 
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The vertical mass fluxes at layer centers is 
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Finally, the layer thicknesses defined at layer edges are 
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and 
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As stated in AK96, it can be shown that the vertical sum of the continuity 

equation (3.19), for m at layer centers, times (δη)k is equivalent to the vertical sum of the 

continuity equations (3.24) and (3.25), for m at layer edges, times (δη)k+1/2 . 

3.3.2 Pressure gradient forces 

In nonhydrostatic models, the discretized form of the vertical pressure gradient 

force (VPGF) requires attention in an analogous manner as the discrete hydrostatic 

equation in hydrostatic models.  In such models the vertical velocity w is predicted and its 

contribution to the kinetic energy is accounted for.  As with hydrostatic models, the 

horizontal pressure gradient force (HPGF) has a role in both the total energy conservation 

and the vertically integrated momentum circulation conservation integral constraints.  We 

now analyze the pressure gradient forces. 

3.3.2.1 Vertical pressure gradient force 

The VPGF, expressed at the internal layer edges, is obtained from equation (2.29) 

as 
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where 
  
!̂

k+1/ 2
 is the value of density at layer edges.  The upper boundary condition on the 

vertical velocity is wK+1/2 = 0, and, therefore, it is not necessary to compute the VPGF at 

the top edge.  Doing so would provide a diagnostic relation for the pressure that the 

model top.  However we would like to know what the surface pressure is, so we will need 

a diagnostic for the VPGF at the lower boundary.  We write 
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where 
 
!̂

1/ 2
 is the surface Exner function, from which the surface pressure can be 

calculated. 

3.3.2.2 Horizontal pressure gradient force 

We discretize the HPGF, as given by equation (2.30), at layer centers to give 
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 (3.34) 

where the tildes represents layer-edge variables interpolated to layer centers.  The 

coefficient in parentheses is a layer-center interpolation of the VPGF times the 

geopotential gradient, the form of which will be determined later. 
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3.3.3 Horizontal momentum equation 

From equation (2.14) the horizontal momentum equation is written for layer 

centers as 
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where the horizontal pressure gradient force is given by (3.34). 

3.3.4 Vertical momentum equation 

From equation (2.18) the vertical momentum equation is written for layer edges 

as 
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where the vertical pressure gradient force is given by (3.32) and (3.33). 

3.3.5 Thermodynamic energy equation 

The vertically discrete form of the potential temperature equation will be 

determined from the total energy conservation constraint derived in the next section. 

3.3.6 Geopotential tendency equation 

We obtain the vertically discrete version of the geopotential tendency equation 

from equation (2.20), which is 



 69 

 

    

!"
k+1/ 2

!t
+ v #$"( )

k+1/ 2
+ !%

k+1/ 2

""
k+1

& ""
k

'%( )
k+1/ 2

= gw
k+1/ 2

for    k = 1, 2,#, K &1.

 (3.37) 

We chose the simple, centered form of the vertical advection term to facilitate the 

diagnosis of the generalized vertical velocity, which will be discussed in the following 

chapter.  For the bottom layer edge 
   
!" !t = 0 and !# = 0  so we can write 
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The form of the horizontal advection terms, as well as the geopotential interpolated to 

layer centers, will be determined later. 

3.3.7 Diagnostic relations 

The diagnostic equation for temperature at layer centers is obtained from equation 

(2.8), and is based on the potential temperature interpolated to layer centers.  We have 

 
   

T
k
=

!!
k
"

k

c
p

for    k = 1, 2,", K . (3.39) 

The state variables in the ideal gas law are expressed at layer centers and are 

related by 
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The Exner function is 
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The density at layer centers is diagnosed from the pseudo-density and 

geopotential using 
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3.4 Integral constraints for the generalized vertical coordinate η:  
The “η-scheme” 

There is freedom left in the discretization to satisfy some of the integral 

constraints described at the beginning of this chapter.  We have already shown above that 

the vertical scheme conserves total mass (Constraint 0) through the use of the flux form 

of the continuity equation.  The discrete analysis of the remaining integral constraints will 

be analogous to the continuous analysis in Chapter 2. 

As will be shown in following derivations, the “η-scheme” satisfies Constraints 0, 

I and II.  However, this requires the use of the “p-form” of the vertical pressure gradient 

term in the vertical momentum equation.  As shown in Section 3.2, this leads to the 

existence of a computational mode in the potential temperature (see Figure 3.1).  This is 

not a desirable outcome; therefore, in the next section we will modify the “η-scheme” to 

use the Π-form of the vertical pressure gradient in order to avoid the computational 

mode.  The tradeoff is that with the resulting “z-scheme”, Constraints I and II will only be 

satisfied for the special case of z coordinates.  

3.4.1 Work done by the pressure gradient forces:  Part I 

We now perform a preliminary analysis of the work done by the pressure gradient 

force, which will lead to the discrete form of the energy conversion term between 
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thermodynamic and kinetic energy as seen in the kinetic energy equation.  Using (3.39)-

(3.41) in (3.34), we can write the work done by the horizontal pressure gradient force as 
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Multiplying wk+1/2  by equations (3.32) and (3.33) gives the work done by the vertical 

pressure gradient force 
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and 
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Note that we have not written an equation for the top boundary because wK+1/2 = 0 and 

there is no contribution to the kinetic energy.  Now multiply equations (3.44) and (3.45) 

by (δη)k+1/2  and combine with (3.37) and (3.38) to obtain 
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and 
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Since the energy conversion term, which comes from the work done by the 

pressure gradient forces have, has contributions from both layer centers and edges, we 

must satisfy the constraint in a global (column integrated) sense.  The vertical sum of the 

work done by the pressure gradient forces times the layer thickness is 
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The last three terms on the right hand side of (3.48) are analogs of terms that 

cancel out in the continuous equations.  We require that they cancel out in the discrete 

system by setting 
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If we define the horizontal geopotential advection term as 
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and use equations (3.26), (3.27), (3.31) and ∇φK+1/2 = 0 in (3.49), then, after adjusting the 

limits of the summations and rearranging terms, we obtain 
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We can satisfy this equation by requiring each coefficient of (mv)k  (δη)k to be zero, 

which gives us the form the layer-centered interpolation of the vertical pressure gradient 

force times the horizontal geopotential gradient as 
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and 
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So (3.52) and (3.53) guarantee that equation (3.49) is satisfied. 
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Now use (3.49) in (3.48), then add and subtract 
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hand side, combine with (3.42), apply the product rule of differentiation in t, and 

rearrange terms to obtain 
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Comparing equations (3.54) and (2.35), we identify the energy conversion term as 
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3.4.2 Vertically integrated momentum circulation constraint on the HPGF 
(Constraint I) 

As discussed in Chapter 2, we can design the discrete form of the horizontal 

pressure gradient force to mimic the constraint on the vertically integrated momentum 

circulation.  This can limit the effects of the inevitable numerical error by eliminating the 

development of artificial circulations associated with surface topography.  In the previous 
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subsection, we determined the required form of the interpolated term 
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which satisfies kinetic energy conservation.  The following analysis will lead to the 

required form of the interpolated term
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k+1/ 2
. 

The layer mass-weighted HPGF can be obtained using equations (3.39)-(3.42) in 

(3.34) which gives 
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 (3.56) 

Following the derivation in the continuous equations, analogous to equation (2.24), we 

require that the last two terms of (3.56), when summed over the column, equal the 

“mountain torque” term.  That is 
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Using (3.24), (3.25), (3.31), (3.52) and (3.53) in equation (3.57), along with ∇φK+1/2 = 0, 

we get 
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This sum can be satisfied by requiring that each term in the summation equal zero.  Then 

solving for 
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k+1/ 2
 we have 



 76 

 

   

!̂
k+1/ 2

=
1

"
k+1/ 2

p
k+1

# p
k

$
k+1

# $
k

for    k = 1, 2,!, K #1,

 (3.59) 

and 
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Note that if we define
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, then (3.59) and (3.60) are discrete 

analogs of the relation
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.  Finally, using (3.57) in (3.56), the vertical sum of the 

mass-weighted HPGF is 
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which is analogous to equation (2.24).  As in the continuous case, the only contribution to 

the vertically summed circulation of momentum is due to the last term, which is the 

“mountain torque” term.  When the closed curve is a contour of surface topography, it is 

zero. 

3.4.3 Conservation of total energy (Constraint II) 

In the vertically discrete system of equations, total energy can be conserved 

through consistent forms of the energy conversion terms.  Using the results of the 

vertically integrated momentum circulation conservation constraint on the HPGF in the 

previous subsection, we can derive the discrete form of the conversion term between 

thermodynamic and kinetic energy as given by the kinetic energy equation. 
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3.4.3.1 Work done by the pressure gradient forces:  Part II 

We have determined the form of the horizontal and vertical pressure gradient 

forces in subsections 3.4.1 and 3.4.2.  We now complete the analysis of the work done by 

these forces.  What remains to be shown is that the third and fourth terms on the right 

hand side of equation (3.54) do not contribute to the vertical sum of the production of 

kinetic energy by the pressure gradient forces.  This is analogous to the vertical integral 

of the second term on the right hand side of equation (2.35) being equal to zero for non-

moving upper and lower boundaries.  That is, we require 
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for non-moving boundaries.  Using equation (3.59) in (3.62), the sums of the internal 

terms cancel out and the result is the expression 

 

  

!"
k+1/ 2

!t

#̂
k+1/ 2

g
$

k+1/ 2
%

k+1
& %

k( )
k=1

K &1

'

+
p

k

g

!

!t
"

k+1/ 2
&"

k&1/ 2( )
k=1

K

' =
p

K

g

!"
K +1/ 2

!t
&

p
1

g

!"
1/ 2

!t
,

 (3.63) 

which is identically zero for
  
!"

K +1/ 2
!t = !"

1/ 2
!t = 0 .  So the required form of 
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k+1/ 2
 

given by (3.59), which is consistent with Constraint I on the HPGF, is also consistent 

with kinetic energy conservation. 

3.4.3.2 Thermodynamic energy equation 

We are free to specify the thermodynamic energy equation, in the form of the 

potential temperature tendency equation, such that total energy is conserved.  This is 

done by using the form of the energy conversion term between kinetic and 



 78 

thermodynamic energy which we derived in subsection 3.4.1.  We start by writing the 

vertically discrete form of the vertically integrated enthalpy tendency equation (2.39) as 

     

    

!

!t
mc

p
T( )

k
"#( )

k
k=1

K

$ + % & mvc
p
T( )

k
"#( )

k
k=1

K

$ + m !#c
p
T( )

k+1/ 2

' m !#c
p
T( )

k'1/ 2

(
)

*
+

k=1

K

$

= m,-( )
k
"#( )

k
k=1

K

$ + mQ( )
k+1/ 2

"#( )
k+1/ 2

k=0

K

$ .

 (3.64) 

Note that we have defined the diabatic heating Q to be located at layer edges.  This is 

consistent with the “N grid “of Konor and Arakawa (2000), who showed that there is an 

advantage of carrying condensational heating at levels carrying the vertical mass flux.  

Using (3.55) in (3.64) and applying mass continuity equation (3.19), the diagnostic 

relations (3.39) and (3.41), and rearranging terms, we get 
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 (3.65) 

Now we have an expression with the appearance of a prediction equation for potential 

temperature, however, some work needs to be done to get into a useable form which is a 

prediction equation for θ at the layer edges.  First we choose the form of the potential 

temperature interpolated to layer centers to be 
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Using this relation and (3.20) in equation (3.65), and rearranging terms, we can write 
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 (3.67) 

Now we can write a potential temperature tendency equation which satisfies equation 

(3.67), which is the  requirement for total energy conservation, level by level as 
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where 
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and 
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This form of the thermodynamic energy equation is similar to that of KA97.  In 

fact, the horizontal advection and diabatic heating terms are the same.  This is to be 

expected because their discretization is also based on the CP grid.  The vertical advection 

term differs from theirs, however, because our model is nonhydrostatic and the pressure 

is calculated at layer centers instead of at the edges.  In equation (3.73), there is an 

unusual looking coefficient which involves the geopotential.  From equation (2.15), it can 

be seen that in the continuous limit the coefficient is 
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Therefore, in the continuous limit, equation (3.73) becomes 
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The vertical advection of θ in the thermodynamic equation (3.68) involves the 

vertical mass flux at just one level, i.e., the level at which potential temperature is 

predicted.  This is a result of using the CP grid instead of the Lorenz grid.  As pointed out 

by AK96 this has the advantage of allowing conservation of quasigeostrophic potential 

vorticity as in the vertically discrete equations of Charney and Phillips (1953).  In our 

nonhydrostatic model, this conservation is not relevant for small-scale motion, but it may 

still be a factor for large-scale motion.  A disadvantage of (3.68)-(3.73) is that the mass-

weighted potential temperature is not globally conserved, and as in AK96, the vertical 

advection of θ does not vanish for an isentropic atmosphere. 

The use of the discrete vertical potential temperature advection term in (3.68) 

leads to large dispersion errors in high-resolution simulations, because it is centered in 

form.  Such dispersion error can be reduced by using upstream-weighted schemes, e.g., 

Takacs (1985).   This is not as much of an issue for large-scale flow, where vertical 

motions are small, but on the small-scale where vertical advection of potential 

temperature is significant, these errors can be reduced with the upstream-weighted 

schemes.  Figure 3.4 shows the reduction in dispersion error in the perturbation θ field 

resulting from using the upstream-weighted scheme of Takacs (1985) versus a simple 

centered scheme.  The simulation is a 2D rising thermal in a neutrally buoyant 
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environment using σ coordinates and is based on Bryan and Fritsch (2002).  Upstream-

weighted advection schemes typically require the mass flux at multiple levels.  Therefore, 

the appearance of the vertical mass flux at one level, as in equation (3.68), does not 

facilitate the use of such schemes. 

We wish to use an upstream-weighted potential temperature advection scheme in 

order to reduce dispersion error.  Therefore, we need to derive an alternate form of the 

potential temperature prediction equation which uses the vertical mass flux at multiple 

levels in the vertical advection term.  This alternate form will be required to conserve 

total energy as in the original form.  To derive the alternate θ-prediction equation, start 

again from the total energy conservation requirement of equation (3.65).  As before, use 

(3.20) and (3.66), but rearrange the terms differently to arrive at 

 

 
 

Figure 3.4: Perturbation potential temperature at time t = 1000 seconds for a rising 
thermal experiment performed with an early σ-coordinate version of the 
model using (a) a centered advection scheme, and (b) an upstream-
weighted advection scheme (Takacs 1985) for the potential temperature. 
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The θ-tendency equation which satisfies (3.76) can be written as 
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and 
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where (3.71) and (3.72) apply to (3.77).  From equation (3.74) we can see that (3.77)-

(3.79) are finite-difference analogs of
   
!" !t + v #$" + ! !%"( ) !% &" ! !% !% = Q ' . 

3.4.3.3 Geopotential energy equation 

We now derive a flux-form geopotential energy conservation equation and 

determine whether the conversion term between geopotential and kinetic energy is 

consistent with that derived from the kinetic energy equation.  Multiplying equation 

(3.36) by m k+1/2 wk+1/2 we identify the energy conversion term, given by the kinetic 

energy equation, as (−m k+1/2 g wk+1/2).  Now multiply the geopotential tendency equations 

(3.37) and (3.38) by m k+1/2  and add φ k+1/2 times the layer-edge continuity equations 

(3.21)-(3.23).  Using (3.50), the resulting geopotential energy equation is 
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where the vertical flux of geopotential energy at layer centers is defined as 
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In (3.83), note that the geopotential flux terms involve products of the mass flux and 

geopotential at different levels.  In deriving (3.80)-(3.82) we defined the geopotential 

interpolated to layer centers as 
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 (3.84) 

which is the final interpolated variable that needed to be defined.  Equations  (3.80)-

(3.82) are in flux-form, so that geopotential energy is internally conserved, and the 

energy conversion term m k+1/2 g wk+1/2 appears with the same form but opposite sign as 

that derived from the kinetic energy equation above, so total energy is conserved. 

3.4.4 Implications of the “η-scheme” 

It turns out that the vertical discretization just derived, which satisfies integral 

Constraints I and II, leads to the “p-form” of the discrete vertical pressure gradient term, 

as shown below.  Therefore, a computational mode in the potential temperature field 

exists as shown in Figure 3.1.  This results from the form of 
  
!̂

k+1/ 2
 in equations (3.59) 

and (3.60).  Plugging these expressions into (3.32) and (3.33), the VPGF becomes 
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and 
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Equations (3.85) and (3.86) are direct discretizations of the continuous equation 

(2.27), which is the “p-form” of the VPGF.  The issue is that 
  
!̂

k+1/ 2
 is not evaluated from 

a discretized form of equation (2.15).  If it were, then the VPGF would be expressed as a 

direct discretization of the equation VPGF = −θ ∂Π/∂z in which the computational mode 

is not supported and the expression is in terms of the difference in Exner function.  In the 

following section, we derive a scheme using such an alternative specification of 
  
!̂

k+1/ 2
, 

which we use in the model.  The result is a trade-off of the satisfaction of integral 

Constraints I and II in generalized vertical coordinates for the avoidance of the 

computational mode in θ. 

3.5 Alternative scheme:  The “z-scheme” 

Using the scheme derived in the previous section as a starting point, we derive an 

alternate scheme which turns out to satisfy integral Constraints I and II for η = z only.  

The integral constraints are not satisfied for systems in which coordinate surfaces may 

slant, such as θ and σ, due to nonzero geopotential gradient terms.  These terms are 

assumed to be zero in the development of the present scheme. 

In the following analysis we retain the designation of the vertical coordinate as η 

with the understanding that it represents z.  Likewise the vertical velocity w is now 

synonymous with 
 
!!  and density ρ is synonymous with m.  For simplicity we assume that 

there is no topography so that the lower boundary is a constant-coordinate surface, with 
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the boundary condition
   
!!

S
= w

S
= 0 .  The basic difference in the present analysis is that 

we ignore terms involving time derivatives and horizontal gradients of geopotential as φ 

is constant on z-coordinate surfaces. 

3.5.1 Vertically integrated momentum circulation constraint on the HPGF 

For the z-coordinate, in which ∇φ  = 0, the horizontal pressure gradient force 

expressed in equation (3.34) becomes 
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Using equations (3.39)-(3.42) in (3.87) we can write the layer mass-weighted HPGF as 
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Since the right hand side of (3.88) is a pure gradient term, it generates zero circulation of 

momentum when integrated about a closed curve, therefore, the vertically integrated 

momentum circulation integral constraint is satisfied. 

3.5.2 Conservation of total energy 

3.5.2.1 Work done by the pressure gradient forces 

Applying ∇φ  = 0 to equation (3.43) the work done by the HPGF can now be 

written as 
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The work done by the VPGF is still expressed by equation (3.44), however, due to the 

lower boundary condition, equation (3.45) becomes 

 
  

mw ! (VGPF)"# $%1/ 2
= 0 . (3.90) 

After some rearrangement of terms as in the derivation of equation (3.54), the vertical 

sum of the work done by the pressure gradient forces is 
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where the vertical sum of the energy conversion term is given by 
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3.5.2.2 Thermodynamic energy equation 

We use the energy conversion term given by (3.92) in the vertically summed 

enthalpy tendency equation (3.64), which gives 
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Combining mass continuity equation (3.19), equations (3.20), (3.39), and (3.41) we get 
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which is the requirement for total energy conservation.  Note that up to this point we have 

not been required to specify the form of 
  
!̂

k+1/ 2
 to satisfy the integral constraints.  

Therefore we are free to specify it any way we wish.  The most straightforward way is to 

simply define it from equation (2.15) such that 
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and 
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which, for z-coordinates gives 
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k+1/ 2
= m

k+1/ 2
for    k = 0,1,!, K "1.  (3.97) 

Finally, using (3.20), (3.66) and (3.97) in (3.94) we get the requirement for total energy 

conversion in terms of potential temperature at layer edges, which is 
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 (3.98) 

The potential temperature tendency equation which satisfies equation (3.98) is exactly the 

same as equations (3.68)-(3.72), with 
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 (3.99) 

Note the simplified form of (3.99) compared to (3.73). 

Equation (3.98) provides the “single vertical mass flux” form of the potential 

temperature advection as in AK96.  We can rearrange the summation terms differently to 

rewrite (3.94) as 
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 (3.100) 

The potential temperature tendency equation which satisfies equation (3.100) is 
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 (3.101) 

and equations (3.78) and (3.79) still apply to the bottom and top layers respectively. 

3.5.2.3 Geopotential energy equation 

The geopotential energy equation for η = z is the same as in subsection 3.4.3.3.  In 

height coordinates, geopotential energy conservation is closely tied to mass continuity. 
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3.5.3 Implications of the “z-scheme” 

With the modified form of 
  
!̂

k+1/ 2
 given by (3.95) and (3.96), the VPGF given by 

equations (3.32) and (3.33) becomes 

 

   

(VPGF)
k+1/ 2

= !g"
k+1/ 2

#
k+1

! #
k

!$
k+1

! !$
k

for    k = 1, 2,", K !1,

 (3.102) 

and 
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The VPGF now has the “Π-form”, so the computational mode in potential temperature is 

avoided (see Figure 3.1).  As shown in Appendix B, this form of the VPGF leads to a 

reduction in the truncation error.  Again, the trade-off with using this scheme is that in 

general, for η ≠ z, integral constraints I and II are not satisfied.  We consider the 

avoidance of the computational mode to be more important than unconditionally 

satisfying the integral constraints, and therefore use the z-scheme in the model. 

3.6 Summary of the design features of the two vertical schemes 

We have derived two vertical discretization schemes which mainly differ in their 

specification of the vertical pressure gradient in the vertical momentum equation.  In the 

“η-scheme”, the discrete VPGF is expressed in terms of pressure, while in the 

“z-scheme”, it is expressed in terms of the Exner function.  We use the latter scheme in 

the model, even though integral Constraints I and II are not generally satisfied.  The 

overriding benefit to the “z-scheme” is the avoidance of a computational mode in the 
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potential temperature field.  In addition, Thuburn (2006) and Toy and Randall (2007) 

demonstrated that the representation of linear wave propagation is more accurate with the 

Exner function form of the VPGF.  Table 3.1 summarizes the main characteristics of the 

two schemes. 

3.7 Summary of the “z-scheme” vertically discrete governing 
equations 

This section summarizes the vertically discrete governing equations of the 

“z-scheme” which the model is based on.  The scheme was developed using centered 

differences.  In the actual model, we use upstream-weighted advection schemes for mass, 

potential temperature, and geopotential.  These are presented in Appendix A.  The use of 

these uncentered schemes means that the model equations do not formally satisfy the 

integral constraints. 

Table 3.1: Comparison of the characteristics of the “z-scheme” and the “η-scheme”.  
(Note that the integral constraints refer to satisfaction for the generalized 
vertical coordinate.  The “z-scheme” satisfies Constraints I and II for the 
specific case η = z.) 

 Discrete 
form of  

the 
VPGF 

z-coord. 
computa-

tional 
mode in 

θ ? 

Mass 
conservation 
(Constraint 0) 

Momentum 
circulation 

constraint on 
the HPGF  

(Constraint I) 

Conservation 
of total energy 
(Constraint II) 

Conservation of 
θ 

(Constraint III) 

z-scheme 
 

!"
#$

# z
 No Satisfied Not satisfied Not satisfied Not satisfied 

η-scheme 
  

!
1

m

" p

"#
 Yes Satisfied Satisfied Satisfied Not satisfied 
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Continuity equation: 
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Boundary conditions: 

 
   
!!

1/ 2
= !!

K +1/ 2
= 0 . (3.105) 

Vertical pressure gradient force: 
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where 
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Horizontal pressure gradient force: 
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where 
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Thermodynamic equation: 
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Geopotential tendency equation: 
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where 
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Diagnostic equation for temperature: 
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Equation of state: 
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Diagnostic equation for density: 
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Relationship between Exner function and pressure: 
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Definition of the height-based, terrain-following coordinate σ : 
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where zS is the surface height, and zT is the model top height (which we define as a 

constant value). 
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Chapter 4  VERTICAL VELOCITY DIAGNOSIS AND 
ADVECTION IN THE DISCRETE 
EQUATIONS 

4.1 Introduction 

In Chapter 2, we presented the vertical coordinate used in the model, along with 

the diagnosis of the vertical velocity, 
 
!! , in the continuous framework.  In this chapter we 

describe the method for diagnosing the vertical velocity in the discrete system of 

equations.  As our handling of the generalized vertical coordinate is based mainly on 

KA97, the vertical velocity diagnosis is similar to their technique.  However, our method 

differs as a result of our use of an adaptive grid and upstream-weighted, uncentered 

vertical advection schemes in the prognostic equations for θ and φ – the two variables 

which are the basis of the vertical coordinate η.  To accommodate this, we will split the 

“target-seeking” component of the generalized vertical velocity, introduced in equation 

(2.70), into additional components and apply each one in either a centered or an 

upstream-weighted advection scheme.  We begin by developing the framework for 

determining the appropriate scheme to use. 
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4.2 A closer look at the advection of θ  and z by the generalized 
vertical velocity 

An implicit fact regarding the vertical coordinate in a system of hydrodynamic 

equations is that its value is constant in time, i.e., ∂η/∂t = 0.  This means that for systems 

based on “pure” vertical coordinates based on a single property such as height, potential 

temperature or pressure, an explicit prognostic equation for that property is not needed.  

However, such an equation is implicitly satisfied by the specification of the vertical 

velocity in each coordinate system.  For example, in height coordinates, we could write 

 
    

!z

!t
= 0 = w " v #$z " !z

!z

!z
. (4.1) 

Since ∇z = 0 and ∂z/∂z = 1, this simply expresses the Lagrangian relationship   !z = w .  

Similarly, in isentropic coordinates, we could write 

 
    

!"

!t
= 0 =

Q

#
$ v %&" $ !"

!"

!"
 (4.2) 

Since ∇θ  = 0 and ∂θ /∂θ  = 1, this reduces to the Lagrangian form of the first law of 

thermodynamics 
  
!! = Q " . 

In the framework of the hybrid vertical coordinate model, the coordinate is a 

function of more than one property.  In our case, these are the potential temperature and 

geopotential height.  As a result, prognostic equations for both of these properties must be 

explicitly expressed.  We showed in Chapter 2 that the main role of the generalized 

vertical velocity is to maintain the constant value of the coordinate.  In the following 

discussion, we will show that the roles performed by the vertical advection terms in each 

of the prognostic equations, i.e., 
   
!!"z "! and !!"# "! , change in the vertical transition 
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from z-based to θ coordinates.  This affects the way these terms are handled in the 

vertically discrete equations – whether upstream-weighted or centered-difference 

advection schemes are applied, for example. 

4.2.1 The role of the vertical θ -advection term in the z-coordinate domain 

The prognostic equation for potential temperature in height coordinates may be 

written as 

 
  

!"

!t
=

Q

#
$ v %&" $ w

!"

!z
. (4.3) 

The vertical advection term (the last term on the right-hand side) physically represents 

the θ -tendency due to the advection of potential temperature across surfaces of constant 

z.  In the vertically discrete model, an upstream-weighted treatment of this term is 

justified in order to reduce dispersion error as demonstrated in Figure 3.4.  So, in the 

discrete equations, we want 
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()UPSTREAM

WEIGHTED

   for !* z . (4.4) 

4.2.2 The role of the vertical θ -advection term in the θ -coordinate domain 

As mentioned above, equation (4.2) shows that the role of the vertical advection 

of potential temperature in isentropic equations is to cancel out the diabatic heating term 

in order to keep θ constant on coordinate surfaces.  The way we achieve this in the model 

is to specify a centered form of the vertical advection term in the limit of isentropic 

coordinates, specifically 
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Equation (4.2) is satisfied provided that 
   
!!

k+1/ 2
" Q #( )

k+1/ 2
 and (δθ )k  +1/2 ⁄ (δη)k  +1/2→ 1 

for η → θ .  The vertical velocity diagnostic procedure developed in this chapter satisfies 

the former requirement, while the latter is satisfied by equations (3.113) and (3.114). 

4.2.3 The role of the vertical z-advection term in the θ -coordinate domain 

The prognostic equation for geopotential height in isentropic coordinates may be 

written as 

 
   

!z

!t
= w " v #$z " !%

!z

!%
. (4.6) 

The vertical advection term physically represents the z-tendency due to the advection of 

geopotential height across surfaces of constant θ.  In the vertically discrete model, an 

upstream-weighted treatment of this term is justified in order to reduce dispersion error in 

a manner analogous to the advection of θ in z-coordinates.  Therefore, in the model, we 

want 
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4.2.4 The role of the vertical z-advection term in the z -coordinate domain 

As mentioned above, equation (4.1) shows that the role of the vertical advection 

of geopotential height in z-coordinates is to cancel out the vertical velocity w in order to 
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keep z constant on coordinate surfaces.  The way we achieve this in the model is to 

specify a centered form of the vertical advection term in the limit of height coordinates, 

specifically 
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#
$%

&
'(

k+1/ 2

) !!
k+1/ 2

* z( )
k+1/ 2

*!( )
k+1/ 2

   for !) z . (4.8) 

Equation (4.1) is satisfied provided that 
   
!!

k+1/ 2
" w

k+1/ 2
 and (δ z )k  +1/2  ⁄ (δη)k  +1/2→ 1 for 

η → z.  The vertical velocity diagnostic procedure developed in this chapter satisfies the 

former requirement, while the latter is satisfied by equations (3.108) and (3.114). 

4.2.5 Two components of the generalized vertical velocity 

The way we vary the vertical advection of θ and z between centered and 

upstream-weighted schemes, as described above, is by splitting the generalized vertical 

velocity into components and parceling these to the appropriate scheme.  In the current 

simplified analysis, there are two components to the vertical velocity – one is the 

contribution from the “z-like” nature of the coordinate (
  
!!

z
), and the other is the 

contribution from the “θ-like” nature of the coordinate (
 
!!
"

).  The proportion of the 

contributions from each of these components “automatically” vary with height as η 

transitions from z  to θ .  The two components sum to the total vertical velocity 
 
!! , i.e., 

 
  
!! = !!

z
+ !!

"
, (4.9) 

and they have the properties 
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Letting η = F(θ , z), and requiring (∂/∂t )
η

 F = 0, we can write 
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Applying the tendency equations for θ and z in η coordinates, 
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and 
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respectively, in equation (4.11) and solving for 
 
!! , we get 
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Here we used 
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Finally, comparing equations (4.9) and (4.14) we can write 
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These expressions satisfy (4.10). 
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Now, we can use these two components of the generalized vertical velocity to 

define vertical advection schemes for θ  and z whose roles adapt in the manner described 

above in Subsections 4.2.1-4.2.4.  These are: 

〈θ -advection〉 
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〈z -advection〉 
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The above expressions accommodate the specific roles of the vertical advection terms 

specified in equations (4.4), (4.5), (4.7) and (4.8). 

4.3 Vertical velocity diagnosis and the advection of θ  and φ  in the 
model 

In the previous section, we described the method of vertically advecting potential 

temperature and geopotential height in a simplified framework of a vertical coordinate 

based on θ and z.  In the model, the coordinate is based on θ and the terrain-following σ 

coordinate, so the procedure is slightly more complicated, but the overall concept is the 

same.  In this section we outline the vertical velocity diagnosis, and the advection of θ 

and φ in the model. 



 106 

4.3.1 Advection of θ and φ by the “target-seeking” vertical velocity 
component 

Recall from Section 2.5 (equation (2.70)) that we broke the vertical velocity into 

two components – 
  
!!

T
, which is responsible for relaxing F (θ , σ ) toward and maintaining 

its target value η , and
  
!!

S
, which involves the spatial smoothing of the coordinate surfaces 

(and generally causes F (θ , σ ) to deviate from its target value).  Here F (θ , σ ) was defined 

in equation (2.58).  We examine the first component, expressed by equation (2.72), and 

consider η = F, so that ∂F/∂η = 1.  The vertically discrete form is 
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Similarly to the previous section, we break the vertical velocity into the following 

components: 
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and 
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Note that similarly to equation (4.10) the first three components have the following 

properties: 
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Accordingly, we handle the vertical advection of θ and φ by these components as 
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and 
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 (4.28) 

respectively.  Equations (4.26)-(4.28) assure that (∂φk  +1/2 /∂t) → 0 for η → σ, and 

(∂θk  +1/2 /∂t) → 0 for η → θ. 

When coordinate smoothing has taken place at a given model grid point, then 

η ≠ F (θ , σ ) and, therefore, from equation (4.25) we have 
   
!!

T ,R( )
k+1/ 2

" 0 .  The purpose of 

this vertical velocity component is to advect θ and φ  in such a way as to return F to its 
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target value η  through a relaxation process with time constant τ.  In the model, we use 

centered schemes, for simplicity, to advect θ and φ , in this process i.e., 
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A summary of the vertical advection schemes for θ and φ  associated with each of 

the four components of the “target-seeking” vertical velocity is shown in Table 4.1.  The 

upstream-weighted advection schemes are based on Takacs (1985) and the details are 

shown in Appendix A. 

4.3.2 Advection of θ and φ by the “smoothing” vertical velocity component 

The purpose of the 
  
!!

S
 component of the vertical velocity is to maintain the 

“smoothness” criteria for the model coordinate surfaces.  To do this, it has to force 

Table 4.1: Type of scheme used for the discrete vertical advection of θ and φ 
by each “target-seeking” vertical velocity component. 

Vertical velocity 
component θ  φ  

   
!!

T ,"
 Upstream-weighted Centered 

   
!!

T ,Q
 Centered Upstream-weighted 

   
!!

T ,"
 Centered Upstream-weighted 

   
!!

T ,R
 Centered Centered 
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 F(θ , σ ) away from its target value, η.  The geopotential height tendency is directly 

calculated from the “smoothness” criteria given by equations (2.79) and (2.80).  When 

these criteria are met, the results are used in the finite-difference form of equation (2.78) 

to calculate the “smoothing” component of the vertical velocity.  A simple centered form 

of ∂η /  ∂z is used, so that 
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. (4.31) 

This has the effect of vertically advecting φ  with a simple centered scheme.  The vertical 

velocity values generated by this algorithm are then used to advect θ  in an upstream-

weighted scheme. 

4.3.3 The final determination of the vertical velocity 

KA97 diagnose the vertical velocity in two steps.  First, all the processes which 

affect θ and σ, except for vertical advection, are determined.  These include horizontal 

advection and diabatic heating.  Generally, this will force F(θ,σ) from its target value, η.  

The second step is to determine, through an iterative procedure, the vertical mass flux 

required to bring F(θ,σ) back to the target value. 

We follow the same general procedure, except that in the first step, we include the 

vertical advection of θ and φ, just presented, as an explicit forcing.  Another difference is 

that in our method, the target value for F(θk  +1/2,σk  +1/2) at a given time step is not 

necessarily η k  +1/2, but instead is 
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where n and n-1 refer to the current and previous time steps, respectively.  This a time-

integration of equation (2.64) with 
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S
 set to zero, i.e., 
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Where in KA97, the vertical velocity determined by the iterative solution is the total 

velocity, in our case, it is the residual required to exactly set F(θk  +1/2,σk  +1/2) to F  n
k+1/2 at 

the current time step. 

In the first step of the iterative procedure, we find the tendency of Fk+1/2 due to the 

processes of horizontal advection, diabatic heating, vertical displacements by w, and the 

vertical advection by 
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.  This is done by calculating 
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and 
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where the superscript * denotes perturbed values.  From these values, we calculate 
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We then define 
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Finally, we determine 
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 through iterations of 
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until Δη, recalculated at each iteration, becomes sufficiently small.  Note that 
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The final value of 
   
!!"

k+1/ 2
 is the cumulative value calculated in the iterations. 
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4.3.4 Final forms of the vertical advection of θ and φ and the vertical 
velocity 

In view of the previous subsections, the form of the vertical advection of θ and φ 

are, respectively, 
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and 
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The total vertical velocity is given by  
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+ !!

S
( )

k+1/ 2
+ !"!

k+1/ 2
, (4.43) 

where 
   
!!

T
( )

k+1/ 2
 is defined in (4.21).  It is used for vertically advecting the remaining 

prognostic variables, i.e., mass, momentum, and tracers.  Details of the advection 

schemes for these variables are given in Appendix A. 
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4.4 Summary 

In this chapter, we developed a method for diagnosing the vertical velocity in the 

hybrid vertical coordinate of the model.  In the vertically discrete system of equations, the 

diagnostic procedure is complicated by the fact that different vertical advection schemes 

are used for θ and φ, depending on the coordinate regime in which a given layer is 

located.  These schemes are designed to transition from centered-in-space to upstream-

weighted from one regime to the other.  The method we chose to achieve this was to 

partition the vertical velocity into separate components, each one allocated to the 

appropriate advection scheme.  The sum of these components is then used as a unit in the 

vertical transport of the remaining prognostic variables in the model, i.e., mass, 

momentum, and tracers. 
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Chapter 5  RESULTS 

5.1 Introduction 

Model tests with various two-dimensional mountain wave simulations are 

presented in this chapter.  We compare the results of the model run with the Eulerian 

σ-coordinate versus the hybrid vertical coordinate.  The first three tests are idealized 

isothermal cases, and the fourth test is a simulation of the 11 January 1972 Boulder, 

Colorado windstorm.  Two of the idealized tests are linear cases whose results can be 

compared to analytical solutions.  The Boulder windstorm results are compared with 

those of previous modeling studies.  We will compare the two coordinate systems in 

regard to processes such as vertical momentum and passive tracer transport, as well as 

wave breaking, and point out the strengths and weaknesses of each system. 

5.2 Mountain waves in an isothermal atmosphere 

These experiments involve uniform flow over an isolated mountain.  For 

isothermal atmospheres, in which the Brunt-Väisälä frequency 
 
N = g !( )"! "z  

  
or N = g c

p
T( )  is constant, analytic solutions are readily obtained.  Linear wave 

theory applies when the mountain is small, that is, when Nh/ū ≪1, where h is the 
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mountain height and ū is the zonal wind speed.  The overbar represents the horizontal-

domain average.  Note that Nh/ū  is the inverse Froude number.  Linear mountain wave 

analyses include Alaka (1960), Smith (1979), Holton (2004).  Analytic studies of finite-

amplitude (non-linear) waves associated with taller mountains include Long (1953) and 

Laprise and Peltier (1989a,b,c). 

From linear wave theory (Eliassen and Kleinschmidt 1957; Eckart 1960), the 

steady-state solution for compressible, isothermal, uniform flows can be as written as 
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(see Appendix C for a derivation of this equation) where 
 
!!w " !w #  is the perturbation 

vertical velocity scaled by the square root of the basic-state density, 
  
c

S

2
= ! RT is the 

square of the speed of sound, and l is the Scorer parameter, an inverse length given by 
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The solutions to (5.1) are waves of the form 

   !!w (x, z) = ŵe
i(kx+mz )  (5.3) 

where ŵ is the complex amplitude, and k and m are the horizontal and vertical wave 

numbers, respectively, which are related by the dispersion relation (see Appendix C) 
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For low Mach number, m2 ≅ l 2 − k 2.  Equations (5.3) and (5.4) show that vertically 

propagating internal waves are supported when m2 > 0, which is the case for 
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Otherwise, the waves decay in the vertical.  Therefore, the Scorer parameter, which is a 

property of the flow only, is an intrinsic spatial scale which approximates the upper limit 

of the horizontal wave number in which vertically propagating waves are supported.  It is 

also the vertical wave number of hydrostatic mountain waves (Alaka 1960; Smith 1979).  

As k is determined by the surface topography, this means that vertically propagating 

waves are more likely to occur over broad mountain ranges where the dominant Fourier 

components are associated with large wave numbers. 

Since equation (5.1) has constant coefficients, it is evident that the amplitude of 

the w″ wave field is constant for vertically propagating waves.  This means that the 

amplitude of the actual perturbation vertical velocity field (w′) varies as the inverse 

square root of the basic state density, which is an exponentially increasing function of 

height.  This is a consequence of wave-energy conservation.  The phase lines of these 

waves tilt upwind, as required by the radiative lower boundary condition.  This ensures 

that the group velocity is upward, away from the surface topography, i.e., the energy 

source. 

In our idealized experiments, the model is initialized with constant 

temperature  T = 287 K , and constant zonal wind speed ū = 20 m/s.  The reference 

pressure (i.e., at z = 0) is 1000 hPa.  The buoyancy frequency is N = 0.0183 s-1, and the 

characteristic wave length of the flow, as given by the Scorer parameter, is 
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λG ≡ 2π/l ≈ 6890 m.  The mountain profile is prescribed as a “witch of Agnesi” curve, 

given by 

 
  
z

S
(x) =

ha
2

x
2
+ a

2
, (5.6) 

where zS (x)  is the surface height and a is the half-width.  This profile has been used in 

numerous studies (e.g., Queney 1948, Alaka 1960, Smith 1979), and lends itself to 

Fourier analysis.  The nature of the wave behavior which develops is strongly determined 

by the values of mountain height and half-width. 

The horizontal boundary conditions are periodic, and the domain size is 

sufficiently large to minimize upstream contamination of the flow field near the mountain 

for the time period under study.  The model top is a rigid lid at zT  = 30 km.  In the small-

amplitude wave simulations, a Rayleigh damping layer is used in the upper layers to 

avoid wave-reflection off the upper boundary.  The damping terms, which are added to 

the right-hand sides of the zonal and vertical velocity tendency equations, are given by 
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Following Klemp and Lilly (1978), the inverse decay time ν  varies smoothly with height 

according to the relation 
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where ν0 is a constant with the value 0.025 s-1, and zD is the height of the lower edge of 

the absorbing layer.  The layer thickness zT  − zD is chosen to be 7 km, which is on the 

order of the characteristic wavelength. 

For the hybrid-coordinate runs, we use the following parameters for the vertical 

coordinate:  θmin = 270 K, (∂θ/∂σ)min  = 0 K, and r = 64.  As shown in Figure 5.1, this 

provides a rapid transition with height from the terrain-following coordinate to the 

θ-coordinate.  At z ≈ 3 km and above, the coordinate is basically isentropic. 

Finally, the horizontal grid spacing for each experiment is based on the half-width 

of the mountain, and is chosen as Δx = 0.1a.  There are 600 grid points in the horizontal, 

 
 
Figure 5.1: Vertical profiles of the hybrid vertical coordinate (black curve) and the 

basic-state potential temperature (red curve) for the isothermal mountain 
wave experiments.  Coordinate is isentropic above ~3 km. 
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which provides a horizontal domain length of 60a.  We use 120 levels which, with the 

model top height of 30 km, gives an average layer thickness of 250 m.  The free-slip 

boundary condition is applied at the surface. 

5.2.1 Linear hydrostatic waves 

Choosing the mountain height to be h = 10 m gives Nh/ū = 0.00915≪1, so the 

developing wave is approximately linear, and we can compare the numerical results to 

the analytic linear solution.  For broad mountains, in which Na/ū ≫1, the vertical 

acceleration is small, and the flow is approximately hydrostatic.  Setting the mountain 

half-width to a = 20 km gives Na/ū = 18.3≫1, which meets this criterion.  Our horizontal 

grid spacing is, therefore, Δx = 2 km, and the domain length is L = 800 km.  We will 

compare our model results to nonhydrostatic analytic theory which is discussed in 

Appendix C.  To obtain the analytical results, we included the first 90 Fourier modes in 

the representation of the surface topography, which provides the lower boundary 

condition for the vertical velocity.  As expected, these agree well with the hydrostatic 

analytic results (e.g., Queney 1948) presented in Durran and Klemp (1983) and He 

(2002).  A distinct feature of hydrostatic mountain waves is the vertical arrangement of 

wave packets directly above the mountain top.  This is due to the group velocity of 

hydrostatic mountain waves having only a vertical component. 

In order to compare with the steady-state analytic solution, the model is run until 

an approximate steady-state is reached, which takes about 40 of the characteristic time 

units given by a/ū.  Figures 5.2 and 5.3 show the perturbation zonal and vertical 

velocities, respectively, for the analytic solution, and the σ-coordinate and hybrid-
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coordinate model runs.  The portion of the domain in the vicinity of the mountain is 

shown.  The model solutions agree well with each other as well as with analytical theory. 

While the first moments of the velocities are reasonably accurate, a more stringent 

test of the model is to compare second moments of the velocity with theory.  We 

 Analytical solution 

 
     σ coordinates       Hybrid coordinates 

 
 

Figure 5.2: Perturbation zonal wind (m s- 1) in the vicinity of the 10 m high, 20  km 
half-wide mountain from (a) the steady-state analytical solution, and from 
model simulations at t = 40a/ū (11.1 hours) with (b) the σ vertical 
coordinate and (c) the hybrid vertical coordinate.  The horizontal axis 
represents distance relative to the mountain center. 
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therefore examine the vertical transport of horizontal momentum by the mountain wave.  

This has significance in terms of the effect of surface topography on the mean flow at 

upper levels via gravity wave drag.  Following Eliassen and Palm (1960), the momentum 

flux is written as 

Analytical solution 

 
     σ coordinates       Hybrid coordinates 

 
 
 Figure 5.3: Same as in Figure 5.2, except fields plotted are perturbation vertical 

velocity (m s -1). 
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Figure 5.4 shows the vertical distribution of the model’s diagnosed momentum flux, 

given by (5.9), for each coordinate system at various nondimensional times ūt/a.  The 

model profiles are compared to analytical results, both nonhydrostatic, and that calculated 

from hydrostatic theory (Smith 1979), given by 
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#
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where ρ0 is the density at the surface.  These two analytical profiles are in close 

agreement which verifies that the flow is nearly hydrostatic.  Also, the model results 

      σ coordinates        Hybrid coordinates 

 
 

Figure 5.4: Profiles of vertical flux of horizontal momentum in kg s - 2 at various 
non-dimensional times (black curves) for the linear, hydrostatic mountain 
wave experiment: (a) σ vertical coordinate, and (b) hybrid vertical 
coordinate.  The analytical value for the nonhydrostatic system of 
equations is shown by the red lines, and that for the hydrostatic system of 
equations (MH ) is shown by the green lines.  Labels indicate 
nondimensional time units of a/ū. 
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agree well with the analytical values.  They are nearly constant with height, as predicted 

by theory. 

It is interesting to contrast the form of the vertical momentum fluxes of the two 

coordinate systems by diagnosing the actual, non-linear fluxes of the model.  As 

discussed in Section 2.6, with the Eulerian z coordinate, the transport is due to the eddy 

flux  (!w ") "u , while in the quasi-Lagrangian θ  coordinate, it is expressed as the form drag 

on quasi-material layers, given by ! "p # "z dx .  Recall that in the generalized vertical 

coordinate, the vertical divergence of the 2D Eliassen-Palm flux, which determines the 

tendency of the zonally averaged zonal flow, is 
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Define the “eddy-flux” component of the momentum flux as 
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the “form drag” component of the momentum “flux” as 
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and the surface drag as 

 
  
M

SD
! M

FD
(z = 0).  (5.14) 

For steady-state flow, the following relation should apply at all levels 

 
  
M

EF
(z) + M

FD
(z) = M

SD
= constant . (5.15) 

Figure 5.5 shows the vertical profiles of the eddy and form-drag contributions to the 

momentum flux at time t = 40 a/ū.  The sum of these, shown by the black curve, 
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theoretically equals the surface drag (plotted as the red line for reference).  For each 

coordinate system, the total momentum flux is nearly constant with height and is close to 

the theoretical surface-drag value.  However, with the hybrid coordinate (Figure 5.5b), 

there is a large deviation of the total momentum flux from the theoretical value in the 

lowest 1.5 km.  The cause for this is not known at this time.  The sign of the total 

momentum flux is negative, which means that the surface imparts a drag force on the 

atmosphere, as expected.  Note the non-zero contribution of the form-drag in σ 

coordinates, which is due to the sloping of the coordinate surfaces with respect to z.  In 

the hybrid-coordinate, the flux is due entirely to the form-drag component above ~ 3 km.  

      σ coordinates        Hybrid coordinates 

 
 

Figure 5.5: Actual vertical fluxes of horizontal momentum diagnosed from (a) σ 
vertical coordinate, and (b) hybrid vertical coordinate runs for the linear, 
hydrostatic mountain wave experiment at t = 40 a/ū (11.1 hours).  The blue 
curves are eddy momentum fluxes MEF , the green curves are the form drag 
MFD , the black curves are the sum of these, and the red lines are the 
diagnosed surface drag which is the theoretical, steady-state, constant 
momentum flux MSD . 
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This is because the coordinate is almost purely isentropic, so the vertical velocity is zero 

and, therefore, the eddy flux is zero as well. 

With the σ coordinate, the form drag on coordinate surfaces and the eddy flux 

vertically oscillate – the form drag about its mean of zero and the eddy flux about its 

mean equal to the value of the total momentum flux.  These oscillations are 

approximately 180° out of phase so that their sum is nearly constant with height.  The 

variation of the form drag is explained by the horizontal phase shift, with height, of the 

pressure perturbations along coordinate surfaces.  At the lower boundary, the amplitude 

of the form drag equals the surface drag.  The amplitude decreases with height because 

both the pressure perturbations and the horizontal gradient of the coordinate surface 

height decrease.  Since the sum of the form drag and the eddy momentum flux should be 

constant with height per equation (5.15), in order to maintain the flow in a steady state, 

the “purpose” of the eddy momentum flux oscillations is to cancel the oscillations of the 

form drag.  Since the mean value of the eddy flux is the total momentum flux, it is the 

primary contributor to vertical momentum transport, which is expected for an Eulerian 

coordinate.  The form drag results from the sloping coordinate surfaces, and its mean 

effect in the vertical is zero.  With the hybrid coordinate, however, the roles are reversed, 

and the form drag plays the primary role in the momentum balance.  The eddy flux has a 

small contribution near the surface where there is some σ-contribution to the vertical 

coordinate, but this becomes zero where the coordinate is quasi-Lagrangian and the 

vertical velocity vanishes.  Here the form drag on coordinate surfaces has the 

fundamental physical significance as the net force along material surfaces, since the 

coordinate surfaces are material surfaces. 
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5.2.2 Linear nonhydrostatic waves 

Now consider the flow over a narrower mountain with a half-width of a = 2 km, 

and with the same height of 10 m.  The flow is still considered linear, but now we have 

Na/ū = 1.83 ∼1, so the flow is nonhydrostatic.  The main difference in the wave structure, 

compared to hydrostatic waves, is that the group velocity has a larger relative downwind 

horizontal component.  Therefore wave packets are arranged in an downwind-tilted 

direction as shown in Figures 5.6 and 5.7.  For this experiment, we use a horizontal grid 

spacing of Δx = 200 m, and the domain length is L = 80 km.  As with the hydrostatic case, 

the model perturbation velocity fields agree quite well with the analytical values. 

The vertical momentum flux profiles shown in Figures 5.8 and 5.9 have very 

similar characteristics to their hydrostatic counterparts.  The time-dependence of the 

vertical momentum flux shown in Figure 5.8 (as well as Figure 5.4) represents the 

transient wave growth.  Steady-state is reached at about the time t = 40 a/ū.  The main 

difference between the two cases is that the vertical momentum flux and surface drag 

have lower values in the nonhydrostatic case. 

5.2.3 Finite-amplitude nonhydrostatic waves 

Wave development over tall mountains is nonlinear and the amplitude can grow 

to the point that isentropic surfaces become vertical and overturn.  Long (1953) 

calculated analytical, steady-state solutions for these finite-amplitude waves for stratified 

Boussinesq flow.  Laprise and Peltier (1989a,b,c) analyzed the linear stability of Long’s 

steady-state solutions, as well as the structure and energetics of wave breaking.  In this 
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subsection we simulate conditions in which wave breaking occurs.  We will avoid a 

detailed comparison of our model results with the analytical solution for two reasons:  1) 

our model solves a different set of equations, i.e., the compressible system; and 2) our 

initial condition is the unperturbed basic state with the zonal flow impulsively introduced 

Analytical solution 

 
     σ coordinates       Hybrid coordinates 

 
 

Figure 5.6: Perturbation zonal wind (m s -1) in the vicinity of the 10 m high, 2  km half-
wide mountain from (a) the steady-state analytical solution, and from 
model simulations at t = 40a/ū (1.11 hours) with (b) the σ vertical 
coordinate and (c) the hybrid vertical coordinate.  The horizontal axis 
represents distance relative to the mountain center. 
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(as pointed out in Laprise and Peltier (1989b), it is more suitable to initialize the model 

with Long’s steady-state).  Rather, our purpose here is to test the model’s ability to 

simulate a breaking wave and, in particular, test how the hybrid-vertical coordinate 

handles isentropic overturning. 

In this experiment we set the mountain height at h = 1500 m.  This gives 

Nh/ū = 1.37 ∼ 1, so the mountain wave is expected to be nonlinear.  As in the previous  

Analytical solution 

 
     σ coordinates       Hybrid coordinates 

 
Figure 5.7: Same as in Figure 5.6, except fields plotted are perturbation vertical 

velocity (m/s). 
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      σ coordinates        Hybrid coordinates 

 

Figure 5.8: Profiles of vertical flux of horizontal momentum at various 
non-dimensional times (black curves) for the linear, nonhydrostatic 
mountain wave experiment: (a) σ vertical coordinate, and (b) hybrid 
vertical coordinate.  The analytical values are shown by the red lines.  
Labels indicate nondimensional time units of a/ū. 

       σ coordinates        Hybrid coordinates 

 

Figure 5.9: Actual vertical fluxes of horizontal momentum diagnosed from (a) σ 
vertical coordinate, and (b) hybrid vertical coordinate runs for the linear, 
nonhydrostatic mountain wave experiment at t = 40 a/ū (1.11 hours).  The 
blue curves are eddy momentum fluxes MEF , the green curves are the form 
drag MFD , the black curves are the sum of these, and the red lines are the 
diagnosed surface drag which is the theoretical, steady-state, constant 
momentum flux MSD . 

 



 130 

experiment, we use the “narrow” mountain (a = 2 km), so the flow is nonhydrostatic.  We 

run the model in 3 configurations:  (a) the σ coordinate, (b) the hybrid coordinate with no 

coordinate surface smoothing, and (c) the hybrid coordinate with coordinate smoothing 

applied. 

Recall that with coordinate smoothing, the heights of model surfaces are adjusted, 

as necessary, to maintain both a smooth, monotonic vertical distribution of layer 

thickness, and a smooth horizontal profile of coordinate surface height.  The parameter 

that quantifies the vertical smoothness is the relative difference in the thickness of 

adjacent layers given by 
  
!

2
z ! z( )  as defined in equation (2.67).  For the horizontal 

smoothing we use the discrete analog of ∇4z.  As described earlier, there is an induced 

vertical mass flux associated with the smoothing process that provides an Eulerian 

component to the quasi-Lagrangian coordinate and allows isentropes to overturn. 

In the previous linear experiments coordinate height perturbations were small, so 

coordinate smoothing was not needed.  In this experiment, however, we expect it to be 

necessary, so thresholds for the absolute values of the smoothing parameters are assigned.  

These are 
  
!

2
z ! z

max

= 0.4  and ⎪∇4z⎪max = 2.1 x 10-8 m-3.  When the parameters exceed 

these values, coordinate smoothing occurs.  The diffusion coefficients for the vertical and 

horizontal smoothing, shown in equations (2.79) and (2.80), are κv = 1000 m/s and 

κh = 3.2 x 109 m4/s respectively.  For the coordinate “overturning parameter” introduced in 

equation (2.76) we use β = 0.7, and the relaxation time constant introduced in equation 

(2.64) is τ  =  0.5 hours. 
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The transient wave growth in the vicinity of the mountain is shown in Figures 

5.10 thru 5.12.  These are snapshots of the positions of isentropic and model surfaces at 

three different times.  Figure 5.10 shows that at t = 8.5 a/ū (14.17 minutes) the wave has 

amplified significantly.  There is a region of isentropic steepening located approximately 

                                                                               σ coordinates 

 
                  Hybrid coordinates (no smoothing)                            Hybrid coordinates (with smoothing) 

 
t = 8.5 a/ū (14.17 min.) 

Figure 5.10: Position of model coordinate surfaces (black curves) and selected 
isentropic surfaces (bold red curves) at t = 8.5 a/ū (14.17 minutes):  
(a) σ-coordinate run, (b) hybrid-coordinate run with no smoothing, and  
(c) hybrid-coordinate run with coordinate smoothing. 
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4 km downstream of the mountain top and at a height of 4 km.  This is in rough 

agreement with Long’s steady-state solution, as described in Laprise and Peltier (1989c), 

where this region is theoretically positioned on the order of a mountain half-width (in our 

case 2 km) downstream of the mountain top and at a height of 0.75  λG (in our case 

5.2 km). 

                                                                               σ coordinates 

 
                   Hybrid coordinates (no smoothing)                            Hybrid coordinates (with smoothing) 

 
t = 14.5 a/ū (24.17 min.) 

Figure 5.11: Same as Figure 10 except t = 14.5 a/ū (24.17 minutes). 
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The most noticeable difference among the three simulations is that with 

σ coordinates, the isentropes have already become vertically arranged in the steepening 

region, whereas with the hybrid coordinate, the steepening is not as advanced.  This 

difference is more evident at t = 14.5 a/ū (24.17 minutes) as shown in Figure 5.11.  With 

the σ coordinate, the isentropic overturning is pronounced.  With the hybrid coordinate, 

                                                                                σ coordinates 

 
                Hybrid coordinates (no smoothing)                            Hybrid coordinates (with smoothing) 

 
t = 18.0 a/ū (30.0 min.) 

Figure 5.12: Same as Figure 10 except t = 18.0 a/ū (30.0 minutes). 
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for the case without smoothing, overturning has not occurred, but with coordinate 

smoothing applied, isentropes are able to overturn, yet not as much as with the 

σ coordinate.  At the later time t = 18.0 a/ū (30 minutes), shown in Figure 5.12, the wave 

is breaking in the σ-coordinate run, as well as with the hybrid coordinate with smoothing.  

With the hybrid vertical coordinate without smoothing, overturning remains suppressed. 

The lack of wave overturning with the purely isentropic coordinate model is due 

to the fact that the sign reversal of the vertical potential temperature gradient, i.e., 

negative static stability, cannot be mathematically represented in θ coordinates.  Another 

way of viewing this is in terms of mass conservation.  In isentropic coordinates, for 

adiabatic processes, the local time tendency of the pseudo-density is equal to horizontal 

mass flux convergence (see equation (2.19) with η = θ applied).  In the overturning 

region, the convergence is positive, so m increases (in theory, asymptotically to infinity).  

Given the definition of pseudo-density, m ≡ ρ ∂z/∂θ, this means that the layer thickness Δ z 

gets big, as evident in Figure 5.12b.  In order to represent the true physical occurrence of 

static instability, i.e.,  ∂z/∂θ < 0, m would have to suddenly jump from positive infinity to 

negative infinity, which is numerically impossible.  For this reason, isentropic 

coordinates are not useful for representing wave breaking, and result in a nonphysical 

representation of wave development. 

The compromise is to apply the adaptive grid technique of coordinate smoothing.  

Figures 5.11c and 5.12c show that isentropic overturning is represented through the 

separation of the coordinate and isentropic surfaces where the wave breaks.  However, in 

regions where the wave is not overturning, the coordinate is isentropic, and the benefit of 

the QL coordinate is still achieved.  Associated with this compromise is a degree of 
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distortion in the representation of wave breaking, as evidenced by the delay in isentropic 

overturning with the adaptive grid compared to the σ coordinate (Figure 5.10c vs. 5.10a) 

and the lessening of the severity of the wave breaking (Figure 5.12c vs. 5.12a).  A 

possible explanation for this is the difference in vertical resolution between the 

simulations.  (This explanation was also given by Skamarock (1998), He (2002) and 

Zangl (2007), who observed similar behavior in their models.)  In the case of the 

smoothed hybrid vertical coordinate, layers expand in the overturning region, so this 

feature is less resolved.  With the σ coordinate there is significantly more resolution, as 

seen in the plots, so we can assume that this solution is the “true” solution compared to 

the hybrid coordinate.  The converse, however, may be true.  While layers expand with 

this coordinate in the wave breaking region, there is enhanced resolution in the regions of 

high static stability (i.e., closely spaced isentropes).  It is in these regions where the 

hybrid coordinate has an advantage over the σ coordinate.  This will be demonstrated in 

the following section. 

A downslope windstorm occurs in this idealized experiment as shown in the zonal 

wind fields in Figure 5.13.   From an initial uniform zonal wind of 20 m/s, the surface 

winds on the leeward side of the mountain exceed 50 m/s at t = 14.5 a/ū (24.17 minutes).  

Above the location of maximum surface winds, the zonal wind component has reversed 

sign (or is close to zero).  This is in the region of isentropic overturning where the 

streamlines have a westward tilt.  So there has been a transfer of westerly momentum 

down to the surface. 

Numerous studies have described the wind storm phenomenon in relationship to 

amplifying waves.  These include Scorer and Klieforth (1959), Klemp and Lilly (1975), 
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Peltier and Clark (1979) and Laprise and Peltier (1989a).  In the latter two papers, the 

flow reversal associated with wave overturning and breaking has been theorized as 

creating a resonant cavity which confines the wave energy near the surface.  This 

                                                                               σ coordinates 

 
                 Hybrid coordinates (no smoothing)                            Hybrid coordinates (with smoothing) 

 

 
t = 14.5 a/ū (24.17 min.) 

Figure 5.13: Zonal wind (m s -1) at t = 14.5 a/ū (24.17 minutes):  (a) σ-coordinate run,  
(b) hybrid-coordinate run with no smoothing, and (c) hybrid-coordinate 
run with coordinate smoothing. 
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enhances the strength of the surface winds.  In Figure 5.13b, there is little or no flow 

reversal, which is associated with the lack of wave overturning in the purely isentropic 

coordinate.  The surface winds in this case are also the weakest of the three cases, so it is 

possible that this is in support of the wave energy trapping theory, however, further study 

would be needed to confirm this.  On the other hand, the weaker surface winds may just 

be a manifestation of the poorly resolved wave breaking region with the isentropic 

coordinate.  He (2002) and Zangl (2007) also noted the relationship between suppressed 

wave breaking and weaker surface winds with the isentropic coordinate. 

We believe the noisy zonal wind field in Figure 5.13b to be a result of large 

truncation errors due to the sharp spatial gradients which develop in the isentropic 

coordinate.  This was theorized earlier, and was part of the reason for implementing the 

coordinate smoothing technique.  The disturbances seem to be worsened by a resonant 

response from the acoustic modes.  This is suggested by the frequency of the noise, 

which is close to that of sound waves characteristic of their wavelength.  So filtering 

these modes by using the anelastic system of equations or semi-implicit time 

differencing, for example, may lessen the noise. 

The hybrid coordinate with smoothing results in stronger leeward surface winds 

and more enhanced flow reversal (Figure 5.13c).  However, the field is somewhat noisy 

in the isentropic steepening region and indicates that there is still an issue with the 

acoustic modes.  Again, filtering these could help to solve this. 

The results of this experiment gives us the opportunity to compare our method of 

handling the isentropic coordinate with that of other nonhydrostatic models based on this 

coordinate.  First, it should be noted that He (2002) and Zangl (2007) obtained the same 
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relationship between the suppression of wave overturning and its effect on the zonal wind 

field with the isentropic coordinate.  They, along with Skamarock (1998), also attributed 

this to poor vertical resolution in the wave breaking regions. 

Among these models, our method of vertical coordinate handling is most similar 

to Zangl (2007).  However, our source for this experimental setup was He (2002), so we 

will compare our results directly with that model.  Table 5.1 provides a brief comparison 

of the general features of each model.  In terms of  the vertical coordinate handling, He 

(2002) specified upper and lower bounds on the layer thickness.  The lower bound 

(100 m) was designed to prevent model layers from crossing each other, and the upper 

bound (400 m) provided some vertical resolution in regions of static instability by 

eliminating the tendency for the layer thickness to become large.  Figure 5.14 shows the 

location of isentropic and model surfaces in He’s model at time t = 14.5 a/ū 

(24.17 minutes).  This corresponds to our model results shown in Figure 5.11c.  Overall, 

the pattern of isentropes is similar in both models.  However, the wave overturning in 

He (2002) is more pronounced than in our model, which is probably due to finer vertical 

Table 5.1: Comparison of general features of our model and that of He (2002). 

 Our model He (2002) model 
Prognostic variables    v, w,! , z,"  

   v,w,! , z, p  
Vertical staggering Charney-Phillips Lorenz 
Vertical coordinate η = F(θ ,σ ) 

Based on Konor and 
Arakawa (1997) 

Primarily θ 
Based on Bleck and 

Benjamin (1993) 
Adaptive grid technique Conditional diffusive 

smoothing of layer 
thickness distribution in 

the vertical and coordinate 
surface height in the 

horizontal 

Max/Min layer thickness 
specification and 2 Δx 

horizontal smoothing of 
coordinate surface height 
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resolution in the overturning region.  In this region, according to Figure 5.15b, the 

vertical resolution in our model was about 1000 m, compared to 400 m as shown in Figure 

5.14.  Another key difference between the two models is the coordinate surface pattern 

just above the overturning region.  In He’s model, it appears that the maximum layer 

thickness criterion results in the separation between coordinate and isentropic surfaces up 

to about z = 8 km.  This is just a geometric result and is the trade-off for having the 

enhanced resolution in the wave breaking region. 

Figure 5.15 illustrates the indirect effect our method of applying limits on 

  
!

2
z ! z  and ⎪∇4z⎪ has on the layer thickness in the hybrid coordinate model.  Figure 

5.15a shows the distribution of layer thickness for the case of no smoothing, and Figure 

5.15b shows the same field for the smoothing case.  There happens to be little effect on 

the minimum thickness which is approximately 70 m, but there is a large effect on the 

 
Figure 5.14: Model results from He (2002) for t = 14.5 a/ū (24.17 minutes). 
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maximum layer thickness which is reduced from 2.4 km to 1.0 km.  The reduction of the 

smoothness parameters 
  
!

2
z ! z  and ⎪∇4z⎪ to their specified maximum target values is 

shown in Figures 5.16 and 5.17, respectively.  Figure 5.16 shows the values of these 

parameters without coordinate smoothing, and Figure 5.17 shows them for the smoothing 

case. 

         Without coordinate smoothing                                      With coordinate smoothing 

 

 
Figure 5.15: Layer thickness (m) at time t = 14.5 a/ū (24.17 minutes) for the case of (a) 

no coordinate smoothing (purely isentropic) and (b) with coordinate 
smoothing. 
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                     Without coordinate smoothing                                      With coordinate smoothing 

 

 

Figure 5.16: Vertical smoothness parameter 
  
!

2
z ! z  at time t = 14.5 a/ū (24.17 minutes) 

for the case of (a) no smoothing and (b) smoothing.  Maximum specified 
value in the model is 0.4. 
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                     Without coordinate smoothing                                      With coordinate smoothing 

 

 
Figure 5.17: Horizontal smoothness parameter ⎪∇4z⎪ (m-3) at time t = 14.5 a/ū 

(24.17 minutes) for the case of (a) no smoothing and (b) smoothing.  
Maximum specified value in the model is  = 2.1 x 10-8 m-3. 
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5.3 The 11 January 1972 Boulder, Colorado Downslope Windstorm 

The next step is to demonstrate the ability of the nonhydrostatic hybrid vertical 

coordinate model to simulate an observed event – the 11 January 1972 Boulder, Colorado 

downslope windstorm.  Extensive observational and modeling data of this event is 

available which we can use to evaluate the model.  We will compare the wave 

amplification and breaking characteristics, as well as the windstorm intensity, to those of 

other models. 

The city of Boulder frequently experiences severe downslope windstorms due to 

its location on the eastern slope of the Front Range of the Rocky Mountains.  The event 

of 11 January 1972 happened to occur during a field campaign by the National Center for 

Atmospheric Research (NCAR).  In situ aircraft measurements provided a detailed 

description of the upper air structure during the storm (Lilly and Zipser, 1972).  The 

availability of such data, along with surface observations, has provided a unique 

opportunity to understand the windstorm phenomenon.  Through the subsequent 

theoretical and modeling studies (e.g., Klemp and Lilly 1975, Peltier and Clark 1979, 

Durran and Klemp 1983, Scinocca and Peltier, 1989), we are better able to explain the 

development of extreme surface wind events in relation to large-amplitude mountain 

waves and better predict their occurrence.  Despite the availability of direct observational 

mountain wave data, the mechanisms of downslope windstorms are still not fully 

understood. 

Klemp and Lilly (1975) discussed previous theories of downslope windstorm 

development and proposed an alternate mechanism.  Some of the prior theories were 
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based on hydraulic jump theory (Kuettner 1959; Houghton and Isaacson 1968; Arakawa 

1969) in which the atmosphere was modeled with two or more constant density layers 

topped by a free surface.  Others attributed the extreme surface winds to the trapping of 

wave energy by short wavelength nonhydrostatic lee waves that form downstream of the 

mountain range (Scorer and Klieforth, 1959; Aanensen, 1965).  Based on the observed 

upper air data, Klemp and Lilly noted the long horizontal wavelength, and, therefore, 

hydrostatic nature, of the amplifying mountain wave.  From analytical and numerical 

model results, based on linear, two-dimensional, steady-state hydrostatic assumptions, 

they were able to produce realistic results.  These supported their theory that the 

dominant effect is the partial reflection of vertically propagating wave energy by layers 

of varying static stability.  The resulting downward westerly momentum transport by the 

wave is responsible for the high surface winds that develop. 

It should be pointed out that Klemp and Lilly used the isentropic vertical 

coordinate in their numerical model.  They did so expressly to take advantage of the 

enhanced vertical resolution that develops in regions of high static stability which is 

where the phase of the wave changes more rapidly.  In our nonhydrostatic hybrid 

coordinate model we also found that regions of high static stability were more accurately 

represented with the isentropic coordinate. 

Peltier and Clark (1979) analyzed the role of nonlinear, nonhydrostatic, transient 

effects on downslope windstorms.  Their numerical results showed that isentropic 

steepening and breaking lee waves, along with the associated flow reversal, causes a 

breakdown in the upward propagation of  wave energy.  This revisits the earlier theories 
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of the role of lee waves in trapping wave energy and contributing to windstorm 

formation. 

5.3.1 Model configuration and initialization 

Our experimental setup is based on Doyle et al (2000) which compared the 

Boulder windstorm simulations generated by various models.  The simulation is 

performed on a two-dimensional (x-z) plane with no rotation.  The Front Range of 

Colorado is represented by a witch of Agnesi curve with the height and half-width set at 

h = 2 km and a = 10 km, respectively.  The free-slip condition is applied at the lower 

boundary.  The horizontal domain is 220 km in extent, and in our case we use periodic 

lateral boundary conditions.  The horizontal grid spacing is Δx = 1 km. 

The model top is a rigid lid at z = 48 km.  We placed the model at this height in 

lieu of using an absorbing layer.  For simulation periods of ~ 3 hours, we found that, in 

the region of interest which lies below 25 km, there is little evidence of artificial wave 

reflection from the upper boundary.  In fact, model results with the model top at 25 km, in 

this time period, produced nearly the same results as with the higher top.  This may be 

due to internal wave reflection and absorption, which occurs below the 25 km level, that 

is associated with critical layers and sharp gradients in the wind shear and stability 

profiles. 

At the initial condition, the average vertical grid spacing is constant up to 35 km 

in height.  Above this we employ a stretched vertical grid to save on the computational 
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cost by reducing the total number of model levels.  This is done in a smooth manner by 

gradually increasing layer thickness up to the model top of 48 km. 

We performed two runs using the hybrid vertical coordinate with the same 

number of levels as in Doyle et al (2000), i.e., 125 levels in the lowest 25 km, giving an 

average vertical grid spacing of 200 m.  The two cases differ in the way the coordinate 

transitions from terrain-following σ  to isentropic coordinates.  This was done by running 

the model with two different values for θmin in the specification of the hybrid vertical 

coordinate (see equation (2.61)). 

In the σ coordinate runs, we used the same number of levels as in the hybrid case, 

but we also performed simulations with a higher vertical resolution of 500 levels in the 

lowest 25 km (grid spacing ~ 50 m).  We use these as benchmarks representing more 

accurate  (or “true”) solutions with which to compare the lower resolution runs.  Table 

5.2 lists the model configurations and names are assigned to each run to be used for 

reference. 

The initial conditions, shown in Figure 5.18, are uniformly applied in the 

horizontal.  They are from Doyle et al (2000) and are based on the upstream 1200 UTC 

11 January 1972 Grand Junction, Colorado sounding up to 25 km.  For model levels 

above this height, a constant zonal wind of 7.5 m s -1 is applied and the temperature profile 

smoothly merges with that of the U. S. Standard Atmosphere.  The reference surface 

pressure corresponding to z = 0 is 850 mb.  The zonal wind refers to the cross-mountain 

flow, that is, the wind component normal to the Front Range which basically runs 

north-south. 
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The temperature sounding (Figure 5.18b) indicates that the tropopause is located 

at approximately 10 km.  There are multiple layers of varying static stability in the 

stratosphere above this height.  In the lower troposphere, a stable layer exists from 

Table 5.2: Model configurations for the 11 January 1972 Boulder, Colorado 
windstorm simulations. 

Model run Vertical 
coordinate 

# levels 
in lowest 

25 km 

Average Δz 
in lowest 

25 km 

Δx zTOP Total # 
levels 

Hybrid125_20K Hybrid 
(θmin = 20 K) 

125 200 m 1 km 48 km 205 

Hybrid125_270K Hybrid 
(θmin = 270 K) 

125 200 m 1 km 48 km 205 

Sigma125 σ 125 200 m 1 km 48 km 205 

Sigma500 σ 500 50 m 1 km 48 km 820 

Sigma500fine_dx σ 500 50 m 250 m 25 km 500 

 

 
 

Figure 5.18: Vertical profiles of (a) the zonal wind and (b) temperature used as the 
initial condition for the 11 January 1972 Boulder, Colorado windstorm 
simulation.  The data is from Doyle et al (2000) and is based on the 11 
January 1200 GMT Grand Junction, Colorado sounding. 
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2.5 - 6 km and it is bounded on top and bottom by unstable layers.  The winds throughout 

the troposphere are strong, though not extreme (Figure 5.18a).  There are several levels of 

varying wind shear and at the 21 km height there is a critical level where the winds are 

almost zero.  The presence of a stable layer with a base located just above mountain top 

height and strong tropospheric winds creates a favorable condition for the development of 

a downslope windstorm (Klemp and Lilly, 1975). 

In the two hybrid-coordinate simulations, referred to as Hybrid125_20K and 

Hybrid125_270K, the parameter θmin  is assigned a value of 20K and 270K respectively 

(see equation (2.61)).  The effect of these two choices on the vertical coordinate profile is 

shown in Figure 5.19.  For θmin = 20K, which is obviously a value much colder than exists 

in the model domain, the coordinate differs considerably from the potential temperature 

 
 

Figure 5.19: Vertical profiles of the vertical coordinate (black curves) and potential 
temperature (red curves) at the initial time.  Panel (a) is for the hybrid 
coordinate with θmin = 20 K, and panel (b) is for the hybrid coordinate with 
θmin = 270 K. 
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from the surface to ~ 7 km (Figure 5.19a).  This results from the system of equations 

(2.58)-(2.62) as well as the large difference between θ and θmin .  It means that the 

coordinate η is a function mainly of σ throughout this layer, therefore, it can remain 

monotonic in the presence of considerable negative static stability.  On the other hand, for 

θmin = 270K, the difference between θ and θmin  is small so the coordinate is more 

isentropic than in the previous case (Figure 5.19b).  Therefore, less negative static 

stability can occur near the surface before the coordinate tends to become nonmonotonic, 

in which case coordinate smoothing acts to prevent layer thicknesses from becoming 

zero.  In both hybrid-coordinate simulations, the remaining coordinate parameters are set 

to (∂θ/∂σ)min  = 0 K and r = 16.  Thus the coordinate is primarily isentropic above z = 10 km 

as shown in Figure 5.19. 

5.3.2 Potential temperature field and static stability 

Results after 1 hour of simulation are shown in Figure 5.20, which depicts the 

potential temperature field.  (In these figures, the westerly flow is from left to right.)  The 

mountain wave has substantially developed throughout the troposphere and lower 

stratosphere.  There is generally an upwind tilt to the phase lines.  A hydraulic jump 

feature has developed in the lower troposphere approximately 20 km downstream of the 

mountain top with lee waves of horizontal wavelength ~ 10 km appearing just 

downstream of the jump.  There is also considerable wave development above the 

hydraulic jump at the base of the stratosphere, with lee waves appearing just downstream 

as well. 
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All four simulations shown in Figure 5.20 agree well with each other.  The most 

noticeable difference is that in the σ coordinate runs, isentropes are already beginning to 

overturn at the 19 km level.  This overturning is more advanced with the high vertical 

resolution Sigma500 run.  In the hybrid coordinate runs, overturning has not occurred yet.  

This is likely due to the decreased resolution of the isentropic coordinate in areas of low 

static stability, and is consistent with the results of the previous finite amplitude mountain 

wave experiment in Subsection 5.1.3. 

In the hybrid coordinate runs (Figures 5.20c and 5.20d), note that the coordinate 

surfaces (red curves) closely follow the isentropes above ~ 10 km.  The distinction 

between the vertical coordinate characteristics between the Hybrid125_20K and 

Hybrid125_270K runs, already discussed, is evident in these figures.  In the latter 

simulation, where the coordinate is more θ -like near the surface, the coordinate surfaces 

(red curves) are more closely aligned with the isentropes in the lowest ~ 7 km than they 

are in the Hybrid125_20K case. 

At t = 2 hours wave breaking is shown by the irregular isentropic surfaces in 

Figure 5.21, particularly at z = 15 km just downstream of the mountain, and in the lower 

troposphere just downstream of the hydraulic jump.  However, the wave breaking 

features are somewhat smoother in the hybrid coordinate simulations.  Again, this is most 

likely due to the coarse vertical resolution in these regions as evident from the larger 
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vertical separation between the coordinate surfaces compared to those of the Sigma125 

simulation.  The effect of coarser resolution can also be seen in comparing the two hybrid 

coordinate simulations, where the wave overturning just downstream of the lower-

troposphere hydraulic jump is more poorly resolved in the Hybrid125_270K run (Figure 

5.21d) than in the Hybrid125_20K run (Figure 5.21c). 

Given the same number of model levels, the hybrid coordinate does a better job 

than the σ coordinate at resolving regions of high static stability (i.e., where isentropes 

are closely spaced in the vertical).  In Figures 5.21c and 5.21d there are horizontal bands 

of closely packed isentropes at roughly the 11 km, 12.5 km, 17 km, 19 km and 21 km 

levels.  (These are actually features of the initial θ sounding as shown by the red curves 

of Figure 5.19.)  These bands are more pronounced than those of the Sigma125 

simulation shown in Figure 5.21b.  (This is more obvious in the static stability plots of 

Figure 5.22.)  The bands of tightly spaced isentropes in the 125 level hybrid coordinate 

runs are also present in the high resolution Sigma500 run, shown in Figure 5.21a.  This 

indicates that they are physical features that are not resolved by the 125 level σ 

coordinate simulation.  This point is reinforced by Figure 5.22 which compares the static 

stability as given by the square of the buoyancy frequency.  In terms of the regions of 

positive static stability, the Hybrid125 simulations have more in common with the high 

resolution Sigma500 run than with the Sigma125 simulation.  However, in terms of 

negative static stability, the Sigma125 simulation compares better to the “true” solution 

than does the Hybrid125 runs. 
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Figure 5.23 shows the isentropic field at t = 3 hours.  Again there is general 

agreement among the four model configurations.  Our results also compare well with the 

models analyzed in Doyle et al (2000).  Figure 5.24 shows the θ field at 3 hours for the 

Penn State-NCAR Mesoscale Model (MM5). 

We also performed a high resolution σ coordinate run (“Sigma500fine_dx” listed 

in Table 5.2) in which both the vertical and horizontal resolutions are 4 times finer than 

the standard resolution.  Figure 5.25 shows the results of this simulation at t = 2 hours 

which can be compared to the potential temperature and static stability fields in Figures 

5.21 and 5.22 respectively.  There is general agreement among the fields in terms of the 

vertical wave structure and the horizontal wave structure on scales down to ~ 10 km.  This 

indicates that these are actual physical features resolved by the model.  Finer details of 

the flow appear in the Sigma500fine_dx simulation which should be expected due to the 

finer resolution.  Comparing the static stability plot of the high resolution run (Figure 

5.25b) to those of the coarse horizontal resolution Hybrid125 runs (Figures 5.22c and 

5.22d), we see that the hybrid coordinate accurately represents the features with high 

static stability. 
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Figure 5.24: Potential temperature field at t = 3 hours for the Penn State-NCAR 
Mesoscale Model (MM5).  Same contour interval as Figure 5.20.  From 
Doyle et al (2000). 
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Figure 5.25: Isentropic surfaces (a) and static stability N  2 = gθ  -1∂θ /∂z (s-2) (b) at time 
t = 2 hours with the high vertical and horizontal resolution σ-coordinate 
model run (i.e., 500 levels in the lowest 25 km and Δx = 250 m).  The 
contour interval is 8 K in the isentropic plot. 
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5.3.3 Bulk Richardson number 

Plots of the bulk Richardson number (RB) at t = 3 hours are shown in Figure 5.26 

(this figure actually shows ⎪RB⎪
0.5

 sgn(RB) for graphical purposes).  This dimensionless 

parameter is a measure of the dynamic stability of the flow field and is defined as 

RB ≡ ( g /θ ) δθ δz / (δ u)2, where the δ’s are vertical differences across model layers.  When 

RB is less than the critical value of approximately 0.25, the flow is dynamically unstable 

and turbulent (Stull, 1988).  The regions where this condition is satisfied in Figure 5.26 

correspond well to the wave breaking regions seen in the potential temperature fields in 

Figure 5.23.  The suppression of turbulence due to the isentropic coordinate is evident in 

Figures 5.26c and 5.26d when compared to the σ coordinate plots in panels a and b.  In 

the latter figures, the zones of negative RB  are larger and more coherent, particularly in 

the wave breaking layers in the middle stratosphere at the 16, 18 and 20 km heights. 

5.3.4 Zonal wind field and surface drag 

The zonal wind field at t = 3 hours is shown in Figure 5.27.  The wave activity has 

redistributed the horizontal momentum from the purely westerly, horizontally uniform 

initial condition.  Easterly winds have developed associated with wave overturning.  

These are more prominent in the σ coordinate runs.  In other areas the westerly winds 

have greatly intensified.  For example, in the upper troposphere at the 8 km height and  
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~ 25 km downstream of the mountain top, the wind speed is ~ 80  m s-1 compared to the 

initial wind speed of ∼40 m s-1. 

The main feature of interest is the intense surface wind on the leeward slope of 

the mountain, which represents the downslope windstorm.  There is a localized wind 

maximum located 10-15 km downstream of the mountain top in all four model 

simulations.  This localized intensity is generally observed in downslope windstorm 

events.  Boulder, Colorado often finds itself situated underneath the wind maxima, as was 

the case on January 11, 1972.  The intensity of the maximum surface winds is larger in 

the hybrid-coordinate runs (~ 62 m s-1) than in the σ-coordinate runs (~ 56 m s-1).  In the 

MM5 model (Figure 5.28) these winds were ~ 72 m s-1.  The differences among the 

models may partly be attributed to the transient nature of the winds.  For reference, peak 

 
 

Figure 5.28: Zonal wind (m s-1) at time t = 3 hours for the Penn State-NCAR Mesoscale 
Model (MM5).  Same contour interval as Figure 5.27.  From Doyle et al 
(2000). 
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gusts of 45-55 m s-1 were recorded at the surface (Lilly and Zipser, 1972).  The free-slip 

lower boundary condition may be the reason for the overestimation of the winds by the 

models. 

The surface pressure drag, given by 
  

D = ! p
S
"z

S
"x( )dx

x

!# , is diagnosed and 

plotted as a time series in Figure 5.29.  Throughout most of the simulation the drag has a 

negative value which means that the mountain applies a net force on the atmosphere in 

opposition to the westerly motion.  The drag peaks at about t = 3 hours and then decreases 

and becomes slightly negative after about 4.5 hours.  This latter “dying-out” phase is due 

to the periodic lateral boundaries and that we therefore do not supply energy by way of an 

 
 

Figure 5.29: Time series of the surface pressure drag for the 11 January 1972 Boulder 
windstorm simulations using the σ coordinate with 500 levels (black 
curve) and 125 levels (red curve) in the lowest 25 km, and the hybrid 
coordinate with 125 levels in the lowest 25 km for θmin = 20 K (green 
curve) and θmin = 270 K (blue curve). 
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inflow upstream boundary as in Peltier and Clark (1979) and Durran and Klemp (1983).  

However, our surface pressure drag compares well, in order of magnitude terms, with 

their models. 

Figure 5.29 shows that there is good agreement in the surface pressure drag 

among the four model simulations during the wave development period t ≅ 0-2 hours.  

During the time period following this, the Hybrid125_20K simulation closely follows the 

“true solution” of the Sigma500 run.  However, the agreement is not as good with the 

Hybrid125_270K simulation.  Note that the Sigma125 results deviate the most from the 

“true solution”. 

A notable quasi-periodic pulsing of the surface pressure drag, with a period of 

about 15 minutes, can be seen in Figure 5.29.  These fluctuations were analyzed by 

Scinocca and Peltier (1989), who attributed them to the transience of the time dependent 

fields associated with wave breaking.  Figure 5.30 shows a time series plot of the winds 

in the lowest model layer of the Hybrid125_20K simulation at a location 13 km 

downstream of the mountain top.  The pulsing begins at about t = 1.5 hours when wave 

breaking is established.  The amplitude of the pulsing is large during the period from 

2-4 hours when wave breaking is most active. 

5.3.5 Tracer advection 

The most striking difference between the hybrid and σ coordinate model runs is in 

the vertical advection of a passive tracer.  Here we see a distinct advantage with the 

isentropic coordinate.  In order to isolate the effects of vertical advection as much as 



 165 

possible, the passive tracer is initialized along horizontal bands bounded by selected 

isentropes as shown in Figure 5.31a.1  The tracer is assigned the arbitrary value of unity 

inside the bands and zero outside.  This can also be viewed in a scatter plot of tracer 

concentration versus potential temperature for all model points as shown in Figure 5.31b.  

In the continuous system of equations for adiabatic processes, since θ is conserved, the 

 

1 With the terrain-following σ coordinate, there are nonzero vertical and 
horizontal gradients of the tracer along coordinate surfaces.  Therefore, from the 
outset, this coordinate is at a disadvantage over the pure z and θ coordinates.  
However, we tested the model with an alternate z-based vertical coordinate based 
on Schar et al (2002).  With this Eulerian coordinate the effects of the surface 
topography vanish rapidly with height and, in our case, the coordinate is basically 
z at a height of 10 km and above.  The tracer fields (not shown here) using this 
alternate vertical coordinate were almost indistinguishable from those of the 
Eulerian σ coordinate.  Therefore, the argument that the quasi-Lagrangian θ 
coordinate has an inherent advantage over the σ coordinate is valid. 

 
 

Figure 5.30: Time series of the zonal component of the surface wind at a grid point 
located 13 km downstream of the mountain top.  Results for the 
Hybrid125_20K simulation are shown. 
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correlation between θ and the passive tracer remains unchanged in time assuming no 

diffusion of either property.  This means that the scatter plot of tracer concentration 

versus θ should remain unchanged, and there should be no other value of tracer 

concentration besides the initial values of 0 and 1. 

Profiles of the tracer concentration after 70 minutes of simulation time are shown in 

Figure 5.32.  In contrast to the initial condition shown in Figure 5.31a, there are now 

other tracer concentration values besides 0 and 1, and some of the tracer has “leaked” 

outside of the original isentropic bounds indicated by the bold black curves.  This has 

occurred because of numerical dispersion associated with the vertical advection terms of 

the tracer tendency equation.  The dispersion error is most evident where the coordinate 

is σ, i.e., in Figures 5.32a and 5.32b and the lowest band in the hybrid coordinate plots of 

Figures 5.32c and 5.32d.  At t = 70 minutes, wave overturning has not yet occurred and  

 

 
 

Figure 5.31: (a) Contour plot of the initial passive tracer concentration (colors) and the 
isentropes bounding the tracer bands (black curves).  (b) Scatter plot at 
t = 0 of the tracer concentration versus potential temperature. 
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there has been minimal coordinate smoothing in the hybrid vertical coordinate runs.  

Therefore, the vertical velocity in the θ -coordinate regions of the hybrid coordinate has 

been virtually zero up until this time.  The effect of this can be seen in Figures 5.32c and 

5.32d in the upper three tracer bands as compared to those of Figures 5.32a and 5.32b. 

These effects mentioned above are more noticeable in the scatter plots of Figure 

5.33.  The difference between the top tracer band among the four simulations is the most 

striking.  With the hybrid vertical coordinate (Figures 5.33c and 5.33d), the scatter points 

lie along the theoretical profile indicated by the red lines.  In the 125-level σ coordinate 

simulation (Figure 5.33b), the profile of the upper band differs significantly from 

theoretical profile due to the dispersion error.  The 125-level hybrid coordinate model 

even has a definite advantage over the high-resolution 500-level σ coordinate simulation 

(Figure 5.33a), where some dispersion error is evident at the discontinuities in the 

original profile.  It should be noted that this is a rather severe test case as we are 

demanding a lot of the numerical advection schemes.  When advecting a property that has 

a sharp discontinuity, it is difficult to avoid some dispersion error.  There are alternative 

schemes to the one we use, which is based on the upstream-weighted scheme of Takacs 

(1985), that minimize such error.  However, our purpose here is to demonstrate the 

inherent advantage of the quasi-Lagrangian θ coordinate through its diminution of the 

vertical velocity. 
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Returning to Figure 5.32, there is a noticeable difference between the appearance 

of the lowest band in the two hybrid coordinate simulations.  In Figure 5.32d the vertical 

coordinate is more θ -like near the surface than in the simulation of Figure 5.32c.  As a 

consequence, there is less dispersion error downstream of the hydraulic jump in the 

former case. 

 

Figure 5.33: Scatter plots at time t = 1hr10min of the passive tracer concentration versus 
potential temperature using the σ coordinate with (a) 500 levels and (b) 
125 levels in the lowest 25 km, and the hybrid coordinate with 125 levels 
in the lowest 25 km for (c) θmin = 20 K and (d) θmin = 270 K. 
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Figures 5.34 and 5.35 are scatter plots at simulation times 2 and 3 hours 

respectively.  At these times, the hybrid coordinate experiences some dispersion error 

which is due to the vertical velocities induced by the coordinate smoothing.  Despite this, 

the hybrid coordinate exhibits less error than the Sigma125 simulations.  It is comparable 

to, if not better than, the high resolution Sigma500 runs, but achieves this with fewer 

model levels.  This is an attractive feature of the hybrid coordinate. 

 
 

Figure 5.34: Same as Figure 5.33 except at time t = 2 hours. 
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5.3.6 Integral property evaluation 

In Chapter 3 we developed a vertical finite difference scheme which preserves 

various integral constraints found in the continuous system of equations.  These include 

conservation of mass, conservation of total energy, and conservation of the vertically 

integrated momentum circulation.  We verified that the model conserves mass.  

Conservation of potential temperature under adiabatic conditions is not satisfied, 

 
 

Figure 5.35: Same as Figure 5.33 except at time t = 3 hours. 
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however.  The scheme was shown to satisfy these constraints only for case of z 

coordinates and when centered-difference advection schemes are used in the mass, 

potential temperature and geopotential tendency equations.  In our model we do not meet 

these requirements because we neither use the z coordinate nor employ 

upstream-weighted advection schemes.  In this subsection we empirically evaluate the 

degree to which these constraints are violated by examining time series of  the 

mass-weighted mean total energy and potential temperature, as well as of the total zonal 

momentum. 

The integral constraints on total energy and potential temperature were formulated 

assuming adiabatic, frictionless processes.  Therefore, we performed model runs of the 11 

January 1972 Boulder windstorm without the subgrid scale turbulence parameterization 

in order to evaluate the integral properties of the model.  These include a σ coordinate 

run and a hybrid coordinate run, each with 125 levels in the lowest 25 km.  The 

mass-weighted mean value of a given property A is calculated as 

  

A
*
= mA m = (mA)

i,k
(!")

k
#$ %&

i,k

' m
i,k

(!")
k

#$ %&
i,k

' , where the overbars are volume-

weighted averages over the domain. Figure 5.36 shows the time series of the energy 

budget.  The changes from the initial condition of the mass-weighted mean internal 

energy 
  
c

v
T

*

, geopotential energy 
 
! *  , kinetic energy 

  
1 2u

2
*

 and their sum, the total 

energy, are plotted.  If total energy were conserved then the change in total energy would 

be zero.  Instead, there is a gradual increase in total energy with both the σ and the hybrid 

coordinates. 
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Figure 5.37 shows the time series of the mass-weighted mean potential 

temperature  !
* .  In both runs the potential temperature is relatively constant until 

approximately t = 1.5 hours, when it starts to increase (at a higher rate in hybrid coordinate 

run).  The increase starts at about the time wave breaking becomes active and sharp 

spatial gradients in the potential temperature develop.  The explanation may therefore be 

attributed to the large error in the potential temperature advection terms resulting from 

these sharp gradients. 

Finally, we examine the total zonal momentum budget given by 

  

(mu)
i,k

(!")
k
#x$% &'

i,k

( .  If the constraint on the vertically integrated momentum circulation 

were satisfied, then the time integral of the surface pressure drag would equal the total 

zonal momentum.  The total zonal momentum and the zonal momentum inferred from the 

surface pressure drag are plotted in Figure 5.38.  Figure 5.38a shows that there is close 

agreement between these two time series for the Sigma125 simulation.  However, in both 

 
 

Figure 5.36: Time series of the mass-weighted mean energy budget for (a) the σ 
coordinate, and (b) the hybrid coordinate with θmin = 20 K.  The vertical 
resolution in each run was 125 levels in the lowest 25 km. 
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the Hybrid125_20K and Hybrid125_270K runs, there is a slight deviation between the 

two curves.  This may be due to the fact that the σ coordinate approximates the 

z coordinate away from the mountain, and, therefore, the momentum circulation integral 

constraint is satisfied in these regions.  The same is not true with the hybrid coordinate 

which is isentropic in most of the domain. 

5.4 Summary and conclusions 

The hybrid (θ - σ) vertical coordinate model was extensively tested with 

two-dimensional mountain wave experiments and the results compared well with those of 

the traditional Eulerian σ coordinate.  Linear experiments produced wave fields that 

 
 

Figure 5.37: Time series of the mass-weighted potential temperature for (a) the σ 
coordinate, and (b) the hybrid coordinate with θmin = 20 K.  The vertical 
resolution in each run was 125 levels in the lowest 25 km. 
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agreed well with analytical solutions.  The vertical flux of horizontal momentum was 

analyzed and compared between the isentropic and σ coordinate frameworks.  In both 

cases the flux profiles were approximately the same.  However, with the isentropic 

coordinate, the main contributor to the flux was the form drag on coordinate (isentropic) 

 
 

 
 

Figure 5.38: Time series of the zonal momentum (black curves) and the zonal 
momentum inferred from the time integration of the surface drag (red 
curves) for (a) the σ coordinate, (b) the hybrid coordinate with θmin = 20 K, 
and (c) the hybrid coordinate with θmin = 270 K.  The vertical resolution in 
each case was 125 levels in the lowest 25 km. 
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surfaces, while with the σ coordinate, the eddy momentum flux was the primary means of 

momentum transport.  This distinction between the two coordinate systems is readily 

evident in the continuous equations.  The experimental analysis provided a validation of 

the numerical construction of the model. 

Nonlinear mountain wave experiments provided an opportunity to test the ability 

of the hybrid coordinate to adapt to isentropic overturning.  Wave breaking was handled 

well by the coordinate in both an idealized isothermal, uniform-flow experiment and a 

simulation of the 11 January 1972 Boulder, Colorado downslope windstorm.  However, 

with the hybrid coordinate, the degree of dynamic instability associated with wave 

overturning is suppressed compared with the σ coordinate simulations.  This is seen by 

comparing the bulk Richardson number fields.  Tests suggest this is due to the decreased 

vertical resolution of the hybrid coordinate in statically unstable regions. 

The hybrid coordinate gives comparable results for surface winds on the leeward 

slope, but does not have an advantage over the σ coordinate in this respect.  Both the 

hybrid and σ coordinate Boulder windstorm simulations produced realistic surface winds 

on the leeward slope of the mountain range.  These were similar to other model results 

(e.g., Doyle et al 2000) and to the surface winds observed during the storm.  Also, both 

models produced similar time series of the surface pressure drag. 

The hybrid vertical coordinate had an advantage over the σ coordinate in 

resolving features of high static stability.  This results from the enhanced vertical 

resolution with the isentropic coordinate.  Highly stable regions on plots of static stability 

from the hybrid coordinate compared well with those of the σ coordinate run with 4 times 
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the number of model levels.  These features were not well resolved with the σ-coordinate 

run using the same number of model levels as with the hybrid coordinate simulation. 

The integral properties of total energy, potential temperature and zonal 

momentum circulation conservation were evaluated.  Simulations without the subgrid 

scale turbulence parameterization were performed.  Time series plots from these runs 

indicated a gradual increase of the mass-weighted mean total energy and potential 

temperature.  It remains to be determined how significantly this will impact performance 

when the dynamical core is incorporated into a weather and climate forecasting model. 

For performance in the free atmosphere, where the hybrid coordinate is primarily 

isentropic, tracer transport tests clearly displayed the advantage of the quasi-Lagrangian θ 

coordinate.  There was substantially less dispersion error associated with vertical 

advection using the hybrid coordinate, even with the high vertical resolution σ coordinate 

simulation at early simulations times before wave breaking occurred. 

We have demonstrated that the hybrid coordinate in the nonhydrostatic 

framework has advantages over the σ coordinate in various situations.  Further work will 

help to establish the extent to which benefits can be realized in practical applications. 
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Chapter 6  SUMMARY AND CONCLUSIONS

We have presented a new nonhydrostatic, hybrid-vertical-coordinate atmosphere 

model which uses the quasi-Lagrangian θ coordinate throughout much of the vertical 

domain.  We avoided the problem of isentropic coordinate surfaces intersecting the lower 

boundary by using the hybrid-coordinate approach, in which a terrain-following vertical 

coordinate is used near the surface.  Our starting point in the model design was the hybrid 

vertical coordinate developed by Konor and Arakawa (1997) for quasi-static models.  We 

then modified it for nonhydrostatic modeling of fine-scale motion in which overturning 

of isentropic surfaces frequently occurs at any altitude.  This was done by adding an 

adaptive grid technique which allows the coordinate to deviate from purely isentropic to 

allow negative static stabilities (i.e., ∂θ /∂z < 0) while maintaining model layer separation.  

After positive static stability is restored, the coordinate is relaxed back to being 

isentropic. 

We performed extensive model tests with two-dimensional mountain-wave 

experiments, and the results compared well with those of the commonly used Eulerian 

height-based, terrain-following σ coordinate run with very high vertical resolution.  

Small-amplitude wave simulations demonstrated the quasi-Lagrangian characteristics of 

vertical momentum transport in θ coordinates.  This transport was shown to manifest 

itself as the pressure form drag acting on coordinate surfaces, as opposed to an eddy flux 
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transport as in the Eulerian framework.  Such a quasi-Lagrangian view of atmospheric 

processes is useful for understanding the general circulation of the atmosphere. 

Large-amplitude mountain wave experiments showed the ability to represent 

isentropic overturning and wave breaking in the θ-coordinate domain of the model, which 

proved the adaptive features of the coordinate.  These tests included an idealized 

isothermal case and a simulation of the 11 January 1972 Boulder, Colorado downslope 

windstorm.  Use of the hybrid coordinate resulted in superior performance over the σ 

coordinate in the following ways: 

• A reduction of error in the vertical tracer transport of a passive tracer 

• Improved vertical resolution of layers with high static stability 

The first of these advantages is due to the elimination of the vertical velocity for adiabatic 

flow in the framework of isentropic coordinates.  The second is due to the concentration 

of model layers that naturally develops with the θ coordinate in regions of high static 

stability.  However, the turbulence and degree of instability (as measured by the bulk 

Richardson number) associated with wave breaking was somewhat suppressed with the 

hybrid coordinate.  This is likely due to the decrease in vertical resolution in these regions 

because of the relatively large vertical separation of isentropic surfaces. 

We developed a vertical discretization scheme using the generalized vertical 

coordinate (η) which satisfies various integral constraints found in the continuous system.  

These constraints include the conservation of the vertically integrated momentum 

circulation and the conservation of total energy.  However, in the model, we use a 

modified version of the scheme that only satisfies the constraints for the case of η = z.  
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This compromise was made in order to avoid a computational mode which appears in the 

σ-coordinate form of the equations with the former scheme.  

The use of terrain-following coordinates in numerical models is known to be 

problematic when the slope of the coordinate surfaces is large (e.g., Mesinger and Janjic 

1985).  This is due to the horizontal pressure gradient force which, in this coordinate 

system, is the expressed as the difference between two terms [see equation (2.14)].  The 

magnitude of each of the terms can become many orders of magnitude larger than their 

difference – the horizontal pressure gradient force – which can result in large 

discretization errors in the motion field.  This becomes more of an issue as the horizontal 

resolution of weather and climate forecasting models becomes finer and highly resolved 

topographical features lead to steeper coordinate sloping. 

The use of height coordinates avoids the problem described above.  Recent 

developments have been made for reconciling z-coordinate intersections with surface 

topography through the use of “shaved cells” (Adroft et al. 1997).  The concept is shown 

in Figure 6.1a, which shows a vertical cross section in the vicinity of a narrow mountain.  

A regular grid is featured away from the lower boundary, while cells that intersect the 

surface are “shaved”.  Through a finite-volume formulation, the shaved cells are treated 

the same as the regular cells except that they have reduced volumes and a different cell 

wall geometry through which the fluxes pass.  Such a method could be used in the hybrid 

coordinate framework with z coordinates serving as the Eulerian grid near the surface in 

place of the terrain-following coordinate.  However, another possibility may be to retain 

the benefits of the σ coordinate in regions where the large-scale (~100 km) topography is 

gently sloping, and “shave” the σ-coordinate cells only where small-scale topography is 
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encountered (for example, the buttes found occasionally in the Great Plains).  Figure 6.1b 

illustrates how this might be done.  In this configuration, fewer cells are “shaved” 

because the coordinate is terrain-following over the slowly varying topography. 

In nonhydrostatic, compressible dynamical cores, vertically propagating acoustic 

waves are supported which are meteorologically insignificant.  Because of the high speed 

at which these waves propagate and the high vertical resolution we use in the model, this 

limits the size of the time step we can take due to numerical instability.  We currently use 

the explicit third-order Adams-Bashforth time-differencing scheme so these time steps 

are necessarily small and the acoustic waves are actually resolved.  The relatively thin 

layers which develop in the θ coordinate limited our simulations to 2D for practical 

reasons.  The model is capable of running in 3D, so a next step is to test the model in that 

capacity.  (Three-dimensional test results of an early version of the σ -coordinate model 

are included in Appendix D.)  For a 3D test of the hybrid-coordinate to be feasible, it will 

be necessary to run the model with longer time steps.  Therefore, the next step in the 

model development will be to either implement a semi-implicit time differencing method 

 
 

Figure 6.1: Shaved cells (shaded boxes) in (a) z coordinates and (b) a terrain-
following σ coordinate based on a smoothed terrain profile (dashed bold 
line).  Note that fewer cells are “shaved” with the σ coordinate. 
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to stabilize the vertically propagating acoustic waves or to use an alternative system of 

equations (such as the anelastic system) which filters them or eliminates them all 

together. 

The eventual goal is to build a cloud system resolving model based on the 

nonhydrostatic, hybrid-vertical-coordinate dynamical core we developed.  Inclusion of 

moist processes is essential for producing realistic simulations of weather and climate.  

Clouds and precipitation have a profound impact on the energy budget of the atmosphere 

through radiative and latent heating effects.  As we demonstrated, using the isentropic 

vertical coordinate increases the accuracy of vertical tracer transport.  When moisture and 

cloud physics parameterizations are introduced in the model, we expect this strength to 

provide an advantage over conventional Eulerian-coordinate models in providing more 

accurate vertical cloud distributions. 

Nonhydrostatic atmospheric models using potential temperature as the vertical 

coordinate have been successfully developed in the past decade.  The present model 

further proves the feasibility of representing fine-scale motion in this coordinate 

framework.  This scheme has distinct advantages, as illustrated, which are open to future 

development and application. 
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Appendix A SUPPLEMENTAL MODEL INFORMATION 

A.1 Upstream-weighted vertical advection schemes for θ  and φ  

Recall from Chapter 4 that potential temperature and geopotential are advected in 

the model by portions of the total generalized vertical velocity using upstream-weighted 

schemes.  These are based on the scheme of Takacs (1985) which is third-order accurate 

in space and time for uniform flow and grid spacing.  In the present schemes, we 

prescribe upstream-weighted fluxes similar to those of Takacs.  However, instead of a 

using a predictor-corrector sequence, we use Adams-Bashforth third-order accurate time-

differencing.  The following subsections describe the model’s vertical advection schemes 

for θ  and φ.  Except where noted, we use the variables and notation defined in Chapter 3. 

A.1.1 Vertical θ -advection scheme 

Potential temperature is advected using an upstream-weighted scheme by the 

portion of the generalized vertical velocity given by 
   
!!

T ,"
+ !!

S
 (see Table 4.1 and 

Section 4.3.2).  (To simplify the notation in the following equations, we will use 
 
!!  to 

represent this portion.)  In the scheme, the vertical advection term for θ  is written 
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The vertical mass fluxes used in (A.4)-(A.6) are defined as 
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The Gθη terms in (A.1)-(A.3) are the upstream-weighted contributions to the 

potential temperature flux.  Note that if these are assumed to be zero, the scheme reduces 

to the centered scheme in equations (3.116)-(3.118).  Also, note that in an isentropic 

atmosphere where θ k  +1/2 is a constant for all k, the contribution to the potential 

temperature tendency by the advection scheme is zero. 

A.1.2 Vertical φ-advection scheme 

Potential temperature is advected using the upstream-weighted scheme by the 

portion of the generalized vertical velocity given by 
   
!!

T ,Q
+ !!

T ,"
 (see Table 4.1). (To 

simplify the notation in the following equations, we will use 
 
!!  to represent this portion.)  

In the scheme, the vertical advection term  for φ  is written 
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where 
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A.2 Horizontal finite-difference schemes used in the model 

A.2.1 The horizontal grid 

The horizontal grid staggering is based on the Arakawa C-grid (Arakawa and 

Lamb 1977) shown in Figure A.1.  Note that the thermodynamic variables and 

geopotential are horizontally colocated with the mass grid points.  The variable q, used in 

the horizontal momentum advection scheme, is defined as q ≡ (f + ζ) / m.  In θ  coordinates, 

this becomes Ertel’s potential vorticity in the hydrostatic limit. 
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A.2.2 Horizontal momentum advection 

The horizontal momentum advection in the model is based on the scheme 

developed for the shallow water equations by Arakawa and Lamb (1981).  In place of the 

shallow water depth h, we use the pseudo-density m. 

A.2.3 Horizontal mass advection 

We use an upstream-weighted scheme for the advection of pseudo-density in the 

continuity equation.  The form of the fluxes are based on Takacs (1985).  Here we present 

the x-component advective contribution to the mass tendency.  The y-component 

 
 

Figure A.1: The Arakawa C-grid used for the horizontal staggering. 



 188 

equations are similar, but are not shown for brevity.  The x-component portion of the 

scheme is 
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where the upstream-weighted mass fluxes are given by 
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A.2.4 Horizontal θ -advection 

The horizontal θ -advection scheme is upstream-weighted.  The form of the fluxes 

are based on Takacs (1985).  Here we present the x-component advective contribution to 

the potential temperature tendency.  The y-component equations are similar, but are not 

shown for brevity.  The x-component portion of the scheme is 
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Note that when θ k  +1/2 is constant on model surfaces, the right-hand side of (A.20) 

is zero and the potential temperature tendency by the advection scheme is zero. 

A.2.5 Horizontal φ -advection 

The upstream-weighted x-component horizontal geopotential advection scheme is 

given by 
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A.2.6 Time discretization 

In the model, the third-order Adams-Bashforth time-differencing scheme is used 

(Durran 1991). 

A.2.7 Subgrid-scale turbulence parameterization 

A subgrid-scale mixing parameterization is applied to the three components of 

velocity as well as the potential temperature.  The scheme we use follows that used in the 

University of Oklahoma’s Advanced Research Prediction System (ARPS) 

(documentation at http://www.caps.ou.edu/ARPS/download/code/pub/ARPS.docs/ 

ARPS4DOC.PDF/arpsch6.pdf).  We use the modified Smagorinsky first-order closure 

scheme (Smagorinsky 1963) which includes Richardson number dependency. 

A.2.8 Surface pressure diagnosis 

The Exner function at the lower boundary appears in the horizontal pressure 

gradient force terms of the bottom-layer horizontal velocity tendency equations, as well 

as the tendency equation for the vertical velocity at the surface.  Since the surface vertical 

velocity w is not predicted, but is diagnosed from the lower boundary condition, this 

latter tendency equation serves in diagnosing the surface Exner function, from which the 

surface pressure can be calculated.  However, this must be in agreement with the 



 192 

horizontal momentum tendencies through the boundary condition.  Since the horizontal 

pressure gradient force term at each horizontal momentum grid point involves the Exner 

function at multiple grid points, an iterative procedure is required for its solution. 

Combining equations (3.36) and (3.107), the vertical velocity tendency at the 

lower boundary can be written 
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The vertical and horizontal velocity tendency equations are related through the lower 

boundary condition (3.38).  We can write the horizontally discrete form of this equation 

as 
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The tendency equations for the horizontal velocity components at the lowest layer are 

written from the combination of (3.35), (3.109) and (3.111) as 
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and 
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When (A.33)-(A.36) are combined, and the velocity tendencies eliminated, the result is a 

linear system of equations.  The only unknowns at a given time step in the system are the 

surface Exner functions 
  
!̂

i+1/ 2, j+1/ 2,1/ 2
.  In the model, their solution is found by using the 

Gauss-Seidel iteration method.  The surface pressure is then calculated at all grid points 

from the relation 
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Appendix B EFFECT OF THE FORM OF THE 
DISCRETE PRESSURE GRADIENT 
FORCES ON ACCURACY AND 
SATISFACTION OF THE INTEGRAL 
CONSTRAINTS: “p- vs. Π-FORM” 

B.1 Introduction 

In this appendix, we compare alternative discrete forms of the horizontal and 

vertical pressure gradient force terms of the horizontal and vertical momentum equations, 

respectively.  Recall that these terms can involve the gradient of pressure itself [the 

“p-form”, as in equations (2.14) and (2.18)] or the gradient of the Exner function defined 

in equation (2.7) [the “Π-form”, as in equations (2.29) and (2.30)].  In Chapter 3, we 

contrasted the two forms in the vertically discrete system of equations.  Here, we will 

include an analysis of the horizontally discrete forms of the horizontal pressure gradient 

force (HPGF) in terms of accuracy and the satisfaction of the integral constraints.  We 

also mentioned in Chapter 3 that the use of the Exner function in the vertical pressure 

gradient force (VPGF) leads to improved accuracy in the vertical discrete normal mode 

frequencies as found in Thuburn (2006) and Toy and Randall (2007).  We will present a 

possible explanation for this by demonstrating, via a Taylor series analysis, that the 

truncation error of the VPGF (and additionally the HPGF) is smaller with the use of the 

Exner function. 
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In the design of vertical discretization schemes, the vertically-discrete equations 

are typically continuous in the horizontal spatial and time dimensions (e.g., Arakawa and 

Suarez 1983).  Keeping the continuous forms of the terms in the dimensions not being 

analyzed simplifies the analysis because they are easier to manipulate than in the discrete 

forms.  In our analysis of the horizontal discretization of the HPGF, we will consider the 

system of vertically continuous, horizontally discrete equations.  The design of horizontal 

discretization schemes for atmospheric models are often based on the shallow water 

system of equations (e.g., Arakawa and Lamb 1981).   On the other hand, Bleck (1978b, 

1979) analyzed conservation properties in the vertically and horizontally discretize 

primitive equations.  We speculate that performing integral constraint analysis in each 

dimension separately is sufficient to determine whether the constraints are met in the 

fully discrete system.  This simplifies the analysis by taking advantage of the ease of 

manipulating continuous terms. 

First, we require that the finite-difference system of equations are convergent, i.e., 

they converge to the continuous form when Δx, Δy, Δη, and Δt go to zero.  We also 

require that as the resolution becomes infinite in a given dimension, the result represents 

the continuous form of the equations in that dimension.  For example, in the finite-

difference equations used in the model, it can be shown that as Δx, Δy, and Δt go to zero, 

this results in the vertically discrete system of equations in Chapter 3.  One of the 

characteristics of the finite-differencing operator δ that makes this possible is that, given 

a function φ (x, y), the finite-difference analogs of second order (or more) partial 

derivatives of this function are the same, regardless of the order in which they are taken.  

That is, the difference operators should commute as in the continuous relation 
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In Section B.2 we show that in the horizontally continuous, vertically discrete 

form of the primitive equations, the simultaneous satisfaction of Constraints I, II and III 

(potential temperature conservation) cannot be achieved with either form of the HPGF.  

There is a trade-off between Constraints I and II if Constraint III is satisfied – the 

“p-form” of the HPGF satisfies Constraint I but not II, while the “Π-form” satisfies 

Constraint II but not I. 

In Section B.3 we show that using the “Π-form” of the hydrostatic relation, as 

well as the “Π-form” of the HPGF, results in reduced truncation error.  Also, while 

Constraint I is not strictly met by the “Π-form”, it leads to reduced artificial generation of 

vertically integrated momentum circulation due to topography 

B.2 Integral constraints in the vertically continuous, horizontally 
discrete quasi-static (primitive) equations in the generalized 
vertical coordinate 

The following analysis is performed in one horizontal direction without loss of 

generality.  The domain is periodic and the staggering corresponds to the one-

dimensional version of the Arakawa “C” grid (Arakawa and Lamb 1977), as shown in 

Figure B.1. 
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B.2.1 Energy conversion term of the thermodynamic energy equation 

To determine if the horizontally discrete forms of the HPGF are consistent with 

total energy conservation we “reverse engineer” the system of horizontally discrete 

equations by separately deriving the energy conversion term from both the 

thermodynamic energy equation and the kinetic energy generation by the HPGF.  Then 

we check if the two results are equivalent.  If they are, then total energy is conserved; 

otherwise, it is not.  We start by deriving the energy conversion term given by the 

thermodynamic equation.  Since this term is independent of the HPGF, it will apply to 

both of the discretized forms of the HPGF when testing for total energy conservation.  

Note that we assume adiabatic conditions. 

Discretize equation (2.39) as 
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where the differencing operator is defined as 
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Figure B.1: Horizontal staggering of the variables corresponding to the 1D equivalent 
of the Arakawa “C” grid.  The “m” points are mass points and are 
colocated with the variables φ, θ, T, Π, and

 
!! . 
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and the overbar 
 
( )

i

 represents the arithmetic average of neighboring points.  Use 

  
T

i+1/ 2
= (!")

i+1/ 2
c

p
 and sum (B.2) over the horizontal domain to get 
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Since the second term on the right-hand side (r.h.s.) of (B.4) sums to zero, we are free to 

rewrite it as 
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where the sums are over all the u and m (i.e., mass) points at a given level on the grid, 

and we have used the following relation for any two variables a and b defined at 

staggered points on the grid: 
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The discretized flux-form potential temperature tendency equation is 
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Note that this form conserves global mass-weighted θ due to its flux form.  Finally, we 

can combine (B.7) with (B.4) and (B.5), then use the relations ∂Π/∂t = (∂Π/∂p) (∂p/∂t), 

∂Π/∂η = (∂Π/∂p) (∂p/∂η), and θ (∂Π/∂p) = α to obtain 
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This is the horizontal sum, at a given level, of the energy conversion term as given by the 

discrete thermodynamic energy equation.  In the following subsections we derive the 

corresponding expression from the kinetic energy generation by the HPGF. 

B.2.2 The “p-form” of the HPGF 

First we consider the horizontally discrete form of equation (2.23), given by 
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To show that HPGFp-form maintains Constraint I, multiply (B.9) by
 
m

i

i
d! , and integrate 

from the surface to the top of the atmosphere to get 
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When equation (B.10) is summed around the domain, the first term on the right-hand side 

sums to zero.  Therefore, only the last term, known as the “mountain torque” term, can 

contribute to the circulation induced by the HPGF.  When φS = constant for all i, the term 

vanishes.  Therefore Constraint I is satisfied. 
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Now we determine the kinetic energy generation by the “p-form” HPGF 

discretization.  Multiply (B.9) by 
  
(m

i
u)

i
, and sum over the horizontal domain: 
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Note the following identity, which is the discrete analog of the product rule for 

differentiation (and is made possible through the use of arithmetic averaging): 

 
 

!
i

ab( )"
#

$
% i

= a
i!

i
b"

#
$
% i

+ b
i!

i
a"

#
$
% i

, (B.12) 

where a and b are arbitrary variables defined at mass points.  Applying (B.12) to the first 

term on the r.h.s. of (B.11) and expanding the derivative in the second term on the r.h.s. 

of (B.11), we can write 
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Next, define the discrete analog of the energy conserving terms mαω and mgw as 
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and 
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where we have used the hydrostatic relation ∂p/∂η = −mg.  Using equations (B.14) and 

(B.15) in (B.13), and using the relation mα = (1/g) (∂φ/∂η), then upon rearranging terms, 

we arrive at the following discrete analog of equation (2.35): 
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This is the work done by the pressure gradient force.  Therefore, the mechanical energy 

has a form consistent with the continuous equations.  Now we check the consistency of 

the energy conversion terms between the form derived from the mechanical energy 

equation, given by equation (B.14), and the form derived from the thermodynamic energy 

equation, i.e., equation (B.8).  These equations differ from each other in the horizontal 

difference terms.  Therefore, the use of the “p-form” of the HPGF does not lead to 

energy conservation.  Examining the horizontal difference term in equation (B.8) we see 

that it involves the difference of the Exner function, and not pressure.  This is an 

indication that the energy conversion term derived from the mechanical energy equation 

should also be in terms of the difference in Exner function.  This suggests that the 

“Π-form” of the HPGF may lead to a consistent energy conversion term. 
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B.2.3 The “Π-form” of the HPGF 

We write the discretized form of equation (2.30) as 
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Using this form of the HPGF leads to total energy conservation, which can be shown by 

multiplying (B.17) by 
  
(m

i
u)

i
 and summing over the horizontal domain, which gives the 

work done by the HPGF as 
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Now, using (B.15), and adding and subtracting the terms 
 

m!" #$ #t  

and
  

m! !"#$ #"% , then rearranging, equation (B.18) becomes 
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Comparing equations (B.19) and (2.35) we see that the first term on the r.h.s. of (B.19) is 

the discrete analog of the energy conversion term, which we rewrite as 
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This form of the energy conversion term is identical to the form given by the 

thermodynamic energy equation as in equation (B.8).  Therefore, the “Π-form” of the 

HPGF leads to total energy conservation (Constraint II). 

However, the “Π-form” of the HPGF does not maintain Constraint I.  This can be 

shown by multiplying (B.17) by 
 
m

i

i
d!  and using the relation m = −(1/g) (∂p/∂η) to get 
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Using equation (B.12), we can rewrite (B.21) as 
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Finally, after rearranging, integrating through the depth of the atmosphere, and applying 

equation (B.10), we have 
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In the previous subsection, we showed [equation (B.10)] that the first term on the r.h.s. of 

(B.23) vanishes when it is summed around the domain.  However, the second term on the 

r.h.s. does not vanish.  It is a residual term.  Therefore, the “Π-form” of the HPGF does 

not maintain Constraint I.  (Note, however, that if the pressure is constant along the 
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contour of topography, then the “Π-form” of the HPGF generates no artificial 

acceleration of vertically integrated circulation, as the r.h.s. of (B.23) is zero in that case.) 

B.2.4 Discussion 

We showed that in the vertically continuous, horizontally discrete system of 

quasi-static equations, the choice of the horizontally discrete form of the horizontal 

pressure gradient force determines the satisfaction of Constraints I and II – the “p-form” 

maintains the “mountain torque” Constraint I, but not the total energy conservation 

Constraint II; the “Π-form” satisfies Constraint II, but not Constraint I.  Bleck (1978b) 

came to a similar conclusion.  In both cases, the global conservation of potential 

temperature (Constraint III) is satisfied. 

We conjecture that in order to satisfy the constraints in the same manner as above 

in the vertically and horizontally discrete system of equations, the vertical discretization 

must independently (i.e., as analyzed in the horizontally continuous, vertically discrete 

system of equations) satisfy Constraints I, II and III, as we discussed in the introduction 

of this appendix. 

B.3 Comparison of the truncation error between the “p-” and 
“Π-forms” of the HPGF and VPGF 

B.3.1 A closer look at Constraint I (the “mountain torque” constraint) 

The statement of integral Constraint I on the HPGF is traditionally formulated to 

prevent the artificial “spin-up” or “spin-down” of the vertically integrated atmosphere 
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about a contour of topography, in which ∇z S= 0 [e.g., Arakawa and Lamb 1977].  An 

additional requirement of the HPGF along these lines can be stated.  Consider a 

hydrostatic atmosphere in which pressure is a function only of height, i.e., p =  p(z).  In 

this case, the HPGF in the continuous system is identically zero.  It follows that the 

surface pressure pS is a function only of the surface height zS.  For such an atmosphere, 

the line integral of the “mountain torque” term, given by the r.h.s. of equation (2.24), is 

 
    
! p

S
(z

S
)!" #z

S
$dl = 0 , (B.24) 

where dl is the differential length vector tangent to the path of integration.  Therefore, for 

such an atmosphere, the HPGF should generate no acceleration of circulation about any 

closed path, even if it does not follow a contour of topography.  This can be thought of as 

a more stringent constraint on the HPGF which we refer to as Constraint I+.  It can be 

shown that neither the “p-form” nor the “Π-form” of the HPGF satisfies this constraint.  

However, in the following analysis, we show that the numerically induced (artificial) 

acceleration of circulation about an arbitrary closed path is smaller with the “Π-form” of 

the HPGF than with the “p-form”.  We do this by analyzing the truncation error of the 

discretized form of the equations based on a prescribed atmosphere. 

B.3.2 Analysis of HPGF truncation error 

Consider a hydrostatically balanced, horizontally homogenous atmosphere with a 

temperature profile specified by 

 
  
T (z) = T

0
! "z , (B.25) 
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where T0  is a reference temperature (15 °C) and Γ is a constant lapse rate.  The pressure 

profile can be derived as 
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where p0  is a reference pressure (1000 mb). 

Now, consider the vertically continuous, horizontally discrete system of 

equations.  Multiply the mass by the “p-form” of the HPGF, given by (B.9), to obtain 
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Using a Taylor series expansion, we can write the horizontal finite-difference operations 

that appear in (B.27) as 

 
  

p
i( )

i
!

1

2
p

i+1/ 2
+ p

i"1/ 2
( ) = p

i
+

1

8

#2
p

#x
2

$

%&
'

()
i

*x( )
2

+ H.O.T. , (B.28) 

 
  

!
i
"( )

i

# "
i+1/ 2

$"
i$1/ 2

=
%"
%x

&
'(

)
*+

i

!x( ) +
1

24

%3"
%x

3

&

'(
)

*+
i

!x( )
3

+ H.O.T. , (B.29) 

and 
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where “H.O.T.” refers to “higher-order terms”.  Using (B.28)-(B.30) in (B.27), we obtain 
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The first two terms on the r.h.s. of (B.31) represent the continuous solution at the grid 

point i.  Therefore, the remaining terms on the r.h.s. represent the truncation error, written 

as 
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where we have neglected the higher-order terms.  Note that the error is 2nd-order in δ x. 

Now, perform a similar analysis for the “Π-form” HPGF.  From (B.17), can write 
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Again, using a Taylor series expansion, we obtain 
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and 
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Using (B.34)-(B.36) in (B.33), we get 
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Here, we identify the truncation error as 
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Given the temperature profile above, we can obtain analytical values of the 

truncation errors given by (B.32) and (B.38).  First we choose a mountain profile given 

by 
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where h is the mountain top height (5 km), β is a “skewness” factor (β = 1.5) (the 

mountain is symmetrical with β = 0), and xm is the mountain “width” (10 km).  Figure B.2 

shows the mountain profile with a periodic domain, δ x = 500 m, and 20 grid points.  We 

want to compare the domain-integrated (i.e., vertically integrated, horizontally summed) 

values of the truncation error, which are a measure of the artificial acceleration of the 

circulation.  We set the domain top to be at 16 km.  Figure B.3 shows that the domain 

integrated truncation error is smaller with the “Π-form” of the HPGF than with the 
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“p-form” for various values of the lapse rate Γ.  Figure B.4 shows that the truncation 

error of m times the HPGF itself is smaller with the “Π-form” of the HPGF as well.  That 

is, the “Π-form” of the HPGF is more accurate.  This may be due to the fact that the 

Exner function field is a  mathematically smoother field than the pressure field, in 

general.  Typically, numerical approximations of such fields are more accurate. 

B.3.3 Analysis of the truncation error of the VPGF 

We can perform an analysis of the vertical pressure gradient force similar to the 

one above for the HPGF.  Now, consider a vertically discrete grid with indices k for layer 

centers and half-integers for layer edges where the VPGF resides.  We write the “p-form” 

of the VPGF as 

 
 

Figure B.2: Mountain profile.  Periodic horizontal domain with 20 grid points. 
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Figure B.3: Horizontal profiles of the vertically integrated truncation error of the 
mass-weighted HPGF (N m -2) (dots).  Domain “integrated” truncation 
error (kg s -2) (numbers).  Left-hand column: “p-form” HPGF; right-hand 
column: “Π-form” HPGF.  Rows represent results for various atmospheric 
lapse rates. 
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Figure B.4: Vertical profiles of the truncation error of the mass-weighted HPGF at the 
horizontal grid point i = 17. (N m -2) (dots).  Left-hand column: “p-form” 
HPGF; right-hand column: “Π-form” HPGF.  Rows represent results for 
various atmospheric lapse rates. 
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where δ z (500 m) is the layer thickness, which is assumed constant.  Taylor series 

expansions gives 
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and 
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Using (B.41) and (B.42) in (B.40), we obtain 
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The truncation error can be identified as 
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For the “Π-form” of the VPGF, we write 

 
  

VPGF
!-form

( )
k+1/ 2

= "#
k+1/ 2

!
k+1

" !
k

$ z
. (B.45) 

Again, from the Taylor series, we have 



 213 

 
  

!
k+1

" !
k
=

d!
dz

#
$%

&
'(

k+1/ 2

+
1

24

d
3!

dz
3

#

$%
&

'(
k+1/ 2

) z( )
2

+ H.O.T.  (B.46) 

Using (B.46) in (B.45), we have 
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The truncation error is 
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Using the same atmospheric profile as in the HPGF analysis, we can analytically 

calculate the vertical profile of the truncation errors given by (B.44) and (B.48).  These 

are shown in Figure B.5 for various values of the lapse rate Γ.  The results show that the 

“Π-form” of the VPGF has a smaller truncation error than the “p-form”.  Note that the 

vertical grid we used has 32 layers and a top height of 16 km. 
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Figure B.5: Vertical profiles of the truncation error of the vertical pressure gradient 
force.  Red curves are for the “Π-form” VPGF, green curves are for the 
“Π-form” VPGF.  Results for various atmospheric lapse rates are shown. 
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Appendix C LINEAR WAVE EQUATIONS 

Here we discuss the analytical solutions to the linear mountain wave experiments 

presented in Section 5.2.  The analysis is based on the linearized, nonhydrostatic, 

compressible Euler equations of motion.  Details of the solution method can be found in 

Eliassen and Kleinschmidt (1957), Eckart (1960) and, more recently, Thuburn and  

Woollings (2005).  We will not present the complete derivation here, but instead will 

highlight the important steps required to obtain the analytical solutions. 

The basic state is assumed to be hydrostatic, isothermal, and at rest.  We can then 

write the linearized, z-coordinate system of 2D equations in terms of four prognostic 

variables as 

〈Horizontal momentum〉 
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〈Mass continuity〉 
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〈Thermodynamic equation〉 
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where cS  is the speed of sound, and we have neglected the Coriolis terms. 

Transform the dependent variables as follows: 
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Using (C.5) in (C.1)-(C.4), the system becomes 
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where γ  = cp  
/ cv .  The result of this transformation is that the system expressed by (C.6)-

(C.9) has constant coefficients, which simplifies the solution procedure. 

Consider wavelike solutions of the form 

 

  

!!u (x, z,t)

!!w (x, z,t)

!!" (x, z,t)

!!p (x, z,t)

#

$

%
%
%
%

&

'

(
(
(
(

=

U (z)

W (z)

R(z)

P(z)

#

$

%
%
%
%

&

'

(
(
(
(

e i(kx)*t ) , (C.10) 



 217 

where U(z), W(z), R(z), and P(z) are the vertical profiles of the dependent variables, k is 

the horizontal wave number, and ω is the frequency.  Applying (C.10) in (C.6)-(C.9), we 

obtain 

 
 
!U = k P , (C.11) 

 
  

!i"W = !
dP

dz
! gR +

1

2

# g

c
S

2
P , (C.12) 

 
  

!i"R + ikU !
1

2

# g

c
S

2
W +

$W

$z
= 0 , (C.13) 

and 

 
  

!i
"

c
S

2
P + # !1( )

g

c
S

2
W = !i"R . (C.14) 

These are the vertical structure equations.  Equations (C.11)-(C.14) can be reduced to an 

equation for W, which is 
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This is a wave equation which leads to the dispersion relation 

 
  

m2
= N 2

k 2

!
2
"

1

4

g 2

R2T 2
+
!

2

c
S

2
" k 2 , (C.16) 

where m is the vertical wave number, and we used the expression for the square of the 

buoyancy frequency for an isothermal atmosphere given by N2 = (γ −1)  g2/ cS
2.  Assuming 

the same wavelike behavior in the remaining dependent variables, equations (C.11)-

(C.14) provides their phase relationship and, therefore, the wave structure used in the 

analytical solutions of Section 5.2. 
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For flow of uniform velocity  u  over a mountain of wave number k, the frequency 

is given by 

  ! = uk . (C.17) 

Using this in (C.16), the dispersion relation becomes equation (5.4), i.e., 
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where l is the Scorer parameter given by 
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Note that through (C.10) and the vertical wave structure of the solutions, the dispersion 

relation (C.18) also results from 
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which is the structure equation for the transformed vertical velocity used in Section 5.2. 
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Appendix D 3D EXPERIMENTS WITH AN EARLY 
VERSION OF THE σ-COORDINATE 
MODEL 

In the initial phase of developing the hybrid-vertical-coordinate model, we built a 

nonhydrostatic model based on the σ coordinate.  The model was a test bed for the 

advection schemes and for the CP-grid variable staggering.  It used the “Π-form” of the 

vertical pressure gradient force term [see equation (3.106)], and the vertical differencing 

scheme was designed to conserve the global mass-weighted potential temperature.  In this 

appendix we present results of two 3D experiments that we performed with the model. 

D.1 Rising thermal experiment 

This experiment was designed to simulate a rising thermal in a sheared, neutrally 

buoyant layer which is topped by a stable, isothermal layer.  The neutrally buoyant layer 

extends from the surface to a height of 10 km and has a constant potential temperature of 

300 K.  The temperature is constant from the 10 km to the 20 km height.  The horizontal 

domain is 10 km in extent (in both x- and y-directions) with periodic boundary conditions.  

The zonal velocity profile is shown in Figure D.1.  The shear is constant up to the 10 km 

height, above which the flow is uniform.  The thermal is initialized as a sphere with 

perturbation potential temperature given by 
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xc = yc = 5  km, zc = 2  km, and xr = yr = zr = 2 km.  Figure D.1 shows the initial condition of 

the thermal in an x-z plane located at the center of the thermal. The model is configured 

with 100 x 100 grid points in the horizontal with Δx = Δy = 100 m.  There are 200 levels 

with  Δz = 100 m. 

 
 

Figure D.1: Initial perturbation potential temperature field (K) and vertical profile of 
zonal wind (m s-1) for 3D rising thermal experiment (slice through center 
of y-domain is shown). 
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Figure D.2 shows the perturbation potential temperature of an x-z slice through 

the center of the y-domain at simulation time t = 14 minutes.  At this time the warm 

bubble has almost reached the layer interface at the 10 km height.  The effects of the 

shear deformation on the thermal can be seen.  Also, rising and sinking motion, induced 

by the rising thermal, is evident in the isothermal layer just above the 10 km height. 

Close-up views of the thermal at t = 14 minutes are shown in Figure D.3.  The 

plots show perturbation potential temperature with velocity vectors superimposed.  

Figure D.3a is an x-z slice through the center of the y-domain.  The updraft can be seen 

throughout the core of the thermal, as well as the circulation at the edges associated with 

the vorticity ring.  Figure D.3b is a horizontal slice through the thermal at z = 6.67 km.  

The effect on the mean flow field can be seen in the plot.  The bubble acts as an obstacle, 

 
 

Figure D.2: Perturbation potential temperature field (K) at simulation time 
t = 14 minutes. 
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causing the air to be deflected in order to pass around it.  The rising thermal also acts to 

twist the horizontal mean-flow vorticity into the vertical as seen by the vortex dipole 

which straddles the y-direction center-line of the thermal at x = 7 km. 

 
 

 
 

Figure D.3: Vertical (x-z) slice through center of thermal (a), and horizontal slice at 
height z = 6.67 km (b) at time t = 14 minutes.  Perturbation potential 
temperature field (K) is plotted with velocity vectors superimposed. 
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This experiment shows that the model is capable of representing the 3D 

characteristics of a rising thermal in a sheared environment in the σ-coordinate domain.  

This feature is necessary for representing cloud dynamics when moisture is introduced to 

the model. 

D.2 Amplifying 3D baroclinic wave in a β-channel 

This is a synoptic-scale experiment to test the model’s ability to represent the 

growth of a baroclinic wave.  This is an important physical phenomenon which affects 

the general circulation of the atmosphere.  Therefore, we are testing the potential of the 

dynamical core to be used in a global model. 

The horizontal model domain is a β-channel in which the Coriolis parameter f  

varies in the y-direction by the relation 

 
 

! =
df

dy
. (D.3) 

In the experiment, the values of β and f  are set to values typical of the mid-latitudes.  The 

y-domain is 8000 km in extent with walls at each boundary.  The x-domain is 10000 km 

long with periodic boundary conditions.  The model top is at 30 km.  The model is 

initialized with a geostrophically balanced, zonally uniform zonal jet as shown in the y-z 

cross-section of Figure D.4.  The potential temperature field is also initialized as zonally 

uniform except for a random perturbation in the lowest 2 layers of the model.  Also, the 

model is initially in hydrostatic balance.  The model is configured with 100 grid points in 

the x-direction (Δx = 100 km) and 80 grid points in the y-direction (Δy = 100 km).  There 

are 30 model levels with Δz = 1 km. 
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Figure D.5 shows the surface temperature and pressure at 14 days into the 

simulation.  Here we see that the initial zonally-uniform, randomly perturbed temperature 

field has evolved into baroclinic cyclones as is expected.  Sharp fronts have developed in 

association with the wave growth.  These results are encouraging for the future 

development of the model in a global framework. 

 
 

Figure D.4: Initial vertical profile of potential temperature (K) (colors) and zonal wind 
(m s-1) (black contours) along the y-axis. 
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Figure D.5: Surface temperature field (degrees Celsius) (colors) and isobars (hPa) at 
14 days into the simulation. 
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