
 

 

Robert French and Fiona Steele 

Trajectories of functional disability for the 
elderly in Britain 
 
Article (Accepted version) 
(Refereed) 
 
 

 

Original citation: French, Robert and Steele, Fiona (2015) Trajectories of functional disability for 
the elderly in Britain. Longitudinal and Life Course Studies, 6 (3). ISSN 1757-9597 
 
DOI: 10.14301/llcs.v6i3.317      
 
 
© 2015 The Authors 
 
This version available at: http://eprints.lse.ac.uk/64899/ 
Available in LSE Research Online: January 2016 
 
LSE has developed LSE Research Online so that users may access research output of the 
School. Copyright © and Moral Rights for the papers on this site are retained by the individual 
authors and/or other copyright owners. Users may download and/or print one copy of any article(s) 
in LSE Research Online to facilitate their private study or for non-commercial research. You may 
not engage in further distribution of the material or use it for any profit-making activities or any 
commercial gain. You may freely distribute the URL (http://eprints.lse.ac.uk) of the LSE Research 
Online website.  
 
This document is the author’s final accepted version of the journal article. There may be 
differences between this version and the published version.  You are advised to consult the 
publisher’s version if you wish to cite from it. 
 
 
 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LSE Research Online

https://core.ac.uk/display/35437928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.lse.ac.uk/researchAndExpertise/Experts/profile.aspx?KeyValue=f.a.steele@lse.ac.uk
http://www.llcsjournal.org/index.php/llcs
http://dx.doi.org/10.14301/llcs.v6i3.317
http://eprints.lse.ac.uk/64899/


Page 1 of 32 
 

Trajectories of frailty for the elderly in 
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Abstract 

This study uses an innovative approach to characterise trajectories of functional disability 

over the final stages of the life course. We use data from the British Household Panel Survey 

(BHPS), an annual household survey of all adults in a representative sample of British 

households from 1991-2008. The analysis focuses on the subsample of elderly household 

members who were aged from 65 to 84 in any of the 18 waves of data, with a final sample 

of 6,140 individuals contributing a total of 22,124 person years. As in previous research, we 

estimate latent growth curves, but extend the standard model to incorporate a 

measurement model for the latent outcome variable ‘functional disability’. We identify 

accelerating trajectories of frailty for a representative sample of elderly individuals 

separately by gender. We show that socio-occupational classification is associated with the 

level of initial frailty and to a lesser extent the change in frailty with age. The contribution of 

this paper is to explore the use of a measurement model to exploit the variation between 

items in discriminatory power for identifying an individual’s functional disability. Further we 

are able to test explicitly for temporal measurement invariance in frailty i.e. to what extent 

the items consistently measure the latent variable as people age. 

Key terms. Ageing; Activities of daily living; Health trajectories; Britain; British Household Panel 

Survey (BHPS); Structural equation model (SEM); Growth model; Measurement model; Temporal 

measurement invariance 
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Introduction 

The ageing population in the UK is a consequence of a reduced birth rate and delayed 

mortality. Delayed mortality may result in a change in the prevalence of morbidity, either 

increasing (Verbrugge, 1984) or decreasing (Fries, 1980), which has implications for health 

care costs. For a well-informed policy response to this ageing population one needs well-

defined measures of health for the elderly, and to establish how these measures progress 

with age, and how the level and nature of change with age differs between individuals. 

The ageing process is typically represented by a trajectory of declining health, defined by 

increasing disability (Grundy & Glaser, 2000), diminishing quality of life (Zaninotto, 

Falaschetti, & Sacker, 2009), self-rated health (Sacker, Worts, & McDonough, 2011), physical 

performance (Payette et al., 2011), or ability to carry out everyday activities (Haas, 2008). In 

this study we are concerned with a functional definition of health - how far health limits an 

individual’s ability to enjoy a normal life - rather than a medical definition or diagnosis, since 

it allows comparability between individuals across a variety of different health conditions 

(Burchardt, 2000). This is typically measured using questions regarding individuals’ ability to 

undertake everyday tasks over several domains. The core set of such questions is the 

activities of daily living (ADL) (Katz, Ford, Moskowitz, Jackson, & Jaffe, 1963), the ADL term is 

also used generically to describe a wide variety of question sets that attempt to capture 

similar constructs. Extensions to ADL include the instrumental activities of daily living (iADL) 

(Lawton & Brody, 1969) which includes higher level tasks, and SF-36 (Ware & Sherbourne, 

1992) which captures social functioning. Because ADLs are measured over different domains 

it is useful to combine these items into a single metric of functional disability (also referred 

to as frailty) for analysing changes in the health of elderly individuals. 

We argue that the methods currently used to combine the ADL scores for models of change 

in functional disability have two important limitations. Firstly, these studies use simple 

aggregations of individual items, such as the sum of ADL scores, to create the single metric 

for analysing change, typically assigning equal or arbitrarily-chosen differential weights to 

each activity. This approach ignores variability between items in their relative difficulty (e.g. 

climbing stairs may be more difficult than walking down the street) and in their ability to 

discriminate between individuals with different levels of physical functioning. Secondly, 

previous studies have assumed that the difficulty and discriminatory power of items is the 
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same at each age, widely referred to as temporal / longitudinal measurement invariance (or 

its complement measurement equivalence). Departures from this assumption due to 

changes in the relationship between the observed items and the underlying construct with 

age observed in cross-sectional studies (LaPlante, 2010) will confound attempts to identify 

growth patterns. 

The primary aim of this paper is to describe how a type of longitudinal structural equation 

model (SEM) can be used to analyse functional disability trajectories.  The model we 

propose treats physical functioning as a time-varying latent variable that is measured by a 

set of observed indicators (ADL items). A measurement model specifies the relationship 

between the latent variable and the ADL items, with parameters representing the difficulty 

and discriminatory power of each item. A major advantage of making explicit the 

relationship between the items and the latent construct (physical functioning) in this way is 

that it also allows exploration and testing of temporal measurement invariance. We 

describe how increasingly restrictive forms of measurement invariance can be tested by 

comparison of measurement models with different parameter constraints.  We then show 

how, under the assumption of temporal measurement invariance, the measurement model 

can be combined with a growth model for latent physical functioning in which change can 

depend on individual characteristics.  

We illustrate the application of the longitudinal SEM and testing of temporal measurement 

invariance in analyses of functional disability using data from the British Household Panel 

Survey (BHPS). We allow change in functional disability to differ by gender, age grouping 

and socio-economic status. Separate models are fitted for men and women because we 

expect functional disability trajectories for women to show worse health for biological, 

psychological and sociological factors (Nathanson, 1975). We also estimate separate models 

for two age groups, the ‘early retirement’ group aged 65 to 74 and the ‘middle elderly’ aged 

75 to 84. Models for the ‘oldest old’ aged 85+ are not considered due to insufficient sample 

size in the BHPS. Socio-economic status (as measured by final occupation) is included as a 

covariate in the growth model.  We allow trajectories to vary by socio-economic status as 

we expect a social gradient through accrued exposure to risk factors, both in terms of direct 

effects from certain types of employment, but also from the indirect risk factors and 

mediating factors associated with class (Nilsson, Avlund, & Lund, 2010). 
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Review of Approaches to Modelling Trajectories of Physical Functioning 

Trajectories of functional disability can be estimated using either a multilevel model (MLM) 

or structural equation model (SEM). In their simplest form, these models are equivalent 

(Curran, 2003; Steele, 2008). Both allow for individual-specific trajectories with normally 

distributed latent variables representing individual departures from the intercept and slope 

of an overall growth curve, and both can be extended to allow for nonlinear growth. These 

latent variables are usually referred to as random effects in MLM and factors in SEM. 

In an MLM for growth the repeated health measurements are viewed as a two-level 

hierarchical structure with occasions nested within individuals and age is treated as a time-

varying explanatory variable (Goldstein & Woodhouse, 2001). The advantage of the MLM 

approach is that it is very flexible, with possible extensions to the basic growth curve 

including allowance for additional levels of clustering and between-individual variation in 

the timing of measurements at a given occasion. Individuals not present at all measurement 

points can be included under a ‘missing at random’ (MAR) assumption (Little and Rubin, 

2002), however those with missing items within a wave require multiple imputation of 

missing values in order for that wave to be included. 

In an SEM for growth, the measures at each occasion are treated as the observed indicators 

of the unobserved latent growth factors, i.e. latent variables for the individual-specific 

intercepts and slopes. The advantage of the SEM approach is the ability to include additional 

latent variables, for example to allow for measurement error in outcomes or covariates. It is 

also straightforward using SEM software to incorporate individuals with incomplete data 

within waves, again under an MAR assumption. 

Several studies have fitted a latent growth curve model to trajectories of functional 

disability. Li (2005) estimates a two-level random effects model of ‘ADL disability’ using the 

Michigan Medicaid Waiver Program of individuals aged 65+ measured every few months 

from 1999 to 2003. They find evidence of an accelerating trajectory of ADL disability for the 

whole sample. Park et al. (2008) use a similar model of ‘functional status’ for the University 

of Alabama at Birmingham Ageing Study which surveyed individuals aged 65+ every 6 

months from 1999 to 2004. They also find increasing and accelerating functional disability. 

Mendes de Leon et al. (2002) estimate a MLM of ‘ADL disability’ using the Women’s Health 

and Ageing Study which followed women aged 65+ for 24 consecutive weekly assessments 
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in 1992. They find a linear increase in functional disability over this much shorter time 

frame. Haas (2008) estimates a latent growth curve of ‘functional limitations’ using the 

Health and Retirement Study which followed individuals aged 61-71 at baseline annually 

from 1992-2002, and find an increasing and accelerating trajectory for functional 

limitations. 

These studies use unconditional models as a baseline and to identify functional form, and 

conditional models to quantify how these trajectories differ by individual characteristics. 

Stuck et al. (1999) review the individual risk factors for ADL decline. In this paper we focus 

on two of the most common factors: gender and SES. Although females live longer than 

males, women generally have higher reported illness (Nathanson, 1975). There are many 

reasons for these differences, for example biological factors such as genes and hormones 

make males more susceptible to diseases that result in death, e.g. from heart disease, while 

women are more likely to suffer from conditions which impact on reported health but not 

death, e.g. arthritis (Case & Paxson, 2005). Moreover, there are gender differences in 

acquired risks, for example men are more likely to smoke and drink while females are more 

likely to be overweight and face stress (Verbrugge, 1989). The SES gradient in health arises 

from direct risk factors associated with occupation, e.g. physical hazards and psychosocial 

stressors at work, but also from risk behaviours associated with class, e.g. smoking and 

heavy alcoholic drinking (Feng et al., 2013). Over the life course we expect the SES effect to 

increase as exposure lengthens (Sacker, Clarke, Wiggins, & Bartley, 2005), but once an 

individual retires the SES effects accrued during the working life may diminish as exposure 

to certain risk factors associated with work cease (House, Kessler, & Herzog, 1990). 

Measurement of physical functioning in longitudinal studies 

All of the methods used for studying longitudinal change in functional disability discussed 

above are based on a single health outcome variable derived from answers to a series of 

questions. The simplest approach to creating a single measure from multiple measures is to 

sum ADL scores on each question. For example, Li (2005) uses questions on eight activities, 

with responses coded between zero (no limitation) and four (maximum limitation). These 

scores are summed across the eight items to generate the functional disability outcome 

measure. Using the total ADL score is problematic since each component is given equal 

weight, thus ignoring variation in the discriminatory power of the different items. Other 
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studies use ad hoc methods to assign different weights to the items. For example, Holstein 

et al. (2006) measure levels of difficulty for 12 ADL items, and use these to create four 

categories of functional disability: (i) individuals who can manage all items without difficulty, 

(ii) individuals who can manage every activity but some with difficulty, (iii) those who need 

help in at least one category, and (iv) those who need help with two or more activities. Such 

an approach compounds the problem of equal weighting of different items by then using 

arbitrary thresholds for categorisation; it also ignores much of the information contained in 

the responses. We propose to use a measurement model to generate a single metric for 

functional limitations, which has the advantage that it allows each of the activities to have 

its own relationship with the latent outcome variable, rather than imposing equal or 

arbitrary weights. 

Methods 

Data and measures 

Data for the study are from the British Household Panel Survey (BHPS), an annual household 

survey of all adults in a representative sample of British households from 1991-2008 (ISER, 

2010). Elderly household members (aged 65 or over) were asked additional questions on 

their ability to carry out activities of daily living and these formed the sample for analysis. 

Our analysis is based on 2,788 males and 3,352 females, contributing a total 22,124 person 

years.  

 

Our observed indicators of physical functioning are the six ADL items: ‘cut toenails’, ‘get up 

and down stairs or steps’, ‘walk down the road’, ‘get around the house’, ‘bath, shower or 

wash all over’, and ‘get in and out of bed’. The score for each ADL item was constructed 

from responses to two questions: whether the individual is able to carry out an ADL (Q1 

coded unaided, aided, or not at all) and, for those who answered “unaided”, the level of 

difficulty in performing the ADL (Q2 coded very easy, fairly easy, fairly difficult, or very 

difficult). Thus for each ADL we can construct a six-point score, ranging from zero for those 

with the least functional disability who could carry out the ADL unaided (Q1) and very easily 
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(Q2) to five for those with the greatest functional disability who could not carry out the ADL 

at all (Q1 only). 

Although measurements of ADL were available for all individuals aged 65 and above, we 

consider only individuals at ages 65 to 84, split into two-subsamples aged 65-74 and 75-84. 

For example, with 18 years of data, an individual aged 65 at wave 1 may have ADL 

measurements until they were aged 83 (at wave 18), and will contribute 10 waves of data in 

the 65-74 age group and 8 waves of data in the 75-84 age group. We discard data for ages 

85 and above. We fit separate models for each age group because measurement invariance 

is more likely to be satisfied within each group than for a single model fitted across the 

whole 20-year age range. For the same reason we also estimate separate models for male 

and females, thus avoiding the assumption that the measurement model has the same form 

for both genders. 

We allow the level and rate of change of the trajectories to differ by SES. The measure of 

SES used is the National Statistics Socio-Economic Classification (NS-SEC) (Office for National 

Statistics, 2010) which categorises each individual’s most recent occupation into eight 

classes. Occupation is measured for each wave, and we use the modal category across all 

waves. The ‘never worked and long term unemployed’ category is excluded from the main 

analysis because this group are likely to have pre-existing health issues and thus have 

trajectories that are different from the majority of the population. Analyses including the 

‘never worked’ group as an additional SES category are presented in Appendix A.  We find 

little impact on estimates of differences in functional disability trajectories among the seven 

employed categories after inclusion of never-worked individuals.  Long-term unemployed 

individuals were excluded because of the small sample size in this category (fewer than 3 

individuals in all age by gender subsamples) and for a more homogenous grouping. 

Individuals not present for all waves of the survey were still included in the analysis, as were 

cases with missing data on some of the ADL measures for a particular year. Individuals with 

missing data are retained using full information maximum likelihood under a missing at 

random (MAR) assumption (Little & Rubin, 2002), as is standard in multivariate methods 

such as SEM. In the present study, MAR allows the probability of nonresponse on any ADL 

item in a given year to depend on observed responses on other items in the same year, 

observed responses in previous years, age, gender and SES. If missingness depends directly 
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on the values that would have been observed, after accounting for observed responses, 

nonresponse is said to be ‘not missing at random’ (NMAR) or non-ignorable. For example, 

the MAR assumption may be questionable if participants leave the study due to sudden ill 

health that is not adequately captured by their physical functioning trajectory up to the time 

of drop out. (B. Muthén, Asparouhov, Hunter, & Leuchter, 2011) describe how approaches 

allowing for NMAR, such as selection and pattern mixture models, can be incorporated in 

the general SEM framework, while emphasising the importance of sensitivity analyses using 

a range of models due to untestable assumptions. 

 

Longitudinal structural equation model of physical functioning 

In this paper we use a type of SEM known as a multiple indicator growth model (Chan, 1998; 

Hancock, Kuo, & Lawrence, 2001; Wu, Liu, Gadermann, & Zumbo, 2010). The model consists 

of two simultaneously estimated components: a measurement model relating responses on 

the six observed ADL items to a latent variable representing physical functioning, and a 

growth model for change in the latent variable with age. As described above, separate SEMs 

were fitted for each of the four age-by-gender subsamples. All models were fitted using the 

Mplus software (L. K. Muthén & Muthén, 1998-2012). 

 

Measurement model and tests for temporal measurement invariance 

Let 𝑦𝑟𝑡𝑖 denote the response on item 𝑟 at age 𝑡 for individual 𝑖. A general longitudinal 

measurement model can be written 

 𝑦𝑟𝑡𝑖 = 𝛼𝑟𝑡 + 𝜆𝑟𝑡𝑓𝑡𝑖 + 𝜖𝑟𝑡𝑖 (1) 

where 𝑓𝑡𝑖  is the latent ‘frailty’ at age 𝑡 for individual 𝑖, 𝛼𝑟𝑡 are intercepts, 𝜆𝑟𝑡 are coefficients 

or factor loadings, and 𝜖𝑟𝑡𝑖 are residuals. The age-specific factors 𝑓𝑡𝑖  and residuals 𝜖𝑟𝑡𝑖 are 

each assumed to follow multivariate normal distributions. We allow for autocorrelation in 

both frailty and individual items across ages. We assume that the covariance between items 

at a given age 𝑡 is explained by the common factor 𝑓𝑡𝑖, so that cov(𝜖𝑟𝑡𝑖 , 𝜖𝑠𝑡𝑖) = 0 for 𝑟 ≠ 𝑠. 

To fix the location and scale of 𝑓𝑡𝑖  we impose the identification constraints 𝛼1𝑡 = 0 and 

𝜆1𝑡 = 1. 
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The model given by (1) treats responses on the items as continuous, and may produce 

underestimates of standard errors and inflated chi-square model fit statistics when the 

normal distribution assumption is violated, for example when  𝑦𝑟𝑡𝑖  are ordinal (Lei & Wu, 

2007). There are two main methods for accommodating ordinal items: (i) the underlying 

variable model (UVM) based on polychoric correlations and estimated by weighted least 

squares (WLS), and (ii) the item response theory (IRT) model where equation (1) is replaced 

by a proportional odds model and estimated by maximum likelihood (Jöreskog & Moustaki, 

2001).  Although the IRT model is generally preferred, it is computationally heavy and 

goodness-of-fit measures are limited.  The UVM approach is therefore more widely used, 

but a potential disadvantage is that WLS handles missing data by pairwise deletion which 

requires stronger assumptions than full information maximum likelihood (Asparouhov & 

Muthén, 2010).  Another issue with methods for ordinal data is that assessment of 

measurement invariance is less straightforward than for the continuous case (Millsap & Yun-

Tein, 2004).  For these reasons, we adopt the common practice of treating the ordinal ADL 

items as continuous.  This approach is supported by evidence from an extensive simulation 

study comparing the UVM approach with traditional factor analysis which suggests that 

biases in the parameter estimates tend to be small when items have six or more categories 

(Rhemtulla, Brosseau-Liard, & Savalei, 2012).   

The model of equation (1), which we refer to as Model 1, allows for changes in the 

underlying structure of frailty with age through the inclusion of age–specific intercepts and 

loadings. However, under this model individual trajectories in 𝑓𝑡𝑖  are difficult to interpret 

because changes in the true level of physical functioning with age are confounded with 

changes in its measurement. Before estimating growth trajectories for 𝑓𝑡𝑖  we therefore test 

for temporal measurement invariance by considering two increasingly restricted forms of 

equation (1). In Model 2, factor loadings for the same item are constrained to be equal 

across ages (𝜆𝑟𝑡 = 𝜆𝑟). This model assumes metric invariance, i.e. the strength of the 

relationship between each item and the underlying latent variable is constant over time.  

Metric invariance is required for the latent variable to have the same meaning at different 

ages, and is tested by comparing Model 2 with the unconstrained Model 1. We then 

consider Model 3 with the additional restriction that the intercepts for the same item are 

fixed across ages (𝛼𝑟𝑡 = 𝛼𝑟), i.e. the intercepts in the relationships between the items and 
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the latent variable are constant over time.  Comparison of Model 3 and Model 2 tests for 

scalar invariance, a necessary condition for comparing the mean of the latent variable 

across ages. The combination of metric and scalar invariance in Model 3 is sometimes 

referred to as strong invariance, which is widely considered as an essential prerequisite for 

examining temporal change in 𝑓𝑡𝑖. 

Assessing goodness of fit 

We test the overall fit of Model 1 to determine whether the baseline for subsequent change 

in model fit is a good representation of the data. We use chi-squared ( 𝜒2) tests, comparing 

with the saturated model which perfectly reproduces the sample means, variances and 

covariances of each observed ADL item at each age. Although the 𝜒2 test is widely used, 

there are several limitations relevant to our study: (i) the 𝜒2 test statistic is dependent on 

sample size and sensitive to the size of the correlations between the observed items, with 

large samples and correlations leading to higher values of 𝜒2, (ii) in a multi-group model (or 

repeated observation of the same group over time) the 𝜒2 test is sensitive to even minor 

deviations between the groups’ sample covariance matrices, and (iii) the test is based on the 

assumption that the observed variables have a multivariate normal distribution, with 

departures from normality leading to higher values of 𝜒2 (Kline, 2005; Vandenberg & Lance, 

2000). These problems with the 𝜒2 test have led to the development of numerous fit indices 

which are usually considered alongside the 𝜒2 test, many of which are based on the 𝜒2 with 

adjustments for sample size and model complexity. 

For each of these alternative fit indices, Vandenberg and Lance (2000) specify the traditional 

values required to infer good model fit alongside the more stringent thresholds proposed by 

Hu and Bentler (1999). We consider both of these thresholds in our analysis. The first of the 

alternative tests is the Tucker-Lewis index (TLI) (Tucker & Lewis, 1973) which is less 

susceptible to sample size and favours parsimonious models. Values of the TLI range 

between 0 and 1 with higher values indicating better fit, and a traditional threshold of 0.9 or 

above and a more stringent threshold of 0.95 or above for a good model fit. The second 

alternative test of fit is the root mean square error of approximation (RMSEA) (Steiger, 

1990) which does not require a null model and also adjusts for model complexity. The 

RMSEA also ranges from 0 to 1, but with values close to zero indicating a better fit. The 

traditional threshold value for an acceptable model fit is 0.08 or less, with a more stringent 
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threshold of 0.06 or less. The third alternative test is the standardized root mean square 

residual (SRMR) (Bentler, 1995) which is sensitive to model specifications among the factor 

covariances. The SRMR again ranges from 0 to 1, with lower values indicating better model 

fit, the traditional threshold for good model fit is 0.10 or less, and a more stringent 

threshold of 0.08 or less. 

Model comparison 

In addition to the 𝜒2 test and alternative tests for assessing absolute model fit described 

above, Vandenberg and Lance (2000) suggest two ways for evaluating relative model fit. In 

our case, of particular interest are the changes in model fit arising from adding the temporal 

measurement invariance constraints of Models 2 and 3. Metric invariance is tested by 

comparing Models 1 and 2, and scalar invariance by comparing Models 3 and 2. The first 

test we consider is based on the change in the chi-squared (Δ𝜒2), where a non-significant 

difference between models indicates that the additional temporal measurement invariance 

constraint does not lead to a deterioration in model fit. However, as discussed above, there 

are limitations with chi-squared tests for measurement invariance. A second approach is to 

examine the change in the comparative fit index (ΔCFI). Cheung and Rensvold (2002) 

provide guidelines on model fit suggesting that a ΔCFI value closer to zero than -0.01 

indicates that the more restrictive model is an adequate fit (i.e. the invariance hypothesis 

should not be rejected), a ΔCFI of between -0.01 and -0.02 indicates researchers should be 

suspicious about the invariance assumption, and ΔCFI of less than -0.02 suggests that the 

invariance constraint should be rejected. 

Latent growth model with SES effects 

The measurement model shown in equation (1) specifies the relationship between an 

individual’s latent frailty 𝑓𝑡𝑖  at age 𝑡 and their responses on the observed ADL items. Age is 

centred at the baseline age for the age sample (65 or 75). The second part of the SEM 

(commonly referred to as the ‘structural’ model) is a growth model for change in this latent 

variable with age. We consider a nonlinear growth model in which 𝑓𝑡𝑖  changes as a quadratic 

function of age and additionally depends on dummy variables for SES denoted by 𝑥𝑚𝑖  (𝑚 =

2, 3, . . . ,7), taking the first category (routine occupations) as the reference. The growth 

model can be expressed as 
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𝑓𝑡𝑖 =  𝛽0𝑖 + 𝛽1𝑖𝑡 + 𝛽2𝑖𝑡
2

+ ∑ 𝛾0𝑚𝑥𝑚𝑖

7

𝑚=2

+ ∑ 𝛾1𝑚𝑥𝑚𝑖

7

𝑚=2

𝑡 + ∑ 𝛾2𝑚𝑥𝑚𝑖𝑡
2

7

𝑚=2

+ 𝑒𝑡𝑖  
(2) 

The intercept and coefficients of the quadratic function in age, 𝛽𝑘𝑖 = 𝛽𝑘 + 𝑢𝑘𝑖 (𝑘 = 0,1,2), 

are composed of a fixed part 𝛽𝑘 common to all individuals and an individual-specific random 

effect 𝑢𝑘𝑖, where the random effects (𝑢0𝑖, 𝑢1𝑖 , 𝑢2𝑖) are assumed to follow a trivariate 

normal distribution. The 𝑒𝑡𝑖 are independent normally distributed time-varying residuals. 

The main effects of SES, the coefficients 𝛾0𝑚 of 𝑥𝑚𝑖, allow baseline frailty (at 𝑡 = 0 , age 65 

or 75) to depend on SES, while the coefficients of the interactions between SES and 𝑡 and 𝑡2 

(𝛾1𝑚 and 𝛾2𝑚) allow the rate of change in functioning with age to vary by SES. 

This SEM (Model 4) which combines the measurement model of equation (1) and growth 

model of equation (2) is the main model of interest. We also estimate a second SEM (Model 

5) which constrains the factor loadings to be equal for all items. This is akin to modelling the 

growth of a frailty measure which is simply the sum of the scores on each of the items. Thus 

contrasting Model 4 with Model 5 allows us to see the effect of failure to allow for 

differences in the discriminatory power of the ADL items when modelling frailty trajectories. 

Results 

Measurement models and evidence for temporal measurement invariance 

To test for temporal measurement invariance in the underlying latent ‘frailty’ variable, we 

estimate three versions of the measurement model with increasingly restrictive constraints. 

Model 1 is a simple measurement model with no measurement invariance constraints i.e. 

factor loadings and item intercepts are allowed to vary with age. Absolute model fit 

statistics for Model 1 are presented in the first panel of Table 1. For all age by gender groups 

the 𝜒2 test indicates significant differences between Model 1 and the saturated model (with 

parameters for the means, variances and covariances for the 6 ADL items measured at 10 

time points) at the 1% level, which implies that the model is not a good fit to the data. The 

TLI gave weak evidence of good model fit with values below the more stringent threshold 

for both gender subsamples, with females just above the less stringent while males were 

below even this threshold. The RMSEA provided the strongest evidence of good model fit, 
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with values for the well below the more stringent threshold for both samples. The SRMSR 

also provides evidence of good model fit, with values below the more stringent threshold 

except for older male group, though this is still well within the less stringent threshold. 

Although there is a suggestion that Model 1 could be improved, of most interest are 

comparisons with Models 2 and 3 for testing measurement invariance. 

Insert ‘Table 1: Tests for temporal measurement invariance’ here 

Model 2 is a restricted version of Model 1 with the factor loadings for each item constrained 

to be equal for all ages. Figure 1 shows that the estimated factor loadings of Model 1 are 

broadly similar across ages though with a slight upwards trend (which is consistent with all 

activities becoming more difficult as individuals get older), so it seems reasonable that 

constraining these to be equal over time may be a sensible assumption. We formally test 

whether this assumption holds by assessing the change in model fit between Models 1 and 

2, in other words whether the differences in the factor loadings of the measurement model 

by age shown in Figure 1 are sufficiently large to lead to a significant change in model fit. 

The tests of change in model fit between Model 1 and Model 2 are shown in the second 

panel of Table 1, following overall goodness-of-fit statistics for each model. The 

Δ𝜒2 between Models 1 and 2 suggests that imposing time invariant factor loadings leads to 

a significantly worse model fit (p<0.001). However we see only a small ΔCFI indicating an 

insignificant change in model fit, far below the threshold for metric invariance.  Based on 

ΔCFI and the similarity in estimates of factor loadings by age (Figure 1), we therefore 

conclude that there is some evidence of metric invariance. 

Insert ‘Figure 1: Factor loadings when allowed to vary by age (Model 1)’ here 

Model 3 is a more restricted version of Model 2 in which the intercepts for each item are 

constrained to be the same for all ages (these were allowed to vary by age in Models 1 and 

2). Figure 2 shows the estimates of the item intercepts by age for Model 2. These show a 

downward trend in the item intercepts over time. We formally test for scalar invariance - 

that is whether constraining the item intercepts to be equal across ages is a reasonable 

assumption - by examining the change in model fit statistics between Model 2 and Model 3 

(see the third panel of Table 1). As seen for the contrast between Models 1 and 2 the Δ𝜒2 
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indicates a significantly worse model fit (p<0.001), but a very small ΔCFI supports the 

assumption of scalar invariance. 

Insert ‘Figure 2: Item intercepts, when allowed to vary by age (Model 2)’ here 

Structural equation model 

Model 4 is our main model of interest, a full SEM combining a measurement model of the 

same specification as Model 3 (assuming metric and scalar invariance) with a growth model. 

We interpret the measurement model parameters below and in the following section we 

contrast the growth model parameters of Model 4 with an alternative SEM which 

approximates a growth curve model fitted to an unweighted sum of scores on the ADL items 

(Model 5). Model 5 is similar to the growth models fitted in most previous research, but 

with frailty as a latent variable rather than a sum score. 

An important consideration when evaluating differences in parameter estimates across 

subsamples (male vs. female and age 65-74 vs. 75-84) or model specifications (Model 4 vs. 

Model 5) is that these may be due in part to differences in the variance of the physical 

functioning factor. Suppose, for example, that we wish to compare the factor loading for a 

particular ADL item for two groups. Even if the underlying relationship between the ADL 

response and the factor is the same for each group, the estimated factor loading will be of 

smaller magnitude in the group with the largest factor variance. Standardised factor 

loadings and growth model coefficients can be computed to take account of such scaling 

effects (see Appendix B for details). We present unstandardised factor loadings and item 

intercepts for the measurement model component of the SEM in Table 2, and 

unstandardised model estimates for all growth model parameters of Models 4 and 5 in 

Tables 3a and 3b. Between-gender and between-age comparisons can be made as the factor 

variance is fairly similar across genders and age groups. However, because the factor 

variance changes according to whether or not the factor loadings in the measurement 

model are permitted to vary across ADL items, we present a separate set of standardised 

estimates for the overall SES effects of Models 4 and 5 in Table 4. 

The measurement model component of the SEM 

The factor loadings 𝜆𝑟 and item intercepts 𝛼𝑟 of the measurement part of the growth model 

are shown in Table 2. The factor loadings are interpreted as the expected change in the 
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observed ADL item for a one unit change in the factor, and represent the discriminatory 

power of the items in terms of the functional disability latent variable. The factor loading for 

the first item: ‘cutting toenails’ is constrained to 1 to fix the scale of the latent variable. 

‘Walking down the road’ and ‘managing steps’ have the largest factor loadings indicating 

they are best at discriminating between individuals with different levels of functioning. 

‘Getting around the house’ and ‘getting in and out of bed’ have the lowest factor loadings, 

i.e. these are the least discriminatory items for changes in functional disability. 

Insert ‘Table 2: Factor loadings and item intercepts for measurement part of SEM (Model 

4)’ here 

The item intercepts represent the difficulty of the ADLs. We constrain the first item ‘cutting 

toenails’ to zero, and this is the least difficult activity because the estimated intercepts for 

the other items are all negative. For all age by gender subsamples ‘walking down the road’ is 

the most difficult activity, followed by ‘bathing, showering and washing’. The other 

categories (‘managing stairs or steps’, ‘getting in and out of bed’ and ‘getting around the 

house’) have roughly equal values within each age by gender subsample. The intercepts are 

larger in magnitude for females (within age groups), which is consistent with the literature 

on poorer female health. 

The growth model component of the SEM 

The parameter estimates for the growth model component of the full SEM (Model 4) are 

shown in the left half of Table 3a (for males) and Table 3b (for females). The coefficients of 

the SES dummy variables are interpreted as contrasts with the reference group ‘routine 

occupations’ at the baseline age in the sample. Functional disability at baseline (𝛽0) is 

greater for females. The intercept variances, var(𝑢0𝑖), are interpreted as the between-

individual variances in the level of physical functioning at 𝑡 = 0 (age 65 or 75) for each 

gender. We see a slightly larger baseline variance for females. 

Insert ‘Tables 3a and 3b: Growth model parameters’ here 

Predicted trajectories for each gender and age group are presented in Figure 3 with 

separate curves for each SES group. These trajectories are calculated using the SES 

coefficients for frailty for someone at the mean of the distribution, in other words the 
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individual random effects are set at their means of zero. For all SES groups we estimate a 

positive linear growth (𝛽1) in frailty, and the quadratic growth factor mean (𝛽2) shows a 

slight acceleration in growth for the older male group. The random effect variance 

associated with the linear age effect, var(𝑢1𝑖), is similar for men and women, though 

slightly smaller for males. There is a negative covariance between the individual intercepts 

and slopes suggesting that higher frailty at baseline is associated with slower increase in 

frailty. Note that the variance of the random effect for 𝑡2 (𝑢2𝑖) and its covariances with the 

other random effects were found to be negligible, and were therefore omitted from the 

structural model. 

Insert ‘Figure 3: Frailty trajectories by socio-economic status’ here 

SES is allowed to affect both the intercept and slope of frailty. For each age-by-gender group 

we find small but significant effects of SES on the intercept (𝛾0𝑚) compared with the 

reference category ‘routine occupations’, though the differences among lower status 

occupations (‘small employers and own account workers’, ‘lower supervisory and technical 

occupations’, and ‘semi-routine occupations’) are not consistently statistically significant. In 

terms of the social gradient in the change in frailty (𝛾1𝑚 and 𝛾2𝑚) males show a slight 

widening of the social gradient in functional disability with age, while females show a slight 

convergence with age (though from a more divergent baseline), though these relationships 

are statistically significant only for males and for the less routine occupations. In Appendix 2 

Figure A3 we show the trajectories for the never worked group. For all age by gender groups 

we see high initial frailty which increases with age, for females this increase is in line with 

other SES categories, whereas for males we see a much higher growth rate in the post 

retirement age group, but a much lower growth rate for the 75-84 age group. Table 4 shows 

standardised estimates of SES effects at selected ages, calculated by dividing the 

unstandardised estimates of Tables 3a and 3b by an estimate of the standard deviation of 

the latent frailty variable at that age (see Appendix B for details). These standardised 

coefficients can be interpreted as differences in frailty between ‘routine occupations’ and 

other SES categories measured in standard deviation units.  For example, at age 65 men in 

higher managerial occupations are predicted to have a frailty score 0.57 standard deviations 

lower than for men in routine occupations. 
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In the right-hand side of Table 4 we show estimates from a comparison model (Model 5) 

which proxies a growth model fitted to an unweighted sum of ADL scores. Table 5 shows 

standardised SES effects for Models 4 and 5 for the age by gender subsamples, calculated 

for selected ages 3 years apart. We would not expect the SES effects to be dramatically 

different given the factor loadings from the measurement part of Model 4 shown in Table 2 

are relatively close to one another. This comparison shows the SES effects would be slightly 

underestimated (lower predicted frailty) when no measurement models is used for the post-

retirement age group. The differences are greater for the 75-84 age groups, with the 

measurement model giving higher predictions of frailty for males, but much lower 

predictions for females.  

Discussion 

The general health of the elderly population is typically measured using questions relating to 

functional ability across a range of dimensions. When using these measures to model 

trajectories of functional disability as people age, researchers typically use simple methods 

to combine these indicators, such as the total score. We argue that these approaches are 

limited since they do not capture the difference in discriminatory power of these different 

items. We propose supplementing the growth model of functional disability with a 

measurement model to better capture the underlying latent variable functional disability 

that we wish to use as the outcome in the growth model. 

Another advantage of specifying a measurement model is that it makes explicit and allows 

testing of the assumption of temporal measurement invariance. We estimated a sequence 

of three increasingly restricted models in order to test for measurement invariance for the 

gender-by-age subsamples. Vandenberg and Lance (2000) argue that assessing model fit 

using only a 𝜒2 test is limited because it is sensitive to sample size and differences in the 

covariance structure, and suggest using a suite of fit indices including TLI, RMSEA and SRMR 

to evaluate the degree of temporal measurement invariance. By recognising the strengths 

and weaknesses of each of these indices we are able to build a more robust assessment of 

the temporal measurement invariance assumption. 

We estimate separate SEMs for the growth in latent frailty for subgroups defined by age and 

gender. Overall we see increasing functional disability, with accelerating growth for females 
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but not for males. For both genders we find evidence of a social gradient in the baseline 

levels of frailty between the most routine occupational class (the reference category) and 

the least routine social classes. The social gradient in the rate of change of frailty was less 

statistically significant, though we do see large differences for example our model predicts 

that the functional disability of a male from the lowest SES group at aged 65 is equivalent to 

that of an individual from the highest SES group who was 10 years older. 

Classification of females into SES groups using only an individual’s occupation is an 

imperfect proxy for SES since it ignores non employment based determinants of SES, which 

for many women, especially for our older population, may be more related to their 

husband’s occupation (Arber, 1997). In our analysis we focus on individual measures of SES 

and health, however this could be extended to include both the household cluster and 

household measures of SES. 

Future research which estimates trajectories of functional disability for the elderly could 

benefit from adopting our approach of using an SEM to incorporate a measurement model 

which treats frailty as a latent variable.  The SEM framework is extremely general and there 

are a number of generalisations of the model described here which allow a richer set of 

substantive questions to be addressed.  One such extension is the growth mixture model 

(GMM) in which individuals with similar physical functioning trajectories are grouped into 

latent classes and the probability of class membership depends on individual characteristics 

such as SES (e.g. Jung & Wickrama, 2008; B. Muthén & Asparouhov, 2008). GMM is usually 

applied to longitudinal data on a single response.  Latent transition analysis is a 

generalisation of GMM suitable for multivariate longitudinal data, such as our multiple ADL 

items, where a latent class is defined for each time point and individuals may move between 

classes over time  (Collins & Lanza, 2013).  

Another direction for future work is the use of richer datasets which would allow a wider set 

of items to measure functional disability, and a wider set of controls. For example the 

English Longitudinal Study of Ageing includes measures of iADL and mobility to supplement 

the ADL, and has better measures of SES to improve identification of the social gradient in 

frailty trajectories (which could be used in a second measurement model for a latent SES 

measure). To date, these datasets have only been used to model functional disability cross-

sectionally (Gjonça, Tabassum, & Breeze, 2009). Time-varying measures of social status 
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would allow us to explore the relationship between change in SES and change in functional 

disability, and determine whether the changes in SES effects with age are real or simply a 

function of increasing time since the measure was taken. We know that there may be 

reverse causality in this relationship as health status could also impact on social status 

(Steele, French, & Bartley, 2013). Longitudinal data on both health and SES would allow us 

to identify the direction of these effects. Residential status is another time-varying 

characteristic of policy relevance (because of the cost of residential care) which may be 

included as a determinant of frailty trajectories. Such a model could be extended to identify 

the effect of residential status on individuals where care needs (including moves into 

residential care) are not met (Scott, Evandrou, Falkingham, & Rake, 2001). Finally, studies 

that incorporate this approach over shorter term periods would be able to capture aspects 

of recovery as well as the longer term increase in functional disability found in this study. 

Importantly, a shorter time span would also make it easier to satisfy the temporal 

measurement invariance assumption.  
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Tables & Figures 

Table 1: Tests for temporal measurement invariance 

 

  Males Females 

 
Aged 
65-74 

Aged 
75-84 

Aged 
65-74 

Aged 
75-84 

     

Absolute fit of Model 1:     

 Chi-square test statistic, 1395 df (𝜒2) 4830 4141 4316 3511 

 TLI 0.892 0.849 0.910 0.907 

 RMSEA 0.038 0.043 0.033 0.033 

 SRMSR 0.078 0.084 0.070 0.070 

     
Absolute fit of Model 2:     
 Chi-square test statistic, 1440 df (𝜒2) 4945 4238 4448 3602 
 TLI 0.894 0.851 0.910 0.908 
 RMSEA 0.038 0.042 0.033 0.033 
 SRMSR 0.079 0.083 0.072 0.070 
     
Absolute fit of Model 3:     
 Chi-square test statistic, 1485 df (𝜒2) 5107 4330 4618 3757 
 TLI 0.893 0.853 0.909 0.906 
 RMSEA 0.038 0.042 0.033 0.033 
 SRMSR 0.078 0.080 0.069 0.067 
     

Change in model fit between Model 1 and Model 2:     

 Chi-square test statistic, 45 df (Δ𝜒2) 116 97 132 91 

 Change in CFI (ΔCFI) -0.002 -0.002 -0.002 -0.002 

     

Change in model fit between Model 2 and Model 3:     

 Chi-square test statistic, 45 df (Δ𝜒2) 161 93 169 155 

 Change in CFI (ΔCFI) -0.002 -0.002 -0.003 -0.004 

      

n 1712 1076 1958 1394 
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Table 2: Factor loadings 𝜆𝑟 and item intercepts 𝛼𝑟 for the measurement part of the SEM (Model 4). 
Standard errors are given in brackets. 

 

 Males Females 

 
Age 

65-74 
Age 

75-84 
Age 

65-74 
Age 

75-84 

  Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE) 

Factor loadings (𝝀𝒓):         

Cut toenails 1  1  1  1  

Get up and down stairs or steps 1.034 (0.023) 1.168 (0.039) 1.026 (0.024) 1.272 (0.043) 

Walk down the road 1.013 (0.023) 1.240 (0.042) 1.058 (0.024) 1.407 (0.047) 

Get around the house 0.716 (0.016) 0.798 (0.027) 0.664 (0.016) 0.884 (0.03) 

Bath, shower or wash all over 0.871 (0.019) 1.011 (0.034) 0.840 (0.02) 1.107 (0.038) 

Get in and out of bed 0.755 (0.017) 0.798 (0.027) 0.703 (0.017) 0.842 (0.029) 

         

Item intercepts (𝜶𝒓):         

Cut toenails 0  0  0  0  

Get up and down stairs or steps -0.425 (0.039) -1.192 (0.098) -0.612 (0.049) -1.759 (0.128) 

Walk down the road -0.519 (0.039) -1.459 (0.103) -0.842 (0.05) -2.234 (0.142) 

Get around the house -0.442 (0.027) -1.051 (0.066) -0.597 (0.031) -1.585 (0.089) 

Bath, shower or wash all over -0.489 (0.033) -1.234 (0.084) -0.693 (0.04) -1.800 (0.113) 

Get in and out of bed -0.444 (0.028) -1.021 (0.067) -0.595 (0.033) -1.444 (0.086) 
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Table 3a: Male subsample growth model parameters and model fit statistics for Models 4 and 5, 
SEMs with unequal and equal factor loadings across ADL items. 
 

 

Model 4: Growth model from SEM 
 with unequal factor loadings  

for ADL items  

Model 5: Growth model from SEM 
 with equal factor loadings 

 for ADL items  

Age 
65-74 

Age 
75-84 

Age 
65-74 

Age 
75-84 

Parameter estimates         

Intercept growth factor mean (𝛽0) 1.098*** (0.067) 1.909*** (0.086) 1.102*** (0.058) 1.928*** (0.081) 

Slope growth factor mean (𝛽1) 0.060*** (0.023) 0.074** (0.033) 0.048** (0.019) 0.061** (0.031) 

Quadratic growth factor mean (𝛽2) -0.001 (0.002) 0.003 (0.004) -0.001 (0.002) 0.003 (0.004) 

Effects of NS-SEC on intercept (𝛾0𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations 0.028 (0.096) -0.060 (0.116) 0.027 (0.079) -0.055 (0.105) 

       Lower supervisory and technical occupations -0.047 (0.097) 0.018 (0.105) -0.046 (0.079) 0.032 (0.095) 

       Small employers and own account workers -0.041 (0.091) 0.045 (0.118) -0.031 (0.074) 0.037 (0.107) 

       Intermediate occupations -0.386*** (0.136) -0.192 (0.141) -0.305*** (0.111) -0.158 (0.128) 

       Lower managerial and professional occupations -0.185** (0.088) -0.156 (0.106) -0.133* (0.071) -0.137 (0.097) 

       Higher managerial and professional occupations -0.247** (0.103) -0.233* (0.126) -0.188** (0.084) -0.206* (0.114) 

Effects of NS-SEC on coefficient of 𝑡 (𝛾1𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations -0.030 (0.035) 0.024 (0.050) -0.027 (0.029) 0.023 (0.048) 

       Lower supervisory and technical occupations 0.009 (0.036) -0.082* (0.044) 0.012 (0.030) -0.077* (0.041) 

       Small employers and own account workers -0.060* (0.034) -0.016 (0.050) -0.052* (0.029) -0.014 (0.047) 

       Intermediate occupations -0.034 (0.048) -0.048 (0.056) -0.024 (0.041) -0.045 (0.053) 

       Lower managerial and professional occupations -0.063* (0.032) -0.019 (0.043) -0.051* (0.027) -0.011 (0.041) 

       Higher managerial and professional occupations -0.107*** (0.038) -0.026 (0.050) -0.087*** (0.032) -0.021 (0.048) 

Effects of NS-SEC on coefficient of 𝑡2 (𝛾2𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations 0.001 (0.004) -0.006 (0.006) 0.002 (0.003) -0.006 (0.006) 

       Lower supervisory and technical occupations -0.002 (0.004) 0.006 (0.005) -0.002 (0.003) 0.006 (0.005) 

       Small employers and own account workers 0.005 (0.004) 0.001 (0.006) 0.005 (0.003) 0.001 (0.006) 

       Intermediate occupations 0.005 (0.005) 0.009 (0.007) 0.004 (0.004) 0.009 (0.006) 

       Lower managerial and professional occupations 0.005 (0.003) 0.001 (0.005) 0.004 (0.003) 0.001 (0.005) 

       Higher managerial and professional occupations 0.009** (0.004) 0.000 (0.006) 0.007** (0.004) 0.000 (0.005) 

Intercept growth factor variance, var(𝑢0𝑖) 0.001 (0.004) -0.006 (0.006) 0.002 (0.003) -0.006 (0.006) 

Slope growth factor variance, var(𝑢1𝑖) -0.002 (0.004) 0.006 (0.005) -0.002 (0.003) 0.006 (0.005) 

Covariance between factor mean and slope, cov(𝑢0𝑖 , 𝑢1𝑖) 0.005 (0.004) 0.001 (0.006) 0.005 (0.003) 0.001 (0.006) 

Residual  variance for the factor, var(𝑒𝑖) 0.005 (0.005) 0.009 (0.007) 0.004 (0.004) 0.009 (0.006) 

Model fit         

Chi-square test statistic 5531 1885 df 4999 1885 df 6489  1890 df 5717  1890 df 

TLI 0.898  0.849  0.871   0.815   

RMSEA 0.034  0.039  0.038   0.043   

SRMSR 0.075  0.082  0.125   0.129   

n 1712  1076  1712   1076   

*** p <0.01, **  p<0.05, * p<0.10 . Standard errors in parentheses. 
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Table 3b: Female subsample growth model parameters and model fit statistics for Models 4 and 5, 
SEMs with unequal and equal factor loadings across ADL items. 
 

 

Model 4: Growth model from SEM 
 with unequal factor loadings  

for ADL items  

Model 5: Growth model from SEM 
 with equal factor loadings 

 for ADL items  

Age 
65-74 

Age 
75-84 

Age 
65-74 

Age 
75-84 

Parameter estimates         

Intercept growth factor mean (𝛽0) 1.443*** (0.065) 2.626*** (0.073) 1.478*** (0.055) 2.645*** (0.073) 

Slope growth factor mean (𝛽1) 0.053** (0.021) 0.043* (0.022) 0.034* (0.018) 0.038* (0.023) 

Quadratic growth factor mean (𝛽2) 0.002 (0.002) 0.004* (0.002) 0.002 (0.002) 0.004 (0.003) 

Effects of NS-SEC on intercept (𝛾0𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations -0.023 (0.082) -0.084 (0.088) -0.017 (0.065) -0.081 (0.088) 

       Lower supervisory and technical occupations 0.205* (0.120) -0.059 (0.122) 0.157* (0.095) -0.092 (0.121) 

       Small employers and own account workers -0.122 (0.125) -0.199 (0.131) -0.088 (0.099) -0.222* (0.130) 

       Intermediate occupations -0.168* (0.086) -0.329*** (0.092) -0.121* (0.068) -0.323*** (0.091) 

       Lower managerial and professional occupations -0.160* (0.084) -0.251*** (0.098) -0.125* (0.066) -0.254*** (0.096) 

       Higher managerial and professional occupations -0.536** (0.209) -0.603** (0.255) -0.380** (0.163) -0.571** (0.252) 

Effects of NS-SEC on coefficient of 𝑡 (𝛾1𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations -0.002 (0.030) 0.027 (0.031) -0.001 (0.025) 0.027 (0.032) 

       Lower supervisory and technical occupations 0.003 (0.043) 0.015 (0.043) 0.002 (0.035) 0.017 (0.044) 

       Small employers and own account workers -0.031 (0.046) 0.045 (0.044) -0.023 (0.038) 0.045 (0.046) 

       Intermediate occupations -0.047 (0.031) 0.029 (0.031) -0.036 (0.026) 0.031 (0.032) 

       Lower managerial and professional occupations -0.021 (0.031) 0.001 (0.034) -0.011 (0.025) 0.011 (0.035) 

       Higher managerial and professional occupations -0.031 (0.075) 0.109 (0.091) -0.026 (0.062) 0.122 (0.094) 

Effects of NS-SEC on coefficient of 𝑡2 (𝛾2𝑚):         

       Routine occupations (reference)         

       Semi-routine occupations -0.001 (0.003) -0.004 (0.003) -0.001 (0.003) -0.004 (0.004) 

       Lower supervisory and technical occupations -0.006 (0.004) -0.001 (0.005) -0.005 (0.004) -0.001 (0.005) 

       Small employers and own account workers 0.001 (0.005) -0.005 (0.005) 0.001 (0.004) -0.005 (0.005) 

       Intermediate occupations 0.004 (0.003) -0.004 (0.003) 0.003 (0.003) -0.004 (0.004) 

       Lower managerial and professional occupations -0.001 (0.003) 0.002 (0.004) -0.001 (0.003) 0.000 (0.004) 

       Higher managerial and professional occupations 0.005 (0.008) -0.011 (0.011) 0.004 (0.007) -0.012 (0.011) 

Intercept growth factor variance, var(𝑢0𝑖) 0.667 (0.047) 0.763 (0.064) 0.367 (0.022) 0.704 (0.041) 

Slope growth factor variance, var(𝑢1𝑖) 0.009 (0.001) 0.010 (0.001) 0.005 (0.001) 0.010 (0.001) 

Covariance between factor mean and slope, cov(𝑢0𝑖 , 𝑢1𝑖) -0.007 (0.005) -0.016 (0.006) -0.006 (0.003) -0.020 (0.006) 

Residual  variance for the factor, var(𝑒𝑖) 0.213 (0.010) 0.127 (0.009) 0.156 (0.004) 0.145 (0.006) 

Model fit         

Chi-square test statistic 5304 1885 df 4211 1885 df 6645 1890 df 5078 1890 df 

TLI 0.906  0.909  0.870  0.875  

RMSEA 0.030  0.030  0.036  0.035  

SRMSR 0.072  0.072  0.131  0.108  

N 1958  1394  1958  1394  

*** p <0.01, **  p<0.05, * p<0.10 . Standard errors in parentheses. 
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Table 4: Comparison of standardised SES effects for growth model component of Models 4 and 5, 
SEMs with unequal and equal factor loadings across ADL items. 
 

 
 
 
Age 

Model 4: Growth model from SEM 
 with unequal factor loadings 

 for ADL items 

Model 5: Growth model from SEM 
 with equal factor loadings 

 for ADL items 

65 68 71 74 65 68 71 74 

Males:          

   Routine occupations 0 0 0 0 0 0 0 0 

   Semi-routine occupations 0.031 -0.059 -0.122 -0.153 0.037 -0.050 -0.083 -0.064 

   Lower supervisory and technical occupations -0.052 -0.043 -0.069 -0.122 -0.064 -0.039 -0.060 -0.118 

   Small employers and own account workers -0.046 -0.197 -0.233 -0.167 -0.043 -0.198 -0.214 -0.111 

   Intermediate occupations -0.431 -0.496 -0.432 -0.273 -0.422 -0.475 -0.400 -0.232 

   Lower managerial and professional occupations -0.206 -0.369 -0.404 -0.330 -0.184 -0.348 -0.387 -0.316 

   Higher managerial and professional occupations -0.276 -0.546 -0.596 -0.457 -0.260 -0.537 -0.600 -0.476 

                 

Females:          

   Routine occupations 0 0 0 0 0 0 0 0 

   Semi-routine occupations -0.025 -0.040 -0.067 -0.100 -0.024 -0.040 -0.074 -0.118 

   Lower supervisory and technical occupations 0.219 0.167 0.007 -0.209 0.217 0.162 -0.014 -0.254 

   Small employers and own account workers -0.130 -0.215 -0.257 -0.263 -0.122 -0.203 -0.239 -0.236 

   Intermediate occupations -0.179 -0.285 -0.289 -0.219 -0.167 -0.277 -0.288 -0.223 

   Lower managerial and professional occupations -0.171 -0.242 -0.304 -0.353 -0.173 -0.229 -0.286 -0.337 

   Higher managerial and professional occupations -0.571 -0.609 -0.512 -0.337 -0.525 -0.579 -0.493 -0.320 

                 

 

 
Age 75-84 

 
 
Age 

Model 4: Growth model from SEM 
 with unequal factor loadings 

 for ADL items 

Model 5: Growth model from SEM 
 with equal factor loadings 

 for ADL items 

75 78 81 84 75 78 81 84 

Males:          

   Routine occupations 0 0 0 0 0 0 0 0 

   Semi-routine occupations -0.067 -0.045 -0.124 -0.263 -0.068 -0.048 -0.143 -0.307 

   Lower supervisory and technical occupations 0.020 -0.185 -0.242 -0.186 0.040 -0.176 -0.230 -0.161 

   Small employers and own account workers 0.050 0.006 -0.014 -0.014 0.046 0.005 -0.012 -0.007 

   Intermediate occupations -0.214 -0.271 -0.146 0.084 -0.197 -0.257 -0.112 0.152 

   Lower managerial and professional occupations -0.174 -0.217 -0.219 -0.196 -0.170 -0.195 -0.180 -0.142 

   Higher managerial and professional occupations -0.260 -0.331 -0.364 -0.372 -0.256 -0.326 -0.358 -0.363 

                 

Females:          

   Routine occupations 0 0 0 0 0 0 0 0 

   Semi-routine occupations -0.089 -0.041 -0.064 -0.139 -0.088 -0.040 -0.064 -0.142 

   Lower supervisory and technical occupations -0.063 -0.024 -0.005 -0.004 -0.100 -0.055 -0.026 -0.018 

   Small employers and own account workers -0.211 -0.116 -0.106 -0.167 -0.241 -0.146 -0.134 -0.195 

   Intermediate occupations -0.349 -0.296 -0.291 -0.330 -0.351 -0.294 -0.285 -0.323 

   Lower managerial and professional occupations -0.266 -0.245 -0.168 -0.067 -0.276 -0.244 -0.191 -0.136 

   Higher managerial and professional occupations -0.639 -0.399 -0.335 -0.432 -0.620 -0.346 -0.275 -0.390 
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Figure 1: Trajectories of factor loadings (𝜆𝑟), when allowed to vary by age (Model 1) 
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Figure 2: Item intercepts (𝛼𝑟), when allowed to vary by age (Model 2)  
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Figure 3: Frailty trajectories by socio-economic status (Model 4)  
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