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In this paper, a new neural network directed Bayes decision

rule is developed for target classification exploiting the dynamic

behavior of the target. The system consists of a feature extractor,

a neural network directed conditional probability generator and

a novel sequential Bayes classifier. The velocity and curvature

sequences extracted from each track are used as the primary

features. Similar to hidden Markov model (HMM) scheme, several

hidden states are used to train the neural network, the output

of which is the conditional probability of occurring the hidden

states given the observations. These conditional probabilities

are then used as the inputs to the sequential Bayes classifier to

make the classification. The classification results are updated

recursively whenever a new scan of data is received. Simulation

results on multiscan images containing heavy clutter are presented

to demonstrate the effectiveness of the proposed methods.
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I. INTRODUCTION

The problem of detection and classification of
moving targets from IR, radar and sonar platforms
has attracted a lot of attention in recent years [1-25].
This involves discrimination among different types
of moving targets as well as the characterization
of background clutter. Several factors contribute to
make the detection and classification processes a very
complex problem. These include nonrepeatability
and variation of the moving target signature for
different targets, extremely low signal-to-noise ratio,
competing clutter, and lack of any a priori knowledge
about the shape, geometry, and dynamics of the
targets. Consequently, efficient and robust detection
and classification schemes are needed to solve this
complex problem.

Several different schemes [3-13] for moving
target detection have been developed and applied
to IR, radar and sonar imagery data. These include
spatio-temporal filtering [3, 4], maximum likelihood
(ML) estimation [5, 12], recursive Kalman filtering
[6-11] and neural network-based methods [13]. In [4],
a 3-D spatio-temporal filtering scheme is developed.
The operations are done in the frequency domain
by passing the image through a bank of directional
filters each tuned to extract line features of the tracks
with certain orientations. Bar-Shalom, et al. [9, 10]
used two different centroid-based measurements
to track targets in forward looking IR images. In a
more recent paper [11], Shertukde and Bar-Shalom
extended this approach by using the joint probabilistic
data association (JPDA) in conjunction with a
Kalman state estimator. The scheme in [12] uses a
track-before-detect procedure to detect multiple targets
in presence of false measurements. The methodology
is based upon ML estimation as the measurement
model is nonlinear. Roth [13] developed a neural
network-based scheme for detection of straight line
tracks in background clutter. A Hopfield network
was trained to implement the optimum post-detection
target track receiver operation.

Over the years, several feature extraction schemes
have been developed for target classification. In
[14], polarimetric target signatures are derived and
plotted for simple objects using the complex radar
cross-section matrix. The target classification is
made based on the polarimetric 'signatures and the
characterization of the parameters derived from
them. Walton and Jouny [15] showed that the
scattering characteristics of a radar target can be
specified by its impluse response and there is a clear
relationship between the actual location of specific
scattering mechanisms and the time they appear in
the impulse response. However, complex targets
often have multiple scattering interactions. The
bispectrum displays the specifics of the interactions
of both single and multiple reflection mechanisms.
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Based on the bispectral signatures the classification
of scale models of commercial aircraft was then
demonstrated. In [16J, the frequency-selective fading
channel model was employed to characterize the
effects of the multipath propagation medium and
evaluate the performance of radar target classification
systems. The relative amplitude, relative phase, and
absolute amplitude measurements were selected
as the features to make the classification. In [17J,
the radar backscatter signal measurements are first
represented as a set of down range scattering centers
parameterized by the Prony modeling technique. The
relative range, size and possibly polarimetric shape
of the resulting parametric scattering centers are
then used to form a description of the "structure" of
the target. Finally, these "structural descriptions" of
the measured backscatter signal are used to classify
the targets. Zyweck and Bogner [18J used high
resolution range profiles to classify commercial
aircrafts. A large bandwidth is used to provide high
resolution in range for better target discrimination.
On the other hand, coherence makes cross-range
resolution and radar image possible. In. [19], a
multidimensional sensor suite consisting of a laser
radar and a passive IR sensor is developed and
evaluated for detecting and identifying ships at long
ranges from an airborne platform. The passive IR
sensor detects targets by taking advantage of the
high target-to-background contrast and the ability
of the sensor to track over a wide field of view. The
information content of the range profile of the ship
is then exploited for target identification. In [20], the
classification of high-range resolution (HRR) radar
signatures using multiscale features is employed. The
method in [21] employes neural networks namely
the self-organizing map (SaM) and learning vector
quantization (LVQ) for automatic target recognition
(ATR) from HRR target signatures. Hauter, et al. [22]
considered the problem of target classification using
synthetic aperture radar (SAR) polarizations from a
Bayesian decision point of view. They investigated
the optimum design of a data fusion structure given
that each classifier makes a target classification
decision for each polarization channel. In [23J, both
neural networks and conventional classification
schemes were used to determine the class of a target
from the inverse SAR (ISAR) imagery acquired
during reconnaissance missions. In [24, 25] a 2-D
pattern-matching algorithm rejects cultural clutter false
alarms (i.e., nontargets) and classifies the remaining
detections by target type e.g., tank, armored personnel
carrier, or howitzer using a SAR target recognition
system.

The above target classification schemes generally
assume some a priori knowledge of signatures of the
targets to perform the classification. However, when
only a multiscan radar, sonar, or IR image is available,
no a priori information about the target signature

Fig. 1. Block diagram of classification scheme for two-target
case.

can be assumed. A new method referred to as neural
network directed Bayes classifier is developed
here. Fig. 1 shows the overall block diagram of the
proposed classification scheme for two-target case.
Since a moving target builds a spatial-temporal track
in the 3-D space and there exists spatial-temporal
correlation between consecutive target observation
points, the recursive high order correlation (R~OC)

scheme [l, 2] is first used to detect the targets In an
extremely cluttered environment. After detecting the
target tracks, two sets of features namely acceleration
and curvature changes are extracted from each track.
Based on each feature type, several hidden states are
generated [26] to train the neural network which in.
turn generates the conditional probability of occurnng
the hidden states given the observations. The output of
this network is used as the input to a new sequential
Bayes classifier. A nonlinear fusion system is then
employed to combine both of the classifiers results
to make the final classification decisions. Simulated
target tracks for three types of targets were generated
using first order Markov models..The classification
performance under different conditions demonstrate
the effectiveness and robustness of the proposed
scheme.

This paper is organized as follow. Section II
briefly reviews the RHOC process [I, 2]. Sections
III and IV give the details on the conditional
probability generator and the sequential Bayes
classifier subsystems, respectively. Simulation results
are presented in Section V.

II. TARGET DETECTION AND CLUTTER REJECTION
USING RHOC SCHEME

A multiscan image is actually obtained by stacking
several 2-D images collected at some time intervals
by a sensor whose field of view is fix~d wit~ respect
to the background. This yields a 3-D Image In

the coordinates (x,y,t) where (x,y) are the spatial.
variables and t represents the time. A moving target in
several consecutive scans forms a track or a signature
in this 3-D image.

The scan data is converted to binary images by
mapping any sensor return with intensity greater than
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(5)

zero to one. This is done to prevent the possibility of
losing dim targets. Now stacking several such binary
images for different time scans gives a 3-D image
which can be modeled [1, 2J by

F(x,y,tn) = S(x,y,tn) + [1- S(x,y,tn)]N(x,y,tn)
(1)

where F(·) is the observed binary image consisting
of two disjoint parts, i.e., target image SO and clutter
image NO which are also binary.

Since a target moves in certain directions and
builds a time-dependent track in the 3-D space,
there exists spatial-temporal correlations between
consecutive scan points. To find this dependency, we
can use the following correlation equation:

[

[v] lvl ]
Y(x,y,tn) =g L L F(x,y,tn)F(x + i,y + },tn+, )

i=-Ivlj=-Iv!

(2)

where v is the maximum allowable target movement
from one scan to the next and yo represents how
F(x,y,tn ) at scan tn are correlated to their neighboring
points, within a window of size (2v + 1) x (2v + 1), at
scan tn+,.The function g(.) is a hard limiter threshold
function with gee) =1 for e ~ 0 and gee) =0 for
e < O. Obviously, Y(x,y,tn ) = 1, implies that there
is a two-point spatial-temporal sequence initiated at
location (x,y) at scan tn to location (x + i.y + }) at scan
tn+l ·

To determine the spatial-temporal correlation of
more than two data points, and also impose both
velocity and curvature limitations for the moving
target, we can get a three consecutive scan RHOC
equation [2] as

y(k)(X,y,tn ) = g [y(k-l)(X,y,t
n

) L Ly(k-I)(x + il'Y + jl't
n

+
l

)

'I 11

where e is the target bearing angle from scan tn

to scan tn+l . Now if the maximum target moving
curvature is IJ then the turning angle from scan tn+,
to scan tn+Z should be within a bounded region, i.e.,

B- IJ < arctan:& < B+ IJ.- iz -

Having specified the curvature constraint, the
acceptable range of the values of (iz,}z) can be
determined using (5). Thus, the range of movements
from scan tn+ , to tn+Z is limited according to the
assumed maximum moving curvature [1].

After applying the RHOC process to detect the
target tracks, in some cases there may still be some
noise points that remain in the processed image
together with the real target track points. This occurs
when the noise points are spatially and temporally
close to the target points, hence satisfying the RHOC
condition. A consistency test was adopted here to
reject such points. The main idea of this algorithm is
that the dynamic behavior of the real moving target
always has a consistent characteristic, i.e., it may
not change too frequently. Based on this idea, for
scan k, we first select the data points -kft after the
RHOC process from scan k - 4 to scan k + 4, i.e.,
in totally 9 scans. In each scan, there can be one
or more points. All the possible target tracks based
on these points are then considered. The choice of
nine consecutive scans is empirically determined
to be optimum since increasing the scan numbers
will tremendously increase the number of candidate
tracks while reducing the scan number will reduce
the accuracy in estimation. For every possible track,
the acceleration and curvature changes are calculated
at each point. The variance of the each sequence is
then calculated. To combine the variances of both
acceleration and curvature change, we divide each
variance by its mean and then add the two results for
each candidate track yielding

(3)

where (i, ,h) and (iz,h) represent the possible
movements from scans tn to tn+1 and tn+! to tn+Z'

respectively, and k is the order of the RHOC
process. Consequently, y(k)(X,y,tn) gives correlational
information among k consecutive scans, i.e., if
y(k)(x,y,tn ) = 1, then there may exist a track extending
from location (x,y,tn) at scan tn to a point at scan tn+k;
otherwise these data points do not lie on a possible
track and can subsequently be removed.

The relation between (i I' j,) and (i z,h) can be
shown as

(6)

where IJz is the variance, J.L is the mean, subscripts a

and d represent acceleration and curvature changes,
respectively, and S provides a measure of consistency.
A track with the smallest S value is chosen among all
the nine-point candidate tracks and the fifth point(in
the middle) within this 9-points sequence is kept to be
the real target point for scan k in the whole detected
track. This process is then repeated to estimate the
target point at scan k + 1 and so on.

To see the effectiveness of the RHOC and
consistency test, consider the multiscan (23 scans)
image in Fig. 2(a) which contains one target track
and clutter/noise with density 1%. The processed
image after the RHOC process is shown in Fig. 2(b).
As can be seen, most of the noise and clutter points

(4)e=arctan L!.
t,
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Fig. 2. Results of RHOC process on multiscan image. (a) Original multiscan image containing target track and noise/clutter.
(b) detected target track after RHOC process. (c) Final result after consistency testing process. Noise and clutter points in vicinity of

target points are removed.

are removed and all the target points are retained in
the image. Nonetheless, there are few noise points
in the proximity of the target points that are also
retained after the RHOC process. Fig. 2(c) is the
resultant image after the above-mentioned consistency
process is applied. In this particular case, all the
target points are retained while the noise points are
rejected.

Having removed the competing clutter and noise
and detected the target tracks using the RHOC
process, we need to extract appropriate features from
these tracks in order to perform target classification.
If we define Vi and ci as the velocity and curvature

of the moving target at time (or scan) t.; then the
acceleration value at this time is ai = vi+ ! - Vi' and the
change in curvature is d, =ci + ! - ci where i E [1,N] is
the scan number and N is the total number of scans
used. Note that ai and d, are evaluated at each target
scan point. The information on the dynamic behavior
of the target, i.e., the velocity and curvature can be
employed to classify certain kinds of targets. This
is due to the fact that these two features and their
time history provide the maneuver characteristics
of the moving targets. These characteristics that are
different from target to target can be used to make the
classification.
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III. CONDITIONAL PROBABILITY GENERATOR

The classification using the Bayes decision rule
requires the knowledge of the conditional probabilities
based on the extracted features. In our scheme these
are provided by the conditional probability generator
(CPG) sub-system. The principle behind the CPG
is somewhat similar to the hidden Markov model
(HMM) [26] where we define several kinds of state
patterns. These patterns are then used to train the
neural network-based CPG system. During the testing
phase, real observation patterns that may not be the
same as the defined patterns are applied to the CPG
system. The output of the CPG then provide the
conditional probabilities of occurring certain kind of
state pattern given the observation pattern.

A. Determination of Hidden States

1. --./ 10. / 19. V
2.~ 11.~ 20. <>:
3.~ 12. /"- 2\.

~
~

4. ----. 13. 22. <:>
5.~ 14.~ 23.

~

6.~ 15.~ 24.

~
7. --- 16. ~ 25.

V
8. --./ ~17. 26.

'-9.~
18.

~
27.

"'-
Fig. 3. All possible shapes for hidden states model.

This optimum value is determined empirically by
varying this value, retraining the network for the new
hidden states for every new A and then testing on a
subset of the whole testing data. More specifically,
the amplitude A is varied from possible small to large
values while generating the subtest results from a
small part of the testing samples. The peak in the
performance plot is then determined and the value
A which corresponds to this best performance point
is obtained. This amplitude A is then kept fixed to
perform the classification on the whole testing data.

B. Generating the Conditional Probabilities by Neural
Networks

Based on the feature patterns and the changing
amplitude, the target dynamic behavior can be
determined by the conditional probabilities of
occurring the hidden states given the observation
vectors (patterns). The observation vectors are
extracted from the actual target tracks and forming
vectors similar to feature vectors with three
components representing acceleration and curvature
change sequences. Every two consecutive vectors
contain two overlapping elements in order to consider
all the dynamical information of the targets. The
conditional probability can then be obtained using a
back-propagation neural network (BPNN).

Let us assume that V is the input vector and M is
the desired vector. The goal is to find a function d(V)
which is able to accurately recover M from V [7].
The most general way of selecting an estimate of the
function d(V) for functional fitting is to take a family
of arbitrary functions of V and search among them
(using the training process) for an individual function
that best complies with the least mean squared (LMS)
criterion, i.e.,

To determine the conditional probabilities needed
for subsequent Bayes classification process we need
to define several hidden states for each feature type.
These state vectors represent all the possible typical
patterns of feature changes in three consecutive scans.
Each hidden state vector contains three elements and
each element can accept only three possible values
namely A, 0, or -A. For the acceleration feature,
these values correspond to acceleration, constant
speed, or deceleration cases, respectively. For the
curvature changes feature, these correspond to left
turn, no turn and right turn, respectively. The reason
behind choosing three components in each hidden
state vector is that choosing two components does not
adequately represent some complicated patterns while
four components would have tremendously increased
the computational complexity. Therefore, we have a
total of 27 hidden state vectors for each feature type
as shown in Fig. 3. Note that in this figure, the arrow
with 45, 0, and -45 deg orientation represents the
values A, 0, and -A, respectively.

The distribution of the amplitude of the target
features is obviously different for different types
of targets. Thus, when we define the hidden state
vectors to classify two types of targets, the choice
of the amplitude value A definitely affects the
classification performance. 'The reason being for
different amplitude A of the hidden state vectors,
the conditional probabilities that CPG generates are
different. If A is chosen to be too large, most of the
real observation pattern components will be far less
than A and as a result these patterns will be taken
as state pattern 0,0,0 whereas if the value of A is
too small, they will be taken as A,A,A. In this case,
we cannot discriminate the target types efficiently.
The optimum value of A makes the observation
patterns distribute more evenly across all the hidden
state patterns hence leading to a more efficient '
classification.

E
2 = min =E[jd(V) _MI2].

d(V)
(7)
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IV. SEQUENTIAL BAYES CLASSIFICATION SCHEME

The optimum function is the so-called regression
function. In [8], it is shown that the solution to
this optimization problem is the conditional mean
estimates, i.e.,

(10)P(O(k)IT) > P(0(k)/4)

then reject 4 from consideration and test 4+ 1 and
continue. Otherwise, reject T;, replace T; with 4, and
continue. When getting the final T;, we can make the
decision that the target belongs to class j [30].

Here the a priori conditional probability
P(O(k) I 1;.) is generated using a sequential scheme.
Let us define

Let us define the whole observation space as
O(N) = {OI,02, ... .o; ... ,ON} where 0;, j E [1,N]
is the jth observation vector containing either the
acceleration or curvature changes extracted from a
track. These observations are arrived sequentially,
from t 1 to tN' Experience indicates that the probability
density function of these observations is uniform
and hence for a given N, one can use anciJ priori
probability P(Oj) for all.

At time or scan k, 0 1 to O, are observed and
we would like to use these k observations to make
a decision based on this partial observation set. Let
O(k) = U~=I OJ be the collection of such observations.
Note that union operation eliminates the redundencies
among the observation vectors due to the overlapping
elements. The goal of the Bayes classification is to
maximize the a posteriori conditional probability
P[O(k) I 1;.] of the observed sequence O(k), given the
target model Tn which represents the nth target class.

The following developments are done assuming
only two-target scenarios. Nevertheless, when the
number of targets is more than two, one can classify
each pair of targets first, and then use the likelihood
ratio test to make the final decision for all the targets.
Using this algorithm, if for targets j and k,

(9)d(O) = LMP(M10j) =
M

P(MK/O)

where M is a K -dimensional vector with only one
of its components equal to I and all the others equal
to O.

Since the BPNN uses the LMS criterion with
desired outputs of 1 and 0, it can therefore be
employed to compute P(M to ». However, the
hidden states are used in place of the desired vector
M to train the BPNN. To increase the robustness
of the BPNN, the training patterns should also
include some noisy state patterns. The observation
vectors OJ contains acceleration and curvature
change components aj or d.. The output of the BPNN
provides the conditional probability of occurring the
hidden states given the observed features.

d(V) = L M P(M IV) =E(M IV). (8)
M

Once this mapping function is captured by the neural
network, for a given observation pattern OJ the output
vector of the neural network is given [29] by

P(Md0)
P(M2 /O)

and

and

Sn[m(1)] =P(Mm(l),OI/1;.) =P(Mm(l)/01,Tn)p(01/Tn)
(14)

(13)

(11 )

S,[m(k)] =P (Mm(k)' ~O';T" ) (12)

where Rn (k) is the conditional probability of occurring
the partial observation sequence U~=I 0; given the
target type Tn' and Sn[m(k)] is the joint probability
of occurring the observation sequence U~=l 0; and
the hidden state Mm(k) at time k, given the target
type Tn' Here m(k) is the mth hidden state at time
k. Obviously, we are interested in computing Rn(k)
in a recursive fashion using the following initial
conditions:

Having computed the conditional probabilities
for each observation vector using the CPG, one can
simply use these probabilities as the input to another
BPNN to perform the classification. Although this
approach is fairly simple and can lead to reasonable
results (see Section V), the size of the input vector to
the classifier (i.e., acceleration and curvature changes
sequence) must be fixed. Obviously, this major
drawback precludes the use of this simple scheme for
real-time target classification and tracking. The goal of
this section is to develop a sequential classification
scheme that can operate in a continuous real-time
mode and update the classification results whenever
a new data point is arrived.

Clearly, if "enough" observations are available,
they can fully represent the statistical model of the
target for perfect classification. In such an idea case,
no more observation is needed to update the decision.
However, in most of the real-life scenarios one cannot
afford to wait making decisions until all of the needed
observations are obtained. Consequently, decision has
to be made based on only partial or even incomplete
observation set.
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where Mm(l) is the mth hidden state occurring at time
1, P(Mm(l/OI ,T,,) is generated by using the CPG and
we explain how to get P(OdT,,) in the later part of
this section.

Now incrementing k to k + 1, yields the following
equation for Sn[m(k + 1)], i.e.,

(

k+l )
Sn[m(k + 1)] = P Mm(k+I)' U0i/T"

J=I

= P(Mm(k+ I)' 0k+ 1/T,,)

+ P (Mm(k+I)' UOJ/Tn)
J=l

-P (Mm(k+I)'Ok+I' UOj/T,,) .
J=l

(15)

In the above equation, the first term can be
expanded using

P(Mm(k+I)'Ok+dT,,) = P(Mm(k+I)/Ok+l' T,,)P(Ok+I/T,,)

(16)

where Mm(k+l) is the mth hidden state occurring at
time k + 1 and P(Mm(k+I)/Ok+I'T,,) can be obtained
by the CPG. The computation of P(Ok+I/Tn) is also
explained in the later part of this section. The second
term in (15) can be expanded by the total probability
property, i.e.,

P (Mm(k+I)' UOjT,,)
J=I

=L P (Mm(k+I/Mml(k)' UOJ,Tn)
ml~) j=1

X P ( Mm"k)'~ o.n:) . (17)

Since the information of U;=I OJ is embedded in
Mml(k)' we can alternatively write

P (Mm(k+I)'U OjT,,)
J=I

= L P(Mm(k+ 1)/Mml(k),Tn)Sn[ml (k)] (18)
ml(k)

where P(Mm(k+I/Mml(k),Tn) is the transitional
probability of the mth hidden state occurring at time
k + 1 given that the m 1th hidden state has occurred
at time k for target Tn' The computation of this
transitional probability is also further explained in the
later part of this section.

The third term in (15) can be expanded as

P (~"(k+I)'Ok+I'UO)I;,)
]=1

= P (~"(k+l/Ok+l' UOj,1;,) P (Ok+l' UO)I;,) .
]=1 ]=1

(19)

The first term in this equation can be simplified
to P(Mm(k+I)/Ok+l) since when 0k+1 is given, the

conditioning of Mm(k+l) on U~=I OJ can be ignored.
The second term can be expanded using the same
method as in (17) and (18), i.e.,

P (Ok+l' UO)1;,) =L L P(Ok+I/M,"3(k+l)
i> I 1112(k)1II3(k)

x P(~"3(k+l/M,"2(k),I;,»Sn[m2(k)].

(20)

Thus, we can get the final recursive equation for
Sn[m(k + 1)] as

Sn[m(k + 1)] =P(Mm(k+I/Ok+I,T,,)P(Qk+I/Tn)

+ L P(Mm(k+I)/Mml(k),T,,)Sn[ml(k)]
ml(k)

- P(Mm(k+I)/T,,)

x .{ L L P(Ok+I/Mm3(k+I))
m2(k)m3(k)

x P(Mm3(k+l/Mm2(k),T,,»Sn[m2(k)]}.

(21)

In the similar fashion for Rn(k + 1) we get

R.(k + 1) =P (goP.) = P (~Oj UO..,11;)

=P (~OjlT") + P(Ok.' IT.)

-P (~OA.';T,,)
=Rn(k) + P(Ok+I/T,,)

-{L LP(Ok+I/Mml(k+l)
ml(k)m2(k)

X P(Mm2(k+l)/Mm1(k),T,,))Sn[ml(k)]}.

(22)

182 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 1 JANUARY 2000



A. Simulated Target Track Models

To find P(Ok/T,)s, we can use the total probability, and the performance comparison with the scoring
i.e., (neural network) classifier and Bayes classifier.

P(O /T) = P(Tn/Ok)P(Ok)
k n P(T

n
)

where it is assumed that the target can accelerate at
a maximum rate Amax (or -Amax) with a probability
Pmax' or the target undergoes no acceleration with a
probability Po' or will accelerate between the limits
-Amax and Amax according to a uniform distribution
[28].

Note that the above model is represented only in
one dimension. When combined with the models in
the other dimension, we can fully represent the tracks.

The target under consideration normally moves
at a constant velocity. Turns, evasive maneuvers,
and accelerations due to the atmosphere turbulence
may be viewed as perturbations upon the constant
velocity trajectory. The acceleration of the moving
target, since it accounts for the target deviations from
a straight line trajectory, will henceforth form the
target maneuver variable. The (single dimension)
maneuver capability can be satisfactorily specified
by two quantities: the variance, or magnitude, of the
target maneuver and the time constant or duration
of the target maneuver. The target acceleration, and
hence the target maneuver, is correlated in time, i.e.,
if a target is accelerating at time k, it is likely to be
accelerating at time k + T for sufficiently small T as
well [6].

Based on the above assumption, target tracks were
generated based on a first-order Markov model [5, 6]
with different sets of parameters. Along a single
direction in a 2-D space, the model is given by

ak+ 1 =Pmak + VI- p~amrk (24)

where ak is the moving target acceleration value
at time k and rk is a white noise process with zero
mean and unit standard deviation. The first-order
correlation parameter is Pm =e-nT . From [5], we know
that a is also called the reciprocal of the maneuver
(acceleration) time constant. Varying a from small
values close to zero to 1 corresponds to slow to quick
maneuvers. The deviation of acceleration am is given
by

_ 2:m(k) P(Tn/Mm(k))P(Mm(k)/Ok)P(Ok)
- P(T

n
)

(23)

where P(Mm(k/Ok)S are obtained from the outputs of
the CPG, and P(T,,/Mm(k)) can be calculated by CPG
over all the target tracks in the training sets.

The transitional probabilities can be estimated
by using the neural network CPG on the training
data. Here we have used two two-layer BPNNs,
one for acceleration and one for curvature patterns.
The architecture of each network is 3-36-27 since
based upon the three extracted features, the network
generates all (i.e., 27) the necessary conditional
probabilities. For a certain type of target, the initial
values of all the components the 27 x 27 transitional
matrix are set to zero. Then, the observation vectors
from the training data set for that type of target are
used as the input to determine these probabilities.
For every pair of consecutive observations e.g., Ok'
0k+l' we can get a pair of conditional probability
vectors, P(M /Ok)' P(M /Ok+l)' (where M is a vector
containing from M 1 to M27 ) , from the output of the
CPG. For each vector, P(M/Ok) or P(M/Ok+ 1) , the
maximum component of the conditional probability
output (say P(MjOk)' P(Mj/Ok+ 1)) is chosen and its
hidden state number (i,j) is recorded. This process is
repeated for every Ok and 0k+l pairs in the training
data and the relative frequency of occurrence of
such (i,j) pair is used as the (i,j)th element of the
transitional matrix.

Once the outputs of the Bayes classifiers for
both acceleration and curvature change features
are determined recursively using (21) and (22), a
nonlinear fusion scheme is used to combine these
two outputs and get the final classification result.
A two-layer BPNN was designed to perform this
operation. The network had two inputs corresponding
to the classification outputs of the two feature vectors,
four hidden layer nodes, and two output nodes for the
final decision. This network is also trained using the
same training sets used to find P(MtfTn)

V. IMPLEMENTATION AND RESULTS

=A )[1 + 4Pmax -lb]
am max 3 (25)

This section provides the models which were used
to simulate the target tracks and presents the results of
the proposed neural network directed Bayes classifier
for different operating conditions. These include
classification of three types of targets using likelihood
ratio test, and for different noise level classification of
two types of targets for different model parameters

B. Classification Performance for Three Types of
Targets

Three sets of model parameters were used to
generate three different target types. These are given
in Table I. The likelihood ratio test was then used to
process the output of the sequential Bayes classifier
and get the final result.
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TABLE I
Model Parameters for Three Types of Targets

Parameter Model I' Model 2 Model 3

Q 1160 1110 112.5
Amax 2g 4g 6g

Pmax 0.1 0.2 0.3

Po 0.7 0.5 0.3

Among these three models, target 1, (T,), is
the one with the most steady dynamic behavior
as a for this target is very small. The maximum
allowable acceleration Amax for a target with steady

behavior is always less than those for the other types.
Additionally, it is obvious that steady moving targets
have smaller probability associated with A max and
larger probability associated with Ao. Thus, we choose
a small value for Pmax and a large value for Po for
this target. In contrast, target 3, (T3 ) , is the one with
the most erratic dynamic behavior. As a result, its
a value is closer to one and Amax is the largest. For
the same reason its Pmax is the largest and Po is the
smallest. The dynamic behavior for target 2, (~), is in
between T, and 1}, hence all its model parameters are
also between those of ~ and T3 . Figs. 4(a), (b), and
(c) show some typical examples of tracks for ~, ~,

and 1}, respectively.
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Fig. 6. Classification performance for different model distance
values (0<3 = 1/5 for the upper plot).

moderately when increasing the noise level as
shown in Fig. 5.

C. Effects of Parameter a

In the simulated target model (24), there are .three
parameters which control the maneuvering behavior
of the targets. Parameter a controls the time constant
of the target dynamics, i.e., how long the target will
keep the same maneuvering behavior. This parameter
determines the correlation parameter p in the model
(24). On the other hand, rk represents the driving
noise in the model and am controls the amplitude
of the maneuvering change of the target. Among
these parameters, a is the most important one as
it primarily controls the dynamic behavior of the
target. Thus, in this subsection, we study the effects
of varying the model parameter a on the classification
performance.

Since the discrimination of 11 does not present
a challenge to the classification system, here we
primarily focus our attention on the classification of
~ and ~. The values of Amax ' Pmax ' and ~ were kept.
the same as models 2 and 3 as in the last experiment.
Thus, the parameter am is fixed for each model.
The parameter a of model 3 was kept at 1/2.5 while
that of models 2 varied with values 1/5, 1/7.5, 1/10,
1/12.5, and 1/15. Let us define a model distance
8 = a3/a2 where the subscript 2 and 3 correspond to
the model 2 and 3, respectively.

Fig. 6 shows the correct classification rate for
the two targets for different values of 8. As can be
observed, when we increase the model distance 8 the
rate of improvement at the beginning is substantial.
It is interesting to see that when 8 =2, i.e., the model

Fig. 5. Classification performance for three types of targets.

For each type of target, 1000 tracks were
generated based on its corresponding dynamic model.
These were then divided into two parts: training and
testing samples, each containing 500 tracks. The
neural network CPGs, with 3 inputs, 36 hidden layer
neurons and 27 output neurons, were trained using the
standard back-propagation learning. The maximum
number of epochs was 80,000, the learning rate was
0.001 and the error goal was chosen to be 0.001. The
classification performance was evaluated on both the
noise-free cases as well as heavily cluttered multiscan
images for different noise/clutter levels. Fig. 5 shows
the classification performance plots for all three types
of targets and at several noise levels namely, 0.5%,
1.0%, 1.5%, and 2.0%. Note that the noise level, n%,
used here implies that in a 70 x 70 window there are
4900 x n% noise points in the background image
in each scan. Thus, the 2.0% noise level represents
extremely noisy or cluttered cases.

Since the model parameters of 11 are widely
apart from those of ~ and ~,the performance
degrades only slightly when increasing the noise
level. However, the performance on ~ degrades
substantially. The reason being the model parameters
for ~ and ~ are very close together. In addition,
13 classification rate drastically decreased at noise
level 0.5%. The reason for this sharp decline is
that among all three targets, ~ has more erratic
behavior. As a result, after the RHOC process
and because of the consistency condition in this
scheme, at this low level noise, the extracted tracks
associated with this target exhibit similar dynamic
behavior to that of ~. However, when the noise
level increases due to the erratic behavior of ~,

the presence of noise close to the tracks leads to a
superficial improvement in the classification rate while
significantly degrading that of ~ which has more
consistent behavior. The overall classification rate
for all three types of targets degrades only
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TABLE II
Confusion Matrix for Sequential Bayes Classifier

Chosen Class

60

True Class

Target 2
Target 3

Note: Model distance 8 = 2.

Target 2

87.8%
10.6%

Target 3

12.2%
89.4%

TABLE III
Confusion Matrix for Neural Network Classifier

Chosen Class
30

20

10

True Class

Target 2
Target 3

Note: Model distance 8 =2.

Target 2

90.57%
17.4%

Target 3

9.43%
82.6%

10 l!ll 30 50
PIc

eo III 90

If the data length of the tracks is fixed, both a
neural network and the proposed sequential Bayes
classifier schemes can be used to make classification
after the CPG process. Tables II and III show the
comparison of these two classification methods based
on the cases presented in the previous section. As can
be seen, the sequential Bayes classifier in this paper
has a better overall classification performance.

In real-life applications, the choice of the
detection/classification method depends on the actual
operating conditions. If the goal is to continuously
process the multiscan image data scan by scan and in
real-time, then the proposed Bayes classfier is more
suitable owing to its sequential nature. In this scheme,
when a new data point is received, the results can be
updated. However, if a fixed-length track is given,

Fig. 7. ROC curve for two-target classification.

distance is very close, we still can get around 82%
classification rate. This demonstrates the robustness of
the classification system. As we further increase the
distance 8, the correct classification rate will approach
a certain final value, whiclt may not be 100%. This
is due to the fact that the choice of (}:3 = 1/2.5,
leads to some erraticness in the behavior and hence
more misclassifications. If we decrease (}:3 to 1/5,
the improvement in the classification rate at most
model distances will be more than 4% as shown in
Fig. 6. Consequently, parameter (}: greatly affects the
classification performance.

Fig. 7 shows the receiver operating characteristic
(ROC) curve obtained on 1000 testing tracks for
12 and 13 for (}:2 = 1/10 and (}:3 = 1/2.5 case.
Note that this ROC curve for "T3 vs T2" case
presents the classification rate (~c) associated with
13 only, whereas the false alarm corresponds to
misclassifications (PfC> of T2 as 13, and vice versa for
the "T2 vs T3" case. These curves are generated by
varying the threshold for classification decision so
that the false alarms and correct classifications for
various samples of the testing set can be counted.
Thus, it is possible to generate a probability of correct
classification and a probability of false alarm for
a certain threshold value. These two probabilities
describe one point on the ROC curve for the testing
data. As can be observed from this ROC curve, the
classifier provides very good classification results
although the model distance (8=4) is relatively
close for these cases. From Fig. 7, one can find
that for both T2 vs T3 and 13 vs 12 cases, the correct
classification rate and the false alarm rate at the knee
of the ROC curve are 88.3% and 11.7%, respectively.
For each threshold value, we can generate a confusion

D. Performance Comparison
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the neural network classifier may be an easier and
less complicated choice. In addition, this method
offers perhaps a faster decision and a simpler
structure.

VI. CONCLUSION

This paper is concerned with the development
of a new neural network directed Bayes classifier
for moving target classification. The information on
acceleration and curvature changes was extracted
as the dynamic features and subsequently used for
classification. Using these features, the conditional
probabilities were generated using a neural network
trained on several hidden states. A novel sequential
Bayes classification scheme was developed that
provides the classification results based upon the
output of the neural network ePG. Using this
classifier, the decision can be updated as new scans
of data are becoming available. Finally, for each target
pair, a nonlinear fusion system was implemented to
combine the results of the classifier for each feature
type. The likelihood ratio test algorithm was then
employed for multiple types of targets. Simulation
results on both noise-free and noisy cases for three
kinds of targets were provided which showed the
effectiveness of our scheme for classifying the targets
based on their dynamical behavior. The classification
results for a pair of targets with different model
distance conditions were also presented. These results
demonstrated the robustness of the algorithm even
when the model distance is very small. Finally,
the performance of the proposed sequential Bayes
classifier scheme was compared with a neural
network-based classifier.
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