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ABSTRACT OF DISSERTATION 

 
 
DESIGNING AND EVALUATING PARTICIPATORY CYBER-INFRASTRUCTURE 

SYSTEMS FOR MULTI-SCALE CITIZEN SCIENCE 

 
 

Widespread and continuous spatial and temporal environmental data is essential 

for effective environmental monitoring, sustainable natural resource management, and 

ecologically responsible decisions. Our environmental monitoring, data management and 

reporting enterprise is not matched to current problems, concerns, and decision-making 

needs. Citizen science programs create opportunities for more continuous and widespread 

data collection, fill data gaps, and inform decisions. These programs are increasing in 

number and breadth. They operate at multiple spatial and temporal scales, tackle a wide 

array of environmental challenges, engage volunteers from all walks of life, and create 

volumes of scientific data. Information management systems flexible enough to support 

the varied nature of these data are rare, overly technical, hard to use, difficult to 

understand, poorly defined, and lack effective training materials. 

Flexible systems require creative attention to sustainable technology, stable 

institutional resources, innovative database designs, effective educational materials, and 

interoperable services. They require computationally efficient geospatial analysis and 

imaging techniques capable of handling massive amounts of data collected across vast 

geographic scales and they must provide effective training materials for people to learn 
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the skills required by the citizen science process. Participatory cyber-infrastructure 

systems are needed to meet the needs of multi-scale citizen science programs. 

This dissertation research investigated, designed, developed, implemented, tested, 

and evaluated a participatory cyber-infrastructure system built to support multi-scale 

citizen science. My objectives were to: (1) examine the art and science of multi-scale 

citizen science support, (2) evaluate the usability of a web mapping application created 

through cyber-infrastructure for invasive species citizen science programs, (3) compare 

the effectiveness of static and multimedia online communication approaches for training 

citizen scientists, and (4) offer guidelines for the development of cyber-infrastructure 

systems adept enough to support the needs of citizen science programs operating at 

multiple spatial and temporal scales in many domains. I created a participatory cyber-

infrastructure system and developed a framework to situate citizen science programs 

based on their scope, scale, and activities. I used the cyber-infrastructure system to create 

a website specific to invasive species citizen science projects (www.citsci.org) and 

evaluated the usability of the website (n=16) to determine general perceptions, discover 

potential problems, and iteratively improve features. I compared the effectiveness of 

online static and multimedia tutorials to teach citizen science volunteers (n=54) how to 

identify invasive plants; establish monitoring plots; measure percent plant cover; and use 

Global Positioning System devices. I also continuously received feedback from citizen 

science organizations using the cyber-infrastructure system. 

Results demonstrate that cyber-infrastructure systems can be adept enough to 

support the needs of citizen science projects operating at multiple spatial and temporal 

scales across many domains when built with a flexible architecture. Cyber-infrastructure 

iv 



use resulted in 27 online projects contributing 5,196 species occurrences. Features for 

volunteer management; communication among volunteers and coordinators; data entry; 

program evaluation, online analysis; and reporting integrated into cyber-infrastructure 

systems will improve their effectiveness. Careful attention must be given to the usability 

of complicated map and decision support features. Map-based and early alert tasks 

required a long time to complete and had low completion rates. Mean task completion 

rates ranged from 25 to 75% for map tasks and 0% to 33% for early alert features. 

Overall, the average time to complete tasks ranged from 00:01:42 to 00:02:17 and the 

mean completion rate ranged from 36 to 90% across all scenarios. Citizens trained online 

through static and multimedia tutorials provided less (p<0.001) correct species 

identifications (63% and 67%) than professionals (83%) across all species, but did not 

differ (p=0.125) between each other. The variability in percent cover estimates between 

static (+/-10%) and multimedia (+/-13%) participants did not differ (p=0.86 and 0.08 

respectively) from those of professionals (+/-9%) and the tutorial approach had minimal 

influence (p=0.07) on the variability of participant plant cover estimates. Volunteers 

trained online struggled with plot setup and GPS skills regardless of tutorial approach. 

Overall, the tutorial approach did not affect the field skills and abilities learned by 

volunteers. The development and evaluation of a cyber-infrastructure in support of multi-

scale citizen science discussed herein situates citizen science programs within a 

framework of their scope, scale, and activities; de-fragments data; reduces complexity; 

helps ensure comparability; fills data gaps; refines our understanding of web usability; 

improves our understanding of online educational approaches; and closes the 

communication gap between scientists and citizens. It increases the number and variety 
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of people able to contribute information to address pressing environmental problems 

while participating in local, regional, and global environmental stewardship. 

Gregory J. Newman 
Department of Forestry, Rangeland and Watershed Stewardship 

Colorado State University 
Fort Collins, CO 80523 

Summer 2010 
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CHAPTER 1 INTRODUCTION 

A brisk September morning greets Judy as she and a team of 16 other volunteers embark 
on a “BioBlitz” at a wetland in western Wisconsin.  Dew has formed on the milkweed 
seed pods and tall grasses are illuminated like upside down icicles as the sun rises over a 
nearby hardwood forest. Sarah, the citizen science director at a local nature reserve, is 
feverishly trying to single-handedly coordinate her volunteers, manage field equipment, 
record scientific data, teach field skills, and answer questions. The months leading up to 
today’s sampling event involved tiresome coordination, logistical planning, protocol 
development, quality assurance/quality control procedures, training material creation, 
and database design. Yet, Sarah is uncertain about how the data will be collected and 
integrated with other datasets and how it will be disseminated to land managers to help 
inform decisions. Will her volunteers collect high quality data? How can she streamline 
data entry and dissemination? Are there ways to make volunteer management, training, 
and coordination more efficient and effective? This scenario is occurring over and over 
in many situations whereby citizen volunteers collect data to advance science. Sarah is 
not alone. 
 
The number of citizen science organizations, programs, and volunteers actively 

recording the locations of species is growing faster than the very flowers, birds, frogs, 

wildlife and worms they seek to record. Programs like the North American Breeding Bird 

Survey (Peterjohn and Sauer 1993), the Christmas Bird Count (National Audubon 

Society 2005), Frogwatch USA (MacKenzie et al. 2002), and Great Lakes Worm Watch 

(Hale 2010) have built upon the first account of citizens observing nature and recording 

data on Christmas day, 1900 (National Audubon Society 2005). These organizations are 

poised to significantly contribute to, and become involved with, conservation efforts and 

environmental stewardship. Examples include citizen science organizations, volunteers, 

4-H groups, high school biology classes, Boy Scout troops, garden clubs, community-
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based monitoring programs, and many others. Yet, as more citizens become stewards of 

local lands, more coordination, direction, and education is required for these efforts to be 

effective. The academic, management, and informatics infrastructures necessary to 

establish goals, recruit volunteers, market programs, train participants, retain members, 

collect data, and report results (Cooper et al. 2007) must be further developed and 

refined. Sarah needs help. After all, she is only one in a sea of coordinators engaged with 

involving the public in science. 

Meanwhile, in northern Minnesota, a cool autumn day greets a group of volunteers busy 
spreading a mustard seed solution on small plots of soil to entice invasive earthworms to 
rise to the surface. Heather advises the group on the correct dosage to pour over each 
plot. As the worms rise, specimens are taken and sent to a lab at the University of 
Minnesota-Duluth. These invasive worms threaten the diversity of forest understory 
vegetation and reduce tree seedling germination. John meticulously counts each 
individual and prepares his specimens for submittal. A soft snow begins to fall, signifying 
the beginning of winter bird count season for John and his cohort of friends seeking even 
more backyard ecology experiences... 

 
The volunteer coordinators of these and countless other similar efforts share 

frustrations about data collection, data quality, data storage, and data dissemination. 

Sarah and Heather are seeking innovative ways to more effectively manage the data 

collected by volunteers like John and provide better materials to teach him the skills 

needed to become an effective citizen scientist. There is a growing need for better 

information management of scientific data collected by citizens and for science 

communication approaches tailored to a diverse public. How can these programs 

facilitate more efficient data management and field training programs? Can online cyber-

infrastructure systems help address the challenges facing these volunteer coordinators? 

What roles might a cyber-infrastructure play to improve citizen science programs? 
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1.1 Introduction 

 “Conservation ecology requires … research in what might be called applicable science - 
a mix of theory, basic research, and illuminating applied examples. It requires analysis 
and examples of novel ways to develop incentives such that individual self interests better 
reinforce [the] social goals of conservation … [and] … it requires experiments in novel 
ways to develop citizen science as an antidote to the power… that now so distorts the use 
of information...” 
 

~ C.S. Holling (1998)  
 
“The nation’s environmental monitoring and reporting enterprise … is not matched to 
the problems, concerns, and decision-making needs of the 21st century. Despite 
significant investment [from] highly skilled practitioners, information on the state of 
[our] environment is often fragmented, overly technical, not comparable from one place 
to another, or simply unavailable. This lack of systematically organized, high-quality, 
scientifically credible, and readily … available information hampers the development of 
effective responses to environmental challenges. Attempting to manage our … natural 
resources without this information is like driving a vehicle with the front and rear 
windshields largely obscured. Without being able to assess at a glance where we are, 
where we have been, and the direction we are going…, we as a society are unlikely to 
engage in the type of informed discourse needed to reach effective decisions on important 
environmental issues.” 
 

~ The H. John Heinz III Center for Science, Economics, and the Environment (2008) 
 

Environmental degradation, habitat loss, climate change, species invasions, 

biodiversity loss, and disruption of ecosystem processes threaten the quality and 

sustainable nature of life on earth. These environmental challenges are diverse, occur 

across multiple spatial and temporal scales, interact with each other in complex ways, and 

require new approaches to information management and decision support (Argent et al. 

2009). Effective environmental monitoring, sustainable natural resource management, 

and science-based environmental decisions require collection, storage, standardization, 

retrieval, classification, manipulation, analysis, dissemination, visualization, quality 

assessment, communication, and synthesis of spatial and temporal environmental data 

(Gray et al. 2005). These tasks transform data through a cycle consisting of data, 

information, knowledge, and wisdom (Debons 2008) that originate from many sources, 

including  indigenous cultures, scientific disciplines, citizen-based initiatives, social 
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discourse, and keen observations made by villagers, elders, scientists, sociologists, 

economists, citizens, naturalists, and the lay public, among others (Figure 1-1). The 

multiplicity and diversity of these new information providers increases the quantity of 

available data, but also makes assessing the credibility, quality, validity, and reliability of 

these data difficult; it places an unparalleled burden on individual consumers to locate, 

assess, understand, and use information appropriately (Flanagin and Metzger 2008, 

Zimmerman 2008, Ottinger 2010). We lack the information science capacity needed to 

effectively manage and assess these data; transform it into useable information and 

knowledge; communicate its credibility and appropriateness for environmental decisions; 

and better inform our ecological stewardship practices. 

 
Figure 1-1. The many contributors to collective knowledge. Collective knowledge 
encapsulates data, information, knowledge, and wisdom and is an emergent property of 
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indigenous cultures, social discourse, citizen-based initiatives, and scientific disciplines. 
There are many contributors to collective knowledge; examples are provided. 
 

The capacity to effectively and efficiently manage environmental information 

requires increased data collection capabilities in conjunction with improved storage, 

standardization, retrieval, assessment, classification, manipulation, analysis, education, 

visualization, communication, dissemination, and synthesis abilities (Gray et al. 2005). 

Citizen participation in environmental monitoring activities related to these tasks is not 

new (Gouveia and Fonseca 2008) and citizen science programs continue to expand in 

scope and breadth (Bonney et al. 2009, Newman et al. 2010a). Examples include projects 

associated with climate change (Cohn 2008), invasive species (Delaney et al. 2008), 

conservation biology (Galloway et al. 2006, Losey et al. 2007), biodiversity monitoring 

(Danielsen et al. 2005a, Lepczyk 2005, Couvet et al. 2008, Lovell et al. 2009), population 

ecology (Peterjohn and Sauer 1997, Rosenberg et al. 1999), water quality monitoring 

(Wilderman et al. 2004), street mapping (Haklay and Weber 2008), and traffic congestion 

(Goodchild 2007), among others (Silvertown 2009). 

Historically, environmental monitoring systems aimed to improve the efficiency 

of environmental data collection and storage. As ecological risks escalated, these systems 

evolved from data storage systems into decision support systems and now embrace public 

participation (Gouveia and Fonseca 2008). Although public participation models range 

from citizen involvement through data access and use to data collection and analysis 

(Gouveia and Fonseca 2008, Danielsen et al. 2009), recent extensions to these models 

aim to improve science literacy (Brossard et al. 2005) and regard citizens as scientists 

rather than solely citizen technicians (Lakshminarayanan 2007). From a data collection 

standpoint, public participation in science is related to many terms such as citizen 
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science, Community Based Monitoring, Participatory Monitoring Networks, Public 

Participation Geographic Information Systems, and Volunteered Geographic Information. 

These approaches span a spectrum encompassing varying levels of community member 

involvement (Wilderman et al. 2004, Cooper et al. 2007, Danielsen et al. 2009). The 

research described herein uses the term citizen science broadly to encompass all of these 

approaches when referring to cyber-infrastructure in support of multi-scale citizen 

science. I focus on citizen science research models whereby geographically dispersed 

volunteers form networks to assist scientific research using standardized protocols in 

collaboration with professional scientists (Cooper et al. 2007). Regardless of approach or 

model, engaging the public in data collection increases the volume of available scientific 

data and places new demands on an already impoverished data management enterprise. 

To improve our citizen science data management enterprise, I investigated, 

designed, developed, implemented, tested, and evaluated a cyber-infrastructure built to 

support multi-scale citizen science. Specifically, my objectives were to: (1) examine the 

art and science of multi-scale citizen science support, (2) evaluate the usability of a web 

mapping application created through cyber-infrastructure for invasive species citizen 

science programs, (3) compare the effectiveness of static and multimedia online 

communication approaches for training citizen scientists, and (4) offer guidelines for the 

development of cyber-infrastructure systems adept enough to support the many needs of 

citizen science programs operating at multiple spatial and temporal scales in many 

disciplines. The development and evaluation of a cyber-infrastructure in support of multi-

scale citizen science discussed herein situates citizen science programs within a 

framework consisting of their scope, scale, and activities; de-fragments information; 
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reduces complexity; ensures data comparability; fills data gaps; refines our understanding 

of web usability; improves our understanding of online educational approaches; and 

closes the communication gap between scientists and citizens. It increases the number 

and variety of people able to contribute information to address pressing environmental 

challenges and participate in local, regional, and global environmental stewardship. 

1.2 Background 

1.2.1 Why citizen science? 

The concept of citizen science is not new and the term is used in many situations 

to represent scenarios in which citizens participate in the scientific process along with 

professionals (Bonney et al. 2009). Citizen science typically involves trained volunteers 

participating in scientific studies as field assistants who collect data (Cohn 2008, Cornell 

Lab of Ornithology 2008). According to Silvertown (2009), a citizen scientist is “a 

volunteer who collects and/or processes data as part of a scientific inquiry.” Citizen 

science enlists the public in collecting large quantities of data across an array of habitats 

and locations over long time frames (Cooper et al. 2007, Bonney et al. 2009). Citizen 

science programs have been remarkably successful in advancing scientific knowledge 

and their contributions provide a vast amount of data about species distributions around 

the world (Bonney et al. 2009). 

Many organizations and people collect environmental data for a variety of 

purposes. The number of non-profit organizations, citizen scientists, and volunteers 

continue to rise. For example, Birdlife International members exceed 2,500,000 

worldwide (BirdLife International 2007), operate in over 100 countries and territories, 
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and contain local memberships often numbering in the hundreds or thousands (Roberts et 

al. 2005). Recreational and amateur bird watching alone attracts over 2.6 million people 

in the UK (Target Group Index (c); British Market Research Bureau 2003; cited in 

Roberts et al. 2005) and 45 million in the U.S. (U.S. Department of the Interior et al. 

2001). These citizen observers not only participate locally, but also travel internationally 

in search of rich biodiversity (Roberts et al. 2005). Today, citizen science programs 

continue to expand in scope and breadth and even assist in monitoring earthquake activity 

(Cochran et al. 2009). Yet, data gaps still exist and we lack strategically collected data to 

help inform sustainable ecological decisions. More strategic data collection is needed by 

more collectors to fill these gaps – we need to collect the data we often do not want to 

collect in places where we may not prefer to sample. 

1.2.2 Why multi-scale? 

Both professional and citizen science networks operate across many spatial scales 

including global, national, regional, state-wide, and local scales. Their longevity also 

varies across temporal scales ranging from the short- to the long-term. Examples of 

global professional networks include the Global Invasive Species Information Network, 

the Global Biodiversity Information Facility, the Delivering Alien Invasive Species 

Inventories for Europe network, the Encyclopedia of Life, Discover Life, and the 

Mammal Networked Information System. National professional networks include the 

National Ecological Observatory Network, the Long Term Ecological Network, The 

Geosciences Network, the National Phenological Network, and the United States 

Geological Survey Non-indigenous Aquatic Species information resource. National 

citizen science initiatives include eBird, The Christmas Bird Count, Project BudBurst, 
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and Journey North. Examples of regional citizen science programs include the Invasive 

Plant Atlas of New England, Invaders of Texas, the Southeast Exotic Plant Pest Council, 

the Invasive Plant Atlas of the Mid-South, the Great Lakes Worm Watch program, and 

the Cactus Moth Detection Network. Examples of statewide programs include Wisconsin 

NatureMapping and the Wisconsin River Alliance. Local programs include the City of 

Fort Collins Natural Areas Program Amphibian Monitoring Project and local Lake 

Management Associations. These initiatives are often unaware of the potential roles they 

can play in more coordinated efforts that collectively comprise our environmental 

monitoring and reporting enterprise. 

1.2.3 Why participatory cyber-infrastructure systems? 

Participatory cyber-infrastructure systems are software applications deployed 

through the Internet on the World Wide Web that involve public participation in spatial 

and temporal data collection, contribution, analysis, and interpretation. They represent 

new research environments that support advanced data acquisition, storage, management, 

integration, mining, visualization and other computing and information processing 

services over the Internet; they promote peer-to-peer collaboration; data and information 

resources; online instruments and observatories; and visualization and collaboration 

services (National Science Foundation 2007). Cyber-infrastructure enables distributed 

knowledge communities that collaborate and communicate across disciplines, distances 

and cultures (National Science Foundation 2007). Participatory cyber-infrastructure 

systems in support of multi-scale citizen science improve our environmental information 

science capabilities by providing data management and exchange capabilities to citizen 

science programs. Examples include the nearly 7 million participant-identified and 
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annotated places that now reside in Wikimapia (Flanagin and Metzger 2008), the 200 

million plus users offering location based data through Google Earth (Google 2007), the 

volumes of street data publically available through Open Street Map (Goodchild 2007), 

the geo-tagged photos online at the popular photo-sharing site Flickr (Flanagin and 

Metzger 2008), and the multitude of geospatial “mashup” web applications that combine 

disparate data from multiple sources into newly integrated resources (Miller 2006). They 

are one example of the many approaches to Public Participation Geographic Information 

Systems which focus on community interactions with Geographic Information Systems 

(GIS) inextricably tied to the social and geographic context of system production and 

implementation (Craig et al. 2002). Often, cyber-infrastructure systems form educational 

systems that support science-based environmental decisions. In this way, they may be 

seen as Educational Decision Support Systems when they integrate online educational 

resources with public participation in data collection and decision support. These so-

called participatory web mapping applications may equip millions of ‘citizen sensors’ 

with an online place to upload geospatial information, thereby increasing the availability 

of such information worldwide (Goodchild 2007). They are an example of Collaborative 

Geographic Information Systems that are themselves situated in the broader context of 

Group Spatial Decision Support Systems (Balram et al. 2009). 

Why design, develop, and evaluate cyber-infrastructure systems in support of 

multi-scale citizen science? If designed, developed, and evaluated effectively, cyber-

infrastructure systems support the needs of citizen science projects that, in turn, inform 

and empower citizens and benefit scientists, land managers, and decision makers. 

Previous attempts to engage the public in collaborative data collection and analysis 
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through Public Participation Geographic Information Systems used industry-standard 

desktop applications to involve participants in GIS in lieu of online systems, claiming 

that users “see [online] applications as manipulative and frustrating because they have 

begun to see what a GIS they can control [emphasis added] can do” (Merrick 2003). 

Indeed, even today, most online Public Participation Geographic Information Systems are 

still in no way “participatory” or transparent; they are clumsy, slow, and difficult to use 

systems that control content, layout, visualization, available analysis capabilities, and the 

methods by which users interact and participate (Merrick 2003). Although desktop GIS 

applications may offer some degree of greater flexibility, they often generate datasets that 

remain stored on a single desktop computer and that are not integrated with other datasets 

for broader reuse. We need participatory cyber-infrastructure systems that stakeholders 

themselves can control to a greater degree and that are flexible enough to deliver features 

specific to specific program needs. 

1.3 Goals and Objectives 

1.3.1 Research goal 

The overall goal of my dissertation research was to investigate, design, develop, 

implement, test, and evaluate a cyber-infrastructure in support of multi-scale citizen 

science. To this end, my research consisted of system development, experimental 

research projects, and first-hand experiences with citizen science programs using the 

cyber-infrastructure created. The research projects involved a preliminary needs 

assessment created through the cyber-infrastructure itself; continuous qualitative 

feedback on the citizen science website created for this research (www.citsci.org); a 
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formal usability evaluation of this website; and paired experimental research training 

events in Colorado and Wisconsin (n=347 total participants) to evaluate the effectiveness 

of a national citizen science program for invasive species citizen monitoring efforts. The 

experimental research training events were a collaborative effort between me and my 

colleague Alycia Crall at the University of Wisconsin-Madison Nelson Institute of 

Environmental Studies. The portion of these events that was specific to my dissertation 

involved comparing different online training approaches to teach field data collection 

skills. Collectively, these research projects; the cyber-infrastructure in support of multi-

scale citizen science created, the websites developed through the cyber-infrastructure 

itself; and the three separate submitted manuscripts (Chapters 2, 3, and 4) culminated in 

this dissertation. Chapter 2 has been accepted for publication in the International Journal 

of Geographical Information Science. Chapter 3 has been submitted to the Journal of 

Applied Environmental Education and Communication, and Chapter 4 will be submitted 

to Ecological Informatics. These chapters were written as stand-alone peer reviewed 

journal articles per the guidance of my advisor. However, I made every attempt to 

integrate the stories from these chapters into a coherent and cohesive dissertation. This 

research was interdisciplinary and benefitted from the talents of a multi-disciplinary 

research team. To all who contributed I am grateful. 

1.3.2 Research objectives 

My objectives were to: (1) examine the art and science of multi-scale citizen 

science support, (2) evaluate the usability of a web mapping application created through 

cyber-infrastructure for invasive species citizen science programs, (3) compare the 

effectiveness of static and multimedia online communication approaches for training 
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citizen scientists, and (4) offer guidelines for the development of cyber-infrastructure 

systems adept enough to support the needs of citizen science programs operating at 

multiple spatial and temporal scales in many domains. In Chapter 2, I created a 

participatory cyber-infrastructure system and developed a framework to situate citizen 

science programs based on their scope, scale, and activities. In Chapter 3, I used the 

cyber-infrastructure system to create a website specific to invasive species projects 

(www.citsci.org) and evaluated its usability to determine general perceptions, discover 

potential problems, and improve website features. In Chapter 4, I compared the 

effectiveness of online static and multimedia tutorials to teach citizen science volunteers 

how to identify invasive plants; establish monitoring plots; measure percent cover; and 

use Global Positioning System devices. Throughout my research, I received continuous 

feedback from citizen science programs using the many websites created through the 

cyber-infrastructure system. The specifics of each chapter follow. 

In Chapter 2, I examine the art and science of multi-scale citizen science support. 

I discuss within- and among-project dimensions and propose a framework to situate 

citizen science projects based on their scope, scale, and activities. I postulate that this 

framework expands the definition of citizen science to incorporate aspects of community-

based monitoring and other similar approaches and situates citizen science in a broader 

context that enables more synergy between the many projects emerging today. I illustrate 

the benefits of the proposed framework and the flexibility of the cyber-infrastructure 

system (Appendix A) by discussing the scope, scale, and activities of several citizen-

based initiatives. 
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In Chapter 3, I evaluate the usability of the CitSci.org website (n=16). I 

determined general perceptions, discovered potential problems, and iteratively improved 

website features. Detailed descriptions of use case scenarios, task completion rates and 

times, and reliability analyses for usability concepts are shown in Appendix A. Given the 

usability evaluation, I re-designed the website, improved content, enhanced ease of use, 

simplified the map interface, and added features. I discuss citizen science websites in 

relation to online Public Participation Geographic Information Systems, examine the 

role(s) websites may play in the citizen science research model, discuss how citizen 

science research advances GIScience, and offer guidelines to improve citizen science 

websites. 

Finally, in Chapter 4, I compare the ability of online static and multimedia 

tutorials to teach citizen science volunteers (n=54) how to identify invasive plants; 

establish monitoring plots; measure percent cover; and use Global Positioning System 

devices. The chapter summarizes results using indices for Global Positioning System use 

skills. Detailed results are shown in Appendix C. In this chapter, I discuss my results in 

relation to cognitive load theory, advance organizers, and attention cueing and offer 

recommendations to developers of online tutorials for adult volunteer citizen scientists. 

1.3.3 Research approach 

I used a non-traditional research and development approach to accomplish the 

goals and objectives of my dissertation research. I was faced with the simultaneous tasks 

of development and maintenance of a cyber-infrastructure system, stakeholder trainings, 

customer support tasks, participant recruitment, tutorial development, experiment 

logistics, and traditional statistical analyses. To achieve these goals and objectives, I 
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collaborated with Alycia Crall for the Wisconsin and Colorado training events and 

borrowed approaches from many disciplines. The interdisciplinary nature of this research 

posed many challenges, but brought many benefits. It mingled technical infrastructure 

development with more formal research techniques along with qualitative observations. 

Thus, my approach was more constructivist or post-positivist in nature rather than purely 

positivist (Lindlof and Taylor 2002).
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CHAPTER 2 THE ART AND SCIENCE OF MULTI-SCALE CITIZEN SCIENCE 

2.1 Abstract 

Citizen science and community-based monitoring programs are increasing in 

number and breadth and create volumes of scientific data. Data management systems 

flexible enough to support the varied nature of these data are rare and focus on specific 

project needs. I examine the art and science of multi-scale citizen science support, 

focusing on issues of integration that arise when projects span multiple spatial, temporal, 

and social scales across many domains. My objectives were to: (1) clarify terminology; 

(2) describe a framework for multi-scale citizen science support; (3) develop a cyber-

infrastructure for multi-scale citizen science; and (4) illustrate the benefits of a multi-

scale approach through several case studies. I found that citizen science projects differed 

in their scope, scale, and activities. I propose a framework responsive to their purpose, 

domain, objectives, audience, accessibility, and data quality. I show that carefully 

designed citizen science activities involve formulating a research question; developing, 

testing, and refining protocols; recruiting, managing, and training volunteers; managing 

data; disseminating information; and evaluating program effectiveness. Using the 

proposed framework as a guide, I built a cyber-infrastructure to support multi-scale 
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citizen science projects. My results indicate that such systems can be adept enough to 

support the needs of citizen science projects operating at multiple spatial and temporal 

scales across many domains when built with a flexible architecture. Program evaluation 

tied to this framework and integrated into cyber-infrastructure improved our ability to 

track effectiveness and strategically place projects within the context of parallel efforts. 

My examination of citizen science case studies found several benefits to the cyber-

infrastructure, including the ability to quickly create custom web skins and the ability of 

projects within the CitSci.org website to customize data entry forms. I describe a vision 

for the future of citizen science data management, informatics, and cyber-infrastructure 

support. 

Keywords: Cyber-infrastructure, volunteers, community based monitoring, 

participation, GIS, informatics. 

2.2 Introduction 

 Citizen science and community-based monitoring programs are experiencing a 

resurgence (Silvertown 2009). Citizen-based initiatives monitor streams, birds, marine 

species, climate change, air quality, water quality, macro-invertebrates, terrestrial 

invasive species, astronomy, and earthquakes, among others (Cornell Lab of Ornithology 

2008, Newman et al. 2010a). As the number and breath of these projects increase, so do 

the volumes of ecological data they generate (Bonney et al. 2009). Online data 

management systems capable of supporting the varied nature of these data are rare and 

those that do exist are typically difficult to use and focus on specific project needs 

(Newman et al. 2010b). Project-focused systems use schemas specific to a particular 

domain and often do not incorporate global data standards or controlled vocabularies 
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necessary for efficient data sharing or system interoperability. Despite the importance of 

social aspects of participatory monitoring networks (Bell et al. 2008), most data 

management systems focus on data entry and storage. They typically do not include 

features to facilitate communication among citizens, volunteer coordinators, scientists, 

and other stakeholders. These systems also tend to be tailored to the needs of only one 

audience and often do not leverage existing systems in similar domains or nearby 

geographic locales. 

 Compounding these issues is the fact that users and stakeholders of online data 

management systems are diverse and each has unique objectives. Examples include 

scientists, professionals, decision makers, land managers, politicians, naturalists, and the 

lay public. Their objectives range from contributing quality data to helping scientists 

answer research questions; from informing local decisions to influencing policy; from 

engaging in social networks to participating in online creative commons; and from 

learning about the environment to simply creating opportunities to enjoy nature. These 

goals require different features and data management approaches ranging from providing 

fact sheets and summary statistics to downloading datasets for analysis and modeling. 

The real and acclaimed benefit of citizen contributed data lies in the integration of these 

data with other datasets and in the development of data management systems capable of 

supporting and integrating existing efforts across domains and scales. We need flexible 

data management systems that simultaneously accommodate the needs of many 

stakeholders. 

 Citizen-based programs emerging today are created for a variety of purposes, 

including long term monitoring, science-based research, community networking, social 
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empowerment, science literacy, environmental education, youth career development in 

science, technology, engineering, and mathematics, and community service. A common 

outcome of these varied projects is data that may be broadly used. Developing a long-

term cyber-infrastructure in support of these programs requires creative attention to 

sustainable technology, persistent human arrangements, stable institutional resources, and 

innovation in system design to accommodate and adapt to many stakeholder requirements 

(Ribes and Finholt 2009). A recent publication by Bonney et al. (2009) articulates these 

citizen-based information technology challenges well: “… as citizen science efforts grow 

in scope, the need for innovative tools in database management, scientific analysis, and 

educational research will be greater, … networking technologies and… database 

solutions will be imperative, [and] computationally efficient geospatial analysis and 

imaging techniques [will be needed] … to handle the massive amounts of monitoring 

data … collected across vast geographic scales.” 

To begin addressing these challenges, I sought to: (1) clarify citizen science 

terminology; (2) develop a framework for multi-scale citizen science support; (3) create a 

cyber-infrastructure in support of multi-scale citizen science; and (4) illustrate the 

benefits of a multi-scale approach through several case studies. I discuss within- and 

among-project dimensions and propose a framework to situate citizen science projects 

based on their scope, scale, and activities. I detail the development and use of a cyber-

infrastructure for multi-scale citizen science and conclude by offering a vision for the 

future of citizen science data management, informatics, and cyber-infrastructure support. 
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2.3 Definitions 

 At the forefront, it is important to define citizen-based approaches and how they 

differ from each other to better understand the linkages and shared outcomes they create. 

Unfortunately, terminology related to these approaches can be very confusing. Some 

authors speak of Participatory Monitoring Networks (Bell et al. 2008); others envision 

Environmental Collaborative Monitoring Networks (Gouveia and Fonseca 2008); some 

focus specifically on Volunteered Geographic Information (VGI; Elwood 2008c), others 

talk of public engagement in science and technology (Powell and Colin 2008), and still 

others discuss Decision Support Systems (Haagsma and Johanns 1994) or Environmental 

Decision Support Systems (Cortes et al. 2000, Poch et al. 2004). I summarize these 

definitions and approaches in Table 2-1. 

Table 2-1. Various citizen-based initiative approaches and their definitions. 
Approach Focus References 

Community Based Monitoring*   
 “…a process where concerned citizens, government 

agencies, industry, academia, community groups and 
local institutions collaborate to monitor, track and 
respond to issues of common community concern.” 

Issues of common 
community 
concern 

(Whitelaw et al. 
2003) 

Citizen Based Monitoring*   
 A network of informed citizen advocates for 

management and protection of [natural] resources. 
Citizen advocacy (Stepenuck 

2010) 
Citizen Science   
 Trained volunteers participating in scientific studies 

as field assistants who collect data. Volunteers who 
collect and/or processes data as part of a scientific 
inquiry. 

Answer scientific 
questions raised by 
researchers 

(Cohn 2008, 
Bonney et al. 
2009, Silvertown 
2009) 

Decision Support Systems   
 A class of information systems (including but not 

limited to computerized systems) that support 
business and organizational decision-making 
activities. An interactive software-based system 
intended to help decision makers compile useful 
information from a combination of raw data, 
documents, personal knowledge, or business models 
to identify and solve problems and make decisions. 
Wiki. See Keen? See Argent? 

Decision support 
and artificial 
intelligence 

(Argent et al. 
2009) 

Environmental Decision Support Systems   
 An intelligent information system that reduces the 

time in which decisions are made in an 
Software to assist 
environmental 

(Cortes et al. 
2000) 
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environmental domain, and improves the consistency 
and quality of those decisions. 

decision makers  
(Haagsma and 
Johanns 1994) 
 
(Guariso and 
Werthner 1989) 
 
(Poch et al. 
2004) 
 
(Argent et al. 
2009) 

Environmental Collaborative Monitoring Network   
 A proposed framework that combines the concepts of 

traditional environmental monitoring networks with 
the ideals of the open source movement. These 
networks are organized based on three building 
blocks: (1) Motivated Citizens; (2) Sensing Devices; 
and (3) Back-End Information Infrastructure 

Networks of 
sensors 

(Gouveia and 
Fonseca 2008) 

Volunteered Geographic Information   
 A process of acquiring geographic information [from 

volunteers and the public] that combines elements of 
Web 2.0, collective intelligence, and neo-geography 

Geographic 
information 
contributed by 
volunteers 

(Goodchild 
2007) 

Participatory Geographic Information Systems   
 The integration of geo-spatial information 

technologies and systems (GIT&S) into community-
centered initiatives. The merger of community 
development with geo-spatial technologies for the 
empowerment of less privileged communities. PGIS 
implies making GIT&S available to disadvantaged 
groups in society in order to enhance their capacity 
in generating, managing, analyzing and 
communicating spatial information. It is geared 
towards community empowerment through 
measured, demand-driven, user-friendly and 
integrated applications of geo-spatial technologies. 

Community 
empowerment 
through integrated 
applications of 
geospatial 
technologies 

(Rambaldi et al. 
2006) 

Participatory Monitoring Network   
 “Nature-based monitoring organizations that [use] 

volunteers to collect records and assist with surveys” 
Volunteer data 
collection 

(Bell et al. 2008) 

Public Participation Geographic Information Systems  
 Public participation geographic information systems 

(PPGIS) pertains to the use of geographic 
information systems (GIS) to broaden public 
involvement in policymaking as well as to the value 
of GIS to promote the goals of nongovernmental 
organizations, grassroots groups, and community-
based organizations.  
 
An interdisciplinary research, community 
development and environmental stewardship tool 
grounded in value and ethical frameworks that 
promote social justice, ecological sustainability, 
improvement of quality of life, redistributive justice, 
nurturing of civil society, etc. 

Social justice focus 
through many GIS 
implementations 

(Craig et al. 
2002) 
 
(Sieber 2006) 
 
(Aberley and 
Sieber 2002) 

Community Networking   
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 “Nonprofit organizations that seek to provide online 
spaces for people who live in the same place to 
communicate and share information.” 

Social networking (Longan 2007) 

* These terms are often used synonymously. 
 

Because the majority of citizen-based approaches fall under the auspices of 

citizen science, Community-Based Monitoring, Participatory Monitoring Networks, 

Public Participation Geographic Information Systems, or Volunteered Geographic 

Information, I limit my description to these specific approaches. Below, I describe each 

of these terms in detail and make comparisons between them. For the purposes of this 

paper, when I refer to cyber-infrastructure in support of multi-scale citizen science, I use 

the term citizen science broadly to encompass all of these approaches. 

2.3.1 Citizen science 

 The concept of citizen science is not new and the term is used in many situations 

to represent many scenarios in which citizens participate in the scientific process along 

with professionals (Bonney et al. 2009). Citizen science typically involves trained 

volunteers participating in scientific studies as field assistants who collect data (Cohn 

2008, Cornell Lab of Ornithology 2008). According to Silvertown (2009), a citizen 

scientist is “…a volunteer who collects and/or processes data as part of a scientific 

inquiry.” Citizen science enlists the public in collecting large quantities of data across an 

array of habitats and locations over long time frames (Cooper et al. 2007, Bonney et al. 

2009). Citizen science projects are remarkably successful in advancing scientific 

knowledge and their contributions provide a vast amount of data about species 

occurrences and distributions around the world (Bonney et al. 2009). 
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This form of citizen science focuses on data collection by volunteers to address 

research questions across broad spatial and temporal scales. This approach requires 

significant oversight, coordination, protocol development and refinement, training, data 

management infrastructure, and financial support (Cohn 2008, Bonney et al. 2009). 

Preeminent examples include the effective citizen science projects coordinated by the 

Cornell Lab of Ornithology, including Project FeederWatch, PigeonWatch, NestWatch, 

NestCams, Great Backyard Bird Count, eBird, Celebrate Urban Birds, CamClickr, 

BirdSleuth, and Birds in Forested Landscapes (Cornell Lab of Ornithology 2008, Bonney 

et al. 2009). 

Another form of citizen science focuses on public engagement, with goals and 

objectives less data collection oriented and more policy oriented (Powell and Colin 

2008). Still others think of citizen science from a distributed computing perspective 

whereby citizens “volunteer” computers to a pressing cause such as monitoring seismic 

activity for early response and community safety (Cochran et al. 2009). My experiences 

show that there are many smaller citizen science initiatives in addition to notably larger 

efforts. It is these smaller initiatives that often lack data management support, may be 

uncoordinated and isolated from each other, and may benefit from cyber-infrastructure 

support. 

2.3.2 Community Based Monitoring 

There are many instances of public participation in science in the sense that 

citizens participate in monitoring activities. These programs often fall under the umbrella 

of “Community-Based Monitoring” or “Citizen-Based Monitoring.” Community-Based 

Monitoring is defined as “…a process where concerned citizens, government agencies, 

23 



industry, academia, community groups and local institutions collaborate to monitor, track 

and  respond to issues of common community concern” (Whitelaw et al. 2003). The 

distinction between Community-Based Monitoring programs and citizen science lies 

primarily in the degree to which program goals and objectives are directed towards 

answering scientific questions versus contributing to long term monitoring that may in 

turn lead to science based decisions, and the degree to which participants are involved in 

the process of doing science. The level of community involvement in Community-Based 

Monitoring programs varies and spans five categories, including: externally driven, 

professionally executed monitoring; externally driven monitoring with local data 

collectors; collaborative monitoring with external data interpretation; collaborative 

monitoring with local data interpretation; and autonomous local monitoring (Danielsen et 

al. 2009). In contrast to Community-Based Monitoring, citizen science focuses on science 

inquiry rather than pure monitoring. It too consists of a spectrum of community member 

involvement. In some instances, citizen science may not really be scientific at all in the 

sense that those participating may not be actively doing science. For example, they may 

not be involved in question development, hypothesis testing, data analysis, or data 

interpretation. Citizen science aims to collect data to address questions raised by 

researchers, whereas Community-Based Monitoring aims to track trends in natural 

resource conditions through time to inform policy decisions. In Community Based 

Monitoring, emphasis is placed on monitoring to promote sustainability, leadership by 

the community instead of individual organizations, and the use of monitoring data to 

inform decision-making (Whitelaw et al. 2003). 
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2.3.3 Participatory Monitoring Networks 

Participatory Monitoring Networks are defined as “Nature-based monitoring 

organizations that [use] volunteers to collect records and assist with surveys” (Bell et al. 

2008). Participatory Monitoring Networks include various forms of collaboration 

between professional and amateur ‘nature specialists’ and are deemed networks 

“…because of the way in which information is circulated within them, between 

individuals and groups, and … channeled to partner organizations” (Bell et al. 2008). The 

emphasis of Participatory Monitoring Networks is on the network aspect of monitoring, 

whereas Community Based Monitoring focuses on informing decisions and engaging 

communities in issues of common concern. The similar term “Community Networking” 

generally refers to “nonprofit organizations that seek to provide online spaces for people 

who live in the same place to communicate and share information” (Longan 2007). This 

perspective of a monitoring network emphasizes the social aspects in online spaces 

(Longan 2002, 2005, 2007). Participatory Monitoring Networks and Community 

Networks have been used in conservation to monitor invertebrate diversity, stream water 

quality, forest understory vegetation, plant diversity, and many more. These networks, 

like citizen science, demand flexible and efficient data management systems that are 

targeted to their particular needs and features that facilitate communication among 

networked participants. 

2.3.4 Public Participation Geographic Information Systems 

The term Public Participation Geographic Information Systems focuses on 

community interactions with GIS inextricably tied to the social and geographic context of 

system production and implementation (Craig et al. 2002). Public participation is meant 
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as “grassroots community engagement” (Craig et al. 2002). This concept hinges upon the 

citizen participation ladder (Craig et al. 2002, adapted from Weiderman and Femers 

1993). This ladder is a continuum comprised of six stages, including: public right to 

know; informing the public; public right to object; public participation in defining 

interests, actors, and determining agendas; public participation in assessing risks and 

recommending solutions; and public participation in final decisions (Wiedemann and 

Femers 1993, Craig et al. 2002). Most citizen science projects focus on the first two 

stages. Public Participation Geographic Information Systems pushes these boundaries and 

consists of continuums whose outcomes are best understood by addressing the questions 

of who is informed, who is empowered, and who benefits from the technology (Laituri 

2003). Craig (2002) and Seiber (2006) provide comprehensive literature reviews of 

Public Participation Geographic Information Systems. Unfortunately, the core literature 

consists of inconsistent vocabulary that does not build well on past research and that has 

resulted in a field struggling to establish an identity (Tulloch 2008). Nevertheless, Public 

Participation Geographic Information Systems has sparked critical thinking about GIS, 

social ramifications of technology and power (Elwood 2008b), and the role of the public 

in spatial decision making. 

2.3.5 Volunteered Geographic Information 

Volunteered Geographic Information is a recent term used to signify geospatial 

data contributed by volunteers. The distinction here lies primarily in that these data may 

or may not be scientific or collected and submitted for scientific purposes. Similarly, data 

may or may not have been collected strictly for monitoring purposes. Instead, data may 

be collected for any combination of reasons; they may be scientific, utilitarian, and/or 
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anecdotal. For example Open Street Map enlists volunteers to map all streets in the 

world. The project has amassed some 33,000 registered users, of which 3,500 are actively 

generating some 300+ million track points thus far (Haklay and Weber 2008). Similarly, 

the popular website Flickr allows members to geo-tag their photographs – a form of VGI 

itself – and wikimapia allows citizens to submit geo-referenced descriptions of places of 

interest resulting in a “volunteered gazetteer” now replete with over 4.2 million vetted 

entries (Goodchild 2007). These are just a few of the many examples of spatial web 2.0 

‘mash-ups’ that enlist, use, or depend on volunteered geospatial information in what has 

come to be known as ‘crowd-sourcing’ (Howe 2006). The credibility of these data has 

been under scrutiny (Flanagin and Metzger 2008) and depends upon the context in which 

these data are being used and evaluated. In a citizen science context, stakeholders often 

require rigorous data quality assurances. Volunteered Geographic Information for citizen 

science represent information judged objectively based on shared and enforced standards 

among professionals insisting on credibility as defined by position and attribute accuracy 

rather than credibility as defined by perceived trustworthiness (Flanagin and Metzger 

2008). In a more open domain such as street mapping or geo-tagged photos, credibility as 

defined by trustworthiness and timeliness may be more important. Nevertheless, debate 

remains over what relevant information ought to be collected by volunteers and for what 

purpose: “Instead of the current free-for-all of geographic facts collected by sites such as 

Wikimapia, citizens could be invited to provide specific kinds of information of greater 

relevance to geographic understanding, in the spirit of citizen science” (Goodchild 2008). 
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2.4 A Framework for Multi-Scale Citizen Science 

Given the variety of citizen based approaches, I developed a framework to situate 

projects based on their scope, scale, and activities (Figure 2-1). The proposed framework 

accommodates different levels of citizen and professional participation in each aspect of a 

project’s scope, scale, and activities and acknowledges that there are tensions and 

continuums for each aspect (Figure 2-1). The scope of citizen science projects includes 

their purpose; domain of focus; objectives; intended audience; degree of accessibility; 

and desired data quality. The scales at which these projects operate span multiple spatial, 

temporal, and social scales. Citizen science activities include research question 

development, project management, marketing, communication, recruitment, volunteer 

management, data management, information dissemination, and program evaluation 

(Bonney et al. 2009; Figure 2-2). The scope, scale, and activities of a given project 

operate in both within- and among-project dimensions. 
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Figure 2-1. A framework for multi-scale citizen science. The framework includes the 
scope (brown), scale (red), and activities (blue) of citizen science programs along with 
the necessary cyber-infrastructure support (green). Each aspect of multi-scale citizen 
science has associated continuums or tensions. These aspects of scope, scale, and 
activities are generally applicable to both within- and among-project dimensions. 

2.4.1 Within-project dimensions 

The scope of a given citizen science project within the project itself varies. 

Projects are developed for different purposes along a continuum from focused to broad 

(Figure 2-1). Examples of focused purposes include performing restoration or monitoring 

activities. Broad purposes include informing decisions, improving environmental literacy, 

or influencing policy (Figure 2-2). The more tacit objectives that naturally follow from 

these overarching purposes include act-oriented objectives such as teaching kids or 

collecting data to more change-oriented objectives such as influencing individual 

behaviors. These objectives are specific to the domain of a given citizen science project, 

such as birds, streams, wildlife, climate, air, soil, bats, worms, or frogs. The intended 
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audience of citizen science projects range from the lay public to land mangers, decision 

makers, and professional scientists (Figure 2-1). The desired degree of access and data 

quality also varies. Access refers to cognitive access, social access, cultural access, 

technological access, and economic access (Laituri 2003). Data quality aspects include 

accuracy, precision, credibility, and trustworthiness (Figure 2-2; Flanagin and Metzger 

2008). 

 

Figure 2-2. A framework for multi-scale citizen science illustrating examples of the 
scope (brown), scale (red), and activities (blue) of a variety of citizen science projects. 
 

The scale of a given project involves spatial, temporal, and social scales (Figure 

2-1). The spatial scale ranges from local to global, the temporal ranges from short- to 

long-term, and the social ranges from individual- to community-focused. Local lake 

management association activities are an example of local scale programs. An example of 
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a regional scale program is the Invasive Plant Atlas of New England program. Global-

scale programs include eBird and Journey North. Examples of short term projects include 

one-time only volunteer opportunities and programs devoted to amphibian monitoring in 

a city natural area, for example. Long-term examples include annual surveys such as the 

Christmas Bird Count and detailed data collection efforts at Long Term Ecological 

Research sites. Finally, social scales involve individual-oriented projects offering 

opportunities for individuals to collect data on their own and community-oriented 

projects geared towards events such as a community Bio Blitz. 

Within a project, common citizen science activities include research question 

development; project management; marketing; communication; recruitment; volunteer 

management; data management; information dissemination; and program evaluation 

(Bonney et al. 2009). Issues of who develops the research question and for what purpose 

arise along with what methods are used to answer it (e.g., quantitative or qualitative). To 

my knowledge there have been few if any examples of citizen science programs that 

engage the public using qualitative methods. Rather, these methods tend to be used in top 

down approaches for program evaluation or human dimensions of natural resource 

studies. Protocol development and refinement involves the use of data standards, data 

entry forms, protocols, and controlled vocabularies for pick lists or checkboxes; it is an 

art itself.  Volunteer recruitment entails marketing and issues of volunteer registration, 

motivation (Van Den Berg et al. 2009), and retention. Training requires material 

development, use of traditional and/or multimedia online resources (Newman et al. 

2010a), and the delivery of face to face training sessions. Managing volunteers can be 

complicated. Existing systems such as Volgistics (www.volgistics.com) can be used, but 
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these systems operate separately from field data management systems. Dissemination of 

project results is typically accomplished through reports, peer reviewed articles, data 

sharing, and online materials. Finally, program evaluation involves formative and 

summative evaluation along with logic models to document short- and long-term 

outcomes against measureable benchmarks. 

Deciding on how to approach each of these activities and where on each 

continuum a given project may reside (Figure 2-1) is critical to overall program success. 

Mismatches in the relative positions of a program on each continuum can lead to tensions 

between group goals, data quality, and program outcomes (Nerbonne and Nelson 2008). I 

developed the framework (Figure 2-1, Figure 2-2) to help prevent such mismatches and 

to provide coordinators with a means to decide where on each continuum their program is 

best situated. 

2.4.2 Among-project dimensions 

Among project dimensions refer to the degree to which citizen science programs 

coordinate with other programs. The scope of among-project connectivity involves the 

magnitude of connectedness. It defines the purpose, goals, and objectives of among-

project interactions along with desired outcomes. The scale of interoperability among 

projects includes local, regional, national, and global scales. The activities required to 

achieve cooperation include collaborative meetings, use of data sharing protocols, use of 

data standards, and evaluation of the cooperatives formed to ensure goals are met and to 

answer the question of how effectively programs meet their among-project goals. 

Measureable benchmarks are needed to ensure that these evaluation questions can be 
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answered; data management systems must be designed to store and analyze these 

evaluation data. 

2.5 A Cyber-Infrastructure for Multi-Scale Citizen Science Support 

2.5.1 History 

 My colleagues and I built the Global Organism Detection and Monitoring System 

between 2005 and 2008 to support invasive species data management, analysis, and 

modeling activities envisioned by the USGS National Institute of Invasive Species 

Science (Graham et al. 2007). The system used technology developed by my team and 

engineered to provide fast and reliable online interactive mapping capabilities at multiple 

spatial and temporal scales. It was built using User Centered Design (ISO 13407 1999) 

and a software lifecycle of iterative investigation, design, requirements specification, 

development, implementation, testing, and maintenance (Jacobson et al. 1999). Emerging 

citizen based invasive species programs such as the Invasive Plant Atlas of New England 

(IPANE; http://nbii-nin.ciesin.columbia.edu/ipane/), the Early Detection and Distribution 

Mapping System (EDDMapS; http://www.eddmaps.org/), the Cactus Moth Detection and 

Monitoring Network (http://www.gri.msstate.edu/research/cmdmn/), and Texas Invaders 

(http://www.texasinvasives.org/) inspired me to re-purpose our existing system to support 

citizen science projects. Thus, I created a website devoted to volunteers collecting and 

reporting invasive species data (CitSci.org; www.citsci.org). CitSci.org was built as a 

front-end web skin on top of our underlying system architecture. The underlying system 

serves several other related websites through similar targeted web skins, including the 

Global Invasive Species Information Network (www.niiss.org/gisin; Graham et al. 2009), 
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an environmental literacy assessment website (www.niiss.org/msp), a website dedicated 

to the invasive species Tamarisk (www.tamariskmap.org), and a website devoted to 

mapping trails in Larimer County, Colorado (http://cotrails.colostate.edu). 

Each of these websites share a common theme: they all rely on participation from 

stakeholders to keep data current in real-time. In this sense, they are examples of web 2.0 

applications. The term web 2.0 is synonymous with web applications that facilitate 

interactive information sharing, interoperability, user-centered design, and collaboration 

on the World Wide Web (Lake and Farley 2007). Examples include web-based 

communities, web applications, social-networking sites, video-sharing sites, wikis, blogs, 

mash-ups, and folksonomies. A web 2.0 site allows its users to interact with other users 

or to change website content, in contrast to non-interactive websites where users can only 

passively view information provided to them (Lake and Farley 2007). Although my 

websites are examples of web 2.0 technology, they are conservative in their degree of 

openness and their reliance on third party Application Programming Interfaces. 

There are of course many benefits to using open forums (e.g., see the popularity 

and success of Wikipedia, Wikimapia, and Open Street Map; Haklay and Weber 2008) 

and free and open source software show great promise for fields such as landscape 

ecology (Steiniger and Hay 2009). However, stakeholder concerns over data quality and 

developer concerns over the longevity, reliability, and performance made me balance 

innovative web 2.0 alternatives against pragmatic solutions. For example, land managers 

using citizen contributed data are unwilling to spend time and money to control a 

population of an invasive species if a species is incorrectly identified (a stakeholder 

concern) and developers are unwilling to wait for minutes for a third party web service 
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response or deal with a lack of documentation when using a new Application 

Programming Interface (a developer concern). I embrace the participatory nature of web 

2.0 collaboration, open source approaches, and cutting-edge technologies. However, like 

other cyber-infrastructure developers, I am also simultaneously required to ensure 

reliability, performance, usability, data quality, daily use satisfaction, and features 

specific to the needs of stakeholders (Ribes and Finholt 2009). 

2.5.2 Features for multi-scale support 

 To meet these often conflicting ideals (Ribes and Finholt 2009), a flexible cyber-

infrastructure must adapt to the needs of projects focused on different domains operating 

at multiple spatial, temporal, and social scales (Figure 2-3). Instead of developing a 

website for each purpose, I identified several features important to a cyber-infrastructure 

for multi-scale citizen science. Common to most projects regardless of their scope, scale, 

or purpose is a least common denominator set of core data (Figure 4). This simple quartet 

of minimal data consists of an object found at a location at some point in time along with 

measured attributes. This flexible object-oriented approach (Kamath et al. 1993) supports 

a variety of disparate data. I assign these core data to a project to organize them and 

empower citizen science coordinators to create their own online spaces specific to their 

needs. Project managers approve data contributors (e.g., serve as gatekeepers) and create 

customizable data entry forms specific to their protocols. Despite the ability to customize 

projects created on CitSci.org, some citizen science programs require a user interface 

implementation specific to their scope, scale, and activities beyond the level of specificity 

allowed in CitSci.org. Thus, I added a web skin module to our core database design 
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(Figure 2-4) to store information about the design, relevant data, and visible features for 

each web skin tailored to specific program needs. 

 

 

Figure 2-3. Cyber-infrastructure support for multi-scale citizen science projects and 
activities. There may be many instances of citizen science programs in Domain I (e.g., 
birds) that are situated in different spatial, temporal, and social spaces. Each citizen 
science program interacts with each other (dashed lines) and is supported by a cyber-
infrastructure (solid lines). There may be several regional and domain-specific databases 
(dark canisters) that are interoperable and that exchange data between each other and a 
cyber-infrastructure. 
 

A web skin is an aesthetic change of appearance of the same webpage specific to 

a certain domain. Web skins make the same web page appear differently and as part of a 
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different website. The advantages of a web skin approach are many. Web skins allow 

developers to maintain only one system architecture for many websites. Maintenance 

costs are shared by all, thereby leveraging existing technology (Ribes and Finholt 2009). 

The cyber-infrastructure includes online features to create and manage web skins online 

using an administrative back-end, including the ability to create and edit menu items, 

create and edit Cascading Style Sheets without the need to understand this syntax, 

develop color palettes, and change basic layout such as web skin width (fixed and 

flexible width), navigation menu location (left, top, or both) and navigation menu width. 

Other features helpful to support citizen science projects include a questionnaire creation 

tool. Questions can be built as multiple choice (checkbox), radio button, drop-down menu 

pick lists, text entry, or text area questions. The questions can be ordered and labeled and 

options can be added or changed. The questionnaires are assigned to projects and project 

managers can automatically analyze and visualize results. These features can be used for 

online program evaluation and are part of the cyber-infrastructure. I also created a web 

service Application Programming Interface to deliver dynamic maps for citizen science 

organizations who wish to embed maps into their own website along with a web service 

data exchange protocol (Graham et al. 2008). 
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Figure 2-4. Entity Relationship Diagram for web skin related tables of the multi-scale 
citizen science cyber-infrastructure database schema including core tables for objects 
found at a location at some point in time along with measured attributes. Diagram 
includes Cascading Style Sheet tables and data entry form tables. Core database object 
tables are shown in red. Adapted from Graham et al. (2008). 

2.5.3 Standards for multi-scale interoperability 

Of special concern is the use of data standards. Data standards facilitate data 

exchange and sharing through web service protocols (Figure 3). Without standards, data 

may still be exchanged in meaningful ways through semantic markup languages and 

metadata, but these approaches require technological expertise. For practitioners, data 

standards help link disparate data. They bridge boundaries between heterogeneous 

communities, but they may also create and reinforce them (Ottinger 2010). For example, 

data standards can establish scientific authority among experts and help those reusing 

data to determine credibility (Ottinger 2010). If data are to be effectively integrated and 
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reused across projects (i.e., the among-project dimension), trust and an understanding of 

how the data were collected must be an obvious component of merged datasets. A recent 

study of ecologists’ data reuse experiences show that trust in data sometimes stems from 

what is observed or measured while at other times is more closely tied to who observed 

or collected it (Zimmerman 2008). Standard data collection protocols may not be 

adequate indicators of data quality. The ability to determine the appropriate use(s) of data 

collected by others is critical to subsequent reuse (Zimmerman 2008). 

Standards also play an important and often hidden role in shaping the uneven 

terrain between citizen scientists and experts (Ottinger 2010). Data standards may 

establish some knowledge as authoritative and some communities as credible generators 

of data while marginalizing alternative knowledge production processes such as those 

emerging from citizen science (Ottinger 2010). Given this, some advocate that citizens 

themselves develop standards through emergent processes often present in web 2.0 

applications and social networks. For example, in Open Street Map, volunteer citizens 

themselves create controlled vocabularies for places of interest. Should plant life-forms 

be labeled grasses, forbs, and shrubs or herbaceous and woody plants - the answer may 

emerge and be decided on by those using the system. These same emergent processes are 

similar to constructivist approaches in qualitative research (Lindlof and Taylor 2002) and 

are proclaimed to be a good method for policing data quality: “The best data quality 

control is no data quality control at all” (Coast 2010; personal communication). 

Once standards are developed, they facilitate data sharing. For example, in an 

information technology context, data standards make it easier for REST protocols to be 

developed for efficient data exchange through web services. They may also make it easier 
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for ecologists reusing data to integrate disparate data sources. However, studies among 

professional ecologists show that data sharing often takes place between close associates 

and relies on social interaction (Committee on the Future of Long-term Ecological Data 

1995). The reasons for this are complex and include a lack of incentives for ecologists to 

share data and a culture that values creative and independent research above secondary 

use of data (Zimmerman 2008). Networks of sensors and cyber-infrastructure support for 

continental-scale ecological processes (e.g., NEON) create a need for new 

epistemological tools to integrate large volumes of data (Zimmerman 2008). These 

challenges are not entirely technological; they are social and cultural. The ability to 

understand how data was collected is the most important factor for data reuse and data 

sharing (Zimmerman 2008). The purpose of research dictates data collection methods, 

and this, in turn, limits secondary use of data. Thus, the multi-scale nature of citizen 

science projects represents both the greatest advantage and barrier to among-project 

benefits. All data are limited, and their limitations are pitfalls to reuse if they are not 

understood. Ecologists use their knowledge about the relationship between purpose, 

methods, and limitations to make sophisticated decisions about appropriate reuse; data 

standards alone do not serve as measures of data quality because they do not tell 

secondary users if the data were collected skillfully (Zimmerman 2008). Successful 

systems for sharing data succeed not only because of standardization, but also on account 

of the metadata they make public about the data. 

2.5.4 Maintenance and long-term support 

The hubris surrounding technical solutions for effective data standards, data 

sharing, and cyber-infrastructure development often mask complications experienced by 
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developers (Ribes and Finholt 2009). Novel platforms often do not meet the needs of 

stakeholders; they do not offer the functional stability required by daily use, they do not 

simultaneously promote knowledge seeking and data contributing motivations (Phang et 

al. 2009), and they lack human resources to maintain and upgrade existing technology 

(Ribes and Finholt 2009). Developing a cyber-infrastructure requires long term funding 

and support. Developers speak of problems in the spheres of science policy, funding, 

organizing work and maintaining technical systems (Ribes and Finholt 2009). Primary 

concerns include motivating contributors, aligning end goals, and designing for use 

(Ribes and Finholt 2009). I overcame these challenges by creating online projects, using 

a “train the trainer” approach, relying on a flexible database schema, using an object 

oriented design, and integrating a web skin management system into the cyber-

infrastructure along with flexible subsystems that can be reused for many purposes (e.g., 

my online questionnaire system). Thus far, use of the cyber-infrastructure by citizen 

science programs has resulted in 10 online projects yielding over 1900 invasive species 

locations. 

2.6 Example Projects 

To illustrate the flexibility of the cyber-infrastructure system, I describe several 

case studies of projects using CitSci.org and several examples of web skins. The scope, 

scale, and activities of these examples are summarized in Table 2-2. Specifically, I 

highlight three CitSci.org projects, including Great Lakes Worm Watch, Project R.E.D., 

and the City of Fort Collins Natural Areas Program Amphibian Monitoring Project. I then 

briefly discuss two web skins created for more specific purposes, including T-Map and 

COTrails. 
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Table 2-2. Example CitSci.org projects and web-skins and their associated scope, scale, 
and activities. 

Project Scope* Scale** Activities*** 
CitSci.org Projects    
 Great Lakes Worm Watch Worm assessments R – ST - C (P,T,R,C,D,E) 
 Project R.E.D. (Riverine 

Early Detectors) 
Aquatic invasive 
species monitoring 

R – LT – C (P,T,R,C,D,E) 

 City of Fort Collins 
Amphibian Monitoring 

Amphibian 
monitoring 

L – LT – I (P,T,R,C,D,E) 

Web Skins    
 CitSci.org Multi-project N – LT – C (P,DM,C,D,E) 
 T-Map Tamarisk mapping G – LT – I (P,DM,C,D,E) 
 COTrails Trails mapping R – LT – I (DM,C,D) 
     

 * Scope: Synopsis of Purpose, objectives, domain, audience, access, and data quality. 
 ** Scale: Spatial – Local (L), Regional (R), National (N), and Global (G); Temporal – Short-term (ST) 

and Long-term (LT); and Social – Individual (I) and Community (C). 
 *** Activities: Protocols (P), training (T), recruitment (R), data management (DM), communication (C), 

dissemination (D), evaluation (E). 
 

2.6.1 Example CitSci.org projects 

 The Great Lakes Worm Watch project (http://www.greatlakeswormwatch.org/) is 

dedicated to providing tools and resources for citizens to document the distributions of 

exotic earthworms across the Great Lakes region (Hale 2010). The project was created 

prior to the inception of CitSci.org and already had an active constituency of volunteers, 

educational materials, and research protocols. It was established on CitSci.org July 21, 

2008 to provide volunteers with online data entry and mapping capabilities. Since then, 

the project has created four customized data entry forms, some with complicated 

protocols consisting of subplots within plots. To date, volunteers have contributed 28 

surveys consisting of 19 unique taxonomic identifications, such as 89 Earthworm 

(Oligochaeta) sightings, 29 Leaf Worm or Beaver Tailed Worm (Lumbricus rubellus) 

sightings, and 28 Canadian Gray Worm (Aporrectodea turberculata) sightings. 
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 The scope of the project is regional and its purpose is to increase scientific 

literacy and public understanding of the role of exotic species in ecosystem change and 

what citizens can do to participate. The project objectives are to document the 

distribution and spread of exotic earthworms and increase knowledge about their impacts 

to the Great Lakes region (Hale 2010). The audience ranges from third grade students to 

college undergraduates and professionals. The accessibility of the project ranges from 

understanding by the lay public to detailed and exacting protocols geared towards 

specialists. Data quality is controlled by verification of samples sent to experts at the 

University of Minnesota- Duluth. The scale of the project is regional and typically short-

term due to a lack of site re-visits. Socially, the project is community-oriented, although 

some individual contributors have participated. Project activities follow Bonney et al. 

(2009). Among-project collaborations are many, including national partnerships with the 

National Science Foundation, regional collaborations with the Minnesota Department of 

Natural Resources, the Northeast Regional Sustainable Development Partnership, 

Minnesota’s NOAA Lake Superior Coastal Program, and the Minnesota Environment 

and Natural Resources Trust Fund, and local partnership with the Boulder Lake 

Environmental Learning Center. 

 The Great Lakes Worm Watch project presented challenges to the cyber-

infrastructure because their protocols required subplots within plots. The flexible system 

architecture was readily adapted to meet this need and I worked with the program to 

ensure that protocols were standardized with national protocols and that controlled 

vocabularies were used. Additionally, this project had established a generic data entry 

form to document work presence along with a Level I, II, and II data entry form to 
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accommodate three levels of volunteer sophistication. The cyber-infrastructure 

customized data entry form creation features accommodated these different forms 

without any programming changes. 

 Project R.E.D. (Riverine Early Detectors) has been “Paddling with a purpose” 

since March 1st, 2009 and has submitted 132 surveys to date of Japanese Hop (Humulus 

japonicus), Japanese Knotweed (Polygonum cuspidatum), Curly Pondweed 

(Potamogeton crispus), Purple-loosestrife (Lythrum salicaria), Common Reed 

(Phragmites australis), Eurasian Watermilfoil (Myriophyllum spicatum), and Flowering 

Rush (Butomus umbellatus). The project offers free trainings to volunteers for 15 species 

of concern and engages the public as monitors of rivers by canoe, kayak, or on foot 

(http://www.wisconsinrivers.org/index.php?page=content&mode=view&id=171).  

 The purpose of this project is to raise awareness about invasive species in river 

corridors and engage local citizens in the fight against invasive species. The project 

objective is to provide early detection of invasive species threatening Wisconsin's Rivers 

to enable containment or eradication by managing agencies. The spatial scale of this 

project is throughout Wisconsin and the project aims to monitor rivers through time. The 

project domain is focused on aquatic invasive species. Data quality is controlled through 

excellent volunteer training programs. The social scale is community focused given 

typical excursions on the river in groups. The project has forged partnerships with several 

local and regional initiatives, including the River Alliance of Wisconsin, the Rock River 

Coalition, and the Riveredge Nature Center. 

 Project R.E.D. presented challenges to the cyber-infrastructure given their active 

use of photo verification. Volunteer take photographs of each infestation and submit their 
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photos online at CitSci.org. I found that improved photo management features similar to 

Facebook or Flickr will be required form experiences with Project R.E.D. 

The City of Fort Collins Natural Areas Program Amphibian Monitoring Project is 

a volunteer based program to monitor native and non-native amphibian species in Fort 

Collins Natural Areas based on standardized national audio surveys. The project 

submitted 111 surveys across 32 natural areas throughout summer 2009. These surveys 

identified 6 species, including Western Chorus Frogs (Pseudacris triseriata), Woodhouse 

Toads (Bufo woodhousii), Bullfrogs (Rana catesbeiana), Plains Spadefoots (Spea 

bombifrons), and Northern Leopard Frogs (Rana pipiens). Chorus frogs were the most 

widespread, being recorded at 24 natural areas (City of Fort Collins Natural Areas 

Program 2009). Woodhouse’s toads were recorded at 16 natural areas and the bullfrog 

(Rana catesbeiana), an invasive species which often eats native amphibians, was recorded 

at 10 locations. These 10 sightings represent many more locations than were documented 

during previous years, indicating an increased threat by this species (City of Fort Collins 

Natural Areas Program 2009). The project encompasses a local spatial scale and intends 

to continue annually. Data quality is controlled through a training program at the 

beginning of each summer field season and the use of audio CD ROMs for call index 

reference guides. 

This project made use of a standardized call index (Nelson and Graves 2004) for 

volunteers to report as attributes of amphibian sightings. I was able to add the new 

attribute type and attribute values online easily using the administrative backend of the 

cyber-infrastructure. The controlled vocabularies used for the call index includes: (0) No 

individuals calling; (1) Individuals can be counted, there is space between calls; (2) Calls 
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of individuals can be distinguished, but there is some overlapping of calls, and (3) Full 

chorus, calls are constant, continuous, and overlapping.  

2.6.2 Example web skins 

 CitSci.org itself is a web skin developed in support of multi-scale citizen science 

projects. Although CitSci.org is quite flexible in meeting the specific needs of many 

projects, some projects may require a custom web skin. For example, a flagship species 

of concern may generate enough socio-political concern to warrant a targeted web skin 

rich with more detailed information and online resources about a single species. A single 

species approach affords those using the system the luxury of not having to search for a 

species to submit data, but rather use a simplified user interface with a single submit 

button (since it is already known which species is being reported). To prototype a single 

species approach, I created T-Map (www.tamariskmap.org) that focused specifically on 

the invasive species Tamarisk. 

Another situation that warrants a web skin involves trails mapping. To illustrate 

this approach, I developed COTrails, a website supporting collaborative mapping of trails 

throughout Larimer County, Colorado. COTrails offers simple search capabilities to 

search for trails by name, by length, by difficulty, or by managing agency (National Park 

Service, U.S. Forest Service, city governments, etc.). It affords those with permission to 

contribute new up-to-date trail information in the event of trail re-routes following 

restoration or erosion control efforts. The cyber-infrastructure allowed us to customize 

menu items for this web skin, easily develop new web pages for the purposes of trail 

information, reuse core base classes for similar web pages, and tailor the map application 

to pre-load trails and trail sections. 
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A common database for these seemingly disconnected projects has unanticipated 

advantages. For example, trails data contributed through COTrails can now be used as a 

predictive layer to determine the degree to which proximity to trails may be correlated to 

the occurrences of a given invasive species. An unanticipated advantage of the flexible 

cyber-infrastructure lies in its ability to quickly and easily develop unique systems for 

unique circumstances. 

2.7 Discussion 

 My research and development experiences creating a cyber-infrastructure in 

support of multi-scale citizen science underscored the importance of flexibility in system 

architecture and capabilities. Knowing up-front what level of cyber-infrastructure support 

is needed by a project and how a project fits within the broader citizen science landscape 

is critical. The framework for multi-scale citizen science situates projects and provides 

those developing cyber-infrastructure with a sparse matrix of circumstances from which 

to plan for in advance. Other frameworks related to citizen science structure an analysis 

of PGIS empowerment by combining four catalysts (information, process, skills, and 

tools) with two social scales (individuals and communities; Corbett and Keller 2005). 

Empowerment within my framework is conceptual and related to the research activities 

of volunteer recruitment, retention, and motivation. Similar to my framework’s within- 

and among-project dimensions, Bell et al. (2008) uncovered the social interactions that 

occur within and between participatory monitoring networks through ethnographic 

research in Europe. The authors focused on features to facilitate the recruitment, retention 

and motivation of volunteers participating in organized biodiversity monitoring. They 

found that these networks must “...strike a dynamic balance between recruitment and 
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retention, bringing in new volunteers while consolidating existing [members]” and that to 

expand and sustain volunteer participation, networks must engender enthusiasm “…by 

providing an inspiring environment where trust, respect, recognition, value and 

enjoyment can flourish” (Bell et al. 2008). 

My experiences developing cyber-infrastructure indicate that appropriate web 2.0 

social networking features may address these needs. These features allow developers to 

be responsive in meeting the needs of multiple citizen science programs by empowering 

each project to customize their own projects. The cyber-infrastructure system empowers 

volunteer coordinators to serve as gatekeepers who in turn empower volunteer citizen 

scientists. This approach - using user levels and project roles - is similar to that of Poch et 

al. (2004) who advocate for user profiles with different privileges and responsibilities. 

Online web skin creation features for administrators are instrumental to help cyber-

infrastructure developers serve the needs of many projects simultaneously because it 

allows them to develop web skins tailored to each project quickly. These features allow 

developers to survive the challenges of cyber-infrastructure development for ‘the long 

now’ – allowing them to have one foot in system development and maintenance while 

also meeting research goals and objectives for innovation, technological advancement, 

and publication (Ribes and Finholt 2009). 

2.8 Conclusions 

I conclude by offering a vision for the future of citizen science data management, 

informatics, and cyber-infrastructure support. I envision continued cyber-infrastructure 

development that makes use of web services to enable data sharing among and between 

different regional databases and more national cyber-infrastructure support systems. 
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Some systems may be focused on a particular scientific domain while others may be 

more focused on citizen science. Better use of shared controlled vocabularies, data 

standards, and standardized protocols will integrate these projects and leverage their 

assets in creative ways. Such integration will enable meta-analyses across projects and 

ensure minimal duplication of effort locally and regionally. However, expanded data 

sharing capabilities may not necessarily lead to improved information dissemination; 

instead, it may simply lead to the phenomena of information abundance (Flanagin and 

Metzger 2008). Future cyber-infrastructure support systems will need to offer value 

added data analysis and summarization services prior to final data exchange to reach their 

full potential. Summary reports and statistics using integrated datasets will help complete 

the data dissemination lifecycle – bringing meaningful results back to land managers, 

decision makers and the citizen ‘data collectors’ themselves. Integrated program 

evaluation capabilities will help cyber-infrastructure systems better assess program 

performance essential to program evaluation and future funding support. Finally, web 2.0 

features such as Really Simple Syndication feeds and social networking features will 

improve communication among and between multi-scale citizen science programs. 

Pressing questions remain. What factors determine whether a citizen science 

project should use existing cyber-infrastructure features such as those available on 

CitSci.org or whether they warrant the more customized features of a web skin? What are 

the capabilities and capacities of those using cyber-infrastructure? What are the 

capabilities of multi-scale cyber-infrastructure support for traditional ecological 

knowledge collected by volunteer participants from many cultures? What technology is 

appropriate for these multi-scale audiences? Will cyber-infrastructure decrease the 
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marginalization of such audiences or increase it? Future citizen science program success 

may hinge on the flexibility and adaptability of cyber-infrastructure to the domain, scope, 

and scale of the multitude of citizen science programs emerging today. 
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CHAPTER 3 USER FRIENDLY CITIZEN SCIENCE 

3.1 Abstract 

Citizen science websites are emerging as a common way for volunteers to collect 

and report spatial ecological data. Engaging the public in citizen science is challenging, 

and, when involving online participation, data entry, and map use, becomes even more 

daunting. Given these new challenges, citizen science websites must be easy to use, result 

in positive overall satisfaction for many different users, support many different citizen 

science tasks, and ensure data quality. To begin reaching these goals, I built a geospatial 

citizen science website, evaluated its usability, and gained experience by working with 

and listening to citizens using the website. I sought to determine general perceptions, 

discover potential problems, and iteratively improve the website. While the website was 

rated positively overall, map-based tasks identified a wide range of problems. Given 

these results, I re-designed the website, improved content, enhanced ease of use, 

simplified the map interface, and added features. Finally, I discuss citizen science 

websites in relation to online public participation geographic information systems, 

examine the role(s) websites may play in the citizen science research model, discuss how 
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citizen science research advances GIScience, and offer guidelines to improve citizen-

based web mapping applications. 

3.2 Introduction 

The number of citizen science organizations, programs, and volunteers actively 

recording the location of species is growing faster than the flowers, birds, frogs, wildlife 

and worms they seek to record. It is estimated that there are approximately 15 million 

citizens watching or recording birds in the U.S. alone (Bhattacharjee 2005). Additionally, 

there are over 4,200 conservation organizations listed in an online conservation directory 

(National Wildlife Federation 2009) and likely many more engaged in conservation 

activities using volunteers. Programs such as the North American Breeding Bird Survey 

(Peterjohn and Sauer 1993), NatureMapping (Dvornich et al. 1995), Project FeederWatch 

(Bonney and Dhondt 1997, Lepage and Francis 2002), Frogwatch USA (MacKenzie et al. 

2002), Project Tanager (Rosenberg et al. 1999) and eBird built upon the first account of 

citizens observing nature and recording data on Christmas day, 1900 (the Christmas Bird 

Count; National Audubon Society 2005). Today, citizen science projects continue to 

expand in scope and breadth and now include projects associated with climate change 

(Cohn 2008), invasive species (Delaney et al. 2008), conservation biology (Galloway et 

al. 2006, Losey et al. 2007), biodiversity monitoring (Danielsen et al. 2005b, Lepczyk 

2005, Couvet et al. 2008), population ecology (Peterjohn and Sauer 1997, Rosenberg et 

al. 1999), water quality monitoring (Wilderman et al. 2004), street mapping (Haklay and 

Weber 2008), and traffic congestion (Goodchild 2007), among others (Silvertown 2009). 

As these so-called ‘voluntary citizen sensors’ grow in number and continue to adopt new 

spatial web 2.0 technology (Goodchild 2007), we must better understand the relationship 
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between people and computers; the usability of web mapping applications; and the 

intricate ways in which people expect to reason with, learn about, and communicate their 

geographical world. Applied citizen science research improves our understanding of 

these relationships and pushes us to explore novel geospatial information representation 

and visualization methods; invent new ways to ensure data quality; improve approaches 

to express spatial data accuracy and precision in ways meaningful to the user; and expand 

the very limits of GIScience itself. 

3.2.1 Citizen science 

What is “citizen science?” The term citizen science has been used in many 

situations to represent many different scenarios in which citizens participate in the 

scientific process along with professionals. Citizen science typically involves trained 

volunteers participating in scientific studies as field assistants who collect data (Cohn 

2008, Cornell Lab of Ornithology 2008). According to Silvertown (2009), a citizen 

scientist is “a volunteer who collects and/or processes data as part of a scientific inquiry.” 

The citizen science research model is one of many along a spectrum of 

approaches to community-based science and monitoring that encompasses varying levels 

of community member involvement (Wilderman et al. 2004, Cooper et al. 2007, 

Danielsen et al. 2009). In the citizen science research model, the public is involved in 

data collection across broad geographic regions and long time frames to address 

questions raised by researchers (Cooper et al. 2007). One of the cornerstones of this 

model is that participating citizens disseminate the information they collect, thereby 

increasing awareness of the scientific research questions being addressed (Couvet et al. 

2008). Recent principles proposed to guide good citizen science suggest that this 
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dissemination must come full circle; professional scientists must disseminate research 

results, feedback, and updates back to volunteers (Cooper et al. 2007, Silvertown 2009). 

To be effective, citizen-based efforts will require standardized monitoring protocols and 

the ability to efficiently disseminate information on to decision makers (Conrad and 

Daoust 2008). They will require effective project management; sufficient citizen buy-in; 

innovation in quality assurance tools, recruitment strategies; marketing; and information 

systems (e.g., web mapping applications) adept enough to communicate goals, recruit 

volunteers, market programs, train participants, collect quality data, communicate results 

to stakeholders, and retain members (Cooper et al. 2007). 

To meet these challenges, many organizations are developing websites to support 

their volunteers and facilitate data entry and dissemination. Indeed, the increase in the 

number of citizen-based websites available to the public may be one of the many factors 

driving the growth and explosion of citizen science (Silvertown 2009). As the number of 

organizations grow, so do the number of websites. For example, the Invaders of Texas 

(http://www.texasinvasives.org/invaders/), the Invasive Plant Atlas of New England 

(IPANE; http://nbii-nin.ciesin.columbia.edu/ipane/), Wisconsin NatureMapping 

(http://www.wisnatmap.org/), EDDMapS (http://www.eddmaps.org/), the Community 

Collaborative Rain, Hail, and Snow (CoCoRaHS; http://www.cocorahs.org/) network, 

Water Action Volunteers (http://watermonitoring.uwex.edu/wav/), OpenStreetMap 

(http://www.openstreetmap.org), eBird (http://ebird.org/content/ebird/), wikimapia 

(http://wikimapia.org/), and EarthTrek (http://www.goearthtrek.com/) are just a few of 

the many websites now supporting citizen science and citizen-based activities. 
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Many of these websites use Google Maps technology, interact with the Google 

Earth desktop application, and disseminate citizen-contributed geospatial information 

using interactive web mapping applications. These technologies and applications now 

create user expectation for fast performance and the ability to quickly and easily post 

information. They are one example of the many approaches to Public Participation 

Geographic Information Systems. They may equip millions of citizens with an online 

place to upload geospatial information, thereby increasing the availability of such 

information worldwide (Goodchild 2007). However, as more web mapping applications 

are developed, more attention must be given to their usability, user satisfaction, required 

tasks, data quality, and applicability related to each purpose and audience they are being 

built to support. 

Of special concern is the diversity of people using websites. Website developers 

must account for the fact that their users come from all walks of life. They represent a 

variety of age groups and cultures, form diverse social structures, and possess different 

levels of technological sophistication. They are lifelong-learners who speak different 

languages, posses different levels of prior computer experience, have different goals and 

motivations, and may be marginalized from new technology. They are high school 

biology students, amateurs, retired scientists, science teachers, volunteer coordinators, 

conservation group members, scientists, land managers, bird watchers, hikers, and 

outdoor enthusiasts who typically care about nature, have some understanding of the 

scientific process, and are concerned about environmental problems (Cohn 2008). 

Creating websites in support of such diverse audiences is both needed and fraught with 

challenges. These audiences need websites that are easy to use, satisfying, supportive of 
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many common tasks, and are equipped with data quality features. Future volunteer 

retention, motivation, and overall program success may hinge on the usability and 

ultimate success of these websites. 

Finally, interactive web mapping applications and visualization demand that users 

posses some level of spatial literacy. Spatial literacy refers to the ability to understand 

spatial relationships, comprehend how to represent geographic space, and the ability to 

reason and make key decisions about spatial concepts (National Research Council et al. 

2006).  Often, citizen scientists collect information using Global Positioning Systems. 

Correct data collection and contribution requires an understanding of such fundamental 

concepts as datums, projection, map units, and resolution. Citizen science websites aim to 

simplify some aspects of data collection and contribution so that a lack of understanding 

of these concepts does not hinder their ultimate success. These websites advance the 

development of other web mapping applications and present a growing arena for further 

GIScience research. 

3.2.2 Website usability research 

Despite commercial website usability design guidelines (Nielsen 2000), the 

usability of geospatial citizen science websites involving complex data entry features 

need additional evaluation. Traditional web evaluation approaches involve both 

quantitative and qualitative assessments (Zimmerman and Paschal 2009) that employ 

usability engineering (Good et al. 1986, Nielsen 1993, Coltekin et al. 2009). Usability 

factors evaluated include satisfaction, efficiency, and effectiveness (Coltekin et al. 2009) 

and are often measured with task completion rates/times and standardized questionnaires 
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that measure participants’ attitudes or preferences (Chin et al. 1988, Lewis 1995, Brooke 

1996, Tullis and Stetson 2004, Pearson and Pearson 2008). 

However, evaluating the usability of more complex user interfaces like Public 

Participation Geographic Information Systems (Haklay and Tobón 2003), interactive map 

applications (Nivala et al. 2008), data entry systems, digital repositories (Zimmerman and 

Paschal 2009), geovisualization environments (Koua et al. 2006), spatial decision support 

systems (Carver et al. 2001), and collaborative GIS networks (Balram et al. 2009) require 

more specialized evaluation techniques (Coltekin et al. 2009). Human Computer 

Interaction methods and User-Centered Design (ISO 13407 1999) improve the design and 

evaluation of complex user interfaces (Haklay and Tobón 2003) and aid corporate web 

mapping application development (Nivala et al. 2007). Additional research (Henderson 

1996, Chen et al. 1999, McLoughlin 1999, Bentley et al. 2005) suggests that web 

designers be more sensitive and responsive to cultural differences that may exist between 

themselves, their target audiences, and those using their products (Rogers et al. 2007). 

Although common web mapping applications such as Google Maps, MSN Maps & 

Directions, MapQuest, and Multimap have been evaluated (Nivala et al. 2008), and 

although eye movement analysis techniques may better evaluate complex interactive map 

displays (Coltekin et al. 2009), research is needed to address the new challenges citizen 

science web mapping applications pose for GIScience. Usability methods must adapt to 

different citizen science roles, situations, and tasks to evaluate many system components 

such as content, connectivity, capabilities, content, and levels of participation (Laituri 

2003). 
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To directly wrestle with these challenges, I built an interactive citizen science web 

mapping application, conducted a usability evaluation, and gained experience by listening 

to website users. My objectives were to build the website, determine general perceptions, 

discover potential problems, iteratively improve the website, discuss citizen science 

websites in relation to online PPGIS, examine the role(s) websites may play in the citizen 

science research model, discuss how citizen science research advances GIScience, and 

offer guidelines to improve citizen-based web mapping applications. 

3.3 Methods 

I built a citizen science website (www.citsci.org) between 2005 and 2008 (Figure 

3-1) to support volunteers who collect and report invasive species data (Crall et al. 2009). 

The website uses technology developed by my research team (Graham et al. 2007) and 

engineered to provide fast and reliable online interactive mapping capabilities at multiple 

spatial and temporal scales. This technology drives several related websites through 

targeted web skins, including the USGS National Institute of Invasive Species Science 

(www.niiss.org), the Global Invasive Species Information Network (www.niiss.org/gisin; 

Graham et al. 2009), an environmental literacy assessment website (www.niiss.org/msp), 

and a website dedicated to the invasive species Tamarisk (http://www.tamariskmap.org). 
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Figure 3-1. The CitSci.org web mapping application when evaluated (February, 2008). 

3.3.1 Website development, features, and intended use 

My research team built the citizen science website using a User Centered Design 

approach (ISO 13407 1999). I incorporated user feedback from user interviews (Crall et 

al. 2009) into the initial website design to help ensure stakeholder-driven tasks drove the 

requirements specification. The software development lifecycle I used included iterative 

investigation, design, requirements specification, development, implementation, testing, 

and maintenance - a process similar to the Unified Software Development Method 

(Jacobson et al. 1999). At the time of evaluation, the website provided a broad range of 

features (Table 3-1) for citizen scientists to collect and report invasive species location 

and attribute information. 

The website allows citizen science organizations to create online projects 

managed by volunteer coordinators who in turn manage project members. This ensures 

that only those with permission may contribute locations of invasive species to certain 

online projects. Website features include registration; login/logout; a “My Profile” page 
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where users request to change their user level; a project list page where users request to 

join projects; an early alert system where users request to receive emails when new 

species are added in and around locations of interest; a map application that allows users 

to add species they wish to view, add new locations, get information about species 

locations, and change the color of species layers; the ability to search for projects and 

species; the ability to view information about species on a “Species Profile” page; 

features to support sensitive data (Jarnevich et al. 2007); data quality features; the ability 

for project managers to create their own customized data entry forms; and data download 

features (Table 3-1). For the usability evaluation, my scenarios (Appendix B) focused on 

registration; the “My Profile” page; email alerts; species profiles; map features; and the 

“Project Profile” page. 

3.3.2 Usability evaluation 

I sampled citizen scientists from Fort Collins, Colorado, using a snowball 

sampling approach and obtained a purposeful sample of 16 citizen scientists for usability 

testing at the Center for Research on Communication and Technology Usability 

Laboratory at Colorado State University. Participants were volunteers from various 

citizen science groups with many occupations. They represent retired teachers, a retired 

scientist, a bookkeeper, a U.S. Forest Service employee, a lab tech, a librarian, students, 

and a master gardener. Participants claim to spend as little as 5% and as much as 100% of 

their time as citizen scientists. Overall, participants claimed to have numerous years of 

experience using a personal computer (M=17; SD=4.4), using the World Wide Web 

(M=11; SD=2.6), and filling out applications/forms online (M=8; SD=3.6) and their self-

reported level of expertise was high on a 1 to 7 scale (1=None and 7=High) for using a 
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personal computer (M=5.6; SD=1.3), using the World Wide Web (M=5.75; SD=1.13), 

and filling out applications/forms online (M=5.8; SD=1.0). Of the 16 participants, 63% 

claim to visit other invasive species websites and 13% visit other citizen science 

websites. 

Participants learned about the research, received a $25 cash honorarium, signed a 

consent form, and completed a protocol analysis yielding four task-based scenarios and 

one exploratory scenario (Appendix B). These standard web usability methods (Haklay 

and Tobón 2003, Nivala et al. 2008) did not include a GIS “chauffeur” (Nunamaker et al. 

1991) because such experts are not realistically available to citizen scientists. I observed 

the time to complete each task from a separate video room, documented problems, and 

recorded whether or not participants successfully completed each task. I asked 

participants to talk aloud and stopped them after four minutes or when they became 

frustrated. I videotaped each participant and kept observation logs. Participants 

completed a post-protocol survey including 30 questions on a 1 (Strongly Agree) to 7 

(Strongly Disagree) scale (N=16) to evaluate web usability concepts (Zimmerman and 

Akerelrea 2004), 17 questions on a 1 to 7 scale to asses user experiences with scenario-

related tasks (N=14), and eight questions to determine prior computer experience and 

expertise on a 1 to 7 scale. Finally, the post-protocol survey also included open-ended 

questions probing what participants liked or disliked about the site, what they found 

difficult to use, any sections of the website they found irritating, and recommendations 

they felt would make the site more user-friendly. 
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3.3.3 Citizen science feedback 

After the usability evaluation, I continued to document user feedback and gain 

experiences with website users between February 2008 and December 2009. I conducted 

additional user interviews, received feedback from an online analysis needs assessment, 

conducted field experiments with citizen scientists, and listened to feedback from users 

creating projects and entering data. These interactions resulted in 10 additional online 

projects yielding over 1900 additional invasive species locations that provided us with 

more user-based experiences and insights. 

3.4 Results (Lessons Learned) 

While the vision and development of CitSci.org yielded technical results specific 

to invasive species data management practitioners (Graham et al. 2007, Jarnevich et al. 

2007, Graham et al. 2008, Graham et al. 2009), this study focuses on lessons learned 

from website development and use of geospatial data, evaluation, and user feedback. 

Thus, this research resulted in the development of the geospatial website (Figure 3-1); 

usability evaluation information (general perceptions, potential problems, and suggested 

improvements); and feedback from users leading to new and improved features (Table 

3-1). I follow these results with a discussion of citizen science websites in relation to 

online PPGIS, an examination of the role(s) citizen science websites may play in the 

citizen science research model, and a discussion of how this research advances 

GIScience. I conclude with guidelines for citizen-based web mapping applications. 
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Table 3-1. Existing and future web mapping application features and the role(s) they 
support 
Role Feature Existing* Planned** 
Project Management   
 Request to join online projects X  
 Approve/deny requests to join projects*** X  
 Change project managers and change member roles*** X  
 Activate/de-activate projects*** X  
Communication & Feedback   
 Create and disseminate questionnaires*** A  
 Analyze questionnaires results automatically in real-time A  
 Email project members***  X 
 Control email settings (Allow members to send emails or not) ***  X 
 Create and send monthly project newsletters***  X 
 Email project manager XX  
Data Entry   
 Create customized project data entry forms*** X  
 Enter data by clicking on the map X  
 Enter data using a generic data entry form X  
 Enter data using customized project data entry forms X  
Quality Control   
 Check for Latitude >90 or <-90, Longitude >180 or <-180 X  
 Check for UTM Easting >500000 or Northing > 50000000 X  
 Provide error checking for all form variables  X 
 Use pick lists for controlled vocabularies X  
Data Download   
 Download all data for a project X  
 Download all data for a species  X 
 Download data from the map for a selected area of interest X  
 Download data meeting advanced query specifications  X 
Analysis   
 Calculate overall total number of contributions to date A  
 Calculate the number of contributions per year by project  X 
 Create project statistics as charts XX  
 Report the most frequently reported species XX  
 Display and reward the member with the most contributions  X 
 Display and reward the project with most contributions  X 
Decision Support   
 Activate early warning email alerts X  
 Define locations of interest for early alerts X  
 Define species of interest for early alerts X  
 Make predictive models (MaxEnt species distribution models) **** XX  
Training   
 View online tutorials XX X 
 Download GPS & website tutorials  X 
 Watch online training videos XX X 
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Existing* Planned** Role Feature 

 Take online exams (e.g., become certified Level 1,2,3 volunteer)  X 
Logistics   
 Checkout equipment A  
 Schedule events***  X 
Technical Support   
 Read online help X  
 Receive phone support  X 
 * X=Existing prior to evaluation; XX=Existing post-evaluation based on results; A=Existing admin. 
 ** Planned future feature based on feedback and recommendations from citizen scientists. 
 *** Feature/task only available for approved project managers. 
 **** See Phillips et al. (2006). 

3.4.1 Development and use of geospatial data 

Results related to website development show that careful attention must be given 

to the selection of programming languages, software packages, spatial database, and data 

structures. The design of the underlying spatial database is critical and must be flexible 

and general. The storage, retrieval, and fast rendering of large volumes of geospatial 

vector and raster data must be accommodated; results show that using cached data and 

tiled maps similar to the Google Maps approach best supports the potentially unlimited 

volume of volunteer contributed geospatial information. Developing a scalable and 

object-oriented code base allows for flexibility as new use cases arise and new features 

are requested. However, there is a fine line between flexibility and rigorous adherence to 

standardized controlled vocabularies essential to ensure data quality. Both are important 

and both require user interface simplicity. I found that web skins allow for targeted user 

interface designs that simplify and improve the user interface while still maintaining 

underlying system flexibility for multiple purposes at multiple spatial and temporal 

scales. Cost benefit analyses must be performed to select programming languages; no 

single language is best for all applications and languages must be selected based on their 
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suitability to required tasks. Finally, I learned to design for dynamic user-contributed 

content; layout must adapt to varying length content and photo size. 

3.4.2 Evaluation (general perceptions, problems, and improvements) 

While the Citizen Science website provides a broad range of information and 

participants rate the website positively overall, completing basic website tasks and map-

based tasks identified a wide range of problems (Figure 3-1, Table 3-2). Most participants 

had a difficult time with aspects of registration, navigation, early warnings, adding layers 

to the map for a given species, and map features. Except for two participants with prior 

GIS experience, most had a difficult time understanding the concept of layers on the map 

“legend.” They also had difficulty understanding map icons and tool tip terms. The terms 

and icons used for map function buttons were not salient to non-GIS participants even 

though they were consistent with industry standards. Common buttons such as ‘Save’ and 

‘Print’ were more easily understood. This emphasizes the role of spatial literacy and the 

need for a fundamental understanding about web mapping applications. 

Table 3-2. Task completion time (minutes), rates (%), and related problems by scenario 
Scenario 1 Scenario 2 Scenario 3 Scenario 4* Mean Task Problem 

Time % Time %  Time % Time % Time† % 
1: Register as a citizen scientist 3:49 0 2:41 100 2:44 100 2:28 100 2:55 75 
  Confused by questions 
2: Set early alert settings to on 2:44 33       2:44 33 
  Did not know to edit  profile 
3: Define locations of interest 1:50 0       1:50 0 
  Did not understand concept 
4: Join a project 3:22 33 1:14 67 3:26 75 2:54 75 2:44 63 
  Did not notice button 
5: Learn about invasive species 1:00 100 1:32 100 1:05 75   1:12 92 
  No problems noticed  
6: Find invasive species 2:55 33 1:09 67 1:00 100   1:41 67 
  Problem with task wording 
7: Create and print maps 2:38 67 1:19 33 2:46 100   2:14 67 
  Could not locate link 
8: Use map help features 1:20 0 2:59 67 3:36 100   2:38 56 
  Wanted search capabilities 
9: Create species location maps 2:18 33 1:46 67 1:53 75 2:39 100 2:09 69 
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Scenario 1 Scenario 2 Scenario 3 Scenario 4* Mean Task Problem 
Time % Time %  Time % Time % Time† % 

  Confused by ‘map occurrences’ 
10: Save species location maps 1:26 33 0:45 67 0:56 100 2:00 75 1:16 69 
  Did not understand concept 
11: Load and print saved map 0:30 33 1:26 33 1:43 75 1:36 50 1:18 48 
  Did not understand ‘load’ 
12: Request to become initiator  2:03 67 2:11 67 1:06 100   1:46 78 
  Could not find link 
13: Change the color of a layer       3:26 25 3:26 25 
  Wanted to change it directly 
14: Edit the label o layer       1:00 75 1:00 75 
  Did not understand editing a layer 
Overall 2:09 36 1:42 67 2:01 90 2:17 71  
           
* Scenario 4 focused on map tasks; it included reworded tasks 10 and 11 and two new tasks (13 and 14) 
† Note: all times are in minutes and seconds (mm:ss). 
 

Based on scenario tasks, numerous problems emerged (Table 3-2). Participants 

had a difficult time finding the Register link. They had difficulty adding species locations 

to the map. To do so, the website provided a link on the “Species Profile” page that was 

labeled “Map Occurrences” that automatically added a species layer to the map and 

displayed all species locations. Participants searched the “Species Profile” page initially, 

but overlooked the “Map Occurrences” link. Next, they would go to the “My Maps” page 

but not figure out how to add locations for a species (to do so they could have clicked the 

“Add Layer” button along the top of the map and add a layer for a species). 

In summary, map tasks and email alert tasks took a long time to complete and had 

low completion rates (Table 3-2); these features were not intuitive to participants. The 

mean completion rates ranged from 25 to 75%.for map tasks (tasks 7, 9, 10, 11, 13, and 

14). Although only evaluated in scenario 1, email alert features (tasks 2 and 3) had low 

completion rates (33% and 0% respectively). Throughout all tasks, participants could not 

find key links easily. The links and buttons to “Register,” “Join a Project,” and view 

“Map Occurrences” were continually overlooked and not well understood. The “Email 

Alert” and “Locations of Interest” links were not easily found nor understood. Most 
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participants were able to learn about invasive species, register, and request to change 

their user level (92%, 75%, and 78%, respectively). Overall, the average time to complete 

tasks ranged from 00:01:42 to 00:02:17 and the mean task completion rate ranged from 

36 to 90% across all scenarios. The average time to complete a task for each scenario 

was: scenario 1 (N=3; 00:02:09), scenario 2 (N=3; 00:01:42), scenario 3 (N=4; 00:02:01), 

and scenario 4 (N=4; 00:02:17).  Task completion rates ranged from 0 to 92%; task 1 

(select locations of interest for early alerts) saw a 0% completion rate while task 5 (learn 

about invasive species issues) was successfully completed by most participants (92%). 

3.4.3 User feedback 

Results from continued interactions with website users following web evaluation 

show that I overlooked many tasks citizen scientists and volunteer coordinators need to 

accomplish online (Table 3-1). For example, both user groups need effective mechanisms 

to communicate with each other. Both audiences suggested email features be added to 

web mapping applications to facilitate communication about upcoming trainings, field 

data collection events, and data quality concerns. Below I provide examples of feedback I 

received. 

Some feedback illustrated the effectiveness of online training and instruction: 

“…your instructions on one page of your website were wonderful. Basically you 

gave an item by item description of how to do the particular task and had it right there on 

the page rather than via a link.  It was just very helpful and very well done.” 

Other feedback suggested new features: 

67 



“I would like to be able to have my own boxes for things like how much time they 

spent monitoring or pulling weed[s].  That information is necessary so I earn in-kind 

matching money for my grants.” 

 “I wish that my volunteers had a way to query for their results (by map or list). I 

suppose it would be really valuable if I could query by recorder too. If I map Japanese 

hops … by presence and absence, I cannot tell which is which by the legend. I have had 

volunteers enter their lat/long incorrectly. I have caught these instances; however, they 

cannot simply go back to their survey and correct the error. They must delete the survey 

and begin again.” 

 “When [volunteers] are on the map and click the Add a Point icon, [can] they be 

directed to the project data form instead of just the standard one?  As it is now, they have 

to enter lat/long coordinates for each point and really only use the map for viewing 

observations that have already been entered. Any chance we could provide you with a 

layer of our Natural Area boundaries that could be draped over the Google map so that 

volunteers could see [them]?  Our GIS dept has tried to work with map server companies 

like Tele Atlas to submit data … and apparently it is not very easy.” 

 “…is there a built in listserv ability with CitSci.org? Will we be able to send out 

an email, newsletter or the like to all the members of our project?” 

Additional feedback emphasized the need for simplicity: 

“Right now, I'm wondering how I'm going to sell this … to my [volunteers]. They 

don't want to spend anytime online … If they do …, it had better be simple and fast or 

they simply won't do it and [I will] have lost a [volunteer].” 
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 “[Last year] … it was old fashioned: Here’s your piece of paper, scan it, email it, 

fax it, or send it… But what we’d like to do for next year is have an online database so 

that people can login [and enter their data]…. it needs to be simple [emphasis added by 

interviewee]… it needs to be for lack of a better word ‘dumbed down.’ I think it needs to 

[use] common names as much as possible. It needs to be [for] the layman.” 

When asked about data entry options, citizen scientists emphasized simplicity. 

Although excellent mobile systems are being developed (e.g., iPhone and Android mobile 

applications; see What’s Invasive; http://whatsinvasive.com/), results suggest that mobile 

Personal Digital Assistant devices only add another level of complexity to an already 

steep learning curve ripe with usability challenges. I found that it is best to keep field data 

collections methods simple (e.g., use paper forms that directly match online forms), yet 

still offer web service protocols for remote connections with advanced users using mobile 

devices for real-time data entry. There will always be early adopters! 

Finally, results indicate that volunteers are motivated more by increased levels of 

participation and rewards than by complex and hard to understand geospatial features. 

For example, participants in this study wanted to edit layers, change colors, and display 

filtered query results, yet they had difficulty accomplishing these tasks. When asked how 

they would perform such tasks, they could not articulate how the user interface would be 

implemented and did not realize the complexity of the feature they were asking for. Yet, 

simple features like reporting the total number of new sightings for each project or 

charting the most frequently reported species for each project went unnoticed, but were 

used regularly. 
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3.5 Discussion 

My usability research objectives were to: (1) develop a citizen science website; 

(2) determine general perceptions; (3) discover potential problems; (4) improve the 

website; (5) discuss citizen science websites in relation to online PPGIS; (6) examine the 

role(s) websites may play in the citizen science research model; (7) discuss how citizen 

science research advances GIScience; and (8) offer guidelines to improve citizen-based 

web mapping applications. Although the web usability evaluation helped me examine and 

address objectives (2), (3), and (4), continued development of the citizen science website 

and additional interactions with citizen science volunteers and volunteer coordinators 

following the formal usability evaluation helped me gain insights related to objectives 

(5), (6), and (7). I now discuss results related to these latter objectives based on my 

experiences and conclude with guidelines for citizen-based web mapping applications 

(objective 8). 

3.5.1 Citizen science websites in relation to online PPGIS 

Public Participation Geographic Information Systems (PPGIS) applications focus 

on community interactions with GIS inextricably tied to the social and geographic 

context of system production and implementation (Craig et al. 2002). It consist of 

components and continuums whose outcomes are best understood by addressing the 

questions of who is informed, who is empowered, and who benefits from the technology 

(Laituri 2003). Citizen science projects focus on data collection by volunteers across 

broad geographical regions (Cooper et al. 2007) with the aim to inform and empower 

citizens and benefit scientists, land managers, and decision makers. Both approaches 

struggle to ensure high quality data. PPGIS applications struggle with spatial data 
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accuracy and precision, whereas citizen science applications must control the accuracy 

and precision of spatial data, taxonomic data, attribute data, and temporal data. Initial 

PPGIS projects used industry-standard desktop applications to involve participants in GIS 

in lieu of online systems, claiming that users “see [online] applications as manipulative 

and frustrating because they have begun to see what a GIS they can control [emphasis 

added] can do” (Merrick 2003). Indeed, even today, most online PPGIS applications are 

still in no way “participatory” or transparent; they are clumsy, slow, and difficult to use 

systems that control content, layout, visualization, available analysis capabilities, and the 

methods by which users interact and participate (Merrick 2003). 

Citizen science web mapping applications face these same limitations – but these 

limitations need not be technological. Instead, perhaps they stem from decisions 

grounded in the need for quality data, system usability, and intended audience. Although 

“canned” black box features are best to be avoided (Merrick 2003), volunteers require 

simple features that are within their cognitive access. They need to experience initial easy 

success. Once successful, they may explore complex questions in more depth and have 

patience for more complex user interface designs and features. More advanced users 

(project managers/volunteer coordinators) require systems they can control, explore (e.g., 

trialability; see Rogers 2003), and customize where appropriate. 

Thus, although citizen science websites share many attributes with PPGIS 

applications, there are several important differences. Citizen science applications focus 

on scientific data collection of spatial and non-spatial information and require simplicity, 

data quality, and features for multiple user groups. Data quality of both spatial and non-

spatial information is essential to their success. PPGIS applications also relate non-spatial 
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information to spatial data. However, some PPGIS approaches place less attention on the 

quality (accuracy and precision) of their non-spatial attribute information (e.g., the 

descriptions of places of interest, photos of a location, etc.), seeing this information only 

as geospatially referenced posts. If a place description or location is incorrect, others may 

comment on the error and eventually change it using blogs or open wikis, but what are 

the ramifications of the temporary inaccuracies? If science-based decisions are to be 

made using citizen-contributed data, controlled and accurate data are essential for correct 

decisions and conclusions. Otherwise, scientific trust will never be achieved. 

Finally, citizen science applications require communication mechanisms among 

project members and between members and volunteer coordinators. Some geographically 

focused PPGIS initiatives consist of contributors who may or may not know each other 

and that likely have little communication interaction (e.g., wikimapia.org), whereas 

others coordinate through “mapping parties” (Haklay and Weber 2008) similar to 

volunteer trainings. Regardless of the level of interaction, citizen science projects 

mandate effective communication among and between participants, coordinators, and 

scientists. 

3.5.2 The role of websites in citizen science 

Because citizen science activities blur with community based monitoring 

programs along a spectrum of no local participation to entirely local endeavors 

(Danielsen et al. 2009), more attention must be given to the role(s) websites play for their 

many user requirements (Table 3-1). Citizen scientist requirements, like those of most 

map users (Meng 2005), are not sufficiently understood. End user requirements are too 

often not considered (Meng 2004) and may go well beyond efficient map use (Table 3-1). 
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They may involve tasks that require non-map related features, social networking features 

(e.g., blogs, email list serves, and bulletin boards), in-person trainings using white-boards 

situated in traditional meeting rooms, online training resources, mobile field equipment 

devices that themselves pose significant usability challenges (Stevenson et al. 2003, Siek 

et al. 2005), and certifications and digital awards for accomplishments and contributions 

to foster motivation and participation (Longan 2005, 2007). 

Given these tasks, websites may serve many citizen science roles, including 

Project Management, Feedback, Data Entry, Quality Control, Communication, Data 

Download, Analysis, Decision Support, Training, Logistics, and Technical Support roles 

(Table 3-1). Some map application developers and citizen science researchers envision 

exciting new roles for their applications that engage citizens in problem definition as 

scientists (Lakshminarayanan 2007); potentially improve volunteer scientific and spatial 

literacy (Brossard et al. 2005); and foster group user interaction with a GIS using hand 

gestures and dialogue (MacEachren et al. 2005). These roles may only be appropriate for 

certain audiences. Novel technology supporting these new roles will follow the 

technology adoption curve (Rogers 2003). However, they may further marginalize 

individual access to hardware, software, data, and cognition (Laituri 2003, Merrick 2003) 

at the expense of serving critical roles like generating high quality Volunteer-contributed 

Geospatial Information (VGI) slated for scientific research and decision support. 

Although citizen science websites will undoubtedly be leveraged to serve these 

new roles, and although new web technology (e.g., web 2.0, CSS, Flex, etc.) now make 

the development of beautiful and complex user interfaces supporting these roles easy, 

careful consideration of the appropriateness of these roles and technology is needed. 
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Complex user interfaces allow for an increased amount of customization by the user that 

requires increased levels of understanding. If citizen scientists cannot understand 

features, they become more frustrated than they would without the features and 

disengage. A “less is more” approach focused on user tasks may better meet their needs 

(Jones et al. 2009). 

3.5.3 How citizen science research advances GIScience 

Citizen science research is advancing GIScience in many ways (Table 3-3). It is 

expanding the science questions asked by GIScience to integrate questions of social 

science with questions of the scientific disciplines citizen participants are involved with. 

Traditional GIScience questions of how to represent geographic phenomena digitally, 

how to visualize accuracy, how to render infinite amounts of data while maintaining flat 

performance, etc., remain, but there are now additional questions. How do web 

applications ensure data quality, communicate uncertainty and error, simultaneously 

allow for dual-purpose contributions (e.g., those fostering motivation through wiki-like 

photo uploads and posts and those designed for rigorous scientific data collection and 

dissemination), and allow for public participation in scientific inquiry itself - a tasks GIS 

is touted to help improve through enhanced visual displays. 

Table 3-3. How citizen science research advances GIScience. 
GIScience Question* Citizen Science Contribution 

Representation Formulate best practices for representing species locations on the 
Earth’s surface from a citizen scientist perspective. (points) 

Communication Discover ways to better communicate the relationship between the 
representation (species location) and the user. (use of a plus (+) to 
indicate more locations can be seen upon further zoom) 

Visualization (Display) How do methods of display affect the interpretation of geographic 
data? How can the science of cartography be extended to take 
advantage of the power of the digital environment? What basic 
properties of display determine its success? (use cartographic 
symbols meaningful to citizen scientists such as flags for surveys) 

Relationship between the How do people, rather than machines, think about the world? How 
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representation and the user can computer representations be made more like the ways people 
think? How do people reason with, learn about, and communicate 
their geographical world? (Volunteers think they found a species; 
they do not think that they ‘made a visit to an area and detected a 
species occurrence’) 

Data Quality How to assess the accuracy and precision of a representation? 
How to measure its accuracy? How to measure what’s missing, its 
uncertainty? How to express these measures in ways that are 
meaningful to the user? How to visualize them? 

Data Storage How to best store geospatial information? (Use Cached tiles 
generated on the fly as needed to allow users to customize their 
own cartographic representation) 

Data models/Structures Store/retrieve representation efficiently (Use cached data not 
federated searches – see Graham et al. (2009)) 

  
* Adapted from Goodchild (1997). 
 

Citizen science research forces GIScience to consider volunteer perspectives. 

Decisions need to be made regarding display of features that either require certain 

permissions or that require certain data to exist (e.g., display the download treatments 

button only if there are treatment data; only show ‘edit project information’ links to 

logged in project managers). Decisions also need to be made about who sees which 

features; CitSci.org now provides online species distribution modeling capabilities. 

Results from this study show that volunteers still do not use map applications effectively. 

Without the fundamentals of spatial literacy, how then will they be able to create more 

sophisticated outputs such as predictive models? Do applications need to hide these 

capabilities from volunteers and only expose them to those trained in modeling? 

Furthermore, problems identified by this study represent only the surface of 

deeper problems. For example, volunteers view maps as the gospel; they often lack 

spatial literacy and do not understand methods used to create maps. This leads to 

misinterpretation. They do not understand that when a map of an invasive species does 

not show locations in their state, it does not mean that the species is not located in their 

state. Instead, it only implies that no data have yet been contributed for the species in 
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their state. Unfortunately, our website does not visualize these concepts yet; future web 

mapping applications need to better communicate and visualize them. Citizen science 

research advances GIScience by asking these questions and requiring these challenging 

new features. 

3.6 Conclusions 

Citizen science research offers a pragmatic counter-balance to geospatial research 

that together advances and transforms GIScience by identifying use cases across a wide 

spectrum of activities - from spatial data collection to storage to dissemination to 

mapping to analysis to retrieval. One of the things that emerged from this study is that it 

is important to identify use cases that users want to do and that they know they can do 

using web mapping applications. The typical citizen scientist traditionally arrives at a 

website on the recommendation of their volunteer coordinator or by word of mouth. They 

bring with them preconceived notions of what is possible (and what is not possible), even 

if more things might be able to be accomplished. For example, participants arriving with 

knowledge of GIS might have an easier time understanding and completing map tasks 

whereas those unfamiliar with GIS might have more difficulty. It is important to 

communicate to users the purposes of a website. These purposes may span the entire 

citizen-based data collection, entry, and analysis process. Citizen science research, then, 

forces GIScience to look broadly at each of the phases in this process and find ways to 

ensure usability and data quality at each step. Our research highlighted the need to better 

understand user needs and use cases; more clearly communicate the purposes of citizen 

science websites; and create features related to these tasks that are easy to use. Although 

integration of GIS into K-12 education promises to transform the spatial literacy of the 
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volunteer workforce, until then, volunteers from grassroots citizen science organizations 

will continue to come to the table with less expertise and formal training in contributing, 

using, and obtaining geospatial data (Elwood 2008a) and the limited technological 

sophistication of these volunteers will remain a reality. Citizen science usability research 

promises to advance and transform GIScience to better accommodate this reality. 

3.6.1 Guidelines for web mapping applications 

In this study, I developed a citizen science website with an interdisciplinary 

research team that allowed me to explore web mapping application problems, roles, and 

features. Given these experiences, I offer the following guidelines to improve citizen-

based web mapping applications. 

• Communicate the purposes of the website and the roles they support 

• Build features for both project managers and volunteers and clearly separate them 

• Develop customizable data entry forms that ensure data quality yet remain simple 

• Create simple map applications that visualize accuracy, precision, and uncertainty 

• Add fun features to foster motivation and continued involvement 

• Incorporate spatial literacy learning into the use of the website 

• Add information to help with map interpretation (improve cognitive access) 

• Provide a cursory understanding of spatial concepts through online help 

• Allow users to formulate their own research questions and answer them (analysis) 

• Add features for communication between volunteers and volunteer coordinators 

• Research and develop features to map attributes and visualize their accuracy 
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• Create transparent features that are used and explored by volunteers and volunteer 

coordinators; avoid limited black box systems (Merrick 2003). 

• Allow users to experiment, to “fail,” and to play around by creating a test site. 

• Only offer PDA’s to advanced users, early adopters, and young volunteers 

• Make use of web skins to target specific use cases and tasks and simple searches 

• Provide rich content even in the absence of user contributed web content 

• Clearly distinguish social networking (blogging) content from science content 

• Assign volunteer coordinators a data quality role and create features for data 

review 

• Communicate scientific rigor where appropriate 

• Incorporate communication features to augment face to face communication 

through all project phases (e.g., training; data collection, entry, dissemination, and 

analysis; and communication from scientists back to volunteers) 

• Avoid advertisements and animations altogether or, if required, keep them off 

data entry forms, profile pages, the home page, and map pages (Nivala et al. 

2008) 

• Create online questionnaire creation and delivery tools similar to Survey 

Monkey© to better integrate user feedback and participation 

This study illustrated the need to: (1) integrate usability and user feedback into 

web mapping application design, and (2) create features that target user needs, support 

the many roles of various user groups, and control data quality. We must integrate 

usability and user feedback into web mapping application design because user 

requirements are demanding and often unknown; websites support challenging new roles; 
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user tasks and the user environment are unfamiliar to developers; and applications are 

used by large numbers of diverse users (Nivala et al. 2007). The ways to identify end-

user requirements vary along a continuum ranging from end-user involvement prior to 

product design to no end-user involvement whereby developers assume they “…already 

[know] what to do, and how, so that … end-users … [will] like it” (Nivala et al. 2007). 

The latter approach assumes that features are based on the expert knowledge and ‘know-

how’ of developers. Involving volunteers in the design of the very websites they end up 

using will improve websites and embodies the very essence of participatory citizen 

science. Future research must focus on better ways to identify user requirements 

throughout the design life-cycle. Additionally, determining how to address key issues 

related to understanding the geospatial data being used and created is critical and will fuel 

new GIScience research and applications. 

Thus, this study discovered that volunteers want to communicate with each other, 

collect, contribute, and ‘publish’ their data online, be given easy to use and customized 

data entry forms created by their volunteer coordinators, use websites targeted to their 

specific tasks, create bar charts, pie charts, and compare locations treated for invasive 

species with one method to locations treated with another (e.g., perform analyses; 

unpublished data), and be real scientists themselves. They also want to be sent scientific 

outcomes of their efforts. Websites must support these user-suggested features and new 

roles. They must discover ways to ensure data quality, make these types of analyses easy 

to perform, and motivate participants. Future research must assess the affects of usability 

and website design on data quality, volunteer retention rates, motivation, and future 

website use. Does website satisfaction translate into greater motivation for continued 
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website use and volunteering that, in turn, yield greater volunteer retention?  How does 

citizen science linked to PPGIS further the practice of GIScience and inform a citizenry 

increasingly dependent upon such products to understand and participate in the complex 

and changing world of the 21st Century? 
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CHAPTER 4 TEACHING CITIZEN SCIENCE SKILLS ONLINE 

4.1 Abstract 

Citizen science programs are emerging as an efficient way to increase data 

collection and help monitor invasive species. Effective invasive species monitoring 

requires rigid data quality assurances if expensive control efforts are to be guided by 

volunteer data. To achieve quality, effective online training is needed to improve field 

skills and reach large numbers of remote sentinel volunteers critical to early detection and 

rapid response. I evaluated the effectiveness of online static and multimedia tutorials to 

teach citizen science volunteers (n=54) how to identify invasive plants; establish 

monitoring plots; measure percent cover; and use Global Positioning System units. 

Participants trained using static and multimedia tutorials provided less (p<0.001) correct 

species identifications (63% and 67%) than professionals (83%) across all species, but 

did not differ (p=0.125) between each other. However, their ability to identify 

conspicuous species was comparable to professionals. The variability in percent cover 

estimates between static (+/-13%) and multimedia (+/-9%) participants did not differ 

(p=0.077, p=0.857) from those of professionals (+/-10%); the tutorial approach used did 

not influence (p=0.071) the ability of participants to estimate percent plant cover. Trained 
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volunteers struggled with plot setup and GPS skills. Overall, the online approach used did 

not influence conferred field skills and abilities. Traditional or multimedia online training 

augmented with more rigorous, repeated, and hands-on training in specialized skills 

required for more difficult tasks will improve volunteer abilities, data quality, and overall 

program effectiveness. 

4.2 Introduction 

Citizen science initiatives are emerging as an effective approach to engage the 

public in science (Krasny and Bonney 2005, Lee et al. 2006, Schnoor 2007, Cohn 2008, 

Couvet et al. 2008, Silvertown 2009), create environmental collaborative monitoring 

networks (Gouveia and Fonseca 2008), increase data collection across broad geographic 

regions and long time frames (Cooper et al. 2007), and address complex environmental 

issues (Peterjohn and Sauer 1997). For example, citizen science programs now tackle 

issues as diverse as macro-invertebrate monitoring (Fore et al. 2001, Nerbonne and 

Nelson 2008, Lovell et al. 2009), bird monitoring (Lepage and Francis 2002, Lepczyk 

2005, Greenwood 2007), marine invasive species monitoring (Delaney et al. 2008), 

climate change (Cohn 2008), conservation biology (Galloway et al. 2006, Losey et al. 

2007), biodiversity monitoring (Danielsen et al. 2005a, Couvet et al. 2008), population 

ecology (Rosenberg et al. 1999), water quality monitoring (Wilderman et al. 2004), and 

terrestrial invasive species monitoring (Brown et al. 2001), among others (Cornell Lab of 

Ornithology 2008). Although citizen science offers many benefits (Cooper et al. 2007, 

Cohn 2008) and motivations for participation vary (Van Den Berg et al. 2009), involving 

the public in citizen science and empowering them to perform tasks on their own creates 

tensions over data quality, group goals, and project outcomes (Nerbonne and Nelson 
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2008). In the context of monitoring an invasive species, land mangers require rigid data 

quality assurances given the costs associated with control and mitigation efforts. In this 

context, geospatial invasive species data collected by volunteers represent information 

judged objectively based on shared and enforced standards among professionals insisting 

on credibility as defined by taxonomic, position, and attribute accuracy rather than 

credibility as defined by perceived trustworthiness and believability (Flanagin and 

Metzger 2008). Therefore, to be viewed credible and useful for decision making, invasive 

species monitoring programs that use volunteers must demonstrate the ability to collect 

large volumes of quality data; the urgent need to prioritize expensive control efforts 

demands a large amount of high quality data that may only be realized through a 

combination of data collected by professionals and volunteers alike. 

Obtaining quality data from trained volunteers is possible (Brandon et al. 2003, 

Galloway et al. 2006) and is positively correlated with the degree to which citizen science 

groups perform tasks on their own (Nerbonne and Nelson 2008). To achieve widespread 

high quality data for terrestrial invasive plant monitoring applications, effective and 

training that capitalizes on the self-directed nature of adult learners (Kerka 2002, 

Merriam et al. 2007) becomes paramount. Training must develop volunteers with the 

knowledge, skills, abilities, and motivation to correctly identify species, establish 

monitoring plots, measure attributes, record observations, and submit data. To capitalize 

on the acclaimed benefit of increased numbers of ‘citizen sensors’ (Goodchild 2007), 

invasive species trainings must also reach large numbers of remote sentinel volunteers 

able to realize early detection and rapid response goals due to their dispersed geographic 

locations. However, little is known about the effectiveness of different online tutorial 
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approaches to teach adult citizen science volunteers the skills and abilities necessary to 

map and monitor invasive species populations. Thus, I evaluated the effectiveness of 

online static and multimedia tutorials to teach citizen science volunteers how to identify 

invasive plants; measure percent cover, use a Global Positioning System (GPS) unit, and 

establish monitoring plots. I focused on web-based training approaches because online 

resources can reach more remote volunteers capable of detecting isolated invasive species 

populations and because hands–on trainings delivered by volunteer coordinators or 

scientific staff are often limited in their ability to reach geographically dispersed 

volunteers. 

4.3 Online invasive species education 

 Invasive species threaten the integrity of natural ecosystems, decrease hotspots of 

native biodiversity, and cost the U.S. billions in control and restoration efforts annually 

(Stohlgren et al. 1999, Mack et al. 2000, Lodge and Shrader-Frechette 2003, Pimentel et 

al. 2005). Citizen-based extension efforts such as the Master Naturalist (Savanick and 

Blair 2005) and Master Gardener (Moravec 2006) programs are broadening in scope to 

encompass environmental sustainability and conservation principles (Moravec 2006, Van 

Den Berg et al. 2009). Many citizen-based programs are collecting data on invasive 

species issues and may fill important data gaps (Crall et al. 2009). As more volunteers 

become engaged, more effective and widespread training is required. 

Advances in information and communication technologies offer new 

opportunities for citizen participation in environmental monitoring (Gouveia and Fonseca 

2008) and may improve teaching and learning (Leask 2001) in traditional face to face 

(Selinger 2001), distance (DiBiase 2000), and blended (Thorne 2003, Balram and 
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Dragicevic 2008) learning environments. The continued development and application of 

information and communication technologies to invasive species science and to improved 

online training materials required for successful volunteer training offers hope to engage 

the public in this important environmental issue. Experiences integrating citizen science 

with invasive species research thus far (Brown et al. 2001, Delaney et al. 2008, Crall et 

al. 2009) illustrate several barriers to success, including the challenges, difficulties, and 

costs associated with adult learning and technology adoption by marginalized volunteers; 

web-based tutorial development; and data quality. 

4.3.1 Adult learning and technology adoption by adult volunteers 

Adults are lifelong learners who continuously learn in formal, informal, and non 

formal settings (Merriam et al. 2007) and who gain knowledge through many faculties, 

including mind, body, emotion, and spirit (Kimmerer 2003). Andagogy, the “art and 

science of helping adults learn” (Knowles 1980, p. 43), assumes that adults are self-

directed learners, accumulate rich resources for learning through life experiences, become 

ready for learning as their social roles develop, are problem centered, use knowledge in 

immediate applications, and are primarily motivated by internal factors (Kerka 2002, 

Merriam et al. 2007, Van Den Berg et al. 2009). For adult learners seeking knowledge, 

skills, and abilities applied to invasive species issues, new technologies such as Global 

Positioning Systems that promise improved data quality but require new skills become 

simultaneous opportunities and barriers. To reap the potential benefits of these new 

technologies, volunteers are faced with learning and adopting them. For invasive species 

adult education, we need to understand what approaches best teach new technological 

and subject matter-specific skills, while also accounting for the many factors affecting 
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new technology adoption by potentially marginalized volunteers. There are many 

challenges associated with the diffusion and adoption of innovations (Rogers 2003), 

especially those geared towards improving data quality by volunteers who possess 

domain-specific knowledge but who may lack technological sophistication. Well 

designed web tutorials must account for these challenges, individual motivations, social 

influences (Longan 2007), and life experiences to retain and motivate volunteers over 

time (Dirkx and Prenger 1997). 

4.3.2 Web-based tutorial development 

 Formal distance education is “…planned learning that normally occurs in a 

different place from teaching…” and requires special course design and instruction 

techniques, electronic and technological communication methods, and organizational 

arrangements (Moore 1996). Web-based multi-media tutorials have been shown to 

provide effective instruction, especially when used in blended learning environments 

(Zerger et al. 2002). For example, Mackey and Ho (2008) found that students respond 

favorably to usability factors and that multimedia instruction may enhance course 

lectures and readings and improve perceived learning. However, the development of 

Web-based multi-media tutorials is a complex endeavor. Park and Hannafin (1993) offer 

20 empirically based guidelines for the design of interactive multimedia based on early 

psychological, technological, and pedagogical foundations. These foundations led to the 

cognitive load theory and the cognitive theory of multimedia learning, which claim that 

there are separate processing systems for image and textual information and that learning 

is the process by which learners establish links between these two representations (Mayer 

2001, 2005). Effective online instructional design must account for these representations 
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and the different cultural backgrounds (Bentley et al. 2005, Rogers et al. 2007) and 

learning styles (Mestre 2006) of those engaged in learning. 

However, most of these comparisons and guidelines focus on knowledge gains 

using various tutorial approaches in formal educational settings. Little is known about the 

effectiveness of online tutorial approaches to teach the skills necessary for volunteer 

invasive species monitoring. Additionally, most comparisons evaluate online tutorials 

from a pre/post knowledge gain perspective; the effectiveness of tutorials from a data 

collection skills and abilities perspective is not well understood. Here, I focus on 

evaluating the effectiveness of different tutorials to develop volunteers proficient in 

species identification, plot measurement (e.g., estimating percent plant cover), Global 

Positioning Systems use, and plot setup skills. 

4.3.3 Data quality 

Several studies have compared data quality of volunteers to professionals, 

including comparisons for bird surveys (McLaren and Cadman 1999), forest vegetation 

surveys (Brandon et al. 2003), invertebrate biodiversity surveys (Lovell et al. 2009), 

benthic macro-invertebrates (Penrose and Call 1995, Fore et al. 2001), and invasive plant 

monitoring (Brown et al. 2001). For biodiversity surveys, volunteers collect comparable 

data to professionals (Fore et al. 2001, Lovell et al. 2009), especially when using more 

constrained and less subjective methods (Lovell et al. 2009). Generally, volunteers collect 

comparable data for easy to recognize species, but cryptic or rare species are difficult to 

identify (Penrose and Call 1995, Lovell et al. 2009). Despite these comparisons, little 

research has compared volunteer abilities against professionals when trained using 

different training approaches. Thus, my objectives were to: (1) evaluate the effectiveness 
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of online static and multimedia tutorials to teach citizen science volunteers how to 

identify invasive plants; measure percent cover; use Global Positioning System units, and 

establish monitoring plots; and (2) compare species identification and percent cover 

measurement abilities of volunteers trained with static and multimedia tutorials to those 

of professionals. 

4.4 Methods 

 This research was part of a larger experimental effort to evaluate the effectiveness 

of a national citizen science program (Crall et al. 2010). Here, I report methods and 

results related only to static and multimedia online training approaches. I recruited 

volunteers and professional botanists from the Madison, Wisconsin and Fort Collins, 

Colorado regions to evaluate the ability of static and multimedia tutorials to train citizen 

scientists how to identify invasive species, how to measure percent plant cover, how to 

use a GPS unit, and how to set up a standardized monitoring plot. I obtained basic 

demographic information and willingness to participate using an online questionnaire and 

randomly assigned those interested in online trainings to either a static or multimedia 

tutorial group. 

I conducted two-day training events; one at the University of Wisconsin-Madison 

Arboretum (May, 2009) and the other at the Colorado State University Environmental 

Learning Center (July, 2009). The online training sessions occurred one week prior to 

each field event listed above. Static tutorial participants received an email link to each of 

five traditional HTML tutorials, while multimedia participants received links to five 

multimedia tutorials. I created tutorials with identical content except for the species 

covered (specific to each state; Table 1). Tutorials varied only in their communication 
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approach. Static tutorials included text and images only whereas multimedia tutorials 

included text, images, flash animations, and audio voice-overs. Participates viewed 

tutorials as often as they wished throughout one week prior to field events. Following 

each session, participants arrived at the event; learned of the day’s agenda, goals, and 

objectives; and formed groups. Participants performed tasks at each of four stations. At 

stations 1 (plot measurement) and 2 (species identification), participant abilities were 

compared against those of professionals, while at stations 3 (Global Positioning Systems 

use) and 4 (plot setup) only static and multimedia participant abilities were compared. 

4.4.1 Participant recruitment and characteristics 

I recruited 103 volunteers interested in online trainings, 54 in Wisconsin and 49 in 

Colorado. Of those interested, 20 participated in the online training sessions and field 

events in Wisconsin and 34 participated in Colorado (n=54) resulting in participation 

response rates of 37% and 69%. I mailed control group surveys to a total of 201 

recipients (153 in Wisconsin and 48 in Colorado) and received 75 and 35 returned 

questionnaires yielding response rates of 49% and 73% (n=110). My goal was to ensure 

that participants were comparable to those not participating. Other studies show that 

learning gains, for example, may be biased because those who participate already possess 

a high degree of science literacy or subject matter expertise (Brossard et al. 2005). 

Therefore, I conducted chi-square comparisons to check for differences in survey factors 

between Wisconsin, Colorado, participant, and control populations. Comparisons 

between Wisconsin and Colorado participants showed no significant (p<0.01) differences 

in gender (χ2=0.2; p=0.692), education, (χ2=3.4; p=0.636), profession (χ2=6.4; p=0.783), 

income (χ2=1.1; p=0.780), and age (χ2=13.6; p=0.018). Therefore, I combined Wisconsin 
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and Colorado online participants for all subsequent analyses. Participant ages ranged 

from 18-24 to 65-75 and were 28% male and 72% female. 

4.4.2 Field stations 

 At station 1, I evaluated plot measurement abilities. I used the United States 

Forest Service (USFS) Forest Inventory and Analysis plot to assess participant abilities to 

estimate percent cover for six herbaceous and woody species in five replicate FIA plots in 

each state. Participants recorded presence/absence and percent cover as defined by the 

FIA protocol for each plot. We used one-way Analysis of Variance (ANOVA) 

procedures to compare deviations from the mean for subplot (herbaceous) and whole plot 

(woody) percent cover estimate performance for each group by species. 

 I evaluated participant and professional species identification abilities for six 

invasive species of concern in each state at station 2. State weed coordinators helped 

select test species and categorize them as either conspicuous (easy to identify) or 

inconspicuous (difficult to identify) based on expert opinion (Table 4-1). I created five 

replicate search areas (~1 m x 100 m) along trails. Prior to sampling, I selected 25 

individual species in each search area (n=125), including both test species and non-test 

species. A professional botanist knowledgeable of the species at each event in each state 

identified all 125 flagged individuals, providing baseline master species lists. I compared 

participant identifications to these master lists to determine false positive and false 

negative identifications for each participant. I used one-way Analysis of Variance 

comparisons to compare percent correct, false positive and false negative identifications 

among groups. 
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Table 4-1. Species used for station 2 (species identification) exercises. 
Species: Common Name (Scientific Name) Category* Description 
Wisconsin   
 Garlic Mustard (Alliaria petiolata) I Forb 
 Dames Rocket (Hesperis matronalis) I Forb 
 Common buckthorn (Rhamnus cathartica) I Shrub/tree 
 Asian bittersweet (Celastrus orbiculatus) II Vine 
 Honeysuckle (Lonicera spp.) II Shrub 
 Glossy buckthorn (Frangula alnus) II Shrub/tree 
Colorado   
 Leafy spurge (Euphorbia esula) I Forb 
 Dalmation toadflax (Linaria dalmatica) I Forb 
 Russian olive (Elaeagnus angustifolia) I Shrub/tree 
 Musk thistle (Carduus nutans) II Forb 
 Houndstongue (Cynoglossum officinale) II Forb 
 Hoary cress (Cardaria draba) II Forb 
* Species were classified as either easy to identify (I), difficult to identify (II). 
 

 At station 3, I evaluated the ability of participants to use a Global Positioning 

System unit to mark waypoints and navigate to a saved location. I established ten 

locations and pre-recorded their coordinates using a Trimble Global Positioning System 

unit (accuracy +/- 1 m).  Each stake was located at a minimum distance of 50 m from 

each other. Participants recorded waypoints (i.e., datum, zone, UTM easting, UTM 

northing, accuracy) for each stake and recorded the identity of the stake they navigated to 

using a waypoint labeled “TEST” pre-set in their Global Positioning System unit. A 

station evaluator provided instructions to participants and took notes of any problems. I 

calculated a Global Positioning System ability score for each participant by summing 

correct datum, zone, and navigation responses with waypoints correctly taken within 15m 

buffers of each stake determined using ArcGIS 9.3. I compared the Global Positioning 

Systems ability scores of static and multimedia participants using two-sample t-tests. 

At station 4 I evaluated the ability of participants to establish a USFS Forest 

Inventory and Analysis plot (Figure 4-1) using a kit I provided containing a compass, a 

10 m measuring tape, 12 stakes, and a 1 m2 collapsible quadrat. Each participant set up an 
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Forest Inventory and Analysis plot following the protocol taught online. A station 

monitor graded each participant by checking radius distance, compass azimuths, quadrat 

distance from plot center, and quadrat placement. I compared the percent correct set up 

score for static and multimedia participants using two-sample t-tests. 

 
Figure 4-1. USFS Forest, Inventory, and Analysis plot used for Station 1 exercises. 

4.5 Results 

4.5.1 Station 1 – Plot measurement 

When comparing the variability of percent plant cover estimates of those trained 

with static tutorials, those trained with multimedia tutorials, and those of professionals, 

skills slightly differed between groups (F=3.2; p=0.04). However, comparisons between 

groups showed no differences; percent cover estimates between professionals (+/-9%) 

and static participants (+/-10%) did not differ (p=0.86). Similarly, percent cover estimate 

variability between professionals (+/-9%) and multimedia participants (+/-13%) did not 

differ significantly (p=0.08). The tutorial approach used only marginally influenced 
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(p=0.07) the percent cover estimates between static and multimedia participants (Figure 

1). For whole plot estimates (the tree/shrub/vine species including Russian olive, 

common buckthorn, glossy buckthorn, honeysuckle, and Asian bittersweet), these trends 

continued; there were no significant differences (F=1.9; p=0.15) between groups in 

whole plot percent cover estimates. 

4.5.2 Station 2 – Species identification 

 The level of training a participant received influenced their ability to correctly 

identify invasive species (F=34.2; p<0.001). Participants that were trained using static 

tutorials provided fewer (p<0.001) correct species identifications (64%) than 

professionals (75%) across all species (Figure 4-2). Similarly, those trained with 

multimedia tutorials identified fewer (p<0.001) species correctly (68%) than did 

professionals (75%). However, participants that were trained with static tutorials and 

multimedia tutorials showed no difference (p=0.17) in their identification abilities (Figure 

4-2). Incorrect identifications by static participants, multimedia participants, and 

professionals differed for both false positive (F=17.9; p<0.001) and false negative 

(F=24.7; p<0.001) identifications. Professionals exhibited fewer (p<0.001) false negative 

identifications (14%) than those trained with static (22%) and multimedia (15%) tutorials. 

Professionals reported fewer false positive identifications (11%) than either static (14%; 

p=0.02) or multimedia (18%; p<0.001) participants. Volunteers trained with static 

tutorials incorrectly reported more (p<0.001) species occurrences they were trained to 

identify (22% false negatives) that those trained with multimedia tutorials (15%) and 

fewer (p=0.02) false positives (14%) than multimedia participants (18%). 
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  Species identification ability differences between groups (static, multimedia, and 

professionals) varied by species (F=154.4; p<0.001). Species categorized as difficult to 

identify (Table 4-1) resulted in fewer correct identifications by static and multimedia 

participants than professionals. In Wisconsin, glossy buckthorn, common buckthorn, and 

Asian bittersweet proved to be the most difficult to identify, whereas garlic mustard and 

honeysuckle were more easily identified by all three groups. In Colorado, leafy spurge, 

musk thistle, and Dalmation toadflax were more easily identified, whereas houndstongue 

and hoary cress were challenging. Professionals consistently exhibited greater correct 

identifications and had less false positive and false negative identifications for all species 

evaluated. However, professionals struggled with glossy buckthorn identification (15%) 

and hoary cress identification (70%). 
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Figure 4-2. Participant skills following training for static and multimedia online trainings 
for (A) subplot and whole plot percent cover estimate variability - Station 1, (B) species 
identification abilities – Station 2, (C) GPS skills – Station 3, and (D) plot setup skills – 
Station 4. Error bars are standard errors. Means with different letter are significantly 
different (p<0.05) when comparing static, multimedia, and professional groups for each 
response variable measured. 

4.5.3 Station 3 – GPS skills 

The Global Positioning System skills of participants as measured by the ability of 

participants to properly record the zone, datum, and waypoints within a 15 m buffer of 

known locations along with their ability to navigate to a saved location did not differ 
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(t=1.5, p=0.16) between static and multimedia participants (Figure 4-2). The mean Global 

Positioning System score for static participants was 4.5 (SE=0.5), while the mean score 

for multimedia participants was 5.7 (SE=0.6). Specific Global Positioning System skills 

learned were low: 43% of static and 53% of multimedia participants correctly recorded 

the UTM zone, 57% of static and 80% of multimedia participants correctly recorded the 

datum, 70% of static and 80% of multimedia participants correctly navigated to their 

assigned location, and 63% of static and 74% of multimedia participants correctly 

recorded waypoints within 15 m of known locations. 

 
Figure 4-3. Spatial visualization of the Global Positioning System (GPS) locations (red) 
and locations recorded by participants (blue) in both Colorado (A) and Wisconsin (B) 
study sites, showing 5, 10, and 15 meter buffers surrounding the GPS locations. The 
source of these data included volunteer participants and research staff tasks with 
establishing the known locations. 
 

4.5.4 Station 4 – Plot setup 

Station 4 evaluated the ability of participants to establish USFS Forest Inventory 

and Analysis plots. Results indicate no differences (t=0.9, p=0.38) between static (57% 
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correct) and multimedia (71% correct) participants (Figure 4-2). Plot set up errors 

consisted of incorrect radius distance measurements, subplot placements, azimuths, and 

various compass errors. Participants in Wisconsin showed greater difficulty in plot set up 

skills than those in Colorado and all participants continually asked about compass use. 

4.6 Discussion 

 My results indicate that the mode used to deliver online tutorials does not 

significantly influence the resultant skills learned by citizen scientists interested in 

invasive species monitoring. The differences between the static and multimedia tutorials I 

developed focused on the addition of audio and video animations for the multimedia 

tutorials. I aimed to keep the content identical between the static and multimedia versions 

and only vary the mode of delivery. The duplication of spoken material with written 

material has been shown to decrease retention regardless of whether written material 

appears statically or sequentially in animated fashion (Jamet and Le Bohec 2007). The 

multimedia tutorials we developed and evaluated duplicated spoken and written material 

sequentially in animated fashion and also included some animated visual material. The 

cognitive load theory (Sweller 1999) and the theory of multimedia learning (Mayer 2001, 

2005) predict that the visual channel in our multimedia approach will overload 

participants and lead to decreased learning. However, I saw no difference between 

multimedia and static tutorials in terms of knowledge transfer to applied field skills. I 

evaluated the multimedia approach using animated text and images in concert with audio 

given conjecture that such an approach may improve motivation and enthusiasm for 

future volunteerism. However, when comparing self-reported level of motivation on a 1 

to 5 Likert scale for each tutorial section after the training events, the multimedia GPS 
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tutorial elicited significantly (t=2.5; p=0.02)  less (M=3.5; SD=0.8) participant motivation 

than did the static tutorial (M=4.0; SD=0.6). Other tutorials for species identification and 

monitoring protocols were not significantly (p>0.05) different in their ability to elicit 

future motivation for these tasks between static and multimedia approaches. Additionally, 

multimedia participants self-reported a lower level of comfort in identifying invasive 

plant species (M=2.9; SD=0.8) than did static participants (M=3.4; SD=1.0). 

 Attention cueing, the addition of non-content information (e.g., coloring, arrows) 

that directs attention to those aspects that are important in an animation or instruction, 

may improve learning from multimedia and decrease cognitive load (de Koning et al. 

2007). However, I employed cueing to point out key identification characteristics for 

species taught in our multimedia tutorials and found that those trained with the 

multimedia tutorials performed no better overall in field skills than those trained using 

static tutorials. Advance organizers (introductory passages designed to serve as an 

organizing or anchoring focus for the material and to relate it to existing cognitive 

structures) have been shown to improve retention of material (Ausubel 1960) and images 

and visualizations may increase the effectiveness of science communication (Trumbo 

2000). I used these techniques in both static and multimedia tutorials, introducing topics 

generally and providing images for context. I also used headings to organize material and 

hopefully improve recall (Krug et al. 1989). Nevertheless, challenging tasks such as 

species identification and Global Positioning Systems use remain difficult for volunteer 

knowledge transfer to field skills when this information is obtained through online 

tutorials. 
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 Although static and multimedia participants had access to field guides and 

training materials during sampling similar to circumstances described in Delaney (2008), 

our results for correct species identification abilities (63% for static participants and 67% 

for multimedia participants) were lower for terrestrial invasive plants than those found for 

third-grade (80%) and seventh grade (95%) participants tasked with discriminating 

between native and invasive crab species (Delaney et al. 2008). In my case, the abilities 

of participants trained online to identify species using both static and multimedia tutorials 

were significantly lower than professionals. These results contradict studies assessing the 

abilities of volunteers trained in person compared to professionals to identify terrestrial 

invasive plant species (Brown et al. 2001) and perform biodiversity sampling for 

terrestrial invertebrates (Lovell et al. 2009), indicating important differences in in-person 

and online training approaches. Thus, although prior research indicates that trained 

volunteers can provide valid high quality data (Penrose and Call 1995, Brown et al. 2001, 

Fore et al. 2001, Brandon et al. 2003, Delaney et al. 2008, Nerbonne and Nelson 2008, 

Lovell et al. 2009), my results caution that these trends may not hold true for volunteers 

trained online using either static or multimedia approaches. Perhaps most valuable were 

comments I received at the end of the entire event from participants that solidify our 

results suggesting few differences if any in tutorial approach and field abilities and the 

overall limited effectiveness of online tutorials: 

--- 

“I think it is very difficult to do this training online. I need to see in 3D 

what I am supposed to be learning (i.e. the invasive plants and the GPS).” 

 --- 
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“I think the hardest section for me was the species identification because 

of the limited amount of visual aids to show in greater detail the 

differences between some species.” 

--- 

“The identification part was okay, but I'm not sure if I could identify the 

plants correctly. It would have been nice to have some sort of ‘test’ … to 

check your ability to [identify] the plant and… give you the opportunity to 

study some finer features of the plants if you were incorrect.” 

--- 

Volunteers in environmental programs participate for educational, volunteerism, 

and leisure oriented motivations and are specifically motivated to seek knowledge, 

participate in learning activities, engage in social interactions, understand ecosystems, 

express one’s values, enjoy the outdoors, and help the environment (Van Den Berg et al. 

2009). Participant motivation for scientific data collection may be less when the data 

collection are for impersonal risks (e.g., risks threatening the environment) than for issues 

directly affecting the participants themselves (Kahlor et al. 2006). Perceived social 

pressure to be informed about, and engaged in, activities addressing invasive species may 

play an important role and the establishment of online social networks and incentives for 

data quantity and quality may also improve volunteer motivation and retention (Longan 

2007). Ryan et al. (2001) found that social factors and sound project organization are 

significant predictors of future volunteer commitment. My results indicate that the mode 

of communication used for tutorials and trainings may not be all that useful to foster 

future motivation and participation; tutorials are best served to develop skills rather than 
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motivate. From a volunteer coordinator perspective, my results indicate that easier to 

create static tutorials may be as effective as more sophisticated multimedia approaches 

and that online tutorials in general ought to be reserved for more conceptual topics such 

as why invasive species are a problem rather than the more hands-on topics of species 

identification and Global Positioning System use. If multimedia tutorials are to be 

created, more interactive quiz-like features need to be included to fully maximize the 

benefits of these technologies. 

4.7 Conclusions & Recommendations 

Although Parker (2009) indicates that tutorial construction may be relatively easy, 

I found that the development of multimedia tutorials was difficult and time consuming. 

Synchronizing voice-overs with animations in Adobe Captivate was challenging and 

there was increased time involved to embed flash tutorials within standard web pages to 

improve usability. Because the two tutorial approaches appear to yield similar results for 

most skills, and because all indications point to the difficulty in creating effective 

multimedia tutorials, I recommend that volunteer coordinators focus on developing 

strong content presented in more traditional approaches using standard Hyper Text 

Markup language text and images. However, if resources are available, offering two 

versions of the same tutorials for volunteers to choose from may accommodate different 

learning styles (Mestre 2006) likely encountered among diverse and geographically 

widespread volunteers. The best strategy would be to offer training materials in as many 

learning styles as possible: in person, online using traditional static tutorials, online using 

multimedia tutorials, and even online using live video. As one participant stated, 

“[although] the in-person training [may have] been more detailed … I like the flexibility 
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of the online training.” More research is needed to compare both static and multimedia 

tutorials to in-person trainings. Additional research is also needed to evaluate 

synchronous and a synchronous live video trainings. Efforts should be made by volunteer 

coordinators to provide volunteers with as many training approaches as possible. 
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CHAPTER 5 CONCLUSIONS 

“A National Science Foundation Workshop on Envisioning a National Geoinformatics 
System for the United States foresaw ‘…a future in which someone can sit at a terminal 
and have easy access to vast stores of data of almost any kind, with the easy ability to 
visualize, analyze and model those data.’.” 
 

~ National Science Foundation (2007)  
 

Do we have easy access to vast stores of data and can we easily visualize, 

analyze, and model these data? Have we made this vision a reality? The cyber-

infrastructure system developed for my dissertation research supported a total of 141 

professional and citizen-based projects that collectively contributed 222,942 ‘visits’ 

recording 3,128 unique taxonomic identifications comprising 322,719 organism data 

records having 518,582 associated attributes as of April 3, 2010. The top ten species 

recorded (Figure 5-1) include: Tamarisk (Tamarix; 57,775 occurrences), Dalmatian 

Toadflax (Linaria dalmatica; 46,902 occurrences), Giantreed (Arundo donax; 24, 639 

occurrences), Canada Thistle (Cirsium arvense; 14,183 occurrences), Cheatgrass 

(Bromus tectorum; 12,955 occurrences), Brazil peppertree (Schinus terebinthifolius; 

11,916 occurrences), Musk Thistle (Carduus nutans; 4,610 occurences), Japanese 

honeysuckle (Lonicera japonica; 3,926 occurrences), Russian Olive (Elaeagnus 
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angustifolia; 3,893 occurrences), and Buffelgrass (Pennisetum ciliare; 3,264 

occurrences). 

 

 
Figure 5-1. Top ten species reported through the cyber-infrastructure as of Aril 3, 2010. 
This figure was created online automatically using the cyber-infrastructure itself - one 
example of easily analyzed and reported real-time information. 
 

Although citizen science data combined with professional data increases data 

availability, it exacerbates the need for cyber-infrastructure systems capable of storing, 

standardizing, retrieving, assessing, classifying, manipulating, analyzing, communicating, 

disseminating, and synthesizing data (Gray et al. 2005). Based on my dissertation 

research, I provide recommendations for each of these aspects of cyber-infrastructure 

systems (Table 5-1). 

Table 5-1 - Recommendations for future cyber-infrastructure development 
Role Recommendation Existing* Planned** 
Storage   
 Ensure long-term hardware and software support  X 
 Ensure regular database backups X  
 Build human resource information technology capacity  X 
 Incorporate foresight, planning, indexing, and scalability   
Standardization   
 Use standard protocols X  
 Use controlled vocabularies*** X  
 Obtain buy-in from professional organizations  X 
 Use scientific notation but build features for conversion X  
 Allow for emergent controlled vocabularies where appropriate  X 
Retrieval   
 Use standardized web service protocols for data exchange X  
 Assess quality of retrieved data before ingest  X 
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Existing* Planned** Role Recommendation 

 Retrieve only required data for cyber-infrastructure domain X  
Assessment   
 Check for Latitude >90 or <-90, Longitude >180 or <-180 X  
 Check for UTM Easting >500000 or Northing > 50000000 X  
 Provide error checking for all form variables  X 
 Use pick lists for controlled vocabularies X  
Classification   
 Use standard classification schemes*** X  
 Cross-walk different schemes into common schemes***  X 
Manipulation   
 Offer features for data conversion between units X  
 Offer features for data conversion between file formats  X 
 Provide tools for feature extraction against base layers***** X  
Analysis   
 Develop online spreadsheet features XX  
 Create simple logical operators for new data field to be created  X 
Communication   
 Develop automated newsletter features for programs  X 
 Facilitate email among project members  X 
 Use existing APIs for social networking features  X 
Dissemination   
 Create automated report features  X 
 Share data with other systems using web service protocols X  
Synthesis   
 Provide summary statistics across merged datasets X X 
 Deliver Really Simple Syndication feeds of summary statistics  X 
 * X=Existing; A=Existing through administrative backend. 
 ** Planned future feature based on feedback and recommendations from citizen scientists. 
 *** Examples: National Land Cover Dataset values and Federal Information Processing Standards. 
 **** Examples: State A, B, and C noxious weed lists versus Red, Yellow, and Green lists. 
 ***** The system use MaxEnt for this purpose for online modeling capabilities (Phillips et al. 2006). 
 

As more data are collected, improved data storage capabilities are needed (Gray et 

al. 2005) to meet the challenges associated with data over-abundance common to 

disciplines as diverse as neuroscience (Hasson et al. 2008) and astronomy (Nieto-

Santisteban et al. 2005). Data storage requires the ability to archive and store large 

amounts of legacy and new data collections through centralized or cached, distributed 

(federated), or hybrid approaches (Graham et al. 2009). Successful approaches possess 

long-term hardware and software support, adapt to technological changes, use appropriate 
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technology, and adopt new innovations (Table 5-1). They incorporate foresight, planning, 

indexing, metadata, and scalability (Gray et al. 2005). My experiences indicate that 

developing cyber-infrastructure systems that include some minimal quality assurance / 

quality control features such as requiring location accuracy to be entered for all sightings 

submitted improve the ability of those reusing citizen science data and improve the 

quality of data available for reuse. For example, of the 5,196 species occurrences 

submitted to the cyber-infrastructure thus far, 35% (1,840) have associated location 

accuracy information recorded with them greater than zero. A majority (94%) of these 

citizen contributed data has location accuracy values that are not null in the database; 

many are recorded as incorrect zero values. However, of the professional data in the 

system, only 1% has associated location accuracy information greater than zero and 94% 

are not null; many of which are also incorrect zero values. Many of these professional 

data values are derived from legacy datasets my research team obtained and contributed. 

Thus, the use of online quality assurance / quality control features appears to be 

promoting quality data – even of these data are submitted by citizens. 

Adherence to widespread and accepted data standards creates inter-operable 

systems (Cargill 1997, Lake and Farley 2007, Haklay and Weber 2008) that together 

represent the emerging geospatial web – the global collection of discoverable web 

services and data supporting the use of geographic information in a range of domain 

applications (Lake and Farley 2007). The use of standardized controlled vocabularies 

improves data integration, analysis, and meta-analysis (Table 5-1) and may mitigate 

performance limitations of distributed systems requiring federated searches, the semantic 

web, and ontology-based knowledge discovery systems (Graham et al. 2009). For 
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example, using standard classification schemes such as the National Land Cover Dataset 

values, the North American Amphibian Monitoring Program's Call Index values, and 

Federal Information Processing Standards values will decrease the amount of post-

processing required for exchanged data. Seamless download and use of real time data will 

improve workflow efficiency. Effective cyber-infrastructure systems will inform the 

information enterprise as data are changed so those using data may update old datasets 

and any subsequent data that may have been derived from them. The true utility of such a 

web 2.0 framework hinges upon these data standards, interoperability, and standardized 

Application Programming Interfaces (Lake and Farley 2007, Haklay and Weber 2008). 

Current visions for future cyber-infrastructure include Collaborative GIS, “… a 

collection of tools, theories, and practices [that] directly support multi-stakeholder 

participation in the planning and management of geographically distributed resources” 

(Balram et al. 2009). These so-called Group Spatial Decision Support Systems integrate 

spatially enabled tools, theories, and technologies, structure human participation, and 

articulate issues of concern in local and distributed spatial planning processes (Balram et 

al. 2009). They are envisioned to include analysis features that allow end users to sort, 

manipulate, and interact with online data sets collaboratively and that augment a user’s 

intellect rather than increase their intellectual burden (Gray et al. 2005). They use 

multimodal interfaces for participant interactions (MacEachren et al. 2005) and spatial 

databases to provide baseline data and store new emergent information (Balram et al. 

2009). 

Online analysis of data sets will decrease the time necessary for scientific data 

collection through data analysis; web-enabled, modular, information science-based 
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systems will allow for flexibility and expand analysis capabilities as new and improved 

techniques are developed. A preliminary needs assessment (Newman, unpublished data) 

indicates that citizen scientists want online analysis features such as real-time calculation 

of histograms, group means, minimum values, maximum values, average values, and 

visualizations such as graphs, bar charts, and pie charts. For example, 93% of 

respondents (n=42) desired bar charts, 55% desired pie charts, 76% desired line graphs, 

and 45% wanted scatter plots. Online statistics desired most included minimum, 

maximum, mean, and variance. 

Thus, web delivery of real time data, knowledge, information, and wisdom will 

provide improved mechanisms to disseminate information and make it easy to discover 

data. Multi-scale spatial and temporal visualization tools will allow stakeholders to 

customize data visualization to suit their specific needs. Advanced 3D visualization 

capabilities that automatically update as the data sources are updated improves 

visualization, understanding, and science literacy. Improved science communication 

approaches will be needed to reach broader audiences, inform stakeholders of risks (Bier 

2001, McComas 2006), and communicate uncertainty (Janssen et al. 2005). 

These envisioned capabilities will require science and technology education and 

improved spatial literacy. They will also require successful diffusion of innovations to 

often ill-prepared stakeholders. The diffusion of innovations theory hinges upon the 

innovation-decision process which involves phases of knowledge, persuasion, decision, 

implementation, and confirmation (Figure 5-2; Rogers 2003). The knowledge phase 

refers to when an individual becomes aware of the new innovation. Persuasion  refers to 

when individuals form favorable or unfavorable attitudes towards the innovation. 
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Decision refers to when individuals engage in activities leading to their choice to either 

adopt or reject the innovation. Implementation refers to when individuals within a social 

system actually put the innovation to use, and confirmation refers to when individuals 

seek reinforcement to their innovation-decision made in the decision phase (Rogers 

2003). 

 

Figure 5-2 - The innovation-decision process (adapted from Rogers 2003) 
 

Each of these phases will be important to the future use (or lack of use) of cyber-

infrastructure systems in support of citizen science programs. Future research regarding 

these diffusion-adoption phases will iteratively improve the design, development, and 

deployment of cyber-infrastructure systems. Improving these systems, integrating them 

with citizen science programs, and augmenting traditional science models through cyber-

infrastructure will continue to prove challenging. However, accomplishing these goals 

will improve our information science capacity and yield systems better matched to our 

current environmental problems, concerns, and decision-making needs. 
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5.1 Reflections 

My dissertation research caused me to think deeply about several philosophical 

conundrums, including the tensions between the have’s and the have not’s and the 

benefits and drawbacks of open web systems versus those that may be participatory, but 

that use gatekeepers to control data quality. There are many reasons to encourage 

participation such as improving volunteer motivations (Van Den Berg et al. 2009), but 

often scientists required a certain level of data accuracy and precision to be able to make 

science-based decisions. Can these both exist? A middle ground might hold the key. My 

experiences show that contributors really do care about the correctness of their 

contributions. However, malicious activities are an unfortunate reality and may take too 

much time to clean up if checks and balances are not in place. Small non-governmental 

organizations are in no place to spend precious time constantly dealing with data 

uploaded just because some kid thought it was funny. Thus, it may be that quality 

assurance / quality control procedures are required to prevent malicious or incorrect data 

entry while still allowing those with permissions the ability to participate freely. I fall 

somewhere in between purely open systems such as Open Street Map and purely closed 

systems such as governmental intranet systems that do not allow public participation and 

acknowledge that these different approaches may best be suited to different situations. 

My dissertation research represents the culmination of over eight years of 

investment in developing applied web-based tools for ecological data management and 

citizen science. I have been developing web mapping applications to support the data 

management needs of ecologists throughout my employment as a research associate at 

the Natural Resource Ecology Laboratory. Traditional dissertation research is judged 
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primarily by the quality and quantity of peer reviewed journal articles it produces. I hope 

that my dissertation research is also judged on the quality and quantity of the applied 

products (tools, websites) it produced. There are now 27 citizen science projects 

consisting of 166 active citizen science volunteers using the CitSci.org website and 

cyber-infrastructure. I receive new contacts from interested stakeholders regularly. 

Supporting the needs of these diverse stakeholders is something I do on a regular basis 

and openly love; it brings me great joy to see the fruits of my labor used and enjoyed by 

many to ease the complicated tasks they all too often face when managing their 

ecological data. Most of the progress made in developing the cyber-infrastructure was 

made prior to the more formal research experiments discussed herein began. It is 

unfortunate that “researching and evaluating cyber-infrastructure systems in support of 

multi-scale citizen science” has led to the stagnation (and perhaps decline) of the very 

system being evaluated. Researching products requires a very different focus than 

creating, managing, and maintaining them. Throughout the research process, I found 

myself having to put off development of tutorials and website features in lieu of 

developing rigorous statistical “treatment groups” to statistically compare the 

effectiveness of different tutorial versions, for example. This led to the development of 

two versions of each tutorial rather than perhaps one improved version. Nevertheless, 

through the research process, I have had the opportunity to learn about the effectiveness 

of different communication approaches and usability issues. The research process forced 

me to create tutorials using different communication approaches. This led to more 

tutorials being available to more volunteers in a variety of approaches. Even if each 

tutorial may be of slightly less detail given the pressures of creating multiple versions, 
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those who prefer to learn with traditional static versions now have these available and 

those who prefer multimedia approaches also have resources available to them. I now aim 

to spend more time developing improved tutorials and additional website features to 

better support citizen science organizations. It is my hope that the combination of the 

products developed and the research results gained from this endeavor advances our 

ability to effectively create cyber-infrastructure systems in support of multi-scale citizen 

science and allow better integration of these data with professional data to construct a 

more comprehensive view of the integrity of our beloved natural resources we so 

desperately need to monitor and sustain. 
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APPENDIX A 
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Figure A-1. Entity Relational Diagram for the cyber-infrastructure in support of multi-
scale citizen science. Note: not all tables and relationships are shown for clarity. 
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Figure A-2. A screen shot of the citizen science website (www.citsci.org) created 
through the cyber-infrastructure system. 
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APPENDIX B 

Table B-1. Reliability Analyses for usability concepts identified by factor analyses 
 Item Total Alpha if Cronbach 

Items used for Measured Concepts Correlation Item Deleted Alpha 
Perceived Ease of Use   .89 
 I was satisfied with my experience using the website .67 .88  
 The words on the screen were legible (easy to see) .63 .89  
 The site layout was easy to follow .66 .88  
 I felt overwhelmed when using the site .73 .87  
 The pages loaded quickly .49 .89  
 I found the site very easy to use .85 .87  
 I found the site easy to read .66 .88  
 I was not frustrated when using the site .77 .87  
 I could easily find the information I needed .60 .88  
Content   .79 
 I found the information easy to understand .57 .77  
 I found the site to be well-written .62 .77  
 I prefer to print and then read Web pages .74 .67  
 I prefer reading information online rather than 

downloading .pdf files and then reading the printed file 
.69 .70  

Aesthetics / Engagement   .82 
 The colors are pleasing .68 .78  
 The site design is attractive .85 .67  
 The graphics were meaningful .52 .83  
 The website was engaging .63 .78  
 
 
Table B-2: Problems and associated task completion times and rates (%) by scenario 

 Scenario 1** Scenario 2** Scenario 3** 
Problem (Task Concept Measured) Time* % Time* %  Time* % 

Difficulty locating register, login, and logout 3:49 0% 2:41 100% 2:44 100% 
Overlooked ‘Early Warnings’ 2:44 33%     
Early Warnings 1:08 0%     
Overlooked ‘Locations of Interest’ 1:50 0%     
Join Project (register for project) – 1 and 2 3:22 33% 3:02 100%   
Join Project (register for project) - 2   1:14 67%   
Join Project as Reviewer     3:26 75% 
Invasive Species Information  1:00 100% 1:32 100% 1:05 75% 
3 species; find projects for them – 1 and 2 2:55 33% 1:09 67% 1:00 100% 
3 species; find projects for them – 2   1:05 100% 0:52 100% 
Find Honey Bee and show on map – 1 and 2 2:38 67% 1:07 67%   
Find Honey Bee and show on map & print – 2   1:19 33%   
Find Tamarisk – 1     1:28 100% 
Find Tamarisk – 2     2:46 100% 
Help and map tools help 1:20 0% 2:59 67% 3:36 100% 
Add leafy spurge occurrences on map 2:18 33% 1:46 67%   
Retrieving a saved map confusing 1:26 33% 0:45 67%*   
Load and print map 0:30 33% 1:26 33%*   
Request Instigator  (apply) 2:03 67% 2:11 67%   

* Minutes 
**See Appendix B, Tables B-7, B-8, B-9, and B-10 for specific tasks for each scenario. 
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Table B-3. Mean evaluation for each usability concept 

   
Usability Concept Mean* Standard deviation 

Ease of Use 5.18 0.97 
Content Satisfaction 4.25 1.03 
Aesthetics  5.70 1.00 
*Based on a sample size of 16 (n=16). 
 
 
Table B-4. Computer Experience 

 Years of Experience Level of 
Experience* 

Technology Skill Mean # S.D. Level S.D. 
Using a personal computer 17 4.4 6 1.3 
Using the World Wide Web 11 2.6 6 1.2 
Personally downloading Acrobat software 6 2.3 5 1.5 
Downloading .pdf files for information 6 2.4 5 1.7 
Installing software 9 6.5 5 2.0 
Installing hardware 8 7.3 3 1.7 
Filling out applications/forms online 8 3.6 6 1.0 
*Respondents answered using a 1 to 7 scale where 1 = None and 7 = A Great Deal. 
 
 
Table B-5.  Separate pair-wise comparisons between three usability concepts 

Usability Concept  
Comparisons t-value p-value* 

Ease of Use - Content 3.52 .003 
Ease of Use - Aesthetics 1.76 .098 
Aesthetics  - Content 5.63 <.001 
* Note: The significance level for significant differences between means for each pair-wise concept 
comparison based on a Bonferroni correction is 0.017 (0.05/3 comparisons). 
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Table B-6. Comparison between prior technology experience and usability concepts 

 Ease of Use Content Aesthetics 
Technology Experience* Mean t p-value Mean t p-value Mean t p-value 
Prior PC experience  .43 .68  .67 .52  .02 .99 
 Low 5.06   4.04   5.68   
 High 5.29   4.42   5.69   
Prior www experience  .88 .40  .79 .45  .63 .54 
 Low 4.97   4.04   5.84   
 High 5.43   4.48   5.50   
Prior forms experience   1.3 .23  .99 .35  .72 .48 
 Low 5.53   4.55   5.90   
 High 4.89   3.98   5.50   
* The low and high technology experience groups were determined by using the mean value for each 
experience index calculated by the respondent’s self reported number of years of experience * their self 
reported experience level on a scale of 1 (None) to 7 (A Great Deal). Those respondents with indexes 
below the mean index score were considered low and those with indexes above the mean index score were 
considered high. 
 
 
Table B7. Scenario 1 tasks and their average task completion time and rate (N=3) 
Task 

# Task Time* Completion 
Rate (%) 

1 
1. Go to the Citizen Scientist Website by clicking on the CitSci icon 
and register as a Citizen Scientist. Next, check the I Accept box and 
click on Submit. Log out of the site and close the browser. 

3:49 0% 

2 2. Once you’ve registered, you realize that you forgot to set your Early 
Warning Alert on. Log back in and turn your email alert on.  2:44 33% 

2a 3. How can the Early Warning Alert help you with your project? 1:08 0% 

3 
4. To receive information about projects in your area, you decide to set 
your Locations of Interest. Add the following two locations of interest 
in Colorado, Rocky Mountain National Park and Larimer County. 

1:50 0% 

4 
5. You have looked through the project list and are interested in the 
Honey Bee project. Register for the Honey Bee project. Go back to My 
Profile and join the Honey Bee project as a contributor. 

3:22 33% 

5 6. From the Home page, find information on why Invasive Species are 
a problem?  1:00 100% 

6 
7. Using the Website, name 3 Species considered to be Invasive 
Species? Pick a species from the All Species list. Are there any 
projects you can join for that species? 

2:55 33% 

7 

8. Assume that you’d like to find data about the invasive species 
Honey Bee (Apis mellifera). From the Home page where would you 
find that information? You decide to look at the map showing the 
invasive species distribution of the Honey Bee in North America. Go 
to the map and print the map. 

2:38 67% 

8 
9. You're not sure what functions the icons on the map page provide. 
Using the Help feature name the Map Tools and Map Functions and 
briefly describe what they do. 

1:20 0% 
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9 
10. From the map page, assume you're also interested in the 
occurrences of the Leafy Spurge (Euphorbia esula) invasive species. 
Add those occurrences to your map. 

2:18 33% 

10 
11. Assume you decide you want to keep the map you just created for 
future reference. Save the map and name it CitSci Project. Log out of 
the site. 

1:26 33% 

11 
12. You decide after you log out of the site that you'd like a copy of 
the map you created. Login to the site using the Citizen Scientist icon, 
go back to My Maps and retrieve and print the map. 

0:30 33% 

12 

13. Assume you’ve been a citizen scientist for three years and now 
you’d like to become more involved in Invasive Species projects.  You 
read the Website and learn that you can do so by becoming a project 
instigator.  Go to My Profiles and apply for a project instigator level 
for Cheatgrass (Bromus tectorum). 

2:03 67% 

* Average time in minutes to complete task 
 
 
Table B-8. Scenario 2 tasks and their average task completion time and rate (N=3) 
Task 

# Task Time* Completion 
Rate (%) 

1 

1. Go to the Citizen Scientist Website by clicking on the CitSci icon, 
expand the screen to a full screen and register as a Citizen Scientist 
using the following information. Next, check the I Accept box (ignore 
the Got Data?) and click on Submit. Log out of the site and close the 
browser.   

2:41 100% 

4a 2 You have looked through the Project List and are interested in the 
Honey Bee project. Register for the Honey Bee project. 3:02 100% 

4b 3. Go back to My Profile and join the project as a contributor 1:14 67% 

5 4. From the Home page, find information on why Invasive Species are 
a problem? 1:32 100% 

6a 5. Using the Website, name 3 Species considered to be Invasive 
Species? 1:09 67% 

6b 6. Pick a species from the All Species list. Are there any projects you 
can join for that species? 1:05 100% 

7a 
7. Assume that you’d like to find data about the Invasive Species 
Honey Bee  (Apis mellifera). From the Home page where would you 
find that information? 

1:07 67% 

7b 
8. You decide to look at the map showing the Invasive Species 
distribution of  the Honey Bee in North America. Go to the map and 
print the map. 

1:19 3% 

8 
9. You're not sure what functions the icons on the map page provide. 
Using the Help feature, name the Map Tools and Map Functions and 
briefly describe what they do. 

2:59 67% 

9 
10. From the Home page, assume you're also interested in the 
occurrences of the Leafy Spurge (Euphorbia esula) invasive species. 
Add those occurrences to your map. 

1:46 67% 
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10 
11. Assume you decide you want to keep the map you just created for 
future reference. Save the map and name it CitSci Project. Log out of 
the site. 

0:45 67% 

11 
12. You decide after you log out of the site that you'd like a copy of 
the map you created. Login to the site using the Citizen Scientist icon, 
go back to My Maps and retrieve and print the map. 

1:26 33% 

12 

13. Assume you’ve been a citizen scientist for three years and now 
you’d like to become more involved in Invasive Species projects.  You 
read the Website and learn that you can do so by becoming a project 
instigator.  Go to My Profiles and apply for a project Instigator Level 
for Cheatgrass. 

2:11 67% 

* Average time in minutes to complete task 
 
 
Table B-9. Scenario 3 tasks and their average task completion time and rate (N=4) 
Task 

# Task Time* Completion 
Rate (%) 

1 

1. Go to the Citizen Scientist Website by clicking on the CitSci icon, 
expand the screen to a full screen and register as a Citizen Scientist 
using the following information. Next, check the I Accept box (ignore 
the Got Data?) and click on Submit. Log out of the site and close the 
browser.  

2:44 100% 

2 2 Assume you have looked through the Project List and are interested 
in the Honey Bee project. Join the Honey Bee project as a Reviewer. 3:26 75% 

3 3. From the Home page, find information on why Invasive Species are 
a problem? 1:05 75% 

4a 4. From the Home page, name 3 Species considered to be Invasive 
Species? 1:00 100% 

4b 5. Pick a species from the All Species list. Are there any projects you 
can join for that species? 0:52 100% 

5a 
6. Assume that you’re interested in finding out if you have the Invasive 
Species Tamarisk (Tamarix sp.) is in your garden. From the Home 
page where would you find that information? 

1:28 100% 

5b 
7. You decide to look at the map showing the Invasive Species 
distribution of Tamarix sp. in North America. Go to the map and print 
the map. 

2:46 100% 

6 
8. You're not sure what functions the icons on the map page provide. 
Using the Help feature, name the Map Tools and Map Functions and 
briefly describe what they do. 

3:36 100% 

7 
9. From the Home page, assume you're also interested in the 
occurrences of the Leafy Spurge (Euphorbia esula) invasive species. 
Add those occurrences to your map 

1:53 75% 

8 
10. Assume you decide you want to keep the map you just created for 
future reference. Save the map and name it CitSci Project. Log out of 
the site. 

0:56 100% 
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9 
11. You decide after you log out of the site that you'd like a copy of 
the map you created. Login to the site using the Citizen Scientist icon, 
go back to My Maps and retrieve and print the map. 

1:43 75% 

10 

13. Assume you’ve been a citizen scientist for three years and now 
you’d like to become more involved in Invasive Species projects.  You 
read the Website and learn that you can do so by becoming a project 
instigator.  Go to My Profiles and change your User Level to an 
Instigator Level. 

1:06 100% 

* Average time in minutes to complete task 
 
 
Table B-10. Scenario 4 tasks and their average task completion time and rate (N=4) 
Task 

# Task Time* Completion 
Rate (%) 

1 1. Go to the Citizen Scientist Website and register as a Citizen 
Scientist using the following information.  2:28 100% 

2 
2 Assume you have looked through the Project List and are interested 
in the Honey Bee project. Join the Honey Bee project as a Reviewer. 2:54 75% 

3 
3. After looking at the Species List, you decide you want to make a 
map of the Leafy Spurge (Euphorbis esula) distribution. Create a map 
of Leafy Spurge (Euphorbis esula) occurrences 

2:39 100% 

4 

4. You don't like the color of the Leafy Spurge (Euphorbis esula) on 
the map, so you decide to make the Leafy Spurge (Euphorbis esula) 
appear bright green. Remove the default color of the occurrences and 
add Leafy Spurge (Euphorbis esula) with outline and fill colors in 
bright green. 

3:26 25% 

5 
5. Assume you're going to use the map in a presentation and want the 
map legend to convey the "common name" Leafy Spurge instead of 
the scientific name Euphorbia esula. Edit the map and change the 
legend name from Euphorbia esula to Leafy Spurge. 

1:00 75% 

6 6. Zoom to create a map of Leafy Spurge (Euphorbis esula) in 
Colorado. Print and save the map. Log out of the site. 

2:00 75% 

7 13. Login and retrieve the saved map. Zoom out to create a map that 
includes the 4 Corner states.. 1:36 50% 

Note: * the average time and percentage is based on three of four participants. One 
participant skipped Tasks 5, 6, and 7. 
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Table B-11. Website overall usability questionnaire. 

 Scale  
Questions * Strongly Disagree Strongly Agree    

I was satisfied with my experience using the website 1 2 3 4 5 6 7 NA 
I found the links between pages hard to understand * 1 2 3 4 5 6 7 NA 
I could easily correct any errors I made while using 
the website 

1 2 3 4 5 6 7 NA 

The diagrams and graphics enhanced the information 
in the text 

1 2 3 4 5 6 7 NA 

The text has too much information – it makes it hard 
to understand the topic * 

1 2 3 4 5 6 7 NA 

The site’s left-hand navigation was helpful 1 2 3 4 5 6 7 NA 
The words on the screen were legible (easy to see) 1 2 3 4 5 6 7 NA 
I found the site confusing to use * 1 2 3 4 5 6 7 NA 
I found the information easy to understand 1 2 3 4 5 6 7 NA 
The site layout was easy to follow 1 2 3 4 5 6 7 NA 
I never felt lost when using the site 1 2 3 4 5 6 7 NA 
I felt overwhelmed when using the site * 1 2 3 4 5 6 7 NA 
I made few errors when using the site 1 2 3 4 5 6 7 NA 
The pages loaded quickly 1 2 3 4 5 6 7 NA 
I found the site very easy to use 1 2 3 4 5 6 7 NA 
I found the site easy to read 1 2 3 4 5 6 7 NA 
I was not frustrated when using the site 1 2 3 4 5 6 7 NA 
I found the site to be well written 1 2 3 4 5 6 7 NA 
The site was not interesting to use * 1 2 3 4 5 6 7 NA 
The site has too much information in .pdf files 1 2 3 4 5 6 7 NA 
I prefer to print and then read Web pages 1 2 3 4 5 6 7 NA 
I found the links to be inconsistent 1 2 3 4 5 6 7 NA 
The font (typeface) was hard to read 1 2 3 4 5 6 7 NA 
The font (typeface) was too small to read 1 2 3 4 5 6 7 NA 
I could easily find the information I needed 1 2 3 4 5 6 7 NA 
The site design is attractive 1 2 3 4 5 6 7 NA 
The colors are pleasing 1 2 3 4 5 6 7 NA 
I prefer reading information online rather than 
downloading .pdf files and then reading the printed 
file * 

1 2 3 4 5 6 7 NA 

The graphics were meaningful 1 2 3 4 5 6 7 NA 
The website was engaging 1 2 3 4 5 6 7 NA 
* Items were reverse coded. 
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Table B-12. Computer experience questionnaire. 

  Scale  
Questions * Years None A Great Deal Variable 

Using a personal computer _____ 1 2 3 4 5 6 7 p4a_CE_Index 
Using the World Wide Web _____ 1 2 3 4 5 6 7 p4b_CE_Index 
Personally downloading Adobe’s Acrobat 
Reader software _____ 1 2 3 4 5 6 7 p4c_CE_Index 

Downloading .pdf files for information _____ 1 2 3 4 5 6 7 p4d_CE_Index 
Installing software _____ 1 2 3 4 5 6 7 p4e_CE_Index 
Installing hardware _____ 1 2 3 4 5 6 7 p4f_CE_Index 
Filling out applications/forms online _____ 1 2 3 4 5 6 7 p4g_CE_Index 
 
 

 
Figure B-1. Mean evaluation response for each usability concept analyzed. Responses 
were coded on a 7 point scale: 1= strongly disagree and 7=strongly agree. Error bars 
represent standard deviations. Means with different symbols (*, **) differ in paired t-tests 
(p<.05). Mean response values were based on a sample size of 16 respondents. 
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Figure C-1. Mean correct species identifications (%) of participants trained using static 
and multimedia tutorials and of experts receiving no training for the ten species evaluated 
in Colorado and Wisconsin. 
 
 

GPS Datum and Zone Understanding By Group
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Figure C-2. Mean abilities (%) of participants trained using static and multimedia 
tutorials to correctly identify the datum (dashed bars) and Universal Transverse Mercator 
Zone of their eTrex Legend Global Positioning System device. 
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Figure C-3. Mean abilities (%) of participants to correctly record a waypoint of five 
replicate locations within a 15 meter buffer using an eTrex Legend Global Positioning 
System device. 
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Figure C-4. Mean abilities (%) of participants trained using static and multimedia 
tutorials correctly navigate to five replicate pre-defined waypoints using a Global 
Positioning System device (eTrex Legend). 
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Plot Setup Skills
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Figure C-4. Mean plot setup abilities (%) of participants trained using static and 
multimedia tutorials to correctly establish a Forest Inventory and Analysis vegetation 
monitoring plot. 
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