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CONSUMPTION INVESTMENT OPTIMIZATION WITH EPSTEIN-ZIN
UTILITY IN INCOMPLETE MARKETS

HAO XING

ABSTRACT. In a market with stochastic investment opportunities, we study an optimal consumption
investment problem for an agent with recursive utility of Epstein-Zin type. Focusing on the em-
pirically relevant specification where both risk aversion and elasticity of intertemporal substitution
are in excess of one, we characterize optimal consumption and investment strategies via backward
stochastic differential equations. The supperdifferential of indirect utility is also obtained, meeting
demands from applications in which Epstein-Zin utilities were used to resolve several asset pric-
ing puzzles. The empirically relevant utility specification introduces difficulties to the optimization
problem due to the fact that the Epstein-Zin aggregator is neither Lipschitz nor jointly concave in
all its variables.

1. INTRODUCTION

Risk aversion and elasticity of intertemporal substitution (EIS) are two parameters describing
two different aspects of preferences: risk aversion measures agent’s attitude toward risk, while EIS
regulates agent’s willingness to substitute consumption over time. However commonly used time
separable utilities force EIS to be the reciprocal of risk aversion, leading to a rich literature on asset
pricing anomalies, such as the equity premium puzzle, the risk-free rate puzzle, the excess volatility
puzzle, the credit spread puzzle, and etc.

Recursive utilities of Kreps-Porteus or Epstein-Zin type and their continuous-time analogue
disentangle risk aversion and EIS, providing a framework to resolve aforementioned asset pricing
puzzles, cf. [2] and [1] for the equity premium puzzle and the risk-free rate puzzle, [4] for the excess
volatility puzzle, and [5] for the credit spread puzzle. All these studies require EIS v to be larger
than 1 in order to match empirical observations. Bansal and Yaron [2] also empirically estimated
to be around 1.5. On the other hand, empirical evidence suggests that risk aversion + is in excess
of 1. It then follows from v > 1 and ¢ > 1 that v¢) > 1. Hence an agent with such a utility
specification prefers early resolution of uncertainty (cf. [30] and [41]), therefore asks a sizeable risk
premium to compensate future uncertainty in the state of economy.

Other than aforementioned utility specification, two other ingredients are also important in these
asset pricing applications. First, investment opportunities in these models are driven by some state
variables, which usually lead to unbounded market price of risk; for example, Heston model in [9],
[26], and [31], Kim and Omberg model in [24] and [43]. Second, the first step in all these applications
is to understand the superdifferential of the indirect utility for the representative agent, because it
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2 CONSUMPTION INVESTMENT OPTIMIZATION WITH EPSTEIN-ZIN UTILITY

is the source to read out equilibrium risk-free rate and risk premium, cf. [2, Appendix]|. Therefore,
it is important to rigorously study the consumption investment problem simultaneously accounting
these three ingredients: utility specification, models with unbounded market price of risk, and
superdifferential of indirect utility. However, the following literature review shows that, such a
study, in a continuous-time setting, was still missing from the literature. This paper fills this gap.

In the seminal paper by Duffie and Epstein [13], stochastic differential utilities (the continuous-
time analogue of recursive utilities, cf. [28]) are assumed to have Lipschitz continuous aggregators.
Hence the Epstein-Zin aggregator, which is non-Lipschitz, is excluded. Schroder and Skiadas [38]
1:7 7 is positive.! However the empirically revelent parameter spec-
ification ~,1 > 1 leads to # < 0. Kraft, Seifried, and Steffensen [29] studied incomplete market
models with unbounded market price of risk, however their assumption on v and ¢ (cf. Equation
(H) therein) excludes the case v > 1 and ¢ > 1.

Regarding market models, Schroder and Skiadas [38] studied a complete market with bounded
market price of risk. Schroder and Skiadas [39, Section 5.6], Chacko and Viceira [9] both considered
incomplete markets and Epstein-Zin utility with unit EIS. Chacko and Viceira [9], Kraft, Seifried,

studied the case where 6 =

and Steffensen [29] studied a market model whose investment opportunities are driven by a square
root process, leading to unbounded market price of risk.

Regarding the superdifferential of indirect utility, its form can be obtained by a heuristic cal-
culation using the utility gradient approach, cf. [15]. However, rigorous verification needs the
aggregator to satisfy a Lipschitz growth condition (cf. [13] and [15]), or joint concavity in both
consumption and utility variables (cf. [16]). As we shall see later, when v > 1 and ¥ > 1, the
Epstein-Zin aggregator is neither Lipschitz continuous nor joint concave. On the other hand, for
Epstein-Zin utility with § > 0, Schroder and Skiadas [38] verified the superdifferential via an inte-
grability condition (cf. [38, Lemma 2]) and the property that the sum of deflated wealth process
and integral of deflated consumption stream is a supermartingale for arbitrary admissible strategy,
and is a martingale for the optimal strategy (cf. [38, Equation (1)]). Both these two conditions are
verified in [38, Theorem 2 and 4] for complete market models with bounded market price of risk.

In this paper, we analyze a consumption investment problem for an agent with Epstein-Zin utility
with v, > 1 and a bequest utility at a finite time horizon. This agent invests in an incomplete
market whose investment opportunities are driven by a multi-variate state variable. Rather than
the Campbell-Shiller approximation, which is widely applied for utilities with non-unit EIS, we
study the exact solution. As illustrated in [29, Section 6], there can be a sizeable deviation of
the Campbell-Shiller approximation from the exact solution, highlighting the importance of exact
solution.

A similar problem has also been studied recently by Kraft, Seiferling, and Seifried [27]. In this
paper, the relation between v and 1 in [29] is removed, all configurations of v and v are considered
including the v,1 > 1 case. Verification result is obtained following the utility gradient approach
in [15] and [38], complemented by a recent note of Seiferling and Seifried [40] for the v,% > 1
case. Nevertheless, [27] focuses on models with bounded market price of risk (cf. Assumptions
(A1) and (A2) therein). This excludes models, such as Heston model and Kim-Omberg models,
which are widely used in aforementioned asset pricing applications. Comparing to [27] and all other
aforementioned existing results, the current paper extends the previous literature in three respects.

IThe parameter 1 + « in [38] is 0 here. Hence equation (8c) therein implies 6 > 0.
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First, in contrast to the utility gradient approach, the verification result is obtained by com-
parison results for backward stochastic differential equations (BSDE). Rather than employing the
dynamic programming method as in [29] and [27], optimal consumption and investment strategies
are represented by a BSDE solution, c¢f. Theorem 2.14 below. Extending techniques of Hu, Imkeller,
and Miiller [20] and Cheridito and Hu [11], who studied optimal consumption investment problems
for time separable utilities, we verify the candidate optimal strategies for Epstein-Zin utility.

Second, our method is designed for market models with unbounded market value of risk. Utilizing
Lyapunov functions, borrowed from [42, Chapter 10], we prove in Lemma B.2 below that certain
exponential local martingale is martingale, which is a key component of our verification argument.

Third, we verify the superdifferential of indirect utility. Comparing to [38], the integrability
condition in Lemma 2 therein is satisfied when ~, 1 > 1.2 For the second step of verification in [38]
and [27], it requires that the sum of deflated wealth process and integral of deflated consumption
stream is a supermartingale for any admissible strategy, and is a martingale for the optimal one.
We obtain this property (see Theorem 2.16 below) as a by-product of our verification result. This
result is established for models with unbounded market price of risk, hence meets demands coming
from aforementioned applications on asset pricing puzzles.

Our general results in Section 2 are specialized to two examples in Section 3. There numeric
results reveal an interesting phenomenon. As time horizon goes to infinity, convergence of the
finite horizon solution to its stationary long run limit is very slow when ¢ > 1. Figure 2 shows
that this convergence takes at least 60 years in an empirically revelent utility and market setting.
Moreover, the convergence is sensitive to the time discounting parameter: it is much slower when
the discounting parameter decreases slightly. This is in contrast to the @ < 1 case, where the
convergence is much faster (around 20 years) and is less sensitive to the time discounting parameter.
This observation implies that, in the ¢ > 1 setting, the finite horizon optimal strategy can be far
away from its infinite horizon analogue, even when we consider a lifelong consumption investment
problem.

The remaining of this paper is organized as follows. After Epstein-Zin utility is introduced in
Section 2.1, the consumption investment problem is introduced and main results are presented
in Section 2.2. Then main results are specialized in two examples in Section 3, where general
assumptions of main results are verified under explicit parameters restrictions, which include many
empirically relevant cases. All proofs are postponed to appendices.

2. MAIN RESULTS

2.1. Epstein-Zin preferences. We work on a filtered probability space (9, (F;)o<i<7, F,P). Here
(Ft)o<t<T is the augmented filtration generated by a k + n—dimensional Wiener process B =
(W, Wl), where W and W are the first k& and the last n components, respectively, and satisfies
the usual hypotheses of right-continuity and completeness.

Let C be the class of nonnegative progressively measurable processes on [0,7]. For ¢ € C and
t < T, ¢ stands for the consumption rate at ¢t and c¢p represents a lump sum consumption at

2The specification v, > 1 is related to [38, Case 3 in page 113], which established the utility gradient inequality.
Even through its proof is independent of market model, it uses the existence and concavity of Epstein-Zin utility,
which are established in [38, Appendix A] under the assumption 6 > 0. Therefore one needs to replace [38, Appendix
A] by Propositions 2.2 and 2.4 below which confirm the existence and concavity of Epstein-Zin utility when 6 < 0.
During the revision of this paper, these properties are also confirmed in [40] for a general semimartingale setting.
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T. We consider an agent whose preference over C—valued consumption streams is described by a
continuous time stochastic differential utility of Kreps-Porteus or Epstein-Zin type. To describe
this preference, let § > 0 represent the discounting rate, 0 < v # 1 be the relative risk aversion, and
0 < 1 # 1 be the EIS. We focus on the 4 > 1 case. In this case, define the Epstein-Zin aggregator
f:[0,00) x (—00,0] = R via

— ) c =
(2.1) Fle,0) =6 (11 =) < L) 1
¥ (1 =y)v)™=

This is a standard parametrization used, for instance, in [12]. Given a bequest utility function
U(c) = ¢177/(1 — ), the Epstein-Zin utility over the consumption stream ¢ € C on a finite time
horizon T is a process V¢ which satisfies

T
(2.2) Ve =E, [/ fles, VE)ds + U(CT)] , forall ¢t €0,T],
t

where E; stands for E[-|F;].

Remark 2.1. Epstein-Zin utility generalizes the standard time separable utility with constant rel-

ative risk aversion. Indeed, when v = 1/4, the aggregator reduces to f(c,v) = 9 ¢ _ §5u. Then
(2.2) with t = 0 can be represented explicitly as the standard time separable utlhty

Vi = / oe _68 S d8+e Ty (er)

As discussed in introduction, we are interested in the empirical relevant case where v > 1 and
® > 1. In this case, v = 1/ is violated, hence (2.2) is not time separable.

When ¢ follows a diffusion, the existence of V¢ was established by Duffie and Lions [14] via partial
differential equation techniques. We work with a non-Markovian setting and construct V¢ via the
following BSDE:

T T
(2.3) v;:U(cT)+/ f(cs,v.;)ds—/ Z¢dB,, 0<t<T.
t t
Denote )
6:=—71.
-3

((1— ’y)v)l_% — 60v.

c
f (67 U) = 51 1
v
Then f has super-linear growth in v when 6 < 0. Therefore the BSDE (2.3) does not have a Lipschitz
generator. Nevertheless, consider (Y3, Z;) := e %% (1 — 4)(V,¢, Z¢) and the following transformed
BSDE:

T T 1
24) Yi=e e+ [ F(s,cs,Ys)ds — / Z,dB,, where F(t,cy,y) = 60e %, Yy~
t t

When 6 < 0, the generator F' in (2.4) satisfies the monotonicity condition, i.e., y — F(t,c,y) is
decreasing. This allows us to establish the existence and uniqueness of solutions to (2.3), hence
define V¢ satisfying (2.2).



CONSUMPTION INVESTMENT OPTIMIZATION WITH EPSTEIN-ZIN UTILITY 5

Let us introduce the set of admissible consumption streams as
T 11 L
C, = {c eC: E [/ e ¢, ’”ds} < oo and E [CT_V] < oo} 3
0

Proposition 2.2. Suppose v, > 1 and ¢ € C,. Then (2.4) admits a unique solution (Y, Z)
i which Y is continuous, strictly positive, and is of class D, f0T|Zt|2dt < o0 a.s.. Moreover,
Ve =Y, /(1 — ), t € [0,T), satisfies (2.2).

Remark 2.3. When a BSDE satisfies the monotonicity condition, it is customary to assume its
terminal condition to be square integrable, cf. [34, Theorem 2.2]. However this imposes unnecessary
restrictions for later described utility maximization problem, in the sense that the bequest utility
needs to be square integrable to define the associated Epstein-Zin utility. Therefore, Proposition
2.2 only asks for the terminal condition to be an integrable random variable.

Having defined Vi, we expect that, as a utility functional, C, > ¢+ V[ is concave. This would
follow from the standard argument when f(c,v) is jointly concave in ¢ and v, cf. [13, Proposition
5]. However, calculation shows that f in (2.1) is not jointly concave when v > 1 and ¢ > 1.
Nevertheless, utilizing an orderly equivalent transformation of V[, introduced in [13, Example 3],
the following proposition confirms the concavity of ¢ — V.

Let us define (Y,Z) := (Y, LyY/9=17)/(1 — 1). Calculation shows that (Y,Z) satisfies

P
1—-1 1—1
P T 2 T
1 Z
(25) Yt = 6_6T 16T 1 + / 56_68168—1 + 5(0 - 1)Y_8 ds — / stBs.
- @ t - E s t

Observe that the generator of (2.5) is now jointly concave in (¢,Y,Z) when 6 < 1.
Proposition 2.4. When v,v > 1, for any ¢,¢ € Cq, and o € [0,1], if aC + (1 — )¢ € Cq, then
Oé‘/oc + (1 _ a)‘/og < Vvoac—l—(l—a)é‘

Remark 2.5. The integrability condition in C, does not implies the convexity of C,. Indeed, since

1—1
v > 1, E[fOT e %8s “ds] < oo for both f = ¢ and & does not imply the same integrability for
ac + (1 — a)é. However Proposition 2.4 implies the concavity of ¢ — V¢ on any convex subset of

Ca, for example, C} = {c € C, : E| ()Te_‘sscsds] < 00}

2.2. Consumption investment optimization. Having established the existence of Epstein-Zin
utility in the previous section, we consider an optimal consumption investment problem for an agent
with such a utility.

Consider a model of a financial market with a risk free asset S° and risky assets S = (S*,...,S")
with dynamics

dsp = SPr(X;)dt,

(2:6) dS; = diag(Sy) [(r(X)1, + pw(Xy)) dt 4 o(X;)dW/],

where diag(5) is a diagonal matrix with elements of S on the diagonal, 1,, is a n—dimensional vector
with every entry 1. Given a correlation function p : R¥ — R™* and pt : RF — R™ " satisfying

3This admissible set is similar to its counterpart in [11] for time separable utilities, but is larger than its analogue
in [38], where E [fOT cgds] < oo for all £ € R is needed for an admissible consumption stream c.

4f is jointly concave in ¢ and v if and only if v < 1.
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pp’ + p(pt) = 1pxn (the n x n identity matrix), W? = [; p(Xs)dWs + [, p-(Xs)dW5- defines a
n—dimensional Brownian motion. In (2.6), X is a E—valued state variable satisfying

(27) dX; = b(Xt)dt + a(Xt)th, Xo=xz € L.

Here E C R* is an open domain, r : F - R, p: E - R", 0 : E — R™ b: E — R* and
a: E — Rk These model coefficients satisfy following assumptions.

Assumption 2.6. 7, i, 0, b, a, and p are all locally Lipschitz in E; A := aa’ and ¥ = oo’ are
positive definite in any compact subdomain of E; r + %,u’ ¥~ 14 is bounded from below on E,
moreover, dynamics of (2.7) does not hit boundary of E in finite time.

In the previous assumption, local Lipschitz continuity of coefficients and the nonexplosion as-
sumption combined imply that (2.7) admits a unique E-valued strong solution X. When the interest
rate r is bounded from below, due to %M’Z_l,u >0, r+ %M’Z_l,u is bounded from below as well.

An agent, whose preference is described by an Epstein-Zin utility, invests in this financial market.
Given an initial wealth w, an investment strategy m, and a consumption rate ¢, the wealth of the
agent follows

(2.8) AW =W [(re + mpe)dt + mo dW]] — epdt, Wy = w.

Throughout the paper, ry, ug, pt, o¢ stand for r(Xy), u(Xy), p(X¢), and o(Xy), respectively, and the
superscript (m,c) is sometimes suppressed on W to simplify notation. A pair of investment strat-
egy and consumption stream (m,c) is admissible if ¢ € C, and its associated wealth process is
nonnegative. The agent aims to maximize her utility V.

We will further restrict admissible strategies to a permissible set. But let us first characterize
the optimal value process via a heuristic argument. By homothetic property of Epstein-Zin utility,

we speculate that utility evaluated at the optimal strategy has the following decomposition®:
L
(2.9) R
where Y satisfies the following BSDE
T T T
(2.10) Y, = / H(s,Ys, Zs, Z1) ds — / Zy dWy — / Ztawlt.
t ¢ ¢

Let us determine the generator H in what follows. Parameterizing ¢ by ¢ = ¢W, the wealth

process satisfies
AWy

W, (re — & + mype)dt + o dW/.
t

1—7y 1—
We expect from the standard dynamic programming principle that Vft_ 5 e¥t 4+ fg f <cs, VYS_ ,YV eY5> ds

is a supermartingale martingale for arbitrary strategy, and is a martingale for the optimal strategy.
Let us calculate the drift of the previous process. Calculation shows that

. } 1 .
W =W (=)0 = ) - L i dt+ (- )W,
1 1
deYt — oY (—H(t,Yt, 20, 2) + 542, + 52}(2})’) dt + et (thWt + Zdef) .

5The decomposition (2.9) is widely used for (time-separable) power utilities, cf. eg. [35].



CONSUMPTION INVESTMENT OPTIMIZATION WITH EPSTEIN-ZIN UTILITY 7

1— 1—
Therefore, the drift of VYSTjeyt + fg f (cs, VYS_J eYS> ds reads (the time subscript is omitted to

simplify notation)
wi=
-~

e’ {(1 =) =80+ %ZZ’ + %Zi(zi)’ + [~ =)z + eV e ]
(2.11)

1 —
+ [—%w/&r + (=)' (p+opZ + JPLZL)} ~H(.Y,Z, Zl)} :

We expect that the drift above is negative for arbitrary (,¢) and is zero for the optimal strategy.
Therefore, the generator H for (2.10) can be obtained by taking supremum on 7 and ¢ in the
previous drift and setting it to be zero. Following this direction, we notice that the randomness in
H comes only from X, which is driven by W, moreover, the terminal condition of (2.10) is zero.
As a result, Zt is necessarily zero. Therefore, we can reduce (2.10) to

T T

(2.12) Y = / H(s,Ys, Zs)ds — / ZsdW,
t t

where H is given by

H(t,y,z) =(1 —)ry — 60 + %zz' + inf [—(1 — )¢+ 506—51151—%}

. 1-
(213) wint | -2 s (1 )+ o)
1 1- §¥
:§ZMtZ/ + V,uiEt_lat,otz/ + 056_%’ + hy — 60.
Here, suppressing the subscript ¢,
/ L= 1 L= -1
Y:=00(X), M:=1xi+ Tp oYX op(X), and h:=(1-—7)r(X)+ Wﬂ YT (X)),

where 1« is the k x k-identity matrix. Recall from Assumption 2.6 that r + % 'S~ is bounded
from below. Therefore v > 1 implies that there exists a positive constant A,q; such that h < hpeq
on E. The infimum in (2.13) are due to v > 1, and they are attained at

*
Cy

y W
=& = e te 0T,

1
(2.14) T = ;Et_l (e + oupeZy)  and

where W* is the wealth process associated to the strategy (7*, ¢*). Therefore 7* and ¢* are candidate
optimal strategies.

Coming back to (2.12), even though the generator H has an exponential term in y and a quadratic
term in z, the parameter specification ~,% > 1 allows us to derive a priori bounds on Y. In
particular, Y is bounded from above by a constant. Meanwhile, since the quadratic term of z in H
will be shown to be nonnegative, the lower bound of Y can be obtained by studying a BSDE whose
generator does not contain this quadratic term. As a result, a solution to (2.12) can be constructed
under the following mild integrability conditions.

Assumption 2.7.
i) g—g =& ( S I_T'Y WX lop(X S)dWS>T defines a probability measure P equivalent to P;
ii) EF [ i h(Xs)ds] > —oc.
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Here &([ asdWs)r := exp <—%fOT|as|2ds+f0T adeS) denotes the stochastic exponential for
fOT asdWs.

Remark 2.8. Since the generator H contains a linear term in z, it is natural to apply Girsanov
theorem. Assumption 2.7 i) allows us to do this and write (2.12) under P. This assumption can be
checked by explosion criteria; see Section 3 for examples. In ii), the standard exponential moment
condition in [6] is avoid, due to the special structure of H: the quadratic term in z is nonnegative,
and H(-,0,0) is bounded from above by hyq. — 06.

Proposition 2.9. When v,9 > 1, let Assumption 2.7 hold. Then (2.12) admits a solution (Y, Z)
such that, for any t € [0,T],
(2.15)
P g Y 5 — "2 hmax)T P g
E, {/ h(Xs) ds] —(59(T—t)+HEe( U= T(T—t) <Y, < —00(T—t)+log Ef [exp </ h(Xs) ds)} ,
t t

and E[fOT |Z4|?ds] < oo. In particular, since h < humaz, Y is bounded from above by (Rmaz — 00)T.

Having constructed (Y, Z), the strategies (7%, ¢*) in (2.14) are well defined. To verify their opti-
mality, we need to further restrict the admissible strategies to a permissible set: (7, ¢) is permissible
if ¢ € C, and W™€)1=7eY is of class D on [0, 7.5

To verify the optimality for (7*,c*), let us introduce an operator §. For ¢ € C?(E),

k I
1 1-— 1
(2.16) 8l0) =5 D Aydi,, 0+ (b + T”a,o’a’z—lu> Vo + 5 VdaMa' Vo + b,
ij=1

where the dependence on x is suppressed on both sides. The function ¢ in the following assumption
is called a Lyapunov function. Its existence facilities proving certain exponential local martingale
is in fact martingale, hence verifying optimality of the candidate strategies. This strategy has been
applied to portfolio optimization problems for time separable utilities, cf. [18] and [37].

Assumption 2.10. There exists ¢ € C?(E) such that
i) lim, 00 infoep\ g, ¢(z) = 0o, where (E,), is a sequence of open domains in F satisfying
UnFE, = FE, E, compact, and F,, C E, 1, for each n;
ii) F[¢] is bounded from above on E.

The final assumption before the main results imposes an integrability assumption on the market
price of risk A. This ensures E [ fOT e‘és(cz)l_l/ wds} < 00, hence the admissibility for the candidate

optimal consumption stream c*.

Assumption 2.11. There exists A : £ — R™ which satisfies 4 = oA and defines a local martingale
measure Q° for the discounted asset price via dQ°/dP = E([ —N,dW?!)r. Moreover

(4
0 (T
(2.17) EQ W=D Jo r+(Xo)dsg < / N(X5) de) < o0,
T
where W0 := W?r + fo Asds is a QU—Brownian motion and r, = max{r,0}.
6When h is bounded from below, for example, both r and ¢/~ ™'y are bounded, (2.15) implies that Y is bounded

from below as well. Then (7, c) is permissible if ¢ € C, and (W™¢)'™7 is of class D on [0,7]. This is exactly the
definition of permissibility used in [11] for the time separable utilities with v > 1.
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Remark 2.12. The previous assumption is stated under the minimal martingale measure Q° (cf.
[17]). A careful examination of Lemma B.4 shows that this assumption can be replaced by any
local martingale measure Q such that E2[exp((¢) — 1) fOT 74 (Xs)ds)(dP/dQ)?] < oo.

Remark 2.13. When r and A are bounded, Assumption 2.11 holds automatically and Assumption
2.10 is not needed, even for non-Markovian models. Indeed, Assumption 2.10 is used to prove
the stochastic exponential in Lemma B.2 below is a martingale. When r and A are bounded,
h is bounded, hence H(-,0,0) is bounded as well. Therefore, (2.15) implies that Y is bounded,
and fo ZsdWy is a BMO-martingale, cf. eg. [33, Lemma 3.1]. Then the stochastic exponential in
Lemma B.2 can be proved as a martingale directly. However many models do not have bounded
market value of risk. Therefore we retain Assumptions 2.10 and 2.11 in their general forms. These
conditions impose some market conditions. In particular, for Markovian models, these conditions
will be specified as explicit parameter restrictions in two examples in Section 3 below.

Now we are ready to state our first main result.

Theorem 2.14. When ~,v > 1, let Assumptions 2.6, 2.7, 2.10, and 2.11 hold. Then ©* and c*
in (2.14) mazimize the Epstein-Zin utility among all permissible strategies. Moreover, the optimal
Epstein-Zin utility is given by

The second main result below focuses on the superdifferential of indirect utility. Let us first
define the optimal value process
W* 1—v
(2.18) Vo= (Leyt, t € 10,77,
L=
where W* is the optimal wealth process and Y comes from Proposition 2.9. Schroder and Skiadas
[38] conjectured in Assumption C3 therein that the superdifferential is

t
(2.19) D =wYe Y exp [/ &,f(cZ,VS*)ds} Ocf(ci, Vi), telo,T].
0

The constant w”e~Y0 in (2.19) normalizes D to be 1. Indeed, combining (2.1), (2.14) and (2.18),
calculation shows that

D = wle exp [ /O a(@—1><<1—m*)—é(c:)l‘ids—aet] (1 —)V7) o ()

t » WF ) ett
(2.20) = exp [/0 (0 —1)%e 7Y ds — 59% %
Therefore the previous identity implies that Dj = 1 and D* is nonnegative.

In [38, Theorems 2 and 4], D* is confirmed to be the superdifferential when the market is complete
with bounded market price of risk. This is proved using an integrability assumption in [38, Lemma
2], together with the property that WD*+ fo Dfcsds is a supermartingale for arbitrary strategy and
is a martingale for the optimal strategy. The integrability assumption in [38, Lemma 2] is satisfied
in our case. Indeed, (2.20) shows that 0, f(c*,V*) = (0 — 1)5’%_%3/ — 06, which is bounded due to
0 < 0 and Y is bounded from above. Now the following result confirms aforementioned property
for WD* + [} Dicsds in markets with unbounded market price of risk.
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Lemma 2.15. For D* given by (2.20), it satisfies
(2.21) dDf = —rD}dt + Dj (—v(m}) 00 dW, + Z,dWy), D =1,

where Z comes from Proposition 2.9. Therefore, for any admissible strategy (m,c), WD*+ fo Dicsds
is a monnegative local martingale, hence a supermartingale.

Finally our second main result below confirms that W*D* 4 [/ Dic§ds is in fact a martingale.
This result has been proved for recursive utilities with Lipschitz continuous aggregator which is also
jointly concave in all its variables, cf. [16, Theorems 4.2 and 4.3]. However, as we have seen before,
none of these conditions are satisfied when v, > 1.

Theorem 2.16. When v, > 1, let Assumptions 2.6, 2.7, 2.10, and 2.11 hold. Then, for optimal
strategy (7*,c*) given in (2.14), W*D* + fo Dickds is a martingale. Therefore, for any admissible
strategy (m,c),

T T
E [WZ,Z’CD} +/0 Dicq ds] <w=E [W}r “ DX —I—/O Dict ds} :

In an equilibrium setting where the representative agent has an Epstein-Zin utility, given the
consumption stream, equilibrium risk-free rate and risk premium can be read out from D*, providing
a framework to study various asset pricing puzzles as discussed in introduction.

3. EXAMPLES

This section specifies general results in the previous section to two extensively studied models,
where explicit parameter restrictions are presented so that all assumptions in the previous section
are satisfied, hence statements of Theorems 2.14 and 2.16 hold. These parameter restrictions covers
many empirically relevant specifications.

3.1. Stochastic volatility. The following model has a 1—dimensional state variable, following
a square-root process as suggested by Heston, which simultaneously affects the interest rate, the
excess return of risky assets and their volatility. This model has been studied by [9] for recursive
utilities with unit EIS, and [26], [31] for the time separable utilities. This model is specified as

follows:
(3 1) dSt = dlag(St) [(T‘(Xt)ln + ,U(Xt)) dt + vV XtO'de] s
’ dXt = b(€ — Xt)dt + av/ Xtth,

where r(z) = rg + mx, p(x) = oz, with 79,71 € R, 0 € R™ "™ X\, p € R", and b,/,a € R. These
parameters satisfy

Assumption 3.1. b/, + %/\,0,2_10)\ >0,a >0, and bl > %aQ.

The previous assumption ensures that X takes value in (0, 00) and r+ %,u’ Y~ is bounded from
below, hence Assumption 2.6 is satisfied with E' = (0, 00). The following result provides parameter
restrictions such that statements of Theorems 2.14 and 2.16 hold.

Proposition 3.2. When ~,% > 1, let Assumption 3.1 and the following parameter restrictions
hold:

i) Either 11 >0 or No'S7la )\ > 0;

i6) (= 1) [r1 4 22+ IV @ laen — (0 = Do < .
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Then statements of Theorems 2.14 and 2.16 hold.

In item i), either the interest rate or the excess rate of return has a linear growth component of
the state variable. In item ii), the inequality asks either b, the mean-reverting speed of the state
variable, is large, or the volatility a is small, or E1S is close to 1. In particular, when r; = 0 (i.e.,
constant interest rate) and ¢ > 1, the condition in item ii) is satisfied when

1
(3.2) bNp < —§¢a/\'/\.7
This condition covers the empirically relevant specification in [32], where the parameter values are
(3.3) A=047, o=1, b=5 a=0.25 and p=-0.5.

Taking ¢» = 1.5 from [2], (3.2) is verified by calculation.

Figure 1 demonstrates the optimal consumption wealth ratio ¢*/W* and optimal investment
fraction 7* with respect to volatility v/ X for different values of risk aversion and EIS. Meanwhile,
our numeric results show that EIS has little impact on the optimal investment fraction, and different
risk aversions hardly change the optimal consumption wealth ratio. Figure 2 compares the optimal
consumption wealth ratio for ¢» = 0.2 (top panel) and 1) = 1.5 (bottom panel). When ¢ = 0.2, the
finite horizon optimal consumption wealth ratio converges quickly to its infinite horizon stationary
limit. For the parameter specification in (3.3), when the horizon is longer than 20 years, the time-0
optimal consumption strategy is already close to its stationary limit. However, this convergence
is much slower when v = 1.5, requiring at least 60 years when the time discounting parameter
6 = 0.08. Moreover, in contrast to the ¥ = 0.2 case, the convergence speed is sensitive to § when
1 = 1.5. In this case, the convergence is much slower for smaller value of §. Intuitively, agent with
small discounting parameter is more patient. But she still prefers early consumption when ¢ > 1.
Therefore these two competing forces delay the convergence. All comparative statistics is produced
by solving the partial differential equation counterpart of (2.12) numerically using finite difference
methods.

3.2. Linear diffusion. Both the interest rate and the excess return of risky assets in the following
model are linear functions of a state variable, which follows a 1—dimensional Ornstein-Uhlenbeck
process. This model has been studied in [24] and [43] for the time separable utility setting, and in
[7] for recursive utilities in a discrete time setting. The model dynamics is given by

(3.4) dS; = diag(Sy) [(r(Xe)1n + u(Xy))] dt + cdW/,
' dXt = —bXtdt + ath,

where r(z) = rog + mx, p(z) = o(Ao + M1x), with 79,71 € R, Ao, A1 € R, 0 € R™*™ b,a € R, and
p € R™. These coefficients satisfy

Assumption 3.3. a,b > 0, either 71 = 0 or Xjo’S 1o\, > 0.

This assumption implies that Assumption 2.6 is satisfied with £ = R. Under following parameter
restrictions, statements of Theorems 2.14 and 2.16 hold.

Proposition 3.4. When ~,% > 1, let Assumption 3.3 and the following parameter restrictions
hold:

"Since 1 > 1, (3.2) yields %‘:” + 2N (Wlnxn — (P — 1)pp')A < %/” + 1¢X’A < 0. Hence the left hand side of the
inequality in Proposition 3.2 ii) is negative.
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FIGURE 1. Both figures use parameters in (3.3), and r = 0.05, § = 0.08, ¢ = 0.0225.
They are both time 0 values for a problem with time horizon T' = 10 years. The left
panel takes v = 5, and the right panel uses ¥ = 1.5.

i) Either b+ =2aX,0'S ap < 0 or Mo'S7 oA > 0;
i1) (= 1) [ 222 4 I @hen — (6 = Dpp)] < £
Then statements of Theorems 2.14 and 2.16 hold.

In the above item i), observe that (—b+ I_T”’a)\’la’ Y~ top) X is the drift of X under P. Therefore
item i) assumes that either X is mean-reverting under P or the excess rate of return has a linear
growth component of the state variable. Item ii) is interpreted similarly as Proposition 3.2 ii) . In
particular, when 1 > 1, the inequality in item ii) is satisfied when

(3.5) bAip < —%1#&/\'1)\1.8

This condition already covers many empirically relevant specifications. For example, in [3] and [43],
a single risky asset was considered and parameter values (in monthly units) are:

(3.6) M =1, o0=00436, b=0.0226, a=0.0180, p=-0.935 and o =1.5.

Figure 3 demonstrates the optimal consumption wealth ratio ¢*/ W™ and optimal investment frac-
tion 7* with respect to the state variable X.

APPENDIX A. PROOFS IN SECTION 2.1

Let us first introduce several notation which will used throughout the appendices.

e Let S? denote the space of all 1—dimensional continuous adapted processes (Y2)o<t<T such
that the norm E [supgc <7 [Ys]?] < 0.

e Let S be the subspace of S? such that the norm Hsupogng |YS|Hoo < 00.

e Denote by T the set of all F—stopping time 7 such that 0 < 7 < T'. The process Y is of
class D if the family {Y;;7 € T} is uniformly integrable.

e Let M? denote the class of (multidimensional) predictable processes (Z;)o<i<7 such that

E [fOTsty?ds} < .

8The proof is the same as in footnote 7.
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FIGURE 2. Optimal consumption wealth ratio as a function of time when volatility
is 20%. Both figures use parameters in (3.3), » = 0.05, £ = 0.0225, and v = 5. The
upper panel takes ¢ = 0.2 and T' = 30 years. The lower panel fixes ¢» = 1.5 and
T = 100 years.

e Denote by BMO the class of martingales M such that sup, 7 || E[|(M)7 — (M) ;|| F+]|l o, < oc.

Proof of Proposition 2.2. The proof is split into several steps. First when the terminal condition
is bounded, the solution is constructed by slightly modifying the proof of [34, Theorem 2.2]. For
general terminal conditions, the solution is obtained by the localization technique in [6]. Finally,
uniqueness is proved and (2.2) is verified. For simplicity of notation, we denote £ = e“”Tc;_V

throughout this proof.

Step 1: Bounded terminal condition. When &2 < C for some constant C, consider the following
truncated BSDE:

T T
(A1) Y/i'=¢+ / F"(s,cs,Y))ds — / Z'dBs,
t t

1
where F"(t,c;,y) = 596_&(6:_% An)(lyl A n)l_%. Note that y — F"™(t,ct,y) is Lipschitz, in
particular, it is differentiable at y = 0 due to 1 —1/6 > 0. Therefore (A.1) admits a unique solution
(Y™ Z") € §? x M?. The first component of such solution is also nonnegative. Indeed, consider
(A.1) with zero as the terminal condition. Such BSDE admits a unique solution (Y™, Z™) = (0,0) in
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FIGURE 3. Both figures use parameters in (3.6), and r = 0.0014, and 6 = 0.0052.
They are both time 0 values for a problem with time horizon T' = 12 months. The
left panel takes v = 5. The optimal consumption wealth ratio for the ¢ = 0.2 case
is much larger than those displaced in the left panel. The right panel takes ¢ = 1.5.

S% x M?2. Since € > 0, it follows from the comparison theorem for BSDEs with Lipschitz generators
that Y™ > Y™ = (0. On the other hand, since § < 0, F" is decreasing in n, the comparison theorem
then implies that (Y™),, is decreasing. Hence Y :=| lim,, o, Y™ is well defined and nonnegative.

To take the limit of (Y™, Z™),, let us derive the following uniform estimate. Applying Ito’s
formula to (Y)? yields

T T
(Y")t2 + E; [/ \Z;’Pds] =L, [52] +2E; [/ YI'F"(s,cs,Y) ds} < Et[§2] < C, for any t,n,
¢ ¢
where the first inequality follows from Y™ > 0 and F™ < 0. The previous estimate yields
T
(A.2) (Y")?<C and E [/ ]Zg[zds} <(C, for any n.
0

Therefore there exists Z € M?2 such that (Z™),, converges to Z weakly. Note that lim,,_, F™(t,ct,y) =
F(t,c,y), lim, 0o Y™ =Y, and

1—1
0> F"(tye, ") > F(t, e, Y]") > C%_ﬁéee_&ct v, for any n,

where the third inequality holds due to the first estimate in (A.2). The dominated convergence
theorem then implies that

T
lim |F"(s,¢s,Yy") — F(s,cs,Ys)|ds =0, for any t.

n—oo t
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Now we prove the convergence of (Z™"),, in M?2. Applying 1t6’s formula to |[Y™ — Y™|? yields
(A.3)

By - ¥+ e | iz Z as

r rT
=2 | [ v e - ) ds]
= LY () - PR ds] Lo [ / LYY () — F (V) d

T
<k | [ o -y @ - ) ds}

T
<45|0|C2 = E [/ e %
0

1—L 1—1
cs VAN — Cq w/\m‘ ds],

where the first inequality holds due to the fact that y — F™(¢, ¢, y) is decreasing and the second
inequality follows from the first estimate in (A.2). Since ¢ € C,, the dominated convergence theorem
implies the right hand side of (A.3) converges to zero as n,m — oo. Combining the previous
convergence with the weak convergence of (Z"),,, we obtain

T
lim E U \ZQ—ZSPds] =0,
0

n—oo

The Burkholder-Davis-Gundy inequality then implies

P — lim sup

n—oo t<T

T
/ (Z — Z,)dB,| = 0,
t

where P —lim stands for the convergence in probability. Passing to a subsequence, we obtain almost
sure convergence. Therefore, sending n — oo in (A.1), we obtain that (Y,Z) € S x M? solves
(2.4) and Y is nonnegative. Moreover, since

9

T T
V=¥ < [P s V) P Y s | [ (22 - 2B,
t t

after taking limits on m and supremum over ¢, we obtain

T
sup [¥7" — Y| < / [F" (s, 0, ") — F(s, s, Ys)| ds + sup
0

T
| (22~ z)as,
<T <7 | Ji

Therefore (Y),, converges to Y uniformly in ¢, implying that Y is a continuous process.

Step 2: General terminal condition. When £ is not bounded, set £ := £ A n and consider

T T
Yt"zé’“r/ F(s,cs,Y;")ds—/ Z" dB,.
t t

Results from the previous step imply that this BSDE admits a solution (Y™, Z") € S® x M? with
Y™ > 0. Moreover, since F' < 0, Y;* < E;[¢] for all n and ¢ € [0,7]. This a priori bound allows us
to construct a solution to (2.4) via the localization technique in [6]. We outline the construction
below.
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Consider 7 := inf{t > 0 : E[{] > k} AT for each k € N. Then (Ytnk, ka) = (Y3, ZiM < y)
satisfies the following BSDE

T T
Y;fn’k = YTZ + / H{SSTk}F(S7087 Y;%k) ds — / Z;L’kdBS'
t t

Since 0 < st’k < Espr, €] < k, we have

1—1
0> F(s,cs, YOF) > 50k e 05c, ¥

Then ¢ € C, implies E[fOT F(S,cs,st’k)ds] < 00. On the other hand, since £" < "1 and y —
F(-,-,y) satisfies the monotonicity condition, then the comparison result (cf. [34, Theorem 2.4])
implies Y™F < Y+LE Utilizing the same argument as in Step 1, we obtain Y* :=7 lim,, Y™* and
Z¥ € M? such that lim, Z™* = Z% in M2, and (Y*, Z*) solves the BSDE

(A'4) }/tk = YT]Z +/ H{sﬁTk}F(Sv CS’}/sk) ds — / Zdem
t t
where ?Ti =1 lim,, 7. Following from the definition of (Yk ZF), Y;’f\tkl = Y/} and Zfﬂﬂ{tgrk} = ZF.
Therefore we define
Y;:=Y}F and Z;:=ZF, whent € [0,7].

This construction implies lim; ,7Y; = £. Indeed, on {{ < k}, 7, = T and lim;_,7 ;" = ¢ for any

n > k. Therefore lim; 7 Y; = limy;_,,, f@k = limy_,, Y;"k = limy7 Y} = on {{ < k} when n > k.

This implies lim;_,7Y; = &, since T limg_,oo{¢ < k} = Q. Now sending & — oo on both sides

of (A.4), we confirm that (Y, Z) solves (2.4). By this construction, Y is continuous and satisfies

0 <Y; <E¢] for t € [0, 7], hence Y is of class D. The same argument as in [6, Page 612] shows
T 2

f(] |Zt| dt < 0.

Step 3: Remaining statements. For future reference, we prove a comparison result for (2.4). Let
(Y, Z) (resp. (Y, Z)) be a super-solution (resp. sub-solution) to (2.4), i.e.,

Y —I—/ F(s,cs,Y,)ds is a local supermartingale and Y’ +/ F(s,cs,Y,)ds is a local submartingale,
0 0

with Y > € > Yy, meanwhile Z and Z are determined by Doob-Meyer decomposition and mar-
tingale representation. Assuming that both Y and Y are of class D, then Y > Y. Moreover, if
YT>§~/T,thean>féf0ranyt§T.

To prove this comparison result, define

F(t,c,Yr)—F(t,c:,Yr) S
at P { Y 9 }/t 7é }/t

Yi—Yi .
0, Yi =Y

Since y — F(-,-,y) is decreasing, we have o < 0. It then follows that eo @sds(y _Y) is a local
supermartingale, hence a supermartingale, since the exponential factor is bounded and both Y and
Y are of class D. Therefore, Yy > ffT implies Y > Y. Moreover when Yr > ffT, we obtain the strict
comparison Y; > Y; for any ¢ < T. The uniqueness follows from the comparison result directly.
Since v > 1, then £ = e“”Tcélp_V > 0. Therefore Y > 0 follows from the strict comparison.

Finally, we verify that V¢ satisfies (2.2). To this end, since (Y,Z) solves (2.4), (V<,Zf5) =
(Y, Zy) /(1 — ) satisfies (2.3), implying that V¢ + Jo fcs, ViE)ds is a local martingale. Taking a
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localizing sequence (0 )n>1 for VE+ [ f(cs, VE)ds, we obtain

TNon TNon c P 1
Virooe | [ veas]| =B Vi, 4 [ 05 (v s
0 0

¥

Sending n — oo on both sides, note that V¢ < 0 and 3 > 1, therefore the integrand on the left side
is negative and the integrand on the right side is positive. The monotone convergence theorem and
the class D property of V¢ then yield

1
=3

T T
(A.5) Ve + 00K U V.jds} - U(cT)—i—/ 555 (1 —m)VO)7 ds

0 0 — %
Since 0 > E [fOT Vscds] = ﬁE [fOT 66981/8(18} > ﬁE [fOT sts} > ﬁ fOTE[S]ds > —o0, where the
second inequality holds since 7 > 1 and 6 < 0, the third inequality follows from Y, < E4[¢] and

~v > 1. Subtracting 60E [fOT Vscds] on both sides of (A.5), we confirm (2.2). O

The concavity of ¢ — V¢ is proved in the following. This proof utilizes simultaneously the joint
concavity of the generator for (2.5) and the class D property of the solution to (2.4).

-1

7
Proof of Proposition 2.4. Denote the generator of (2.5) as F(t,ct,y,2) = 56_&01’5_—% + 5(0 — 1)5

=
For ¢,¢ and ac + (1 — a)¢ € C,, denote AX = aX + (1 — a)X, for X =¢,Y,Z and X = ¢,Y, Z,
respectively. It follows from (2.5) that

D=

1—1
Ac, ¥ 1 AZ?
dAY, = —56—“% — 0= D)5y + A i+ AZdBy,
P

where, due to the concavity of (¢t,y, z) — F(t, ¢, v, 2),

Se—ot 1—1 1—1 -1 1 AZ2 72 22
At:——i Ac, ¥ —ac;, ¥ —(1—a)g w}+§(0_1) AYi_avi—(l—Oz)?—i >0,

and AY7 < e 9T Ach Y /(1 —1/4). Set
AY = (1 —1/9)AY)?  and AZ = (1—7)((1—1/4)AY)’"1AZ.
Ito’s formula yields
dAY; = (-595“&3‘%1@1‘% +(1— V)AYtl_%At) dt + AZ,dB;,

where (1 — ’y)AY}l_l/eAt < 0. On the other hand, AYy > e_‘WTAc;_V. Therefore (AY,AZ) is a
super-solution to (2.4). On the other hand, AY is of class D. Indeed, since 6 < 0,

(A6) AY =((1-1/V)AY)! <a(1-1/0)Y)’+ (1 -a)(1-1/0)Y)! =aY + (1 — )Y,

where Y (resp. Y) is the first component of the solution to (2.4) with ¢ (resp. &). Therefore, AY
is of class D, because both Y and Y are. Now consider Y2¢ as the first component of solution of
(2.4) where c is replaced by Ac. It then follows from (A.6) and the comparison result in Step 3 of
the previous proof that

aYy + (1 — )Yy > AY, > Ve
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Dividing the previous inequality by (1—+) on both sides, we confirm aV+(1—a)V{ < Voach(l_a)é.
U

APPENDIX B. PROOFS IN SECTION 2.2

Even though the generator H in (2.12) has an exponential term in y, the parameter specification
v > 1 and ¢ > 1 allow us to derive a priori bounds for Y. Then a solution to (2.12) is constructed
via the localization technique in [6].

Proof of Proposition 2.9. Due to Assumption 2.71), W := W_fd 1_T“Y,z)’<7’2_1u(X5)czls is a P—Brownian
motion. Therefore, (2.12) can be rewritten under IP, and all expectations are taken with respect to P
throughout this proof. On the other hand, recall that v > 1 and r + % 'S~ is bounded from be-
low. Therefore there exists a constant hy,q. such that h < hyq.. However, 1/Y "1y, in many widely
used models, is an unbounded function of the state variable, hence h and H(t,0,0) = h; — 60 + 9%
are not bounded from below. Therefore we introduce

T T
(B.1) Vo=¢+ / H(s, Vs, Zs)ds — / ZydW .
t t
where Y, = Y, + [ (hs — 80) ds, € = [ (hy — 00) ds, and
Yoy e
H(t,y,z) = %thz' + H%eg Jo ha=00dsg—Fy

Consider a truncated version of (B.1):

T T
(B.2) yp=£" +/ H" (s, V0, Z2) ds —/ ZrdW ,
0 t
where " = fOT hs V (—n) — §0 ds is bounded and
1 v
H" (t,y,z) = §thz' + GEE% Jo hsV/(=n)=80 ds (e_%y A n) )

This truncated generator H" is Lipschitz in y and quadratic in z. Indeed, since eigenvalues of
'Y 1o is either 0 or 1, 0 < zp'd’S"tops’ < zp'pz’ < |22, Then v > 1 and the definition of M
after (2.13) implies

1
(B.3) 0< ;\2]2 < zM(X)Z <z

Therefore it follows from [25, Theorem 2.3] that (B.2) admits a solution (", Z") € S x M2
Moreover, due to § < 0, H" is decreasing in n. The construction of Y™ in [25, Theorem 2.3] yields
Yy > yrtl In what follows, we derive a priori bounds on Y" uniformly in n. This uniform estimate
facilitates the construction of a solution to (B.1).

On the one hand, § < 0 and the third inequality in (B.3) yield H"(t,y,2) < %|z|*>. Consider

—n T 1 —=n T—n T
Yy e +/ 7" s - / 7" dW,,
t 2 t
which has an explicit solution Y = log E, [efoT hsV(=n)=60 ds}. Then

t
(B4) Y- / he V (—n) — 60 ds = log E, [eftT haV(=n)—06 dS} < (hyaw — 80)(T — 1).
0
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On the other hand, when y — fot hsV (—n) — 00 ds < (hpmaz — 00)(T —t), the first inequality in (B.3)
and 6 < 0 imply H"(t,y,z) > H%e(‘sw_%h"“”)ip. Therefore consider the BSDE

P T _

Y, = €40 i N (r ) [ g.aiT,

(G ¢

whose solution Y admits a representation Y, = E;[¢] + 9%6(5w_%hm‘“”)T(T —t).
Now since H" is sandwiched between two generators with simpler forms, comparison result yields
5 .

(B.5) Et[g]+6Ee(5’”_%hm”)T(T—t) Y, <Y<Y} =logE, [efoT hsV<—">—59dS] < (hmas—00)T,
for any n > 0. These uniform bounds on Y™ allow us to construct a solution (), Z) to (B.1) using
the localization technique in [6, Theorem 2]; see also Step 2 in the proof of Proposition 2.2. The
resulting ) satisfies

P
(B.6) Eql¢] + H%e“’l"%hW’T(T — 1) < Vi < log By [¢f] .

The previous inequalities imply that lim; 7)Y, = £ Hence ) satisfies the terminal condition of
(B.1). The desired estimates on Y follows after subtracting fg hs — 60 ds on both sides of the
previous inequalities, in particular,

t
(B.7) Y, =Y — / hs — 60 ds < logE, [efﬂhs—‘”)ﬂ < (hyaw — 90)(T — 1).
0

For the statement on Z, take a localization sequence (oy,), for [; ZsdWs, (B.1) yields

n P On s
%E |:/ ZSMSZ;dS:| = yo —_ E[yo_n] — H%E |:/ e% fO hu—éﬁdue—%ysds )
0 0

Sending n — oo on both sides, applying the second inequality in (B.3) to the left-hand side, the
first inequality in (B.6) to the second term on the right-hand side, and (B.7) to the third term, we
confirm E[fOT |Zs|?ds] < oo. O

The following several results prepare the proofs of Theorems 2.14 and 2.16. First we show uil—jeYO

is an upper bound for the optimal value among permissible strategies.

Lemma B.1. Let Assumption 2.7 hold. For any permissible (r,c),
w7
1 -~
where V¢ is defined in Proposition 2.2, Y is constructed in Proposition 2.9, and c is financed by w
via (2.8).

(B.8) Yo > Vg,

Proof. This proof extends the technique in [20] to recursive utilities. For a permissible (7, ¢), define
- w 1—v t W 1—v
Ry = ﬂen —I—/ f <65,¢6Y5> ds, te]0,T],
L=~ 0 L=~
where W = W™, Then (2.11) and (2.13) imply that R is a local supermartingale. Due to Doob-

Meyer decomposition and martingale representation, there exist an increasing process A and Z%
. 1-
such that R™ = —A + [ ZEdB,. Therefore, <(W) “eY, ZR) is a supersolution to (2.3), whose

1—y
terminal condition is (Wr)'=7/(1 —~) € L. Indeed, since (W)'~7eY is of class D by permissibility
and Y7 = 0, we have E[(Wr)!™7] < co. On the other hand, consider the utility V,? associated to
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the consumption stream ¢ and the terminal lump sum Wyp. The comparison result in the proof of
Proposition 2.2 confirms (B.8). O

In what follows we will show that (7*,¢*) is a permissible strategy and it attains the upper
bound %ey‘). First, we establish an important result that certain exponential local martingale
associated to m* is a martingale.

Lemma B.2. Let Assumptions 2.6, 2.7 and 2.10 hold. Then Q =& ([ (1 — y)(x}) 0sdWE + [ Z,dWy)
is a P—martingale on [0,T].

Proof. 1t follows from (2.14), the definition of W* and M that
1 —)(7*) ocdW? + ZdW = 129 1o +ZM dW+1_—7 "+ Zpo") L optawt
(1—~ I P w+Zp P
v v
= LWaw + L@ awt.

Here we suppress time subscripts to simplify notation. First we claim that if Q) := & (f Lgl)dWS)
is a martingale, so is (). Indeed, for any t < T,

E[Q: =E :5 </ Lgl)dWs>t5 </ Lg2>dwj>t]
() e furon)
SELR)

Here FW = ¢(W,;0 < s < T), the third identity follows from [21, Lemma 4.8] since L and
W+ are independent, and the fourth identity is due to the martingale assumption on Q). In the

gl

remaining of the proof, we will prove the martingale property of Q).
For the sequence of subdomains (F,, ), in Assumption 2.10 1), define 7, := inf{t > 0| X; ¢ E,}AT.
we first prove that Y.,,, is bounded. Since we have seen in Proposition 2.9 that Y is bounded from

above, it suffices to show Egm [ / :AFTn hsds] is bounded from below. Then (2.15) implies that YA,
is bounded as well. Due to the Markovian structure, define

y(t,z) == EF [/tT h(X,)ds

The Feynman-Kac formula (see [19] when the equation is not uniformly parabolic) implies that,

Xt:x]

under Assumption 2.6, y € C12([0,T] x E) and it is the unique solution to
dy+Ly+h=0, yTz)=0,

where £ is the infinitesimal generator of X under P. Now since E,, is compact, the continuity of y
implies that y(- A 7, X.ar, ) is bounded.
As a solution to (2.12), (Y, Z) satisfies

Y;:Ym—i—/ H(s,Ys,ZS)ds—/ ZydW,, t€ 0,7
t t

Since both X A, and Y., are bounded, it follows from the BMO-estimate for quadratic BSDEs (cf.
eg. [33, Lemma 3.1]) that fdAT” ZsdWy is a BMO-martingale. Note that both /X top(X.Ar,) and
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M(X.pr7,) are bounded. Therefore fO'AT" LMaw, is a BMO-martingale as well. Then [23, Theorem

2.3] implies that £( [ LY AW,) s, is a martingale. Therefore dQ"/dP := &( il LVaw,),, defines
Q" on F;, which is equivalent to P.
Assuming that lim,, ., Q" (7, < T') = 0, by the monotone convergence theorem,

E [5 ( / Lgl)dW8> } = lim E |& ( / Lgl)dW8> H{Tn:T}]
T n—roo T

n

= lim E [5 ( / L§1>dW8> ] — lim E
n—oo T n—oo
=1— lim Q"(r, <T)
n—oo
=1,

& </ Lgl)dW5> ]I{T7L<T}]

n

proving the martingale property of £( [ Lgl)dWs) on [0,77.
It remains to prove lim, . Q" (7, < T') = 0. To this end, (2.12) yields

t t
Y, =Yy — [ H(s,Ys, Z)ds + / ZydW,.
0 0

On the other hand, recall § from (2.16) we have from It6’s formula,

e /‘HV¢ EZX%Jmm<¢ <m+1/ Vela(X )W,

t,j=1
¢
= ¢(z) + /0 [SW - —V¢ aMa'V—h— ’Y’YM'E_lapa’Vqﬁ] ds+/0 V¢ a(X,)dW;

Taking difference of the previous two identities,

Y — ¢(Xy)
t
=%—M@+A(&—de&ﬂﬂn
t
—/ [ ZMZ' — —V(b aMda'V+ 9%6 e — 50 + Flo) + ! ;fyu'ﬁ_lap(Z - V(b'a)'} ds
0

:%—M@+A(%—de&»ﬂw

t 1 / 1 / / ! / (W} — Yy,
—/ [§ZMZ — 5 VélaMa Vo —(Z —-Vea)MZ —l—H—we 0 t—59+3[¢]] ds
0

:%—M@+A(%—de&»ﬂw

()
+/T&z_vmewth@—eie@“+w—sw@w,tém,
0 12 (U

where W" = W — fo Yis is a Q"—Brownian motion on [0,7,]. On the right hand side, the

quadratic term is nonnegative, —976 7Y is nonnegative since 6 < 0, and 60 — F[¢] is also bounded
from below due to Assumption 2.10 ii). Therefore, there exists some negative constant C' such that

(B.10) Y., —o(X.,) > Yo —o(z) + Cry + /Tn(ZS —V¢'a)dW?.
0
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The stochastic integral on the right hand side has zero expectation under Q™. Indeed, since
fO'AT" ZsdWsy is a BMO(IP)—martingale and V¢'a(X 5., ) is bounded, hence fO'AT"(Zs —V¢'a(Xs))dWy
is a BMO(PP)—martingale as well. Now since fO'AT” LMaw, is a BMO(P) —martingale, [23, Theorem
3.6] implies that fO'AT”(Zs — V¢'a(Xs))dW? is a BMO(Q™)—martingale. Therefore its expectation
under Q" is zero. It then follows from (B.10) that

(B.11) EQ" [Y;, — ¢(X,,)] > Yo — ¢(x) + CT > —o0,  for each n.

Now since Y is bounded from above and ¢ is bounded from below due to Assumption 2.10 i), there
exists a constant C', such that

Yo, — 6(X5,) = (Yo, — 6(X5,)) Lrycry + (Y7 — 6(X7)) Loy < C = xeigg () Lgr, <7y

Now sending n — oo in (B.11), Assumption 2.10 i) and the previous inequality confirm that
limy, 00 Q" (7, < T) = 0. O

The martingale property in the previous result helps to verify the permissibility of (7*,c¢*).

Corollary B.3. Let Assumptions 2.6, 2.7 and 2.10 hold. Then (W*)I_W e¥ is of class D on [0,T],
where W* is the wealth process associated to (7*,c*).

Proof. The calculation leading to (2.13) yields
d(W;) e
_1
— (W)Y (59 () v ((wt*)l—“f eYt) " 59) dt + W)™ ¥ [(1 = 7)(x}) 00 dWP + ZdWi]
— (W)Y [95%—%% . 59] dt + (W) €Y [(1 = 7)(n}) o dWE + Zyd W] |

where the second identity follows from the form of ¢* in (2.14). Therefore,

t
(W7 ¥ = ! =70 exp (—/0 <5woe—%Ys _ 59) ds> g </(1 (Y o dWE / ZSdWS> .

t

Since € < 0 and Y is bounded from above, the second exponential term on the right is bounded,
uniformly in ¢. Meanwhile, due to Lemma B.2, the stochastic exponential on the right is of class D
on [0,T]. The statement is then confirmed. O

Lemma B.4. Let Assumptions 2.6, 2.7, 2.10, and 2.11 hold. Let ¢* be in (2.14) and cr = Wi
Then c* € C,.

Proof. Since Y7 = 0, the class D property of (W*)'™7 ¢¥ in Corollary B.3 yields E[(W})l_y] < 0.
On the other hand, the expression of ¢* in (2.14) implies

-1 p—1 -1
e () TE = e e T e ()T

Since ¢ > 1, 8 < 0, and Y is bounded from above, the first three terms on the right hand side are
bounded. Therefore it suffices to prove

(B.12) E [/OT W% ds] < .
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To this end, it follows from Assumption 2.11 that

r T 1 s 1 R L
E |:/ (W;k)l—% d3:| = / EQO |:e<1—$> I rudug </ A;dWS) e—<1—$> I rudu (W;k)l_w:| ds
0 0 .

T S
< / EQO [e(l_%) fOT(Tu)erug </ A;dWS) 6_ (1_%) fo rudu (W:)l_%] ds
0 T

(4

0 % T o s 1—1
< E® /IW[fkmwwj Y ds
0

e(ilf—l)foT(?“quUg </ )\;de>

T

1
P v
T

Here the first inequality follows from 1 > 1; the second inequality holds due to Holder’s inequal-

< w3 TEY

< 0.

ity; the third inequality is obtained using the fact that e~ Jorsdsyp* is a nonnegative QY—local
martingale, hence a Q®—supermrtingale; and the fourth inequality holds thanks to (2.17). O

Now we are ready to prove the first main result.

Proof of Theorem 2.14. Corollary B.3 and Lemma B.4 have already shown that (7*,¢*) is permis-
sible. Choosing (7*, ¢*), we have from (2.11), (2.13) and Y7 = 0 that

x)1— k1= T ) Lt r
Men:w+/ f<c;,%>ds—/ Z.dB,,
1—7 L=y i 1=7 ‘

for some Z. Then the class D property of (W*)!™7 ¥ and Proposition 2.9 combined imply

1—y T *)1—y *\1—v
o el B ]
L=y 0 -~ 11—+
Therefore the upper bound in Lemma B.1 is attained by (7*,c*). 0

Finally, we prove Lemma 2.15 and Theorem 2.16.

Proof of Lemma 2.15. Calculation using (2.8) and (2.21) shows that WD* + [ D}c.ds is a local
martingale. It then remains to prove (2.21). To ease notation, suppress all time subscripts. Using
(2.12) and (2.14), calculation shows

(7)Y Sr*| dt — (W) (7*) adW P
1-— 1 1
=W*)7 [—7(7‘ -+ #;/E_l,u + ;,u’E_lapZ’ + %Z,O/O'/E_IOWZ/ dt
— W) (7 odW?

1
%Y:J[fH@KZHG%Ziﬁ+JfﬂV
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Combining the previous two identities, (2.20), and the expression for ¢* in (2.14), we confirm
dD* =D* [—v(r )+ (0 —1)YeTY — 60
+1_T%’z:—1u + 1_77;/2_10?2/ + %ZMZ’ —H(t,Y,Z)| dt
+ D* [—~(7*) 0dW? + ZdW |

=D* [—r + <9 -1- % + 7> 51#6—151’} dt + D* [—~(7*) cdW? + ZdW]

=—rD*dt + D* [—(7") cdW" + ZdW| ,
where the third identity follows from 6 + v —1 — % =0. O
Proof of Theorem 2.16. 1t follows from (2.14) and (2.20) that

t t
(B.14) W;Dj + / Dicids = Cy(W) 7ert + / Cy6% e (W) =Te¥s ds.
0 0

Here C; = wYe Y0 exp [fg(@ - 1)5w6_%Y“du - 5975], t € [0,7]. Since # < 0, C is bounded from
above by a constant. We have already seen in Lemma 2.15 that W*D* + [ Dicids is a nonnegative
local martingale. It suffices to prove that it is of class D. To this end, it follows from (B.13) that

T (i )
E / §EL (v e ) as
o 1-3%
1—y

v v g [(W;)l—”*} + i : /0 "k [(W:)l—“f eYs} ds

1—7 _1—7
< Q.

Here since (W*)'"7¢eY is of class D, E {(VV;k ) eYS} is bounded uniformly in s. Therefore the

previous inequality holds. On the other hand, using the expression of ¢* in (2.14),

T (\1=% 1-1 ¥ T
E| [ gL () s = U W) e(l_z)YSds} .
o l—=3 =3 0
Then ¢ > 1 and the previous two equations combined yield that the second term on the right

hand side of (B.14) is bounded from above by an integrable random variable, hence is of class D.
Meanwhile, using the class D property of (W*)l_“’ e¥ again, the first term on the right of (B.14) is
also of class D. This confirms the class D property of W*D* + [; Dicids. O

APPENDIX C. PROOFS IN SECTION 3

To prove Proposition 3.2, let us recall the following result on the Laplace transform of integrated
square root process; cf. [36, Equation (2.k)] or [8, Equation (3.2)].

Lemma C.1. Consider X with dynamics
dX; = (19 — K/Xt)dt + ar/ X dWy,

where W is a 1—dimensional Brownian motion. When
;2

Q<2T¢27
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e o ' X.ds) ‘ Xo=1

Proof of Proposition 3.2. Assumptions 2.7, 2.10, and 2.11 are verified in what follows. We denote
o(x) = Jxo, B(x) = 2%, b(x) = b({ — ), a(x) = a\/z, and © = o'X" 0.

Assumption 2.7: Note 1;—“’,u’(a:)Z‘,_l(a:)a(gn)p(a:) = I_T“’X@p\/i. Consider the martingale problem
associated to L 1= [b@ - (b - 1;—7a)\’9p) az} Oy + 2a%29? on (0,00). Since bl > a2, Feller’s test

of explosion implies that the previous martingale problem is well-posed. Then [10, Remark 2.6]

the Laplace transform

is well-defined for any T > 0.

implies that the stochastic exponential in Assumption 2.7 i) is a ]P’ martingale, hence P is well
defined. For Assumption 2.7 ii), h(x) = (1 —y)ro + [(1 —y)r1 + “’X@)\] x. Since X has the

following dynamics under P:

dX; = [bé — (b 1= fya)(@p) Xt] + ar/ X dWy,

where W is a P—Brownian motion. Then EF] fOT h(X)ds] > —oo follows from the fact that EF[X,]
is bounded uniformly for s € [0, 7.

Assumption 2.10: The operator § in (2.16) reads

Slo] = Ea x82¢+< —bx + L

’Yaxepa;> 8x¢+%Ma2x(8x¢) +(1- ’Y)(T0+7’133)+—1 > NOAz,

where M =1+ 1= 'y p'©p > 0. Consider ¢(z) = —clogz + cx, for two positive constants ¢ and ©
determined later. It is clear that ¢(x) 1 oo when z | 0 or T 0o. On the other hand, calculation
shows

o 2oy Yeenr —veel L
3[¢]—C+[2ac+2acM b@c]x

e

where C is a constant. Since bl > §a2, the coefficient of 1/x is negative for sufficiently small c.

a/\'@p> c+ ;a EM+ (1 —)r + 1—77)\ O

When 71 or NOX > 0, since v > 1, the coefficient of z is negative for sufficiently small €. Therefore,
these choices of ¢ and ¢ imply that F[¢](x) | —oo when = | 0 or = 1 oo, hence §[¢] is bounded from
above on R, verifying Assumption 2.10.

Assumption 2.11: Consider the martingale problem associated to £° := [bl — bz — ap’\x] 0, +

—i—%a%@% on (0,00). Since bl > a , Feller’s test of explosion implies that this martingale problem
is well-posed and its solution, denoted by QF, satisfies % = ( [=Npv des) o~ Define QO via

0
d;% = 5< /Xp\/XSdWS - /ij‘\/XdesJ‘> =& (/ —X\/Xdesp>
T T

Here, due to the independence between X and W=, proof similar to (B.9) implies that both sto-
chastic exponentials on the right are P—martingales; hence Q° is well defined, and X in Assumption
2.11 can be chosen as \WX.
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To verify (2.17), note
P 1 T
(C.1) £ </ A’x/fde;)) = exp <§(¢2 - 1/1))\’)\/ Xsds> £ </ wA’\/XSdWS?) :
T 0 T

where W0 := Wr + fo M/ X,ds is a QU—Brownian motion. Following the construction of Q°, one
can similarly show & ( JONVX SdWSO) is a Q—martingale. Hence Q¥ can be defined via

. N/ X dW?)
o0 =€ / W W, :

Combining the previous two change of measures, the dynamics of X can be rewritten as
dXy = [b0 — (b— (¢ — 1)aNp) X;] dt + a/XdW,’,

where WY := W + [(1 — )N py/Xds is a 1—dimensional Q¥ —Brownian motion. On the other
hand, calculation using (C.1) shows

¥
e(w—l) fOT rsdsg </ ,’7{9ng0>
T

Then Lemma C.1 implies that the expectation on the right hand side is finite when

T
E?’ = (¥~ TEQ” [exp <[(1/) —1)r1 + %(1/)2 - 1/))/\')\] / Xsds>} :
0

(b— (¥ —1)aNp)”
2a2 )

1
(= D+ 5@ —)XA <
This is exactly the assumption in Proposition 3.2 ii). O

Proof of Proposition 3.4. Assumptions 2.7, 2.10, and 2.11 are verified. Then statements of Theo-
rems 2.14 and 2.16 follow. We denote © = o'~ !¢ throughout the proof to simplify notation.

Assumption 2.7: Note I_T'Y//(x)ﬁ_l(x)a(a:)p(x) = 1_T”’()\o + A\z)'Op. Consider the martingale

problem associated to £ := | —bx + 1_7761(/\0 + A\z) @p] O + %a%g on R. This martingale problem
is well-posed since all coefficients of £ have at most linear growth. Then [10, Remark 2.6] implies
that the stochastic exponential in Assumption 2.7 is a P—martingale, hence P is well defined. For
Assumption 2.7 ii), h(z) = (1 — v)(ro + mz) + 12_—77(/\0 + Ax)'O(\g + A1z) is bounded from below
when either 71 = 0 or \j©X; > 0. Since X is another Ornstein-Uhlenbeck process, with modified
linear drift, under P, then X has all finite moments, cf. [22, Chapter 5, Equation (3.17)], then
Assumption 2.7 ii) is satisfied.

Assumption 2.10: The operator § in (2.16) reads

5l6] —y202o + b+ 1=l + Maf6p ) 06+ S0 (0r0P

1 _
+ (1 =7)(ro +r1w) + TV(AO + A12)' O\ + Aiz),



CONSUMPTION INVESTMENT OPTIMIZATION WITH EPSTEIN-ZIN UTILITY 27

where M =1+ I_Tﬁ’p’ ©p > 0. Consider ¢(x) = cz?, for a positive constant ¢ determined later. It
is clear that ¢(z) T 0o as |z| T 0co. On the other hand, calculation shows

o] =ca® + 2¢ <—b$2 + ! ; ’YCL(AO + )\13:),@/):5> + 2¢%a® M
1—
(1= 3)(r0 - 712) £ =5 o+ 2az) O + Ar)

1—7 1

= <—2cb + 2c aX,©p + 2c¢2a> M + — 7)\/1(9)\1> 2% 4 lower order terms.
Y

2

When —b+ I_T'Ya)\’l Op < 0, since v > 1, 12_—;’)\’1@)\1 < 0, we can choose sufficiently small ¢ such that
Flo] & —oo as |z| 1 co. When N[O, > 0, then 12_—;*/\’1@/\1 < 0, we can also choose sufficiently small
¢ such that §[¢] has the same asymptotic behavior. In both cases, §[¢] is bounded from above on

R, hence Assumption 2.10 is verified.
Assumption 2.11: Consider the martingale problem associated to £° := [—bx — a(\g + M\iz) p]0r +

%a%‘?ﬁ on R. Since all coefficients have at most linear growth, this martingale problem is well-posed
and its solution, denoted by Q”, satisfies % = ( J =0+ M Xy) deS)T' Define Q° via
dQ®

¢ <— /(Ao AKX (pd W + pLdWsi)>T iy </ “(ho + AlXS)’dWSP)

Argument similar to (B.9) implies that Q" is well defined. Therefore A in Assumption 2.11 can be
chosen as A\g + \1 X.
To verify (2.17), note

(C.2)
P 1 T
£ (/()\0 + Ale)’dWSO> = exp <§(¢2 — zp)/ | Ao + A1X5\2d3> £ (/w()\o - Ale)’dWSO> ,
T 0 T
where W0 := W* + fo'()\o + M1 X,)ds is a Q'—Brownian motion. Following the construction of

Q", similar argument shows that & ([ (Ao + M X,)dW?) is a Q"—martingale. Hence QY can be
defined via

T

dQ¥ /
Q0 =£ (/7/)(/\0 + A1 Xs) dW£>T

Combining the previous two change of measures, the dynamics of X can be rewritten as
dX; = [( — )aryp — (b — (b — 1)aN;p) X,] dt + adW},

where WY := W + [(1 = ¢)(Xo + M1 X;)pds is a 1—dimensional Q¥ —Brownian motion. On the
other hand, calculation shows, for any ¢ > 0,

(C.3)

rQ”

(4
e(d}_l) fOT 7‘+(Xs)d86‘ (/ )\/(XS)dWSO> ]
T

— CEY” |exp (¢—1)/T(7~X) ds + (12 — P)AHA /TXd i [ x2a
= | (nXo)+ oA | 505+ 5 AL s a8

T
< C.EY [exp <<l(¢2 — PN AL+ €> / std.s)] ,
2 0

where C'is a constant and C¢ is a constant depending on e.
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In order to appeal Lemma C.1 to calculate the expectation on the right hand side of (C.3), let

us introduce another measure Q¥ via % =& <—(¢ -1) {)pWr}p ) Under this measure, X has

dynamics
dX, = — (b— (¥ — 1)aN;p) Xydt + ad W',
where WY := WY + [o(h=1)Xppds is a QY —Brownian motion. Let Y := X?2. It then has dynamics

dY; = [a® =2 (b— (¥ — 1)aN|p) V3] dt + 2a\/Yed W,

which is of the same type of X in Lemma C.1.
Come back to (C.3), Holder’s inequality implies, for any ¢ > 0,

EQ [exp ((%(1/;2 BN+ e> /0 ! stds>]

. "d (0] 1 T
— g _d% exp <<§(¢2 — )N AL+ e> /0 desﬂ

- rQ¥ [exp ((1 + 6) (%(1/)2 — PN AL+ e> /OT ngsﬂ b .

<EY <—d@w>
Observe that the first expectation on the right hand side is finite, since % =& <(¢ — 1A, pW}ﬂ )

dQv
has all finite moments. For the second expectation, we can choose sufficiently small § and e such

5
1406 | 145
5

that, according to Lemma C.1, when

1 4(b— (¥ — DaX;p)®
(04) 5(1/}2 - w))‘ll)‘l < 842 ! )
the second expectation is finite. Now combining the previous estimates and (C.3), we confirm
(2.17). Finally, note that (C.4) is exactly the assumption in Proposition 3.4 ii). O
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