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ABSTRACT

READ ALIGNMENT USING DEEP NEURAL NETWORKS

Read alignment is the process of mapping short DNA sequences into the reference genome.

With the advent of consecutively evolving "next generation" sequencing technologies, the need for

sequence alignment tools appeared. Many scientific communities and the companies marketing the

sequencing technologies developed a whole spectrum of read aligners/mappers for different error

profiles and read length characteristics. Among the most recent successfully marketed sequencing

technologies are Oxford Nanopore and PacBio SMRT sequencing, which are considered top play-

ers because of their extremely long reads and low cost. However, the reads may contain error up

to 20% that are not generally uniformly distributed. To deal with that level of error rate and read

length, proximity preserving hashing techniques, such as Minhash and Minimizers, were utilized

to quickly map a read to the target region of the reference sequence. Subsequently, a variant of

global or local alignment dynamic programming is then used to give the final alignment.

In this research work, we train a Deep Neural Network (DNN) to yield a hashing scheme for

the highly erroneous long reads, which is deemed superior to Minhash for mapping the reads.

We implemented that idea to build a read alignment tool: DNNAligner. We evaluated the per-

formance of our aligner against the popular read aligners in the bioinformatics community cur-

rently — minimap2, bwa-mem and graphmap. Our results show that the performance of

DNNAligner is comparable to other tools without any code optimization or integration of other

advanced features. Moreover, DNN exhibits superior performance in comparison with Minhash

on neighborhood classification.
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Chapter 1

Introduction

Deoxyribonucleic acid (DNA) is the blueprint of life. Understanding genome, which is en-

coded by the DNA, has leveraged scientific communities to research about complex biological pro-

cesses of living organisms. Genome sequencing was made feasible with the development of Sanger

sequencing [1] in the late 1970s, after which a lot of potential research areas has emerged. Some

well-known research areas include evolutionary biology, metagenomics, personalized medicines,

forensics and more. Genomic sequences have provided a tremendous understanding of life science,

however, the picture of these processes are still very far from being complete.

DNA is a molecule made up of Adenine(A), Guanine(G), Thymine(T) and Cytosine(C), where

each of these chemical compounds (nucleotides) are made up of a nitrogenous base, a five-carbon

sugar (ribose) and a phosphate group [2]. Genome sequencing is a process of finding the nu-

cleotides in the exact order that make up an organism’s DNA. The genome sizes vary significantly

between species. The bacterium Escherichia coli K-12 [3] has a genome size of 4 million base

pairs, whereas human beings have a genome size of 3 billion base pairs [4]. Current sequencing

technologies cannot read the DNA sequence from start to the end, all at once, in a single run.

Instead, the DNA is fragmented into many shorter pieces and each fragment is sequenced indi-

vidually. Later, to connect the pieces together, a computational process called genome assembly

is carried out for obtaining a complete genome. Reference genome is a genomic sequence of an

organism published by scientists to serve as a standard representative of the organism’s genome.

Sequence alignment is a process of mapping shorter DNA sequences into the reference genome.

Many important projects in genomics are dependent on sequence alignment. Genome variant dis-

covery [5], quantitative analysis of transcriptome (RNA-seq), identification of protein binding sites

(ChIP-seq) [6], genome assembly [7] and study of genome-wide methylation pattern [8] are some

of the applications of sequence alignment. The alignment process is inherently hard as it involves

searching for small fragments in a relatively large sequence. Further, due to the imperfect nature
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of sequencing technologies, the alignment process often involves searching for inexact fragments,

adding in more complexity. Traditionally, this problem was handled by allowing a few mismatches

while searching. For example, using gapped seed search if searching in hash tables or allowing

few mismatches while traversing a suffix trie. With the recent advent of third-generation sequenc-

ing technologies, the reads of longer lengths are obtained in comparatively cheaper cost, which

has been a blessing for the bioinformatics community and has been widely accepted for future

research. But the longer read length comes with a price. The reads obtained from third generation

technologies are much error-prone (up to ∼ 30%) and the error profile is not uniform. The nature

of these reads make the traditional approach unsuitable for long-reads alignment.

This thesis presents an approach using Deep Neural Network and Minhash for sequence align-

ment. The method is inspired by the successful application of Neural Network in pattern recogni-

tion from the data. In this project, we want to see if Neural Network can learn patterns from the

genomic sequence for alignment in presence of high error rate. On the other hand, Minhash is a

probabilistic dimensionality reduction technique, which has been used multiple times in the litera-

ture of long reads alignment, correction, and genome assembly. Minhash captures the fingerprints

from the document, which provides an approximation of Jaccard similarity between them. This

thesis presents a sequence alignment tool - DNNAligner, which uses Neural Network to find the

most probable locality for a given read and uses Minhash for mapping it to approximate neighbor-

hood. The results show that the performance of our approach is comparable to other popular tools,

suggesting that Neural Network might be one of the areas to explore for development of future

tools in the sequence alignment.

The rest of the thesis is organized as follows. The remainder of the introduction presents a

discussion about sequencing technologies. In Chapter 2, we discuss some of the related works

accomplished for sequence alignment problem. We discuss the approaches those tools have used,

and discuss how the subsequent development of other tools tackled the problem faced by the former

tools. In Chapter 3, we discuss the sequence alignment problem from a high-level view and discuss

inputs and outputs expected by a generic sequence alignment tool. Later we provide a high-level
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view of our sequence alignment tool. In Chapter 4, we discuss Neural Network architectures, data

preparation, and training, and contrast two different architectures we tested. In Chapter 5, we

discuss Minhash and how we use it in our aligner. In Chapter 6, we discuss the local alignment

problem and discuss the solution based on dynamic programming. In Chapter 7, we discuss the

results and evaluation of our sequence alignment tool.

1.1 Sequencing Technologies

The first sequencing technique emerged in the late 1970s and the technology has been evolving

ever since, increasing the throughput and reducing the cost of sequencing. The cost of sequenc-

ing a human genome was in the range of billions when it was first sequenced. Later on, with

technological advancement, the average cost fell to around $1000 [9].

1.1.1 First Generation Sequencing

The first DNA sequencing method, Sanger sequencing, was published in 1977 [1]. In this

method, DNA is fragmented and a complementary strand is artificially synthesized in test tubes

using dNTPs (deoxynucleotides). As the DNA is being synthesized, the complementary strands

are terminated with ddNTPs (dideoxynucleotide) at random positions resulting in strands of uneven

length. The strands are passed through capillary gel electrophoresis, where shorter strands move

faster than longer strands. The ddNTPs are fluorescently labeled allowing the nucleotides to be

read from the gel, which provides with the sequence of read associated with the fragment. Sanger

sequencing is also known as Chain Termination method.

Sanger sequencing provides long and highly accurate reads. The reads are typically ~1000 base

pairs long and per-base accuracy is 99.99%. This technology suffers from very low throughput

resulting in a very high cost of sequencing ($0.50 per kilobase) [10]. The errors are dominated by

substitutions and are more likely towards the end of the read.
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1.1.2 Next Generation sequencing

Next Generation sequencing technologies (NGS), also known as the second generation, came

into existence around 2005. These technologies break the limitations of previous technologies

providing high throughput (millions of sequencing reads in parallel), low sequencing cost and

direct inference of bases without requiring electrophoresis. Based on their sequencing approach,

NGS technologies are further divided into Pyrosequencing, Sequencing by synthesis, Sequencing

by ligation and Ion semiconductor sequencing. Some of those approaches involve a synthesis of

the complementary strand of DNA and reads are produced by sensing the nucleotides consumed

on the process.

Roche/454 sequencers use pyrosequencing, which works by releasing a pyrophosphate while

synthesizing. The released pyrophosphate undergoes chemical reaction resulting in an emission of

light, which is sensed to determine the corresponding nucleotide. Pyrosequencing generates a read

of length almost close to Sanger sequencing length but it suffers from insertion/deletion errors due

to the presence of homopolymers in a genome [10]. Ion semiconductor sequencing is similar to

the Pyrosequencing, except it produces hydrogen ion instead of pyrophosphate.

Illumina sequencers use sequencing by synthesis. In this process, PCR bridge amplification

creates several identical copies of each sequence, which are organized into clusters. A synthesis

process is carried out on those clusters. At each step, a terminated nucleotide is attached to form

a complementary DNA strand. The attachment emits light and is sensed. The synthesis process

continues with the removal of a terminator, fluorescent label and washing away entire solution for

a fresh new cycle [11]. Illumina produces reads of about 50-300 bp length, and it majorly suffers

from substitution error towards the end of the read.

1.1.3 Third Generation sequencing

The third generation sequencing technologies came into existence around 2010. These tech-

nologies emphasize single molecule sequencing, which is sequencing from a single DNA molecule

without the amplification step. The two main technologies that fall under this generation are PacBio
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SMRT (Single-Molecule Real-Time sequencing) and Oxford NanoPore Technology (ONT). PacBio

SMRT sequences a strand by sensing the fluorescent signal emitted due to attachment of a nu-

cleotide while synthesizing. However, it does that in real-time without the need for amplification

in a microfabricated structure called ZeroMode Waveguide (ZMW). ZMWs are nanometer-sized

wells whose bottom is illuminated with a light source. Due to the fact that the diameters of those

wells are smaller than the wavelength of light, the intensity of light gradually decreases towards the

top, hence reducing the interference from the top. The wells contain DNA polymerase attached to

the bottom where strand extension occurs and the emitted signals are detected on the fly. Similarly,

ONT, on the other hand, uses nanopores to isolate and detect the bases. Only one DNA molecule

can pass through a nanopore and it detects the electric current fluctuation as the molecule passes

through it. The nucleotides are inferred from the recorded electric fluctuation. The read length of

SMRT sequences is on average ~10kbp long with an error rate around 13% [12]. The individual

read can be up to 60kbp in length [11]. ONT sequencers have a high error rate of ~12% and each

read might be as long as 150 kbp [11]. Both of those devices are still under active development.
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Chapter 2

Literature Review

Since the development of Sanger sequencing technology [1], the sequence alignment problem

has been researched extensively. In bioinformatics, two sequences are compared to each other

based on the edit operations (insertion, deletion, and substitution) required to transform one se-

quence to another, also known as edit distance. The sequences with less edit distance are more

similar to each other. Further, when a substring of a target string is matched with the query string,

then it is termed as a local alignment. The sequence alignment problem is essentially a local align-

ment between read sequence and the reference genome. The region of the genome, where a read is

matched with an edit distance below some predefined threshold, is the region where it is mapped.

The local alignment is guaranteed to find all the regions above some threshold and therefore it is

considered as a full sensitivity search [13]. The local alignment between two sequences can be

computed using dynamic programming (DP) algorithms —Smith-Waterman algorithm [14] and

Affine-gap penalty algorithm [15]. SSearch [16] is a sequence alignment tool, which is based on

Smith-Waterman local alignment. Due to the enormous length of the reference genome, dynamic

programming is infeasible for sequence alignment as the computational complexity of local align-

ment is proportional to the product of the length of target and query sequences. Furthermore,

the local alignment performs an excessive amount of unnecessary computation trying to align a

significantly shorter query to an enormously long reference genome.

Altschul et al. [17], in 1990, published a tool called BLAST, that uses a hash-table based

seed-and-extend approach to search for potential matching regions in the genome. The fixed-sized

k-mers, called seeds, are searched in the hash-table for exact matches to gather all possible hits.

The seeds falling close to each other in the reference genome are clustered together and ranked

for the further extension using dynamic programming (DP) algorithm to find the true alignment

of the query sequence. One remarkable advantage of this approach is that the search is focused

on a region where the query sequence is more likely to be aligned. This approach cuts off the
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expensive DP algorithm in the entire reference genome to a relatively shorter subsequence of the

genome. Even though this approach incorporates building a hash-table beforehand and uses ex-

tra space for maintaining an in-memory hash-table throughout the search, it drastically improves

the performance, making sequence alignment practically feasible. BLAST has been recognized

as a universal tool for rapid sequence search in online/offline databases presently. BLAT [18] and

FASTA [19] are other popular tools that follow similar paradigm. The performance of these tools

depends on the size of exact matching seeds. For a smaller seed size, there will be an enormous

number of hits leading to false alignments, which essentially increases the time required for align-

ment. The use of longer seed size will increase the specificity of search and keep the computation

focused in the region of more likelihood, but in contrast, it will reduce the sensitivity of search as

there will be fewer hits. Because of those reasons, this approach fails to achieve full sensitivity as

obtained by local alignment, despite speeding up the alignment process.

The reason behind failure in achieving full sensitivity is due to the erroneous nature of se-

quenced reads and inherent genomic variation. Ma et al. [20] discussed the use of inexact k-mers

for seeding. This idea involves searching for the seed match using k-mer template. A template

is a fixed length sequence of zeros and ones (Figure 2.1). Based on the template, two k-mers are

considered match if they have same nucleotides in the position identified by the corresponding

position of ones in the template, irrespective of nucleotides at the corresponding position of zeros.

This type of seeding approach allowing internal mismatches is termed as spaced seeding. Ma et

al. [20] developed a sequence alignment tool called PatternHunter, through which they illustrated

that the use of spaced seeds drastically improves sensitivity of the search. Sensitivity comes from

the fact that spaced seeds are more likely to discover homologies and are more tolerant with se-

quencing errors compared to exact matching seeds. They also discussed that the use of multiple

spaced seeds will increase the sensitivity at low cost. The core idea behind using multiple spaced

seeds in searching is that the hit missed by one template could be captured by others. This process

involves building a hash-table for each seed which requires additional memory for each addition of

a template. Hence, the challenge behind using multiple spaced seed in searching is the necessity of

7



optimally designed templates. In PatternHunter II [21], Li et al. implemented the idea of multiple

spaced seeds by proposing a way to design a near optimal spaced seeds. They provided a dynamic

programming algorithm to compute hit probability of k seeds which can be used to compute an

optimal set of spaced seeds for a given sensitivity (hit probability). The dynamic programming

approach is costly and time-consuming. Hence, they proposed an alternate greedy approach to ef-

ficiently compute near-optimal templates on top of few seeds obtained by dynamic programming.

Further, Kucherov et al. [22] provided a way to minimize the number of multiple spaced seeds

maintaining a level of sensitivity. Similarly, Lin et al. [23] published a tool called ZOOM, through

which they presented an optimal way to design templates for a given query sequence length to

achieve some predefined sensitivity. They illustrated that their program ZOOM can discover all

two-mismatches hits from 36bp read by using 5 spaced seed templates of weight 16.

Figure 2.1: k-mer matching with spaced seed templates 111010010100110111 with weight 11 and
length 18. The 18-mers shown are considered matches even though exact matching algorithm would con-
sider them different.

Unlike the approaches discussed so far, there is another class of sequence alignment tools that

are based on maximal matches instead of fixed sized seed matches. These aligners are based on

string matching using data-structures like Suffix trees, Suffix arrays and FM-index. A suffix tree

is a tree data structure that stores all the suffixes of a string as a path from the root to the leaf

as shown in Figure 2.2c. The suffix trees can be built efficiently in linear time proportional to

the length of the genome. Finding exact matches in the suffix tree is straight forward, which can

be achieved by following the path from the root until the query is entirely consumed or tree runs
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(a) List of all suffixes
with corresponding start
coordinates

(b) Alphabetically sorted
suffix array

(c) Suffix tree with leaf node representing start coordinates

Figure 2.2: Representation of the string ACTTGGAC in different forms based on its suffix.

out of the path. The traversal of the tree by following the characters in the query string returns

the coordinates where the query can be mapped in the target string. A single traversal of the

suffix tree computes multiple identical regions where query occurs in the target string. This is a

remarkable advantage over fixed-sized seeding, where alignment needs to be performed for each

cluster of hits. The mismatches can be allowed in the search by allowing traversal to visit nodes

even when the character in the query string does not match corresponding edges. This opens up

the possibility for graph traversal algorithms like A∗ in the sequence alignment. In 2003, Meek et

al. published a tool called OASIS [24], which is built on this principle. OASIS stores the entire

target sequence as a suffix tree and alignment is performed by traversal of the tree. The traversal is

guided by dynamic programming along with best-first(A∗) search. As the partial alignment scores

are computed, OASIS computes the upper bound of the cost of matching the rest of the query. The
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nodes are explored in the order of possibility of achieving maximum alignment score. Similarly,

MUMmer [25, 26] is a whole genome comparison tool that uses a suffix tree. MUMmer computes

alignment between two whole genomes that are very closely related and share sequence homology.

MUMmer first computes the Maximal Unique Match (MUM) between two genomes. A MUM is

defined as a subsequence that occurs once in both genomes and is not contained by any other

longer sequences. MUMs are computed using suffix trees and are sorted based on their position in

genomes. The longest increasing subsequence (LIS) of matches are connected by closing the gaps

using dynamic programming to compute the one-to-one alignment of two genomes.

The storage requirement of the suffix tree of a genome is in the order of its length. To tackle

this problem, Abouelhoda et al. [27] proposed an alternative representation called enhanced suffix

array. This approach involves representation of genome using suffix array and lcp-table for storing

the longest common prefix. They showed that any algorithm which requires top-down traversal

of suffix tree can be replaced with an equivalent algorithm in enhanced suffix array. Later, they

published a tool, VMatch [28], which uses an enhanced suffix array. Through the VMatch, they

showed that an enhanced suffix array provides more space efficiency and faster running time.

Segemehl [29] is another sequence alignment tool which uses enhanced suffix arrays.

Equivalently, Burrows-Wheeler Transformation (BWT) [30] and FM-index [31, 32] are ap-

proaches for searching maximal matching strings. BWT is a special permutation of original string

such that resulting transformation may contain runs of repeated characters. This allows compres-

sion of the original string. The original string can be computed using the permuted string alone

without any additional information, in a cost-effective manner. For computing the BWT, the text

is cyclically rotated to collect all cyclic rotations of the text, followed by lexicographical sorting

of those cyclic rotations. The BWT is taken as the sequence of last characters from those sorted

rotations as shown in Figure 2.3. FM-index [31, 32] is an indexing technique based on BWT that

allows to search for subsequences, similar to traversal in the suffix tree. FM-index contains ta-

bles which indirectly represent the columns F and L as in Figure 2.3. One important property of

BWT is that the ith occurrence of a character in F is also ith occurrence in L. Each occurrence
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of a unique character in the target sequence falls in a continuous interval in the F table, as they

are alphabetically sorted. While searching a subsequence using FM-index, the search begins by

searching from the shortest suffix of the query string and successively extending the suffix. For

example, The last character of the query sequence (a character in suffix) can be located in F ta-

ble to obtain an interval in the target, where that character occurs. Within that interval, L table

gives the next character right before the current suffix. This allows to gradually narrow down the

interval. The L − to − F mapping table helps to map ith occurrence of a character in L to ith

occurrence in F . The exact matching search proceeds this way by gradually extending the suffix

and it finally returns an interval, giving occurrences of the query string in the target. The inter-

val might be empty before all the characters in the query sequence are consumed, which signifies

that the query does not occur in the target. Bowtie [33] is a sequence alignment tool based on

Figure 2.3: Burrows-Wheeler Transform of string ACTTGGAC

searching using BWT and FM-index. The search proceeds as described above, by searching for

exact matches until the interval is empty. After that, the search process replaces a character, that

is already matched in the suffix, with a different character, which signifies the allowance of mis-

match in the search. The character to be replaced is decided based on the quality score information

provided by the sequencing machine. The exact matching continues after replacing the character,

which introduces numerous branches in the search. To deal with those branches, Bowtie introduces

the double indexing technique. It creates an FM-index for the target string, called a forward index,
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for searching as discussed above. The other index is called a mirror index, which is FM-index

of the reversed sequence of the target string (not DNA complement). Using those two indices,

the exact matching search is performed from both ends of the query string. Similarly, BWA [34],

BWT-SW [35] and SOAP2 [36] are other sequence alignment tools based on BWT and FM-index.

One remarkable advantage achieved through BWT and FM-index is the data compression. As

mentioned in SOAP2 [36], the sequence alignment of human genome consumed only 5.4 GB of

memory compared to their previous algorithm (based on hash-table) in SOAP [37], which required

14.7 GB. Further, the FM-index of human genome alone required only 1 GB of main memory, as

reported on BWT-SW [35].

The sequence alignment problem has been addressed by many researchers for a long time.

Beyond all the classes of alignment tools discussed above, there are other varieties of sequence

alignment tools. Such as: Slider [38]/Slider II [39] based on merge sorting and SHRiMP [40] based

on q-gram filtering [41]. All these approaches discussed so far, are for solving sequence alignment

problem of reads generated by second (next) generation sequencing technologies (NGS). The reads

from NGS are characterized by their short length and significantly less error rate. With the advent

of new technologies, currently, the third generation of sequencing technologies are becoming more

popular. These technologies are well recognized for their long length. As discussed in Chapter 1,

many applications in bioinformatics are benefited by the use of long reads. Due to their erroneous

nature, they possess a different nature of problem. The sequence alignment tools developed for

NGS reads cannot handle, or are very inefficient for, aligning the long reads. For example, the

best-first traversal of suffix tree will need to incorporate more mismatched nodes, which means

more memory and time for finding true alignment. Similarly, Bowtie [33] will require to backtrack

a massive number of possible exact matches in FM-index, which is probably not feasible. Although

the manufacturers of these technologies are gradually making them better with fewer errors, there

has been some research to solve the long reads alignment problem algorithmically. This class of

sequence alignment tools is broadly classified into two categories. Some of these tools are adapted
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from their NGS counterpart with few heuristics well suited for long reads alignment. Other tools

are genuinely built for long reads.

Basic local alignment with successive refinement (BLASR) [42] is a sequence alignment tool

which works by successive refinement of seeds. BLASR begins by finding all the exact matches

between the genome and reads with a length of at least some predefined k. The exact matches are

computed by computing the Longest Common Prefix(LCP) using BWT/FM-index or Suffix Array

between genome and reads. The LCPs of length below k are discarded while those LCPs longer

than k, called as anchors, are clustered for further refining. For clustering, the anchors are sorted

based on their position in the genome and a maximal subset of anchors spanning over the region,

that is almost as long as the query string, are computed using global chaining [43]. The clusters

are ranked based on the constituent anchors. The anchors (LCPs) which occur more often in the

genome is assigned a lesser score such that they rank lower. The top clusters are further considered

for computing alignment. First, a sparse dynamic programming [44] algorithm re-aligns and re-

scores each of the cluster and the top clusters from those are taken for base-to-base alignment using

banded DP. The banded DP is guided by the layout of anchors computed by Sparse DP. BLASR

employs an exact matching technique similar to NGS read alignment tools but extends the idea

using heuristics like global chaining, ranking, and sparse dynamic programming to make it more

suitable for long reads.

DALIGNER [45] is a sequence alignment tool designed for aligning long reads. It uses a

similar filtration approach as BLASR. It finds exact matching k-mer seeds between query and

target by sorting the k-mers and merging the sorted list of k-mers. For sorting, it uses highly

optimized threaded radix sort which is much cache coherent and more sophisticated than BWT-

FM or Suffix Arrays in BLASR. Similarly, GraphMap [46] is another sequence alignment tool

specifically designed for nanopore sequencing technology. It follows a seed-and-extend paradigm

with successive refinement heuristic like BLASR [42]. For seeding, it uses gapped seeds like in

PatternHunter [20, 21]. The seeds are bundled together into anchors by a graph-based approach

incorporating mismatches. The anchors are extended through chaining using k-mer version of
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Longest Common Subsequence (LCS). The LCS is further refined with an L1 linear regression

such that the anchors are arranged into a diagonal. The final alignment is constructed through

dynamic programming between the cluster endpoints.

MHAP [7] is a sequence alignment tool based on Minhash [47], which allows comparing two

documents by hashing them. The documents are hashed by multiple hash functions and the mini-

mum hash values obtained for each function forms the representation of the document in reduced

dimension. Broader(1997) [47] provided a proof showing that the similarity between documents

can be estimated using the minimum hash values alone. MHAP uses Minhash to compare the query

and target strings by using hash-tables based approach of searching. Due to the reduced dimen-

sional representation of the documents using Minhash, the size of the index is drastically smaller

than the hash-tables used in BLAST. Further, the internal parameters of Minhash can be tuned

to increase/decrease the sensitivity of the search. Minimap [48]/Minimap2 [49] uses the hashing

concept similar to MHAP, but it uses the minimizers [50, 51]. Given a fixed-length sequence, it

forms an overlapping sliding window of size w. The minimizers are the list of minimum k-mers

in those successive sliding windows. Minimap2 uses the concept of sorting the seeds similar to

DALIGNER, successive refinement similar to GraphMap and performs global chaining similar

to BLASR. For base-to-base alignment, it performs dynamic programming using Z-drop heuris-

tic, which is similar to X-drop in BLAST [17] except that it does not drop alignment due to the

presence of long gaps.

In the following chapter, we provide the formulation of our sequence alignment tool, which

is based on Deep Neural Network and Minhash. We discuss that the ability of neural networks

in pattern discovery can be applied to genomics for aligning the query sequences to the target

sequence.
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Chapter 3

Formulation of genome alignment

The inputs that any generic sequence alignment tool requires is reference genome and the set

of sequenced reads. Based on the input, the alignment tool should report the starting coordinates

and the strand orientation for each read that is mapped or report as unmapped. Additionally,

mapping quality (confidence about mapped coordinate) and alignment report (how well does the

read aligns with reference) might also be reported as they are used by downstream applications. In

our approach, the provided reference genome is used to train a Deep Neural Network (DNN) and

to build the hash-table to search using Minhash. Likewise, the input reads are processed through

the pipeline as shown in Figure 3.1 to report the final alignment.

Figure 3.1: High-level view of components in DNNAligner showing the pipeline of alignment

First of all, each chromosome in the provided reference genome is divided into discrete local-

ities, called segments. DNN is trained to classify reads to a set of segments where they belong.

For each input read, DNN provides the segments which have a high score of containing the read

or its correct version. It allows the searching process to be concentrated in a specific segment,

which is more efficient than searching in the entire genome. Next, the reference genome along

with the segment information is used for building an inverted index. The index helps to search for

the approximate coordinate of each input read within a segment. Minhash is used for this purpose,

which is a dimensionality reduction technique and it provides an approximation of Jaccard simi-

larity measure for computing similarity between two documents. The inverted index is searched
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for matches corresponding to both positive and negative orientation of the input reads. Later to

find the true alignment, one-to-one sequence alignment is carried out using dynamic programming

(DP) algorithm, which gives the starting coordinate, mapping quality, and alignment report. The

alignment and the related information are reported in a Sequence Alignment Map (SAM) file.

3.1 Vector representation of DNA sequence

A genomic sequence, S, is a string of arbitrary length where S ∈ Σ∗ and Σ = {A,C,G, T}.

A k-mer on string S, is represented as Sk
i which shows a substring of length k starting at index

i. For a given length k, the set of all possible k-mers contains 4k elements. For each string S, its

k-mer representation is a binary vector V of size 4k where the ith element of vector V corresponds

to the ith k-mer in the alphabetically sorted array of all k-mers in Σ∗ which we represent as Σ∗

srt[i].

So, Vi = 1 if and only if Sk
j = Σ∗

srt[i] for some j (0 ≤ j < |S| − k + 1) and Vi = 0 otherwise.

Further, each alphabet in DNA can be given a numeric value, for example, f(Σ) = 0, 1, 2, 3 for

A, C, G, T respectively. Then for a given Sk
j , the index i in the vector V can be computed as

i =
∑k

p=0 f(S
k
j [p]).4

p. The vector representation can be computed in a single pass through the

string S, as the k-mers are identified, as shown in Figure 3.2.

Figure 3.2: Vector representation of a DNA sequence GTTCGGCGGTAC with k=3
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Chapter 4

Neural Network

Neural Network is a class of algorithm in machine learning, which learns a representative

function based on the provided data. A Neural Network is built up of units called neurons. Each

neuron takes some input and produces an output called activation. The value of the output depends

on the inputs and the parameters associated with the neuron. The Neural Network is a collection

of neurons connected together such that the activation of one neuron is input to the other neurons.

Neural Network is considered a universal function approximator [52].

Feed forward neural network is a class of neural network in which neurons are bundled into

layers such that the input to the neurons in layer n + 1 is the activations from neurons in layer n.

Feed forward architecture is also called as Multilayer Perceptron (MLP). The first layer, called an

input layer, is fed with the input data points. The final layer, called an output layer, is the output

of the function that the neural network learns. The layers in middle, which do not interact with

input/output directly, are called hidden layers and a total number of those layers define the depth

of the network. This creates a large mesh of forwardly propagating signals. Mathematically, if

x represents an input to a layer in n-dimension, m represents number of unit in that layer, W

represents a weight matrix W ∈ IRn×m, b represents a bias vector b ∈ IRm and σ(·) represents the

activation function, then the activation of that layer h, h ∈ IRm, can be defined as h = σ(Wx+ b).

On the other hand, Recurrent Neural Network (RNN) is a type of neural network architecture

that is more suitable for capturing the notion of context from the data. This type of architecture is

used mostly for learning the functions which involve time series data. Consider an example of a

neural network trying to predict if a sentence has a positive or negative sentiment. The sentences

can be modeled as a time series in the sense that one word comes after another in sequence.

Consider the sentences, "I am feeling good" and "I am not feeling good", which have positive

and negative sentiments respectively. Both sentences are exactly the same except for the presence

of the word "not" in the context. The sentences are represented as binary vectors that tell if the
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word is present or not. If the MLP is trained with these inputs, it might learn to classify both

sentences as having positive sentiment because there were numerous observations which contain

"feeling good" in positive class than in negative class. MLP disregards the notion of context and

fails to learn from this data set. RNN, on the other hand, provides the ability to model context

in the neural network. The architecture of RNN is as shown in Figure 4.1a [53]. Let xt be an

input to RNN unit A, at time step t, it learns some internal parameters and outputs ht and ct.

The output ct from the unit signifies the context observed so far, for a given sequence of inputs.

The context ct is looped back into the unit and is used as an input along with xt+1 for computing

ht+1. This way RNN can incorporate the contextual information in learning from data. In real life,

the contextual dependency might run over a long span, but in practice, RNN is implemented as

shown in Figure 4.1b. The context is propagated only for finite time steps, which simplifies the

mathematical computation.

(a) RNN (b) RNN unrolled for finite time steps

Figure 4.1: RNN architecture. A is a unit in RNN. xt is input at time-step t and ht is output of RNN for
input xt.

The Recurrent Neural Network, as described above, has a limitation in terms of computation.

While training the neural network, the parameters are updated by propagating the gradient of the

loss function, which is also known as back-propagation. The long-term dependency involves prop-

agating the gradient over numerous time-steps. But, due to the fact that the gradient of the loss

function decays exponentially over time steps, the RNN cannot learn long-term dependencies.

This problem is referred to as the "Vanishing Gradient" in literature [54]. LSTM (Long Short
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Term Memory) networks are a special variety of RNN that allows learning with very long-term

dependencies. LSTM units have additional trainable parameters that decide what needs to be for-

gotten or retained from the context. Further, the RNN unit, as described above, can only model the

contextual dependencies from previous time-steps. On the contrary, the bi-directional RNN units

can incorporate contextual dependencies from both past and future time-steps. The other popular

variety of LSTM is stacked LSTM, where a unit is stacked on top of another unit such that the

output of one unit is input to another unit. Stacked LSTM provide a notion of layers, similar to the

one in MLP.

All these different varieties of RNN provides the output ht for some input xt. The output can be

used in multiple ways depending on how we model the problem in terms of the neural network. For

example, consider the problem of text generation using RNN. Both the input and output vectors

can be modeled in a similar way as described in Section 3.1. Instead of k-mers, the ith element

in vectors (|V | = N ) will be 1 if the input is ith word in dictionary of size N . The output can

be directly used to infer the next generated word. For classification problem, like in sentiment

analysis, the outputs from all time-steps are combined into one vector and is fed to MLP as input.

In this case, the RNN learns the context and produces a transformed representation of input time-

steps. MLP takes the transformed representation and learns to classify them to their proper classes.

The organization of RNN for classification is as shown in Figure 4.2.

Deep Neural Network (DNN) is used for solving a classification problem in DNNAligner,

as discussed in Chapter 3. The reference genome is divided into multiple segments, which are

identified by unique segment identifiers and they are treated as different classes in the classification

problem. From each of the segments, all the fixed length reads are extracted and the neural network

is trained to classify those reads to their corresponding segments. The genome of an organism

consists of repeats, hence one read sequence might belong to multiple segments. In other words,

one input data point can be assigned multiple class labels. Hence, the DNN is trained to perform

a multi-class multi-label classification problem. For solving this classification problem, both MLP

and LSTM were tested and the comparative results are discussed in the result section of this chapter.
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Figure 4.2: Use of RNN for classification. The RNN unit learns a transformed representation from input
time-steps. MLP learns to classify the transformed representation into corresponding class labels.

4.1 Data preparation

The data for training the neural network is prepared by processing the reference genome. Let

CL be the length of a chromosome in the provided genome, L be the length of each segment and

W be the length of each read sequences to be extracted from the segment, then the chromosome is

divided into segments such that the start and end coordinates are given by:

start : i×
(

L+

⌊

W

2

⌋

)

end : start+ L+W

0 ≤ i <

⌈

CL −W/2

L+W/2

⌉

For the last segment, when i =
⌈

CL−W/2
L+W/2

⌉

− 1, if the segment spreads beyond the last nucleotide,

the start point is shifted towards left such that end − start = L +W . Each segment is of length

SL = (L+W ) except when the chromosome is shorter than (L+W ). SL accommodates the reads

falling in the border between two segments by allowing W/2 overlap on both ends. We use SL for

the computational purpose, whereas, L is used as a parameter provided while preparing data for

training. Although, both of them refers to the length of the segment. From each segment, reads of

length W are extracted by taking a sliding window, which slides by some fixed-size Stride. The

stride is also a parameter we provide while preparing data.
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To demonstrate an example of dividing a chromosome into segments, let us assume a chromo-

some of length, CL = 11000 bases. The chromosome is divided into segments of length, L = 2000

and the read sequences of length, W = 200, are to be extracted from each segment. The total num-

ber of segments can be computed as:

⌈

CL −W/2

L+W/2

⌉

=

⌈

11000− 100

2000 + 100

⌉

= 6

For segments, 0 ≤ i < 6, the start and end coordinate pairs are: (0 − 2200), (2100 − 4300),

(4200 − 6400), (6300 − 8500), (8400 − 10600), (10500 − 12700). Notice that the last segment

spreads beyond the last nucleotide in the chromosome, so the start coordinate is shifted towards

the left to get the new coordinate as (8799− 10999). Also, notice that each segments are of length

SL = L+W = 2200 bases.

Next, the segments are introduced with noisy data points to allow the neural network to gener-

alize for a real-world scenario, where the input reads are inaccurate. Each reads in all the segments

are mutated with random artificial insertion, deletion and substitution errors. The number of such

artificial copies per read (n′) and their error rate (e) are both parameters provided while preparing

the data. The artificial reads are added back into the pool and their class labels are the same as the

labels of corresponding original reads. Additionally, an extra class is created for the reads which

do not belong to this reference genome. The reads for this class are populated by randomly sam-

pling all the segments and introducing a lot of mutations to them. We take the rate of mutation

for this class to be greater than twice the provided error rate parameter. Finally, there are N + 1

classes with original and noisy data points, which is used for training the neural network. To make

sure each class has an equal number of reads, the classes having fewer reads are balanced with the

addition of more artificial reads.

The extracted read sequences are represented as vectors, as discussed in Section 3.1. For

training the MLP, the read sequences (|S| = W ) are represented as a single vector containing all

the k-mers, as described. For training LSTM, the read sequences are represented as time-series of

k-mers in the order they occur. Each time-step contains a vector of size 4k with the corresponding
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k-mer position represented as 1 and 0 in other positions. The class label (L) is also represented

as binary vector of size, |L| = (N + 1). The ith element of vector L is 1 if the read belongs

to ith segment and 0 otherwise. Aggregating all the parameters required for data preparation for

the given reference genome, they can be listed as: L for length of each segment, W for length of

each read window, Strides for sliding window, k for k-mer vector representation, n′ for number

of artificial copies per read and e for error rate of noisy data.

4.2 Training

The prepared data set from the provided reference genome is split into train and test set in 80-

20 proportion. The train-set is used for training a DNN model while test-set is used for testing the

trained model. Due to the huge size of entire data set, training the neural network multiple times

on the entire training set with different hyper-parameter configuration is very time consuming.

Therefore, the training set is randomly sampled to form a relatively small subset of training set.

Further, this subset is split into 80-20 proportion, of which the larger one is used for training the

network and smaller one is used for validation. Multiple sets of hyper-parameter configurations

are tested on this subset followed by validation of the model. The parameter configuration with

acceptable performance in validation set is trained with the entire 80% of the training set and tested.

For modeling the multi-class multi-label classification, the Sigmoid function is used as an

activation function in the output layer. Sigmoid function can be defined as σ(x) = 1
1+e−x . The

value of σ(·) falls in the range [0, 1], which provides the score of whether the read belongs to a

class. Each ith neuron in the output layers acts as a binary classifier that decides if the read belongs

to ith segment out of (N +1) such binary classifiers. The loss is computed using the cross-entropy

loss function. The cross-entropy loss function is popularly used in classification problem as the

gradient of this function does not depend on the gradient of the activation function and it depends

only on neuron output, target label and neuron input, which prevents slow learning and avoids the

vanishing gradient problem that is often faced in deep neural networks. Let y be the predicted label

and y′ be the true label, then the cross-entropy loss function can be defined as:
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Cross− Entropy(y, y′) = −y′ × log(y)− (1− y′)× log(1− y)

The neural network is trained using Stochastic Gradient Descent(SGD) approach by minimizing

the cross-entropy loss over a mini-batch of training samples. Each mini-batch is composed of ran-

domly chosen samples from the pool of training set. Further, dropout is used for making sure the

DNN does not over-fit on the training set. Dropout is a popular methodology for regularization in

the neural network, in which the activation of few neurons is forced to be zero. This is equiva-

lent to turning a neuron off, which reduces interdependent learning among neurons. The DNN is

implemented, trained and tested using Tensorflow 1.6 [55].

4.3 Results

In this section, we give a brief comparison of LSTM and MLP models by measuring their

performance in different network configurations and values of k. The neural network models are

compared through recall and precision obtained on the test set. Let n be the total number of labels

in each data point, Y be the vector of true labels and Z be the vector of predicted labels, then

precision and recall of a model can be defined as:

Precision =
1

n

n
∑

i=1

|Yi ∩ Zi|
|Zi|

Recall =
1

n

n
∑

i=1

|Yi ∩ Zi|
|Yi|

The data set is prepared using the E.coli. genome, with the parameters: L = 5000, W = 200,

n′ = 10, e = 10% and different values of k. The prepared data sets are used for training multiple

neural network configurations. Later, the test set is used to compute precision and recall for each

model, which are shown in Table 4.1 and Table 4.2. The models used for training are described

below:

• LSTM-Model-1: LSTM cell having hidden state represented as a vector of 20 elements. The

k-mers occurring in sequence in the reads of length W = 200 are treated as input time-

steps and LSTM is unrolled for those time-steps. The hidden states from all time steps are

aggregated as a single vector and fed into MLP having hidden layers of [1000] units.
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k Precision Recall

Model 1
4 0.7334 0.0990
5 0.7554 0.1699
6 0.8253 0.1710

Model 2
4 0.7886 0.1016
5 0.8253 0.1599
6 0.8381 0.2389

Model 3
4 0.7747 0.1070
5 0.8441 0.3049
6 0.8554 0.3211

Table 4.1: Precision and Recall for different LSTM models with k = {4, 5, 6}.

k Precision Recall

Model 1
5 0.7112 0.2750
6 0.7527 0.5078
7 0.7766 0.6753

Model 2
5 0.8858 0.2720
6 0.9454 0.6312
7 0.9809 0.9322

Model 3
5 0.8867 0.3110
6 0.9223 0.6541
7 0.9825 0.9378

Table 4.2: Precision and Recall for different MLP models with k = {5, 6, 7}.

• LSTM-Model-2: Similar to LSTM-Model-1. Two LSTM cells stack on top of each other

both having hidden state represented as a vector of 100 elements. The MLP consists of

hidden layers with [3000, 1000] units.

• LSTM-Model-3: Single unstacked LSTM unit with hidden states represented as 200 dimen-

sional vector. MLP consists of hidden layers with [2000, 1000] units.

• MLP-Model-1: The MLP consists of one hidden layer with 1000 units. The output layer

consists of same number of units as number of classes in the data set.

• MLP-Model-2: Two hidden layers with [2000, 500] units.

• MLP-Model-3: Two hidden layers with [2000, 1000] units.
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From the above tables, it can be observed that increasing the size of k-mer, increases the per-

formance of a model. The longer k-mer size decreases the probability of occurrence of a k-mer

and makes their occurrence more specific. Hence, the models trained with larger k-mer size learns

to distinguish classes with high specificity, which thereby increases the recall. Further, increasing

the value of k increases the dimension of vector representation exponentially, making it hard to

train the network in commodity machines. From the above tables, it can also be observed that the

values of precision and recall for LSTM models are comparatively less than the values for MLP

models. For equal k, MLP performs far better than LSTM. For example, both LSTM-Model-1 and

MLP-Model-1 have the same number of hidden layers and hidden units. LSTM model has an extra

layer of LSTM unit before MLP for learning the context. However, the recall for the MLP model is

greater than the LSTM model. The MLP models are simpler than LSTM models and can be easily

trained. It should also be noted that the MLP can be trained with higher values of k in commodity

machines without running out of memory. The best performance in the E.coli. data set is observed

for MLP-Model-3 with k = 7.
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Chapter 5

Minhash

Minhash is a dimensionality reduction technique. It captures the fingerprints from documents

and allows to compare them efficiently with reduced computational cost. Minhash was originally

proposed for computing resemblance between textual documents [47]; however, it has been suc-

cessfully utilized in other domains, such as clustering images [56] and audio [57]. For a genomic

sequence alignment problem, the individual reads of DNA need to be mapped to their correspond-

ing locus in the genome. This problem can be modeled as a sequence comparison problem by

considering all the fragments of reads starting at different locations in the reference genome as

individual sequences. The read to be aligned is compared against all those possible fragments and

the fragments with higher similarity are considered for further analysis. The comparison of a read

against all the possible fragments is a very tedious process. The vector representation of a read has

a size of |V | = 4k and comparing those vectors one to one can be computationally expensive even

for small k. Using the Minhash, each sequence in the genome and the read are represented with a

vector of smaller size while retaining enough information to compute their resemblance.

Document similarity is a numeric score computed between two documents to provide a notion

of how close they are to each other. Given a universe of documents U , document similarity is

defined as S : U × U ⇒ [0, 1]. There are different popular metrics in the literature that represents

document similarity, such as — Cosine Similarity, Jaccard Similarity. Cosine similarity gives the

cosine of an angle between two vectors. The angle between two similar vectors is ≈ 0, which is

signified by the cosine value being closer to 1. The angle between two dissimilar vectors is close

to orthogonal, which is signified by the cosine value being closer to 0. Similarly, Jaccard similarity

is defined for a set and computed as the ratio of size of the intersection of sets to the size of the

union of those sets. The documents which are highly similar have a larger intersection size, which

makes similarity score closer to 1, whereas, the dissimilar documents have smaller intersection

size making the score closer to 0. The formal definition of those metrics are as shown below:
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Cosine Similarity:

Cosine(A,B) = cos(θ) =
A.B

‖A‖ ‖B‖ =

n
∑

i=1

aibi
√

n
∑

i=1

a2i

√

n
∑

i=1

b2i

Jaccard Similarity:

J(A,B) =
|A ∩B|
|A ∪B| =

|A ∩B|
|A|+ |B| − |A ∩B|

Given a vector representation of size 4k or reduced dimensional representation of two sequences,

both the above-mentioned metrics can be used to compute the similarity between them. The com-

putation involving Minhash is cheaper because of compact representation in a lower dimension.

Further, in the sequence alignment problem, all the sequences having a score above some threshold

are of interest. To obtain all of those sequences from the target string, instead of comparing the

query sequence with every other subsequences of the target sequence, a hash-table based approach

is more suitable. Therefore, the similarity computation using vector representation of size 4k is

similar to the exact matching search using hash-table, as used in BLAST [17], BLAT [18] and

FASTA [19].

Minhash uses a probabilistic hashing technique for dimensionality reduction. Probabilistic

hashing means that the documents which are closer to each other are hashed into the same bucket

with high probability, whereas dissimilar documents are hashed into different buckets. Minhash

uses numerous hash functions to hash the input vector. The minimum values of those hash func-

tions are taken as the representation of the document in the reduced dimension. The minimum hash

values captured by those hash functions are called as document fingerprints. It can be shown that

the Jaccard similarity score computed with those fingerprints is proportional to the score computed

using the original 4k representation. For sequence similarity, the Minhash fingerprints are indexed

into a hash-table and searched using the approach similar to exact matching search. The other re-

markable advantage of Minhash, after dimensionality reduction, is that the exact matching search
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technique involves inexactness in itself. Minhash represents the similarity between documents us-

ing probability distribution over hash functions. The hash collisions between similar documents

are the key to allow inexactness in the search.

For a given vector representation V of a document with size |V | = n where Vi ∈ {0, 1} is

the ith element and 0 ≤ i < n, the hash function h(·) maps Vi into an integer in range [0, n).

Without loss of generality, it is assumed that there is no collision and each index of the vector is

uniquely mapped to the range [0, n) by the hash function. The hash function h(·) actually creates

a permutation of the given vector V . The minimum index, h(i), where the value of Vh(i) is 1 is

considered as the fingerprint captured by h(·) from the given document. Minhash uses N number of

these hash functions to capture N fingerprints, which is called a Minhash Sketch. The document is

represented using those Minhash Sketches in the reduced dimension. However, the hash functions

that are commonly used have collisions and do not map the indices uniquely in the given range.

This might result in the selection of incorrect Minhash fingerprint for a given hash function. But,

by using numerous hash functions, the fingerprint misrepresented by one of the hash function will

be retained by other hash functions.

In the real world, implementing the Minhash approach as discussed above is inefficient as it

involves permutation of the entire vector, sorting the elements and linearly scanning it afterward

to compute the minimum index. This computation needs to be performed for N hash functions.

Furthermore, the size of the vector grows exponentially as k increases, making it practically infea-

sible. Therefore, instead of permuting the entire vector, we only permute the indices of the element

which has a value of 1. We apply hash functions h1, h2, ...hN on each of those indices to get N

permutations. Also, instead of sorting the entire permuted vector, we keep track of N minimum

indices found by each hash function as we go on computing the permutations. Finally, after ap-

plying the permutation on all the eligible elements of the vector, we have a list of N minimum

indices which are the Minhash Sketch of a document. Our implementation for computing Minhash

signature is as shown in Algorithm 1. This implementation is similar to the one in MHAP [7],

except that they have used the XORShift random number generator as hash function whereas we
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Function Encode_Kmer(kmer):

sum← 0
for i← 0 to |kmer| − 1 do

sum← sum+ Numeric(kmer[i]) ×4i
end

return sum

end

Function Compute_Minhash(s, k, Num_Hash):

hashes← ∅
best_min← ∅
for i← 0 to |Num_Hash| − 1 do

best_min← best_min ∪ {∞}
hashes← hashes ∪ {∞}

end

for i← 0 to |s| − k + 1 do

numeric_kmer ← Encode_Kmer(s[i : i+ k])
seed← numeric_kmer
for j← 1 to Num_Hash do

hash← rand_r(&seed)
if hash < best_min[j] then

best_min[j]← hash
hash[j]← numeric_kmer

end

end

return hashes

end

Algorithm 1: Algorithm for computing Minhash sketches

are using rand_r() provided in stdlib.h. The pseudo-random number generator is seeded

with an index i. The next value it generates is based on the seed and for all the indices, the numbers

it generates are almost unique except for few collisions. This is equivalent to applying a hash func-

tion to get a new permutation of the vector. Generating N random numbers from a given seed is

equivalent to applying N hash functions. Hence, a pseudo-random number generator can be used

as multiple hash functions.

Minhash is one of the approach among a family of dimensionality reduction methodologies

using hash functions, which are collectively termed as Locality Sensitive Hashing (LSH). In our
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implementation of Minhash, we used the pseudo-random number generator as the hash function

to obtain N fingerprints from a document. To introduce furthermore strictness in the similarity

between documents, LSH provides a technique of forming the bands of fingerprints. In this ap-

proach, some hash functions are tied together to represent them as a single hash. If two documents

are highly similar, the corresponding tied-up hash functions will have the same hash in both of the

documents with high probability. With this approach, the dimension is reduced further than that

of Minhash sketches, as there is one hash for each band of hashes. The other remarkable advan-

tage is the removal of false positives that might occur in Minhash due to the imperfect nature of

hash functions. If r hash functions are tied up together to form b bands, where b = N/r, then the

document with Jaccard similarity s is detected as truly similar by Minhash with probability given

by 1 − (1 − sr)b [58]. The plots in Figure 5.1 shows the S-curve of the probability by which the

(a) N=200 (b) N=300

Figure 5.1: Plot showing the probability by which document with given Jaccard similarity will be selected
as truly similar by Minhash for different number of hash functions and band sizes.

document would be detected as similar for a given Jaccard similarity between them. Figure 5.1a

is for N = 200 fingerprints which are evenly divided into 10, 20, 40 and 100 bands. Similarly,

Figure 5.1b is for 300 fingerprints evenly divided into 25, 30, 60 and 100 bands. As shown in

those figures, as the band size increases the search becomes more strict. For Minhash with 200
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fingerprints, which are divided into bands each containing two fingerprints, the two documents are

selected as similar candidates with 50% probability if their Jaccard similarity is ≈ 10%. For the

same scenario, banding with 20 fingerprints in each band requires the documents to have Jaccard

score of at least 85% to be detected by Minhash with 50% probability. Further, the probability of

being selected rises quickly after crossing the threshold Jaccard score and the documents are more

likely to be selected. This way the sensitivity of Minhash can be adjusted by tuning the parameters

b and r. Further, the threshold of Jaccard similarity required for Minhash to detect documents as

truly similar with a 50% probability can be estimated as (1/b)(1/r) [58].

In DNNAligner, the reference genome is divided into multiple segments as discussed in Chapter

4. For each of the segments, the reads are extracted using a sliding window of fixed size and the

corresponding Minhash sketches are computed for each of the reads. The sketches are indexed

into the hash-table and stored in a file, which are used later while performing the alignment. While

aligning the short reads from second-generation sequencing technologies, the Minhash index of the

corresponding segment as predicted by the Neural Network is searched using the hash-table. The

results are ranked based on the number of hash matches. Finally, local alignment using a dynamic

programming algorithm is performed to compute the ground truth of alignment.

For aligning the long reads, the query string is chopped into multiple subsequences. The rea-

son for this is due to the fact that both Neural Network and Minhash tends to perform weakly as

the length of the input sequence varies than the length used for training and indexing. Normally,

the long reads obtained from the third generation technologies are almost 50 times larger. After

chopping, the subsequences have the same length as the one used for training and indexing. The

variation of performance while varying the length of input reads are discussed in more detail in

Section 7.4. After chopping, each of the subsequences is fed through the Neural Network to predict

their corresponding labels. The adjacent subsequences should ideally be predicted into the same

segment or the adjacent neighboring segment. However, due to the repeats in genome and inherent

error in the reads, the subsequences might be predicted to different regions in the genome. The

predictions from all the subsequences are aggregated to form chains, which will be later ranked be-
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fore performing dynamic programming based alignment. The chains are computed by connecting

the predictions for each subsequence, such that a chain starting at a subsequence having predicted

segment as Si, can only connect to another subsequence having predicted segment of either Si−1,

Si or Si+1. The chains are sorted based on their length, which is similar to taking a vote from all the

subsequences of the long read to determine where it can be mapped. Later, for each chain, the cor-

responding Minhash indices are searched for their probable localities. The results of Minhash are

first ranked based on their score and the longest possible chain of probable localities, as discussed

earlier, are visited first for computing the local alignment. After local alignment, the alignments

having a score above the threshold are reported. Finally, in the implementation of DNNAligner, the

short read alignment module and long read alignment module are separated, which can be turned

on/off using flags while using the tool.
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Chapter 6

Local alignment

Local alignment refers to the process of matching the characters in two sequences to compute

the number of edit operations required to transform one sequence into another. The edit operations

are defined as insertion, deletion, and substitution of a character, which are as shown in Figure 6.1.

In a sequence alignment problem, local alignment is considered as the final step before reporting

any information about the alignment. Local alignment is the ground truth of comparison between

two sequences. The query sequence is considered as mapped to the locus of the target sequence

if the subsequence of target starting at that location has the edit operations below the permitted

threshold.

(a) Insertion (b) Deletion (c) Substitution

Figure 6.1: Unit edit operations to transform one sequence to another

Let q be the query string with length m and q1q2q3...qm be the characters in q. Similarly, t be

the target string having length n with characters t1t2t3...tn. The classical dynamic programming

algorithm used for alignment can be written as:

Si,j = min































Si−1,j−1 + δij

Si−1,j + 1

Si,j−1 + 1

where δij =















0; if qi = tj

1; otherwise

For local alignment, the table S, having (m + 1) rows and (n + 1) columns, is initialized as

S0,j = 0, which comes from the fact that the query string can start anywhere in the target string
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and mismatches before consuming the characters in the query string should be zero. Similarly,

Si,0 = i, which signifies the indel penalty of 1 for not consuming the query string. The columns

in the last(mth) row where the score Sm,j ≤ k are the places where the query is aligned to target

with less than k edit distance. The classical dynamic programming algorithm has a time and space

complexity proportional to (m + 1) × (n + 1). From the above recurrence relation, it can be

observed that the value at Si,j is only dependent on the values at Si−1,j−1, Si,j−1 and Si−1,j . The

space complexity can be optimized to O(m) by computing columns in the table from left to right

and keeping only one column of the table in the memory. Further, Ukkonen (1985) [59] proposed

an optimization which reduces the time complexity to O(kn) by discontinuing the computation of

Si,j in the dynamic programming table that leads to an edit distance of above k.

Myer’s bit-vector algorithm [60] is another optimization for fast computation of the dynamic

programming table. It is based on Ukkonen’s approach but it formulates the dynamic programming

equation in terms of deltas (differences of adjacent cells in the DP table). According to Myer’s bit-

vector algorithm, the dynamic programming table can be encoded as deltas using following the

relation:

Horizontal difference,∆hi,j = Si,j − Si,j−1 ∈ {−1, 0,+1}

Vertical difference,∆vi,j = Si,j − Si−1,j ∈ {−1, 0,+1}

Diagonal difference,∆di,j = Si,j − Si−1,j−1 ∈ {0,+1}
(6.1)

The dynamic programming recurrence equations based on the deltas can be written as [60]:
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∆vi,j = Si,j − Si−1,j

= min



























Si−1,j−1 + δij

Si−1,j + 1

Si,j−1 + 1
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Similarly,

∆hi,j = min



























−1 + δij

∆vi,j−1

∆hi−1,j



























+ (1−∆vi,j−1)

The original dynamic programming table involving Si,j can be obtained using the relation Si,j =
∑i

r=1 ∆Vr,j .

Further, Myer’s bit-vector algorithm proposes a way to squeeze the dynamic programming

computation involving integers into the bits of a machine word. As shown in the (6.1), the possible

values of horizontal deltas are {−1, 0,+1}, which can be encoded using two boolean variables.

Similarly, the vertical delta can be encoded using two boolean variables and the diagonal delta

using one boolean variable. Hence, Myer’s approach introduces the use of five boolean variables

— Horizontal positive(HP), Horizontal negative(HN), Vertical positive(VP), Vertical negative(VN)

and Diagonal zero(D) to encode the integer computation using boolean variables. As an example:

∆v = +1 can be encoded as (VP,VN)=(true,false), ∆v = 0 is encoded as (VP,VN)=(false,false)

and ∆v = −1 as (VP,VN)=(false,true). This way the dynamic programming computation for each

cell can be squeezed into the five bits of a machine word. Further, this fact leverages parallelization

in modern computers by the use of Single Instruction, Multiple Data (SIMD) machine instruction

sets. The use of deltas in SIMD makes efficient use of SIMD registers causing the computation
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of dynamic programming table to be fast and parallel, disregard the length of the query and the

target string. Myer’s bit-vector algorithm also discussed the equivalency of bit-wise operations

for replacing the recurrence relation involving integers as discussed above. Along with Myer’s

algorithm, there are multiple popular pieces of literature that discuss block computation of the table

overcoming dependencies among the cells to enhance the use of SIMD instructions to leverage fast

dynamic programming [61–63].

In DNNAligner, we are using Edlib [64], which is a C/C++ library that uses Myer’s bit-vector

algorithm and SIMD for fast computation of the edit distance between two sequences. The local

alignment is performed for the top ranking subsequences from the reference genome as found by

the Minhash. The alignment is reported for those sequences which have edit distance within the

user provided threshold limit. The number of alignments to be reported is also a user-defined

parameter. The alignments are reported as SAM (Sequence Alignment Map) format [65]. SAM

is a popular data format for reporting sequence alignment results and it is compatible with a wide

variety of downstream sequence analysis software in the pipeline.
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Chapter 7

Results and Discussion

7.1 Minhash vs Deep Neural Network

One of the prime objectives of this thesis was to see if the Neural Network can provide a better

hashing approach for Locality Sensitive Hashing (LSH). Minhash uses multiple hash functions and

represents the document in a lower dimension using probability distribution over hash functions.

Neural network internally learns the similar notion of hashing from the input sequences and, in

our application, the representation learned from the sequences are used for classification of those

sequences. As discussed in the Literature Review section, from the high-level point of view, the

objective of both Minhash and Neural network is to narrow down the search procedure to a com-

paratively smaller region of the genome, so that the cost of dynamic programming is spent only in

that small region. For relative comparison between them, we compared them based on sensitivity

and specificity of the search. For this analysis, both the Neural network and Minhash are tested

with a set of reads whose true location is known. For a given read, Neural network can predict

the corresponding segments, whereas Minhash can predict the localities where the read might be

aligned. For a common ground of comparison, we translate the localities predicted by Minhash

into the segments (classes) as used by Neural network. Now, the problem can be defined as a

multi-label classification problem, where both Minhash and Neural network can classify the reads

to multiple segments (for each segment, we have a binary classification). Let Y be the true label set

and Z be the predicted label set, then the precision and recall, as used in the literature of multi-label

classification [66], can be defined as:

Precision =
1

n

n
∑

i=1

|Yi ∩ Zi|
|Zi|

Recall =
1

n

n
∑

i=1

|Yi ∩ Zi|
|Yi|

Because of the repeats in the reference genome and presence of the error in the aligned read,

some of the localities found by Minhash might indeed be similar-enough to the input read. There-
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fore, to have a fair comparison, the localities found by Minhash that are very similar to the input

read are not considered as false positive. For doing so, the input read is aligned with each positive

segment as predicted by Minhash. The score of 0 for each matching character and 1 for each mis-

match/indel is used while performing the fit alignment. The localities having a score above some

threshold are not considered as false positives. The score is computed as:

Score =
|s| − FA(s, Ref)

|s| (7.1)

where, s is the input read, |s| is the length of that read, Ref shows the segment Minhash has

detected as positive, and FA is the fit alignment function with the aforementioned settings. As we

can see, this score is a normalized score ranging from 0 to 1.

Figure 7.1: Precision and Recall for Minhash and DNN. The numbers represent Matthews correlation
coefficient (MCC)

The Matthews correlation coefficient (MCC) [67] is a popularly used metric for contrasting

specificity and sensitivity of a classifier. For a multi-label classification problem, MCC can be

approximated as [68]: MCC ≈
√
Precision×Recall
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Minhash can be tuned to capture documents with Jaccard similarity above some desired thresh-

old as discussed in Chapter 5. By tweaking the parameters of Minhash, we can obtain different

Minhash predictors with variable sensitivity and specificity. Figure 7.1 shows the plot of precision

vs recall for DNN and Minhash. Neural network does not have any configurable parameters so we

only have one point in the plot representing DNN. For Minhash, it can be observed that recall and

precision are reverse correlated and the MCC is bounded. On the other hand, the MCC score for

Neural network is obtained to be 0.96, which denotes high precision and high recall. In this sense,

DNN wins the task of mapping the reads to some locality over Minhash. Thus, Neural network

learns a better hashing approach than Minhash.

7.2 Evaluation with Simulated Reads

For evaluation of our sequence alignment tool, DNNAligner, the reference genome of the or-

ganisms Escherichia coli and Saccharomyces cerevisiae (Yeast) were used. E.coli is a prokaryotic

organism with a genome size of 4M base pairs. Yeast is a eukaryotic organism with 12M base

pairs, organized into 16 chromosomes. The reference genome of those organisms was used for

training a Neural network model and to build the Minhash index as discussed in previous chap-

ters. Later, those reference genomes were used to simulate reads from different platforms using

various simulators and those reads were aligned using DNNAligner for evaluation. To synthesize

artificial reads, with specific error models, following simulators were used, each of which mim-

ics a specific sequencing technology: DWGSIM [69] for simulating Illumina reads, ART [70] for

simulating Roche 454 reads, SimLoRD [71] for PacBio SMRT reads and NanoSim-H [72, 73] for

Oxford Nanopore reads. The performance of DNNAligner was compared against the best existing

approaches in the literature: Minimap2 [49], BWA-MEM [74] and GraphMap [46].

The ground truth of the synthesized reads are known to us, so we compare our alignment result

against the ground truth to compute metrics such as Recall, Precision, and Sensitivity, as used in

other literature [75]. The recall is defined as the ratio of the total number of correctly aligned reads

to the total number of reads. Precision is defined as the ratio of the number of correctly aligned
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reads to the total number of aligned reads. Sensitivity is defined as the ratio of the total number

of aligned reads to the total number of reads. Further, the same set of simulated reads and the

reference genome were used for alignment with Minimap2, BWA-MEM, and GraphMap to get

those metrics for relative comparison of DNNAligner against them.

7.2.1 Alignment of Short Illumina reads

For aligning the reads from second generation technologies, the neural network models were

trained with reads of length 200. While generating the reads, we created at least 10 copies of

each read and introduced random mutations to them. For each copy, the mutation consists of

insertion/deletion/substitution errors up to 10%. The hyper-parameter tuning is done by sampling

random data points, as discussed in Chapter 4. Once the best hyper-parameters are discovered, the

entire training set is used for training the neural network.

We simulated reads for both E.coli and Yeast genome with error-rates of 0.01, 0.02, 0.03,

0.04, and 0.05. The simulated reads have a length of 200. For both E.coli and Yeast, the recall,

precision, and sensitivity of the aligners under study were computed, which are tabulated in Table

7.1. For computing those metrics, we considered a read as correctly aligned if they are within ±10

nucleotides from their real position.

From the Table 7.1, it can be observed that the performance of DNNAligner while aligning

short reads, is quite comparable to other popular sequence alignment tools in the industry. For the

results obtained using the Yeast genome, the precision of DNNAligner is higher than other tools.

The sensitivity of DNNAligner is comparatively lesser but we believe it can be accounted for by

training the Neural network with more noisy data points, which should account for recall score as

well. Further, while creating the noisy data points, using a platform-specific error model, instead

of random distribution, should address the sensitivity and recall performances. Similarly, for E.coli

genome, the results are not the best but quite close to other tools.
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Escherichia coli,K-12 Saccharomyces cerevisiae (Yeast)
Error Recall Precision Sensitivity Recall Precision Sensitivity

0.01

Minimap2 0.9891 0.9891 1.0 0.9712 0.9712 1.0

BWA MEM 0.9891 0.9891 1.0 0.9711 0.9711 1.0

GraphMap 0.9876 0.9953 0.9924 0.9681 0.9813 0.9865
DNNAligner 0.9857 0.9949 0.9906 0.9609 0.9850 0.9754

0.02

Minimap2 0.9890 0.9890 1.0 0.9709 0.9709 1.0

BWA MEM 0.9890 0.9890 1.0 0.9710 0.9710 1.0

GraphMap 0.9876 0.9955 0.9921 0.9676 0.9813 0.9859
DNNAligner 0.9853 0.9953 0.9899 0.9581 0.9866 0.9710

0.03

Minimap2 0.9883 0.9883 0.999 0.9703 0.9703 0.999

BWA MEM 0.9883 0.9883 0.999 0.9703 0.9703 0.999

GraphMap 0.9872 0.9953 0.991 0.9670 0.9814 0.985
DNNAligner 0.9833 0.9956 0.9877 0.9535 0.9880 0.9650

0.04

Minimap2 0.9888 0.9889 0.998 0.9686 0.9687 0.999

BWA MEM 0.9888 0.9888 0.998 0.9687 0.9688 0.999

GraphMap 0.9871 0.9955 0.9915 0.9663 0.9815 0.9845
DNNAligner 0.9847 0.9971 0.9876 0.9455 0.9892 0.9558

0.05

Minimap2 0.9879 0.9888 0.998 0.9648 0.9656 0.991

BWA MEM 0.9887 0.9888 0.999 0.9657 0.9658 0.99
GraphMap 0.9869 0.9954 0.9914 0.9658 0.9818 0.9836
DNNAligner 0.9815 0.9976 0.9839 0.9321 0.9904 0.9410

Table 7.1: Recall, Precision and Sensitivity for simulated Illumina reads for E.coli and Yeast with various
error-rate

7.2.2 Alignment of Roche 454, PacBio SMRT and ONT reads

For Roche 454, which is a second generation technology, we used the same model that was

used for aligning Illumina reads. For this setup, we eliminated the simulated reads which are

shorter than 100 nucleotides, which consists of ≈ 10% of the total simulated reads. The reason

for this elimination of reads is explained in the section 7.4, where we discuss about variation in

performance of DNNAligner with respect to input read lengths. The reads were considered as

correctly mapped if they fall within ±10 from their true location in the genome.

For aligning the reads from third generation technologies—PacBio SMRT and Oxford Nanopore

Technology (ONT), the Neural network models were trained with reads of length 500. For each

reads, we created 10 mutated copies having 15% insertion/deletion/substitution errors. The reads

for both E.coli and Yeast genome were simulated with the default error model provided by the

corresponding simulator for PacBio and ONT as discussed previously. For PacBio and ONT reads,
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which are usually longer than ≈ 20K bases, the reads are considered as correctly mapped if they

fall within ±100 nucleotides from their original locus on the reference genome. Recall, precision,

and sensitivity of different aligners are tabulated in Table 7.2.

Escherichia coli,K-12 Saccharomyces cerevisiae (Yeast)
Recall Precision Sensitivity Recall Precision Sensitivity

PB SMRT

Minimap2 0.9786 0.9794 0.9991 0.998 0.999 0.998
BWA MEM 0.642 0.642 1.0 0.978 0.978 0.999

GraphMap 0.9976 0.999 0.998 0.9814 0.993 0.988
DNNAligner 0.9576 0.9578 0.9997 0.979 0.981 0.997

Nanopore

Minimap2 0.9978 0.997 0.999 0.9766 0.9811 0.9954

BWA MEM 0.8485 0.8485 1.0 0.9815 0.9820 0.9924
GraphMap 0.9528 0.9533 0.999 0.8156 0.8282 0.9847
DNNAligner 0.9473 0.9485 0.9987 0.8046 0.8428 0.9536

Roche 454

Minimap2 0.988 0.988 0.99 0.9918 0.9929 0.9988
BWA MEM 0.9892 0.9892 0.999 0.9712 0.9712 1.0

GraphMap 0.9237 0.995 0.928 0.9681 0.9800 0.9878
DNNAligner 0.9549 0.9917 0.9628 0.9512 0.9775 0.9730

Table 7.2: Recall, Precision and Sensitivity for simulated Roche 454, PacBio SMRT and Oxford Nanopore
reads

From the Table 7.2, it can be observed that the performance of DNNAligner is quite comparable

to other tools. For most of the cases, DNNAligner outperforms BWA-MEM and in general, the

performance of DNNAligner is similar to GraphMap. We believe that training the neural network

with noisy reads having more error rate (> 15%) can make the neural network more resilient

towards the error introduced by third generation technologies and will perform better.

7.3 Evaluation with real reads from Illumina

For evaluation with real reads, we used the reads sequenced with Illumina devices. For E.coli

K-12 strain, we tested with the dataset published in Sequence Read Archive (SRA) with accession

number (ERA000206). For Yeast, we tested with Illumina MiSeq reads from W303 strain [76].

The alignment of those reads was performed with the model that we trained for Illumina short

reads, which was also used for testing the simulated short reads as discussed in the previous sec-

tion. The read length of E.coli. data set is 100, while the read length for Yeast is 250. As the
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ground truth for those reads is not known, we compare the performance based on the sensitivity.

Sensitivity is defined as the ratio of the number of aligned reads to the total number of reads. The

sensitivity values for different aligners that we tested are listed in Table 7.3. As seen in the table,

the performance of DNNAligner is similar to other popular tools, which shows that DNNAligner

can be readily used for read world data sets also. The input reads have different read length than

the neural network was trained for, yet DNNAligner can perform satisfactorily.

Escherichia coli Saccharomyces cerevisiae
BWA MEM 0.9970 0.9755

Minimap2 0.9787 0.9725
GraphMap 0.9814 0.9621
DNNAligner 0.9613 0.9656

Table 7.3: Sensitivity obtained for Illumina reads from E.coli (Accession: ERA000206) and Yeast (Strain:
W303).

7.4 Variation in read length

From the above-discussed results, we observed that the neural network performs satisfactorily

when the input reads have the same length as the reads used for training. However, the real reads

from the sequencing machines are not always the same as the one that we used for training. In

this section, we discuss the variation in precision, recall, and sensitivity of the neural network

with varying input read length. For this experiment, we used the same model that we used for

short E.coli reads, which was trained using the reads of length 200. We simulated the Illumina

reads of various lengths and error rate of 0.01, 0.02, 0.03 and 0.05 and performed alignment using

DNNAligner. The Precision, Recall and Sensitivity variation of the alignment with respect to read

length is as shown in Figure 7.2.

As seen in Figure 7.2c, the sensitivity is lesser when the input read length is smaller than the

read length used for training the neural network. The input vector is sparse due to the less number

of constituent k-mers in the smaller read and the neural network fails to predict it into segments.
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(a) Variation in Precision (b) Variation in Recall

(c) Variation in Sensitivity

Figure 7.2: The plot showing variation of Precision, Recall and Sensitivity of DNNAligner with respect to
varying read lengths.

As the read length increases, the sensitivity gradually increases too, which is due to the fact that the

input vector begins to contain enough features to make the prediction as there are more constituent

k-mers. On the other hand, as the read length increases, the precision gradually decreases since

the network tends to make incorrect predictions, which can be seen in Figure 7.2a. The incorrect

predictions mislead the alignment into false segments, which results in the reported alignment to

be false. Hence, the DNNAligner works best when the input reads have a similar length as the

reads used for training the neural network. But still, there is a wide band of read lengths where

DNNAligner performs satisfactory, which can be seen in the plot of variation in Recall as shown

in Figure 7.2b.
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7.5 Capturing longer strings using k-mer

As observed in the above results and in the comparison of LSTM and MLP networks, using a

relatively simple model of a deep neural network can predict the reads with very high accuracy. In

this section, we discuss some intuition about how an MLP can result in such a model, even with

small k (k = 7 in our case).

In the vector representation of the reads, the reads are broken down into constituent k-mers.

The vector is encoded with either 1 or 0 to denote either presence or absence of a given k-mer

out of all 4k possible k-mers. While breaking them, the information about the relative position of

the k-mers with respect to each other seems to be lost. But one obvious fact is that, given a list

of constituent k-mers, one can compute the original sequence by building a de Bruijn graph. De-

Bruijn graph is a directed graph where the vertices are the k-mers and an edge is drawn between

two vertices if there is a k − 1 overlap between them. This idea is illustrated in Figure 7.3. In the

Figure 7.3a, the original sequence GCTATCTGG is broken into its constituent 3-mers – GCT, CTA,

TAT, ATC, TCT, CTG and TGG. Using those 3-mers, a de Bruijn graph is built as shown in Figure

7.3b. The node TAT and ATC has a k − 1 overlap of AT, hence they are connected with an edge.

Similarly, edges are drawn between nodes for all the overlaps. Finally, a traversal in de Bruijn

graph can reconstruct the original sequence. In the presence of repeated k-mers, the de Bruijn

graph will contain ambiguous paths of traversal, but still the original sequence can be partially

reconstructed. The neural network can learn this notion and can make correspondence between

some groups of k-mers occurring in the input sequence to the segment that they originally belong

to. Hence, the k-mer composition is rich enough to represent the longer originating sequence.

Another observation from our experiments is that k = 7 worked best for us. If k is large

enough, the probability of random occurrence of such groups of k-mers, as discussed above, be-

comes lower, which makes a group of k-mers specific to some segments in the genome. Hence,

increasing the size of k-mer increases the specificity of the model. On the other hand, the size

of vector representation increases exponentially by increasing k, which adds a lot of memory and

computation overhead. Besides that, larger vector representation causes vectors to be sparse, too
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(a) 3-mers of the sequence GCTATCTGG

(b) de Bruijn graph constructed from the constituent 3-mers

Figure 7.3: Re-construction of the original sequence from the k-mers using de Bruijn graph.

specific and might cause overfitting in the training data, which decreases the ability to make a good

prediction in general unseen data. Some values of k (k < 7 and k > 7) were evaluated but we

observed that k = 7 works best for E.coli and Yeast genome.
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Chapter 8

Conclusion and Future work

Although the sequence alignment problem has been researched for a few decades and lots of

breakthroughs has been made, there has not been much research about exploring the options of

a Deep Neural Network for sequence alignment. Our aim with this project was to explore the

pattern recognition capability of the Deep Neural Network in the sequence alignment. We used

the reference genome of E.coli (Escherichia coli) and Yeast (Saccharomyces cerevisiae) for our

studies. We trained a neural network and evaluated our approach with real and simulated data sets.

We also compared the performance of our approach to other popular approaches currently used in

the bioinformatics community.

We showed that the Deep Neural Network can provide some notion of hashing similar to Min-

hash, which is, in fact, superior in performance. The classification of the reads to corresponding

segments is performed with high recall and precision by the Neural network, while Minhash is

limited by the trade-off between sensitivity and specificity. This idea is not limited to the sequence

alignment problem and can be utilized in other genomic sequence analysis problems which re-

quire determining similar sequences. In the future, we would like to explore other problems in

bioinformatics which suits these use cases.

In our study, we observed that the sequence alignment using the neural network, by narrowing

down the search in a particular region of the genome, is quite comparable to other heuristics based

approaches. Our tool performed better than other popular tools in terms of precision in simulated

data sets of Yeast (Saccharomyces cerevisiae). We also observed that DNNAligner is resilient to

some extent of variation in read length than the one it was trained for, but we would like to explore

other neural network architectures that are tolerant to the variation in input read length. One of

them being LSTM, we would like to explore into it further. Also, we have evaluated our tools

for smaller size genomes, but in future, we would like to use our approach for mammalian size

genome like human genome.
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