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Abstract

The Andrásfai–Erdős–Sós Theorem [2] states that all triangle-free graphs on n ver-
tices with minimum degree strictly greater than 2n/5 are bipartite. Thomassen [11]
proved that when the minimum degree condition is relaxed to (13 + ε)n, the result
is still guaranteed to be rε-partite, where rε does not depend on n. We prove best
possible random graph analogues of these theorems.
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1 Introduction

In a 1948 edition of the recreational math journal Eureka, Blanche Descartes
proved that triangle-free graphs can have arbitrarily large chromatic number,
and thus be complex in structure. This motivates the question of which ad-
ditional restrictions on the class of triangle-free graphs allow for a bound on
the chromatic number. By Mantel’s theorem [10], the densest triangle-free
graphs are balanced complete bipartite graphs. So we may first ask whether
triangle-free graphs H with minimum degree somewhat below 1

2
v(H) are still

necessarily bipartite. This is true, as Andrásfai, Erdős and Sós showed in 1974.

Theorem 1.1 (Andrásfai, Erdős, Sós [2]) All triangle-free graphs H with
δ(H) > 2

5
v(H) are bipartite.

Triangle-free graphs of smaller minimum degree do not need to be bipar-
tite, as blow-ups of a 5-cycle illustrate. But one may still ask whether their
chromatic number is bounded (questions of this type were first addressed by
Erdős and Simonovits in [7]). In 2002 Thomassen [11] proved that this is the
case for triangle-free graphs of minimum degree at least (1

3
+ ε)n.

Theorem 1.2 (Thomassen [11]) For any ε > 0 there exists rε such that if
H is triangle-free and δ(H) > (1

3
+ ε)v(H) then H is rε-colourable.

A construction of Hajnal (see [7]) shows that the minimum degree bound
in this theorem cannot be replaced by (1

3
− ε)n. A much stronger result

was established by Brandt and Thomassé [3], who showed that triangle-free
graphs H with δ(H) > 1

3
n are 4-colourable.

In this paper we are interested in random graph analogues of Theorem 1.1
and Theorem 1.2. Establishing such analogues for prominent results in ex-
tremal graph theory has been a particularly fruitful area of study in the last
few years. A good overview can be found in Conlon’s survey paper [4].

In order to study these kinds of questions systematically, Kohayakawa [8]
and Rödl (unpublished) developed a sparse analogue of Szemerédi’s Regular-
ity Lemma, and, together with  Luczak [9] formulated the K LR conjecture
which asserts the existence of a corresponding ‘counting lemma’. Recently
Conlon, Samotij, Schacht and Gowers [5] proved this conjecture. It is easy (as
observed in [5]) to use these results to prove ‘approximate’ random versions
of Theorems 1.1 and 1.2, as well as re-prove Mantel’s theorem for random
graphs. Thus if p � n−1/2 then a.a.s. G(n, p) has the property that all sub-
graphs with minimum degree a little larger than 2

5
pn can be made bipartite

by deleting o(pn2) edges. Similarly, the sparse random version of Mantel’s



theorem obtained states that any subgraph with a little more than half the
edges of G(n, p) contains a triangle.

At first it might seem surprising that there are subgraphs of Gn,p with
minimum degree a little larger than 2

5
pn which are not actually bipartite. In-

deed, an alternative sparse random version of Mantel’s theorem, proved by
DeMarco and Kahn [6], states that a largest triangle-free subgraph of G(n, p)

coincides exactly with a largest bipartite subgraph for p � ( logn
n

)1/2. Never-
theless, subgraphs of G(n, p) with minimum degree larger than 2

5
pn which are

not bipartite do exist (see Theorem 1.5 below). In this paper, we determine,
for all p, how far from bipartite such graphs can be.

Theorem 1.3 For any γ > 0, there exists C such that for any p(n) the ran-
dom graph Γ = G(n, p) a.a.s. has the property that all triangle-free spanning
subgraphs H ⊆ Γ with δ(H) > (2

5
+ γ)pn can be made bipartite by removing

at most min (Cp−1n, (1
4

+ γ)pn2) edges.

In addition we derive an analogous random graph version of Theorem 1.2.

Theorem 1.4 For any γ > 0, there exist C and r such that for any p(n)
the random graph Γ = G(n, p) a.a.s. has the property that all triangle-free
spanning subgraphs H ⊆ Γ with δ(H) > (1

3
+ γ)pn can be made r-partite by

removing at most min (Cp−1n, ( 1
2r

+ γ)pn2) edges.

Up to the values of C, these theorems are best possible.

Theorem 1.5 For any γ > 0 and r ∈ N, there exist constants δ, c > 0 such
that if δ−1n−1/2 6 p(n) 6 δ then Γ = G(n, p) a.a.s has a triangle-free spanning
subgraph H with δ(H) > (1

2
−γ)pn which cannot be made r-partite by removing

fewer than cp−1n edges.

Note that for p � n−1/2 the maximum in each of Theorems 1.3 and 1.4
is achieved by the second term and that these statements are easy: For such
values of p only a tiny fraction of the edges of G(n, p) are in triangles and the
question reduces to asking for the largest bipartite (respectively, r-partite)
subgraph of G(n, p). For p close to 1, by the original Theorems 1.1 and 1.2,
the conclusion of Theorem 1.5 becomes false, so that we need the condition
p 6 δ.

It would be interesting to know whether Theorem 1.4 could be improved
to generalise the result of Brandt and Thomassé. We conjecture that this is
the case.



2 Proof outline

We first sketch the construction proving Theorem 1.5, and then outline the
proof of Theorem 1.3. The proof of Theorem 1.4 uses similar ideas.

For Theorem 1.5, let Γ = G(n, p), and let X ∪Y be a balanced bipartition
of V (Γ). We construct G ⊆ Γ as follows. We first delete all edges in Y .
We next randomly delete edges in X until cp−1n edges remain in X. Finally,
we delete all edges within X which are in triangles contained in X, and all
edges between X and Y which are in triangles. Then G is clearly triangle-free.
Moreover, G[X] has large chromatic number because most edge deletions in
X were done randomly. With some care, it is also possible to show that the
maximum cut in G is X ∪ Y .

To prove Theorem 1.3, we work in two stages. In the first step, we show
that given a triangle-free G ⊆ Γ = G(n, p) with δ(G) > (2

5
+γ)pn, a maximum

cut of V (G) has at most o(pn2) edges within its parts. This we can do using
the sparse Regularity Lemma and the solution to the K LR conjecture. In the
second step, using this rough structure, we argue that in fact there can only
be Cp−1n edges within the parts. This is the novel part of the argument.
Suppose that G[X] contains more than C

2
p−1n edges. (Almost) all of these

edges extend to about p2|Y | triangles in Γ with vertices of Y (these triangles
are of course not present in G). It follows that edges between X and Y in Γ
must have been deleted to obtain G. We give an orientation to each edge of
G[X], towards the endpoint at which more X–Y edges were deleted. Now in
this oriented graph, an in-star (a star with all edges oriented to the centre)
with many leaves corresponds to many deletions of X–Y edges made at the
centre vertex v. If all these deleted edges were distinct, then we would conclude
that v has less than 1

5
pn neighbours in Y , and (by maximality of the cut) less

than 2
5
pn neighbours in total, a contradiction which would complete the proof.

Unfortunately, the triangles of G at v may overlap and hence the deletions
corresponding to the edges of the in-star may not be distinct. Nevertheless,
we can show that given many disjoint such in-stars there must be one centre
where the overlaps are small, and that given many edges in G[X] there must be
many disjoint such in-stars. This allows us to complete our proof. A technical
difficulty here is that we must treat vertices of X with many neighbours in X
separately.

The proof of Theorem 1.4 is similar. The main conceptual difference is
that we use a ‘regularity inheritance’ lemma from [1] to help obtain the initial
rough structure, before using an ‘in-stars’ argument to complete the proof.
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