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ABSTRACT

CLOUD.TO·GROUND LIGHTNING IN TROPICAL MESOSCALE

CONVECTIVE SYSTEMS

This study presents observations of the cloud-to-ground lightning associated

with seven tropical mesoscale convective systems (MCSs) observed during the Down

Under Doppler and Electricity Experiment (DUNDEE). Similar to recent studies of the

cloud-to-ground lightning (CO) in middle-latitude MCSs, radar and lightning location

network data indicated a preference for negative (positive) COs to occur in the

convective lines (trailing stratiform regions) of the tropical MCSs examined. Further. in

break period MeSs it was found that positive peak cmrent maxima tended to occur in

the trailing stratifonn region while positive peak current minima were generally situated

in convective precipitation. This pattern was also observed in two middle-latitude MCSs

that occurred on 3-4 June and 10-11 June 1985. The magnitude of the positive peak

cmrent maxima in the tropical and the middle-latitude MCSs increased coincidentally in

time with the growth of the stratifonn regions, and reached peak values when the

stratiform regions were most intense. This implies that stratifonn microphysics

associated with the development of a mesoscale updraft may be responsible for the

electrification and subsequent cloud-to-ground lightning observed in the stratiform

regions of MCSs. Further analysis of the tropical stratiform regions with radar, wind

profiler, and electric field data coupled with the results of a simple one-dimensional

model to test for the presence of supercooled water seems to positively correlate stronger
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mixed phase regions to the number of cloud-ta-ground flashes observed in the stratifonn

regions. From this study, further support is offered for a non-inductive charging

mechanism being responsible for the electrical charging and subsequent lightning

observed in the trailing stratifonn regions of MCSs.

The conclusion of this study presents peak current statistics and distributions

compiled for approximately 5000 cloud-to-ground flashes observed during the

DUNDEE. Statistical analysis of the lightning data produced an average peak current

(independent ofpolarity) of 39 leA. When considered with the average cloud-top

heights of the tropical MCSs examined herein, the 39 leA peak current average appears

to be in general agreement with Orville's (1990) hypothesis of latitudinal variation in

peak current

Walter A. Petersen
Department ofAnnospheric Science
Colorado State University
Fort Collins, CO 80523
Summer 1992
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CHAPTER 1

INTRODUCTION

During the Southern Hemisphere summers of 1988-89 and 1989-90 the

DUNDEE (Down Under Doppler and Electricity Experiment) was conducted in tropical

north central Australia, centered on Darwin (12.4° S, 130.9° E). The experiment was

designed to study the electrical and dynamical characteristics of tropical mesoscale

convective systems. The research presented in this thesis uses data collected during the

DUNDEE to investigate the electrification mechanisms and cloud-t~ground lighming

characteristics of tropical mesoscale convective systems (MCSs) observed in the Darwin

area.

1.1 Background and motivation for the research

With the exception of the DUNDEE, observations and studies of cloud-to­

ground lighming associated with tropical MCSs, particularly the trailing stratiform

regions of these storms, are rare. However, studies of cloud-t~groundlightning (CG)

associated with middle-latitude MCSs and attendant stratiform regions are comparitively

numerous and have produced specific hypotheses to explain the mechanisms responsible

for the electrification and subsequent lightning produced in stratiform regions. These

hypotheses (e.g., Orville et al. 1988; Rutledge and MacGorman 1988; Engholm et aI.

1990; Rutledge et al. 1990; Schuur et aI. 1990) cannot be completely accepted or
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rejected until they are tested with equivalent data sets and observations from other

regions of the globe, specifically the tropics.

For example, several studies of the cloud-to-ground lightning (CO) associated

with middle-latitude MCSs (e.g., Rutledge and MacGorman 1988; Engholm et ale 1990;

Rutledge et ale 1990), have indicated that CGs of positive polarity (Le., transfer of

positive charge to ground by the flash) may be more frequent than COs ofnegative

polarity (i.e., transfer of negative charge to ground) in the stratiform regions.

Conversely, the majority of the COs associated with the convective line tend to be

negative in polarity. Herein we describe this type of flash pattern (positive COs

associated predominantly with stratiform pfeclpitation, negative cas with convective

precipitation) as "bipolar" (Orville et ale 1988), even though the patterns are not those of

a "true" bipole which implies a complete separation between the locations of positive and

negative COs in an MCS (Fig. 1.1).

The observations of bipolar CO patterns (e.g., Orville et ale 1988; Rutledge and

MacGorman 1988), highly sheared flow in middle-latitude MCSs (Smull and Houze

1987; Rutledge et ale 1988), and the tripole model of a thunderstorm (i.e., a main

positive charge center located in the upper portions of the cloud overlying negative

charge centered near the -100 to -200 C levels with a weak positive charge center near the

00 to -100 C levels; Krehbiel 1986; Williams 1989), led some resean:hers to suggest that

positive charge situated on ice particles was being advected large distances (i.e., >50­

100 Ian) rearward (Fig. 1.2) from the convective line into the stratiform region (e.g.,

Rutledge and MacGonnan 1988; Hill 1988). This would presumably lead to the

accumulation of positive charge in the stratiform region and hence, positive COs. A

similar argument, and possibly the mechanism behind shorter bipoles (i.e., length S 20-

2



30 kIn), was made by Brook et aL (1982). Based on observations of the cloud-to­

ground lightning associated with thunderstorms in Japan, Brook et al. (1982) suggested

that the shear actually "tilted" the dipole down shear of the stonn allowing the upper

positively charged anvil easier access to ground, causing positive CGs to occur away

from the convective line.

Based on a one-dimensional modeling study, Rutledge et aI. (1990) suggested

that CGs occurring in the stratiform region were associated with the electrification of the

stratiform region by an in-situ (internal to the stratifortn cloud), non-inductive charging

mechanism (Takahashi 1978; Jayaratne et al. 1983; Keith and Saunders 1989; Saunders

et aI. 1991). Their simple one dimensional model of a middle-latitude stratiform region,

based on the laboratory hydrometeor charging experiments ofTakahashi (1978),

produced ample charge for lightning in the stratiform region through the collisions of ice

particles in the presence of small amounts of supercooled liquid water. The charge

produced was situated in the stratiform region as an inverted dipole (negative overlying

positive charge), which may be due in pan to the positive charging of ice hydrometeors

growing in a depositional state above the melting level (Takahashi 1978; Williams et aI.

1991; Caranti et aI. 1991). This places the positive charge region closer to ground

which would presumably result in a higher number of positive cloud-ta-ground flashes

(Williams,1989).

While the charge advection and non-inductive charging mechanisms suggested

above both seem to explain observations in the middle-latitudes of positive COs in the

stratiform region, several questions remain. Indeed, recent in-situ measurements of the

electric field in several middle-latitude MeSs and associated stratiform regions reveal a

complex electrical structure in the vertical (e.g., Schuur et ale 1991; Marshall and Rust
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1991). Marshall and Rust (1991) inferred four to ten charge layers of differing sign,

thickness, and magnitude obtained from electric field measurements made in middle­

latitude MCSs. One example of the many charge layers observed in an MCS stratiform

region by Marshall and Rust (1991) is shown in Fig. 1.3. This figure shows the

vertical electric field as a function of altitude (as measured by a balloon-borne electric

field meter similar to that described by Winn et al. 1978). Each of the ten boxes

(representing a charge layer) on the right side of Fig. 1.3 contains a layer's charge

density (derived from the vertical gradient of the electric field), thickness in meters, and

average temperature (OC). Note that observations of this type are in direct conflict with

simple tripole models of thunderstorms (e.g., Krehbiel 1986; Williams 1989) and are

not uniquely explained by either the charge advection or in-situ mechanisms mentioned

above.

It is apparent that more observations and analysis will be required to resolve the

problem of lighming in the trailing stratiform regions of MCSs. In addition, it is equally

apparent that the electrification processes of tropical stratiform regions should be

examined and compared with other similar middle-latitude data sets. This might enable

the formulation of more globally valid hypotheses to explain MCS and associated

stratiform region electrification, while providing an increased statistical data base for

tropical cloud-to-ground lightning in general.

Indeed, general statistical information for cloud-to-ground lightning in the

tropics such as the average peak current of first return strokes, flash rates, and polarity

percentages are important to our understanding of lightning and its relation to the global

electrical circuit (e.g., C.T.R. Wilson 1920; Kasemir 1979). For example, Orville

(1990) hypothesized the existence of a latitudinal variation in the average peak cmrent of
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the first return stroke in a cloud-to-ground flash. This hypothesis states that an inverse

relationship exists between the average peak current of a cloud-to-ground flash and the

latitude of the flash position. Orville's (1990) suggestion is based on observations of

peak current magnitudes in the Eastern United States. Unfortunately, Orville could not

completely verify the hypothesis since no similar cloud-to-ground lightning data sets for

the tropics were available. If in fact Orville's (1990) hypothesis is valid, it might be

possible to redefine calculations of the total earth-ionosphere supply current as a

function of latitude, thus refining the present estimates (see Kasemir 1979) provided by

gross scaling considerations.

1.2 An overview of the data presented

In this thesis, data relating the positions, polarities and peak currents ofcloud-to­

ground flashes to the radar reflectivity patterns of several tropical MCSs are presented.

Also, electric field data will be analyzed to infer the sign of charge in stratiform clouds

as they passed over the observation site. Such data will allow statements to be made

regarding the charging processes operating within the stratiform clouds. Further, we

correlate kinematic properties of the observed tropical stratiform regions such as the

vertical shear of the horizontal wind and strength of the mesoscale updraft (estimated

from vertically-pointing profiler data), with recorded CO flash rates. These data will

then be compared to similar middle-latitude observations (e.g., Rutledge and

MacGorman 1988; Rutledge et al. 1990; Engholm et aI. 1990). Specific comparisons

will be made between the positions of positive peak current extrema observed in the

DUNDEE MCSs presented herein and the positions of positive peak current extrema in

two middle-latitude MCSs (3-4 June 1985, and 10-11 June 1985) observed during
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PRE-STORM (Preliminary Regional Experiment for Stonnscale Operational Research

Meteorology; see Cunning 1986 for a description of PRE-STORM).

We also present the results of a simple one-dimensional model that uses the

obsetved magnitudes of the mesoscale updraft present above the melting level for two of

the stratiform regions studied herein, together with the observed saturated specific

humidities to assess the probability of supercooled liquid water existing above the

melting level (a prerequisite for non-inductive charging to take place; Takahashi 1978;

Jayaratne et al. 1983; Keith and Saunders 1989). Based on the results of the modeling

study and analysis of the data presented above, we offer further evidence for the

existence of an in-situ, non-inductive charging mechanism in the trailing stratiform

regions of tropical MeSs as an explanation for the generation of c1oud-to-ground

lightning therein, particularly positive flashes (e.g., Engholm et at. 1990; Rutledge et al.

1990).

To conclude the data analysis we present general statistical information compiled

from approximately 5000 cloud-to-ground flashes recorded during the DUNDEE. The

statistics presented include the average and extrema of peak currents associated with the

first return stroke of a cloud-to-ground flash, percentage of the total number of COs that

were positive, and average CG flash rates. Funher, we use the average peak current

data to assess the hypothesis of latitudinal variation in peak currents made by Orville

(1990).

1.3 Scientific objectives and organization of the thesis

The scientific objectives of this research are:

6



1) to provide new insights into the electrification of tropical MCS

sttatifonn regions;

2) to identify similarities or differences between the electrification of

middle-latitude MCS stratifonn regions and those in the tropics;

3) and to supplement the existing statistical data base of parameters

describing tropical cloud-to-ground lightning.

To accomplish these objectives we present data collected during the 1989-90 season of

the DUNDEE.

This thesis contains seven chapters. Following the introductory chapter,

Chapter 2 contains a brief description of the DUNDEE. ChaptC7' 3 presents a synopsis

ofprevious studies of the microphysical and electrical properties of stratiform clouds

associated with MCSs. Chapter 4 is an overview of the DUNDEE MCS cases selected

for study in this thesis together with the analysis method employed. Chapter 5 contains

a detailed analysis of the data. Chapter 6 presents conclusions and recommendations for

future research. Appendix A contains descriptive statistics for 5000 cloud-to-ground

flashes observed during the DUNDEE

7
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Figure 1.1 Example of a bipolar cloud-to-ground lightning pattern (adapted from
Orville et at. 1987). Negative cloud-to-ground flash densities (shaded area) and positive
cloud-to-ground flash densities (unshaded area) are contoured in units of flashes km-2.
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Figure 1.2 Positive dipole model of a thunderstonn illustrating charge advection by
the mean stonn relative flow (indicated by arrows). Positive charge is represented with
a (+), negative charge with a (-).
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of an Oklahoma MCS (adapted from Marshall et ale 1991). Shaded boxes indicated
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CHAPTER 2

THE DOWN UNDER DOPPLER AND ELECTRICITY EXPERIMENT

(DUNDEE)

In an effort to better understand tropical convection and its effects on the Earth's

general circulation and the global electrical circuit, the DUNDEE was conducted during

the wet seasons of November 1988-February 1989 and November 1989-February 1990

centered on Darwin, Australia. The DUNDEE was a collaborative effort between

Colorado State University, the Massachusetts Institute of Technology, NASA (National

Aeronautics and Space Administration), and the Australian BMRC (Bureau of

Meteorology Research Centre). As indicated by world mean thunderday maps (e.g.,

Fig. 2.1 in Uman 1987) and DMSP (Defense Meteorological Satellite Program)

observations (Fig. 2.1), convection and lightning occur on a regular basis in the Darwin.

area (12.40 S, 130.90 E) placing the DUNDEE in an ideal location for meeting its

scientific objectives.

2.1 Scientific objectives of the DUNDEE

The scientific objectives of the DUNDEE (as listed in Rutledge et al' 1992a)

were as follows:
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1) to collect infonnation relating the dynamical and electrical characteristics

of tropical continental and oceanic convection to previously observed

differences between land and ocean lightning frequencies (e.g.• Orville

and Henderson (1986) reponed a mean land/ocean lightning ratio of 3.2

based on DMSP satellite observations and an area nonnalized ratio of

7.7; Fig. 2.1).

2) to help answer questions regarding the role of tropical lightning and

thunderclouds in the global electrical circuit (i.e., the role of

thunderstonn induced corona currents and cloud-tOo-ground lightning in

the maintenance of the ionospheric potential difference).

3) to document and explain the high ratios of in-eloud to cloud-tOo-ground

lightning found in the tropics (Prentice and MacKerras 1977; Fig. 2.2)

relative to our current understanding of the electrical charge structure of

thunderstorms.

4) to relate flash rates to cloud depth in order to test scaling laws

(formulated with middle-latitude data) that state total lightning flash rates

vary as the fifth power of the cloud-top height (Williams 1985).

5) to document relationships between cloud-ta-ground lighming activity and

cloud cluster life cycles (e.g., Rutledge et al. (1990) found that spatial

patterns in positive and negative COs evolved with the growth of several

middle-latitude MCS stratifonn regions).

6) to conduct structural and lifecyc1e studies of monsoon (i.e., oceanic) and

continental cloud clusters.

7) to study the kinematics (e.g.• vonicity budgets) of tropical mesoscale

convective systems.
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2.2 Observational network

To accomplish the objectives stated above, a wide array of instruments were

deployed.(Figs. 2.3, 2.4). Radar measurements (Fig. 2.3) were made with the MIT

(Massachusetts Institute of Technology) and NOAA-TOOA (National Oceanic and

Atmospheric Administration-Tropical Ocean and Global Atmosphere) C-band Doppler

radars. The radars were situated on a 29 Ian baseline oriented approximately east-west,

which allowed dual-Doppler scanning of storms (Rutledge et al., 1992a). In

conjunction with the NOAA and MIT radar measurements, a 50 MHz vertically pointing

wind profiler (installed and operated by NOAA and BMRC) was also used for obtaining

vertical velocities.

Measurements of temperature, humidity, wind, pressure, and rainfall at the

surface (Fig. 2.3) were recorded by a surface mesonet consisting of 10 automated

weather stations (AWS) that were developed by the BMRC. The AWSs were

complimented with a network of Woefle chart recorders (for additional wind

information), and a network of tipping bucket raingauges (Rutledge et al. 1992a). In

addition to surface measurements, radiosonde observations (thermodynamic) were taken

every 12 hours at the Bureau of Meteorology (BOM) in Darwin with wind soundings at

6 hour intervals. Wben needed, venical soundings of the atmosphere were also taken at

the MIT radar site using an OMEGAsonde system developed by the National Center for

Atmospheric Research (NCAR) and at Noonamah, using the Monash University

Digicora Sounding system (Rutledge et al. 1992a).

Electricity measurements were made with several different sensors. During the

1988-89 season, five corona point sensors mounted on 5-meter masts were used to
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detect total lightning and electric field changes (Rutledge et al. 1992a). For the 1989-90

season, the corona point network was removed and replaced with a lightning location

and detection network consisting of four magnetic direction finding (OF) lightning

sensors (Fig. 2.4). The sensors were installed by Lightning Location and Protection

Inc. (LLP) ofTucson, AZ. During both seasons of the DUNDEE an electric field mill

of the type used at Kennedy Space Center Florida (Jacobson and Krider. 1976) and two

flat plate antennas were also used for electricity measurements.

2.3. Lightning detection network and flash detection method

A network of four direction-finding (OF) antennas similar to those described by

Krider et aI. (1976) were deployed at Darwin, Jabiru, Tmdal and the Douglas Daly

Experimental Station in the Northern Territory to record cloud-te-ground flash data (Fig.

2.4). The average distance between stations in this network was approximately 220 km.

The majority of ground flashes used for our analysis occurred within 200 km of the

center of the DF network. Information provided by the DUNDEE DF network included

the position of each flash (relative to the MIT radar), time of occurrence (to the nearest

millisecond), multiplicity (number of return strokes in each flash), polarity and the peak

current (in kiloamps, leA) of the first return stroke.

For the DUNDEE lightning data set, the position of a ground flash was

calculated using triangulation when at least two stations detected the same flash. Ifmore

than two stations detected the same flash (signals received coincident in time at each

DF), the position of the flash could be statistically optimized. CO flash detection

efficiencies for DF networks are generally ~ 70% for flashes within a 300 Ian r&;dius of

the center of the network and errors in position have been found to be on the order of 10
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kIn or less (Mach et al., 1986). Detection efficiencies can improve to'~ 90% for CGs

occurring at locations within LLP DF networks (personal communication from Mr. Ron

Holle and Dr. Raul L6pez, National Severe Storms Laboratory). Site errors at the

antennas for the DUNDEE network were approximately 0.5 degrees in azimuth. Errors

in peak currents are ten percent or less (personal communication from Bill Hiscox, LLP

Inc.).

2.4 Background and selected results from the 1988-89 season

The mesoscule convective systems (MeSs) observed during the DUNDEE can

be subdivided into two broad categories; monsoon and break period MCSs. During

Southern Hemisphere summers, the posi.tion of the intertropical convergence zone

(ITCZ) largely dictates the synoptic flow regime over the nonhern portion of the

Australian continent which, in tum, determines the weather regime observed in the

Darwin area. In break periods when the ITCZ is north of Darwin, the area experiences

low level southeasterly flow off the continent, placing Darwin under the influence of a

continental tropical (cT) ainnass that has high values of convective available potential

energy (CAPE) (sometimes exceeding 2000 J kg-I; Rutledge et aI., 1992a). During

monsoon periods, the ITCZ moves to the south of Darwin and the low level flow

changes to a more northwesterly direction off of the ocean placing Darwin in a maritime

tropical (mT) airmass of lower CAPE with values of 500-1000 J kg-1 (Rutledge et aI.,

1992a).

From data collected during the 1988-89 DUNDEE season, Rutledge et aI.

(1992a) showed that the electrification of monsoon and break period MeSs is correlated

to the CAPE and hence, from parcel theory, the strength of convective updrafts. The
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observations further revealed that monsoon MCSs forming in a lower CAPE

environment were only weakly electrified, yielding relatively low lightning flash rates

(cloud-ta-ground and in-cloud flashes) of 15 min-lor typically, much less (Fig. 2.5;

adapted from Rutledge et al. 1992a). Conversely, MCSs forming in a break period

regime (higher CAPE) were highly electrified, yielding much higher flash rates of up to

60 min-I. Rutledge et al. (1992a) attributed the lower electrical intensity of monsoon

MCSs to the absence of deep mixed phase regions, which are required for vigorous

non-inductive charging to take place (Takahashi 1978). An example of the weaker

mixed phase region of a monsoon MCS is seen in Fig. 2.6a (adapted from Rutledge et

al., 1992a). In Fig. 2.6a, reflectivities greater than 40 dBZ below the melting level (5

Ian) decrease rapidly to 10-20 dBZ just above the melting level, likely indicating

glaciated conditions. Break period convection on the other hand, was generally

observed to be much deeper with reflectivities in excess of 40 dBZ well above the

melting level, likely indicating a deep mixed phase region (Fig. 2.6b).

It should be noted that the explanation offered above by Rutledge et al. (l992a)

for the difference in lightning flash rates between monsoon and break period MCSs

primarily addressed the lightning associated with the convective portions of tropical

MCSs, not the trailing stratiform regions. This provides the opportunity for research of

a more specific nature to be conducted on the electrification of stratiform regions

associated with the tropical MCSs observed during the DUNDEE. Such research is the

focus of this thesis.
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Figure 2.1 September 1977 to August 1978 DMSP midnight satellite observations of
total lightning from roo N-rooS (adapted from Otville and Henderson, 1986).
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Prentice and MacKerras, 1977).
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ale 19918).
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CHAPTER 3

AN OVERVIEW OF MESOSCALE CONVECTIVE SYSTEMS:

STRUCTURE, MICROPHYSICS AND ELECTRIFICATION

Mesoscale convective systems are precipitation systems associated with

significant convection that occurs during some portion of their lifetime, spatial scales of

10-500 Ian and lifetimes on the order of 10 hours (Rutledge, 1991). MCSs have been

the subject of numerous investigations over the past several decades. They are

significant to forecasting since they are often associated with severe weather (e.g., hail,

tornadoes, strong winds, frequent cloud-to-ground lightning, and flooding), and they

also modify the large-scale synoptic flow of the troposphere through transports of heat

and momentum (e.g., Fritsch and Maddox, 1981; Johnson, 1984). Subsets of MeSs

include the mesoscale convective complex (as defined by Maddox, 1980), squall lines,

tropical cloud clusters and large supercell thunderstorms. Herein we will be primarily

concerned with mature tropical squall lines having lifetimes on the order of5-10 hours.

In this chapter we focus on describing the relevant dynamical, microphysical and

electrical properties of MeSs as identified in previous studies. This overview will then

set the stage for new electrical (lightning and electric field) observations of MCSs to be

presented later in Chapter 5.
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3.1 MCS dynamical structure

Mature MCSs (Fig. 3.1) can be described using a conceptual model similar to

that presented by Houze et aI. (1989). The model is a composite made from many

observations of middle-latitude and tropical squall lines (Houze et aI. 1989). Major

features of the Mes in Fig. 3.1 include a convective line with associated large radar

reflectivities, heavy convective showers and a surface gust front Trailing the

convective line is a stratiform anvil cloud (typically referred to as the trailing stratiform

region) characterized by a radar "bright band" (Leary and Houze, 1979; Smull and

Houze, 1987; Rutledge and Houze, 1987; Rutledge et aI. 1988), and a broad area of

stratiform precipitation (Leary and Houze, 1979; Gamache and Houze, 1982; Smull and

Houze, 1987; Rutledge et aI. 1988).

In Fig. 3.1 two major flow structures are exhibited. General upward motion is

indicated at the edge of the gust front with the vertical slope of the motion becoming

more pronounced as it enters the convective line, then decreasing as it enters the

stratiform region. This stonn-relative flow is called the ascending front-to-rear flow

(Houze et aI., 1989) and is superimposed onto vigorous updrafts and downdrafts in the

cells of the convective line (Houze et al.. 1989; Rutledge. 1991). The second flow

structure (descending rear inflow) slopes gently downward from mid-levels in the

stratiform region. through the bright band, and descends sharply at low levels into the

back of the convective line where it may merge with convective downdrafts to

strengthen the leading gust front (e.g., Smull and Houze, 1987; Rutledge et aI. 1988).

New cells form at the leading edge of the gust front ahead of mature and decaying cells

in the convective line. The older cells and their associated heat, momentum and

condensate are advected rearward in the front-to-rear flow, thus developing and
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maintaining the trailing stratiform region ( Smull and Houze, 1985, 1987; Rutledge et al.

1988; Biggerstaff and Houze, 1991).

Mean mesoscale venical motions in the stratiform region (possibly driven by

spatially varying convective scale circulations; e.g., Biggerstaff and Houze, 1991;

Keenan and Rutledge, 1992) are characterized by mesoscale ascent in the front to rear

flow above the bright band and mesoscale descent below the bright band (e.g., Leary

and Houze, 1979; Gamache and Houze, 1982; Smull and Houze, 1987; Rutledge and

Houze, 1987; Rutledge et al. 1988). The mesoscale updraft and downdraft are typically

20-50 cm s-1 in magnitude (e.g., Gamache and Houze, 1982; Rutledge et al. 1988) and

are associated with mid-level convergence above the bright band (note the position of the

stratiform meso-low at mid-levels in Fig. 3.1) and lower level divergence below the

bright band. A narrow region of subsidence and low radar reflectivities called the

transition zone often exists between the convective line and trailing stratiform region

(Rutledge et al. 1988; Biggerstaff and Houze, 1991).

While theconceptual mooel (Fig. 3.1) presented by Houze et al. (1989) is

generally representative of both tropical and middle-latitude MCSs, some differences do

exist. For example, strong reflectivity cores in tropical MCSs of oceanic origin rarely

extend much above the 0° C level (e.g., Jorgensen and Lemone, 1989; Rutledge et al.

1992a). Furthermore, peak convective updrafts in middle-latitude MCSs are two to

three times stronger than those of tropical MCSs (Jorgensen and Lemone, 1989). For

stratiform regions, Smull and Houze (1987) noted that the storm-relative rear inflows of

tropical MCS stratiform regions are typically much weaker than those of their middle­

latitude counterpans.

25



3.2 Microphysical observations in the stratifonn regions of MCSs

The microphysical structures of MCSs are only partially documented owing to

limited observational capabilities. In-situ samples of the upper portions of MCSs with

aircraft capable of making microphysical observations are basically non-existent. We

therefore present microphysical observations made in the lower and middle levels of

MCSs. Heymsfield and Hjelmfelt (1984) presented detailed in-situ observations of the

hydrometeors present in the middle-levels of convective lines associated with several

middle-latitude MCSs. Similar observations were presented by Houze and Churchill

(1984) and Gamache (1990) with regard to the microphysical characteristics of tropical

MCSs. Herein we will limit our discussion of MCS microphysical observations to

those associated with the trailing stratifonn region.

Modeling studies and observations point to two primary steps in the growth of

the stratiform region. Step 1: Advection of ice particles rearward from the convective

line into the stratiform region by the stonn-relative front-ta-rear flow (e.g., Smull and

Houze 1985, 1987; Rutledge and Houze, 1987). Step 2: Further growth of the ice

particles and the production of new ice particles in the mesoscale updraft (e.g. Rutledge

and Houze, 1987). As the stratiform region grows, a radar bright band (a horizontal

band oflocally higher reflectivities) develops immediately below the OOC level as ice

falling through the melting level acquires an outer layer of liquid water (Leary and

Houze, 1979), producing a sharp increase in reflectivity (Battan, 1973). The rapid

decrease in reflectivity below the bright band is due to evaporation of hydrometeors,

higher terminal velocities of raindrops and possibly drop break up (Battan, 1973).
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The stratifonn region is composed almost entirely of ice with average

concentrations of 10-70 L-l (e.g., Houze and Churchill, 1984; Gamache, 1990; Willis

and Heymsfield, 1989; Yeh et al. 1991). Though the stratifonn region is thought to be

mainly glaciated, several observational studies have inferred the presence of small

amounts of supercooled liquid water (amounts generally ~ .3 g m-3 ; e.g., Leary and

Houze, 1979; Houze and Churchill, 1984; Rutledge et al. 1990; Yeh et ale 1991). In

addition to the observations, a modeling study by Rutledge and Houze (1987) also

suggested the presence of slight amounts (~0.1 g m-3) of supercooled liquid water in

the stratifonn region.

Ice particle observations in the stratifonn region have revealed large numbers of

aggregates (many of which appear to be aggregates of broken dendrites and ice

fragments; e.g., Willis and Heymsfield, 1989) and branched crystals, indicating that in­

situ ice particle growth is due primarily to aggregation and deposition (e.g., Leary and

Houze, 1979; Houze and Churchill, 1984; Willis and Heymsfield, 1989; Gamache,

1990; Ye et ale 1991). While deposition and aggregation are thought to be the primary

growth regimes in the stratiform region (and do not require cloud water), some studies

have observed or inferred the presence of rimed aggregates and graupel in the stratiform

region (e.g., Leary and Houze, 1979; Yeh et a1. 1991) indicating that some riming may

be taking place. Kinematic modeling studies by Rutledge (1986) and Rutledge and

Houze (1987) also diagnosed the presence of graupel in the stratiform regions of an

MCSs.

Leary and Houze (1979) inferred from raindrop size distributions collected

dwing GAlE (Global Atmospheric Research Program's Atlantic Experiment) that liquid

water above the 00 C level was possibly present in sufficient amounts to cause riming
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and the production of graupel. This finding is consistent with Yeh et al. (1991) who

obsetved small concentrations of graupel (.07 L-l) and numerous aggregates composed

ofrimed crystals (believed to be dendrites and fractured dendrites) in the stratiform

region of a middle-latitude MCS. These results coupled with the modeling results of

Rutledge and Houze (1987), support some limited riming growth of ice and the presence

of modest aIDO,unts of graupel in the stratiform regions of MCSs.

Houze and Churchill (1984) and Gamache (1990) both conducted studies ofice­

particle concentrations and liquid water contents (LWCs) observed in the stratiform

regions of tropical MCSs studied during WMONEX and SMONEX (Winter, Summer

Monsoon Experiment; 1978 and 1979) respectively. Both studies reported that

stratiform regions were dominated by aggregates, vapor grown crystals and a large

number of particles whose shapes were indetenninable (though thought to be aggregates

and ice fragments by Houze and Churchill). In both studies the concentrations of each

type of ice paI'lticle were summarized in a tabular format. For example, Houze and

Churchill (1984) grouped ice concentrations at the 7-8 Ian level (-140 C to -190 C)

according to size, shape and the strength of the stratiform precipitation reflectivity.

Strong stratifo:rm precipitation (~ 20 dBZ) had concentrations of 20-70 VI and small

amounts of liquid water (always < 0.2 g m-3). Weak and very weak stratiform

precipitation (1-20 dBZ) had concentrations of ice that were almost always < 10 L-1.

In summary, it appears that the stratiform region is seeded by ice particles from

the convective line (e.g., Smull and Houze, 1987) and that this condensate grows in the

mesoscale updraft by vapor deposition and aggregation (Rutledge and Houze, 1987).

Liquid water is sometimes present in the stratiform region, though in small amounts, so

some riming of ice particles may take place (Leary and Houze, 1979; Rutledge and
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Houze, 1987; Yeh et a1. 1991). Particle concentrations vary in the stratifonn region

with average concentrations on the order of 10-70 L-1 (Houze and Churchill, 1984;

Willis and Heymsfield, 1989; Gamache, 1990; Yeh et a1. 1991). Ice is present in the

stratifonn regions primarily in the form of aggregates, branched crystals and fragments

with slight concentrations of graupel observed (.07 L-l; Yeh et a1. 1991). In addition, a

significant number of ice-ice collisions may take place in the stratifonn region based on

observations which show aggregates of dendrite branches and fragments (e.g., Yeh et

aI. 1991), and the presence of numerous individual ice fragments (Houze and Churchill,

1984; Willis and Heymsfield, 1989; Yeh et a1. 1991).

3.3 A brief review of electrification hypotheses

To better understand hypotheses advanced to explain MCS electrification, a brief

review of thunderstonn charging mechanisms is in order. Mechanisms forwarded to

explain lightning in thunderstorms can be grouped into two categories: 1) precipitation­

based theories (non-inductive and inductive); and 2) a convective theory. Since this

thesis concentrates on the mechanisms responsible for producing lightning as observed

in the stratifonn regions of MCSs, we will concentrate on precipitation-based theories

(more specifically the non-inductive charging mechanism) and not the convective theory.

The convective theory of charging (reviewed in Williams, 1989) invokes strong vertical

air motions inside of developing thunderstorms to transpon space charge (created by

corona emission and cosmic radiation) against local. electric fields. However, the

convective theory does not adequately explain the observed charge structures in

thunderstonns nor does it produce lightning on time scales relevant to the developing

thunderstonn (Williams, 1989).
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Precipitation-based theories can be separated into the non-inductive (e.g.,

Takahashi, 1978: Jayaratne et al. 1983) and inductive charging mechanisms (Elster and

Geital, 1913; llIingworth and Latham, 1977). The inductive charging mechanism states

that the fair weather electric field polarizes precipitation particles as they are falling

(positive charges collect on the bottom of the panicle, negative on top in a downward

directed electric field). When hydrometeors such as ice or water droplets collide, the

smaller particle (being carried upward in an updraft) acquires positive charge, while the

larger particle 2lcquires negative charge, thus leaving the cloud with negative charge in

lower layers and positive charge aloft (a positive dipole). It has been demonstrated by

several researchers that the inductive charging mechanism cannot produce large enough

electric fields for breakdown to occur (e.g;, Gaskell, 1979; Rawlins, 1982). In

comparison to convective and inductive charging mechanisms, the non-inductive

mechanism is considered a viable charging mechanism for thunderstorm electrification

(Williams, 1989).

The non-inductive charging mechanism is based on the laboratory experiments

of Takahashi (1978), Jayaratne et al. (1983), Keith and Saunders (1989), and Saunders

et al. (1991). These experiments indicate that significant charge is transferred in

collisions between ice crystals and a riming ice surface (e.g., graupel). The amount and

sign of charge transferred has been shown to be a strong function of the liquid water

content (LWe) and the temperature. Takahashi's (1978) laboratory results are in the

best agreement with observations (Williams, 1989).

Fig. 3.2a shows results from Takahashi's (1978) laboratory experiments. The

electric charge transferred to the rimer (in electrostatic units) is shown as a function of

temperature and liquid water content. The shaded area represents temperatures and
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liquid water contents where the rimer charges negatively, the light area represents

positive charging of the rimer. The boundary separating the two charge polarities

represents the charge reversal temperature (which is a function of the LWC). In addition

to the liquid water content and temperature, the sign of charging has also been shown by

Takahashi (1978), Baker et al. (1987), Caranti et al. (1991) and Williams et al. (1991)

to be a function of the growth state of the ice surface (i.e., when the graupel surface is in

a depositional (sublimational) state it acquires positive (negative) charge).

The non-inductive mechanism believed to be responsible for the electrification of

clouds works as follows (e.g., Fig. 3.2b): graupel growing by riming are carried by

updrafts above the melting level along with liquid water (regions B-C in Fig. 3.2b).

Above the charge reversal temperature (typically -100C to -20°C) graupel colliding with

small ice crystals in the mixed phase region are charged negatively. The :smaller ice

crystals are charged positively and lifted into the upper regions of the stonn by updrafts.

Thus positive charge is situated in the upper levels in a thunderstonn. nle negatively

charged graupel meanwhile stay in the mixed phase region at the particle balance level

(the level at which the terminal velocity of the graupel equals the updraft velocity) and

continue to grow while continually undergoing collisions with smaller ice particles.

This concentrates the negative charge residing on the graupel in the mixed phase regions

of the cloud (centered generally between -IDoC and -20°C). Later, when the graupel

grow large enough 10 fall through the level of the charge reversal temperature (or the

suspending updrafts weaken) they undergo collisions in the lower levels. of the

thundercloud and charge positively (region A in Fig. 3.2b). Hence, a net positive space

charge also develops lower in the cloud below the charge reversal temperature. The

layers of lower positive charge, middle negative charge and upper positiive charge (Fig.
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3.2b) thus result in observations of a tripolar charge structure in thunderclouds

(Williams, 1989).

The non-inductive charging mechanism in thunderclouds is supported by: 1) in­

situ measurements of the vertical charge structure in thunderstorms (e.g., Dye et al.

1988; Breed and Dye, 1989; Williams, 1989; Selvam et al., 1991); 2) observations that

clouds dominated by warm rain processes and weak mixed phase regions produce little

or no lightning (e.g., Chauzy et al. 1985; Williams, 1989; Selvam et al. 1991; Rutledge

et al. 1992a), and by recent in-situ measurements of the charge, size and shape of

hydrometeors in cumulonimbus clouds and thunderstonns (e.g., Dye et al. 1988;

Selvam et al. 1991; Weinheimer et al. 1991). Dye et al. (1988) and Weinheimer et al.

(1991) discovered significant charge residing on graupel particles in New Mexico

thunderstorms. Charge measured on the graupel by Weinheimer et al. were on the order

of 10-20 pC with peak charges of approximately 200 pC (consistent with the theoretical

results of Bourdeau and Chauzy, 1989). Dye et al. measured slightly lower charge of 1­

6 pC on a very small number (65) of 1 mm graupel particles. The measurements of

Weinheimeret al. also indicated a charge reversal temperature of -17°C to -22° C with

liquid water contents of 0 to 2 g m-3 which is somewhat consistent with the results of

Takahashi, 1978. In the tropics, Selvam et al. (1991) also inferred the presence of a

non-inductive charging mechanism in cumulus clouds observed during the Indian

summer monsoon. In-situ measurements of the electric potential gradient, temperature,

liquid water contents, and the charge residing on raindrops were found by Selvam et al.

to be consistent with the results of Takahashi (1978). Thus far we have only considered

the non-inductive charging mechanism in thunderclouds however, the non-inductive

charging mechanism can also generate electric charge in the trailing stratiform region of

an MCS (region D in Fig. 3.2b).
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In the stratifonn region the mesoscale updraft carries smaller ice crystals

upward It may also carry small amounts of liquid water with the ice in the development

of a mixed phase region (recall the observations of small LWCs in stratifonn regions

presented earlier in this chapter). Therefore, collisions and charge transfer may still take

place between ice particles (some of which may be graupel) in the presence of small

amounts of liquid water. Gravitational settling would then separate the larger particles

from the smaller. promoting charge separation. Indeed, since depositional growth of ice

in stratifonn regions sometimes takes place in the presence of slight amounts of liquid

water, it would be expected that graupel or ice undergoing depositional growth (e.g.•

Fig. 3.2b) would charge positively in collisions with smaller ice panicles (fakahashi.

1978; Baker et al. 1987; Caranti et al. 1991; Williams et al. 1991). The smaller.

negatively charged ice particles would then be transported aloft by the mesoscale

updraft Hence. an inverted dipole (negative overlying positive charge) may possibly

develop in the stratifonn region which would favor positive discharges to ground (e.g.•

Rutledge et al. 1990). Recent electrical observational studies of MCSs lend support to

the existence of an in-situ, non-inductive charging mechanism in the stratifonn region.

3.4 Summary of MCS electrification studies

Herein we review several recent middle-latitude studies ofCG patterns relative to

MCS reflectivity structure including Rutledge and MacGonnan (1988), Orville et al.

(1988). Stolzenburg (1988), Rutledge et aI. (1990), and Engholm et aI. (1990). Similar

radar studies conducted in the tropics and reviewed in this thesis include Chauzy (1985).

Rutledge et al. (1991), and Petersen and Rutledge (1992). We also review recent in-situ

measurements of the vertical charge structure in middle-latitude and tropical MCS

stratiform regions (e.g.• Chauzy et al. 1985; Marshall and Rust. 1991; Schuur et al.
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1991). We begin the review of MCS electrification by presenting a shon summary of

the middle-latitude observations of CO lightning relative to observed radar reflectivity

structures in MCSs, paying special attention to observations of the positive COs in the

stratiform region.

3.4.1 Observations of MCS electrification in the middle-latitudes

Rutledge and MacOonnan (1988) (hereafter referred to as RM) presented radar

and CO lightning data collected during the 10-11 June 1985 PRE-STORM MCS (e.g.,

Figs 3.3, 3.4). The lightning data (locations shown as (+) for positive flashes and (-)

for negative flashes) were presented at 30 minute time intervals centered spatially and

temporally on lthe National Weather Service (NWS), Wichita, Kansas WSR-57 low

level (1.2°) radar scans. The data were analyzed by RM for approximately five hours of

the storm's lifetime, from the development of a strong convective line to the

development of a mature-dissipating stratifonn region.

Fig. 3.3a (0123 UTC) shows a well defined squall line (approximately 2 hours

after formation) with contours of reflectivity in the convective line> 40 dBZ (RM

classified convective regions as those regions enclosed by 30 dBZ reflectivity contours

oriented along a NE-SW line). Weak stratiform precipitation is indicated NE and NW of

the convective line. The CG lightning data revealed a bipolar pattern with negative COs

occurring primarily in the convective line and positive CGs in the developing stratiform

region. Several hours later at 0423 UTC (Fig. 3.3b), the stratiform region had matured

as evidenced by a large area with reflectivities of 20-30 dBZ well behind the leading

convective line. As at 0123 UTC (Fig. 3.3a), the CO's were arranged in a bipolar

pattern with positive COs occurring just behind and well to the rear of the convective
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line (indeed, a bipolar pattern was evident in each of the 10 time periods studied by

RM). An important finding of RM was that the peak positive CG flash rate at 0423

UTC (Fig 3.3b) coincided with the peak in areally integrated rainfall (Fig 3.4). RM also

pointed out that peaks in the negative CG flash rate correlated well with the peaks in

convective rainfall and that the time lag between the peak flash rates (negative and

positive) is similar to the lag between the peaks in convective and stratifonn rainfall

respectively.

To investigate the correlations between the rainfall (convective and stratifonn)

and CO flash rates, and the observations of bipolar CG panerns, RM calculated the

trajectories ice particles would take from the upper regions of the convective line, into

the stratifonn region. RM found that large ice crystals in the convective line (above 8.4

km) with fall speeds of 1.5 - 2 m s-I, could have been transported 45 km into the

stratifonn region in 1-3 hours before reaching the melting level. This result led RM to

suggest that positive CGs in the stratifonn region were associated with the rearward

transport of positively charged ice from the upper regions of the convective line into the

stratifonn region. This conclusion is consistent with the development of stratifonn

precipitation by the rearward transport of ice from the convective line (Smull and

Houze,1985, 1987; Rutledge and Houze, 1987), the existence of positive charge in the

upper regions of a thunderstorm (Williams, 1989), and the charge advection mechanism

(e.g., Orville et al. 1988).

Orville et al. (1988) and Stolzenburg (1990) documented the occurrence of

several bipolar patterns in MCSs occurring in the Eastern United States (e.g., Fig. 1.1)

using NWS radar summaries and the SUNYA (State University of New York at

Albany) lightning detection network. Bipole lengths (horizontal distance from the center
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of negative CGs to the center of positive CGs) were on the order of 100-300 Ian and

were oriented approximately parallel to the geostrophic wind vector. The positive ends

of the bipoles were located in downshear anvils while the negative ends of the bipoles

were situated in the convective regions. Orville et al. (1988) noted that the bipolar

patterns occurred preferentially in fall and winter season mesoscale weather systems,

while Stolzenburg inferred a seasonal dependence for the length of the bipoles (summer

bipoles being shorter than winter bipoles). Stolzenburg attributed the seasonal

dependence on length to seasonal differences in convective intensity (upright convection

being stronger in the summer) and to seasonal differences in wind shear (Le., higher

shear in the more baroclinic environment of fall and winter would tend to move the

upper positive and lower negative charge regions funher apan).

Both Orville et al. (1988) and Stolzenburg (1990) concluded that charge

advection by the geostrophic wind led to the observed bipolar patterns. This conclusion

was based on several observations. First, the bipoles were always aligned with the

geostrophic wind vector. Second, vertical shear of the horizontal wind exceeded

1.5 m s-1 lan-I (a threshold proposed by Brook et al. (1982) to explain the occurrence

of positive CGs 10-20 Ian away from the convective regions of thunderstorms in Japan

(Le., the tilted dipole mechanism). Third, charge relaxation calculations based on the

conductivity of cloudy-air (2xlo-l5 mho m-1; Rust and Moore, 1974) revealed a

characteristic time for charge relaxation by ion attachment of 4400s (implying a 30 m 5-1

wind could advect the positive charge approximately 130 km in 60 minutes before the

charge was neutralized, which is on the order of observed bipole lengths). It is

interesting to note that Orville et al. (1988) also suggested that local charge separation in

the stratiform clouds might be partly responsible for the enhanced electric fields needed

for positive CGs to occur.
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Additional observations of CO patterns with respect to the radar reflectivities

associated with MCSs were made by Engholm et al. (1990). More specifically,

Engholm et al. (1990) concentrated on the conditions under which positive COs and

bipolar patterns occurred. They found a positive correlation between the vertical wind

shear and: 1) relative displacement between positive and negative CGs and 2) percentage

of positive COs (Fig. 3.5). Further, Engholm et al. found that winter bipoles were

oriented with the geostrophic wind while summer bipoles tended to align with stronger

ageostrophic convective circulations (Le., stonn relative shear vectors).

In studies of the bipolar lightning patterns associated with two winter season and

three summer season MCSs, Engholm et al. (1990) pointed out that even though vertical

wind shear and the occurrence of bipolar patterns were highly correlated, the bipole

length seemed to be equally well correlated to the depth of the surrounding clouds.

Indeed, in the winter season MCSs examined, positive COs (on the positive end of the

bipole) tended to be located under an anvil within 10-20 km of upright convection, or

within 10-20 km of embedded convection in stratiform cloud (which was also aligned

with the geostrophic wind). It was also noted that there seemed to be no correlation

between the length of the bipoles and the strength of the geostrophic winds aloft. This

lead Engholm et al. to conclude that convective scale tilting of a positive dipole by

vertical wind shear (tilted dipole mechanism; Brook et al. 1982) was responsible for the

bipolar patterns obs(~rved, not charge advection over mesoscale distances. Indeed,

Engholm et al. (1990) abandoned the hypothesis of charge advection over mesoscale

distances in favor of an in-situ charging mechanism on the convective scale for the

production of positive charge in stratifonn clouds.
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Engholm et al. (1990) supponed their position with electric field measurements

of several summer season MeSs made with a surface based corona point network. It

was argued that if charge advection were the primary mechanism involved in the

electrification of the stratiform region and the fonnation of bipolar patterns, one would

expect to measure primarily positive charge overhead in the region just behind the

convective line and into the strdtiform region. However, MCS stratiform regions

passing over the corona point network revealed both positive and negative charge layers

overhead, in conflict with charge advection hypothesis (e.g., Orville et al. 1988;

Rutledge and MacGorman, 1988; Stolzenburg, 1990):

For example, in one case studied by Enholm et al., (21 June 1987) as the

stratiform region (still attached to the convective line and only 20-40 km in width)

passed over the network, a global change to positive charge overhead was observed

except at one station where negative charge was observed overhead. In another case (12

July 1988), a mature stratifonn region, completely detached from the convective line,

approached the corona point network from the west. Fig. 3.6 represents the corona

point measurements of the electric field (positive values indicate negative charge

overhead) recorded with the passage of the strarifonn region. Note that the venical

electric field became strongly positive (negative charge overhead) as the stratiform

region passed over the radar and then became negative (positive charge overhead) as the

trailing edge of the stratiform region left the network. Engholm et al. (1990) attributed

this to the local tilting of a positive dipole in the stratiform region. Since this stratiform

region was completely independent of the convective line, and the electric field did not

change until the stratiform region was over the network, Engholm et al. considered this

to be strong evidence of in-situ charge generation in the stratifonn region.
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Another imponant finding by Engholm et al. (1990) was that both winter and

summer MCS cases which produced lightning, exhibited significant reflectivity in the

mixed phase regions of the storms (i.e., O°C to -40°C). Storms that were not vertically

extensive (i.e., no mixed phase region), did not produce lightning. Note that the

existence of a mixed phase region is required for charging by the non-inductive

mechanism (Takahashi, 1978; Jayaratne et al. 1983). Also, the positive end of the CO

bipoles observed by Enholm et al. (1990) contained many negative CGs (as in RM

also). This is not explained by the charge advection mechanism.

The last radar study of CO positions in middle-latitude MCSs considered here

was conducted by Rutledge et aI. (1990). This study concentrated on the positive CGs

observed in several MCSs that occurred during PRE-STORM. The CG patterns

observed were quite similar to those presented in the studies above. Positive CGs

occurred preferentially in the stratiform regions (but not exclusively) while negative COs

tended to occur in closer proximity to convective lines. Rutledge et al. (1990)

acknowledged the possible importance of the charge advection mechanism in producing

some of the positive COs in the stratiform region. However, after conducting a

modeling study (discussed in more detail later in this section) Rutledge et al. (1990)

concluded that considerable charge could be generated in the stratiform region in-situ by

ice-ice collisions in the presence of supercooled liquid water (Le.• non-inductive

charging mechanism; Takahashi. 1978). Their result offers an explanation for positive

CGs in the stratiform region, but more importantly, the mechanism also explains the

presence of negative CGs in the stratiform region (which are not adequately explained

by the charge advection mechanism). Rutledge et al. (1990) referred to the charging of

the stratiform region as an "in-situ" mechanism.
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3.4.2 Studies of Tropical MCS electrification

Radar studies of MCSs and their associated CGs in tropical nonhern Australia

by Rutledge et al. (1991) and Petersen and Rutledge (1992) indicate CG patterns similar

to those observed in the middle-latitudes. Compared to middle-latitude MCSs (e.g.,

Rutledge and MacGonnan, 1988; Rutledge et a1. 1990), the tropical MCSs studied by

Rutledge et al. (1991) and Petersen and Rutledge (1992) produced a relatively small

number of CGs. However, similar to middle-latitude observations the tropical CGs in

both studies exhibited bipolar patterns. In addition, Rutledge et al. (1991) inferred the

existence of an invened dipole in the stratiform region of one tropical MCS based on

electric field measurements that indicated positive charge overhead in the lowest levels of

the stratifonn region. Petersen and Rutledge (1992) linked the temporal increase in

positive peak current maximums to the growth of the stratiform region, thus

demonstrating a dependence of positive peak current magnitudes on the growth stage of

the stratiform region. Both Rutledge et a1. (1991) and Petersen and Rutledge (1992)

presented funher evidence for in-situ charging in the stratiform regions of MCSs to

explain the occurrence of lighming therein.

Chauzy et ale (1985) examined a tropical MCS that OCCUlTed during COPT-81

(Convection Profonde Tropicale) over the nonhern IvoI)' Coast region. The MCS

consisted of a weakly electrified convective line (reflectivities> 40 dBZ were well below

the _100 C level) with an extensive trailing stratiform region (Figs. 3.780 b). Chauzy

(1985) noted that a relatively small number of negative CGs were associated with the

rear of the convective line and that no positive CGs were observed in the stratiform

region. However, electric field records (Fig. 3.7c) did indicate increases in electrical

activity (either in-cloud or CGs) that coincided with the development of an ice phase just
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to the rear of the convective line. In the stratifonn region, a field change to positive

charge overhead occurred approximately 100 km behind the convective line (just below

the stratiform bright band in Fig 3.7b) with some excursions to negative charge

overhead near 130 kIn and 160-180 km behind the convective line (consistent with the

dominant charge measured on rainfall below each region; Fig. 3.7b). Chauzyet al.

(1985) attributed the weak CO activity in the convective line to the lack of a strong

mixed phase region. This observation lends support to the importance of an ice-phase in

the electrification of clouds (Williams, 1989; Rutledge et al. 1992a).

3.5 Studies of the vertical charge structure in stratiform regions

In addition to surface electric field measurements such as those presented by

Chauzy et al. (1985), Engholm et al. (1990), and Rutledge et aI. (1991), several studies

have taken in-situ observations of the vertical component of the electric field in MCSs.

These studies infer the vertical distribution of space charge density using Gauss' law

(which reduces to evaluating the slope of the vertical component of the electric field as a

function of height assuming a horizontally infinite sheet of charge; e.g., Schuur et al.

1991; Marshall and Rust, 1991).

Chauzy et aI. (1985) produced two soundings of the vertical electric field from

the tropical MCS they examined. One sounding was launched into the rear portion of

the convective line, where negative charge was inferred near the 0° C level and positive

charge aloft. The other electric field meter was launched into the trailing stratiform

region and terminllted just above the melting level. The stratiform sounding revealed an

area of strong negative charge near the height of the bright band and the beginning of a

reversal to positive charge just above the negative charge layer as the sounding
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tenninated. Based on the collocation of a negative charge layer and the bright band,

Chauzy et al. (1985) concluded that a mixed phase region in stratifonn clouds may have

been important to the generation of charge therein.

Similar vertical electric field soundings were conducted in the trailing stratifonn

regions of middle-latitude MCSs by Schuur et al. (1991) and Marshall and Rust (1991).

All of these soundings revealed a complex charge structure in the stratifonn regions

examined (e.g., Fig. 1.3). For example, Schuur et al. (1991) presented observations of

an electric field meter sounding into the leading edge of a stratifonn region (transition

zone) associated with a squall line in Oklahoma (these results were also reponed in

Marshall and Rust, 1991; see Fig. 1.3). The charge structure (as explained by Schuur et

al.) consisted of a thick (1.2 km) negative charge layer centered at 4 Ian with other

negative charge layers between 6.5 - 7 km and 10.5 - 11.2 Ian. Positive charge layers

were found between 5 and 6.5 km (-6°C S T S -14°C), 8 - 8.7 kIn and 8.7 - 8.9 Ian.

Charge densities in the layers were on the order of 0.5 - 4 C Ian-3. Schuur et al. (1991)

concluded that the lower and upper negative charge layers located on the cloud

boundaries were charge screening layers (fonned in response to positive charge in the

cloud). The positive charge layers from 5 - 6.5 km and the negative charge layers from

6.5 - 7 km fonned an inverted dipole and were attributed by Schuur et al. to the possible

existence of an in-situ, non-inductive charging mechanism. Charge advection from the

convective line was suggested as a possible mechanism for the generation of the layers

of positive charge between 8 and 8.9 km since they existed in a region of strong front to

rear flow behind the squall line. It is also wonh noting that Schuur et al. observed a

higher percentage of positive cas in the stratifonn region than in lhe convective line.
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3.6 Model evaluations of the non-inductive and charge advection mechanisms in the

trailing stratifonn region of an MCS.

Herein we concentrate on the studies of Hill (1988). Rutledge et ale (1990) and

Rutledge et ale (1992b). Both Hill (1988) and Rutledge et ale (l992b) addressed the

charge advection mechanism. The results of Hill (1988) supported the charge advection

mechanism (Le.• positive charge in the upper portions of a convective line is advected

by the stonn relative flow into the stratiform portions of the cloud thus producing

positive COs and a bipolar lightning pattern). The results of Rutledge et ale (1992b)

supported the charge advection mechanism over short distances (Le.• S; 30 km;

essentially the tilted dipole mechanism) but concluded that the charge advection

mechanism cannot supply the needed charge concentrations ~ 1 C km-3) to produce

positive COs at distnnces ;::: 30 km from the convective line. The modeling study results

of Rutledge et aI. (1990) strongly supported an in-situ. non-inductive charging

mechanism for the trailing stratiform region of an MCS.

Rutledge et ale (1990) modeled (1-D model) the local charge production in MCS

stratiform regions using laboratory charging data from Jayaratne et al. (1983). and

Saunders and Jayardtne (1986) coupled with observed and modeled ice concentrations.

Charging rates were computed in the model by multiplying the amount of charge

transferred in collisions between graupel panicles and ice crystals (as detennined by

Saunders and Jayaratne, 1986) by the mass weighted velocity of the graupe! particles.

the number concentrations of ice and graupel. and the charge separation efficiency. The

model produced charge densities of 2-4 C km-3 ( values typically observed in lightning

producing clouds; Uman. 1987) and volume charging rates on the order of 2 x 104 C

hr1. The significance of the non-inductive charging mechanism (as demonstrated by
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Rutledge et al.) can be realized as follows: if we assume that each positive CO transfers

roughly 100 C of charge to ground (Brook et al. 1982), then based on the volume

charging rate above the non-inductive mechanism could support a flash rate of 200

flashes hr1 in the stratifonn region. It is also important to note that the modeling study

of Rutledge et al. (1990) produced an inverted dipole with positive charge situated

below negative charge. Thus negative cas might also be possible in a highly sheared

flow that tilted the dipole.

The viability of the charge advection mechanism was explored in a study by Hill

(1988). He considered the radial expansion of a spherical volume of cloudy air (initial

radius 1 km) containing 41 C of positive charge situated on ice panicles. The expansion

was due only to the repulsive Coulombic force which acted outward on the positive

charge volume. Hill did not consider turbulent diffusion of the charge and also

neglected ion attachment since the volume was assumed to be in doudy air where

conductivities are low (2 x 10-15 mho m-1; Rust and Moore, 1974). With these

assumptions Hill calculated the time required for the radius of the charge sphere to

double. Hill calculated this time to be 62,750 seconds, which is an order of magnitude

greater than the 4400 second time interval calculated by Orville et al. (1988) for

neutralization of a positive charge volume advected some 130 km at a speed of 30 m 5-1.

This lead Hill (1988) to conclude that charge advection might be a reasonable

explanation for lightning bipoles. As Rutledge et al. (l992b) note, in a time period of

60,000 seconds and an advection speed of 15 m s-l the charge volume would travel 950

km before the volume radius doubled placing the charge volume well outside the cloudy

domain of an MCS.
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Rutledge et ala (l992b) also addressed the charge advection mechanism (and the

results of Hill, 1988) with a modeling study. Rutledge et al. (l992b) first proceeded to

verify the results of Hill (1988) using an alternative expression for the coulombic radial

expansion of a 1 km radius, spherical charge volume. The calculation yielded results

similar to Hill (1988) with 38,000 seconds being the time required for the charge

volume to expand to twice its initial radius.

The analyses of Hill (1988) and Rutledge et ala (1992b) indicated rather long

dissipation times for a charge volume when only Coulbmbic expansion of the charge

volume was considered. Hence long advection distances of the charge volume were

indicated within a cloudy environment, suggesting the possible relevance of the charge

advection mechanism. However, charge volumes expand not only by a Coulombic force

but are also subjectt to turbulent diffusion (Rutledge et ala 1992b). To examine the

effects of turbulent diffusion, an analogy to the dispersion of a. point source (say a

smoke plume) from a continuous source (say a smoke stack) at some effective emission

height can be made. The source also supplies the effluent at some constant rate (in our

case we will use a charging rate in Coulombs per second for one cubic kilometer). The

aim here will be to estimate some type of "upper bound" for the space charge densities

that can be maintained in the area behind the convective region (e.g., the trailing

stratifonn region in a squall-type MCS) due soley to charge advection, considering

turbulent diffusion of the charge volume.

The turbulent diffusion of a charge volume for two cases will be calculated. For

the first case a rather vigorous charging rate of 4 x 10-2 C s-1 is used, which will

produce 41 coulombs of charge in a sphere of 1 km radius (space charge density

10 C km-3) in 4 minutes (equivalent to the values used by Hill, 1988). For the second
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case the charging rate is reduced to 2 x 10-2 C s-l, yielding a space charge density of 2­

5 C km-3 (a value that is on the order typically found in lightning producing clouds;

Uman, 1987). The particular charging rates are assumed to be independent of time.

Additionally, the following assumptions are required:

1. The sphere will represent a point source of continuous, uniform emission of

charged particles once the respective initial charge densities are reached (10 C

km-3 and 3 C km-3).

2. The charged particles consist of ice panicles with negligible fall speeds so

that the ice particles remain suspended in the horizontal flow.

3. Following Panofsky and Dutton (1984) and also Taylor's (1921) theorem for

point source dispersion, the turbulence is assumed to be homogeneous and

stationary.

4. The wind velocity will be horizontal and uniform along the major axis of the

charge plume with a speed of 15 m 5-1. (Calculated charge concentrations

will be along the major axis of the plume parallel to the wind).

5. The charge plume will have a Gaussian distribution in both the horizontal and

vertical directions with the standard deviation interpreted as the width of the

plume in the respective plane. The initial plume radius is set at 1000 m.

6. Standard deviations of the plume width in the lateral (Sy) and vertical

dimension (sz) can be derived from a power law relationship using neutral

stability as in Seinfeld (1986).

7. Ground height will correspond to the center of the plume as will the effective

emission height.
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A solution to the atmospheric diffusion equation was used with the above

assumptions to perform the necessary calculations. The fonn of the equation used,

following Turner (1969) is

Q (1 H2
){c}= _exp -- -

IrayazU 2 (JzZ (3.1)

where Q is the source rate (charging rate), Sy and Sz are dispersion parameters, and H is

the distance above or below the horizontal centerline of the plume. If we choose to

examine the concentration {c)downwind a distance x from the source, (6) reduces to,

(3.2)

For u= 15ms-1, Cfy=Ryx" and CIz =Rzx". (Ry=.32, Rz=.22. ry=.78, rz=.78;

Seinfeld, 1986) dispersion calculations were performed for both Q= 4 x 10-2 C 5.1

and Q = 2 x 10-2 C s·l. It is further assumed that H =0 and {chepresents the

concentration at the center of the dispersing plume.

The results ofthese calculations are shown in Fig. 3.8. Notice that the charge

density of 10 C krn-3 (corresponding to the extreme charging rate of 4 x 10-2 C s-1)

decreases by 2 orders of magnitude to 0.1 C km-3 just 60 km downwind of the

convective core. This value is an order of magnitude smaller than charge densities

typically found in lightning-producing clouds (Vman, 1987). The second case

corresponding to a charge density of 3-5 C km-3 shows the charge density decreasing at

an even faster rate. In this case the charge density has decreased by an order of

magnitude in 30 km and more than an order of magnitude by 50-70 Ian.
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The case can cenainly be made from the calculations that turbulent diffusion

plays a much greater role in the process of charge advection than the Coulombic force.

It should be noted again that these results are only intended to show the existence of an

"upper bound" on the charge densities available due to the effect of turbulent diffusion in

the charge advection process. In the real annosphere we might expect the charge

densities to be smaller since turbulent processes are not generally unifonn and

homogeneous in all three dimensions. Furthermore the stability might not be neutral,

and the wind is not horizontal or uniform in magnitude.

It would appear from the analyses presented above that positive COs occurring

at large distances from the convective line are not supported by simple charge advection.

However, the analyses do support the charge advection mechanism (in the fonn of a

tilted dipole) for positive COs occurring at distances ~ 30 km from the convective line.

We note however, that the charge advection mechanism does appear to supply some

charge (0.1 - 0.5 C km-3) to the stratiform region and it is entirely-possible that this

charge is a significant contribution to that produced by in-situ charging processes such

as the non-inductive mechanism.

The non-inductive mechanism operating in MCS stratiform regions (and the

importance of mixed phase microphysics) as modeled by Rutledge et al. (1990) is

supported by the following: 1) in-situ and surface-based measurements of the vertical

electric field in the trailing stratiform regions of MCSs reveal varied, complex structures

(e.g., Marshall and Rust, 1991) and in some cases, inverted dipoles (e.g., Schuur et al.

1991) or normal positive dipoles (Chauzy et al. 1985, Engholm et aI. 1990; Rutledge et

al. 1990; Rutledge et al. 1991); 2) similar measurements taken in ordinary winter

stratifonn clouds over Florida indicate that stratiform clouds with stronger mixed phase
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regions are more electrified (e.g., Mach et al. 1991); 3) occurrence of both positive and

negative CGs in MCS stratifonn regions point to some independent charging mechanism

in the stratifonn regions (e.g., Rutledge and MacGonnan, 1988; Orville et al. 1988;

Engholm et al. 1990, Rutledge et a1. 1990); 4) modeling results testing the validity of a

non-inductive charging mechanism in stratifonn regions by Rutledge et al. (1990)

produced large amounts of charge; 5) when turbulent diffusion of charge is considered

in charge advection calculations, positive charge densities decrease rapidly with distance

away from the convective line (Le., the charge advection mechanism alone does not

appear to be effective beyond 30 Ian from the convective line). In the following

chapters we present evidence that offers further suppon for the presence of an in-situ,

non-inductive charging mechanism in the trailing stratifonn regions of MCSs.
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CHAPTER 4

AN OVERVIEW OF THE Mess STUDIED AND ANALYSIS METHOD

In this chapter we review the specific MCS cases examined in this thesis and the

method of analysis. First, we present a shon description of each MCS chosen for

study. Next, we describe the Doppler radar data, wind profiler data, upper-air

soundings, lightning data, and electric field data used for analyzing each case along with

the method of analysis. We also discuss the development of a simple one-dimensional

model used to assess the probability of supercooled liquid water in several of the

stratifonn regions studied herein.

4.1 The MCSs selected for study

Seven MeSs and associated cloud-ta-ground lightning are studied in detail in

this thesis. Of the seven MCSs examined, six are continental break period stonns and

one is a monsoon period stonn. All of the MCSs studied were characterized by a well

defined leading convective line with radar reflectivities of 30-55 dBZ, and a trailing

stratifonn region with reflectivities of S 30 dBZ. To a good approximation, the majority

of the MCSs studied herein were linear and quasi two-dimensional (ref. Fig 3.1; Houze

et al. 1989). As in Rutledge et al. (1992a), the break period MCSs exhibited a higher

degree of electrification (in terms of lightning flash rates) than the monsoon case. The
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following is a shOI1 description of each case examined (values reponed for the CAPE are

from the pre-storm environment):

1) 5 December 1989; break period squall line (CAPE of 650 J kg-1), examined for 5

hours of the lifecycle. The squall line fonned approximately 60 km south of the

MIT and TOGA radars and moved north at approximately 8-10 m s-l. Peak cloud

top heights of 1~17 km were observed in the convective line. As the squall line

moved nOI1h over the MIT radar, it developed a broad, long-lived trailing

stratiform region with cloud tops of 11-13 km. At its peak electrical intensity the

squall line produced 111 CGs in a 30 minute period, 15 of which were positive.

2) 12 January 1990; monsoon squall line (CAPE 300 J kg-I), examined for the last

2.5 hours of the lifecycle. The squall line was oriented west-southwest to east­

north east and formed over the ocean approximately 50 km northwest ofDarwin.

The convective line had maximum cloud top heights of 11-12 km and moved

toward the south-southeast at 7-9 m s-l, leaving a large area of trailing stratiform

precipitation over Darwin. Stratifonn cloud tops were approximately 10 km in

height No CGs were recorded by the LLP network during the observation

period.

3) 22 January 1990; break period squall line (CAPE 1100 J kg-I ), examined for 3

hours of the lifecycle. This squall line fonned 50 km southeast of the MIT radar

and was oriented nonheast to southwest. Maximum cloud top heights were 15 Jan

in the convective line and 12 km in the stratiform region. The squall line moved

rapidly to the northeast at 12-14 m s-1 leaving a very large region of stratiform

precipitation behind. Initially, the squall line was moderately electrified producing

159 CGs in the first 30 minute period studied. However, the number of CGs

rapidly decreased to just 37 in the next 30 minutes and continued to decrease for
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the remainder of the storm lifecycle. Very few CGs were associated with the

stratiform precipitation region.

4) 24 January 1990; break period squall line (CAPE 800 J kg-I), examined for 3.5

hours of the lifecycle. The squall line approached the MIT radar from the east

moving at approximately 13 m s-l. Maximum cloud tops in the convective line

approached 14-15 km in height and cloud tops in the stratiform were 8-10 km in

height A long, relatively narrow stratifonn region, trailed the convective line and

dissipated as it moved over the MIT radar. This MCS was weakly electrified,

producing only 27 COs (within the range of the MIT radar) at its peak in one 30

minute time interval. In the stratiform region four to five COs occurred 10 kIn

behind the convective line; three of these flashes were positive.

5) 28 January 1990; break period squall line (CAPE 2000 J kg-I), examined for 7

hours of the lifecycle. A 270 km long squall line formed approximately 130-150

kIn east of the TOGA radar. The main portion of the line moved west at

approximately 13 m s·1 while the southeastern portion of the line broke off and

moved west-nonhwest at approximately the same speed. A deep, horizontally

extensive stratifonn region developed behind the convective line as the MCS

passed over the TOGA radar. The central and nonhern portions of the convective

line dissipated 2-3 hours after passing over the radar, however the southeastern

portion of the MCS accelerated to the west-nonhwest moving over the TOGA

radar and then out to sea. The stratifonn region persisted for at least four hours

after the convective line passed over the radar. This particular MCS was highly

electrified producing 300 CGs in the first 30 minute time period studied.

Approximately 40 positive CGs occurred in the trailing stratiform region,

particularly as the stratifonn region was developing. Unfortunately the MIT radar
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site had a power outage this day and no electric field or MIT radar data could be

collected (Table 4.1)

6) 14 February 1990; break period squall line (CAPE 1500 J kg-I), examined for 4

hours of the lifecycle. The squall line developed 90 Ian east-southeast of the MIT

radar and moved west at an average speed of 14 m s-l. Stratiform regions

developed in the northeast and southeast sections of the MCS as the convective

line began to split A small portion of the convective line and northeastern

stratiform region then passed over the MIT radar. However, the largest area of

stratifonn precipitation remained stationary at a position well south and east of the

MIT and TOOA radars, dissipating approximately two hours after forming. COs

were quite numerous in the convective line during the first two hours of the storm

with a peak of 206 flashes recorded in 30 minutes. As the convective line split the

flash rate decreased markedly to only 45 flashes in 30 minutes. A total of seven

positive CGs were observed in the broad stratiform region southeast of the MIT

and TOOA radars.

7) 15 February 1990; break period squall line (CAPE 300 J kg-I) examined for 3

hours of the lifecycle. This particular squall line was quite vigorous for

approximately one hour. It developed southeast of the MIT radar and moved

toward the west at approximately 12 m s-l. A very weak, disorganized stratiform

region began to develop behind the convective line but dissipated within

approximately two hours of genesis. The line produced a peak of 123 CGs in 30

minutes but just one hour later the rate had dropped to only 29 flashes in 30

minutes. Only one positive CO occurred in weak stratiform precipitation,

approximately 20 km behind the convective line.
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In this thesis emphasis is placed on squall line numbers 1.2.3 and 5 since these

MCSs exhibited broad. long-lived stratiform regions that moved over the MIT radar site

and the electric field mill (except for 28 January 1990; see Table 4.1), which allowed in­

depth study of their electrical characteristics. Squall lines 4, 6, and 7 were used primarily

to supplement cloud-to-ground lightning observations, though some limited field mill

data was available for cases 4 and 6 (see Table 4.1).

4.2 Methodology used for radar analysis

Single-Doppler radar analysis was performed on the seven case studies

mentioned above. The MIT 5 cm radar (Table 4.2) provided the primary reflectivity and

velocity data used in analyzing all but one of the case studies, 28 January 1990. On this

date the MIT radar site experienced a power outage, hence the TOGA radar (also

described in Table 4.2) was utilized. MIT mdar data were used preferentially in this

study since 1) the data were more readily accessible; 2) it had a smaller gate spacing

(500 m) than the TOGA data (l000 m); 3) it contained volume scans spaced at regular

time intervals; and 3) the majority of data volumes contained scans up to 45° elevation

angles (many of the TOOA scans ended at elevation angles of 25°). In addition, CG

lighming positions were centered on the position of the MIT radar and the electric field

mill was located at the MIT radar site.

The radar data were viewed and edited using the Research Data Support System

(ROSS) software (Mohr et aI., 1986) developed by the National Center for Atmospheric

Research (NCAR). RDSS was used primarily to dealias velocity data and to remove

unwanted noise and ground clutter. After editing the data with RDSS, several different

products were constructed from the volume scans including low level pprs (Plan
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Position Indicator), venical slab averages (cross-sections) of reflectivity and horizontal

velocity, and EVADs (Extended Velocity Azimuthal Display; Sriva~tava et al.1986;

Matejka and Srivastava, 1991).

Low level PPIs of reflectivity data from the MIT (1.20 elevation) and TOGA

radars (0.80 elevation) were interpolated to horizontal grids with resolutions of 1 and 2

Ian respectively. The reflectivity value plotted at each grid point represented a smoothed

average of the reflectivity values at surrounding gates in the elevation cone. The low­

level PPIs were centered on the respective radars with horizontal ranges of 113 Ian for

the MIT radar (range limited by signal processing constraints) and approximately 160 km

for the TOOA radar. Vertical cross-sections of reflectivity and horizontal velocity were

constructed using software described in Rasmussen and Rutledge (1992). The vertical

cross-sections are very similar to RBI's and were constructed along a line perpendicular

to each squall line. Cross-sections were specified to be 10 km in width. The vertical

reflectivity and velocity profiles were both corrected for storm advection that took place

during the volume scan. The venical slab average technique (Rasmussen and Rutledge,

1992) is very versatile since it alIows for slicing through a storm at different azimuths to

view the vertical reflectivity structure. For horizontal velocities, the slab average

technique was used only to make line-normal slices through the stonn assuming a quazi

two-dimensional structure to the MCS (Rasmussen and Rutledge, 1992). For this study,

the vertical slab averaging technique worked welI since the majority of the cases

examined were approximately 2-D in structure.

As in previous studies (e.g., Rutledge and MacGorman, 1988; Rutledge et al.

1990), PPI's of reflectivity were used to identify the stratiform (reflectivity S 30 dBZ

and wide-spread echoes) and convective (reflectivity> 30 dBZ) components of each
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MCS. Vertical cross-sections of reflectivity were used to identify the depth of each

MCS and to identify the height of the 15 - 25 dBZ reflectivity region in the stratiform

regions relative to the height of the O°C and -IOOC isotherms. The height of the 15-25

dBZ reflectivity region is used to evaluate the presence and depth of a mixed phase

region, using the microphysical observations of Houze and Churchill (1984). In

addition, reflectivitY values supplied by the vertical cross-sections were used as input to

a one-dimensional model of water vapor flux in which ice particle concentrations were a

function of stratiform reflectivity (Houze and Churchill, 1984). Line-normal vertical

cross-sections of horizontal velocity were used to calculate the vertical shear of the

horizontal wind from 700-400 mb and 450-280 mb (7-10 km) in four of the break

period stratiform regions studied herein. The vertical shear was then correlated to the

number of positive CGs and the total number of CGs (positives and negatives) observed

in each respective stratiform region.

When possible (fable 4.1), radar volume scans were used to generate EVADs

(see Matejka and Srivastava, 1991) in order to gain estimates of the mean vertical

velocity profile in the stratiform regions studied. EVADs yield estimates of the mean

vertical velocity in layers of stratiform clouds at specified levels of a cylinder centered on

the radar. The vertical velocities are generated by invoking mass continuity after

divergence of the horizontal wind is calculated at each level in the cylinder. Cylinder

radii in the EVADs were set at 20-40 km and layers were 0.5 - ) krn thick (depending

on the particular gate spacing of the radar data). The top of the EVAD cylinder was

located at the radar echo top as indicated by the VAD (Velocity Azimuth Display) "Cone

Profiles" software which is used prior to applying the EVAD technique. As in Matejka

and Srivastava (1991), the vertical velocities at the top and bottom of the EVAD

cylinders were assumed to be zero. Virtual temperature profiles and densities were input
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from the ooסס UTe radiosonde obsezvations taken at Darwin. EVADs were only

attempted when assumptions of continuous reflectivity and smooth variation of the radial

velocity over the radar were valid (i.e., when only stratiform cloud completely covered

the radar, Matejka and Srivastava, 1991). Unfortunately the assumptions made in

generating vertical velocities from the EVAD technique were not always met in the cases

studied herein. Therefore, the primary method used to determine vertical velocities in

the stratiform regions was analysis of vertically pointing wind profUer data

4.3 Profiler data analysis

The primary source of vertical velocity data for the MCS stratiform regions

examined herein was the NOAA 50 MHz vertically pointing wind profiler located

approximately 5 km east of the TOOA radar (Fig. 2.3). The profiler recorded samples

of vertical velocity every 100 s, at 500 m height intervals from 1.5 km to approximately

20 km in the vertical (e.g., Fig. 4.1). To obtain estimates of the vertical velocity, raw

spectral data were plotted by a computer. Vertical velocities were then estimated to the

nearest 0.1 - 0.2 m s-1 by subjectively identifying the peak in the clear-air turbulence

power spectra and the corresponding vertical velocity. This subjective method for

detennining vertical velocity is presently considered to be as accurate as any computer

algorithm developed for determining the vertical velocity of the air when there are

multiple, coincident peaks (Le., from air, rain and snow) in the Doppler spectra present

(personal communication, Dr. Tony Riddle, NOAA Aeronomy Research Laboratory).
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4.4 Use of sounding data

As mentioned in Chapter 2, upper-air soundings were taken at several different

locations in the Darwin area. Unfonunately, many of the soundings taken at the

Koolpinyah site (where the MIT radar was located) tenninated shortly after entering

cloud in the stratifonn regions. Therefore, sounding data collected by the BMRC in

Darwin was used for this study. The sounding data was used primarily to detennine the

CAPE. the height of the DOC and -1 Doe isothenns, and to provide temperature and

specific humidity input for a simple one-dimensional model of water vapor flux.

4.5 Use of radar. profiler and sounding data in a simple one-dimensional model

In lieu of in-situ microphysical measurements. a simple one-dimensional model

was developed to assess the possible existence of small amounts of supercooled cloud

liquid water (and hence a mixed phase region) between the ooe and -200C levels in the

stratiform regions. The model essentially represents continuity of water vapor as

measured by the saturated specific humidity (qs) in a water saturated environment The

model is based on the following equations:

dqs/ dt + U· Vqs = S

dM = Lndm
dt dt

Qm = 4n:C (Sic~e....l-1~) _
dt [Rv Too / esi Dv] + (Ls / kToo)fLs/ RvToo - 1]

The variables and constants used in equation (4.3) are the following:

C =ice crystal capacitance, (fonnulae in Rogers, 1979)
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esi = ambient equilibrium vapor pressure over ice (Pa)

esw = ambient equilibrium vapor pressure over water (Pa)

Dv= diffusivity of water vapor: (m2 s-I):

Dv= 2.11 x 10-4 [TooI273.1511.94[1013.25IPl

p= pressure (mb)

k= thennal conductivity of air (0.023 J s-1 K-l)

Ls= latent heat of sublimation (2.84 x 106 J kg-1)

Rv= ideal gas constant for moist air (461 J kg-1K-l)

SSice= esw/esi

T00= temperature of the environment (K)

Equation (4.1) represents the continuity of saturated specific humidity (units of

kg m-3) with a source-sink term (5). Equation (4.2) is the total deposition ~te (units of

kg m-3 s·l) for all strengths of stratiform precipitation (strong, weak and very weak;

Houze and Churchill, 1984), particle types, and number concentrations in the vertical

column. The right side of (4.2) is a summation over the product of the number

concentrations (n) in units ofm-3, and individual depositional growth rates (dm,ldt) in

units of kg s·1 for ice crystals of a particular size and shape found in each type of

stratiform precipitation. Equation (4.3) is the depositional growth equation for a single

ice crystal.

The following assumptions were made for the modelling study:

1) Horizontal homogeneity;

2) Steady-state saturated specific humidity;

3) Water saturated environment (no evaporation);
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4) Water vapor was either deposited on ice surfaces (depositional

growth) or condensed into liquid water (Le., S= condensation +

deposition).

With these assumptions, equation (4.1) reduces to:

waqs I az = C + D (4.4)

Where C= condensation rate in g 01-3 s·l, and D= total deposition rate (dMIdt) in g m-3

s-l. Thus the conde rlsation rate can be estimated by subtracting the total deposition rate

(calculated in eq. 4.2) from the verticalflux of water vapor in (4.4).

Data for variables used in the equations were taken from the vertical cross­

sections of reflectivity, profiler data and upper-air sounding data. Stratiform region ice

concentrations (for the tropics) were parameterized using the results of Houze and

Churchill (1984). Total ice panicle number concentrations were set at 30 L-l, 10 L-l,

and 2 L-1 for strong ~ 20 dBZ), weak (5 - 20 dBZ) and very weak (0 - 5 dBZ)

stratiform precipitatlon respectively. The vertical velocity at each level (w) was

estimated from profiler data. Temperature was taken from upper-air soundings in the

vicinity of the stratiform regions being examined. Saturation vapor pressures over ice

and water were calculated from temperatures using a form of the Magnus equation

(Murray, 1967; Elliot and Gaffen, 1991). The variable qs was then calculated from the

equilibrium vapor pressure over water and converted to units of g m-3 using a standard

tropical density profile. Outputs at 500 m intervals between the 4.5 - 9 km height levels

consisted of the steady state vertical vapor flux (g m-3 s-I), the total deposition rate

(g m-3 s·I), and the condensation rate (g m-3 s-I). To test the sensitivity of the model,
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updraft speeds and particle concentrations were adjusted and the subsequent effect on

the condensation rate was noted.

4.6 Analysis of atmospheric electricity observations

Cloud-to-ground lightning associated with the DUNDEE MeSs were detected

by a four station, high gain OF network (described in Chapter 2). By using radar data

concomitantly with lightning location network data, CG flash positions, polarities, and

peak currents could be correlated with the various stages of evolution of tropical MCSs.

The electric field mill located at the MIT radar site was used to detect total lightning and

to identify the sign (positive or negative) of charge in clouds overhc:ad. Used

exclusively, the UP sensors provided raw data for the computation of basic statistics

such as the mean peak current (independent of polarity) in the first return stroke, the

median positive and negative peak currents, maximum and minimum peak currents,

flash rates and polarity percentages.

4.6.1 Statistical analysis of CG flash data

Statistics describing the peak current means, medians, maxima, and minima

were calculated for each MCS. In addition to the peak current statistics, polarity

percentages (percentage of positive and negative COs) and CG flash rates were also

computed. To enable comparisons to be made with other studies (e.g., Orville et al.

1987; Orville, 1990), the above calculations were performed on a total of 5000 CGs

associated with MCSs examined in the process of completing this thesis.
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4.6.2 CO polarity and peak current analysis

Several tropical MCSs and their associated ground flash panerns were examined

for relationships between peak current magnitude and position of occurrence relative to

MCS radar reflectivity patterns. The radar reflectivity data in turn allowed identification

of convective and stratifonn precipitation regions within the MCS. The position,

polarity and numbers of ground flashes were overlaid on PPI's of reflectivity for each

time period examined. The CGs thus plotted represent flashes occurring over a 30

minute time interval centered on the time of the radar data.

The magnetic field strength associated with the first return stroke of each flash

observed during the DUNDEE was converted to peak current in kiloamps (kA) by using

an appropriate range nonnalization factor (supplied by LLP software). This thesis also

revisits LLP data from a seven station network of DFs as used in the central United

States during PRE-STORM. In PRE-STORM the magnitude of the ground flash current

was also recorded as a dimensionless measure of the magnetic field strength associated

with the first return stroke of the flash, but was range nonnalized to a 100 kIn distance

from each OF. This dimensionless unit is commonly called an "LLP" unit and can be

converted to peak current (in kiloamps, kA) by using the conversion fonnula from

Orville, (1991):

/(kA) =O./9(UP) + 2.3 (4.5)

where I(kA) is the peak current in kiloamps, and UP is the range nonnalized signal

strength in LLP units. Eq. (4.5) is strictly valid for peak currents less than 60 kA;

however, by assuming a linear dependence of peak current on signal strength (e.g.,
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Brook et al. 1989; Orville, 1991), Eq. (1) can be used to arrive at estimates for peak

currents greater than 60 leA. This type of conversion will be used for our analysis of

ground flash peak currents associated with the 3-4 June and 10-11 June 1985 PRE­

STORM cases. The relationship between ground flash locations and radar reflectivity

patterns in the 3-4 June case and the 10-11 June case have been previously studied by

Rutledge et al. (1990) and Rutledge and MacGorman (1988) respectively.

To classify CO peak current extrema relative to position within the DUNDEE

and PRE-STORM MCSs (specifically to the position of convective and stratiform

components of the MCS), the peak current maximums and minimums were placed into

one of two categories: flash position within 10 Ion of the convective line, or flash

position >10 km from the convective line and within stratiform precipitation. In addition

to classifying the positive peak current extrema relative to position, when possible the

positive peak current maxima were also classified relative to the growth stage of the

stratiform regions associated with seveml of the MeSs examined. The positive

maximum peak current-stratiform growth stage classification was attempted primarily

for linear MCSs characterized as having large, long-lived stratiform regions and

relatively large numbers of positive CGs (10-11 June 1985,5 December 1989,28

January 1990, 14 February 1990 cases).

4.6.3 Electric field mill data

The electric field mill was located at the MIT radar site. When available (Table

4.1), the electric field mill data were used to infer the sign of charge in clouds overhead,

to detect the onset of electrification in nearby clouds, and to detect the presence of both

in-cloud and cloud-to-ground lighting. Electric field data were routed to a strip chart
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recorder and indicated fair or foul weather electric fields and lighbling (Fig. 4.2). Two

outputs were recorded by the field mill strip charts (e.g., Fig. 4.2). In Fig. 4.2 the trace

characterized by large deviations across the center-line represents the most sensitive

measure of the ambient electric field. If moderate electric fields were present nearby or

directly overhead, the trace would go off scale. Shon, amplified deviations in the

sensitive trace indicate rapid changes in the electric field due to lighbling. The other

trace, located approximately in the center of the chan, is a low gain (less sensitive)

output from the field mill that only deviated appreciably from the center of the chart

when moderate electric fields were overhead. The field mill data from the strip charts

were digitized to yield output in units of kV m- l with a positive value indicating negative

charge overhead and a negative value indicating positive charge overhead.

The above analysis methods and their application to several MCSs observed

during the DUNDEE will be presented in the following chapter. Radar, profiler, upper­

air soundings, electric field data, and a simple I-D model will be combined to provide an

in-depth study of the cloud-ta-ground lightning associated with the trailing stratiform

regions of tropical MCSs.
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Table 4.1: MCS case studies and data analysis type.

Date Radar Pronler Evad LLP E-Field Raob. Model

11/S/89 X X X X X X X

1/12/90 X X X X X X X

1(22/90 X X X X X X X

1(24190 X X X • X

1(2~ X X X X X X

1/14190 X X • X

2/15/90 X X X

• Limited data



Table 4.2: Characteristics of the MIT and TOGA radars used in the DUNDEE

(adaPted from Rutled2e et aI. 1992a).

Characteristic MIT TOGA

Wavelength (em) 5.4 5.3

Peak power (kW) 250 250

Pulse length (JJ.s) 1.0 0.5, 1.9

Bearnwidth (0) 1.4 1.65

Minimum detectable signal (dBm) -106 -113

Pulse repetition frequency (s-l) 921 921

Number of 2ates 226 224

Polarization Horizontal Horizontal
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Figure 4.1 Example of vertical velocity spectra as measured by the Darwin wind
profuer at 1010 UTe, 5 December 1989. Note that precipitation peaks in the spectra
are located between -6 to -9 m s -1 and -1 to -2 m s -1. Oear-air (turbulent) spectra
are located between -1 and +1 m s -1.
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Figure 4.2 Example ofelectric field data recorded from 1230-1245 urc on 14
February 1990 at the MIT radar site. "Fair" values indicated positive charge overhead,
''Foul'' values indicate negative charge overhead.
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CHAPTER 5

CASE STUDY ANALYSIS

Herein, the analysis of seven DUNDEE MCSs (see Chapter 4) is presented.

The flI'St section of the chapter is comprised of radar and electrical analyses of the seven

MCSs. We then present vertical velocity data for four of the MCS stratiform regions.

Following the vertical motion section, we present the results of a simple one­

dimensional modelling study to test for the presence of supercooled water in the

stratiform regions. Modelling and venical motion results are then discussed relative to

the electrification ofbreak and monsoon period strdtifonn regions. Next, in order to

evaluate the potential for a charge advection mechanism in four of the breakperiod

stratiform regions studied, the number of positive cloud-to-ground flashes observed in

each respective stratiform region is correlated to the 700-400 mb and 450-28Omb

(approximately 7-10 kIn) vertical shear of the horizontal wind (stonn-relative). We then

examine the peak currents associated with positive cloud-ta-ground lightning relative to

their location and time otoccurrence in several stratiform regions observed during the

DUNDEE and in two middle-latitude MCSs observed during PRE-STORM. The results

of the above analyses are offered in suppon of an in-situ, non-inductive charging

mechanism in the trailing stratifonn regions of tropical MCSs.
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5.1. Radar and electrical analysis of seven DUNDEE MCSs

In this section the horizontal and vertical structure of seven MCSs together with

LLP cloud-to-ground lightning data and electric field mill data when available (see Table

4.1) are analyzed. Recall from Chapter 4 that all figures showing venical cross-sections

of radar reflectivity and horizontal velocity (storm relative), were constructed along a

line-nonna! radial 10 Ian in width that contained the radar (unless otherwise noted). The

horizontal coordinate system in the vertical cross sections is oriented such that positive

distances coincide with the direction of squallline movement Thus squall lines will

always appear to move left to right in the vertical sections. Several vertical cross­

sections ofreflectivity contain arrows (x's) along the horizontal axis to indicate the

approximate surface position of a positive (negative) cloud-to-ground lightning flash as

determined by the LLP network.

Radar reflectivity PPI's (lowest elevation scans) are centered on the MIT radar

(with the exception of the 28 January 1990 case which is centered on the TOGA radar)

located at (0,0). The plots also denote the position of the wind profiler (designated by

an open circle) located to the west (east) of the MIT (TOGA) radar (also see Fig. 2.3).

The locations of cloud-to-ground flashes that occurred in a 30 minute time interval

centered on the time of the radar scan are overlaid on the radar reflectivity plots.

Positive COs are indicated by a (+), negative CGs with a (-). In several of the PPI

figures the positive peak current extrema (leA) are identified. We will conduct the

analysis for each MCS separately beginning with those that occurred during the break

period.
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5.1.1.a 5 December 1989

On 5 December 1989. a vigorous squall line developed south of the MIT radar at

0740 UTC (Fig. 5.1). The convective line had cloud tops of 16 km and peak

reflectivities within the convective line of 45-60 dBZ that extended nearly 7 km in the

vertical. One hour later at 0840 UTe (Figs 5.2a. 5.3a. 5.4a) the squall line (Fig. 5.3a)

had broadened considerably (Fig. 5.2a) and was located over the MIT radar site. The

convective line remained intense with cloud tops near 16-17 kIn and reflectivities of25­

35 dBZ extending above the 7 Ian level (Fig. 5.3a). The LLP network detected a total

of III CGs during this time period. Almost all of the 96 negative CGs and 11 of the 15

positive CGs were associated with convective line. However. four of the positive eGs

(including the positive peak current maxima of 108 kA) were located near what appeared

to be only patchy stratifonn precipitation, 60 - 80 km southwest of the radar. However,

a low level surveillance scan taken by the TOGA radar indicated that stratiform

precipitation was more widespread 60-80 kIn southwest of the MIT radar. Apparently

the low-level scan taken at the MIT radar was attenuated by heavier precipitation located

at the radar (Fig. 5.2a). The stratifonn precipitation that developed southwest of the

MIT radar at 0840 UTC is more readily observed in the PPI made from the time period

at 0910 (Fig. 5.2b).

At 0910 UTC (Figs. 5.2b, 5.3b. 5.4b) the convective line was located just north

of the MIT radar and seemed less organized. A broad stratiform region had developed

south through west of the radar. Ninety CGs were detected during this 30 minute time

period with a total of 9 positive flashes recorded. The majority of the negative CGs

appear to have been associated with the convective line. Positions calculated by the lLP

network for the cluster of negative CGs (and some of the postive CGs) located just
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behind the convective line (Fig. 5.2b) may be subject to error since those CGs occurred

near the baseline of the two DFs that were operational on this date (position errors are

greatest along the baseline since triangulation is not possible). Six positive flashes

occurred near the convective line and only two to three positives occurred in stratiform

precipitation. Note that the maximum positive peak current (123 kA) was associated

with a positive CG that occurred approximately 80 km southwest of the radar in

stratiform precipitation, while the minimum positive peak current (10 kA) occurred near

the convective line (Fig. 5.2b).

Vertical cross-sections of horizontal velocity and reflectivity at 0910 UTe (Figs.

5.3b and 5.4b) indicatte that the leading convective line was still quite erect, however

peak reflectivities in the line decreased to only 25-35 dBZ. As indicated by cross

sections of the horizontal velocity (Fig. 5.4b), a very weak rear-inflow existed below

the O°C level. A moderate front-ta-rear flow existed (9-12 m s-l) and the 7{)()-400 mb

shear had was approximately 2.0 x 10-3 s-l.

At 0940 UTC (Figs. 5.2c, 5.3c, 5.4c), the convective line continued to weaken

as it moved north. Conversely, the stratiform region continued to broaden and began to

develop in the southeastern section of the MCS. Only 37 CGs were detected by the UJ>

network during this time period. The CG lightning panern at 0940 UTC was bipolar

since the majority of the positive CGs were located to the rear of the convective line or in

stratiform precipitation away from the negative CGs. Both the maximum [12 kA) and

minimum (16 kA) positive peak currents were located near the convective line.

The vertical reflectivity structure normal to the convective line at 0940 (Fig.

5.3c) was characterized by a decrease in low level reflectivity in the convective line with
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peak reflectivities of 25-35 dBZ confined to elevations well below the O°C level. This

may have been related to a decrease in mixed phase processes in the convective line

associated with a general weakening of the convection (and hence electrical charging;

e.g., Takahashi, 1978; Jayara.me et ale 1983), thus explaining the substantial decrease in

cloud-to-ground lighming observed during this time period. A very weak low level

rear-inflow still existed in the MCS (Fig. 5.4c) and the front-to-rear flow strengthened

slightly to peak values of 12 m s-l. The 700-400 mb shear increased to a value of 2.7 x

10-3 s-l.

By 1010 UTC (Figs. 5.2d. 5.3d, 5.4d) the convective line resembled a

disorganized line of discrete convective cells. but the stratiform region still continued to

grow and intensify south and southeast of the radar. Forty two CGs were detected by

the LLP network during this time period (40 negatives, 2 positives). The CO pattern

during this time period was bipolar, however only two positive CGs (peak currents of

54 leA and 40 leA) were detected in stratiform precipitation. Therefore, the term

"bipolar" can only be loosely applied at this time.

The vertical cross-section of reflectivity for 1010 UTC (Fig 5.3d) showed that a

deep region of 15-25 dBZ reflectivity values existed above the -10°C level

approximately 30 Ian south of the radar where the stratiform region was still developing.

Also shown in Fig. 5.3d is an arrow indicating the position of the positive CG (54 leA)

that occurred 25-30 Ian south of the MIT radar and in the domain of the vertical slab.

This particular positive CO was located under the area of 15-25 dBZ reflectivity that

extended above -10°C level. Fig. 5.4d indicates that this location may have been

associated with speed convergence in the mid-levels (Fig. 5.4d). Thus a local

enhancement in the vertical motion field may have been responsible for this positive CO
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ifnon-inductive charging were taking place (assuming the CGs originated in the

stratifonn cloud). The magnitude of the shear remained constant at a value of

approximately 2.7 x 10-3 s-l.

The final time period examined for the 5 December 1989 MCS was at 1110 UTC

(Figs. 5.2e, 5.3e, 5.4c). The convective line now consisted of just two cells located

approximately 60 kIn north of the radar. All of the 45 negative CGs and 1 positive CO

recorded during this time period were associated with these two cells. The areal

coverage and intensity of the trailing stratiform precipitation had decreased slightly

during this time period but remained over the radar for another one to two hours prior to

dissipating completely. The LLP network recorded no additional CGs in the stratifonn

precipitation for the remainder of the stratiform region's lifetime.

It is important to note that the positive CGs detected by the LLP network in the

stratifonn region of the 5 December 1989 MCS seemed to occur in areas where

reflectivities of 15-25 dBZ extended well above the elevation of the OOC level (4.7 Ian).

For example, at 0910 UTC (Fig. 5.5a; radial azimuth 210°) the single positive CO that

occurred some 80 km southwest of the radar was located in a region of stratifonn

precipitation where ]5-25 dBZ reflectivities extended well above the OOC level. The

current associated with this flash was 123 kA. Note that a negative CG also occurred

near the same area at 0910 UTC (designated by the "x" in Fig. 5.5a). Positive COs in

the stratiform regions at 0940 UTC (Fig. 5.5b; radial azimuth 140°) and at 1010 UTC

(Figs 5.3d and 5.5c; radial azimuth 205°) also occurred in regions where the area of 15­

25 dBZ reflectivities extended well above the 0 °c level.

83



5.1.1.b Electric field observations for 5 December 1989

Fig. 5.6 shows the vertical electric field measured by the electric field mill (leV

m-1) as a function of time. Lightning flashes are indicated by rapid fluctuations in the

trace. Positive values of the electric field indicate negative charge overhead (foul

weather field), negative values indicate positive charge overhead (fair weather field).

The field mill registered no significant deviation in the vertical electric field until

approximately 0810 UTC when the squall line approached the radar. As the convective

line moved over the radar near 0830 UTC, the field mill detected a strong foul weather

field (negative charge overhead) with peak values of the electric field at the surface

approaching 6-8 kV m-1. The field remained foul until approximately 0950 UTe when

it abruptly reversed indicating positive charge overhead. Note that the reversal to

positive charge overhead occurred nearly coincident with the time that stratiform

precipitation moved over the radar (see Fig. 5.2c). Positive charge remained over the

radar until approximately 1110 UTe when the field again reversed to positive values

(negative charge overhead). By 1140 UTC the magnitude of the electric field returned to

a value near the zero (actually the fair weather value of approximately 100 V m-1).

The negative charge overhead detected by the field mill in the convective line is

most likely related to the strong lower negative charge region often observed in

thunderstonn electrical dipoles (e.g., Krehbiel, 1986; Williams, 1989). The strong

negative electric field (8-10 kV m-1) located at the leading edge of the stratiform region

(indicating positive charge overhead) may indicate the presence of an inverted dipole

(Rutledge et al. 1990, 1991). The field reversal to positive values (negative charge

overhead) from 1110 - 1140 UTe may have been an end of stonn oscillation (EOSO)

(Krehbiel, 1986). An alternative explanation for the positive field reversal at 1110 UTe
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might be the local tilting of an inverted dipole by the storm relative winds, with positive

charge underlying negative charge (e.g., Engholm et aI. 1990).

In summary, the 5 December 1989 MCS was characterized as having a vigorous

convective line that was trailed by a broad area of stratiform precipitation. A moderate

number of negative COs were associated primarily with the convective line, while

positive COs were associated with both the convective line and the stratiform region.

There was an apparent preference for CGs that occurred in the stratiform region to be

positive, though a few negative CGs also occurred in stratiform precipitation. Bipolar

lightning patterns were discernable at 0940 and 1010 UTC (Figs. 5.2c, d). The electric

field record (Fig. 5.6) indicated negative charge overhead as the convective line passed

over the field mill which is consistent with previous observations of lower negative

charge regions in thunderstorms (e.g., Krehbiel, 1986; Williams. 1989). As the

stratifonn region moved overhead, the electric field reversed to indicate positive charge

overhead, indicating the possible presence of an inverted dipole (e.g., Rutledge et aI.

1990, 1991).

5.1.2.a 22 January 1990

On 22 January 1990. a squall line developed 30 Ian southeast of the MIT radar

and moved toward the northwest at a speed of approximately 12 m s-l. At 1023 UTC

(Figs. 5.7a. 5.8a. 5.9a) the convective line exhibited cloud tops of 14 km with

reflectivities of 25-35 dBZ extending well above the DOC level (Fig. 5.8a). To the rear

of the convective line, finger like regions of stratiform precipitation were developing

coincidentally with a rear-inflow jet of 6 m s-l at low levels « 4 kIn) and a strong front

to rear flow of 15 m s-l aloft (Fig. 5.9a). A total of 159 CGs were recorded in the 30

85



minute period centered on 1023 UTC (Fig. 5.9a). Three of the CGs were positive and

were associated with the northeastern portion of the convective line over the Van Diemen

Gulf. All of the negative CGs were associated with the convective line.

By 1100 UTC the convective line had moved over the radar and was beginning

to dissipate (Figs. 5.7b, 5.8b, 5.9b). The stratifonn region continued to broaden and

intensify behind the convective line (Fig. 5.7b). A broadening of the stonn relative flow

StIUcture with the development of the stratiform region is indicated by Fig. 5.9b. It

should be noted that the shear in the 700-400 mb layer stayed virtually constant

throughout the time periods studied at a relatively high value of 4.1 x 10-3 s-1.

Ooud-to-ground lightning activity decreased significantly dming the time period

centered on 1100 UTC, with the LLP network detecting only 37 CGs. This may have

been due to the rapid decrease in the area of strong reflectivities (i.e., > 25 dBZ)

observed above the OOC isothenn indicating a weakening in the mixed phase region (Fig.

5.8b). One positive and one negative CG appear to have been associated with the

developing stratifonn region in the southern portion of the MCS. However, it is also

possible that the these CGs were a result of the decaying convection on the southern end

of the convective line. It is interesting to note the cluster of positive CGs which were

located in isolated convection on the far northeastern edge of the convective line. It is

not clear why the CGs associated with this isolated convection would be only positive in

polarity.

At 1140 UTC (Figs. 5.7c, 5.8c, 5.9c) the stratifonn region had broadened

considerably and was approaching its mature state (Fig. 5.7c). A bright band began to

develop near the 4 kIn level (Fig. 5.8c) and the 15-25 dBZ reflectivity region was
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situated just above the DoC level in a region of strong vertical shear of the horizontal

wind (Figs. 5.8c, 5.9,c). During this time period cloud-to-ground lightning activity was

virtually non-existent in the convective line (2 positives, 1 negative). Two of the six

positive CGs located northeast of the radar appeared to be associated with the stratifonn

region (Fig. 5.7c). The positive peak current extrema (Le., associated only with the

MCS being studied) both occurred in the stratifonn region and were 45 and 114 kA

respectively (Fig. 5.7c).

Near 1200 UTC (Figs. 5.7d, 5.8d, 5.9d) the convective line began to separate

from the stratiform region (Fig. 5.7d) as it moved nonhwest and out over the ocean (see

Fig. 2.3). Almost no lightning was associated with the convective line and reflectivities

> 25 dBZ were confined to elevations with temperatures ~ DoC (Fig. 5.8d). Only one

negative CG and one positive CG (the positive peak current maximum of 82 kA) were

associated with the convective line while several positive CGs appeared to be associated

with stratifonn precipitation over the ocean. However, only one positive CO (the peak

current minimum, 40 kA) appears to have been associated with the stratiform region of

the MCS being examined here. The stratiform region at 1200 UTC increased in areal

extent (Fig. 5.7d) as the front-ta-rear flow became more uniform at 15-18 m s-1 (Fig.

5.9d). In addition to expanding in the horizontal, the stratiform region also intensified

vertically as indicated by the height of the 15-25 dBZ reflectivity contour in Fig. 5.8d.

In the last time period examined (1300 UTC; Figs. 5.7e, 5.8e, 5.ge) the

convective line had moved out of range of the radar and all of the CGs detected by the

LLP network (10 negatives) were associated with discrete cells in the convective line

(Fig.5.7e). No CGs were detected by the LLP network in stratifonn precipitation

during this or any later time periods. For future discussion note in Fig. 5.8e that the 15-
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25 dBZ reflectivity region was still located above the O°C level over the radar, but that an

.area of heavier precipitation (and increased elevation of the 15-25 dBZ region) that

formed over the radar between 1200 and 1300 UTC had moved just to the right

(nonhwest) of the radar.

5.1.2.b Electric field obseIVations for 22 January 1990

The electric field data for the 22 January 1990 case is shown in Fig. 5.10.

Similar to the 5 December 1989 case (and consistent with obseIVations made in other

studies; e.g., Krehbiel, 1986), the electric field showed a departure to positive values

(indicating negative charge overhead) as the convective line moved over the radar at

1120 UTC (PPI not shown). The electric field remained positive (500-700 V m-1) until

approximately 1200 UTC at which time it reversed to indicate weak positive charge

overhead. Recall that a region of stronger stratiform precipitation developed over the

radar between 1200 UTC and 1300 UTC (Figs. 5.8d-e) as indicated by the height of the

15-25 dBZ reflectivity region. Therefore, the transition to weak positive charge

overhead near 1200 UTC may have been related to slightly enhanced vertical

development of the stratiform region over the radar (Figs. 5.8d-e). Consequently, the

reversal to negative charge overhead at 1235 UTC may have been associated with the

local tilting of an inverted dipole (as opposed to an end of storm oscillation).

The change to positive charge overhead at 1200 UTC may also have been due to

the local tilting of an upper positive charge region in the dissipating convective line (Le.,

tilted rearward by the storm relative shear). Tilting of a dipole seems plausible since the

convective line was only 25-30 km to the northwest of the radar and the value of the

storm relative 700-400 mb shear was relatively high at 4.1 x 10-3 s·l (Brook et al.
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1982). The change back to negative charge overhead at 1235 UTC would then be

presumably due to an E050 (end of storm oscillation).

It is possible that the electric field mill was not located in the most vertically

extensive portion of the stratiform region. Figs. 5.11a-b show vertical cross-sections of

reflectivity made along an azimuth of 250° at 1200 and 1230 UTC (positive distances in

the direction of 250°). The cross-sections show vertical reflectivities that existed along a

line containing the positive CG which occurred at 1207 UTC approximately 60 km to

the east-northeast of the radar (Fig. 5.7d). Note in Figs. 5.11a-b the vertical extent of

the 15-25 dBZ contour to the right (northeast) of the radar and the position of the CO (as

indicated by the arrow in Fig. 5.11a).

Reflectivities of 15-25 dBZ at 1200 UTC (Fig 5.11a) were located at

approximately the level of the O°C isotherm, but by 1230 UTC (Fig. 5.11 b) there was

some vertical development in the stratiform region in the area where the positive CO

occurred at 1200 UTe. Given that the positive flash was located under this region, it is

possible that a greater degree of charging occurred near this section of the stratiform

region after 1200 UTC and that the field mill detected only the weaker trailing edge of

the charge. Recall that the peak magnitudes of the electric field on 22 January 1990

were generally weak (i.e., < 1 kV m-1) at the MIT radar site. When compared to the 5

December 1989 case, (which produced approximately 7 positive CGs in the stratiform

region), these values are smaller by a factor of eight. Note also that the 5 December

1989 stratiform region exhibited a deeper region of 15-25 dBZ reflectivities above the

DOC level.
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In summary, the 22 January 1990 MCS began its lifecycle as an intense squall.

Frequent cloud-to-ground lightning accompanied this intense stage as 159 CGs were

recorded in one 30 minute period. However, the number of CGs decreased rapidly as

the line propagated over the radar, dissipated, and developed a large region of stratifonn

precipitation with a relatively high 700-400 mb shear (4.1 x 10-3 s-l; Figs. 5.9 a-e).

Approximately three positive CGs were associated with the stratiform region. At least

one of these positive CGs occurred near an area where 15-25 dBZ reflectivities extended

above the 0 °C level (Figs. 5.1 la-b). With the exception of the northeastern portion of

the stratifonn region, 15-25 dBZ reflectivities remained at or below the 0 °C level,

indicating a rather weak stratiform cloud. This may be the reason so few positive CGs

occurred in the stratiform region of22 January 1990.

The elecoic field data (Fig. 5.10) exhibited weak negative charge overhead as the

convective line passed over the radar, and then a switch to weak positive charge

overhead as stratiform precipitation moved over the radar. There is some indication that

larger amounts of charge may have been located in stratiform precipitation to the

northeast of the radar where the stratiform region appeared to be more vigorous (as

indicated by the height of 15-25 dBZ reflectivity region in Figs. 5.1 la-b) and positive

CGs occurred.

5.1.3.a 24 January 1990

On 24 January 1990 a weakly elecoified squall line formed approximately 80­

100 kIn east of the MIT radar. The squall line moved westward at a speed of 13 m s-l.

By 0800 UTC (Fig. 5.12a, 5. 13a, 5.14a) the MCS was located approximately 60 km

east of the radar with radar echo tops in the convective line of 12 km (Fig. 5.13a). The

90



LLP network detected 21 CGs during this time period, but only eight of the flashes were

associated with the squall line. Of the eight flashes associated with the squall line at

0800 UTC, three were positive and located approximately 10 krn to the rear of the

convective line. At 0830 UTC (not shown), two negative CGs were detected by the

LLP network approximately 20 km behind the convective line.

By 0900 UTC (Figs. 5.12b, 5.13b, 5.14b) the shallow convective line

(followed by a relatively narrow stratifonn region) was located just 5 Ian east of the

radar (Fig. 5.12b). An area of rear-inflow began to fOnn at low levels behind the

convective line (Fig. 5.14b) producing a 700-400 mb shear of 2.7 x 10-3 s-1. Only 28

negative CGs were recorded by the LLP network with .tpproximately 10 of them being

associated with the southeastern portion of the convective line. The other flashes were

associated with isolated convection to the southeast of the radar. No CGs occurred in

the shallow stratiform precipitation (Fig. 5.13b).

At 1000 UTC the squall line was 30 km to the west of the radar (Fig. 5.12c).

The convective line seemed to intensify somewhat as the leading edge became more

vertical (Fig. 5.13c). The squall line exhibited a weak rear-inflow (~ 3 m s-1 ) and the

700-400 mb shear increased from 2.7 x 10-3 s-l (0900 UTC) to 3.4 x 10-3 s-l (Fig.

5. 14c). The LLP network registered a total of 18 CGs in this time period, eleven of

which appeared to be associated with the convective line. No CGs were associated with

the stratiform region.

At 1035 UTC the squall line moved out over the ocean and accelerated away

from the patchy, dissipating stratifonn region (Fig. 5.12d). Interestingly, the small

patch of stratifonn precipitation left over the radar at 1035 UTe had a small region of
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15-25 dBZ reflectivities located well above the O°C level (Fig. 5.13d). However, as in

the previous time period no CGs were detected in the stratiform region.

The low number of CGs associated with this squall line may have been a

consequence of the relatively weak intensity of the MCS. Note in Figs. 5.13 a-d that

25-35 dBZ reflectivities in the convective line did not extend substantially above the O°C

level until 1035 UTC (Fig.5.13d), which was just prior to when the convective line

dissipated. A similar situation existed in the stratiform region. At 1035 UTC the 15-25

dBZ reflectivity region finally extended well above the O°C level over a horizontal

distance of approximately 30 km, but this area rapidly dissipated as did the remainder of

the stratiform precipitation and no cloud-to-ground lightning was detected.

5.1.3.b Electric Field observations for 24 January 1990

Prior to 1000 UTC the electric field data (non-digitized, 1020-1100 UTC; Fig.

5.15) were somewhat limited for this case due to chart recorder problems. From 1000­

1030 UTC the field mill indicated negative charge overhead at the MIT radar site.

Interestingly, a swing to dominant positive charge overhead took place for 15 minutes at

1030 UTe. Recall that it was near 1035 UTC (Fig. 5.13d) when the 15-25 dBZ

reflectivity region extended above the O°C isotherm in the stratiform region over the

radar. Later, at 1045 UTC, the field again reversed indicating negative charge overhead

for approximately 15 minutes. Since the convective line was located nearly 60 km west

of the detached stratiform region, it seems possible that some in-situ charging briefly

occurred in the small patch of stratiform precipitation that was located over the radar.
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To summarize, the 24 January 1990 squall line was a shallow, weakly electrified

MCS. The convective line never produced more than 11 COs in anyone 30 minute

period. This is attributed to the lack of a deep mixed phase region as indicated by weak

reflectivities above the O°C isotheni1 (e.g., Williams, 1989; Engholm et al. 1990;

Rutledge et al. 1992a). Three positive COs occurred in stratiform precipitation but were

located only lO km behind the convective line. For the remainder of the time periods

examined, no cas were detected in the stratiform region and with the exception of 1035

UTC, the region of 15-25 dBZ reflectivities did not extend above the O°C level. The

electric field data indicated that some weak charging may have taken place in the

stratiform region. Positive charge was located over the radar in stratiform precipitation

at lO30 UTC, near the time that 15-25 dBZ reflectivity region extended into the O°C to ~

lOoC temperature regions. The electric field then reversed to indicate negative charge

overhead at 1045 UTe.

5.1.4 28 January 1990

The 28 January 1990 MCS was perhaps the most intense squall line observed

during the 1989~1990 DUNDEE observational phase. It was characterized by a very

deep convective line (radar echo tops near 20 km), a very broad long-lived stratiform

region, and large numbers of cloud-to-ground flashes. As memioned in Chapter 4, the

MIT radar unfortunaly experienced a power outage (and generator failure) on this date,

so no radar or electric field data were available from the MIT site. Therefore, the

analysis of the 28 January 1990 MCS is restricted to the examination of TOGA radar

data and the LLP network data.
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The 28 January 1990 MCS began as an intense 240-300 kIn line of convection

situated to the east of the TOGA radar. At 1132 UTC (Fig. 5.16) the line was located

approximately 50-70 kIn east of the TOGA radar. Cloud tops in the line were 18-20 kIn

in height, and a region of 35-45 dBZ reflectivities extended to nearly 10 km (near the­

35°C level). The LLP network recorded 300 CGs during the 30 minute period centered

on 1132 UTC. Of these CGs, 291 were negative and located at scattered locations

around the convective line (Fig. 5.16). There were a total of nine positive CGs with the

majority located to the rear of the most intense convection (Fig. 5.16). Some negative

CGs associated with a distant ponion of the MCS were located to the southeast, beyond

the effective range of radar coverage.

By 1306 UTC (Figs. 5.17a, 5.18a, 5.19a) the central and northern ponion of

the convective line had weakened considerably (Fig. 5.17a). Convection in the

southeastern portion of the MCS continued to intensify at 1306 UTC and produced a

large number of CGs (Fig. 5.17a). A total of 60 positive flashes were detected by the

LLP network, approximately 12 of which were located along developing fingers of

stratiform precipitation behind the convective line (note the position of the positive peak

current maxima in Fig. 5.17a). Several negative CGs were also located along the same·

projections, though in much smaller numbers. The projections of weaker precipitation

behind the convective line contained small regions of enhanced reflectivity (Fig. 5.18a;

azimuth 078°) located 60-120 km behind the convective line. The enhanced reflectivities

in turn were located in close proximity to the positions of several positive and negative

CGs (positive CGs shown by arrows, negative CGs by "x" in Fig. 5.18a). These

enhancements in weaker reflectivity may have been associated convective scale

circulations embedded in the developing stratiform precipitation.

94



After 1306 UTC there was an 80 minute gap in the TOGA radar volume scans.

However two surveillance scans taken at 1331 UTC and 1358 UTC (not shown)

indicated the development of a broad region of stratiform precipitation by 1426 UTC.

The growth of this stratiform region appeared to take place along the finger-like

projections of weaker reflectivity observed at 1306 UTC (Fig. 5.17a).

The TOGA radar volume scan taken at 1426 UTC (Figs. 5.17b, 5.18b, 5.19b)

showed that a very large stratiform region had developed behind the original convective

line, which dissipated between 1306 and 1426 UTC (Fig. 5.17b). In addition to the

large stratiform region, an area of intense convection located in the southeastern portion

of the MCS moved northeast to a location 60-80 km south of the radar. This area of

convection is believed to be associated with patchy convection that developed earlier in

the extreme southeastern portion of the convective line. Heavier precipitation associated

with dissipating convection was located over and northwest of the radar. The heavier

precipitation approximately 80 km northeast of the radar appeared to be stratiform in

nature (from inspection of radar data), though it may have ultimately resulted from weak

dissipating convection that was present in the 1331 UTC surveillance scan.

A total of271 CGs were recorded during the 1426 UTC time period, 30 of

which were positive. The majority of the 241 negative CGs detected by the LLP

network: were associated with strong convection south of the radar, though 5 negative

CGs were also located near what appeared to be heavy stratiform precipitation situated

approximately 80 Ian northeast of the radar. As in the 5 December 1989 case, only two

DFs were operational on 28 January 1990. Many of the negative flashes located 80-100

Ian southeast of the TOGA radar (associated with so-ong convection in that area)

occurred very close to the DF baseline. Therefore, it is assumed that the majority of the
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negative flashes that extended in a linear fashion behind the convection in the southeast,

were actually associated with the convective line located 60-70 km south-southeast of

the radar. Note that a bipolar pattern in the cloud-to;.ground flashes is evident to the

south of the radar, and to a lesser extent, east of the radar. Approximately 15 of the 30

positive CGs that occurred during this time period were associated with stratifonn

precipitation. The positive peak current maxima (84 kA) was associated with stratifonn

precipitation and the positive peak current minima (15 kA) was located near convective

precipitation (Fig. 5.17b).

Vertical cross sections of the reflectivity (Fig. 5.18b) and horizontal velocity

(5.19b) indicate that a very deep stratiform region existed at 1426 UTC. In the vertical

cross section of velocity (Fig. 5.19b) there did not appear to be a well organized velocity

structure in the stratiform region (e.g., Fig. 3.1) and the 700-400 mb shear was

relatively low (1.4 x 10-3 s-l). There were however areas of convergence between 30­

60 Ian and at 90 km, which may'have provided enhanced upward motion in those areas

of the stratifonn region. Note that the 15-25 dBZ reflectivity region was elevated to the

-1DoC contour over relatively large distance. Also, the positive CGs which occurred

approximately 80 kIn due east of the radar were located under an area associated with 1)

elevated 15-25 dBZ reflectivities (Fig. 5.18b), and 2) enhanced convergence in the mid­

levels (Fig. 5.19b).

At 1445 UTC (Figs. 5.17c, 5.18c, 5.19c) there was virtually no change in the

horizontal or vertical structure of the MCS. However, the number of CO's detected

decreased substantially to only 107 flashes (12 positive CGs). As in the time periond

centered on 1426 UTC, negative CGs were located near the DF baseline southeast of the

radar and are assumed to be associated with the convective line 40-60 km south of the

96



radar. Two of the 12 positive flashes indicated in Fig. 5.17c (one in heavier

precipitation just northwest of the radar and another in stratifonn precipitation 80 Ian

southeast of the radar) were also plotted in Fig. 5.17b due to overlapping 30 minute time

intervals. The overall decrease in the total number of CGs recorded during this time

period was most likely due to a decrease in the cloud-to-g;-ound lightning associated

with the convective line south of the radar. However a bipolar CG pattern still existed,

with approximately 6 of the 12 positive COs detected being located in stratifonn

precipitation. During this time period, the positive peak current maximum (64 leA) was

located in a region of heavier precipitation which may have been associated with

dissipating convection, though cross-sections of reflectivity through this region (not

shown) indicated a stratified structure. The peak current minimum (20 leA) was located

on the edge of stratifonn precipitation.

By 1545 UTC (Figs. 5.17d, 5.18d, 5.19d) the stratifonn region had weakened

slightly as it moved west of the radar. Active convection southwest of the radar and

dissipating convection (part of the convective line located south of the radar at 1445

UTC) west of the radar, produced the majority of the 157 COs detected by the LLP

network (Fig. 5.17d). Seven positive CGs were located well south of the radar. Four

of the seven positive CGs were located in stratiform precipitation thus producing an

approximate bipolar CG pattern. The positive peak current maxima (103 kA) was

located in stratifonn precipitation, and the minima (27 kA) was located in convective

precipitation (Fig. 5.17d).

The vertical cross sections from 1545 UTC (Figs. 5.18d, 5.19d) identify the

convection that existed west of the radar and the dissipating stratifonn region located

east of the radar. The region containing 15-25 dBZ reflectivities in Fig. 5.18d was still
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located above the -lo°C contour over the radar, but descended rapidly to the DOC level in

the eastern portion of the stratiform region. In the horizontal velocity cross-section, a

weak rear-inflow jet developed near the Doe isotherm and the shear in the 700-400 mb

layer was approximately 1.4 x 10-3 s-l, Note that rear-inflow developed well after the

stratiform region had reached its peak: intensity near 1426-1445 UTC, and that its

position coincided with an area of eroded radar echo (Fig. 5.l8d). Therefore, the

developing rear-inflow may have ultimately been associated with the dissipation of the

stratiform region.

At 1645 UTC, the last time period examined (Figs. 5.17e, 5.l8e, 5.lge), a

disorganized convective line and associated cloud-te-ground lightning were oriented

northwest to southeast at a distance of 100-140 km from the radar (Fig. 5.17e). All of

the 83 CGs that occurred during this time period were associated with the convective

line. The stratifonn region continued to dissipate (Figs. 5.l7e) and moved to the west.

A small portion of the 15-25 dBZ reflectivity region (a remnant of earlier convection at

1545) still existed above the Doe level to the west of the radar (Fig. 5.18e).

Reflectivities ~ 30 dBZ that existed over the radar at 1645 UTe in Fig. 5.17e were

actually due to ground clutter and heavier stratiform precipitation..

The 28 January 1990 MCS was the most electrified squall line of the 7 MCSs

examined in this thesis. The initial convective line produced 300 CO flashes in just 30

minutes. The convective line became disorganized by 1306 UTe (Fig. 5.17a) with

stronger convection located to the southeast of the radar. This convection produced

numerous eos and moved rapidly east-northeast with the rest of the decaying

convective line. A very broad stratiform region developed behind the convective line

and produced approximately 40-50 positive eGs during the storm lifecycle.
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It was noted that stratiform precipitation appeared to develop at 1306 UTC

behind the convective line from finger-like projections of weaker precipitation that

contained embedded convective circulations at (Figs. 5.17a, 5.18a). Many positive

CGs associated with this time period (and a few negative Cas) were located along these

projections in close proximity to areas of enhanced elevation of the 15-25 dBZ

reflectivity region, (Fig. 5.18a). During the time periods from 1426-1445 UTC (Figs.

5.17b-c) the stratiform region was horizontally extensive and deep with reflectivities of

15-25 dBZ located near the -lOoC isotherm over its entire width (Figs. 5.18b-c).

Approximately 25 positive cas were associated with stratifonn precipitation during the

1426-1445 UTC time period and were arranged in somewhat of a bipolar pattern with

respect to the negative cas located in the convective line. Several of the 26 positive

CGs were located in a region of enhanced precipitation and mid-level convergence (e.g.,

Figs. 5.18b, 5.18c) in the stratiform region.

Positive CGs located in stratiform precipitation decreased in number at 1545

UTC (Fig. 5. 17d) to a total of four, all of which were located approximately 40 km

behind convection southwest of the radar. Venical cross-sections of reflectivity at 1545

UTe (Fig. 5.18d) indicated that the stratiform region east of the radar had decreased in

intensity and depth (note the decreased region of 15-25 dBZ reflectivities above the O°C

level). A relatively weak rear-inflow jet was also observed to form near this time (Fig.

5.19d). One hour later at 1645 UTC (Fig. 5.17e), the stratiform region was dissipating

and moved west of the radar. The only cloud-to-ground lightning detected during the 30

minute time period centered on 1645 UTC was associated with disorganized convection

along the leading edge of the MCS.
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The large number of positive CGs (relative to MCS cases previously examined

in this Chapter) and the elevated height of the 15-25 dBZ reflectivity region observed in

this particular stratiform region, may indicate the presence of a stronger mixed phase

region. Based on the locations of positive CGs relative to precipitation enhancements

and local middle-level convergence (as shown in seve.al of the vertical cross sections), it

is possible that non-inductive charging in the stratiform region may have taken place on

the convective scale, or that the stratiform region consisted of isolated, enhanced pockets

of charge associated with variations in microphysics or dynamics.

5.1.5 14 February 1990

The 14 February 1990 MCS provides a good example of the bipolar cloud-to­

ground lightning pattern that is often associated with MCSs (e.g., Orville et al. 1987,

Rutledge and MacGorman 1988). The MCS formed south of the MIT radar and only a

small decaying portion of the convective line moved over the radar. Hence we present

only reflectivity and lightning data for several of the time periods studied (no electric

field data are presented). Bipolar patterns were prevalent in the cloud-to-ground

lightning detected by the LLP network.

An example of the bipolar lightning patterns observed on 14 February 1990 is

shown in a low-level sector scan taken by the MIT radar at 1110 UTC (Fig. 5.20a). A

total of 87 CGs (6 positives) were detected during this time period. Four of the six

positive flashes detected by the LLP network, appeared to be associated with stratiform

precipitation located to the southeast of the radar, including the maximum positive peak

current (66 kA). The minimum positive peak current (22 leA) was located in the

convective line. Note that several negative eGs also appeared to be located in the
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stratifonn precipitation at 1110 UTC. Similarly, at 1140 UTC (Fig. 5.20b) the flashes

were arranged in a bipolar pattern with four of the six positives detected (including the

maximum positive peak current of 113 kA) being associated with stratifonn precipitation

southeast of the radar. The minimum positive peak current (10 kA) was associated with

the northern end of the convective line. Two negative CGs were located approximately

60 kIn east of the radar in stratifonn precipitation, however they occured coincidentaly

with a dissipating convective cell which was located in the same area approximately 10

minutes earlier.

By 1210 UTe (Fig. 5.20c), the convective line in the nonhern ponion of the

MCS became a disorganized group of cells trailed by a small, dissipating region of

stratifonn precipitation. The convective line in the southern ponion of the MCS was

reduced to just one active cell and a large region of stratifonn precipitation. Only 14

CGs were detected during this time period, three of which were positive. The positive

peak current maxima (minima) of 68 (23) kA was located in the southern stratifonn

(convective) region (Fig. 5.20c). The region of reflectivities ~ 30 dBZ located in the

stratifonn region is associated with heavier stratifonn rain and persisted for

approximately 30-60 minutes prior to dissipating with the rest of the stratifonn region.

5.1.6 15 February 1990

On 15 February 1990 a short-lived squall line developed south of the MIT radar

that also exhibited a bipolar CO pattern in one of seven time periods examined. The line

remained south of the radar for the entire time of study, hence only reflectivity and LLP

network data will be presented herein (electric field data not available). The squall line
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was characterized by a strong leading convective line and a weak trailing stratiform

region, which persisted for approximately one hour before dissipating.

Fig. 5.21 shows the developing MCS at 1135 UTe. The leading convective line

was well organized and it appeared that small finger-like projections of s'Tatiform

precipitation were developing to the rear of the line, similar to the 22 January 1990 and

28 January 1990 cases discussed earlier. A total of 98 CGs (5 positives) were

associated with the squall line during this time period and were arranged approximately

in a bipolar pattern. All five of the positive flashes were located to the rear of the

convective line and at least one of the five positive COs (the positive peak: current

maximum; 31 kA) appeared to be associated with developing stratiform precipitation 25

kIn behind the convective line (though the flash was located in close proximity to the

baseline of the two DFs that were operational during this time period). The squall line

dissipated approximately 45 minutes later without developing a large area of stratiform

precipitation, and did not produce any more positive CGs.

5.1.7.a The 12 January 1990 Monsoon MCS

Up to this point we have examined six break period MCSs. The majority of

these systems (with the exception of 24 January 1990) produced relatively large

numbers of CGs during some point of their lifecycle. In addition, the break period

stratiform regions produced limited numbers of positive CGs. Now we examine the

radar reflectivity and velocity structure of a monsoon MCS for which no cloud-to­

ground lightning was detected. Electric field data is also examined in an effon to

determine if any charging took place within the stratiform region of the monsoon MCS.
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The 12 January 1990 MCS was one in a series of monsoonal MCSs that fonned

over the ocean and moved onshore over Darwin on 12 January 1990. Earlier time

periods (Le., beginning at 0730 UTC) were previously studied by Keenan and Rutledge

(1992). We begin our study of the MCS at 1010 UTC (Figs. 5.22a, 5.23a, 5.24a) after

the convective line and trailing stratifonn region moved onshore. During this time

period a bow-shaped convective line was located over and just to the east of the MIT

radar. Peak reflectivities in the line, 25-35 dBZ, were confined to below the OOC level.

Trailing the convective line was a broad area of patchy stratifonn precipitation that was

approximately 8-10 km deep. As shown in the venical cross section of reflectivity (Fig.

5.23a), 15-25 dBZ reflectivities covered a relatively small area and were generally

located below the O°C isothenn in the stratifonn region. Vertical cross sections of the

stonn relative velocities indicated general mid-level flow into the back side of the system

with front-ta-rear flow at lower and middle levels (Fig. 5.24a).

At 1100 UTC (Figs. 5.22b, 5.23b, 5.24b) the convective line was located

southeast of the radar and was trailed by an area of heavier stratiform precipitation that

was located over the radar (Fig. 5.22b). Reflectivities of 15-25 dBZ extended above the

height of the OOC isothenn in heavier precipitation over the radar (Fig. 5.23b). As in the

previous time period (l0l 0 UTC; Fig. 5.24a) a deep region of rear-inflow existed at

mid-levels in the stratifonn region but did not appear to descend into the rear of

convective line (Fig. 5.24b).

By 1200 UTC (Figs. 5.22c, 5.23c, 5.24c) the MCS was only weakly organized

and beginning to dissipate. The stratifonn region to the southeast of the MIT radar still

contained an area of heavier precipitation that was approximately 30 km wide (Fig.

5.23c). Again, the 15-25 dBZ reflectivity region was primarily confined to levels below
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the O°C isothenn. Stonn-relative rear inflow still existed at mid-levels (Fig. 5.24c) but

the front-ta-rear flow had decreased in intensity aloft. By 1230 UTC (not shown) the

MCS had nearly dis:;ipated entirely.

5.1.7.b Electric field observations for 12 January 1990

As noted in the discussion at the beginning of section 5.1.7.a, no cloud-to­

ground lightning was observed with the 12 January 1990 MCS. However, this does

not imply that the clouds were not electrified. Indeed, when high gain (sensitive) output

from the electric field data was reviewed it was found that some weak charging had

obviously taken place in both the convective line and the stratifonn region (Fig. 5.25).

Fig. 5.25 shows the electric field record from 1000 to 1139 UTC. Note that the

chan speed was 1 cm hr- 1 between the times of 1000 UTC and 1116 UTC (Fig. 5.25)

and was then changed to 1 cm min- l at 1116 UTe. In Fig. 25 between 1000 and 1139

UTC, two distinct reversals are indicated in the electric field data. At 1000 UTC a foul

weather field existed, indicating negative charge overhead. This coincides with the time

that the convective line was over the radar (Fig. 5.22a). Between 1010 and 1020 UTC,­

the electric field reversed to indicate positive charge overhead for approximately 30

minutes. The reversal to positive charge overhead immediately behind the convective

line may be due to a layer of positive charge located in the trailing anvil (i.e., a tilted

dipole). Between 1050 and 1100 UTC, the electric field became foul again, indicating

negative charge overhead. Recall from Fig. 5.22b that stratifonn precipitation was over

the MIT site at 1100 UTe. The field mill indicated that negative charge remained over

the MIT site until 1200 UTe (not shown) at which time the electric field reversed to

indicate very weak positive charge overhead.
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It is interesting to note that the electric field over the radar indicated weak

negative charge overhead in the stratifonn region from 1100 to 1200 UTC (Fig. 5.25).

This is opposite to what occurred in the 5 December 1989 and 22 January 1990 cases

(Figs. 5.6 and 5.10 respectively). In the 5 December 1989 (22 January 1990) case

positive charge was located over the radar for approximately 80 (30) minutes, coincident

with stratifonn cloud overhead. Also, positive CGs were observed to occur in the

stratifonn regions of 5 December 1989 and 22 January 1990, while no CGs were

detected in the 12 January 90 stratifonn region. The primary difference between the

stratifonn regions of 5 December 1989, 22 January 1990, and 12 January 1990, was the

area of strong reflectivity observed between the O°C and -10°C isothenn (Le., the height

of the 15-25 dBZ reflectivity region). It is therefore possible that mixed ph"·

microphysics (or the lack thereot) played an important role in the electrificaoon of these

stratifonn regions.

5.2 Vertical velocities observed in four DUNDEE MCSs

In order for the non-inductive ch'lrging process to produce charge in a cloud, a

mixed phase region and some process for separating regions of differing charge polarity

must exist In the stratifonn region it has been hypothesized that the mesoscale updraft

supplies water vapor that is condensed to produce small amounts of supercooled liquid

water (e.g., Rutledge et at. 1990). Separation of the charge regions is conjectured to

occur through gravitational settling of larger ice particles and the lifting of smaller ice

particles in the weak mesoscale updraft (e.g., Rutledge et al. 1990). To this end, we

present a short summary of observations made of the vertical velocities (as determined

from the NOAA wind profiler and EVAD technique) in four of the DUNDEE MCS

stratifonn regions examined above.
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5.2.1 Vertical velocIty observations in the 5 December 1989 stratiform region

Two observations that were characteristic of the vertical velocities observed in

the 5 December 1989 stratiform region are shown in Figs. 5.26a-b and 5.27a-b. Figs.

5.26a-b present wind profiler observations made at 1040 and 1111 UTC respectively

and Figs. 5.27a-b are vertical velocities (determined from EVADs) for the same time

periods made from MIT radar data. In Figs. 5.26a-b the peaks observed in the power

spectra were due to rain (downward velocities between -6 and -9 m s-I), snow

(downward velocities of 0 to -2 m 5- 1), and dear air (upward or downward velocities

with magnitudes generally S 1m s-I). Note in Figs. 5.26a-b that all three peaks are

discernable near the melting level between 4.5 km and 5 km. The EVADs in Figs.

5.27a-b represent average vertical velocities (m 5- 1) at each height level for a circle (30

km in radius) centered on the MIT radar. Recall from Chapter 4 that the vertical

velocities are calculated using an average divergence profile and the mass continuity

equation (Matejka and Srivastava, 1991).

At 1040 UTe (Fig. 5.26a) the wind profiler detected relatively strong upward

vertical velocities (unless otherwise stated the term vertical velocities will imply vertical

velocity in the clear-air return) above the melting level between the elevations of 5.5 krn

and 8.5 km. Vertical velocities became zero to slightly negative near the 8.5-9.5 km

levels and reversed to upward vertical velocities (0.2-0.3 m s-1 ) between the 10-12 km

levels. Upward venical velocities were approximately 0.4-0.6 m 5-1 between the 6 km

and 8 km levels, and the total updraft depth in middle-levels was approximately 3-4 km.

Conversely, the EVAD vertical velocity profile for 1040 (Fig. 5.27a) does not show

upward motion at any point above the melting level. Indeed the EVAD analysis shows

subsidence (peak of -0.3 m s-l) from the 10 km level to well below the melting level. It
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is possible that the EVAD vertical velocity profile was affected by subsidence found in a

weak transition zone behind the convective line which covered a large area of the 30 Ian

radius EVAD cylinder. It is also possible that the upper boundary condition of w=O at

the radar echo top used in the integration of the continuity equation was improperly

placed in the vertical due to the inability of the DUNDEE radars to observed the small ice

crystals near cloud top.

At 1111 UTC both the profiler (Fig. 5.26b) and the EVAD technique (Fig.

5.27b) showed upward vertical velocities in the srratifonn region. The profiler showed

upward motions of 0.1 - 0.3 m s·I at levels above 7 km, while the EVAD indicated peak

vertical velocities centered in a layer from 5 to 6 km. It is important to note here that the

EVAD represents an average vertical velocity over a 2800 km2 area, where as the

profiler vertical velocities are a temporal avemge over approximately two minutes. Thus

it would seem likely that the two measurements of vertical velocity would differ in

cenain circumstances. For example, at 1110 UTC the wind profiler was located further

into the stratifonn region than the MIT radar (see Fig. 5.2e) and hence may have been

sampling a region with a deeper updraft. It is also likely that the "mesoscale" updraft in

stratifonn regions is far from being spatially or temporally unifonn (e.g., Biggerstaff

and Houze, 1991; Keenan and Rutledge, 1992). Indeed, temporal variations in the

depth, location and magnitude of updraft were observed between 1040 (Fig. 5.26a) and

1111 UTC (Fig. 5.26b) in the profiler data.

The items worth noting in t~e vertical velocity observations for 5 December 1989

(Figs. 5.26a-b and 5.27a-b) are 1) upward motion (3-4 km in depth) was detected by

the profiler in the stratifonn region; 2) the vertical motion was relatively strong with

peak vertical velocities of approximately 0.5-0.6 m s-l; 3) temporal and spatial
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variations existed in the depth, location and magnitude of the mesoscale updraft in the

stratiform region lending further support to the suggestion that the mesoscale updraft is

simply an average of convective scale circulations (e.g., Keenan and Rutledge, 1992).

5.2.2 Vertical velocity observations in the 22 January 1990 stratiform region

Figs. 5.28 and 5.29 show vertical velocity profiles somewhat characteristic of

the 22 January 1990 stratiform region (observation at 1230 UTe). Note that the wind

profiler data (Fig. 5.28) and the EYAD data (Fig. 5.29) approximately agree on the

location and depth of the updraft in this portion of the stratiform region. At 1230 UTC

the profiler indicated a deep updraft between 4.5 km and 11.5 km with peak velocities

on the order of 0.4 m s·1 (Fig. 5.28). Similarly, the EVAD analysis at 1230 UTC (Fig.

5.29) also shows that a deep updraft (4.5-11 km) existed in the area over the radar.

Peak vertical velocities computed for the area covered by the EYAD analysis were

approximately 0.25 m s·l. It should be noted that the base of the updraft detected by the

profiler varied with time and was located from 4.5 to 5.5 km within 10 minutes either

side of 1230 UTC.

Between 1200 and 1300 UTC (when the stratiform region was over the profiler)

the profiler did indicate some change in the depth and magnitude of the upward motion

(i.e., pulsing) between 4.5 km and 11 km. On average, the updraft persisted until

approximately 1310 UTC at which point it decreased in depth and magnitude. The

EVAD analysis done at 1300 UTC (not shown) changed very little from that of 1230

UTC (Fig. 5.29). Thus it appears that a deep updraft with a peak vertical velocity of 0.4

m s·l was present in the stratiform region of 22 January 1990.
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5.2.3 Vertical velocity observations in the 28 January 1990 stratiform region

Wind profiler data from 1449 UTC is shown in Fig. 5.30a. An updraft existed

between the 4 and 8 Ian levels with peak vertical velocities of approximately 0.4-0.5 m

s-l. In fact, it appears that a layer containing vertical '11otions of 0.4 m s-1 extended

from 6-7.5 km. Downward motion was detected by the profiler above 8.5 km. The

EVAD analysis at 1445 UTC (Fig.5.3la) verified the strength of the updraft (average

velocities of 0.4 m s-l) observed by the profiler above 4 lan, but extended the depth of

the updraft to nearly 12.5 lan. Consistent with the extended depth of the updraft shown

by the EVAD, the profiler data showed updrafts at elevations up to 11 kIn at 1430 and

1440 UTC. This illustrates to some extent the non-uniformity of the updraft strength,

depth and location on smaller spatial and time scales. By 1509 UTC the updraft

diminished as the profiler and radar appeared to come under the influence of subsidence

on the eastern edge of convection which had approached from the south moving

northeast (see Fig. 5.17c).

At 1620 UTe (Fig. 5.30b) the wind profiler indicated upward velocities in the

lower 4.5 kIn of the troposphere and either zero or very weak negative velocities above

4.5 km. This is consistent with the observed dissipation around this time (see Figs.

5.17d-e). The EVAD results at 1615 UTC (Fig. 5.31 b) closely resembled the profiler

data except for a region of very weak upward motion (0.05 m s·l ) that existed at 6 km.

By 1645 UTC (see Fig. 5.17e), the EVAD results (not shown) indicated subsidence at

all levels and the profiler (not shown) indicated weak subsidence or zero velocities at all

levels.
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In summary, the profiler indicated upward motion (velocities of 0.4-0.5 m s-l)

in the stratiform region between the 4.5-8.5 km levels (for the 1449 UTC analysis time;

Fig. 5.30a). The E VAD at 1445 UTe (Fig. 5.31 a) indicated upward motion of similar

magnitudes but over a greater depth. At 1620 eTe both the profiler (Fig. 5.30b) and

the EVAD analysis (Fig. 5.3 I b) indicated subsidence (II" zero vertical velocity in the

dissipating stratiform region.

5.2.4 Vertical velocity observations in the 12 January 1990 stratiform region

The vertical velocities in the stratiform region of 12 January 1990 were

characterized by relatively weak upward motion situated above the 4.5 km level that

varied in magnitude, depth and location. Stronger updrafts (i.e., 30 cm s·l) generally

occurred at or above the 7.5 km level. The updrafts were neither temporally nor

spatially uniform between 1100 and 1230 UTe (when only stratiform precipitation was

located over the MIT radar and the profiler). To illustrate this variation, we present the

vertical velocities diagnosed at 1059 and at 1200 UTe.

At 1059 UTe (Fig. 5.32a; note that velocities are plotted from -6 to +6 m s-l) .

the profiler indicated that only weak upward motion of 0.1-0.3 m s·l existed in the 6-8

km layer and in the 9-11 kIn layer Weak subsidence was detected just above and below

the 6-8 km layer by the profiler. The EVAD analysis from 1100 UTe (Fig. 5.33a)

indicated that upward vertical motion of 0.1-0.15 m s-l existed in the 8-10 km layer.

This is quite different from the profiler results at 1059 UTC. However, at 1050 and

1110 UTC (not shown) the profiler did indicate upward motion (0.2-0.3 m s·l) in the 8­

10 km layer. Indeed, at 1110 UTe the profiler indicated a peak upward velocity of

approximately 0.3-0.4 m s·1 near the 8 km level. However, the peak vertical velocity of
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0.4 m s-l was only measured at one level in stratifonn precipitation and only during the

1110 UTe time period.

At 1200 UTC, the profiler (Fig. 5.32b) indicated upward vertical velocities of

0.1-0.2 m s-l from 4-6.5 km and either zero or slightly downward motion above 6.5

km. Weak upward vertical motion between the 4-6.5 km levels (Le., 10 cm s-l) was

observed in several time periods between 11 ()() and 1230 UTC. The EVAD at 1200

UTC (Fig. 5.33b) found that weak upward motion of 0-0.1 m s·l was located from

6.5-11 km and that subsidence was located below 6.5 km. The profiler also indicated

some slight upward motion between 8-10 km at 1150 UTC (not shown). These

observations make it apparent that some upward motion was present in the stratifonn

region of the 12 January 1990 monsoon MCS, but that it was generally weaker than the

break period cases (with the exception of the 1110 UTC time period), varied in depth

and location, and was often observed well above the bright band (Le., between 8 km

and 11 km).

5.3. Model results

In this section we present the results of a simple one-dimensional model

(described in Chapter 4) that uses observed vertical velocities to evaluate the probability

of a mixed phase region existing in two of the stratifonn regions examined in section

5.1. After running the model with observed vertical velocities, sensitivity tests were

conducted to investigate the effect of a varying mesoscale updraft (as observed in the

four cases in section 5.2) on the amount of supercooled water produced. Cases for

which the model analysis is made include the break period MCS of 5 December 1989,

and the monsoon MCS of 12 January 1990.
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5.3.1 Model results for the break period stratiform region of 5 December 1989

Table 5.1 contains output generated by the one-dimensional model for the time

period (10-20 minutes) surrounding 1040 UTC. Positive values in the "Water" column

indicate water vapor available for condensation. Negative values for "Water" were

caused by either movement of water vapor out of the column in downdrafts (e.g., the

4750 m and 5250 m layers in Table 5.1), or by a total deposition rate that exceeded the

vertical flux of water vapor in a layer (e.g., the 7750 m and 8250 m levels in Table 5.1).

Table 5.1: 5 December 1989 (1040 UTC) water vapor flux model results

Height (m) Temperature (CO) Wavf!. (m s-l) Water (g m-3 s-l)

4750 0.6 -0.25 -0.000440

5250 -2.3 -0.05 -0.000137

5750 -4.9 0.25 0.000163

6250 -6.7 0.50 0.000224

6750 -8.5 0.50 0.000236

7250 -11.8 0.30 0.000235

7750 -15.6 0.10 -0.000141

8250 -18.7 0.00 -0.000225

In Table 5.1, positive values of water vapor flux occurred between the -5 °c to­

12 °c temperature ranges (5750-7250 m). When the excess water in the layers between

-5 °c and -12 °c W.lS integrated over a time period of 103 s (on the order of 10-20
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minutes), approximately 0.2 g m-3 of supercooled liquid water could be realized in each

layer through condensation. A value of 0.2 g m-3 is consistent with previous

observations of supercooled liquid water in the stratiform regions of MCSs (e.g.,

Rutledge et al. 1990; Yeh et al. 1991). When the observed vertical velocities at 1111

UTC (see Fig. 27b) were used (generally lower than the vertical velocities at 1040

UTC), the layers between 5750-7250 m exhibited less excess water vapor (time

integrated values < 0.2 g m-3). If slightly higher vertical velocities were used in the

middle and upper layers, values of the condensed water increased to 0.3 g m-3. Thus it

appears that limited amounts of supercooled water may have existed in the lower to

middle-levels (-5°C to -12 °C) of the 5 December 1989 stratiform region. This is

consistent with the observations (section 5.1.1) of moderate (15-25 dBZ) reflectivities

existing above the 0 °C level in this particular stratiform region. It should also be noted

that the 5 December 1989 stratiform region was actually water saturated(or close to

water saturation) over much of the model domain (as indicated by a sounding taken at

the Darwin Aerodrome by the Bureau of Meteorology).

The excess water vapor flux was also sensitive to the ice particle number

concentrations used in each layer. If concentrations were increased (decreased), the total

deposition rate increased (decreased) and the "Water" value decreased (increased).

Varying the ice particle number concentration from the average used in weak stratiform

precipitation (10 L-1) affected the model output the most since the majority of the

stratiform region between 4.5 and 8.5 kIn was classified as weak (reflectivities S; 20

dBZ). For example, if ice particle concentrations were increased from 10 L-1 to 15 L-1

in weak stratiform precipitation at 1040 UTC (Table 5.1), the excess water vapor

available for condensation decreased to 0.1 g m-3. Thus the amount ofliquid water that
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can be realized in thl: stratifonn region (as indicated by this simple model) is dependent

on the strength and location of the updraft, and the ice particle number concentrations.

5.3.2 Model results for the monsoon period stratifonn region of 12 January 1990

The probability of supercooled liquid water in the stratifonn region of the 12

January 1990 monsoon case was assesed using the wind profiler vertical velocity

observations between 1050 and 1100 UTC (Table 5.2). Recall from section 5.2.4 that

the vertical velocities in the stratifonn region of this particular monsoon MCS were

somewhat less than what was typically observed in the break: period stratifonn regions.

The weaker updrafts (and their elevated location; Le., typically above 7 km) had a

marked effect on the amounts and locations of excess water yielded by the model.

Table 5.2: 12 January 1990 (1100 UTe) water vapor flux model results

Height (m) Temperature (CO) Wavg (m s-l) Water (g m-3 8-1)

5250 -0.5 -0.10 -0.000141

5750 -2.7 0.00 -0.000058

6250 -5.1 0.10 0.000018

6750 -7.7 0.20 0.000022

7250 -10.5 0.20 0.000024

7750 -13.6 0.25 0.000006

8250 -17.0 0.20 -0.000060

8750 -20.6 0.10 -0.000173
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In Table 5.2 values in the "Water" column are approximately one to two orders

of magnitude lower than what was found in the break period case (Table 5.1). The

excess water occurred between the temperatures of -5°C and -13°C. Indeed, if the

values are integrated over a time of 103 seconds, the only substantial liquid water

contents possible would be .02 g m-3 between the -5°C and -11°C levels. When the

updraft was changed to reflect stronger vertical velocities between 7 and 9 lan, the only

significant water produced was 0.1 g m-3 at the 7250 m level. If a weak updraft was

introduced in the 5-6 km layer, 0.1 g m-3 of liquid water was produced at the 0 °C and ­

2.7 °C levels. If the particle concentrations were increased from 10 L-1 to 15 L-1 in the

weak stratiform precipitation, no excess water was produced. From these results we

conclude that very little liquid water (Le., of substantial quantity) existed above the 0 °C

level in the 12 January 1990 monsoon stratiform region. This is consistent with the

observations (section 5.1.7) of weak reflectivity values (as indicated by the height of the

15-25 dBZ reflectivity contour in the vertical cross-sections) in the stratiform region

above the 0 °C isotherm. It is also important to note that the sounding taken on 12

January 1990 did not indicate water saturation at many of the levels in the model

domain. Therefore, the amount of supercooled liquid water actually present in the 12

January 1990 stratiform region was probably less than what the model predicted.

5.3.3 Liquid water contents and electrification in the stratiform regions

The break period stratiform region (5 December 1989) and the monsoon

stratiform region (12 January 1990) exhibited different reflectivity structures, vertical

velocities and modeled liquid water contents. The modeling results suggest that lower

vertical velocities and the position of the updraft in the monsoon case may have impeded

the formation of substantial liquid water contents above the 0 °C temperature level.
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Conversely, the break period stratifonn region was associated with relatively strong

updrafts and significant amounts of model-predicted supercooled liquid water in the -5

°C to -~2_oC region. It seems reasonable to assume that these differences should have

some effect on the electrification of the stratiform region.

Now let us consider the modeled liquid water contents in a layer of some

specified temperature with respect to a non-inductive charging theory that includes the

surface state of the ice particles in the layer (e.g., Fig. 5.34; adapted from Williams et al.

1991). Fig. 5.34 is a graphic illustration of the combined non-inductive charging results

of Williams et al. (1991) (theoretical) and Takahashi (1978) (laboratory). Given Fig.

5.34 we can detemrine the dominant polarity of charge created in layers with a specific

liquid water content and temperature. In Fig. 5.34, the sloping dashed and solid lines

represent boundaries for different surface states of the ice (Williams et al. 1991) as a

function of liquid water and temperature. The lower region (bounded by the dashed

line) represents depositional growth of an ice surface and is associated with primarily

positive charging of that surface. The middle region represents acretional growth of an

ice surface in a sublimational state and primarily negative charging of the ice surface

(e.g., Baker et al. 1987; Caranti et al. 1991). The upper region represents an ice surface

in a wet growth state and is associated with positive charging. The black and white dots

are experimental charging results from Takahashi (1978). Black (white) dots represent

negative (positive) charge transfer to a riming ice particle in a collisions with another ice

particles.

If we compare our modelIng results in Table 5.2 to Fig. 5.34 for the 12 January

1990 monsoon stratiform region, we find that the charging of the ice should be weakly

positive. Note that a reversal to weak positive charge overhead was noted in the electric
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field record (Fig. 5.25) near 1200 UTC on 12 January 1990. Of course, this does not

explain the negative charge that existed over the field mill in the stratifonn region until

1200 UTC~ Recall however, that the vertical velocities in the stratifonn region of 12

January 1990 varied in the lower levels from weak upward to weak downward motion.

When weak upward motion was present in the lowest hyers, 0.1 g m-3 of water was

generated by the model between -0.5 °c and -2.7 °c. Fig. 5.34 indicates that ice

particles at this temperature and liquid water content would be in a sublimating

environment, and therefore should charge negatively. Thus both polarities of charging

were likely possible in the 12 January 1990 case (though the values of charge transfer

are small; see Fig. 3.2). It is possible that fluctuations in the updraft coupled with low

liquid water contents prevented the cloud from becoming strongly electrified with one

dominant polarity of charge in the stratifonn region.

With regard to Fig. 5.34, the break period case of 5 December 1989 is

somewhat complicated. In all of the modeling experiments, liquid water contents of

0.1-0.2 g m-3 were created between -5°C and -12°C. This places the ice in a

depositional environment for temperatures> -7°C, and hence positive charging would

take place (Williams et al. 1991). However, at temperatures of -5°C and liquid water

contents greater than 0.1 g m-3, the results of Williams et al. (1991) (Fig. 5.34) indicate

that an ice surface could be in either a sublimational (negative chzlI'ging) or a depositional

state (positive charging). The results of Takahashi indicate only positive charging of the

ice (Fig. 5.34). Note in Table 5.1 that larger quantities of liquid water (0.2 g m-3) were

located between -7°C and -12°C levels, placing the ice surfaces in a region of

depositional growth (positive charging) in Fig. 5.34. Thus it is likely that positive

charging of the ice took place between the -5°C and -12°C levels in the 5 December

1989 stratifonn region. This is consistent with the observed occurrence of positive COs
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in the stratifonn region on December 5, and also the field mill observations (Fig. 5.6)

which indicated dominant positive charge overhead in the stratifonn clouds between

0940 and III0 UTC.

It appears that the modeling and vertical motion observations support a non­

inductive charging,mechanism for the stratifonn regions. However, this suggestion is

made with a note of caution since 1) the assumptions made in the model (Le., horizontal

homogeneity, w, :er saturation, and ice particle parameterizations) may not be

representative of the actual conditions; 2) the subjective determination of vertical velocity

from profiler data is a possible source of error, and 3) the sensitivity of the model to

updraft strengths and particle densities presents questions regarding the accuracy and

applicability of the model. Also recall that the sounding of 12 January 1990 at 1200

UTC did not indicate water saturation at all levels. Thus other evidence will be needed

to infer the presence of a non-inductive charging mechanism in the stratiform regions

examined herein.

5.4 Updrafts correlated to positive CG flash rates

An interesting correlation arises when the updraft strengths and the number of

positive CGs observed in each stratifonn region are compared. Fig. 5.35 is a plot of the

total number of positive CGs that occurred in each stratiform region vs. the frequency of

10 minute time periods that contained updrafts> 0.3 m s-1 (as indicated by the profiler)

for each of the fOUf stratifonn regions examined in section 5.2 (each stratifonn region

examined for approximately the same length of time). Fig. 5.35 indicates that there is a

positive correlation between the strength and longevity of the updrafts, and the number

of positive eGs observed. This would be expected if the updraft strength is related to
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the fonnation of a strong mixed phase region and the development of in-situ, non­

inductive charging. Caution should be exercised in interpreting these results however,

since venica! velocities were subjectively determined and only four cases could be

compared.

5.5 Correlation between the height of the 15-25 dBZ reflectivity contour and the

number of cas observed in the stratiform regions.

In section 5.1 it was observed that the height of the 15-25 dBZ reflectivity region

above the 0 °c isotherm in the stratiform region seemed to be related to the number of

cas observed therein. To test this relationship, two plots were created (Figs. 5.36a-b)

to compare the normalized number of cas (positive cas, Fig. 5.36a; total cas, Fig.

5.36b) observed in each stratiform region to the relative intensity (as indicated by the

area of 15-25 dBZ reflectivities located above the 0 °c isotherm) of each respective

stratiform region. The number of positive cas and the total number of cas observed

in each stratiform region were normalized by factors representing the approximate

number of positive cas (Fig. 5.36a), and the total number of cas (positive and

negative cas; Fig. 5.36b) observed in the trailing stratiform region of the 28 January

1990 MCS respectively. In addition, the region of 15-25 dBZ reflectivities that existed

above the 0 °c level in each stratiform region were subjectively normalized relative to

that of the 28 January 1990 stratiform region. Thus the 28 January stratiform region

was assigned a value of 1 for positive cas observed, total cas observed (Le., positive

and negative Cas), and for the area of 15-25 dBZ reflectivity located above the 0 °c

level.
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It is apparent in Figs. 5.36a-b that the number of CGs observed in a particular

stratifonn region is related to the elevation of the 15-25 dBZ reflectivity region. Notice

that the curve in Fig 5.36a (positive CGs only) is very similar to that of Fig. 5.36b

(positive and negative CGs). This similarity occurred for two reasons 1) the number of

positive CGs generally outnumbered the negative CGs observed in the stratifonn

regions examined, and therefore dominated the relationship shown in Fig. 5.36b; and 2)

the number of negative CGs observed in each stratifonn region (included in the total

number of COs) may also have been related to the height of the 15-25 dBZ reflectivity

region (e.g., Figs. 5.3b, 5.17b, 5.18a). If we assume that the height of the 15-25 dBZ

reflectivity region is somehow related to the strength of the mixed phase region, then the

number of CGs observed in the stratifonn region (especially positives since they are the

most numerous) should be positively correlated to the strength of the mixed phase

region. This is consistent with the existence of an in-situ, non-inductive charging

mechanism in the stratifonn regions. Thus a strong mixed phase region in stratifonn

clouds should be linked to more charging in the stratiform clouds and more frequent

cloud-ta-ground lightning (e.g., 5 December 1989, 28 January 1990). The reverse

would be true for a weaker mixed phase region (e.g., 12 January 1990,24 January

1990). A similar positive correlation between the strength of mixed phase regions in

winter stratifonn clouds and the degree to which the stratiform clouds were electrified

was reponed by Mach et al. (1991).

5.6 Break period positive CGs vs. the average 700-400 mb and 450-280 mb shear

It was stated in section 5.4 that further evidence would be required to infer the

presence of a non-inductive mechanism in stratiform regions. We can indirectly

approach this goal by showing that other charging mechanisms cannot explain the

120



observed lighting in the stratiform regions. For example we can test the validity of the

charge advection mechanism by examining the average 700-400 mb shear and the

average 450-280 mb (7-10 km) shear in each of the break period storms that produced

positive COs behind the convective line. Since Chauzy (1985) identified a positive

charge region at approximately 7.5-8 km (400-350mb) ~n a tropical convective line, and

Krehbiel (1986) identified a main positive charge center near the 10 Ian (250-300 mb)

level in Florida thunderstorms, if the shear is strong in either the 700-400 mb or 450­

280 mb layers it seems likely that positive charge would be more efficiently advected to

the rear of the convective line, thus producing the likelihood of positive COs..This

assumes that only positive charge is advected rearward in the vicinity of 400 mb (7.5

km) or 280 mb (10 km). Ifnegative charge were advected rearward we would expect to

see more negative flashes than positive flashes in the stratiform region, however we

have observed that this was not the case in the MCSs examined herein. If no charge is

advected rearward then there should be no correlation between the numbers of positive

COs and the shear; of course this implies no charge advection.

Fig. 5.37ais a plot of the average 700-400 mb shearvs total number of positive

COs observed in the stratiform regions of four of the six MCSs examined herein. The

average shear in each MCS was calculated using the maximum value of the 700-400 mb

shear that occurred during each time period studied for a particular case. In Fig. 5.37a

there is a very weak negative correlation between the 700-400 mb shear and the total

number of positive COs observed in the stratiform regions. Fig. 5.37b is a plot of the

average 450-280 mb (-10°C to -30°C) shearvs. the total number of positive COs

observed in the stratiform regions of the same four MCSs. The correlation between the

number of positive COs and the shear in Fig. 5.37b is also weakly negative. Hence,

charge advection would not appear to be a major cor.~ributor to the occurrence of

121



positive CGs in these panicular break period stratiform regions. Unfortunately this

result applies to only four MCSs and therefore may not be representative of squall-line

type MCSs in general.

5.7 The location of CG peak current extrema relative to MCS structure

The break period MCSs and their associated ground flash patterns were

examined to investigate the relationship between peak current magnitude and the position

of OCCUI7ence relative to MCS radar reflectivity patterns. The same examination was

also performed on two middle-latitude MCSs (examples shown in Figs. 5.38, 5.39;

adapted from Rutledge and MacGorman, 1988 and Rutledge et al. 1990) which occurred

on 3-4 June 1985, and 10-11 June 1985 during PRE-STORM. Peak current

magnitudes in the PRE-STORM cases were computed using Eq. (4.5) from Orville

(1991) to convert LLP units to kA.

Recall from Chapter 4 that peak current maximums and minimums were placed

into one of two categories: flash position within 10 km of the convective line, or flash

position>10 km from the convective line, and within stratiform precipitation. When

categorized in this fashion, both the minimum and maximum negative peak currents

always occurred in the convective line of the 8 (6 tropical, 2 middle-latitude) MCSs

studied. Indeed, this should be expected since the negative flashes in all of the MCSs

examined were associated primarily with the convective line. However, the positive

peak current extrema exhibited a distinctly different behavior.

When the positive peak current extrema in each thirty minute time interval were

examined, an interesting pattern was revealed (e.g., see Figs. 5.2a-d, 5.7c-d, 5.12a,
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5.17a-d, 5.20a-c, and 5.21a). For the tropical MCSs, 70 percent of the time intervals

studied found the maximum positive peak currents situated in stratiform precipitation

while the minimum positive peak currents were associated with convective precipitation

in approximately 89 percent of the time intervals. For the 3-4 June 1985 PRE-STORM

MCS (Fig. 5.38), positive peak current maximums (minimums) were associated with

stratiform (convective) precipitation in 75 (75) of the time intervals studied. Similarly,

for the 10-11 June 1985 PRE-STORM MCS (Fig. 5.39), positive peak current

maximums (minimums) were associated with stratiform (convective) precipitation in 90

(80) percent of the time intervals examined.

Figs. 5.38 (0105 UTC, 4 June 1985) and 5.39 (0256 UTC, 11 June 1985) each

represent one of several 30 minute time periods (as shown in Rutledge and MacGorman,

1988 and Rutledge et al. 1990) studied from the 3-4 June 1985 and 10-11 June 1985

PRE-STORM MCSs. Like the tropical MCSs examined in this thesis, these particular

middle-latitude MCSs also had the maximum positive peak currents (147 leA for 3-4

June, Fig. 5.38; 202 leA for 10-11 June, Fig. 5.39) in stratiform precipitation

(approximately 70-100 km from the convective lines) and the minimum positive peak

current s ( 11 leA and 19 leA respectively) in convective precipitation. The maximum

positive peak currents in the 3-4 June MCS were located in str.ltiform precipitation in

three out of four time periods (spanning a total time of 4 hours) studied by Rutledge et

al. 1990. In the 10-11 June case, positive peak current maxima were located in

stratiform precipitation in nine out of the ten time periods (spanning a total time of 5

hours) examined by Rutledge and MacGorman (1988). Likewise, the minimum positive
.

peak currents in the 3-4 June (10-11 June) case were located in convective precipitation

in three out of four (eight out of ten) time periods. Note also that the maximum positive

peak currents in the stratiform regions of Figs 5.38 and 5.39 are approximately one
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order of magnitude larger than their minimum counrerpans in the convective

precipitation. The large difference in current magnitude between the stratifonn and

convective region positive peak current extrema was observed in virtually all of the time

periods examined in the 3-4 June and 10-11 June 1985 MCSs.

In nearly all of the tropical examples presented herein, the peak current extrema

differ by at least a factor of two. In the two middle-latitude MCSs the maximum and

minimum positive peak currents differ by at least an order of magnitude. This might

lead one to suspect that all of the positive peak currents (not just the extrema) associated

with the stratifonn region are, on average, greater than those occurring in the convective

line. This tendency was not conclusively demonstrated in the majority of the DUNDEE

cases presented herein but did exist in both of the middle-latitude PRE-STORM cases.

Only one of the DUNDEE cases (14 February 1990, Figs. 5.20a-c) showed a

pronounced difference in the average positive peak currents, (stratifonn average 55 kA,

convective 37 kA). but the averages should be taken with a note of caution as the total

number of positive flashes associated with stratifonn precipitation was relatively small.

The 3-4 June and 10-11 June 1985 PRE-STORM cases showed a marked difference

(approximately 37 kA and 27 kA respectively) between the average positive peak

currents occurring in the stratifonn region (75 kA, 3-4 June; 81 kA, 10-11 June) and

those in the convective region (37 kA, 3-4 June; 54 kA, 10-11 June). However, no

general conclusions with regard to the difference in average positive peak currents

between stratifonn and convective regions can be drawn for the middle latitude PRE­

STORM MCSs since only two cases were examined.

A possible explanation of the tendency for the positive peak current maximum

(minimum) to occur in the stratifonn (convective) region of an MCS might be related to
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the relative size of the charge volume contributing to the ground flash. Rutledge et al.

(1990) suggested that in-situ charging (charge generation through stratiform

microphysical processes) coupled with the large areal extent of the stratiform region,

could provide a large charge volume and hence ample charge for the flashes observed

beneath the stratiform region of an MeS. In the convective region, flashes would

presumably draw upon a smaller charge volume (relative to the stratiform region) and

might therefore be expected to have smaller associated peak currents. Rutledge et al.

(1990) developed a one-dimensional model to examine the rate of charge generation by

non-inductive charging associated with microphysical conditions in the stratiform clouds

of MeSs. The model indicated that sufficient charge was generated within the

stratiform region to account for a flash rate of 200 flashes hr1. Now, if the same

modest charging rate as found by Rutledge et al. (1990) is assumed (4 C km-2 hr1),

over the same large area (typically 100 x 50 kJn2), and <100 positive flashes occur in a

one hour time period (which was the case for all of the MCSs examined herein), there

could be more charge available per flash and perhaps a higher probability for a large

peak current. However, this hypothesis is presented with a note of caution since other

processes such as continuing currents (currents which follow the majority of positive

first return strokes) and in-cloud lightning can transport significant amounts of charge

out of the cloud volume (Vman, 1987). These two processes would therefore reduce,

to some extent, the higher probability of a cloud-to-ground flash occurring with a large

peak current by removing any excess charge. It should also be noted that the

hypothesized in-situ charging is assumed to be uniformly distributed over a large area of

the stratiform region.

To further support the possibility of in-situ charging in the stratiform region,

plots of maximum positive peak current magnitude over storm lifetime (Fig. 5.40) are
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presented for four of the MCSs (the 10-11 June 1985 middle latitude MCS and three

tropical cases) examined herein. The value plotted on the abscissa (from left to right)

represents a time spectrum in terms of 30 minute increments for each storm with a value

of 1 representing the initiation of an intense convective line to a value of 12 representing

dissipation of the MCS. Times 4-7 represent the part of each MCS lif~cycle for which

the stratifonn region was intensifying and developing to peak intensity (as subjectively

determined from plots of radar reflectivity). The ordinate represents the maximum

positive peak current magnitude recorded in any part of each MCS over a 30 minute

period. In order to make a comparison between storms, 30 minute periods for each

linear MCS (note that 3-4 June 1985 was not linear and was not studied for its entire

lifecycle) were subjectively classified according to the growth stage (Le., early or late in

the storm lifecyCIe).

For each MCS examined in this manner, the maximum positive peak: current

occurs during the time of stratiform region growth and intensification (periods 4-7).

Also, each peak in Fig. 5.40 is associated with a positive CG that occurred in a

stratiform region. [A double peak was observed for the 14 February 1990 tropical

MeS, corresponding to the growth of a second stratiform region on the southeastern

side of the MCS (Fig. 5.20a-c)J. The data presented in Fig. 5.40 suggest that the

maximum positiv(~ peak current is a function of stom1 lifecycle, in particular, the

lifecycle of the stratiform region. Indeed, the maximum positive peak current associated

with the 10-11 June 1985 MCS also corresponded to the maximum rate of increase in

areally integrated rainfall in the stratiform region (see Fig. 3.4). The dependence of

maximum positive peak current on the growth stage of the stratiform region strongly

suggests the presence of an in-situ charging process operating within the stratiform

region (as discussed by Rutledge et ai., 1990). The stratiform precipitation is linked to
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the development of a broad mesoscale updraft (found to exist in several of the MCSs

examined in section 5.3), which as Rutledge et al. (1990) suggest, produces a mixed

phase environment within which a non-inductive charging process operates (Takahashi,

1978). Recall from the analyses in sections 5.1 that the height of the 15-25 dBZ

reflectivity region (from which we infer the strength of the mixed phase region)

appeared to be correlated to the cloud-to-ground lightning activity (section 5.2, Fig.

5.26) and electric field magnitudes associated with the stratifonn clouds.

Now, if a non-inductive charging mechanism is responsible for the charging and

subsequent lightning that takes place in the stratifonn region of an MCS, we would

intuitively expect the production of charge to be at a maximum during time periods 4-7

(Fig. 5.40) just prior to the onset of the heaviest stratifonn rainfall, or as in the 10-11

June 1985 MCS, during the maximum rdte of increase in stratifonn rainfall. Further, as

in Rutledge et al. (1990), we might also expect the charge distribution to be that of an

inverted dipole (negative overlying positive charge). This distribution of charge might

then manifest itself in the fonn of an in-cloud or positive cloud-ta-ground lightning flash

assuming the electric field in the cloud approached break down values (105-106 V m-1).

Recall that large negative electric fields of 8-10 kV m- l existed at the ground

(indicating a large region of positive charge in the cloud overhead) while the stratifonn

region of the 5 December 1989 DUNDEE MCS (Fig. 5.2c-e) was over the field mill

located at the MIT radar site. Also, the model results presented in section 5.5 indicated

that supercooled liquid water and positive charge would be located between the -5 and ­

12°C levels. It is also likely that during this time of maximum positive charging in the

lower stratifonn region, the probability of a positive ground flash occurring with a large
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peak current would be higher. Note that this argument assumes the presence of an

efficient non-inductive charging process in the trailing stratiform regions of an MCS.

5.8 Support for a non-inductive charging mechanism in the stratiform regions of

tropical MCSs

The analyses in sections 5.1-5.7 appear to support the presence of an in-situ,

non-inductive charging mechanism in the the tropical stratiform regions examined

herein. The support is summarized as follows:

1) Similar to previous observations of the cloud-to-ground lightning in middle­

latitude MCSs (e.g., Orville et a1. 1987; Rutledge and MacGorman, 1988;

Rutledge et a1. 1990), primarily positive CGs were observed to occur in the

stratiform regions examined herein (those that produced CGs). However, a

few negative COs were also observed coincidentally with positive CGs in the

srratifonn regions (e.g., 5 December 1989,28 January 1990, and 14

February 1990; Figs. 5.2b, 5.17a-b, 5.20a-b ); this is not explained by the

charge advection mechanism (unless negative charge is also transported into

the stratiform region).

2) The 700-400 rob and 450-280 mb (7-10 km) shears were negatively

correlated (weakly) to the number of positive COs observed in each stratiform

region (Fig. 5.37). This is also inconsistent with the charge advection

mechanism.

3) Stratiform regions that produced relatively large numbers of CGs (observed to

be primarily postive) were associated with stronger mixed phase regions (as

indicated by the elevation of the 15-25 dBZ reflectivity region above the

melting level; Figs. 5.36u-b). Converse!:', stratiform regions with weaker
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mixed phase regions (15-25 dBZ reflectivities confined to below the melting

level) did not produce large numbers of cas (e.g., contrast 28 January 1990

[Fig. 5.17b] with 12 January 1990 [Fig. 5.22bD. This result is consistent

with the observations of Mach et al. (1991) who found a positive correlation

between the electrification of winter stratifolm clouds and the strengths of

their respective mixed phase regions.

4) Upward vertical motion in the strdtifonn regions was positively correlated

with the production of positive cas (Fig. 5.35).

5) In a simple one-dimensional model of the vertical water vapor flux in one

break period stratiform region (5 December 1989), significant amounts of

liquid water (0.2 g m-3) were produced between the -5°C and -12°C

temperature levels (see Table 5.1). These amounts of liquid water are

consistent with previous in-situ measurements made in stratiform regions

(e.g., Yeh et al. 1991).

6) When model derived liquid water contents and corresponding temperatures

from the break period case were mapped to a non-inductive charging diagram

from Williams et al. (1991), it was found that positive charging would occur

in the -5°C to -12°C layers. This is consistent with previous observations of

a main positive charge layer existing just below the -12 °C level (e.g., Schuur

et al. 1991; Marshall and Rust 1991; see Fig. 1.3), and is also consistent with

the surface based electric field measurements for this case (Fig. 5.6) which

indicated that positive charge was situated overhead when stratiform clouds

were situated over the field mill.

7) As a consequence of the elevated location and smaller magnitude of the

mesoscale updraft in the monsoon case of 12 January 1990, the supercooled

liquid water contents produced by the model were an order of magnitude
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smaller than those produced for the break period case. When the liquid water

contents and the respective layer temperatures were mapped to the Williams et

al. (1991) diagram, it was found that weak positive charge could have been

created in the monsoon stratiform region. However, when updrafts were

present near the 0 °e levd (Le., at 1200 UTC), model predicted liquid water

contents and the results of Williams et al. (1991) indicated that weak negative

charging may have taken place near the 0 °e level. Note that very weak

charging of both polarities was observed in the 12 January 1990 case (as

indicated by electric field measurements; see Fig. 5.25).

8) The model indicated differences between the amounts of water produced

above the 0 °C isotherm in the break period and monsoon cases. The model­

predicted differences in the supercooled liquid water contents are consistent

with the observed strengths of the mixed phase regions (inferred from the

amount of 15-25 dBZ reflectivities located above the 0 °C levels) and the

numbers of eGs produced in each type (break or monsoon) of stratiform

region. This would strongly suggest that non-inductive charging is the

primary mechanism for producing electrified stratiform clouds.

9) Positive peak current maxima (minima) were found to occur in stratiform

(convective) precipitation in six DUNDEE MCSs in 70 (89) percent of the

time intervals studied. This trend was also observed in two middle-latitude

MeSs observed during PRE-STORM. Note that the large distances (typically

> 30 km) between the location of the peak current maximums in the stratiform

region and the convective line also suggest that an in-situ charging process is

responsible for electrifying the stratiform region.

10) The positive peak current maxima that occurred in the stratiform regions were

at least twice as large as the positive peak current minima in the convective
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line. In fact, in several of the DUNDEE MCSs (and both middle-latitude

MCSs) the positive peak current maxima were at least an order of magnitude

larger than minima.

1l) Maximum positive peak currents were found during the time of maximum

growth and intensification of the stratifonn region, suggesting that

microphysical processes (associated with the generation of a mesoscale

updraft) were responsible for electrifying the stratiform region.

It is of course difficult to rule out significant additions of charge to the stratifonn

region by other mechanisms such as charge advection (see section 3.6), though analysis

indicates that charge advection may not be the primary charging mechanism in the

stratifonn regions. Other possibilities that cannot be ruled out entirely are 1) transfer of

charge to the stratiform region via in-cloud flashes and 2) positive CGs located in the

stratiform regions due to fla~hes which emanate from convective lines with horizontal

channels of 50-100 km before going to ground (Rust, 1986). Since no data exists to

confirm or refute points 1 and 2, we do not address them here. We believe however,

that the evidence presented herein strongly suppons a non-inductive charging

mechanism in the trailing stratiform regions of tropical MCSs.

131

















































































































































CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE 

RESEARCH 

This thesis presents a description of the cloud-to-ground lightning flashes 

associated with the trailing stratifonn regions of seven tropical MCSs observed during 

the second field phase (I989-90) of the DUNDEE. Through observational analyses of 

radar, wind profiler, and electric field data combined with a simple one-dimensional 

model an effort was made to detennine the charging mechanism responsible for the CGs 

observed in the stratifonn regions- particularly positive CGs. To complete the 

description, general statistics for a small sample of the cloud-to-ground lightning 

observed during the DUNDEE were also presented and compared to similar statistics in 

other geographical regions. 

6.1 Observations and a possible mechanism for cloud-to-ground lightning in the trailing 

stratifonn regions of tropical MCSs 

The seven MCSs examined in Chapter 5 were comprised of six "break" period 

tropical squall lines and one "monsoon" period tropical squall line. Each system was 

characterized as having a leading convective line and a tmiling region of stratifonn 

precipitation. Compared to middle-latitude MCSs such as the 3··4 June 1985 MCS (Fig. 

38) and the 10-11 June 1985 MCS (Fig. 39), the tropical systems produced fewer 
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numbers of cloud-lo-ground flashes. The break period systems were generally more 

intense and exhibited a higher degree of electrification than the monsoon MCS. Cloud­

to-ground flash rates were variable, with the break period 28 January 1990 MCS (Fig. 

5.16) producing the largest number of CGs in a single 30 minute period ODO) and the 

12 January 1990 r.lCS (monsoon; Fig. 5.22a-c) producing rhe lowest number of CGs 

(no cloud-to-ground flashes were detected during the observational period of some 3 

hours). Similar to observations made in middle-latitude MCSs (e.g., Orville et al. 1987; 

Rutledge and MacGorman, 1988; Engholm et al. 1990; Rutledge et al. 1990), bipolar 

CG patterns were ~'ound in several of the tropical ivlCSs examined herein (Le., 5 

December 1989; 28 January 1990,14 February 1990,15 February 1990). Importantly, 

the bipolar patterns were not true CG "bipoles" since a few negative CGs were also 

detected in the stmtiform regions. 

When venical cross-sections of reflectivity were examined in five of the MCSs, 

it was found that those squall lines associated with bipolar CG patterns (i.e., those 

which produced relatively larger numbers of positive CGs in the stratiform region) 

exhibited regions of 15-25 dBZ radar reflectivity which extended well above the 0 DC 

level within stratiform cloud. Further, the locations of positive CGs (and a few negative 

CGs) were identified with these enhanced reflectivity regions above the 0 DC level (e.g., 

5 December 1989; 28 January 1990). Indeed, inthe 28 January 1990 case it appeared 

th:lt the locations of positive CGs (and several negative CGs) in the developing region of 

stratiform precipitation were collocated with discrete enhancements in the reflectivity 

field (e.g., Fig. 5.18a) which may ~ave been associated with weak embedded 

convection in the developing stratiform region. Discrete enhancements in the reflectivity 

field located in close proximity to positive CGs were also noted in the 5 December 1989 

case (e.g., Figs 5.Sa-c). The cases which exhibited stronger reflectivities above the 0 DC 



level also possessed stronger, longer lived mesoscale updrafts (though the updrafts in all 

the cases examined appeared to vary in magnitude over time and space). 

MCSs which produced little or no cloud-to-ground lighting in the stratiform 

regions (Le., 12 January 1990,22 January 1990,24 JanuJ.ry 1990) exhibited weaker 

vertical reflectivities, and in the case of the 12 January 1990 monsoon case a weaker, 

highly variable mesoscale updraft (i.e., the updmft varied in depth and location over 

short time periods). In these MCSs only small regions of 15-25 dBZ reflectivities were 

located above the 0 °C level. Thus it appears that the intensity of precipitation located 

above the 0 °C level in the stratiform regions is related to the electrification of stratiform 

cloud. This relationship was previously noted by Mach et al. (1991) as existing in 

ordinary winter stratiform clouds located over Florida. In fact, Mach et al. (1991) 

inferred from surface radar and in-situ electric field data that the electrification of the 

winter stratiform clouds was linked to the strength of the mixed phase regions observed 

therein (thus linking the electrification of the stratifonn clouds to non-inductive charging 

processes). 

To evaluate the possible existence of a mixed phase region in the tropical 

stratiform regions (i.e., the existence of supercooled liquid water) a simple calculation 

using a one-dimensional model of the vertical flux of water vapor was carried out. 

Assumptions of water saturation (in-cloud), steady state saturated specific humidity, and 

horizontal homogeneity in the saturated specific humidity field were made. In addition, 

water vapor was assumed to be either deposited directly onto an ice surface or 

condensed to create supercooled liquid water. With the above assumptions, the 

calculation was performed for one break period MCS (5 December 1989) and one 
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monsoon period ~'lCS (12 January 1990) using vertical velocities diagnosed from wind 

profiler data and in-situ temperature soundings. 

The model results predicted that supercooled liquid water contents on the order 

of 0.2 6 m-3 could be realized in the 5.7-7.2 km leveb of the break period case (-5 DC [0 

-12 DC; Table 5.1) which is consistent with previous in-situ observations (e.g., Yeh et 

al. 19Y1). Supercooled liquid water was also produced in the monsoon case (Table 

5.2), however the amounts were substantially lower (i.e. < 0.1 g m-3). The model 

predicted water qUJntities were sensitive to both updraft strength and ice panicle 

concenrrations. When the modeled liquid water contents were compared with the non­

inductive charging theory of Williams et a1. (1991) and Takahashi (1978), it was found 

that positive charge would be created in the -5 DC to -12 DC layer for the break period 

case (even when the updraft was adjusted to lower or higher values). For the monsoon 

case, the diagram from Williams et a!. (1991) indicated that weak positive charging 

would result in layers between -5 DC and -12 DC. When a \veak updraft was present in 

the very lowest layers of the monsoon case, 0.1 g m- 3 of supercooled water was located 

near the 0 0 C isothenn and negative charging would occur. 

The modeling results above appear to be consistent with electric field, LLP and 

radar observations made in the break period case (5 December 1989). On 5 December 

1989 the vertical component of the electric field measured at the surface (Fig. 5.6) 

indicated strong positive charge overhead coincident with the time srratifonn cloud was 

located over the field mill. The LLP network detected approximately 10 positive CGs in 

the rrailing srratifcnn region of the 5 December 1989 MCS that appeared to be collocated 

with regions of enhanced reflectivity in the verticle (i.e., the region of 15-25 dBZ 

reflectivity located above the 0 °C isotheml; Figs. 5.3d, 5.5a-c). The enhanced 
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reflectivities may be the result of a stronger mixed phase region according to the model 

predicted liquid water contents. The above are also consistent with recent in-situ 

observations of the vertical electric field in middle-latitude stratiform regions where 

layers of substantial positive charge were located in the -5°C to -12°C temperature range 

(e.g., Schuur et al. 1991; personal communication Mr. Terry Schuur). 

In the 22 January 1990 break period case the electric field mill (Fig. 5.10) also 

indicated positive charge overhead (though quite weak) coincident with the time 

stratiform cloud was located over the field mill. Further, positive CGs that occurred in 

the northeastern portion of the 22 January 1990 (Fig. 5.7 d) stratiform region may have 

been associated with a more intense area of stratifonn precipitation (as indicated by the 

height of the 15-25 dBZ reflectivity region; Figs. 5.8d-e). The 24 January 1990 break 

period MCS also exhibited weak electrification (Fig. 5.15) coincident with time periods 

in the stratiform region where the 15-25 dBZ reflectivity region appeared to extend just 

above the 0 °C level over the field mill (Fig. 5. 13d). 

For the monsoon case of 12 January 1990, the model calculations indicated that 

only small amounts of liquid water (Le., < 0.1 g m-3) would be produced above the 

o °C level. Note that this particular monsoon case exhibited generally weaker 

reflectivities above the 0 °C isothenn and produced no cloud-to-ground lightning during 

the observational period. Electric field data for this case indicated that very weak 

negative charge was located overhead at first (coincident with the time that stratiform 

cloud was located over the field mill), with a reversal to very weak positive charge 

overhead at later time periods (Fig. 5.25). This observation coupled with those above 

seems to indicated that the strength of the mixed phase region in the stratiform clouds is 

related to the electrification therein, and hence a non-inductive charging mechanism may 
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respectively), and the relative frequencies of peak currents for each polarity of flash. 

We also compared the middle lati tude peak current distributions of Orville et al. (1987) 

and LOpez et al. (1991) to our peak current distributions from the tropics. The middle 

latitude flash distributions presented by Orville et al. (1987) demonstrated a marked 

difference in the median peak current between flashes of different polarity and a 

tendency for flashes with peak currents greater than 100 kA to be positive. The tropical 

ground flash median peak currents (by polarity) differed by only 2 kA (similar to L6pez 

et al. 1991) and there was no clear tendency for flashes with large peak currents to be 

positive (e.g., Brook et aI. 1982). 

While the 5000 flashes we examined are considerably less than the 5 million 

flashes examined in the Orville (1990) study, we did find comparable results with regard 

to the mean peak currents, independent of polarity. The flashes we examined from the 

DUNDEE had an average peak current of approximately 39 kA while those flashes 

examined by Orville (1990) for Rorida thunderstonns had an average peak current of 

approximately 45 kA. This result, coupled with the similarity in storm top heights 

between the MeSs we examined from the DUNDEE and those reported by Orville 

(1990) for Rorida thunderstonns, lead us to suggest that Orville's (1990) hypothesis of 

peak current variation with latitude is reasonable if avemge stonn top height is included. 

6.3 Recommendations for future research 

The DUNDEE was undertaken to study the electrification of tropical MCSs, 

however several key observations needed to completely solve the problem of MCS 

electrification were not available. For example, it is important to know where the cloud­

to-ground lightning flashes are originating within the clouds. As mentioned at the end 
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be the process responsible for generation of cloud-to-ground lightning in the stratiform 

regions of MCSs. 

The existence of an in-situ, non-inductive charging mechanism in the stratiform 

regions was further supported by the tinding that a tCLucncy e .. lsted for positive peak 

current maxima to occur primarily in the trailing stratifom1 regions of MCSs (two 

middle-latitude MCSs, and six tropicall'vlCSs). Conversely, the positive pe'-\: current 

minima tended to occur in the convective regions of the MCSs studied. Neither 

tendency was found for negative CG peak currents. In many cases the magnitude of the 

positive peak current maximum in the stratifom1 region was an order of magnitude 

greater than the minimum positive peak current in the convective region. Funher, 

maximum positive peak currents were found to occur at large distances (i.e., ~ 30 km) 

from the convective line, and during the time of maximum growth and intensification of 

the stratiform regions (implying that microphysical processes in a developing mesoscale 

updraft may have been involved in the charging of the stratiform regions). The above 

observations are therefore consistent with the hypothesis that an in-situ, non-inductive 

charging process is the primary mechanism responsible for creating cloud-to-ground 

lightning in the trailing stratiform regions of MCSs. 

6.2 Statistical summary 

Basic statistics (see Appendix A) for approximately SODO cloud-to-ground 

flashes observed during the DUl\'DEE were presented. These included the average peak 

current of the first return stroke (39 !cA.), the medi~-tn positive (32 kA) and negative (3.+ 

kA) peak currents, the percent of total ground flashes with positive polarity (9%), the 

average flash rate. (2.5 min-I), maximum :tnd mini, Jm peak currents (346 kA and 4 kA 



of Chapter 5, it is pDssible that positive CGs may originate in the convective line and 

propagate rearn:ard over large distances through the stratiform cloud prior to reaching 

ground (Rust, 1986). Observations of the origin of the cloud-to-ground lightning 

channels in stratiform clouds (e.g .. '~,'(JLLSiiL, '.lacGorman et a1. 1983; interferometer, 

Warwick et al. 1979;jield mill, Krehbiel ct :11. I !)79; or radar observations; Mazur et al. 

1984) would help sol ve this problem and should be undertaken in future ivlCS 

electrification research in the tropics and t~e middle-btitudes. 

Another key observation that needs to be made in tropical :\1CSs is the in-situ 

observation of the electric field (i.e., aircraft or balloon based electric field meters). 

Many elecoic field soundings have been taken in both the convective lines and stratiform 

regions of middle·lati tude i\1CSs (e.g., Seh L1 ur et aI. 1990; Marshall and Rust, 1991). 

In the stratiform regions of the middle-latitude \lCSs similar electric field profiks have 

been Gbtained in different stom1s (personal communication, Dr. Tom Marshall and \1r. 

Terry Schuur). If some universal mechanism for the electrification of stratiform regions 

does exist, then the same general profiles should also be observed in the trailing 

stratiform regions of rropical MCSs. 

Perhaps the most important type of d:lta needed for tropical and middle-latitude 

i\·lCS stratiform regions is microphysical information. This would include datasets 

containing not on ,y hydrometeor and liquid water concentrations and size distributions 

in stratifonn clou,js, but also observ:1tions of the amount and sign of the charge residing 

on the panicles (e.g., Weinheimer et aL 1991). Further, the data should not be limited 

to only the bright band and middle-levels of the stratifoml cloud. The microphysical 

data should also he collected in the upper regions of the srratiform cloud (admittedly not 
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an easy task at present). This type of data could provide direct evidence to support or 

refute non-inductive charging hypotheses. 

For the statistical data base and for research exploring cloud-to-ground lightning 

and the global electric circuit, a much larger network of lightning location and detection 

equipment should be established in the tropics (e.g., similar to the National Lightning 

Detection Network in the United States; see Orville 1986). This would also enable 

further investigation of latitudinal variation in the peak currents of cloud-to-ground 

flashes (e.g., Orville, 1990). 
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