RESISTANCE TO SHEET FLOW

by
Bahram Saghafian and Pierre Y. Julien

Center for Geosciences
Hydrologic Modeling Group

\section*{| Colorado |
| :---: |
| $\substack{\text { Lantesely }}$ |}

January 1989

RESISTANCE TO SHEET FLOW

by
Bahram Saghafian and Pierre Y. Julien

Center for Geosciences

Hydrologic Modeling Group

Colorado State

January 1989

"RESISTANCE TO SHEET FLOW"

by
Bahram Saghafian and Pierre Y. Julien

Report CER88-89BS-PYJ13

ACKNOWLEDGEMENTS

This study has been undertaken as an independent study in hydraulics on resistance to sheet flow prior to the beginning of motion of soil particles. The report has been completed as part of the Hydrologic Modeling studies of the Center for Geosciences at Colorado State University. The funding obtained from the U.S. Army Research Office (Grant No. ARO/DAAL 03-86-K-0175) has been most appreciated.

LIST OF FIGURES

FIGURE
 PAGE

1 The f-Re relationship for sand surface, 12 after Woo and Brater (1961).

2 The f-Re relationship for rough surfaces, 15 after Phelps (1975).

The f-Re relationship for flow in smooth 19 channels, after Chow (1959).

4 Modified Moody diagram showing C-Re 21 relationship, after Henderson (1966).

5 The f-Re relationship for flow with 28 rainfall, after Yoon (1970).

The f-Re relationship for flow with29 rainfall, after Li (1972).

7 The mean drag coefficient variation for 36 staggered and parallel patterns, after Li and Shen (1973).

8 The f-Re relationship for flexible 42 artificial turf, after Phelps (1970).

9 The f-Re data for flow through Bermuda 47 grass, after Chen (1976).The f-Re relationship for flow through50 Bermuda and Kentucky grasses, after Chen (1976).

LIST OF TABLES

TABLE PAGE
1 Values of coefficient (a) and exponent 13(b) in power equation simulating resistanceto laminar sheet flow over rough surfaces.
2 Pattern coefficient (c) for resistance to 40flow through ideal vegetation, afterHartley (1980).
TITLE PAGE

1. Introduction 1
2. Dimensional Analysis 3
3. Governing Equations 8
4. Surface Roughness Effect 10
4.1. Laminar Flow 10
4.2. Turbulent Flow 16
5. Rainfall Effect 24
5.1. Laminar Flow 25
5.2. Turbulent Flow 30
6. Vegetation Effect 32
6.1. Rigid Sparse Vegetation 32
6.2. Dense Rigid Vegetation 34
6.3. Flexible Artificial Vegetation 41
6.4. Natural Vegetation 44
6.5. Deep Flow over Flexible Vegetation 52
7. Conclusions 56
Appendix I. References 58
Appendix II. List of Symbols 63
Appendix III. Tables of Data 65

The results of a literature review on resistance to sheet flow are presented. The effects of surface roughness, rainfall, and vegetation are considered. At least in the case of laminar flow, it is found that the total flow resistance is the sum of the contributions of individual effects. The friction factor for the surface roughness effect in laminar flow is directly proportional to the relative roughness and varies inversely with the Reynolds number. A power function of rainfall intensity in laminar flow can represent the effect of rainfall on the product of friction factor and Reynolds number. For turbulent flow, however, the friction factor depends on the surface conditions which are partitioned into smooth, transition, and fully rough. The analysis of flow through vegetation is more complex and calls for further studies. For densely vegetated surfaces, the Darcy-Weisbach friction factor is shown to decrease signifcantly at Reynolds number well beyond the critical value of $R_{e}=2000$ for smooth surfaces. In some cases, the flow behaved as laminar flow at $\mathrm{R}_{\mathrm{e}}=100,000$.

1. INTRODUCTION

Overland flow on natural watersheds and urban drainages due to excess rainfall is commonly referred to as thin sheet flow. When the rainfall intensity exceeds the infiltration rate of the surface, sheet flow begins; sheet flow is generally unsteady and non uniform. The discharge increases in the downstream direction during the rainstorm and surface runoff rushes down the slope of watersheds, paved roads, side walks, or parking lots in urban areas. After cessation of rainfall, runoff continues during the time in which base flow sources exist; thereafter the recession phase starts. Sheet flows can be dealt with as wide open channel flows except that if the flow is generated by rainfall, excess resistance will be induced by raindrop impact. Shallow flows are more sensitive to raindrop impact because of the reduced flow depth.

The mechanics of sheet flow is of interest for several practical purposes including evaluation of: (1) surface runoff from natural watersheds; (2) soil erosion from watersheds and farmlands; (3) design discharge for urban drainage systems; (4) hydraulic characteristics of shallow flows in border irrigation system; (5) the modeling of overland flow.

In one flow classification, the ratio of the inertia to viscous forces defines the Reynolds number, R_{e}. When viscous forces dominate the Reynolds number, R_{e} is small and usually thin flow depth exists. This kind of flow is called laminar sheet flow which classifies most of the cases of thin overland runoff. With large Reynolds numbers, the

Abstract

inertia forces dominate the viscous forces and the flow is turbulent which corresponds to relatively large depths.

The primary parameter in mechanics of sheet flow is resistance to flow which determines other hydraulic variables such as velocity and shear stress. The focus of this paper is confined to the evaluation of the Darcy-Weisbach friction factor for steady laminar and turbulent sheet flows in wide channels under different surface roughness conditions, and with or without rainfall effect. The surface roughness conditions include smooth and rough boundaries in addition to roughness due to vegetation.

2. DIMENSIONAL ANALYSIS

The following analysis pertains to the general case of steady sheet flow in a wide channel over a rough boundary through vegetation with rainfall effect. The resistance coefficient, Darcy-Weisbach f, is then a function of all the relevant variables which describe the channel geometry, roughness, rainfall, flow and fluid characteristics. The variables fall into six categories: (1) channel variables such as bed slope S_{o}; (2) roughness parameters such as boundary roughness height k, and roughness concentration C, defined as the ratio of the plan area of roughness elements to the total plane area of the base; (3) rainfall parameters such as rainfall size d, rainfall pattern α, raindrop shape coefficient λ, rainfall intensity i, raindrop velocity entering main flow U; (4) flow parameters such as average flow velocity V, average flow depth Y, head loss gradient S_{f}; (5) fluid parameters such as fluid density ρ, specific weight of fluid γ, and dynamic viscosity μ; and (6) vegetation parameters classified into two categories: geometric and physical. Among the geometric characteristics are $S_{y}=$ the average vegetation spacing at depth $\mathrm{y}, \mathrm{d}_{\mathrm{y}}=$ the average diameter or width of the vegetation elements at $y, G_{y}=$ the average gap size at y, the pattern dimensionless quantity ψ, and the cross-sectional shape dimensionless quantity θ. The physical characteristic of plants, as adopted by Kouwen and Unny (1973), is the flexural rigidity of the plants shown by EI. The deflected height of the vegetation, K, may be regarded as a parameter of the combination of geometric and physical characteristics. The general form of functional relationship may be shown as follows:

$$
\begin{equation*}
\text { Func }\left(\mathrm{V}, \mathrm{Y}, \mathrm{~S}_{\mathrm{f}}, \mathrm{~S}_{\mathrm{o}}, \mathrm{k}, \mathrm{C}, \mathrm{~d}, \alpha, \lambda, \mathrm{i}, \mathrm{U}, \mathrm{~S}_{\mathrm{y}}, \mathrm{~d}_{\mathrm{y}}, \mathrm{G}_{\mathrm{y}}, \mathrm{~K}, \psi, \theta, \mathrm{EI}, \rho, \gamma, \mu\right)=0 \tag{1}
\end{equation*}
$$

For flows over a rough surface without any effect of rainfall and vegetation, Eq. 1 takes the form:

$$
\begin{equation*}
\mathrm{f}=\frac{8 \mathrm{gYS}_{\mathrm{f}}}{\mathrm{~V}^{2}}=\operatorname{func}\left(\mathrm{V}, \mathrm{Y}, \mathrm{~S}_{\mathrm{o}}, \mathrm{k}, \mathrm{C}, \rho, \mathrm{~g}, \mu\right) \tag{2}
\end{equation*}
$$

where f, instead of S_{f}, is the dependent variable. By selecting V, Y, and ρ as the independent variables and applying the π theorem for constant C (the maximum value similar to Nikuradse's experiments), one obtains:

$$
\begin{equation*}
\mathrm{f}=\text { func }\left(\mathrm{S}_{0}, \mathrm{k} / \mathrm{Y}, \mathrm{~F}, \mathrm{R}_{\mathrm{e}}\right) \tag{3}
\end{equation*}
$$

in which $F=$ Froude number and $R_{e}=$ Reynolds number. The effect of Froude number can be dropped for laminar flow.

For boundary shear stress due to flow over a smooth surface with rainfall effect, Eq. 1 reduces to:

$$
\begin{equation*}
\tau=\text { func }\left(\mathrm{V}, \mathrm{Y}, \mathrm{~S}_{\mathrm{o}}, \mathrm{~d}, \alpha, \lambda, \mathrm{U}, \mathrm{i}, \rho, \mathrm{~g}, v\right) \tag{4}
\end{equation*}
$$

where τ is the boundary shear stress equal to $\gamma \mathrm{YS}_{\mathrm{f}}$. Yoon (1970) performed a dimensional analysis to present:

$$
\begin{equation*}
\frac{\mathrm{f}}{8}=\frac{\tau}{\rho \mathrm{V}^{2}}=\text { func }\left(\frac{\mathrm{VY}}{v}, \frac{\mathrm{~V}}{\sqrt{\mathrm{gY}}}, \mathrm{~S}_{\mathrm{o}}, \frac{\mathrm{id}}{v}, \alpha, \lambda, \frac{\mathrm{iY}}{v}, \frac{\mathrm{U}}{\sqrt{\mathrm{gY}}}\right) \tag{5}
\end{equation*}
$$

where $V . Y / v$ and $V / \sqrt{g Y}$ are the conventional Reynolds number and Froude number respectively. Yoon experimentally found that: (1) iY/v and $\mathrm{U} / \sqrt{\mathrm{gY}}$ showed a poor correlation with f ; (2) the effect of α or rainfall spacing was negligible; (3) λ was kept constant and therefore dropped from the analysis; (4) Froude number appeared to be of secondary importance; and (5) id/v is proportional to i for constant v. Therefore, Eq. 5 becomes:

$$
\begin{equation*}
f=\text { func }\left(R_{e}, S_{o}, i\right) \tag{6}
\end{equation*}
$$

By applying the π theorem on Eq. 1 for the sheet flow through vegetation with rainfall effect and dropping unimportant terms of rainfall parameters based on the previous discussion, the following form is obtained:
func $\left(S_{f}, S_{o}, \frac{k}{Y}, \frac{i d}{v}, \frac{S_{y}}{Y}, \frac{d_{y}}{Y}, \frac{G_{y}}{Y}, \psi, \frac{K}{Y}, \theta, \frac{E I}{\rho V^{2} y^{4}}, \frac{\gamma Y}{\rho V^{2}}, \frac{\nu}{V Y}\right)=0$

Chen (1976) used the experimental results of Yoon (1970) and argues that the effect of rainfall would be maximum for flow on the horizontal smooth surface but would decrease with increasing k and S_{o}. He continues that since the roughness of turf surface is very high, the effect of rainfall intensity is believed to be insignificant. Also, the data by Chen (1976), Phelps (1970), and Hartley (1980) show that the flow resistance for flow through vegetation is much higher than that of flow only with rainfall.

After some modifications in Eq. 7 and using the relation $\mathrm{V}_{\max } \cdot \mathrm{G}=$ V.S, Hartley (1980) comes up with the following equation:

$$
\begin{equation*}
\mathrm{f}=\text { func }\left(\mathrm{S}_{\mathrm{o}}, \frac{\mathrm{~S}_{\mathrm{y}}}{\mathrm{Y}}, \frac{\mathrm{~d}_{\mathrm{y}}}{\mathrm{Y}}, \frac{\mathrm{G}_{\mathrm{y}}}{\mathrm{Y}}, \psi, \theta, \frac{\mathrm{~K}}{\left[\mathrm{EI} / \rho \mathrm{V}_{\star}^{2}\right]^{\frac{1}{x}}}, \frac{\mathrm{~V}_{\max } \cdot \mathrm{d}}{v}, \frac{\mathrm{~V}}{\sqrt{\mathrm{gY}}}\right) \tag{8}
\end{equation*}
$$

in which $V_{*}=\sqrt{\mathrm{gYS}_{\mathrm{f}}}$. The term k / y in Eq. 7 was dropped by assuming flow through vegetation having smooth boundary. However, the effect of roughness, if considerable compared to vegetation resistance, can be added to the vegetation resistance to yield total resistance.

In case of relatively sparse vegetation all of the terms in Eq. 8 should be considered. For grass with maximum density, however, the flow resistance is mainly due to drag on the roughness elements and concentration, shape, and pattern effects could be dropped from the analysis, as in Chen's study. In case of experiments with artificial cylinders, the restrictions and simplifications made by Hartley include:
(1) the density of the system doesn't change with depth, so subscripts of the first three terms after S_{0} may be dropped; (2) the effect of pattern and shape will be represented by a constant in the final equations; and (3) flexibility effects can be dropped for the experiments with rigid cylinders. Also for rigid system, $K=Y$. Therefore:

$$
\begin{equation*}
\mathrm{f}=\text { func }\left(\mathrm{S}_{\mathrm{o}}, \frac{\mathrm{~S}}{\mathrm{Y}}, \frac{\mathrm{D}}{\mathrm{Y}}, \frac{\mathrm{G}}{\mathrm{Y}}, \frac{\mathrm{~V}_{\max } \cdot \mathrm{G}}{v}, \frac{\mathrm{~V}}{\sqrt{\mathrm{gY}}}\right) \tag{9}
\end{equation*}
$$

In case of laminar sheet flow, usually with very shallow depth, the deflected height and flexural rigidity of the vegetation are not
important and Eq. 9 still applies. The Froude number contribution in laminar flow resistance equations has not been included so far. The experiments such as Chen's have been conducted with the attempt to eliminate surface instabilities. However, Hartley reported only small free surface effect even in turbulent flow. Hence, Eq. 9 takes the form of:

$$
\begin{equation*}
\mathrm{f}=\text { func }\left(\mathrm{S}_{\mathrm{o}}, \mathrm{~S} / \mathrm{Y}, \mathrm{D} / \mathrm{Y}, \mathrm{G} / \mathrm{Y}, \mathrm{~V}_{\max } \cdot \mathrm{G} / \mathrm{v}\right) \tag{10}
\end{equation*}
$$

in which $R_{e}=V_{\max } \cdot G / v=V . S / v$ is the Reynolds number based on vegetation spacing.

3. GOVERNING EQUATIONS

One of the most common resistance factors is the Darcy-Weisbach friction factor, f. The Darcy-Weisbach formula was first developed for flow in pipes in the following form :

$$
\begin{equation*}
\mathrm{h}_{\mathrm{f}}=\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}} \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}} \tag{11}
\end{equation*}
$$

where $h_{f}=$ friction loss along length L of the pipe, given the pipe diameter, D, and the mean flow velocity, V. For open channel flow, h_{f} / L and D are substituted by S_{f} and $4 Y$ respectively :

$$
\begin{equation*}
f=\frac{8 \mathrm{gYS}_{\mathrm{f}}}{\mathrm{~V}^{2}} \tag{12}
\end{equation*}
$$

where $S_{f}=$ friction gradient, $V=$ velocity, and $Y=$ flow depth equal to hydraulic radius in a wide channel. Eq. 12 may be applied to steady uniform flow in wide channels by substituting S_{o} for S_{f}. Other friction factors, such as Manning n and Chezy C, are mostly used for turbulent flow. The relationship between f, n, and C in English units is as follows :

$$
\begin{equation*}
\mathrm{C}=\frac{1.486 \mathrm{Y}^{1 / 6}}{\mathrm{n}}=\left(\frac{8 \mathrm{~g}}{\mathrm{f}}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

The sheet flow with rainfall as lateral inflow is considered to be a shallow spatially varied flow which with constant rainfall intensity and constant base flow would be steady. The derivation of governing equations for steady spatially varied flow with rainfall has been studied by many investigators; among them, Chow (1959), Woo and Brater
(1962), and Yen and Wenzel (1970). Probably Yen and Wenzel (1970) derived the most comprehensive dynamic equation for this case by both momentum and energy approaches.

The continuity equation for the flow with rainfall in a wide channel can be written as :

$$
\begin{equation*}
\mathrm{q}=\mathrm{q}_{0}+\mathrm{ix} \tag{14}
\end{equation*}
$$

where q , and $\mathrm{q}_{0}=$ total and base flow rates per unit width of the channel at $x=0$. Under the following basic assumptions: (1) one dimensional steady flow; (2) hydrostatic pressure distribution; (3) constant channel slope; (4) constant momentum correction factor along the channel; (5) negligible air entrainment effect; and (6) impervious boundary, Yen and Wenzel (1970) using momentum approach came up with the equation of water surface profile for steady spatially varied flow as follows :

$$
\begin{equation*}
\frac{d Y}{d x}\left(\operatorname{Cos} \theta-\frac{\beta V^{2}}{g D}\right)=S_{o}-S_{f}+\frac{i}{g A}(U \operatorname{Cos} \phi-2 \beta V) \tag{15}
\end{equation*}
$$

where $\mathrm{x}=$ distance in the flow direction, $\mathrm{D}=\mathrm{A} / \mathrm{T}=$ hydraulic depth at $\mathrm{x}, \mathrm{A}=$ cross section area at $x, T=$ top width at the free surface, $\theta=$ angle between x direction and horizontal direction, $\beta=$ the momentum correction factor, $\mathrm{S}_{\mathrm{f}}=$ friction slope defined as $\tau / \gamma \mathrm{R}, \mathrm{R}=$ hydraulic radius, $\phi=$ angle between velocity U and x direction, and other variables have been already defined. For a wide channel, D and R are simply replaced by flow depth, Y.

4. SURFACE ROUGHNESS EFFECT

4.1. Laminar Flow

The study of laminar sheet flow over bare surface is the most simplified situation of interest in order to identify the variation of flow resistance coefficient due to surface roughness and Reynolds number. The following general formulation has been adopted by early investigators, such as Izzard (1944), and Woo and Brater (1961):

$$
\begin{equation*}
f=\frac{K}{R_{e}} \tag{16}
\end{equation*}
$$

K value varies with the flow regime, surface roughness, rainfall effect, vegetation and probably slope. Theoretically speaking, K is equal to 24 for laminar flow over a smooth wide channel. This can be found by either applying Boussinesq equation, primarily developed for rectangular pipes having a width b and depth of $2 Y$, to a wide open channel with infinite width and depth of Y, or imposing equilibrium between the component of weight in the direction of flow and the shear resistance of the channel bottom. Horton, Leach, and Van Vliet (1934) experimentally confirmed the K value being 24 for laminar flow in a rectangular channel with a smooth surface, covered by white pine. Allen (1934) found the upper limit of R_{e} for true laminar flow regime being about 300 for smooth surfaces. The University of Illinois' data given by Landsford and Robertson (1958) and Chow (1959) determined the same K value as 24 for laminar flow when $\mathrm{R}_{\mathrm{e}}<500$.

Woo and Brater (1961) tried to determine friction factor for different boundary surfaces. They partitioned the surfaces into smooth,
rough, and very rough. Woo and Brater evaluated the width effect for the flow in rectangular channels, estimating an error of less than 5 percent in K when the width-depth ratio was 25 . Woo and Brater's data for flow over masonite surface representing a typical rough surface showed a value of 30.8 for K. The U.S. Waterways Experiment Station (1935) had already reported K being 31.6 for laminar flow over cement surface. The upper limit of R_{e} for laminar flow varied from 400 for a slope of 0.060 to 900 for a slope of 0.001 .

Glued-sand with an average diameter of 1 mm on the masonite surface used by Woo and Brater (1961) as a very rough surface on which flow experiments were conducted. It was found that K increased with the slope (except for slopes less than 0.003), having a value of 39.2 for S_{0} $=0.001$ up to 100 for $S_{o}=0.060$, Fig. 1. The upper limit of laminar flow range was confined between 400 to 800 , varying inversely with the slope. Generally, the data in the laminar range seems inadequate to warrant the results.

If the f variation with slope is computed based on Woo and Brater's (1961) data, it will be found that for sand surface ($k=1 \mathrm{~mm}$) when $\mathrm{S}_{\circ}>0.003:$

$$
\begin{equation*}
\mathrm{f}=\frac{155.85+46 \log \mathrm{~S}_{\circ}}{\mathrm{R}_{\mathrm{e}}} \tag{17}
\end{equation*}
$$

The application of the above equation is limited to slopes less than 0.020 after which the number of data points for each slope is lacking.

Fig. 1. The $f-R_{e}$ relationship for sand surface, after Woo and Brater (1961).

Through a different approach, Kruse et al (1965) attempted to define the friction factor for flow over rough surface in terms of roughness characteristics and channel slope. They came up with the following formula :

$$
\begin{equation*}
\mathrm{f}=\frac{6000(\sigma / \lambda) \mathrm{S}_{0}{ }^{0.5}}{\mathrm{R}_{\mathrm{e}}} \tag{18}
\end{equation*}
$$

where $\sigma=$ soil roughness height, and $\lambda=$ soil roughness spacing. The formula shows the correlation of friction factor with the ratio of roughness height to spacing and apparently the bed slope.

The idea of correlation of f with the relative roughness was investigated by Phelps (1975). Phelps tested the flow over spherical roughness elements with diameter of 1.17 mm (. 046 in) and grain concentration of 0.1 in the slope range being $0.00048-0.0451$. The data confirmed the variation of f with relative roughness not slope.

Having Phelps' data in Fig.2, the following power equation may be developed to confirm Eq. 16 for constant $k / Y: f=a R_{e}{ }^{b}$. Table 1 can be filled by using Fig. 2 as the reference.

TABLE 1 - Values of a and b Based on Phelps' Data

Relative Roughness (1)	\# of Data (2)	a (3)	b (4)	K (5)
	4	35.889	-1.00195	35.498
.23	5	43.584	-1.02503	38.161
$.27-.28$	7	42.392	-1.00191	42.040
.35	7	31.179	-0.88777	50.61
$.52-.55$				

As it is seen, the exponent b is very close to -1.0 except for the last series when $k / Y=.52-.55$. As a result, the resistance equation may be written in this form: $f=K / R_{e}$, where $K=$ func (k / y). If a regression is to be performed, the result for K will yield:

$$
\begin{equation*}
\mathrm{K}=24+72.1\left(\frac{\mathrm{k}}{\mathrm{Y}}\right)^{1.31}, \frac{\mathrm{k}}{\mathrm{Y}}<.50 \tag{19}
\end{equation*}
$$

The application of resistance equation in the form of $f=K / R_{e}$ would be probably limited to k / Y values less than .50 , according to Phelps' data. The result of the power model for $k / y=.52-.55$ is not satisfactory to verify the equation for that specific k / Y. It is possible that free surface instability effect for high k / Y cause the discrepancies such that the correlation of f with R_{e} decreases indicating the change in flow regime from laminar to transition and turbulent.

Phelps (1975) reported that Woo and Brater's (1961) data also validated Eq. 16 as they were grouped based on relative roughness. Assuming so, K values deduced from Woo and Brater's data are higher than those of Phelps' as much as two times for a constant k / Y. One may reason that the roughness concentration used by Woo and Brater was the maximum possible similar to Nikurase's work, where Phelps' selected a concentration equal to 0.1 in his experiments.

Now, as it is clear, two different independent variables have been used for the evaluation of flow resistance, i.e. slope and relative roughness. Although Kruse et al. (1965) presented an equation in which slope was the independent variable besides the roughness size, they

Fig. 2. The $f-R_{e}$ relationship for rough surfaces, after Phelps (1975). $\mathrm{k} / \mathrm{Y}=$ Relative roughness
speculated that the apparent correlation between resistance and slope could be due to relative roughness and local turbulence at the tips of the roughness elements. When slope increased while discharge and hence Reynolds number were kept constant, depth would then decrease and more resistance would be induced due to larger portion of the flow being into contact with the roughness at a higher velocity. Therefore, the basic cause of resistance variation can be relative roughness rather than slope, which in turn is responsible for changes in relative roughness. In addition, working with slope as the primary variable requires a series of experiments for each roughness size whereas the k / Y ratio reflects both roughness size and depth which varies with bed slope in the case of constant discharge. Phelps' work successfully demonstrates the effectiveness of k / Y being independent variable and the validity of equation $f=K / R_{e}$.

Yet, some considerations must be taken into account when working with relative roughness. First of all, the roughness concentration has to be held constant for each diagram of f vs R_{e} and k / Y. Second, the k value, the height of the roughness, needs an accurate measurement. Third, for high k/Y, free surface instabilities may bring about additional energy dissipation whose effect on f in laminar flow region has not been quantitatively determined.

4.2. Turbulent Flow

The flow over a bare surface becomes turbulent when $R_{e}>2000$. There are three types of turbulent flow depending on size of the boundary roughness compared to laminar sublayer thickness. Smooth
conditions occur when the boundaries are hydraulically smooth such that the roughness elements are well covered under the laminar sublayer. On the contrary, turbulent flow over fully rough surface exists when the projections break through the laminar sublayer and dominate the flow behavior. Finally, transition region of turbulent flow is the region between smooth and fully rough conditions. It is noticeable that change from smooth to fully rough flow corresponds to increase in R_{e} and therefore in discharge, which shrinks the laminar sublayer thickness. The limits of these three kinds of turbulent flows are as follows :

$$
\begin{array}{llcll}
\text { 1. Smooth condition : } & \delta>3 \mathrm{k} & \text { or } & \mathrm{V}_{\star} \mathrm{k} / v<4 \\
\text { 2. Transition } & : & \mathrm{k} / 5<\delta<3 \mathrm{k} & \text { or } & 4<\mathrm{V}_{\star} \mathrm{k} / v<70 \\
\text { 3. Fully rough } & : & \delta<\mathrm{k} / 5 & \text { or } & \mathrm{V}_{\star} \mathrm{k} / v>70
\end{array}
$$

where $\mathrm{k}=$ the median size of the boundary particles and $\delta=$ the laminar sublayer thickness equal to $11.6 v / V_{*}$.

The resistance equations were primarily developed for flow in pipes. The $\mathrm{f}-\mathrm{R}_{\mathrm{e}}$ relationship for smooth pipes was derived by Blasius as the following :

$$
\begin{equation*}
\mathrm{f}=\frac{0.223}{\mathrm{R}_{\mathrm{e}}^{0.25}} \tag{20}
\end{equation*}
$$

in which hydraulic radius is used as the characteristic length in definition of R_{e}. The Blasius equation may be applied for turbulent flows over smooth boundary when $\mathrm{R}_{\mathrm{e}}<25000$. Beyond that limit, the

Prandtl-von Karman equation based on logarithmic velocity profile is believed to hold :

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=2 \log \left(\mathrm{R}_{\mathrm{e}} \sqrt{\mathrm{f}}\right)+0.4 \tag{21}
\end{equation*}
$$

The use of Eq. 20 and Eq. 21 for open channel flow has been investigated based on the data developed at the Univ. of Illinois given by Lansford and Robinson (1958) and also data of Univ. of Minnesota given by Straub et al. (1958). Fig. 3 indicates that the equations for turbulent flows in smooth pipes may be representative of all smooth channels. In addition, the cross section shape of the channel in turbulent flow has little effect on friction factor whereas it is important in laminar flow. This means that for sheet flow assumed in a wide channel, Eq. 20 and Eq. 21 can approximate the friction factor when the boundary is smooth such as that of urban drainage systems.

Another alternative is to integrate the turbulent velocity profile over smooth boundary and then calculate the friction factor from average velocity. The final formula would be :

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=a \log \left(R_{e} \frac{\sqrt{f}}{b}\right) \tag{22}
\end{equation*}
$$

Basically, a is related to the von Karman's universal constant as 0.4 , and b depends on the value of a as well as shape of the cross section of the channe1. Keulegan's (1938) formula, which probably is the closest in result to Prandtl-von Karman equation, for a very wide, smooth

Fig. 3. The $f-R_{e}$ relationship for flow in smooth channels, after Chow (1959).
channel reduces to $\mathrm{a}=2.03$, and $\mathrm{b}=0.853$. In overland areas, however, the surface is mostly rough with fairly large relative roughness.

The flow resistance of turbulent flow in fully rough condition is entirely due to the ratio of hydraulic radius over the roughness size, R / k, and can be expressed as follows :

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=\frac{\mathrm{C}}{\sqrt{8 \mathrm{~g}}}=\mathrm{a} \log \left(\mathrm{~b}^{\prime} \frac{\mathrm{R}}{\mathrm{k}}\right) \tag{23}
\end{equation*}
$$

where $R=$ hydraulic radius, and b ' is a constant to be determined by experiments. The value of b^{\prime} depends not only on the shape of the channel cross section but also on the spacing (roughness concentration) and form of the roughness elements. As a result, different investigators present different values based on the data they use. Keulegan (1938) found that $a=2.03$ and $b^{\prime}=11.09$ for a very wide channel with sand-grain roughness in the fully rough regime. For a trapezoidal channel, however, Keulegan's formula gives similar a but $\mathrm{b}^{\prime}=12.27$. At the meeting of IAHR, Thijsee (1949) proposed a similar equation which after modifications results in $a=2.03$ and $b^{\prime}=12.2$ for a very wide channe1. In case of flow over commercial surfaces, such as concrete and wood, the k values have been presented by Ackers (1959).

If the variation of Chezy coefficient C, instead of Darcy f, is to be plotted versus R_{e} using Eq. 20 and Eq. 21 for smooth condition and Eq. 23 for fully rough condition, a modified Moody diagram for open channel flow will show up. Fig. 4, taken from Henderson's (1966) book, indicates that in case of turbulent flow over fully rough surfaces, C only depends on R / k ratio and independent of R_{e} effect. The R / k ratio

Fig. 4. Modified Moody diagram showing $C-R_{e}$ relationship, after Henderson (1966).
covers from 5 to 235.5 , probably based on range of available data. Although turbulent flow in fully rough condition usually occurs in relatively high R / k ratios, in overland regions with steep slope one may expect turbulent sheet flow with high relative roughness, or low ratios of R / k. In that case, the applicability of Eq. 23 needs more investigations in order to complete Fig. 4 for smaller R / k ratios. A report by ASCE (1963) supports the use of Colebrook equation with slightly modified coefficients for flow in transition region to open channels. The equation is :

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=\frac{C}{\sqrt{8 g}}=-2 \log \left(\frac{\mathrm{k}}{12 \mathrm{R}}+\frac{0.625}{\mathrm{R}_{\mathrm{e}} \sqrt{\mathrm{f}}}\right) \tag{24}
\end{equation*}
$$

However, the above equation is applicable to commercial surfaces. Therefore, for natural rough surfaces with k being the median particle size, Eq. 24 has to be tested. In Fig. 4 , the difference between the curves for pipe flow and open channel flow in transition region is shown.

Manning equation, as a flow resistance equation, is the most well known power relationship which has been developed for open channel turbulent flow over rough surfaces. For R / k ratios ranging from 10 to 10000, the Manning-Strickler relationship approximately gives equivalent resistance coefficients as the logarithmic equation by Keulegan:

$$
\begin{equation*}
\mathrm{n}=\frac{1.486 \mathrm{R}^{1 / 6}}{\sqrt{8 \mathrm{~g} / \mathrm{f}}}=0.0342 \mathrm{k}^{1 / 6} \tag{25}
\end{equation*}
$$

 noticed that Manning equation is suitable for all fully rough flows in which Manning's n is constant for a given particle size. For transition flows, however, f is the better resistance coefficient given by Eq. 24 .
boundary shear stress, τ, assuming $\beta=1$. He found that the measured boundary shear stress, even with the difficulties in measuring flow depths with rainfall effect, was in excellent agreement with boundary shear stress computed using Eq. 26 . Therefore, the application of one dimensional dynamic equation of spatially varied flow appeared to be accurate enough for determination of water surface profile, provided a reasonable resistance law; i.e. an equation for f. It was also found that S_{o} overcame the other terms in magnitude while evaluating S_{f}. Each of S_{1} and S_{2} contributed nearly one tenth of S_{o} whereas S_{3} was negligible in magnitude.

5.1. Laminar F1ow

Izzard (1944) first studied the resistance to laminar sheet flow with rainfall effect. He considered that the K value in general formula, Eq. 16 , could be the sum of a constant and a function of rainfall intensity. Therefore the following function was developed and then used by many other investigators:

$$
\begin{equation*}
\mathrm{f}=\mathrm{K}_{\mathrm{R}}=\frac{\mathrm{K}_{\mathrm{o}}+\phi(\mathrm{i})}{\mathrm{R}_{\mathrm{e}}} \tag{28}
\end{equation*}
$$

where K_{o} is a function of surface roughness. Izzard used a paved rough surface in his experiments. As a result, he determined K_{o} being 27 for rough surface. The power function of rainfall intensity turned out to be $5.67 \mathrm{i}^{1.33}$, where $\mathrm{i}(\mathrm{in} / \mathrm{h})$. In addition, Izzard observed increase in f with increasing bottom slope. However, no slope parameter was included in friction factor equation.

Li (1972) conducted his tests to determine the independent variables of friction factor for laminar flow over smooth surface with rainfall through a dimensional analysis. He assumed the following power equation:

$$
\begin{equation*}
\mathrm{f}=\beta_{\mathrm{o}} \mathrm{R}_{\mathrm{e}}{ }^{\beta 1} \mathrm{i}^{\beta 2} \mathrm{~S}_{\mathrm{o}}^{\beta 3} \epsilon \tag{29}
\end{equation*}
$$

where $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$ are constants and ϵ is the error in the regression equation. The data covered a range of R_{e} from 126 to 900 for laminar regime, 0 to $17.5 \mathrm{in} / \mathrm{h}$ for rainfall intensity, and slopes being .0108 and .0064 . The result of multiple regression showed that :

$$
\begin{equation*}
\mathrm{f}=13.517 \mathrm{R}_{\mathrm{e}}^{-.958} \mathrm{i}^{.413} \mathrm{~S}_{0}^{-.088} \epsilon \tag{30}
\end{equation*}
$$

According to statistical tests made by Li (1972), bottom slope had an insignificant effect on the product of $f . R_{e}$. Furthermore, the exponent of R_{e} was approximated to -1 .

Before Li (1972), Yoon (1970) had carried out several tests to identify the independent variables affecting friction factor. Yoon (1970) found that the effect of raindrop spacing and raindrop impact velocity were almost negligible on friction factor under his test conditions. However, friction factor increased with increasing rainfall intensity and relatively bottom slope.

Li (1972) performed a regression analysis using his data and Yoon's data to derive the following power function for $\phi(i)$:

$$
\begin{equation*}
\phi(i)=27.162 \text { i. } 407, \quad \text { for } R_{e}<900 \tag{31}
\end{equation*}
$$

i is in in/h. The agreement of the above equation with Yoon's data is shown in Fig. 5 and with Li's data in Fig. 6.

Fawkes (1972) approximated the flow with rainfall as a steady flow with a very flat water surface profile. As a result, S_{f} would be almost equal to S_{0}. Fawkes then presented $\phi(i)=9.982 i$.

Other data based on experiments on sheet flow over smooth and rough surfaces with rainfall given by Kisisel et al. (1973) indicated no significant change in f due to slope. The data seemed to obey the same general formulation for f, though no attempt was made to deduce a certain equation for f .

In order to define friction factor experimentally for sheet flow with rainfall, most of the investigators used the kinematic wave approximation as suggested by Woolhiser (1969). The approximation assumes that all the terms in the momentum equation are negligible except S_{0} and S_{f}, resulting in $S_{f}=S_{o}$. Then, depth and velocity in Eq. 12 are measured for a cross section and the variation of f due to rainfall versus R_{e} will be defined. Izzard (1944), Kisisel et al. (1973), and Fawkes (1972) used the kinematic wave approximation to determine the f variation.

According to Yoon's study on Eq. 26 , the kinematic wave approximation may involve up to 20 percent error in S_{f} determination. Yoon (1970), and then Li (1972), directly measured the boundary shear stress by hot film sensors, in order to avoid any approximation in their analysis. Having shear stress and flow velocity, they computed friction factor, $f=8 \tau / \rho V^{2}$, for specific rainfall intensity and Reynolds number.

Fig. 5. The $f-R_{e}$ relationship for flow with rainfall, after Yoon (1970).

Fig. 6. The $f-R_{e}$ relationship for flow with rainfall, after Li (1972).

Consequently, Eq. 28 substituted by $\phi(i)$ from Eq. 31 is the most accurate equation for solving dynamic equation of spatially varied flow. As already discussed, K in Eq. 16 may be a function of slope, S_{o}, or relative roughness, k / Y. Using a function of S_{o} would bring about an approximation by assuming steady uniform flow, which is obviously not true when rainfall exists. On the other hand, K being a function of k/Y, as used by Phelps (1975) specifically for steady uniform flow over rough boundary, reflects the effect of non-uniformity of the flow with rainfall effect. As spatially varied flow moves on, the depth changes and the boundary resistance has to change accordingly to yield the relative roughness effect. Therefore, both friction factors due to boundary roughness and rainfall will be functions of distance, simply because depth and Reynolds number are not constant for sheet flow with rainfall :

$$
\begin{equation*}
f=\frac{\operatorname{func}(k / Y)+27.162 i \cdot 407}{\left(q_{0}+i x\right) / v} \tag{32}
\end{equation*}
$$

5.2 Turbulent Flow

Similar to the discussion for laminar flow with rainfall, the data provided by Yoon (1970) and Li (1972) are the most applicable and accurate compared to the other's data. Li first assumed that Blasius equation could be modified to accommodate the rainfall effect for turbulent flow over a smooth boundary :

$$
\begin{equation*}
\mathrm{f}=\frac{\phi^{\prime}(\mathrm{i})}{\mathrm{R}_{\mathrm{e}}^{0.25}} \tag{33}
\end{equation*}
$$

which is valid for $R_{e}>2000$ where the turbulent flow begins. The regression analysis between Yoon's and Li's data showed that for available data ϕ^{\prime} was not a function of rainfall intensity but rather a constant. The results indicate that :

$$
\begin{array}{ll}
\phi^{\prime}=0.262 & \text { for } \quad 0.5<i<17.5 \mathrm{in} / \mathrm{h} \\
\phi^{\prime}=0.25 & \text { for } \quad \mathrm{i}=0 \tag{34}
\end{array}
$$

The above results mean that the flow resistance begins to increase with rainfall intensity somewhat below 0.5 in/h. Once the flow resistance is increased, any further increase of rainfall intensity doesn't change the flow resistance at least for $\mathrm{i}<17.5 \mathrm{in} / \mathrm{h}$. Since the major cause of increase in flow resistance due to rainfall is the creation of turbulence by rainfall impact, one should expect a little change in flow resistance when the flow is already turbulent.

As seen in Figs. 5 and 6, the f values decrease from that for the laminar range ending at $R_{e}=900$ to its value for the turbulent range starting at $R_{e}=2000$. Li (1972) approximated the relation between $\ln \mathrm{f}$ and $\ln \mathrm{R}_{\mathrm{e}}$ in transition range with a line and gave the following equation:

$$
\begin{equation*}
\mathrm{f}=0.0392\left(\mathrm{R}_{\mathrm{e}} / 2000\right)^{\mathrm{a}} \tag{35}
\end{equation*}
$$

in which $a=-1.252 \ln \left(0.68+0.77 i^{0.407}\right)$. The equation applies only for flow in the transition range, $900<\mathrm{R}_{\mathrm{e}}<2000$, over a smooth boundary.

6. VEGETATION EFFECT

Evaluation of vegetation resistance in sheet flow involves the most complicated experiments particularly for natural vegetation. So many interrelated variables contribute in flow resistance through vegetation that no test is able to separate the effect of each variable. The problem becomes more complex when the combined effects of vegetation, bottom roughness, and rainfall are present and yet no confirmed method of separation among those effects has been developed. Nevertheless, at least in case of laminar flow, it is believed that total resistance can be represented by the linear superposition of vegetation drag, bottom roughness, and rainfall effect. The last one is minor compared to vegetation drag and the natural bottom roughness of natural vegetated areas. The bottom effects due to roughness has been already discussed.

Although no unique equation in a general form has been derived to calculate the vegetation resistance, the following literature review and discussions will clarify, to some extent, the results of past studies.

6.1. Rigid Sparse Vegetation

The relationship between resistance to flow and hydraulic parameters of sheet flow through rigid sparse vegetation can be derived by applying momentum equation to a finite increment Δx along flow direction. For a steady flow in a wide channel one obtains :

$$
\begin{equation*}
\mathrm{F}_{\mathrm{g}}=\mathrm{F}_{\mathrm{b}}+\mathrm{F}_{\mathrm{D}} \tag{36}
\end{equation*}
$$

where $\mathrm{F}_{\mathrm{g}}=$ fluid weight component in flow direction per unit width approximately equal to $\gamma \mathrm{YS}_{0}$ in case of sparse vegetation, $\mathrm{F}_{\mathrm{b}}=$ boundary shear force per unit width, and $F_{D}=$ total vegetation drag per unit width. The boundary shear force is equal to $\gamma \mathrm{YS}_{\mathrm{f}}$ or $\rho \mathrm{f}_{\mathrm{b}} \mathrm{V}^{2} / 8$, in which S_{f} $=$ the friction slope due to boundary resistance, and drag force is equal to $\quad Y^{0} 0.5 C_{D} V_{e}^{2} d A_{e}$ in which $C_{D}=$ local drag coefficient, and $d A_{e}=$ local area of vegetation projected normal to flow direction. If the vegetation system is composed of rigid uniform cylinders and local velocity can be approximated by mean velocity of the flow, then Eq. 36 becomes:

$$
\begin{equation*}
\boldsymbol{\gamma} \mathrm{YS}_{0}=\mathrm{f}_{\mathrm{b}} \rho \mathrm{~V}^{2} / 8+0.5 \mathrm{NC}_{\mathrm{D}} \mathrm{dY} \mathrm{~V}^{2} \text {, for } \mathrm{h}>\mathrm{Y} \tag{37}
\end{equation*}
$$

where $N=$ the number of cylinders per unit area of bed, $d=$ cylinder diameter, and $h=$ cylinder height. When $h<Y$, then h should be substituted for Y in last term. In a more simplified form :

$$
\begin{equation*}
f_{t}=f_{b}+f_{v}=\frac{8 g Y S_{0}}{V^{2}} \tag{38}
\end{equation*}
$$

where $f_{v}=$ friction factor due to vegetation equal to $4 \mathrm{NC}_{\mathrm{D}} \mathrm{dY}$. Hence, the contribution of vegetation effect, f_{v}, to total friction factor is dependent on flow depth as the hydraulic parameter, vegetation characteristics including number of single stems per unit area in a sparse pattern, stem diameter, and drag coefficient.

Li and Shen (1973) studied the drag coefficient for idealized vegetation, represented by rigid cylinders. As Fig. 7 shows, the variation of mean drag coefficient in turbulent flow for second row cylinders in a staggered pattern is relatively small down to at least longitudinal spacing to diameter ratio of 5 at which C_{D} is only 8% higher than that of a single cylinder or that of first row cylinders. In case of a parallel pattern, however, C_{D} keeps continuously decreasing as the spacing is reduced for a given d, such that C_{D} equals only 60% of C_{D} for a single cylinder. Of course when the transverse spacing is changed, these ratios may change. Now, as long as C_{D} remains unchanged with the spacing, roughly down to 10 d in staggered pattern and 50 d in parallel pattern, the vegetation is considered sparse and C_{D} would be only function of element shape and Reynolds number, as has been classified by Hoerner (1965). Li and Shen recommend an average C_{D} being 1.2 for sparse cylinders. This value also has been reported in standard texts such as Schlichting (1968) for drag coefficient of a single cylinder in an idealized two-dimensional flow in cylinder Reynolds number, $\mathrm{R}_{\mathrm{d}}=\mathrm{Vd} / v$, ranging from about $8 * 10^{3}$ to $2 * 10^{5}$.

6.2. Dense Rigid Vegetation

Neglecting the free surface and flexibility effects, Kirsch and Fuchs (1967) studied the drag coefficient for pressure flow through parallel and staggered arrangements of dense rigid cylinders. They introduced a dimensionless coefficient of drag enhancement, F^{*}, which relates to C_{D} as the average drag coefficient for each cylinder in an array such that :

$$
\begin{equation*}
\mathrm{C}_{\mathrm{D}}=\frac{2 \mathrm{~F}^{*}}{\mathrm{R}_{\mathrm{d}}} \tag{39}
\end{equation*}
$$

where $R_{d}=c y l i n d e r$ Reynolds number equal to $V d / v$. If S_{1} and S_{2} represent the center to center spacing in the cross stream direction and in streamwise direction, F^{*} can be empirically evaluated as :

$$
\begin{array}{ll}
\mathrm{F}^{*}=4 \pi\left[-\ln \left(\frac{\mathrm{d}}{2 \mathrm{~S}_{1}}-1.33\right)+\frac{\pi^{2}}{3}\left(\frac{\mathrm{~d}}{2 \mathrm{~S}_{1}}\right)^{2}\right] & \text {, for } \mathrm{d} / \mathrm{S}_{1}<0.7 \\
\mathrm{~F}^{*}=\frac{9 \pi}{2 \sqrt{2}}\left(1-\frac{\mathrm{d}}{\mathrm{~S}_{1}}\right)^{-2.5} & \text { for } \mathrm{d} / \mathrm{S}_{1}>0.7 \tag{40}
\end{array}
$$

Both above equations hold when $S_{2}>S_{1}$. For $S_{2}<S_{1}, F^{*}$ ratio decreased below unity with decrease in spacing between rows in a parallel arrangement. On the contrary, opposite relation was verified for staggered pattern in the case $S_{2}<S_{1}$, depending on d / S_{1} and S_{1} / S_{2}. Kirsh and Fuchs also found that for nonuniform pattern of cylinders and for rotating rows of cylinders relative to one another, F^{*} showed less value than those of parallel and staggered patterns of equal density.

Chilton and Genereaux (1933) experimented pressure drop for the pressurized flow through staggered arrangement of cylinders presenting :

$$
\begin{array}{ll}
\frac{\Delta \mathrm{P}}{\mathrm{~L}}=\frac{53 \mathrm{~V}_{\max } \mu}{\mathrm{d}_{\mathrm{e}}^{2}} & \text { for laminar flow } \\
\frac{\Delta \mathrm{P}}{\mathrm{~L}}=\frac{1.5 \rho^{2} \cdot \mathrm{~V}_{\max } \mu \cdot 2 \sqrt{\mathrm{~N}}}{\mathrm{G}^{2}} & \text { for turbulent flow } \tag{42}
\end{array}
$$

Fig. 7. The mean drag coefficient variation for staggered and parallel patterns, after Li and Shen (1973).
in which $\Delta \mathrm{P}=$ pressure drop over length $\mathrm{L}, \mathrm{V}_{\max }=$ maximum velocity through the gap or narrowest space between two adjacent cylinder elements, $d_{e}=$ equivalent diameter equal to ($4 / \pi d N-d$), $d=$ cylinder diameter, $N=$ number of elements per unit area of the bed, $G=$ gap size.

Eq. 41 may be changed for the use in open channel with the aid of similarity between friction factor in open channel and pressure drop in pipes :

$$
\begin{equation*}
\mathrm{S}_{\mathrm{f}}=\frac{\mathrm{fV}^{2}}{8 \mathrm{gY}}=\frac{53 \mathrm{~V}_{\max } \mu}{\gamma \mathrm{d}_{\mathrm{e}}^{2}}=\frac{\Delta \mathrm{P}}{\gamma \mathrm{~L}} \tag{43}
\end{equation*}
$$

or by substituting $\mathrm{V}=\mathrm{GV}_{\max } / \mathrm{S}$:

$$
\begin{equation*}
\mathrm{f}=424 \frac{\mathrm{Y} \mathrm{~S}}{\mathrm{~d}_{\mathrm{e}} G}\left(\mathrm{R}_{\mathrm{e}}\right)_{\mathrm{e}}^{-1} \tag{44}
\end{equation*}
$$

where $\left(R_{e}\right)_{e}=V_{\max } \mathrm{d}_{\mathrm{e}} / v$. This equation has not been verified experimentally for open channel flow. It confirms, however, the proportionality of friction factor directly with flow depth , and inversely with Reynolds number.

Similar modifications for turbulent flow relationship with recalling that $N=1 / S^{2}$ yield :

$$
\begin{equation*}
\mathrm{f}=\frac{12 \mathrm{YS}}{\mathrm{G}^{2}}\left(\mathrm{R}_{\mathrm{e}}\right)_{\mathrm{G}}^{-.2} \tag{45}
\end{equation*}
$$

where $\left(R_{e}\right)_{G}=V_{\max } G / v$. Although the equation was primarily developed for pressure flow, it can confirm the linear dependence of f on flow depth, Y, in case of turbulent flow through rigid dense vegetation, similar to the relation for rigid sparse system. The small negative power of Reynolds number also satisfies the expectation for a turbulent flow. Hartley (1980) tested the sheet flow on a smooth surface through $1 / 4$ inch diameter cylinders representing ideal vegetation. He then measured the flow depths and velocities and used the following energy equation to evaluate friction slope :

$$
\begin{equation*}
S_{f}=\left(Y_{1}-Y_{2}\right) / \Delta x+\left(V_{1}^{2}-V_{2}^{2}\right) / 2 g \Delta x+S_{0} \tag{46}
\end{equation*}
$$

where subscripts 1 and 2 stand for upstream and downstream locations with the distance Δx apart. He reported that since the flow was close to a uniform flow, in most cases S_{f} showed values quite near S_{o}. Then, the total friction factor f could be calculated having S_{f}, Y, V and using Eq.12. Assuming linear superposition of drag, Hartley removed the sidewall effect applying the method by Vanoni and Brooks (1957) and then bottom resistance using $f=24 / R_{e}$ for laminar flow and Blasius equation for turbulent flow. In case of smooth boundaries, the sidewall effect and bottom resistance showed quite minor values compared with the vegetation resistance.

Hartley assumed the following simple power model for laminar flow: $\mathrm{f}=\mathrm{A}(\mathrm{Y} / \mathrm{d}){ }^{B} \mathrm{R}_{\mathrm{d}}{ }^{\mathrm{C}}$, where A depends on density and pattern, Y / d is the depth diameter ratio to account for form drag effects, and R_{d} is diameter

Reynolds number equal to $\mathrm{V}_{\text {max }} \cdot \mathrm{d} / v$. By performing regression, Hartley confirmed the general form $f=K / R_{d}$ as:

$$
\begin{equation*}
\mathrm{f}=\mathrm{A}(\mathrm{Y} / \mathrm{D}) \mathrm{R}_{\mathrm{d}}^{-1.0} \tag{47}
\end{equation*}
$$

Generally, having depth, instead of bed slope, as independent variable is advantageous because in case of non-uniform flow with rainfall the effect of change in depth would be included in flow resistance due to vegetation.

For turbulent flow, Hartley dropped the effect of Reynolds number, assuming negligible effect, and he allowed Froude number to enter the equation. Therefore, the power equation for turbulent flow became :

$$
\begin{equation*}
\mathrm{f}=\mathrm{A}(\mathrm{Y} / \mathrm{d})^{\mathrm{B}} \mathrm{~F}^{\mathrm{E}} \tag{48}
\end{equation*}
$$

where $F=$ Froude number. By performing data regression, Hartley found the influence of Froude number to be marginal in its effect on resistance coefficient, even though the free surface effects were physically evident in some slopes. Also the exponent of Y / d turned out to be 1 .

To account for density variation, Hartley introduced a correction factor being $(d / S)^{2}$. Therefore his resistance equation now becomes:

$$
\begin{equation*}
\mathrm{f}=\mathrm{C} \frac{\mathrm{dY}}{\mathrm{~S}^{2}} \mathrm{R}_{\mathrm{d}}{ }^{\mathrm{p}} \tag{49}
\end{equation*}
$$

in which p equals -1 for laminar flow and zero for turbulent flow. Constant C is dependent on the vegetation pattern as in the following table :

Table 2. Pattern Coefficient (C)

Pattern	Laminar Flow	Turbulent Flow	Relative C
Staggered	2995	11.4	
Parallel	1366	5.2	1.0
Random	1576	6.0	0.56

Table 2 shows that the highest resistance is produced by staggered patterns for a given element density, whereas a random pattern yields somewhat more than half of that for staggered pattern. For the laminar flow, Hartley assumed that the relative pattern effect determined for turbulent flow was valid in the laminar range in order to avoid the lack of data in that range. However, no evidence has been provided to justify that assumption.

The conditions and restrictions on using Hartley's equations are as follows: (1) flow is laminar when $R_{d}<150$ and is turbulent otherwise -

- R_{d} may be replaced by $\left(\mathrm{V}_{\max } \cdot \mathrm{d}\right) / v=(\mathrm{S} / \mathrm{S}-\mathrm{d}) .(\mathrm{V} . \mathrm{d}) / v$ in which (S-d) equals the gap size; (2) the vegetation surface is smooth and either no flexibility effect occurs or the flow is very shallow; (3) the vegetation pattern can be identified as one of staggered, parallel, or random; (4) the vegetation density is approximately constant along the height of stems; and (5) the equations only give the vegetation resistance.

6.3. Flexible Artificial Vegetation

The effect of flexibility of vegetation simulated by artificial turf on resistance to sheet flow was noticed by Fenzel (1964). He introduced a dimensionless deflection parameter, $V^{2} Y^{4} / J$, in which $J=E I, E=$ module of elasticity of the vegetation material, and $\mathrm{I}=$ moment of inertia of the turf cross section. For his particular studies on irrigation systems, Fenzel dropped this parameter from dimensional analysis because of no bending effect or other deflection of the vegetation in his experiments.

Hoerner (1965) modified the drag coefficient for a prismatic element by a factor equal to the cube of the cosine of the angle between the element and normal to the flow direction. This factor takes the degree of flexibility into account and implies that the drag coefficient for a flexible element is less than that of a rigid one. Obviously, the method can not be applied when the elements are semi-rigid which may be bent with varying angle and also the method holds for sparse vegetations.

More experiments on dense synthetic flexible turf were carried out by Phelps (1970). He did his experiments with artificial turf of raffia sewn to a jute fabric base. His procedure was to test the variation of f with R_{e} for different constant depths. This was accomplished for a series of depths by adjusting discharge to achieve these depths on a given slope. The reason for choosing constant depths with varying Reynolds number was to reflect the effect of decreasing vegetation density with the distance from the boundary, similar to natural grass. Phelps then found that the product of $f . R_{e}$ was not a constant for

Fig. 8. The f-Re relationship for flexible artificial turf, after Phelps (1970).
laminar flow but rather decreasing with increase in R_{e} for every constant depth. This means a steeper slope than -1 on log-log paper which is the theoretical slope. Phelps (1970) explained this departure in terms of the flexibility of the synthetic turf in response to the flow condition. As the Reynolds number and velocity increased, the expansion of average pore size caused steeper decrease in resistance.

The data are depicted in Fig. 8 illustrating f vs R_{e} for constant values of h / d, where h is flow depth and d is flow passage dimension which was set to .01 feet due to assumed similarity of flow through turf with groundwater flow through porous media, with convection d being .01. Therefore, constant lines of h / d represent constant depths. If one traces constant depth line in the direction of increasing R_{e} or discharge, he will find that the slope is increasing in that direction. As a result, the values of constant slope lines should decrease from the bottom to the top in direction of increasing f. Now, if for constant R_{e} or discharge the bed slope is reduced, the flow depth will increase and so will resistance. However, as will be indicated later, the same change in slope in Chen's data for natural vegetation causes less resistance. One may reason the difference in terms of the ability of contraction of pores due to lower velocity over the ability of the flow to find larger pores at higher depths in Phelps' tests. This is probably one difference between behavior of artificial turf and the natural one.

Although the adequacy of Phelps' data is in doubt particularly for higher depths, Phelps made three important conclusions for sheet flow through dense flexible artificial vegetation : (1) the varying density
of vegetation with depth has to be accounted for; (2) for constant depth, pore or flow tube size can expand as the velocity increases due to vegetation flexibility; and (3) the critical Reynolds number marking the limit of laminar flow decreases with the decrease in depth.

6.4. Natural Vegetation

The early investigations of the flow resistance in a laminar flow through natural vegetation dates back to attempts to determine K value in Eq. 16. As the first investigator, Izzard (1944) conducted a series of experiments on the laminar flow with the rainfall over a turf surface covered with Kentucky Blue grass. He found K to be as high as 10,000 for bed slope being . 01 and with any rainfall intensity.

An extensive study on effect of specific natural vegetation on resistance to sheet flow was carried out by Chen (1976). Bermuda grass and Kentucky Blue grass were used as the typical vegetation in overland areas. Through a dimensional analysis with considering test results, Chen assumed Reynolds number, slope, relative roughness k / Y, and rainfall intensity as the independent variables in dimensional analysis. Chen concluded that the effect of the rainfall would decrease with increase in roughness size, k, and bottom slope and therefore it may be neglected for high roughness boundary of grassed area. Later, he dropped k from the analysis for sake of simplicity and difficulties involved in k measurement. Finally, the remaining variables became R_{e} and slope, i.e. f=func $\left(R_{e}, S_{o}\right)$. The regression analysis showed that K value for laminar flow through Bermuda grass began from 5000 up to 500,000 for slopes being .001 to .555 respectively. It was also found
that the upper limit of R_{e} for laminar flow decreased from 10^{4} for $S_{0}=.001$ to 10^{3} for $S_{0}=.555$. The equation suggested by Chen to be applied for Bermuda grass and Kentucky Blue grass surfaces in the laminar range is:

$$
\begin{equation*}
\mathrm{f}=\frac{510,000 \mathrm{~S}_{0} \cdot 662}{\mathrm{R}_{\mathrm{e}}} \tag{50}
\end{equation*}
$$

The increase in slope, if considered as an independent variable, would increase the friction factor of flow on a rough surface when discharge and other parameters held constant. The case of natural vegetation with higher density near the bed yields the same effect for bed slope. To reason such an effect, Kruse et al. (1965) explained the phenomena by considering the correspondence of increase in slope and decrease in depth for constant discharge and therefore higher average density opposing the flow. This trend resulted from Chen's tests on Bermuda grass.

Hartley (1980) superimposed the constant depth lines on Chen's data, as shown in Fig.9. Hartley confirmed the reason stated by Kruse et al. (1965) that for constant slope, resistance decreases as depth increases indicating lower average density of vegetation with increasing depth. Another trend in Fig. 9 may be observed along constant depth lines. Generally, the friction factor grows along the path such that the tangent slope to the path starts from zero and increases toward infinity. This implies that constant depth at higher slope ranging from .001 to .164 and higher R_{e} up to some extent, corresponds to a higher friction factor. Obviously, the preceding conclusion is in
contradiction with the case of flow over a rough boundary in which friction factor decreases with slope and R_{e} with depth held constant. Hartley explains that the increase in resistance along constant depth lines in Chen's data could be due to either instability in free surface as velocity increases or flexibility effects. The former effect requires additional energy dissipation and the latter causes an increase in biomass brought down into the flow due to bending. Kouwen and Unny (1973) state that this effect of flexibility increases resistance as long as the vegetation is not totally overtopped or channelized by the flow.

In the second part of constant depth line in Chen's data, f tends to grow very rapidly with constant R_{e} and consequently discharge. The trend is true for depths being larger than 0.1 feet and when $\mathrm{S}_{\mathrm{o}}>0.164$. This indicates that for steep slope with constant depth, the flow resistance becomes independent of R_{e} when $R_{e}>700$ and apparently flow enters the transition regime. Therefore, the upper limit for R_{e} for laminar regime in Chen's data would be probably close to 700 for slopes steeper than 0.164 , whereas Chen extends it to 1100 . One may reason the phenomenon for steep slope in terms of high free surface instability causing turbulence and making the flow exit from laminar regime. For practical purposes, however, a steeper slope ($\mathrm{S}_{\mathrm{o}}>.164$) rarely occurs and the Chen's data on resistance to flow through Bermuda grass can be used for mild slope when R_{e} is as large as 10^{4}.

Fig. 9. The $f-R_{e}$ restricted data for flow through Bermuda grass, after Chen (1976).

Even though there exist a debate concerning whether the bed slope can be an independent variable, Chen's data confirms a good agreement in laminar region with the equation $f=K / R_{e}$. Since Chen's equation directly computes the total resistance, there is no need to separate the boundary resistance and deal with it. Also, the equation comes from the experiments in which more similarity with natural situation occurs, particularly density variation with depth in addition to flexibility effect. The comparison of the data and the equation is shown in Fig. 10 .

Similar data on flow through Bermuda grass has been presented by Palmer (1945). Palmer data along with Chen data are plotted in Fig. 10. Although most of the Palmer data fall within laminar range as indicated by Chen, it shows an almost constant f through the laminar range rather than decreasing f with R_{e}. Chen reasons the discrepancy in the results between his and Palmer's study in terms of high difficulties involved in depth measurements with such thin flows. Whatever the reason, the Palmer data in laminar range can not be trusted because showing nearly constant f in that range means the relative independency of resistance from Reynolds number that might be true for turbulent flows.

Ree and Palmer (1949) performed extensive experiments on resistance to turbulent flow through various grasses, particularly Bermuda grass, in two different channel cross sections, trapezoidal and rectangular, with channel slope ranging from 0.002 to 0.24 . They plotted curves of Manning's n versus the product of velocity and hydraulic radius. Also the results of experiments identified three conditions of vegetal roughness system in terms of flexibility: (1) erect condition corresponding to low flows with high resistance, constant n until
partial submergence occurs; (2) deflected condition at intermediate flow, decreasing resistance with discharge, beyond complete submergence; and (3) prone condition at high flows and low resistance above the flattened vegetation, fully turbulent flow with constant n. Having Ree and Palmer data including the variation of $n v s V R$ and the temperature at the time of experiments, Chen derived f vs R_{e} using the relation between f and n and then plotted the results along with his own data in Fig.10. Three interesting conclusions are revealed from Fig. 10. First, the Ree and Palmer data falls mostly into transition and turbulent ranges, having a steep drop in resistance in transition range and terminating to, as Chen puts it, a fixed f when entering fully turbulent flow. The fixed f value is claimed to be 0.11 for R_{e} larger than 10^{6}. However, almost all of the curves of n vs VR provided by Ree and Palmer terminates to a constant value for n indicating a fully turbulent flow independent of Reynolds number. Since n is proportional to $f^{1 / 2} R^{1 / 6}$, then constant n doesn't mean constant f while R_{e}, or discharge, is increasing. Therefore, referring to fixed f in $f-R_{e}$ diagrams, without having data in apparently constant f region, cannot be true and connection of two broken curves in Fig. 10 only indicates the independency of f from channel cross section for fully turbulent flow. In order to derive $f-n$ relationship and use it for fully turbulent region, one can use the Manning equation in addition to Eq. 12 and then eliminate the depth parameter by introducing R_{e} into Eq. 12 . It yields:

$$
\begin{equation*}
\mathrm{f}=8(1.49)^{-1.8} \mathrm{n}^{1.8} \mathrm{gS} \cdot{ }^{1} \mathrm{R}_{\mathrm{e}}^{-.2} v^{-.2} \tag{52}
\end{equation*}
$$

Fig. 10. The f-Re relationship for flow through Bermuda and Kentucky grasses, after Chen (1976).

For $v=1.5 * 10^{-5} \mathrm{ft} / \mathrm{s}, \mathrm{g}=32.2 \mathrm{ft} / \mathrm{s}^{2}$, and specific slope being 0.03 , the equation simplifies to :

$$
\begin{equation*}
\mathrm{f}=819.98 \mathrm{n}^{1.8} \mathrm{R}_{\mathrm{e}}^{-.2} \tag{53}
\end{equation*}
$$

The Ree and Palmer's $n-V R$ curves indicates a constant n being 0.033 , corresponding to the line shown in Fig. 10, for fully turbulent flow when $S=0.03$. As it is seen that the $f-n$ line extends the broken curves of $f-R_{e}$ from transition region into fully turbulent flow.

Second, the variation of f in the transition range may differ with the cross section shape for the same slope. Two broken curves in Fig. 10 connect the data for trapezoidal and rectangular cross sections for 3% channel slope. The trapezoidal resistance curve represents larger f compared to that of a rectangular one for similar R_{e}, or discharge. Equal discharge in rectangular and trapezoidal cross sections requires larger depth in rectangular channel, corresponding to less resistance. This trend was also derived from Chen's data in laminar region and was explained in terms of less vegetation density at higher depths in addition to lower resistance due to flexibility effects.

Third, both broken curves seem to meet at approximately $\mathrm{R}_{\mathrm{e}}=2000$ at a point that flow on the 3% slope starts to deviate from the laminar region to the transition. Interestingly, the point of intersection between two broken curves almost lies on the line representing f-Re relationship in Chen's equation for laminar flow on 3% channel slope. This indicates a good agreement between Chen's and Ree and Palmer's data.

6.5. Deep Flow over Flexible Vegetation

The importance of vegetation flexibility on relative roughness and flow resistance was suggested by Fenzel and Davis (1964) through a series of experiments on artificial turf. Element stiffness, spacing, and shape as well as fluid properties and flow parameters were realized to affect the flow resistance. Fenzel and Davis showed that the vegetation resistance was dominant over soil resistance, even though they couldn't evaluate the significance of flexibility parameters in their analysis due to lack of data. They also noticed the importance of soil resistance only at small depths in sparsely vegetated channels whereas it could be ignored for most deep flows in densely vegetated channels.

Probably, the most comprehensive analysis, which will be explained in details, of velocity profile and flow resistance in presence of flexible vegetation in deep flows was accomplished by Kouwen and his colleagues. Kouwen et al.(1969) and then Kouwen and Unny (1973) developed a semilogarithmic velocity profile equation by introducing a new relative roughness, Y / K, to account for the deflection effect of flexible vegetation. Y is simply flow depth and K stands for the deflected height of the vegetation. The equation is :

$$
\begin{equation*}
\frac{\mathrm{V}}{\mathrm{~V}_{\star}}=\mathrm{C}_{1}+\mathrm{C}_{2} \ln \left(\frac{\mathrm{Y}}{\mathrm{~K}}\right) \tag{53}
\end{equation*}
$$

where C_{1} and C_{2} are constants for a given vegetation type and density. C_{1} depends mainly on the flow through the vegetation and hence will be a function of its density. For small depths when $\mathrm{Y}<\mathrm{K}$, the equation
reduces to $\mathrm{V} / \mathrm{V}_{*}=\mathrm{C}_{1}$ or by substituting for V_{*}, it is obtained that $\tau_{0}=$ $\rho \mathrm{V}^{2} / \mathrm{C}_{1}{ }^{2}$ which looks like the familiar drag equation where $\mathrm{C}_{\mathrm{D}}=2 / \mathrm{C}_{1}{ }^{2}$. Since C_{D} is directly proportional to the number of stems per unit area, it becomes clear that C_{1} is dependent on the density of the vegetation. C_{2}, on the other hand, is related to vegetation stiffness.

Kouwen and Unny (1973) used flexible plastic strips to model and determine C_{1} and C_{2} for different conditions : prone and otherwise. The prone condition was found when the shear velocity exceeded a critical shear velocity as follows :

$$
\begin{equation*}
\mathrm{V}_{*}>\mathrm{V}_{*_{\mathrm{c}}}=0.028+6.33(\mathrm{MEI})^{2} \tag{54}
\end{equation*}
$$

where MEI $=$ a bulk stiffness parameter. The above relationship was primarily developed for elastic roughness which returns to its initial position after cessation of the flow. An analysis of Eastgate's (1966) data revealed that for tall natural grasses the critical shear velocity given by Eq. 54 was too high. For natural long stiff grasses, which acts plastically under the flow, Eastgate's data indicated that :

$$
\begin{equation*}
\mathrm{V}_{\star_{\mathrm{c}}}=0.23(\mathrm{MEI})^{106} \tag{55}
\end{equation*}
$$

Thus Eq. 54 represents the shear velocity required to elastically bend the roughness to a prone condition and Eq. 55 represents the plastic case. Both equations, which are not dimensionless, are in SI units. In practice, the smaller value between Eq. 54 and Eq. 55 is recommended to be used.

Assuming the validity of semilogarithmic velocity profile, the resistance coefficients, f and n, can be written in SI units as :

$$
\begin{equation*}
\frac{1}{\sqrt{\mathrm{f}}}=a+b \log \left(\frac{Y}{K}\right) \tag{56}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{n}=\frac{\mathrm{Y}^{1 / 6}}{\sqrt{8 \mathrm{~g}}[\mathrm{a}+\mathrm{b} \log (\mathrm{Y} / \mathrm{K})]} \tag{57}
\end{equation*}
$$

Using the data on synthetic plastic roughness, Kouwen and Unny determined a and b as 0.15 and 1.85 for $V_{*} / V_{*_{c}}<1.0 ; 0.20$ and 2.70 for $1.0<\mathrm{V}_{\star} / \mathrm{V}_{*_{\mathrm{c}}}<1.5 ; 0.28$ and 3.08 for $1.5<\mathrm{V}_{\star} / \mathrm{V}_{*_{c}}<2.5$; and 0.29 and 3.50 for $V_{*} / V_{*_{c}}>2.5$.

Kouwen and Li (1980) established an equation to evaluate the deflected height of the vegetation, in SI units, as :

$$
\begin{equation*}
\mathrm{K}=0.14 \mathrm{~h}\left[\left(\frac{\mathrm{MEI}}{\rho \mathrm{~V}_{*}^{2}}\right)^{.25} / \mathrm{h}\right]^{1.59} \tag{58}
\end{equation*}
$$

The remaining difficulty is the value of MEI (in N. m^{2}) for each grass type. Because there were no reported measurements of the deflected vegetation heights, K, for the experiments modeling the flow over natural vegetations, Kouwen and Li used a backward method to calibrate MEI values. They collected the experimental data of Chen (1975), Cox and Palmer (1948), Eastgate (1966), and Ree and Palmer (1949) including measurement of vegetation height, h, flow velocity, V, and effective slope, S_{f}. In their method, Kouwen and Li assumed an initial value for MEI for each grass. Then they calculated $K, n, V_{c a l}$, and $Q_{c a l}$ for each individual experiment. That assumed value of MEI, which gave the smallest summation among the differences between calculated discharges
and corresponding measured discharges for all experiments with one grass, was tabulated as the value of MEI for that specific grass. The table was confirmed by computing retardance curves, n vs VR, and comparing with the measured retardance curves presented by Chen, Cox and Palmer, and the others. The good fit between the retardance curves was assumed to be an indication to justify the use of flexible plastic strips to model the flow over natural vegetation. Finally, Kouwen and Li proposed an iterative procedure for the design of a channel with vegetative lining. Kouwen (1969) classified flow through and over vegetation according to whether vegetation was erect and stationary, bent and waving, or prone. Shen and Li (1973) cited element waving as a possible mechanism increasing flow resistance. However the method by Kouwen and Li (1980) doesn't consider the element waving as a middle condition between erect and prone and only deflection effect contributes in the equations. Even though no report of applying Kouwen and $\mathrm{Li}^{\prime} \mathrm{s}$ method is available, the method can be considered as a collection of existing data on turbulent flow resistance through various natural vegetations.

7. CONCLUSIONS

The following conclusions emerged from the discussion of the literature on resistance to sheet flows:
(1) total resistance in sheet flow can be represented by the sum of resistances due to rainfall, roughness, and vegetation;
(2) the relative roughness may represent a more general variable compared to bed slope, in flow resistance equation for laminar flow over a rough boundary. According to Phelps' paper, the friction factor equation in the form $\mathrm{f}=\mathrm{K} / \mathrm{R}_{\mathrm{e}}$ has been verified. K is constant for a given relative roughness;
(3) the friction factor for turbulent flow depends on the condition of roughness related to the flow. Flow resistance under hydraulically smooth conditions is a function of Reynolds number whereas under fully rough condition the primary variable becomes the relative roughness;
(4) the friction factor, here defined as $8 \tau / \rho V^{2}$, depends on Reynolds number and rainfall intensity for laminar flow over a smooth boundary and only on Reynolds number for turbulent flow. The resistance equation given by Li (1972) is recommended for the computation of flow resistance wịth rainfall;
(5) flow through vegetation is very complicated. Nevertheless, in limited number of cases several methods can be applied. Chen's equation is suggested for total friction factor due to laminar flow through Bermuda and Kentucky Blue grasses. For either flow through rigid vegetation with constant density along depth of $f l o w$, or very shallow flow through grass, Hartley's equations may be used to compute friction
factor for different vegetation patterns in both laminar and turbulent flow;
(6) in case of deep turbulent flow through natural vegetation, Ree and Palmer's resistance curves can provide Manning's n. Also in this case Kouwen and Unny's method is suitable for channel design with vegetative lining; and
(7) the relative magnitude of resistance to flow due to rainfall, roughness, and vegetation (represented by Bermuda grass) shows that rainfall resistance and roughness resistance for laminar flow are generally comparable whereas vegetation resistance drastically overcomes that of both rainfall and roughness combined.

APPENDIX I - REFERENCES

1. Ackers, P., "Resistance to fluids flowing in channels and pipes," Hydraulic Research Paper No.1, H.M.S.O., London, 1958.
2. Allen, J., "Streamline and turbulent flow in open channels", Phil. Mag., 7th series, 17, pp. 1081-1112, June 1934.
3. ASCE Task Force on Friction Factors in Open Channels, Journal of Hydraulic Division, ASCE, Vol. 89, HY2, p.97, March 1963.
4. Chen, C., "Flow resistance in broad shallow grassed channels", Journal of the Hydraulic Division, ASCE, Vol. 102, HY3, pp.307-322, March 1976.
5. Chilton, T. H., and Genereaux, R. P., "Pressure drop across tube banks," Trans., American Institute of Chemical Engineers, Vol. 29, pp. 161-173, 1933.
6. Chow, V.T., Open-Channel Hydraulics, McGraw Hill Book Co., New York, 1959.
7. Cox, M. B., and Palmer, V. J., "Results on Tests on vegetated waterways and method of field application," Miscellaneous Publication No. MP-12, Oklahoma Agricultural Experiment Station, Stillwater, Okla., pp. 1-43, Jan. 1948.
8. Eastgate, W. I., "Vegetated stabilization of grassed waterways and dam bywashes," thesis presented to the University of Queensland, at St. Lucia, Queensland, Australia, in partial fulfillment of the requirements for the degree of Masters of Engineering Science, 1966.
9. Fawkes, P.E., "Roughness in a model of overland flow", Thesis presented to Colorado State Univ., Fort Collins, Colorado, in partial fulfillment of the requirements for the degree of Masters of Science, 1972.
10. Fenzel, R. N., "Hydraulic resistance of broad shallow vegetated channels," Ph.D. Thesis, University of California, 1962.
11. Fenze1, R. N., and Davis, J. R., "Hydraulic resistance relationships for surface flows in vegetated channels," Trans., ASAE, Vol. 7, pp.46-51, 1964.
12. Hartley, D.M., "Resistance to shallow flow through vegetation", Thesis presented to Colorado State Univ., Fort Collins, CO., in partial fulfillment of the requirements for the degree of Master of Science, 1980.
13. Henderson, F. M., Open Channel Flow, Macmillian Co., New York, 1966.
14. Hoerner, S. F., Fluid Dynamic Drag, published by the author, 1965.
15. Horton, R.E., Leach, H.R., and V1iet R.V., "Laminar sheet flow", Trans., American Geophys. Union, Part II, pp.393-404, 1934.
16. Izzard, C.F., "The surface profile of overland flow", Trans., American Geophys. Union, Vo1.25, pp.950-968, 1944.
17. Keulegan, G. H., "Laws of turbulence flow in open channels," Journal, Natl. Bureau of Standards, Washington D.C., Research Paper 1151, Vol.21, pp. 707-741, Dec. 1938.
18. Kirsch, A. A., and Fuchs, N. A., "Studies of fibrous aerosol filters II. Pressure drops in systems of parallel cylinders," Annals of Occupational Hygiene, Vol. 10, pp 2330, 1967.
19. Kisisel, I.T., Rao, R.A., and Delleur, J.W.,"Turbulence in shallow water flow under rainfall", Journal of the Engineering Mechanics Division, ASCE, EM1, pp.31-53, Feb. 1973.
20. Kouwen, N., "Flow retardance in vegetated open channels," Ph.D. Thesis, Dept. of Civil Eng., University of Waterloo, Waterloo, ontario, Canada, 1970.
21. Kouwen, N., and Li, R. M., "Biomechanics of vegetative channel linings," Journal of Hydraulic Division, ASCE, Vol. 106, HY6, pp. 1085-1103, June 1980.
22. Kouwen, N., and Unny, T.E., "Flexible roughness in open channels," Journal of the Hydraulic Division, ASCE, Vol.99, No. HY5, pp.713-728, May 1973.
23. Kouwen, N., Unny, T.E., and Hill, H.M., "Flow retardance in vegetated channels," Journal of Irrigation and Drainage Division, ASCE, Vol. 95, No. IR2, pp. 329-342, June 1969.
24. Kruse, E.G., Huntley, C.W., and Robinson, A.R., "Flow resistance in simulated irrigation borders and furrows", Conservation Research Report No.3, Agricultural Research Services, U.S. Dept. of Agriculture, 56p.,1965.
25. Landsford, W.M., and Robertson, J.M., "Discussion of openchannel flow at small Reynolds numbers", by L.G. Straub et al., Trans., ASCE, vol. 123, pp.707-712, 1958.
26. Li. R.M., "Sheet flow under simulated rainfall", Thesis presented to Colorado state Univ., Fort Collins, Colo., in partial fulfillment of the requirements for the degree of Masters of Science, 1972.
27. Li, R. M., and Shen, H. W., "Effect of tall vegetation on flow and sediment," Journal of Hydraulic Division, ASCE, Vol. 27, HY5, pp. 793-814, 1973.
28. Phelps, H.O., "The friction coefficient for shallow flows over a simulated turf surface", Water Resources Research, Vol.6, No. 4, pp.1220-1226, 1970.
29. Phelps, H.O., "Shallow laminar flow over rough granual surfaces", Journal of the Hydraulic Division, ASCE, Vol. 101, HY3, pp.367-384, 1975.
30. Robertson, A.F., Turner, A.K., Crow, F.R., and Ree, W.O., "Runoff from impervious surfaces under conditions of simulated rainfall," Trans., ASAE, Vol.9, pp.343-346, 1966.
31. Straub, L. G., Silberman, E. and Robertson, J.M., "Open channel flow at small Reynolds numbers," Trans., ASCE, Vol. 123, pp. 685706, 1958.
32. Thijsee, J. Th., "Formula for the friction head loss along conduit walls under turbulent flow," Internatl. Assn. for Hydraulic Research, III-4, pp.1-11, 1949.
33. U.S. Waterways Experiment Station paper 17, "Studies of river bed materials and their movement, with special reference to the lower Mississippi River," Vicksburg, Mississippi, Jan. 1935.
34. Vanoni, V. A., and Brooks, N. H., "Laboratory studies of the roughness and suspended load of alluvial streams," Report No. E.68, Sedimentation Laboratory, California, December 1957.
35. Woo, D.C., and Brater, E.F.," Laminar flow in rough rectangular channels", Journal of the Geophysical Research, Vol.66, No.12, pp.4207-4217, 1961.
36. Woo, D.C., and Brater, E.F., "Spatially varied flow from controlled rainfall," Journal of the Hydraulic Division, ASCE, Vol. 88, No.HY6, pp.31-56, 1962.
37. Woolhiser, D.A., "Overland flow on a converging surface," Trans. ASCE, Vol.12, No.4, pp.460-462, 1969.
38. Yen, B.C., and Wenzel, H.G., "Dynamic Equations for steady spatially varied flow," Journal of Hydraulic Division, ASCE, Vol.96, HY3, pp.801-814, 1970.
39. Yoon, N.Y., "The effect of rainfall on the mechanics of steady spatially varied sheet flow, on a hydraulically smooth boundary," Thesis presented to Univ. of Illinois, Urbana, Ill., in partial fulfillment of the requirements for the degree of Doctor of Philosophy, 1970.
40. Yu, Y.S., and Mcnown, J.S., "Runoff from impervious surfaces," Journal of Hydraulic Research, IAHR, Vol.2, No.1, pp.2-24, 1964.

APPENDIX II - LIST OF SYMBOLS

The following symbols are used in this paper:
$A=$ cross sectional area;
$C=$ concentration of roughness elements; also Chezy C;
$C_{D}=$ drag coefficient of vegetation elements;
D = average diameter;
$\mathrm{d}=$ rainfall size; also diameter of vegetation elements;
$D=$ pipe diameter; also depth;
$E I=s t i f f n e s s$ of vegetation;
$\mathrm{F}=$ Froude number $=\mathrm{V} / \sqrt{\mathrm{gy}}$;
$\mathrm{f}=$ Darcy-Weisbach friction factor;
$\mathrm{g}=$ gravitational acceleration;
$G=$ average gap size;
$h=$ vegetation height;
$h_{f}=$ head loss in pipes;
i = rainfall intensity;
$\mathrm{K}=$ deflected height of the vegetation; also constant for description of $f-R_{e}$ relationship;
$\mathrm{k}=$ mean boundary roughness height;
$N=$ number of cylinders per unit area;
$\mathrm{n}=$ Manning's n ;
$\mathrm{q}=$ unit discharge;
$\mathrm{q}_{0}=$ unit base flow rate in case of rainfall;
$\mathrm{R}=$ hydraulic radius;
$\mathrm{R}_{\mathrm{e}}=$ Reynolds number $=\mathrm{q} / \nu$;

```
R
S = average vegetation spacing;
So = bed slope;
Sf}=\mathrm{ friction or energy gradient;
T = free surface width of the channel;
U = velocity of raindrop entering main flow;
V = mean flow velocity;
Y = average flow depth;
x = distance in the main flow direction;
\beta= velocity distribution factor in momentum equation;
\beta
\alpha = rainfall pattern dimensionless quantity;
\gamma = Specific gravity of water;
\epsilon= error in regression equation;
\lambda = parameter describing raindrop shape; also soil roughness spacing;
\rho = density of water;
\tau = boundary shear stress;
0 = angle between main flow direction and horizontal; also
        cross sectional shape dimensionless quantity of vegetation
        elements;
\mu = dynamic viscosity of water;
v = kinematic viscosity of water;
\psi = dimensionless vegetation pattern parameter;
\phi = angle between the velocity U and x-direction;
\sigma = soil roughness height;
\delta = laminar sublayer thickness;
```

APPENDIX III. Tables of Data

f-Re Data Based on Relative Roughness, after Fhelps (1975)

$\begin{gathered} \text { Datáa } \\ \text { numiér } \end{gathered}$	Chamel slope	Relative roughness	Unit discharge (m2/s)	Mean depth (mim)	Reynold number	$\underset{\mathrm{f}}{\text { Darey }}$
1	0.00033	0.35	0.000067	3.35	70	0.553
2	0.00033	0.23	0.000142	4.21	101	0.242
3	0.00033	0.23	0.000253	5.00	286	0.128
4	0.00063	0.52	0.000034	2.26	36	1.225
5	0.00154	0.35	0.000125	3.38	135	0.301
6	0.00154	0.26	0.000276	4.24	236	0.121
7	0.00154	0.23	0.000460	5.00	500	0.070
6	0.00236	0.54	0.000043	2.15	40	1.079
9	0.00233	0.35	0.000180	3.35	194	0.219
10	0.00238	0.28	0.000330	4.24	423	0.054
11	0.00236	0.23	0.000511	5.16	551	0.093
12	0.00199	0.52	0.000032	2.24	40	1.220
13	0.00139	0.27	0.000333	4.29	463	0.112
14	0.00453	0.53	0.000078	2.18	55	0.613
15	0.00458	0.35	0.000314	3.30	342	0.131
10	0.00450	0.27	0.000461	4.23	507	0.134
17	0.00453	0.23	0.000573	5.03	620	1.141
10	0.00302	0.35	0.000240	3.33	257	0.153
13	0.00302	0.27	0.000440	4.27	403	0.033
20	0.00048	0.27	0.000340	4.32	92	0.432
21	0.00048	0.23	0.000142	5.03	146	0.237
22	0.00048	0.35	0.000034	3.35	30	1.240
23	0.00120	0.23	0.000360	5.00	336	0.031
24	0.00120	0.23	0.000208	4.24	220	0.160
25	0.00120	0.35	0.000095	3.35	95	0.336
20	0.00612	0.54	0.000100	2.16	104	0.485
27	0.00612	0.35	0.000401	3.35	426	0.113
20	0.00812	0.26	0.000503	4.24	536	0.143
29	0.00612	0.23	0.000653	5.05	691	0.143
30	0.00761	0.55	0.000117	2.13	126	0.424
31	0.00761	0.28	0.000523	4.24	570	0.164
32	0.00761	0.23	0.000707	5.03	756	0.153
33	0.01000	0.55	0.000145	2.13	154	0.302
34	0.01000	0.28	0.000579	4.24	621	0.100
35	0.01000	0.23	0.000770	4.98	829	0.104
30	0.01490	0.53	0.000207	2.13	216	0.237
37	0.01490	0.27	0.000663	4.27	733	0.132
30	0.01980	0.53	0.000244	2.21	205	0.234
33	0.01980	0.35	0.000493	3.35	534	0235
40	0.01980	0.23	0.001122	5.03	1204	0.156
41	0.02970	0.53	0.000214	2.21	229	0.550
42	0.02970	0.27	0.000353	4.32	1039	0.207
43	0.02370	0.23	0.001285	5.03	1333	0.100
44	0.04510	0.53	0.000271	2.15	237	0.507
45	0.04510	0.35	0.000659	3.33	716	0.301
46	0.04510	0.27	0.001107	4.25	1194	0.223
47	0.04510	0.23	0.001515	5.03	1600	0.157

f-Re, Data for Sand Surface, after wo and Brater (1962)

Data number	Bed slope	Discharge (efs/ft)	Depth (in)	Reynolds number	$\underset{i}{\operatorname{Darc}}$
1	0.001	0.000786	0.145	66	0.7360
2	0.001	0.002345	0.195	195	0.2008
3	0.001	0.003700	0.310	739	0.0472
4	0.002	0.006140	0.210	547	0.0732
5	0.002	0.011960	0.235	992	0.0532
6	0.002	0.016800	0.375	1340	0.0570
7	0.002	0.021650	0.450	1730	0.0580
8	0.003	0.002017	0.145	160	0.3360
3	0.003	0.006730	0.190	553	0.0670
10	0.003	0.012000	0.300	1025	0.0762
11	0.003	0.020370	0.400	1637	0.0652
12	0.003	0.046550	0.695	3035	0.0634
13	0.004	0.002323	0.130	130	0.2432
14	0.004	0.004400	0.160	354	0.1232
15	0.004	0.006110	0.180	482	0.0332
16	0.004	0.023370	0.430	1870	0.0828
17	0.004	0.047700	0.650	3720	0.0720
13	0.000	0.003334	0.140	311	0.1672
19	0.006	0.003300	0.210	707	0.1040
20	0.000	0.017470	0.315	1384	0.0320
21	0.006	0.027500	0.430	2168	0.0330
22	0.000	0.043500	0.595	3795	0.0304
23	0.003	0.005300	0.145	463	0.1020
24	0.008	0.011500	0.230	319	0.1030
25	0.003	0.021060	0.320	1670	0.0880
20	0.003	0.022950	0.360	1811	0.1050
27	0.003	0.046100	0.550	3768	0.0856
28	0.010	0.002130	0.110	157	0.4330
29	0.010	0.005060	0.145	367	0.1780
30	0.010	0.007240	0.160	523	0.1104
31	0.010	0.003370	0.215	718	0.1496
32	0.010	0.009210	0.200	732	0.1404
33	0.010	0.014920	0.270	1080	0.1316
34	0.010	0.015500	0.260	1221	0.1080
35	0.010	0.013250	0.305	1330	0.1272
36	0.010	0.022400	0.340	1740	0.1168
37	0.010	0.047200	0.520	3664	0.0340
36	0.010	0.074100	0.685	5820	0.0872
33	0.015	0.002250	0.105	107	0.5100
40	0.015	0.004330	0.125	310	0.2326
41	0.015	0.004450	0.120	367	0.1952
42	0.015	0.007310	0.160	530	0.1716
43	0.015	0.003680	0.125	626	0.1830
44	0.015	0.014830	0.250	1070	0.1532
45	0.015	0.014370	0.230	1130	0.1320
46	0.015	0.019040	0.230	1393	0.1504
47	0.015	0.026650	0.355	2173	0.1403
48	0.015	0.052100	0.525	4075	0.1192
43	0.015	0.032100	0.690	7100	0.0868
50	0.020	0.001824	0.035	130	0.7720

f-Re Data fur Sand Surface, after wo and Brater (1962)

$\begin{gathered} \text { Data } \\ \text { number } \end{gathered}$	$\begin{aligned} & \text { Bed } \\ & \text { slope } \end{aligned}$	Discharge (cfs/ft)	$\begin{aligned} & \text { Depth } \\ & \text { (in) } \end{aligned}$	Reymolds number	$\mathrm{Darc}_{\mathrm{f}}^{\mathrm{y}}$
51	0.020	0.004275	0.115	313	0.2480
52	0.020	0.007100	0.150	516	0.2000
53	0.020	0.010800	0.135	785	0.1900
54	0.020	0.011770	0.195	326	0.1600
50	0.020	0.014770	0.235	1070	0.1772
50	0.020	0.018350	0.265	1360	0.1046
57	0.020	0.020330	0.260	1570	0.1268
50	0.020	0.045000	0.445	3490	0.1204
53	0.020	0.066800	0.535	5110	0.1024
60	0.020	0.034800	0.640	7160	0.0868
61	0.040	0.001612	0.075	130	0.7000
62	0.040	0.004370	0.035	321	0.2634
63	0.040	0.006900	0.125	503	0.2444
64	0.040	0.009300	0.145	676	0.2103
65	0.040	0.011530	0.170	840	0.2138
60	0.040	0.010060	0.205	1220	0.1556
67	0.040	0.019700	0.175	1530	0.0826
63	0.040	0.023500	0.250	1730	0.1686
63	0.040	0.044250	0.360	3340	0.1424
70	0.040	0.003500	0.435	4800	0.1220
71	0.040	0.033500	0.555	6630	0.1272
72	0.060	0.001735	0.065	131	0.7620
73	0.060	0.007530	0.115	533	0.2368
74	0.000	0.012080	0.165	857	0.2756
75	0.060	0.010160	0.200	1048	0.2732
70	0.060	0.029000	0.285	2110	0.2368
77	0.060	0.028080	0.240	2165	0.1568
75	0.060	0.039240	0.315	2880	0.1320
79	0.060	0.043700	0.340	3300	0.1844
80	0.060	0.054350	0.385	4020	0.1726
81	0.060	0.030300	0.475	6020	0.1472
82	0.060	0.033100	0.530	7380	0.1350

f-Re Daia with Rainfall, Laminar Flow, after youn i1370)

Data number	Rainfall intensity (infin)	$\begin{gathered} \text { Base flow } \\ \text { rate } \\ \text { (efs/ft) } \end{gathered}$	Combined fluw rate (cis/ft)	Flow depth (ft)	Reynolds number.	$\underset{f}{\operatorname{Darcy}}$
1	0.50	0.00254	0.00270	0.01000	243.0	0.10343
2	1.25	0.00237	0.00278	0.01060	247.8	0.13620
3	3.75	0.00150	0.00272	0.01167	245.3	0.25263
4	15.00	0.00141	0.00280	0.01407	249.3	0.41363
5	0.50	0.00362	0.00364	0.01032	354.1	0.11359
0	1.25	0.00335	0.00380	0.01208	348.8	0.15227
7	3.75	0.00248	0.00370	0.01303	345.4	0.19871
\bigcirc	15.00	0.00162	0.00330	0.01625	349.4	0.23931
9	0.50	0.00471	0.00487	0.01250	445.0	0.10322
10	1.25	0.00463	0.00504	0.01303	443.2	0.11121
11	3.75	0.00360	0.00483	0.01517	444.4	0.17171
12	15.00	0.00153	0.00500	0.01733	443.4	0.23023
13	0.50	0.00585	0.00601	0.01300	543.0	0.07343
14	1.25	0.00554	0.00535	0.01383	547.9	0.03632
15	3.75	0.00473	0.00001	0.01625	544.3	0.14077
16	15.00	0.00182	0.00593	0.01792	533.3	0.10611
17	0.50	0.00693	0.00709	0.01433	648.3	0.07310
13	1. 25	0.00000	0.00707	0.01505	647.6	0.03801
19	3.75	0.00585	0.00707	0.01683	644.1	0.11437
20	15.00	0.00213	0.00704	0.01933	830.4	0.16550
21	0.30	0.00853	0.00869	0.01542	738.9	0.06172
22	1.25	0.00323	0.00870	0.01000	797.0	0.07085
23	3.75	0.00750	0.00872	0.01750	736.8	0.08860
24	15.00	0.00385	0.00871	0.02053	773.9	0.13240
25	0.50	0.00362	0.00978	0.01667	693.1	0.05670
26	1.25	0.00338	0.00379	0.01267	036.9	0.07671
27	3.75	0.00853	0.00375	0.02000	633.2	0.09190
28	0.50	0.00200	0.00278	0.00732	248.4	0.16373
23	1.25	0.00235	0.00276	0.00225	246.3	0.18785
30	3.75	0.00150	0.00272	0.00300	245.3	0.24179
31	15.00	0.00000	0.00278	0.01075	243.8	0.36311
32	0.50	0.00371	0.00337	0.00363	346.8	0.11303
33	1.25	0.00345	0.00386	0.00342	347.2	0.14191
34	3.75	0.00262	0.00384	0.01000	344.9	0.17122
35	15.00	0.00000	0.00417	0.01183	373.0	0.22303
36	0.50	0.00481	0.00497	0.01017	447.9	0.10332
37	1.25	0.00456	0.00497	0.01067	447.3	0.11645
33	3.75	0.00372	0.00434	0.01150	444.0	0.14740
33	15.00	0.00000	0.00480	0.01317	434.0	0.22842
40	0.50	0.00552	0.00603	0.01032	547.9	0.02585
41	1.25	0.00565	0.00600	0.01156	547.0	0.10214
42	3.75	0.00461	0.00003	0.01250	544.3	0.1257%
43	15.00	0.00113	0.00533	0.01433	531.1	0.16143
44	0.50	0.00701	0.00717	0.01150	047.9	0.07346
45	1.25	0.00677	0.00718	0.01208	040.4	0.06517
40	3.75	0.00594	0.00716	0.01317	643.3	0.10261
47	15.00	0.00223	0.00715	0.01508	034.0	0.15137
43	0.50	0.00369	0.00885	0.01233	797.5	0.05862
49	1.25	0.00641	0.00062	0.01267	730.3	0.06544
50	3.75	0.00753	0.00361	0.01403	733.3	0.08402
51	15.00	0.00395	0.00361	0.01603	781.1	0.11345

f-Re Data with Rainfall, Laminal Fluw, after Youn i 1970;

Data number:	$\begin{gathered} \text { Rainfall } \\ \text { intensity } \\ (\text { in/h }) \end{gathered}$	$\begin{gathered} \text { Base fluw } \\ \text { rate } \\ \text { icfs/ft) } \end{gathered}$	Combined flow rate (cis/ft)	Flow depth (ft)	Reynolds number	$\underset{f}{\text { Darcy }^{\prime}}$
52	0.50	0.00377	0.00333	0.01292	397.2	0.05313
53	1.25	0.00351	0.00392	0.01325	655.7	0.06023
54	3.75	0.00867	0.00983	0.01453	633.0	0.07404
55	15.00	0.00497	0.00363	0.01050	830.1	0.10364

> f-Re Data with rainfall, Laminar Flow, aftel Li is is

Dala numier.	Rainfall intensity (intin)	Dase fluw rate (cis/ft)	Cumbined flow rate (cfsift)	Fluw depth (It)	Reynolds number.	${\underset{i}{ }}_{\text {Datcy }}$
1	7.5	0.00000	0.00148	0.00350	127.1	0.00490
2	7.5	0.00362	0.00530	0.01584	453.3	0.20140
3	7.5	0.00835	0.00383	0.01900	604.2	0.10132
4	7.5	0.00050	0.00204	0.01070	131.6	0.47035
5	7.5	0.00225	0.00373	0.01173	334.7	0.23763
6	15.0	0.00000	0.00295	0.01206	272.5	0.41059
7	15.0	0.00313	0.00603	0.01063	557.4	0.13504
3	15.0	0.00176	0.00471	0.01533	431.6	0.23227
9	15.0	0.00673	0.00908	0.01784	880.9	0.12077
10	17.5	0.00000	0.00334	0.01491	294.5	0.43050
11	17.5	0.00467	0.00631	0.01952	706.3	0.19197
12	10.5	0.00000	0.00207	0.01110	170.6	0.51200
13	10.5	0.00050	0.00805	0.01639	739.6	0.13496
14	17.5	0.00371	0.00715	0.01733	595.0	0.16171
15	10.5	0.00371	0.00578	0.01610	487.4	0.13030
16	17.5	0.00000	0.00304	0.01422	254.7	0.40201
17	17.5	0.00200	0.00504	0.01637	422.3	0.31544
10	17. 5	0.00552	0.00650	0.02173	722.2	0.13030
13	10.5	0.00000	0.00122	0.01032	100.3	0.66452
20	10.5	0.00773	0.00361	0.01828	857.5	0.03437
21	10.5	0.00275	0.00457	0.01503	405.0	0.24732
22	12.5	0.00000	0.00217	0.01286	100.7	0.05083
23	12.5	0.00464	0.00681	0.01816	619.7	0.10109
24	12.5	0.00774	0.00391	0.02073	642.0	0.03710
25	17.5	0.00000	0.00352	0.02271	736.2	0.15030
20	17.5	0.00000	0.00344	0.01559	200.3	0.43960
27	12.5	0.00000	0.00050	0.01091	550.7	0.20812
23	12.5	0.00000	0.00240	0.01260	193.1	0.49223
23	12.5	0.00238	0.00318	0.02102	743.3	0.15252
30	12.5	0.00238	0.00464	0.01537	400.3	0.24377
31	7.5	0.00000	0.00148	0.00829	120.2	0.74339
32	7.5	0.00332	0.00530	0.01290	459.3	0.18719
33	7.5	0.00335	0.00383	0.01519	604.2	0.03660
34	7.5	0.00050	0.00204	0.00863	101.6	0.42323
35	7.5	0.00225	0.00373	0.00104	334.7	0.27433
36	15.0	0.00000	0.00295	0.01114	274.5	0.40383
37	15.0	0.00313	0.00003	0.01416	553.4	0.20530
36	15.0	0.00170	0.00471	0.01290	431.8	0.23361
33	15.0	0.00073	0.00306	0.01500	630.9	0.11910
40	17.5	0.00000	0.00344	0.01270	296.6	0.40430
41	17.5	0.00467	0.00331	0.01711	711.1	0.17250
42	10.5	0.00000	0.00207	0.01005	176.7	0.57594
43	10.5	0.00650	0.00265	0.01501	733.0	0.11721
44	17.5	0.0037 i	0.00715	0.01570	593.0	0.16330
45	10.5	0.00371	0.00578	0.01301	407.4	0.13901
40	12.5	0.00000	0.00217	0.01015	175.9	0.59854
47	12.5	0.00533	0.00200	0.01527	670.0	0.14432
43	12.5	0.00110	0.00333	0.01104	273.1	0.33040
49	17.5	0.00000	0.00304	0.01224	245.0	0.40330
50	17.5	0.00534	0.00338	0.01620	653.4	0.15486
51	10.5	0.00000	0.00152	0.00509	143.8	0.67114

f-re Dala with rainfall, Laminar Flow, after Li işa;

Data numiver.	rainfall intensity (infin)	$\begin{gathered} \text { Base fluw } \\ \text { rate } \\ \text { icfsift } \end{gathered}$	Cunbined flow rate (cfs/ft)	Flow deptin (ft)	Reynulds number	$\underset{f}{\text { Darey }}$
52	10.5	0.00240	0.00428	0.01133	351.9	0.25532
53	10.5	0.00537	0.00713	0.01434	002.3	0.15105
54	17.5	0.00000	0.00552	0.01806	742.0	0.15712
55	17.5	0.00000	0.00344	0.01197	206.4	0.30170
50	12.5	0.00000	0.00630	0.01487	555.1	0.16122
57	12.5	0.00000	0.00240	0.01104	200.0	0.51461
50	12.5	0.00238	0.00318	0.01532	746.9	0.14248
59	12.5	0.00238	0.00464	0.01347	403.0	0.27640

f-Re Data with Rainfall, Turbulent Flow, after Yoon (1970)

Data number	Rainfall intensity (in/h)	$\begin{gathered} \text { Base Flow } \\ \text { rate } \\ (e f s / f t) \end{gathered}$	Combined flow rate (cfs/ft)	Fluw depth (ft)	Reynolds number	$\underset{\mathrm{I}}{\text { Darcy }}$
1	0.50	0.02690	0.02706	0.02833	2498.8	0.03840
2	1.25	0.02080	0.02721	0.02325	2493.0	0.04031
3	3.75	0.02530	0.02716	0.02363	2430.3	0.04024
4	15.00	0.02273	0.02753	0.03042	2473.0	0.04424
5	0.50	0.04325	0.04341	0.03563	4003.5	0.02392
6	1.25	0.04340	0.04381	0.03703	3393.2	0.03147
7	3.75	0.04280	0.04402	0.03707	3394.1	0.03247
3	15.00	0.03333	0.04419	0.03333	3374.0	0.02774
3	0.50	0.05323	0.05939	0.04333	5493.3	0.03109
10	1.25	0.05380	0.06021	0.04332	5483.2	0.02340
11	3.75	0.05063	0.05385	0.04450	5485.4	0.03123
12	15.00	0.05010	0.06096	0.04550	5477.2	0.03050
13	0.50	0.02743	0.02759	0.02300	2492.5	0.04060
14	1.25	0.02725	0.02766	0.02263	2191.4	0.03644
15	3.75	0.02643	0.02750	0.02303	2433.2	0.04101
16	15.00	0.02231	0.02767	0.02350	2477.3	0.03387
17	0.50	0.04333	0.04415	0.02832	3350.4	0.03270
13	1.25	0.04394	0.04435	0.02308	3937.9	0.03119
19	3.75	0.04230	0.04412	0.02325	3305.1	0.03296
20	15.00	0.03953	0.04433	0.02903	3374.1	0.03111
21	0.50	0.06083	0.06104	0.03525	5533.2	0.02367
22	1.25	0.06030	0.06071	0.03525	5433.7	0.03000
23	3.75	0.05950	0.00076	0.03507	5430.1	0.03039
24	15.00	0.05637	0.06123	0.03402	5467.1	0.02690

f-Re Data with Rainfali, Turbulent Flow, after Li (1372)

$\begin{gathered} \text { Datá } \\ \text { number } \end{gathered}$	Rainfall intensity (in/h)	```Base Flow rate (cfs/ft)```	Combined fluw rate (cfs/ft)	Flow depth (ft)	Reynolds number	$\underset{\mathrm{f}}{\operatorname{Darcy}}$
1	7.50	0.03951	0.04099	0.03362	3435.5	0.03310
2	7.50	0.10471	0.10619	0.05730	9203.5	0.02556
3	7.50	0.00676	0.06624	0.04401	6087.0	0.02305
4	7.50	0.04163	0.04317	0.03352	3050.0	0.03203
5	15.00	0.04415	0.04710	0.03431	4317.3	0.02331
6	15.00	0.02912	0.03207	0.02737	2333.6	0.03265
7	15.00	0.01993	0.02294	0.02337	2037.5	0.04131
3	17.50	0.05914	0.06253	0.04093	5261.3	0.03186
9	107.50	0.12076	0.12420	0.06200	10638.0	0.02363
10	17.50	0.03016	0.03360	0.02975	2634.3	0.03633
11	10.50	0.05233	0.05490	0.03869	4632.6	0.03422
12	10.50	0.03025	0.03232	0.02911	2002.	0.03721
13	17.50	0.04019	0.04363	0.03254	3732.5	0.03205
14	17.50	0.11512	0.11616	0.06333	10033.9	0.02407
15	17.50	0.06538	0.06842	0.04403	5612.9	0.03134
16	17.50	0.02453	0.02763	0.02447	2363.4	0.03303
17	10.50	0.06765	0.06947	0.04231	6275.0	0.02765
13	10.50	0.04058	0.04240	0.03235	3077.0	0.03576
19	10.50	0.14361	0.14563	0.06679	12630.8	0.02173
20	10.50	0.03137	0.03319	0.03070	2373.0	0.04178
21	12.50	0.04715	0.04932	0.03550	4052.6	0.03341
22	12.50	0.12327	0.12544	0.06410	10307.3	0.02604
23	12.50	0.02586	0.02803	0.02647	2365.4	0.03323
24	12.50	0.08585	0.06602	0.05020	7326.9	0.02737
25	17.50	0.02585	0.06859	0.05153	7450.8	0.02535
20	10.50	0.08385	0.03767	0.05033	7300.0	0.02255
27	17.50	0.03515	0.04467	0.03613	3070.5	0.02933
23	17.50	0.03515	0.03653	0.03214	3171.2	0.03238
29	12.50	0.03677	0.04357	0.03463	3527.9	0.03668
30	12.50	0.03077	0.03923	0.03236	3223.5	0.03347
31	7.50	0.03351	0.04093	0.02615	3453.7	0.03225
32	7.50	0.10471	0.10619	0.04850	3333.1	0.02543
33	7.50	0.00670	0.06824	0.03635	6037.0	0.02724
34	7.50	0.04163	0.04317	0.02856	3350.6	0.03354
35	15.00	0.04415	0.04710	0.03006	4317.3	0.03346
30	15.00	0.02912	0.03207	0.02503	2333.6	0.03713
37	15.00	0.01999	0.02234	0.02039	2037.5	0.04333
33	17.50	0.05914	0.00250	0.03637	5261.3	0.03050
39	17.50	0.12070	0.12420	0.05411	10638.0	0.02572
40	17.50	0.03016	0.03360	0.02534	2064.3	0.03707
41	20.50	0.05263	0.05430	0.03372	4032.6	0.03400
42	10.50	0.03025	0.03232	0.02540	2002.0	0.04102
43	17.50	0.04019	0.04363	0.02333	3732.5	0.03640
44	12.50	0.04812	0.05023	0.03196	4202.0	0.03434
45	12.50	0.12406	0.12633	0.05273	10345.0	0.02193
40	12.50	0.06584	0.06801	0.03333	5547.3	0.03310
47	12.50	0.03003	0.03220	0.02565	2631.3	0.03627
48	17.50	0.05486	0.05732	0.03341	4567.7	0.03170
43	17.50	0.02622	0.02386	0.02267	2435.4	0.03835

f-Re Data with Rainfall, Turbulent Flow, after Li (1372)

Data number	Rainfall intensity (in/h)	$\begin{aligned} & \text { Base Flow } \\ & \text { rate } \\ & \text { (cis/ft) } \end{aligned}$	Combined fluw rate (cis/ft)	Flow depth (ft)	Reynolds number.	$\underset{\mathcal{L}}{\text { Darey }}$
50	17.50	0.10373	0.11233	0.05431	9203.0	0.02397
51	10.50	0.05075	0.05257	0.03130	4236.2	0.03365
52	10.50	0.03363	0.03551	0.02630	2376.0	0.03350
53	10.50	0.03474	0.03656	0.04757	6104. ${ }^{\text {a }}$	0.02607
54	17.50	0.03515	0.04407	0.03004	3617.0	0.03332
55	17.50	0.03515	0.03859	0.02729	3150.5	0.03315
50	12.50	0.03677	0.04357	0.02332	3527.9	0.03162
57	12.50	0.03677	0.03923	0.02656	3223.5	0.03170

$$
\text { f-Fe Data un Bemuda grass, after Chen } 11376 \text { i }
$$

Data number	$\begin{aligned} & \text { Bed } \\ & \text { slope } \end{aligned}$	Discharse (cfosf)	$\begin{aligned} & \text { Depth } \\ & \text { (in) } \end{aligned}$	Mean velucity (fps)	$\underset{\Gamma}{\text { Darey }}$	Reynolds number
1	0.001	0.0105	1.717	0.073	6.613	690
2	0.001	0.0083	1.634	0.064	6.329	585
3	0.001	0.0073	1.550	0.056	10.330	403
4	0.001	0.0059	1.463	0.047	14.258	331
5	0.001	0.0040	1.406	0.039	16.342	309
6	0.001	0.0037	1.344	0.033	20.245	246
7	0.001	0.0026	1.262	0.025	41.314	176
\bigcirc	0.001	0.0013	1.157	0.013	129.365	83
9	0.001	0.0077	1.703	0.052	13.567	515
10	0.001	0.0112	1.319	0.070	8.296	745
11	0.001	0.0156	2.154	0.087	6.006	1030
12	0.001	0.0205	2.370	0.104	4.679	1362
13	0.001	0.0260	2.575	0.121	3.750	1721
14	0.001	0.0313	2.634	0.139	2.975	2070
15	0.001	0.0375	2.831	0.159	2.331	2480
10	0.001	0.0485	3.027	0.192	1.754	3210
17	0.001	0.0636	3.250	0.235	1. 261	4210
10	0.001	0.0329	3.445	0.236	0.886	5463
13	0.001	0.0355	3.507	0.319	0.753	6319
20	0.001	0.1083	3.602	0.350	0.633	7071
21	0.005	0.0012	0.787	0.013	210.076	66
22	0.005	0.0023	0.957	0.036	76.655	193
23	0.005	0.0041	1.070	0.046	53.173	277
24	0.005	0.0053	1.146	0.056	35.126	354
25	0.005	0.0067	1.276	0.063	33.947	446
20	0.005	0.0080	1.374	0.070	23.332	533
27	0.005	0.1030	1.571	0.078	27.196	681
23	0.005	0.0121	1.532	0.094	16.288	600
29	0.005	0.0195	1.790	0.131	11.196	1234
30	0.005	0.0248	1.951	0.153	6.931	1647
31	0.005	0.0350	2.110	0.130	5.759	2310
32	0.005	0.0420	2.203	0.218	4.362	2661
33	0.005	0.0514	2.334	0.250	3.816	3402
34	0.005	0.0660	2.477	0.320	2.593	4369
35	0.005	0.0909	2.616	0.416	1.616	6015
30	0.005	0.1157	2.551	0.544	0.923	7655
37	0.005	0.1459	2.704	0.647	0.631	3055
33	0.005	0.1706	2.871	0.713	0.605	11237
39	0.035	0.0096	1.261	0.030	117.200	639
40	0.035	0.0200	1.739	0.133	75.142	1320
41	0.035	0.0369	1.353	0.226	20.334	2443
42	0.035	0.0443	2.123	0.249	25.571	2930
43	0.035	0.0492	2.253	0.261	24.710	3250
44	0.035	0.0551	2.346	0.262	22.075	3640
45	0.035	0.0652	2.433	0.321	17.570	4310
46	0.035	0.0743	2.462	0.353	14.401	4914
47	0.035	0.1352	2.704	0.600	5.620	6345
48	0.035	0.1643	2.738	0.703	4.144	10307
43	0.035	0.0036	1.164	0.083	110.655	535

> f-Re Data on Bermuda grass, after Chen (1970)

Data number	Bed siope	Dischatge (cfs/ft)	Depth (in)	Mean velucity (fps)	$\underset{\text { Fey }}{\text { Darce }}$	Reynulds number.
50	0.035	0.0072	1.036	0.076	131.603	477
51	0.035	0.0058	1.010	0.063	157.528	330
52	0.035	0.0046	0.340	0.050	207.550	305
33	0.035	0.0023	0.918	0.036	511.154	130
54	0.035	0.0017	0.825	0.025	954.330	110
65	0.035	0.0033	1.223	0.081	130.873	552
50	0.035	0.0121	1.403	0.103	93.520	801
57	0.087	0.0161	1.332	0.145	117.860	1067
58	0.087	0.0300	1.740	0.207	75.659	1390
59	0.037	0.0403	1.703	0.237	36.754	2705
60	0.027	0.0529	1.314	0.331	32.523	3493
61	0.067	0.0012	1.367	0.373	26.332	4054
62	0.037	0.0751	2.014	0.447	16.80	4970
63	0.037	0.0391	2.040	0.524	13.877	5030
64	0.037	0.1002	2.053	0.585	11.163	0625
65	0.067	0.1108	2.063	0.644	3.291	7323
06	0.057	0.1217	2.079	0.702	7.866	6054
67	0.087	0.0038	0.771	0.059	404.085	254
63	0.087	0.0054	0.055	0.070	274.340	359
63	0.087	0.0072	0.345	0.031	211.224	477
70	0.087	0.0032	1.009	0.103	156.253	612
71	0.087	0.0103	1.062	0.123	129.491	725
72	0.067	0.0038	0.651	0.054	542.200	254
73	0.067	0.0054	1.023	0.063	471.334	353
74	0.037	0.0061	1.119	0.087	274.230	533
75	0.087	0.0100	1.206	0.105	201.757	703
76	0.104	0.0200	1.415	0.220	102.622	1721
77	0.164	0.3639	1.020	0.272	77.184	2443
78	0.164	0.0530	1.633	0.340	57.710	1543
79	0.104	0.0706	1.370	0.400	31.935	5032
50	0.104	0.0318	1.822	0.604	17.506	6070
61	0.104	0.1147	1.625	0.754	11.310	7503
82	0.104	0.1331	1.821	0.877	6. 343	6800
33	0.164	0.1459	1.815	0.364	3.426	10030
84	0.104	0.0211	1.374	0.164	142.454	1397
85	0.164	0.0017	0.575	0.030	1520.310	1:6
66	0.164	0.0041	0.694	0.072	403.603	257
37	0.164	0.0055	0.743	0.089	330.415	365
83	0.164	0.0086	0.329	0.111	263.367	571
33	0.104	0.0103	0.914	0.135	176.149	681
90	0.104	0.0129	0.997	0.155	144.773	857
91	0.104	0.0170	1.117	0.162	117.873	1120
92	0.164	0.0090	0.363	0.112	267.470	593
93	0.164	0.0103	1.124	0.109	326.203	681
34	0.164	0.0113	1.039	0.130	215.326	740
95	0.164	0.0135	1.136	0.143	195.210	¢93
90	0.104	0.0151	1.311	0.138	241.337	1000
97	0.164	0.0180	1.361	0.150	190.204	1132
33	0.164	0.0055	0.666	0.076	524.376	365

f-Re Data on Bermuda grass, after Chen (1970)

Data number	$\begin{aligned} & \text { Bed } \\ & \text { slope } \end{aligned}$	Discharge (efs/ft)	Depth (in)	$\begin{aligned} & \text { Mean } \\ & \text { velueity } \\ & \text { (fps) } \end{aligned}$	$\underset{\mathrm{f}}{\mathrm{Darcy}}$	Reynolus number
99	0.104	0.0070	0.974	0.034	384.754	506
100	0.164	0.0034	1.071	0.105	337.076	825
101	0.164	0.0111	1.135	0.115	236.113	740
102	0.164	0.0123	1.214	0.123	261.170	657
103	0.104	0.0152	1.239	0.140	231.115	1003
104	0.164	0.0167	1.413	0.153	196.886	1240
105	0.104	0.0024	0.535	0.049	636.434	100
100	0.104	0.0044	0.750	0.070	533.275	235
107	0.104	0.0053	0.637	0.070	501.479	354
103	0.104	0.0063	0.934	0.083	413.855	459
103	0.164	0.0093	0.336	0.112	279.087	618
110	0.104	0.0113	1.070	0.126	238.027	745
111	0.104	0.0137	1.160	0.141	203.873	900
112	0.104	0.0039	0.907	0.052	1155.100	203
113	0.164	0.0064	1.043	0.037	350.817	550
114	0.164	0.0107	1.106	0.116	287.433	711
115	0.164	0.0125	1.146	0.131	232.515	833
116	0.164	0.0160	1.236	0.155	173.343	1062
117	0.104	0.0214	1.344	0.131	126.849	1421
116	0.164	0.0020	0.680	0.046	1108.368	175
113	0.104	0.0047	0.795	0.071	544.603	314
120	0.164	0.0063	0.835	0.034	351.998	459
121	0.164	0.0097	0.921	0.119	242.304	640
122	0.104	0.0125	1.062	0.142	125.235	833
123	0.104	0.0164	1.153	0.171	136.627	1023
124	0.164	0.0224	1.030	0.240	63.002	1464
125	0.316	0.0096	0.687	0.106	163.614	639
120	0.316	0.0237	1.006	0.263	84.715	1574
127	0.310	0.0429	1.254	0.410	50.437	2333
123	0.310	0.0612	1.502	0.469	42.495	4054
123	0.316	0.0785	1.566	0.594	30.432	5136
130	0.316	0.0355	1.601	0.716	21.150	6313
131	0.316	0.1117	1.600	0.833	14.454	7333
132	0.316	0.1300	1.601	0.974	11.438	6593
133	0.310	0.1637	1.600	1.227	7.202	10332
134	0.316	0.1788	1.583	1.350	5.910	11020
135	0.310	0.0013	0.777	0.029	5336.334	123
136	0.310	0.0043	0.701	0.035	653.074	323
137	0.310	0.0074	0.633	0.107	495.101	435
133	0.310	0.0103	0.911	0.135	335.340	631
139	0.310	0.0133	1.015	0.103	257.037	914
140	0.310	0.0165	1.032	0.200	172.533	1230
141	0.316	0.0253	1.161	0.263	115.357	1717
142	0.316	0.0024	0.623	0.047	1912.662	164
143	0.310	0.0047	0.640	0.003	547.837	314
144	0.310	0.0075	0.003	0.149	124.339	501
145	0.310	0.0034	0.735	0.154	203.870	625
140	0.310	0.0122	0.804	0.162	164.023	303
147	0.310	0.0173	1.003	0.200	156.317	1144

f-Re Data on Bermuda grass, after Chen (1976)

$\begin{gathered} \text { Data } \\ \text { number } \end{gathered}$	$\begin{aligned} & \text { Bed } \\ & \text { slope } \end{aligned}$	Discharge (cfs/ft)	Depth (in)	Mean velocity (fps)	$\underset{\mathrm{f}}{\text { Darcy }}$	Reynulds number
140	0.316	0.0211	1.027	0.247	114.093	1400
143	0.316	0.0033	0.792	0.056	1533.515	254
150	0.310	0.0069	0.736	0.113	390.015	459
151	0.316	0.0100	0.625	0.140	259.998	607
152	0.310	0.0138	0.773	0.214	113.810	914
153	0.555	0.0184	0.523	0.419	35.720	1220
154	0.555	0.0266	0.500	0.633	14.547	1783
155	0.555	0.0059	0.703	0.100	336.192	331
150	0.555	0.0101	0.803	0.152	412.302	6784
157	0.555	0.0133	0.703	0.225	165.793	361
158	0.555	0.0157	0.736	0.240	101.431	1044
159	0.555	0.0170	0.845	0.241	172.175	1120
160	0.555	0.0227	0.966	0.262	143.631	1506
101	0.555	0.0327	0.823	0.477	42.911	2163
162	0.555	0.0235	0.368	0.360	65.605	1954
163	0.555	0.0210	0.905	0.260	130.917	1432
164	0.555	0.0171	1.020	0.201	237.692	1135
105	0.65	0.0127	0.905	0.163	379.661	641
100	0.555	0.0038	0.821	0.144	470.430	653
107	0.555	0.0057	0.700	0.037	880.623	381
108	0.555	0.0221	0.643	0.413	44.630	1466
103	0.555	0.0337	0.694	0.563	24.257	2233
170	0.535	0.0457	0.830	0.611	26.477	3023
171	0.555	0.0536	0.900	0.703	21.407	3549
172	0.555	0.0620	0.398	0.745	21.363	4100
173	0.555	0.0726	1.050	0.823	13.143	4603
174	0.055	0.0794	1.050	0.307	15.193	5253
175	0.555	0.0873	1.111	0.342	14.885	5777
170	0.555	0.0364	0.907	1.270	6.025	6360
177	0.555	0.1069	0.750	1.709	3.052	7071
178	0.555	0.1187	1.133	1.204	9.700	7554
173	0.555	0.1279	0.734	1.924	2.562	8461
100	0.555	0.1334	0.835	1.987	2.515	9156
101	0.555	0.1514	0.851	2.134	2.223	100178
102	0.555	0.1592	0.659	2.223	2.063	10333
133	0.555	0.1718	0.695	2.302	2.003	11363
164	0.555	0.1764	0.879	2.406	1.807	11671
185	0.555	0.1793	0.903	2.330	1.860	11304
130	0.555	0.0092	0.750	0.147	408.770	612
187	0.555	0.0187	0.584	0.355	46.834	1240
103	0.555	0.0264	0.530	0.593	17.536	1751
103	0.555	0.0337	0.332	0.434	53.832	2233

f-Re Data on Bermuda grass, after Ree and Falmer (1943)
Trapezoidal Shape, Buttom Width 1.5 ft , Bed Slope 24%

Data number	Discharge (efs)	$\begin{aligned} & \text { Velouity } \\ & \text { (fps) } \end{aligned}$	Effective slope	$\begin{gathered} \text { Darcey } \\ f \end{gathered}$	Reynolds number
1	0.950	3.090	0.2345	0.321	37300
2	1.850	4.300	0.2302	0.607	67200
3	2.300	5.300	0.2276	0.469	98600
4	3.750	5.580	0.2340	0.481	114000
5	4.300	6.200	0.1332	0.356	141000
6	2.900	5.320	0.2262	0.401	32500
7	5.020	6.620	0.2135	0.321	140000
0	3.030	5.660	0.2350	0.447	103000
9	5.320	7.540	0.2267	0.231	101000
10	7.320	7.730	0.2307	0.346	202000

Trapezoidal Shape, Bottom width 1.5 ft , Bed Slope 20%

Data iumiver	Discharge (efs)	$\begin{aligned} & \text { Velocity } \\ & \quad(\text { fps }) \end{aligned}$	$\begin{gathered} \text { Effective } \\ \text { slope } \end{gathered}$	$\underset{f}{\text { Darcy }}$	$\begin{aligned} & \text { Reynolds } \\ & \text { number } \end{aligned}$
1	4.200	5.010	0.1926	0.567	133000
2	6.500	6.660	0.1344	0.357	205000
3	9.850	7.770	0.1954	0.310	280000
4	13.400	6.640	0.1331	0.294	377000
5	17.300	3.460	0.1374	0.270	419000
6	21.600	3.850	0.1364	0.281	493000
7	21.300	10.000	0.2043	0.277	425000
8	27.300	3.310	0.1340	0.362	415000
9	9.510	2.120	0.1354	0.530	27400
10	30.200	4.120	0.1979	0.541	67500
11	4.680	5.040	0.1961	0.415	34000
12	9.400	0.720	0.1334	0.239	150000
13	14.260	7.980	0.2012	0.252	220000
14	19.170	3. 0.50	0.1930	0.225	279000
15	23.650	3.830	0.2062	0.194	337000
10	23.310	10.080	0.1977	0.204	375000
17	4.570	4.060	0.1373	0.723	33800

Trapezoidal Shape, Bottom width 1.5 ft , Bed Slope 10%

Data number	$\begin{gathered} \text { Discharge } \\ \text { (efs) } \end{gathered}$	$\begin{gathered} \text { Velocity } \\ \text { (fips) } \end{gathered}$	Effective slope	$\underset{\mathrm{f}}{\operatorname{Darcy}}$	Reynolds number.
1	4.650	4.090	0.0316	0.503	141000
2	7.120	4.370	0.0300	0.360	192000
3	10.000	3.660	0.0307	0.333	257000
4	13.500	6.400	0.0300	0.230	322000
5	17.900	7.070	0.0364	0.246	331000
6	23.000	7.800	0.0374	0.210	449000

Trapezuidal Shape, Bottum width 1.0 ft , Bed Slope 10%

Data number	Discharge (efs)	$\begin{aligned} & \text { Velucity } \\ & \text { (fps) } \end{aligned}$	Effective slope	$\underset{f}{\text { Darcy }}$	Reynolds number.
7	23.100	3.000	0.0345	0.217	512000
0	20.100	0.510	0.0342	0.187	362000
9	25.900	3.740	0.0872	0.178	363000
10	20.300	0.700	0.0880	0.154	372000
11	20.300	3.820	0.0346	0.171	363000
12	20.100	3.900	0.0857	0.103	343000
13	1. 040	0.340	0.1024	7.150	20300
14	2.960	1.340	0.1003	1.370	40200
15	4.940	2.650	0.0383	1.120	73500
10	9.640	3.300	0.0365	0.600	120000
17	15.120	4.930	0.0382	0.411	133000
18	20.820	5.330	0.0366	0.304	234000
13	25.840	6.560	0.0374	0.260	284000
20	30.440	7.070	0.0364	0.237	300000
21	35.400	7.510	0.0380	0.214	333000
22	0.379	1.500	0.1010	1.770	19300
23	2.820	2.360	0.1012	0.643	47100
24	4.710	3.900	0.1000	0.432	74300
25	3.330	5.670	0.0984	0.241	117000
20	14.700	0.500	0.0380	0.204	151000
27	13.600	7.440	0.0939	1.733	180000
23	24.600	3.060	0.0977	0.155	217000
29	29.800	3.740	0.1002	0.145	232000

Trapezuidal Shape, Buttom width Varies, Bed Slope 3\%

Data number	Discharge (cfs)	$\begin{aligned} & \text { Velocity } \\ & (\text { fps }) \end{aligned}$	Effective slope	$\underset{f}{\text { Darcy }}$	Reynolds number
1	4.030	1.630	0.0324	1.370	63300
2	4.030	1.630	0.0322	1.230	72000
3	6.870	2.340	0.0319	0.729	114000
4	3.760	2.730	0.0318	0.575	145000
5	14.000	3.500	0.0318	0.337	193000
6	12.800	4.100	0.0318	0.314	244000
7	23.300	4.540	0.0323	0.273	263000
8	29.000	5.030	0.0312	0.235	3500300
9	0.033	0.226	0.0319	18.400	1990
10	0.215	0.301	0.0320	16.000	4100
11	0.350	0.363	0.0327	14.700	6050
12	0.561	0.432	0.0323	12.600	9430
13	0.740	0.530	0.0314	3.650	11500
14	1.040	0.657	0.0303	5.320	17000
15	1.700	1.050	0.0312	2.510	28300
16	2.630	1.440	0.0321	1.470	42300
17	4.330	2.030	0.0329	0.845	66500
10	3.890	1.880	0.0337	0.343	62500
13	1.050	0.330	0.0322	1.940	13600
20	2.360	2.000	0.0326	0.500	53100

rapezuidal Shape, Buttum widh Varies, Bed Slope 3%

Data . umber	$\begin{gathered} \text { Discharge } \\ (\text { (efs) } \end{gathered}$	$\begin{aligned} & \text { velucity } \\ & \text { (fpos) } \end{aligned}$	Effective slope	$\begin{gathered} \text { Darey } \\ f \end{gathered}$	Reynolds number
21	4.320	2.820	0.0332	0.362	75300
22	9.800	4.140	0.0352	0.223	122000
23	14.340	4.340	0.0350	0.137	163000
24	20.630	5.630	0.0355	0.161	220000
25	25.340	0.070	0.0354	0.151	272000
20	26.470	6.200	0.0354	0.148	234000
27	35.420	6.720	0.0340	0.137	337000
26	3.390	2.320	0.0353	0.753	33300
23	6.510	2.930	0.0361	0.540	141000
30	3.510	3.570	0.0370	0.420	133000
31	13.700	4.130	0.0365	0.347	253000
32	16.500	4.650	0.0354	0.266	313000
33	24.200	5.080	0.0352	0.264	377000
34	30.300	5.370	0.0352	0.200	433000
35	3.950	2.460	0.0350	0.613	31300
36	1.030	1.720	0.0313	0.693	38000
37	2.330	2.850	0.0335	0.340	22700
30	4.860	3.350	0.0346	0.312	118000
33	3.850	4.460	0.0340	0.217	205000
40	15.200	5.160	0.0341	0.192	279000
41	20.200	5.650	0.0344	0.173	341000
42	24.600	6.040	0.0342	0.169	339000
43	23.000	6.300	0.0346	0.170	375000
44	34.800	6.570	0.0346	0.160	433000
45	0.939	0.600	0.0314	5.180	17000
40	2.950	1.420	0.0310	1.400	450700
47	4.650	1.840	0.0312	0.319	64200
40	3.440	2.640	0.0315	0.539	103000
49	14.390	3.290	0.0312	0.384	153000
50	13.660	3.780	0.0312	0.315	174000

Thapezuidal Shape, Buttom Width $1 . j$ ft, Bed Slope 1%

Data number	Discharge (cfs)	$\begin{gathered} \text { velocity } \\ \text { (fps) } \end{gathered}$	Effective slupe	$\underset{f}{\text { Darey }}$	Reynolds number.
1	0.300	0.600	0.0038	2.080	13100
2	2.820	1.070	0.0037	0.845	29700
3	4.740	1.400	0.0103	0.604	40500
4	3.320	2.050	0.0108	0.359	74700
5	14.630	2.400	0.0111	0.285	37000
6	13.680	2.820	0.0101	0.211	116000
7	24.670	3.030	0.0102	0.130	140000
6	30.000	3.400	0.0102	0.163	153000

Data amber	Discharge (cís)	Velocity (fys)	Effective slupe	$\underset{f}{\text { Darcy }}$	Reynulas number
1	0.033	0.643	0.0237	2.850	0020
2	0.300	1.410	0.0301	0.850	13500
3	0.471	1.310	0.0234	0.512	25500
4	0.634	2.420	0.0230	0.364	44500
5	1.130	3.340	0.0273	0.218	71900
6	1.430	3.580	0.0273	0.222	31300
7	1.600	3.840	0.0279	0.210	100000
8	2.120	4.400	0.0278	0.179	137000
9	2.320	5.170	0.0276	0.150	193000
10	4.880	0.450	0.0267	0.120	323000
11	6.370	7.050	0.0264	0.124	405000
12	7.810	7.630	0.0270	0.121	505000
13	0.300	0.363	0.0233	7.340	2730
14	0.304	0.330	0.0302	1.660	9330
15	0.683	1.620	0.0304	0.644	22400
10	0.440	2.520	0.0300	0.354	40000
17	2.120	3.200	0.0298	0.254	03900
13	2.300	3.740	0.0298	0.217	37000
13	4.800	4.840	0.0303	0.103	167000
20	6.450	5.430	0.0304	0.154	211000
21	7.850	6.000	0.0303	0.145	261000
22	10.600	6.220	0.0310	0.130	345000
23	13.400	7.500	0.0307	0.123	435000
24	0.300	0.563	0.0238	3.610	5250
25	0.636	1.030	0.0296	1.100	12000
20	1.440	1.750	0.0296	0.560	26300
27	2.120	2.270	0.0235	0.338	33600
20	4.800	3.660	0.0234	0.217	33300
23	7.790	4.690	0.0300	0.168	148000
30	13.450	6.120	0.0300	0.131	248000
31	17.100	0.840	0.0234	0.117	313000
32	21.350	7.360	0.0284	0.117	424000
33	24.000	7.480	0.0270	0.115	473000
34	0.300	0.363	0.0292	7.310	3030
35	1.140	1.000	0.0234	1.330	11700
30	2.120	1.530	0.0233	0.669	22000
37	4.340	2.680	0.0234	0.315	55400
33	10.800	4.250	0.0305	0.164	115000
33	19.100	00.150	0.0332	0.118	207000
40	22.000	0.020	0.0310	0.137	251000
41	23.300	0.200	0.0312	0.135	277000

Trapezoidal Shape, Buttom width 4.0 ft , Bed Slupe $.2 \%$

Data number	Discharge (cifs)	$\begin{gathered} \text { Velucity } \\ (\text { fps }) \end{gathered}$	Effective slope	$\underset{f}{\text { Darey }}$	Reynolds number
1	1.180	0.353	0.0183	2.150	13400
2	1.230	0.372	0.0174	1.760	17100

Data number.	Discharge (cfs)	$\begin{gathered} \text { Velocity } \\ \text { (fps) } \end{gathered}$	Effective slope	$\underset{\mathrm{f}}{\text { Darey }}$	feynolds numbe:
3	2.750	0.597	0.0202	0.957	39100
4	4.720	0.613	0.0208	0.624	61300
5	4.750	0.814	0.0192	0.065	51000
6	10.100	1.160	0.0213	3.363	114000
7	14.500	1.400	0.0139	0.262	157000
8	15.100	1.400	0.0185	0.269	124000
3	20.200	1.550	0.0170	0.223	192000
10	25.100	1.640	0.0141	0.177	214000
11	24.700	1.620	0.0144	0.179	173000
12	30.400	1.710	0.0127	0.158	251000
13	34.800	1.710	0.0111	0.144	272000
14	35.700	1.700	0.0103	0.149	214000

