
THESIS 

 

 

 

EVALUATION OF SAMPLING TECHNIQUES TO CHARACTERIZE 

TOPOGRAPHICALLY-DEPENDENT VARIABILITY FOR SOIL MOISTURE 

DOWNSCALING 

 

 

 

 

Submitted by 

 

Kevin Werbylo 

 

Department of Civil and Environmental Engineering 

 

 

 

 

 

In partial fulfillment of the requirements 

 

For the Degree of Master of Science 

 

Colorado State University 

 

Fort Collins, Colorado 

 

Summer 2013 

 

 

Master’s Committee: 

 

 Advisor:  Jeff Niemann 

  

 Tim Green 

 Stephanie Kampf



ii 

 

ABSTRACT 

 

EVALUATION OF SAMPLING TECHNIQUES TO CHARACTERIZE 

TOPOGRAPHICALLY-DEPENDENT VARIABILITY FOR SOIL MOISTURE 

DOWNSCALING 

 

Soil moisture patterns are an important consideration in many catchment-scale hydrologic 

applications. Unfortunately, estimating soil moisture patterns at resolutions that are appropriate 

for these applications (e.g., grid cells with a linear dimension of 10 to 50 m) is difficult. 

Downscaling methods can be used to estimate catchment-scale soil moisture patterns from 

coarser resolution estimates or spatial average soil moisture values. These methods usually infer 

the fine-scale variability in soil moisture using variations in ancillary variables like topographic 

attributes that have relationships to soil moisture. Previously, such relationships have been 

observed in catchments using soil moisture observations taken on uniform grids at hundreds of 

locations on multiple dates, but collecting data in this manner limits the applicability of this 

approach. The objective of this paper is to evaluate the effectiveness of two strategic sampling 

techniques for characterizing the relationships between topographic attributes and soil moisture 

for the purpose of constraining downscaling methods. The strategic sampling methods 

considered are conditioned Latin hypercube sampling (cLHS) and stratified random sampling 

(SRS). Each sampling method is used to select a limited number of locations and/or dates for soil 

moisture monitoring at three catchments with detailed soil moisture datasets (Tarrawarra, 

Satellite Station, and Cache la Poudre). These samples are then used to calibrate two available 

downscaling methods, and the effectiveness of the sampling methods is evaluated by the ability 
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of the downscaling methods to reproduce the known soil moisture patterns at the catchments. 

The results show that cLHS and SRS can characterize the relationships between soil moisture 

and ancillary topographic variables with many fewer locations and dates than previously used. 

For example, when the number of locations for soil moisture monitoring is reduced by 82-90% 

and these locations are only monitored on 3 dates, the explanatory power of the downscaling 

methods frequently only reduces by less than 50%. Furthermore, both strategic sampling 

methods can substantially outperform random sampling when the number of samples is limited. 
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1.0 INTRODUCTION 

Many hydrologic processes are influenced by patterns of volumetric water content in the 

soil (soil moisture). Specifically at the catchment scale, spatial patterns of soil moisture are 

closely related to spatial patterns of erosion (Fitzjohn et al., 1998), crop yield (Green and 

Erskine, 2004), and the magnitude and timing of runoff production (Western, 2001). As such, 

soil moisture is an important consideration in many catchment-scale hydrologic applications 

including flood forecasting, agricultural production, watershed and land management, and 

various military operations. 

Accurately estimating catchment-scale soil moisture patterns at fine spatial resolutions 

(e.g., grid cells with a 10 to 50 m linear dimension) is difficult. Microwave-based remote sensing 

methods are commonly used to estimate soil moisture patterns over large areas, but the 

resolution of the estimated patterns is too coarse for catchment-scale applications. For example, 

from 2002 to 2011, the Advanced Microwave Scanning Radiometer (AMSR-E) produced global 

soil moisture patterns with a spatial resolution of 60 km (Njoku et al., 2003), while the Soil 

Moisture and Ocean Salinity (SMOS) satellite currently produces global soil moisture patterns 

with a spatial resolution of 30 to 50 km (Kerr et al., 2001). Even the planned Soil Moisture 

Active Passive (SMAP) satellite will produce soil moisture patterns with a spatial resolution of 

only 9 to 36 km (Entekhabi et al., 2010). Synthetic aperture radar (SAR) has been proposed to 

estimate soil moisture patterns at resolutions near 10 m (Ulaby et al., 1996), but the ability of 

these methods to accurately characterize soil moisture patterns at the catchment scale has been 

questioned (Western et al., 2001). Alternatively, remote sensing methods utilizing the optical and 

thermal range of the spectrum have been proposed to indirectly estimate soil moisture patterns at 

fine spatial resolutions by first estimating the components of the surface energy balance and then 
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using empirical relationships to estimate soil moisture (Ahmad and Bastiaanssen, 2003; Scott et 

al., 2003). If applied using Moderate-Resolution Imaging Spectroradiometer (MODIS) images, 

this method would provide soil moisture estimates at a 1 km resolution. Recently, a non-invasive 

ground-based method to estimate soil moisture from neutron emissions (Zreda et al., 2008) has 

been proposed and developed as part of the Cosmic-Ray Soil Moisture Observing System 

(COSMOS) project (Shuttleworth et al., 2010), but the resolutions of the estimated patterns are 

still relatively coarse (about 700 m). 

Various methods have been proposed to downscale the coarse-resolution soil moisture 

estimates obtained from remote sensing to a variety of finer resolutions. When applying these 

methods, the desired resolution of the soil moisture estimate is important to consider because 

different factors control spatial and temporal variations in soil moisture at different scales 

(Western et al., 2002). Merlin et al. (2006) developed a method using soil temperature, 

atmospheric conditions, and vegetation information to downscale soil moisture patterns to a 

resolution of 1 km. Statistical methods, one using fractal analysis coupled with observed soil 

texture, vegetation, and terrain ancillary data (Kim and Barros, 2002) and another utilizing 

multifractal analysis (Mascaro et al., 2010; Mascaro et al., 2011), have been proposed to 

downscale soil moisture patterns to resolutions of 825 and 800 m, respectively. Moving to finer 

resolutions, Crow et al. (2000) proposed a method using surface soil dielectric values obtained 

from remote sensing, along with soil texture information, to obtain estimates of soil moisture at 

resolutions as fine as 100 m. Pellenq et al. (2003) estimated soil moisture patterns at resolutions 

as fine as 20 m using a method that incorporates topographic indices and soil depth observations, 

although the accuracy of the estimated patterns was only considered adequate at a resolution of 
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100 m. Furthermore, Temimi et al. (2010) used terrain and vegetation-based indices to 

downscale soil moisture estimates to a resolution of 90 m.  

Methods have also been proposed to downscale soil moisture patterns to fine resolutions 

that are more suitable for catchment-scale hydrologic applications (50 m or finer). Kaheil et al. 

(2008) proposed a method to downscale soil moisture patterns to a 50 m resolution using sparse 

ground observations. Wilson et al. (2005) used fine-resolution topographic attributes, fine-

resolution (10-40 m) in-situ soil moisture observations, and a single spatial average soil moisture 

value on each date to estimate soil moisture patterns with resolutions of 10-40 m. Similarly, 

Perry and Niemann (2007) and Busch et al. (2012) proposed a method using empirical 

orthogonal function (EOF) analysis, fine-resolution (5-15 m) topographic attributes, fine-

resolution (10-40 m) in-situ soil moisture observations, and a single spatial average soil moisture 

value on each date to estimate soil moisture patterns with resolutions of 10-40 m. Recently, 

Coleman and Niemann (2013) proposed a conceptual model known as the Equilibrium Moisture 

from Topography (EMT) model to estimate soil moisture patterns at resolutions of 10-40 m 

using fine-resolution (5-15 m) topographic attributes, fine-resolution (10-40 m) soil moisture 

observations, and a single spatial average soil moisture value on each date. 

Several of these downscaling methods infer the fine-scale variability of soil moisture 

from its relationship to available ancillary variables. For example, soil moisture patterns have 

been shown to be correlated with spatial patterns of topography, vegetation, soil texture, or a 

combination of these variables (Cantón et al., 2004; Gómez-Plaza et al., 2001; Gutiérrez‐Jurado 

et al., 2006; Western et al., 1999). At the catchment-scale, topography has been a widely-used 

ancillary data source (Busch et al., 2012; Coleman and Niemann, 2013; Perry and Niemann, 

2007; Wilson et al., 2005) because of its known influence on soil moisture patterns at this scale 
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(Famiglietti et al., 1998; Western and Grayson, 1999) and its nearly global availability at fine 

resolutions (Welch et al., 1998). Many of these downscaling methods also use in-situ soil 

moisture observations to characterize the relationships between the variations in soil moisture 

and the variations in ancillary data.  These relationship are commonly obtained through linear 

regression (Busch et al., 2012; Perry and Niemann, 2007; Wilson et al., 2005) or parameter 

calibration (Coleman and Niemann, 2013). Busch et al. (2012) found that such relationships are 

catchment-specific, which implies that soil moisture observations need be collected from the 

catchments where the downscaling method will be applied or the relationships need to be 

inferred from knowledge of the physical characteristics of the catchment. In the development of 

most catchment-scale downscaling methods, the in-situ soil moisture observations have been 

collected on uniform grids, which contain hundreds of points on multiple dates (Busch et al., 

2012; Coleman and Niemann, 2013; Perry and Niemann, 2007; Wilson et al., 2005). Collecting 

data in this manner is expensive and time-consuming, which limits the applicability of such 

methods.  

Several studies have considered more efficient sampling techniques to observe 

catchment-scale soil moisture behavior, but these studies aim to capture catchment-average 

conditions. In early work, Vachaud et al. (1985) suggested that locations exist within a 

catchment that are consistently similar to the catchment-average soil moisture. It was proposed 

that the temporal behavior of the catchment-average soil moisture could be monitored using 

observations only at these locations. Grayson and Western (1998) referred to these locations as 

catchment average soil moisture monitoring (CASMM) sites. Many other researchers have 

performed related work by either attempting to estimate a catchment-wide spatial average soil 

moisture using point-scale observations from a limited number of locations (Brocca et al., 2009; 
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Martinez-Fernandez and Ceballos, 2005) or by attempting to validate coarse-resolution remote 

sensing estimates by upscaling point soil moisture observations (Cosh et al., 2008; Cosh et al., 

2006; Crow et al., 2012; Crow et al., 2005).  

Other sampling techniques have been proposed to efficiently capture the variability of 

catchment conditions, but such techniques have not been applied to soil moisture. Conditioned 

Latin hypercube sampling (cLHS) (Minasny and McBratney, 2006) and stratified random 

sampling (SRS) (Avery and Burkhart, 2001) aim to determine monitoring locations for the 

variable of interest based on knowledge of ancillary variables. The goal of both methods is to 

identify sampling locations so that they include a diverse set of values for the ancillary variables.  

cLHS and SRS are similar in that they each divide the observed range of each ancillary variable 

into bins and then select the observation locations from the locations within each bin. These 

methods differ in how the observed ranges of the ancillary variables are divided into bins. cLHS 

divides the range of the ancillary variable into equally probable bins such that each bin contains 

the same number of observations. For SRS, different methods have been used to determine the 

bins (McKenzie and Ryan, 1999; Worsham et al., 2012). Here, we focus on the case where SRS 

divides the range of each ancillary variable into bins that cover an equal fraction of the full 

range, regardless of the number of observations within each bin. Both cLHS and SRS are 

potentially more efficient than uniform or random sampling because they aim to reduce 

redundancy in the information gathered at the sampling locations.  Minasny and McBratney 

(2006) evaluated cLHS in the context of soil mapping and found that sample histograms created 

from cLHS better replicate the known histograms of topographic, vegetative, and land use 

ancillary variables than those created from random sampling and a stratified sampling method. 

Recently, Worsham et al. (2012) evaluated the use of cLHS and a SRS method by their ability to 
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improve spatial estimates of soil carbon content. Both methods outperform random sampling 

when sample sizes are limited, but cLHS does not consistently outperform SRS in that context. 

The SRS method they used stratifies the landscape into units based on soil type and land use 

data. Samples are then selected randomly from each spatially-contiguous unit in order to sample 

across the ranges of the ancillary variables as well as the spatial extent of the region. McKenzie 

and Ryan (1999) also used an SRS method (Brus and de Gruijter, 1997) with climate and 

topographic ancillary variables to make spatial predictions of soil depth, total phosphorus, and 

total carbon. The SRS method they used only focuses on adequately covering the ranges of the 

ancillary variables (not the spatial extent of the area of interest).  

The objective of the present paper is to assess the effectiveness of two strategic sampling 

techniques at identifying the relationships between topographic attributes and soil moisture for 

catchment-scale downscaling applications. Two strategic sampling techniques are considered:  

the cLHS method proposed by Minasny and McBratney (2006) and an SRS method that is 

similar but not identical to the SRS technique used by McKenzie and Ryan (McKenzie and 

Ryan, 1999). These sampling methods are coupled with two downscaling methods: the EMT 

model (Coleman and Niemann, 2013) and the EOF method (Busch et al., 2012). The ancillary 

variables that are required by these downscaling methods (various topographic attributes) are 

used by the sampling techniques to identify locations where the soil moisture should be 

monitored.  Then, the soil moisture values at the monitored locations are used to define the 

relationships between the topographic attributes and soil moisture in the downscaling methods.  

The downscaling methods are then used to produce estimates of the catchment-scale soil 

moisture patterns.  Ultimately, the performance of the sampling methods is evaluated by the 

ability of the two downscaling techniques to reproduce the actual catchment-scale soil moisture 
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patterns at three application catchments (Tarrawarra, Satellite Station, and Cache la Poudre) 

when supplied with data from the sampling methods. As a secondary objective in this study, the 

EMT model and EOF method are compared under a variety of the data-limited conditions. 
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2.0 METHODOLOGY 

2.1 Sampling Methods 

The cLHS method proposed in Minasny and McBratney (2006) can be summarized as 

follows. To start, the values of the ancillary variables at all locations on the desired fine-

resolution grid within the region of interest are organized into a matrix X of size N by K where N 

is the number of locations and K is the number of ancillary variables observed at each location. 

Any row in X represents a location in the catchment, and each column contains the values for a 

particular ancillary variable. In the present application, the ancillary variables are various 

topographic attributes that are required by the downscaling methods (discussed in more detail 

later). Using the values in each column of X, each of the K ancillary variables is divided into n 

bins where n is the number of desired samples (i.e. locations). For a given ancillary variable, the 

limits for the bins are defined so that each bin contains an equal number of values of the ancillary 

variable. Figure 1a displays a hypothetical example where a single ancillary variable is used and 

the range of the ancillary variable has been divided into 3 bins in this manner.  A sample of 

locations of size n is then randomly selected from X producing a matrix x of size n by K that 

contains the values of the ancillary variables at the selected locations. A particular row of x 

represents one of the selected locations. An associated matrix η of size n by K is then created. An 

element of η is associated with a particular bin number (1 to n) and a particular ancillary variable 

(1 to K).  The element contains the number of locations in x that occur within that bin for the 

associated ancillary variable. If the sample represents a perfect Latin hypercube of X, each 

element of η would have a value of one, which would imply that the sample locations produce 

one observation in each of the n bins for all K ancillary variables. When considering multiple 

ancillary variables, a perfect Latin hypercube often cannot be obtained because certain 
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combinations of ancillary variables do not exist at any single location (e.g., a location with large 

contributing area and a large slope). 

Minasny and McBratney (2006) developed an algorithm in MATLAB (Mathworks, 

2011) to search through X to find the sample that best approximates the perfect Latin hypercube 

of X. The best sample is found by minimizing an objective function that includes two terms.  The 

first term is used to determine how well a trial set of sample locations and the associated 

ancillary variables represents the perfect Latin hypercube.  The second term measures how well 

the cross-correlation of the elements in X is represented by that of the elements in x. This ensures 

that the correlation structure of the ancillary variables at all locations on the fine-resolution grid 

is well represented by those at the sampled locations. The first term of the objective function O1 

is calculated by summing the absolute values of the differences between each element of η and 

one: 

     ∑ ∑ | (  
       

   )   | 
   

 
  (1) 

where  (  
       

   ) represents the number of values of an ancillary variable xj that fall into 

a bin with quartile bounds of   
  and   

    (from Minasny and McBratney, 2006). Thus, if x 

represents a perfect Latin hypercube of X, each element of η would be equal to one and the first 

term of the objective function would equal zero. The second term of the objective function O2 is 

determined by summing the absolute values of the differences between the elements of the 

correlation matrix of X and those of the correlation matrix of x: 

     ∑ ∑ |       |
 
   

 
  (2) 
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where cij represents an element of the correlation matrix of X and tij represents an element of the 

correlation matrix of x (from Minasny and McBratney, 2006).  Thus, if the correlation of the 

ancillary variables in the population matches the correlation of the ancillary variables in the 

sample, this term will be zero. Both terms of the objective function include coefficients (w1 and 

w2) that can be specified to control the importance of that term. For the present application, the 

final form of the objective function is: 

             (3) 

Minasny and McBratney (2006) recommended that both coefficients be set to one for general 

applications of cLHS. If the ancillary variables include categorical data like land-use 

classifications, the objective function would have a third term. However, this third term is not 

required in the present application. The optimization is performed with simulated annealing 

(Press, 1992).  In each iteration, locations in x are replaced with other candidate locations from X 

to minimize the objective function. Minasny and McBratney (2006) stopped the algorithm after 

50,000 iterations, which was also found to be sufficient for the present application.  

The SRS method used in the present study is comprised of the following steps. First, like 

cLHS, the values of the ancillary variables at the locations on the fine-resolution grid in the 

region of interest are organized into a matrix X of size N by K. If the region and ancillary 

variables are the same, then the X matrix will be the same for the cLHS and SRS methods. 

Second, the ranges of the ancillary variables in X are examined to determine the appropriate 

limits for the bins that will be used to divide those ranges. If p bins are selected, then the limits 

are set so that each bin covers an equal fraction (1/p) of the observed range of the ancillary 

variable. Figure 1b displays a hypothetical scenario where the values of a single ancillary 
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variable have been divided into three bins in this manner. Next, a matrix Y of size N by K is 

created.  Each element of Y contains a number that identifies the bin in which the associated 

value of the ancillary variable in X falls.  These numbers are referred to as individual identifiers.  

Notice that for any given location, it is possible that the value for one ancillary variable falls in 

the smallest bin for that ancillary variable, while the value of another ancillary variable falls in 

the largest bin for its ancillary variable. Thus, a given row in Y can have different individual 

identifiers in each column. Next, a matrix Z of size N by 1 is created. This matrix contains the 

values of a joint identifier. The joint identifier is a number that refers to a unique combination of 

individual identifiers. Thus, the value in a row of Z identifies the particular combination of 

individual identifiers that occurs at that location. Once Z has been created, locations with similar 

combinations of ancillary variable values can be identified because they have identical joint 

identifiers. These locations are said to be part of the same land unit. Similar to cLHS, not all 

possible land units (combinations of ancillary variables) necessarily exist in a particular region of 

interest. The last step in the SRS method is to select the sampling locations. To do this, one 

location from each land unit is randomly selected, regardless of the number of locations in that 

unit. Thus, the number of sampling locations is equal to the number of land units that are present 

in the region of interest. Unlike cLHS, the number of sample locations n is not specified by the 

user.  Instead, the user specifies the number of bins for each ancillary variable p. 

In this paper, cLHS and SRS are compared to random sampling, which is used as the 

control case. This approach is similar to other studies that evaluated the effectiveness of strategic 

sampling methods (Minasny and McBratney, 2006; Worsham et al., 2012). Random sampling 

was selected instead of uniform sampling because the number of sampling locations can be 

controlled more directly.  In addition, it was determined that, at least for small numbers of 
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samples, uniform and random sampling yield similar results. To perform random sampling, the 

desired number of samples n is specified by the user. Then, n locations are randomly selected 

without replacement from the locations on the fine-resolution grid within the region of interest. 

No ancillary variables are used to assist in the sampling process.  

2.2 Downscaling Methods 

The EMT model is a conceptual soil hydrology model that estimates soil moisture 

patterns within a catchment by inferring the roles of vadose zone processes from topographic 

attributes. A detailed derivation and description of the model is provided by Coleman and 

Niemann (2013). The model was derived by considering the soil water balance for the land that 

drains through the edge of a digital elevation model (DEM) grid cell.  In deriving this water 

balance, it was assumed that the spatial variation of soil moisture within each coarse-resolution 

grid cell can be inferred from equilibrium conditions (thus hysteresis is disallowed). The model 

includes infiltration, evapotranspiration, lateral flow, and deep drainage. These hydrologic 

processes are simulated using conceptual expressions that involve four topographic attributes:  

slope, curvature as defined by Heimsath et al. (1999), specific contributing area (SCA), and the 

potential solar radiation index (PSRI) on the summer solstice (Dingman, 2002). To apply the 

model, eleven soil, vegetation, and climatic parameters must be calibrated using local soil 

moisture observations from the catchment. After the parameters have been calibrated, the EMT 

model can be used to estimate the fine-resolution soil moisture patterns in a catchment from the 

spatial average soil moisture for the catchment and topographic attributes at the same fine 

resolution. 
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The EOF method estimates soil moisture patterns within a catchment by empirically 

relating local soil moisture values to topographic attributes. The details of the method 

development and application procedure are provided by Busch et al. (2012). The EOF method 

relies on an EOF decomposition of a soil moisture dataset that includes observations at multiple 

locations within the catchment on two or more dates.  The decomposition produces a series of 

time-invariant spatial patterns of variation (EOFs), a series of expansion coefficients (ECs) that 

measure the importance of each EOF on each date, and the spatial average soil moisture on each 

date. Together, these elements can be used to reconstruct the original dataset.  When 

downscaling with the EOF method, only the EOFs that are determined to be statistically 

significant patterns of variation are retained. Then, a stepwise multiple linear regression is 

performed to estimate the retained EOFs at any location from the topographic attributes of slope, 

cosine of the aspect, SCA, natural log of the SCA, wetness index (Beven and Kirkby, 1979), 

various curvatures, and PSRI. The curvatures include the profile, plan, and tangential curvatures, 

as well as the Laplace curvature (Mitasova and Hofierka, 1993). Thus, while the EMT model 

uses four predetermined topographic attributes to estimate the soil moisture pattern, the EOF 

method considers 10 topographic attributes and uses multiple linear regressions to determine the 

subset of attributes that are statistically relevant and thus used for a particular case. Piecewise 

linear relationships are used to estimate the ECs that are associated with the retained EOFs on 

any date from the spatial average soil moisture. After the regressions and piecewise functions 

have been developed, the EOFs can be estimated from the topographic attributes at any location 

(even if soil moisture observations are not available at that point), and the associated ECs can be 

estimated for any date from the spatial average soil moisture.  The spatial average (or a grid of 

spatial averages) is always known in a downscaling application.  Thus, the EOF method can be 
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used to estimate fine-scale soil moisture patterns in a catchment from the spatial average soil 

moisture and the fine-scale topographic attributes.  

 

2.3 Catchment Descriptions 

The methods of this study are applied at three catchments where large soil moisture 

datasets are available and topography has been shown to influence the spatial variability of soil 

moisture. The first catchment is Tarrawarra, which is located near Melbourne, Australia 

(Western and Grayson, 1999), covers an area of 10.5 ha, and has a total relief of about 30 m. The 

climate at Tarrawarra is temperate with an average annual precipitation of 82 cm and an average 

annual potential evapotranspiration (PET) of about 83 cm. The vegetation is homogeneous 

grasses, and the land is predominately used for grazing. The soil is fairly deep with a clay-loam 

A horizon extending as deep as 40 cm and a clay B horizon that extends to depths beyond 100 

cm at some locations. The terrain attributes that are used in this study were calculated from an 

available 5 m DEM that was originally developed from a land survey (Western and Grayson, 

1998). In-situ soil moisture observations are available from time-domain reflectometry (TDR) in 

the top 30 cm of the soil.  We use only the 454 locations that are available on all 13 sampling 

dates, which span a total of 14 months. The observations were taken on a uniform grid with a 10 

m by 20 m spacing over the entire catchment. 

It is worth noting a few characteristics of the Tarrawarra soil moisture patterns that might 

influence the performance of the sampling methods.  Among the three catchments considered, 

the soil moisture at Tarrawarra has the strongest dependence on topography (Busch et al., 2012). 

In addition, the observed soil moisture patterns at Tarrawarra are temporally unstable, meaning 
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that the spatial structure of the soil moisture patterns changes through time. During dry 

conditions, locations on the hillslopes that are oriented away from the sun tend to be wetter than 

locations on the hillslopes oriented towards the sun (Grayson et al., 1997). This structure has 

been referred to as a hillslope-dependent pattern (Coleman and Niemann, 2013) and has been 

shown to be correlated with PSRI (Busch et al., 2012). Figure 2a shows the histogram of PSRI 

values at Tarrawarra, which is approximately uniform. Figure 2b plots the soil moisture on a date 

with a hillslope-dependent pattern (28 March 1996) against PSRI. Figure 2c shows the histogram 

of soil moisture on this same date.  The soil moisture values are roughly normally distributed 

with a slight negative skew. Together, Figures 2a-2c suggest that large values of soil moisture 

usually occur at large values of PSRI, which tend to be relatively abundant in the catchment. 

During wet conditions at Tarrawarra, locations in the valley bottoms are generally wetter than 

locations on the hillslopes (Grayson et al., 1997). This structure has been called a valley-

dependent pattern (Coleman and Niemann, 2013) and has been shown to be correlated with the 

natural log of SCA (Busch et al., 2012). Figure 2d shows the histogram of the natural log of SCA 

at Tarrawarra. Most values for this ancillary variable are small, but a few values are much larger 

than the rest, which produces the tail on the right side of the histogram. Figure 2e shows the 

relationship between the natural log of SCA and soil moisture on a date with a valley-dependent 

soil moisture pattern (22 April 1996). The locations with the rare large values of the natural log 

of SCA also have large values of soil moisture. A few locations with smaller values of the 

ancillary variable are also wet. Figure 2f shows the histogram of soil moisture on the same date.  

This histogram also has a tail on the right, but that tail includes more locations.  Together, 

Figures 2d-2f suggest that wet locations tend to occur when the natural log of SCA is large, and 

that such locations are relatively rare in the catchment. This property contrasts with the hillslope-
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dependent case and might make observing the relationship between topography and soil moisture 

more difficult for valley-dependent patterns. 

The second application catchment is Satellite Station, which is located near Auckland, 

New Zealand and was part of the Maharungi River Variability Experiment (Wilson et al., 2003). 

Satellite Station is a 60 ha catchment with a total relief of 50 m. Similar to Tarrawarra, the 

catchment is mainly used for grazing. The climate is warm and humid with an average annual 

precipitation of 160 cm and an average annual PET of 130 cm. The soil at Satellite Station can 

be up to a meter deep and varies in texture from the hillslopes to the valley bottoms (Woods et 

al., 2001). The soil on the hillslopes is silty clay loam, while the soil in the valley bottoms is 

predominately clay. The terrain indices for Satellite Station were calculated from a 10 m DEM. 

In-situ soil moisture observations are available for the top 30 cm of the soil using a TDR probe. 

We use only the 322 locations that were collected on all 6 dates, which span a total of 20 months 

from April 1998 to May 1999. The observations are on a uniform grid that has a 40 m by 40 m 

spacing.  

The soil moisture patterns at Satellite Station have substantial differences from 

Tarrawarra that might affect the performance of the sampling methods. Overall, the dependence 

of soil moisture on topography is weaker at this catchment (Busch et al., 2012).  The soil 

moisture patterns at Satellite Station are temporally stable valley-dependent patterns. Figure 2g 

shows the histogram of the natural log of SCA at Satellite Station.  Even more than at 

Tarrawarra, the histogram exhibits a noticeable tail on the right side.   Figure 2h shows the 

dependence of soil moisture on the natural log of SCA for 22 November 1998. Because 

topography plays a weaker role in determining soil moisture variations at Satellite Station than at 

Tarrawarra, more scatter is seen here.  Figure 2i shows the histogram of soil moisture on the 
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same date.  Like the histogram for the ancillary variable, it has a tail on the right side. Together, 

Figures 2g-2i suggest that the variation in soil moisture tends to be concentrated at the few 

locations in the catchment with very large SCA values, similar to the valley-dependent pattern at 

Tarrawarra. 

The third application catchment is Cache la Poudre, which is a mountain catchment 

located near Rustic, Colorado in the Cache la Poudre River basin (Coleman and Niemann, 2012; 

Lehman and Niemann, 2008). The catchment covers an area of about 8 ha and has a total relief 

of 124 m. The climate at Cache la Poudre is semiarid with an average annual precipitation of 

about 40 cm and an average annual PET of about 93 cm. The vegetation within the catchment is 

aspect dependent. The north-facing hillslopes are part of a coniferous forest, while the south-

facing hillslopes are covered with deciduous shrubs. The soil at Cache la Poudre can be 

described as a sandy loam and is usually shallow as the terrain consists of fairly steep slopes with 

several granite outcrops. The soil on the north-facing hillslopes has more litter cover and organic 

matter than the soil on the south-facing hillslopes. The terrain indices used in this study were 

calculated from a 15 m DEM developed from a land survey. Due to the shallow soils, in-situ soil 

moisture observations were taken only in the top 5 cm of the soil using a TDR. The observations 

are available at 350 locations for all 9 sampling dates, which span 3 months from April to June 

2008. The observations are on a uniform grid with a 15 m by 15 m spacing.  

The soil moisture patterns at Cache la Poudre are also distinctive from the previous 

catchments. Overall, the dependence on topography at this site is the weakest among the three 

catchments considered (Busch et al., 2012).  Furthermore the spatial patterns of soil moisture at 

Cache la Poudre are temporally stable hillslope-dependent patterns. The histogram of PSRI 

values observed at Cache la Poudre is shown in Figure 2j where it can be seen that they roughly 
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follow a uniform distribution. A plot of soil moisture on 22 April 2008 against PSRI values is 

shown in Figure 2k and indicates a moderately-strong negative linear relationship.  Figure 2j 

shows that the soil moisture values on this date are approximately normally distributed. 

Together, Figures 2j-2l suggest that high and low values of PSRI are relatively abundant, and 

they tend to produce the high and low values of soil moisture, similar to the hillslope-dependent 

pattern at Tarrawarra. 
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3.0 RESULTS AND DISCUSSION 

Soil moisture monitoring strategies are identified using each of the sampling methods for 

three different scenarios: location-limited, date-limited, and location-and-date-limited. For the 

location-limited scenario, the sampling methods are used to select a limited number of locations 

in a catchment using the topographic attributes that are used by each downscaling method as 

ancillary variables. Only the observed soil moisture values at the selected locations (on all 

sampling dates) are used to calibrate the downscaling method. For the EMT model, these 

observations are used to calibrate the model parameters.  For the EOF method, the sampled soil 

moisture dataset is decomposed using EOF analysis, and the multiple linear regressions and 

segmented linear relationships are developed for the EOFs and ECs, respectively. For the date-

limited scenario, all available locations are sampled but only on a limited number of dates. In this 

scenario, the spatial average soil moisture is viewed as an ancillary variable (the only ancillary 

variable).  Different dates have different values for the spatial average soil moisture, so this 

ancillary variable can be used to identify sampling dates. For the combined location-and-date-

limited scenario, soil moisture is sampled at a limited number of locations and those locations are 

only observed for a limited number of dates.  In this case, both the topographic attributes and the 

spatial average soil moisture are considered as ancillary variables.  

For cLHS, the number of samples can be specified directly, but for SRS, the number of 

samples is controlled indirectly by varying the number of bins. For the location-limited scenario, 

Table 1 shows the corresponding number of sample locations as the number of bins is varied at 

the three catchments. The number of locations corresponds to the number of land units that occur 

in each catchment.  For a given number of bins, the EMT model yields many fewer sampling 

locations than the EOF method because the EMT model only uses 4 topographic attributes while 
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the EOF method considers 10. Even when the number of bins is small, the implied number of 

samples can be quite large for the EOF method because so many topographic attributes are 

considered. For the date-limited scenario, the number of bins is equal to the number of sampled 

dates for each downscaling model because observations are available in each bin for the number 

of bins considered and the same ancillary variable is used with each model. The location-and-

date-limited scenario is simply a combination of the previous two scenarios in that the number of 

bins is specified, which determines a corresponding number of locations, while the number of 

dates is specified directly. 

For any given number of sampling locations and/or dates, the selection process is 

repeated numerous times to produce multiple realizations.  Then, the average performance for a 

given number of samples is assessed. The number of realizations is chosen so that the average 

performance does not substantially change with the addition of new realizations. Through trial 

and error it was determined that the EOF method requires about 100 realizations for the average 

model performance to stabilize, but the EMT model requires only about 50 trials for its average 

performance to stabilize. The EMT model likely requires fewer samples because it has fewer 

parameters (i.e. degrees of freedom).  For each realization, the downscaling method is used to 

estimate the soil moisture value at all locations and all dates. Both sampled and unsampled 

locations are used in the evaluation because neither the EMT model nor EOF method necessarily 

reproduce the observed soil moisture value at the sampled locations.  The following three 

subsections describe the results of the three sampling scenarios. 
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3.1 Location-Limited Scenario 

Figure 3 presents the results for the location-limited scenario at Tarrawarra. To generate 

the figure, the model performance is quantitatively evaluated using the Nash-Sutcliffe 

Coefficient of Efficiency (NSCE) (Nash and Sutcliffe, 1970). The NSCE has a maximum 

possible value of one, which would imply that the downscaled pattern perfectly matches the 

observed pattern. Values greater than zero indicate that the downscaled pattern is a better 

estimate of the observed pattern than simply using the observed spatial average as the estimate. 

For a given number of sampled locations, the NSCE is calculated for all available dates and then 

averaged to produce a single average NSCE value for one realization. This process is then 

repeated for the 50 or 100 realizations to produce an overall average NSCE, which is displayed 

in Figure 3. This process was repeated using the root mean squared error (RMSE) and mean 

absolute error (MAE) as alternative measures of performance. These metrics yielded similar 

results that lead to the same conclusions.  

Figure 3a shows the average performance of each of the sampling methods when coupled 

with the EMT model. For this part of the figure, the spatial average soil moisture values that are 

supplied to the EMT model were determined by averaging the soil moisture values at the 

sampled locations. For all three sampling methods, the average NSCE increases rapidly with the 

sample size until about 50 observations are collected.  After this point, additional samples result 

in much smaller gains in performance. When the number of sampled locations is less than 38, 

both of the strategic sampling methods consistently outperform random sampling. Furthermore, 

when the number of sampled locations is less than 22, SRS slightly outperforms cLHS. For 

example, when 9 locations are selected, the average NSCE values for random sampling, cLHS, 

and SRS are 0.07, 0.11, and 0.15, respectively, indicating a clear advantage for the strategic 
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sampling methods. When the number of sampled locations is 38, the average NSCE values for 

random sampling, cLHS, and SRS are 0.26, 0.29, and 0.25, respectively, so an advantage is only 

seen for cLHS. In fact, when the number of sampled locations is between 38 and 162, random 

sampling consistently outperforms SRS. The advantage is largest when the number of sampled 

locations is between 38 and 80. Overall, when the number of sampled locations is greater than 

38, cLHS is consistently the best performing sampling method. Eventually, the average NSCE of 

each of the sampling methods plateaus at a value of 0.30 at Tarrawarra, which is the average 

NSCE when soil moisture observations at all locations on all available dates are used to calibrate 

the EMT model (Coleman and Niemann, 2013). Once the NSCE values start to approach 0.30 for 

the EMT model at Tarrawarra, the associated average RMSE and MAE values of the estimated 

patterns are 0.028 v/v and 0.021 v/v, respectively. 

Results when the EOF method is used in the same analysis are shown in Figure 3b. In this 

case, the average NSCE increases rapidly with the sample size until reaching about 55 locations.  

The strategic sampling methods significantly outperform random sampling when the number of 

sampled locations is less than 55. The strategic sampling methods continue to slightly, but 

consistently, outperform random sampling until the number of sampled locations increases to 

about 105. In fact, these results suggest that when the number of sampled locations is less than 

about 55, the only feasible way to apply the EOF method is to use the strategic sampling 

methods. With 15 sampling locations, for example, the average NSCE value for cLHS is 0.12, 

but the average NSCE value for random sampling is -2.22, indicating that the estimated patterns 

are unrealistic. An average NSCE value is not given for SRS because the binning cannot yield 

fewer than 43 locations when coupled with the EOF method. Overall, the average performance 

of cLHS and SRS are nearly identical in Figure 3b. Eventually, the average NSCE of each of the 
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sampling methods plateaus at a value of 0.35 at Tarrawarra, which is the average NSCE value 

when soil moisture observations at all locations and dates are used in the construction of the EOF 

method (Busch et al., 2012). Once the NSCE values start to approach 0.35 for the EOF method at 

Tarrawarra, the associated average RMSE and MAE values of the estimated patterns are 0.027 

v/v and 0.020 v/v, respectively. 

Comparing the results in Figures 3a and 3b allows a comparison of the EMT model and 

EOF method when they are calibrated with soil moisture observations from limited locations. 

The random sampling case allows the most direct comparison because the same random 

locations were used in both cases (the other sampling methods are based on different sets of 

topographic attributes). It can be seen that the EMT model significantly outperforms the EOF 

method when the number of sampled locations is less than 55, while the EOF method 

outperforms the EMT model when the number of sampled locations is greater than 55. For small 

datasets, the EMT model is likely superior because it is based on a physical description of vadose 

zone hydrology that helps constrain the model behavior. For large datasets, the EOF model is 

likely superior because its empirical approach allows it to better reproduce the observed 

behavior. 

In the above analysis, the spatial average soil moisture was estimated from the soil 

moisture values at the sampled locations. However, because the context for this analysis is 

downscaling, it is possible that the spatial average is known from other sources (the coarse grid 

input would be equivalent to a grid of spatial averages). To consider this situation, the 

performance of the sampling methods is assessed when the true spatial average soil moisture 

value is used as the input to the downscaling method. Specifically, the spatial average soil 

moisture value was determined by averaging all of the available soil moisture values in the 
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catchment (not just the values at the sampled locations). The results for the EMT model are 

shown in Figure 3c. For every number of sampled locations, the performance of the sampling 

methods increases when the downscaling method is supplied with the true spatial average. The 

increase is largest when the number of sampled locations is very small. For example, when 9 

locations are sampled, the average NSCE values for random sampling, cLHS, and SRS are 0.17, 

0.19, and 0.25, respectively. This is an increase in average NSCE of 0.10, 0.08, and 0.10, 

respectively, from the results when the spatial average was estimated (Figure 3a). Additionally, 

the performance for SRS still becomes worse than that of random sampling when the number of 

sampled locations is between 38 and 80 if the true spatial average is supplied to the EMT model, 

but this difference is substantially reduced compared to the case when the spatial average is 

estimated.  

Figure 3d shows the equivalent analysis when the EOF method is used. Here, the increase 

in model performance is less than what was seen with the EMT model. For example, when 15 

locations are sampled using cLHS, the average NSCE of the EOF method is 0.16, an increase of 

only 0.04 from when the spatial average was estimated from the sampled locations. For SRS and 

random sampling, the increase in model performance is even smaller. These results indicate that 

when selecting locations to monitor soil moisture for the purpose of calibrating the EMT model, 

it is more important to select locations that will yield an accurate estimate of the spatial average 

soil moisture than when selecting locations to construct the EOF method. Comparing the EMT 

model (Figure 3c) and EOF method (Figure 3d) when random sampling is used and the true 

spatial average is provided to each, it can be seen that the EMT model performs best when the 

number of sampled locations is less than 70, and the EOF method performs best when the 

number of sampled locations is greater than 70. 
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When the true spatial average soil moisture is provided to the downscaling methods, it 

changes the requirements for successful sampling.  The sampling methods no longer need to 

provide a reliable estimate of the spatial average; they only need to characterize the relationships 

between the topographic attributes and soil moisture.  Figures 4a-4b evaluate how well the 

sampling methods estimate the spatial average soil moisture. Specifically, for each realization, 

the relative error in the estimated spatial average soil moisture was calculated on all dates and 

then averaged to get the mean relative error for that realization.  Then, the average mean relative 

error was calculated from all the realizations for a given number of samples. These values are 

plotted in Figure 4 for each sampling method. 

Figure 4a shows the average mean relative error when the topographic attributes from the 

EMT model are used as ancillary variables in the sampling methods. In general, the estimated 

spatial averages are accurate as the average mean relative error is less than 0.025, or 2.5%, for all 

numbers of sampled locations. In considering volumetric soil moisture values, this means that on 

average each of the sampling methods estimates the spatial average soil moisture with an 

accuracy of greater than 0.012 v/v for all numbers of sampled locations. In nearly every instance, 

the estimate from cLHS is more accurate than the estimate from random sampling, and the 

estimate from random sampling is more accurate than the one from SRS.  SRS performs poorest 

because it samples approximately uniformly across the entire range of each topographic attribute, 

regardless of how the observed values are distributed across that range. The problem with this 

approach can be seen in Figure 2e.  For the case shown in that figure, SRS would obtain samples 

at large values for the natural log of SCA in order to characterize the relationship between this 

variable and soil moisture.  However, these large values are rare (see Figure 2d). Thus, when this 

sample is used to estimate the spatial average soil moisture, it can produce noticeable errors. This 
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problem does not occur at the smaller samples sizes in Figure 4 because the number of bins is not 

large enough to force sampling at the extremes of the histogram. It also does not occur with 

random sampling or cLHS because these methods respect the distribution of the topographic 

attributes and thus better represent the distribution of soil moisture. These results also explain 

why the performance of SRS lags behind that of cLHS and random sampling at intermediate 

numbers of sampled locations when the spatial average is estimated but does less so when the 

true spatial average is supplied. It is also interesting to note that such small errors in the estimate 

of the mean can have a substantial negative influence on model performance. Nearly identical 

results are shown in Figure 4b for the sampling methods when the topographic attributes from 

the EOF method are used as ancillary variables. 

Figure 4c-4d evaluate how well the observations at the sampled locations estimate the 

value of the spatial variance in soil moisture. It is important to note that here we are considering 

the estimated value of the variance and not the spatial variability of the soil moisture pattern as is 

considered throughout this study. It is possible that for some hydrologic applications (e.g., a 

hydrologic model input), that the structure of the soil moisture pattern cannot be specified but the 

variance of the pattern can be specified. In this case it would be useful to know if the results 

shown here also pertain to the estimated variance. As such, the mean relative error in the 

estimate of the value of the spatial variance was evaluated using the same methods that the error 

in the value of the estimated spatial average was evaluated. In general, it can be seen in Figure 

4c-4d that the cLHS method provides the most accurate estimate of the spatial variance, followed 

by the random sampling and SRS methods. These results agree with those shown in Figure 4a-

4b, although the mean relative error of the estimated variance is always much larger than that of 

the estimated spatial average. These results are potentially useful in other applications, but 
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because the value of the variance in soil moisture is not needed in the EMT model or EOF 

method, they will not be expanded on further.    

Next, the consistency in the performance of the sampling methods is evaluated. Ideally, a 

sampling method provides not only good average performance for a given number of samples 

but also consistent performance between individual realizations.  The consistency of 

performance is analyzed by calculating the variance among the 50 or 100 average NSCE values 

for each selected number of samples (Figure 5). Figures 5a and 5c display the results of this 

analysis when the sampling methods are coupled with the EMT model and the estimated and true 

spatial averages are used, respectively.  Figures 5b and 5d display the equivalent results when the 

EOF method is used.  In every case shown in Figure 5, the performance of the strategic sampling 

methods is less variable (i.e. more consistent) than the performance of random sampling. This 

difference is most pronounced for the EOF method where random sampling produces very 

unreliable performance when small numbers of locations are sampled. These results show that 

the inclusion of topographic ancillary variables in the sampling method helps avoid samples that 

produce unrealistic soil moisture patterns.  Overall, cLHS and SRS provide similar consistency 

in model performance. However, if fewer than about 40 locations are selected, the EMT model 

performance is more reliable if locations are chosen using SRS. If the number of sampled 

locations is greater than 40, the performance is more reliable if the locations are selected using 

cLHS. Furthermore, the EMT model performance is much more reliable than the EOF method 

performance. This reliability likely arises from the physically-based constraints that are included 

in the EMT model.  For example, the EMT model limits the soil moisture estimates to be less 

than or equal to the calibrated porosity, but the EOF method includes no such limitation. Thus, 
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the EOF method can produce obviously inaccurate soil moisture values if the sampled locations 

are not representative of the range of conditions observed at the catchment. 

Figure 6 displays soil moisture patterns produced by the EMT model from the most and 

least accurate samples when it is calibrated using 9 and 38 locations from each of the sampling 

methods. Here, the most and least accurate samples refer to the sets of both 9 and 38 locations 

from each sampling method that produce the highest and lowest average NSCE for all available 

dates. The soil moisture pattern from 27 September 1995 is shown for each case as an example 

(the observed pattern is in Figure 6b) with the associated sample locations marked on each 

pattern. Comparing the patterns from the most accurate samples in Figures 6c, 6d, and 6e, the 

estimated patterns all appear very similar. Also similar are the NSCE values of the shown 

patterns, which are 0.52, 0.46, and 0.53 for random sampling, SRS, and cLHS, respectively. 

However, when examining the patterns from the least accurate set of 9 locations in Figures 6f, 

6g, and 6h, the estimated patterns have noticeable differences. The NSCE values of these 

patterns are -0.42, 0.20, and -0.01 for random sampling, SRS, and cLHS, respectively. These 

results are consistent with the earlier figures, which showed that SRS was the most accurate and 

reliable method when the number of samples was very small (see Figures 3a and 5a).  These 

results suggest that the difference in performance between the sampling methods is not due to 

differences in the best estimates from the sampling methods but in the worst estimates. Similarly, 

it suggests that the variability in the performance of the sampling methods is also associated with 

variations in the poorest performing cases. When the number of sampled locations is increased to 

38, the NSCE of the least accurate estimates for each of the sampling methods is more similar.  

Specifically, the NSCE values of the patterns shown in Figures 6l, 6m, and 6n are 0.51, 0.48, and 

0.58 for random sampling, SRS, and cLHS respectively. 
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To assess whether the results obtained thus far are applicable to other catchments, the 

sampling methods are applied to the Satellite Station and Cache la Poudre catchments. Figures 

7a-7b show the results for Satellite Station when the spatial average soil moisture is estimated 

from the samples. The case where the true spatial average is used is not shown because its results 

are equivalent to those at Tarrawarra. Overall, for the EMT model, the average NSCE increases 

rapidly with sample size until reaching about 50 sampling locations; after this point additional 

samples produce modest improvements in performance.  For the EOF method, the increase in 

performance remains more steady at large sample sizes. The strategic sampling methods perform 

better than random sampling when the number of locations is small to intermediate (less than 70 

for the EMT model and less than 135 for the EOF method). For small numbers of sampled 

locations (36 or less for the EMT model and 39 for the EOF method), SRS outperforms cLHS. 

Generally, these results are consistent with the results shown in Figure 3 for Tarrawarra. The 

exception is that at Satellite Station cLHS does not outperform random sampling if the number 

of sampled locations is very small. When the EMT model is used and 22 locations are selected 

using random sampling, cLHS, and SRS, the average NSCE values are 0.04, 0.01, and 0.10, 

respectively. This difference from Tarrawarra can be understood by recalling that the soil 

moisture patterns at Satellite Station are temporally stable valley-dependent patterns and by 

recalling the relationship between the natural log of the SCA and soil moisture shown in Figure 

2e. If the number of sampled locations is very small, SRS still ensures that locations with a high 

SCA are sampled because each bin covers an equal fraction of the observed range of the 

attribute. However, cLHS does not capture these large values because the bins are sized to 

contain an equal number of observations. Notice that the EMT model actually uses SCA rather 

than the natural log of SCA, which is shown in Figure 2e, and the large SCA values are even 
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more separated from the most common values than what is shown in Figure 2e. As the number of 

sampled locations is increased, cLHS becomes more effective at selecting the necessary 

locations to characterize the observed relationship, and its average performance becomes slightly 

but consistently higher than the SRS method for intermediate to larger numbers of sampled 

locations. For all of the sampling methods considered, as the number of sampled locations 

approaches the total number of locations in the catchment, the average NSCE value approaches 

0.17 for the EMT model (Coleman and Niemann, 2013) and 0.24 for the EOF method (Busch et 

al., 2012). Once the NSCE values start to approach 0.17 for the EMT model and 0.24 for the 

EOF method at Tarrawarra, the associated average RMSE and MAE values of the estimated 

patterns are 0.048 v/v and 0.028 v/v, respectively, for the EMT model and 0.047 v/v and 0.027 

v/v, respectively, for the EOF method. As was the case at Tarrawarra, the EMT model performs 

best at Satellite Station when the number of sampled locations is limited (less than 130), but the 

EOF method performs best when the number of sampled locations is large. 

Figure 7 also shows the average NSCE values at Cache la Poudre for each of the 

sampling methods when coupled with the EMT model (Figure 7c) and EOF method (Figure 7d). 

For this catchment, the average NSCE increases steadily until reaching about 100 sampling 

locations, after which only modest improvements are seen.  Only cLHS is advantageous as this 

method outperforms SRS and random sampling for all numbers of samples considered. Also, 

when the number of sampled locations is small to intermediate, SRS generally has weak 

performance when compared to the other sampling methods and what was observed at the other 

catchments. For example, when 27 locations are sampled to calibrate the EMT model, the 

average performance of random sampling, cLHS, and SRS is -0.01, 0.02, and -0.01, respectively. 

When the number of selected locations is increased to 47, these values increase to 0.04, 0.05, and 
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0.02, respectively. Furthermore, the difference in model performance and the advantage of 

strategic sampling are smallest at Cache la Poudre. This distinct behavior can be explained by 

recalling that the soil moisture patterns are temporally stable hillslope-dependent patterns and by 

recalling the relationship between PSRI and soil moisture shown in Figure 2k. The relative 

abundance of low and high PSRI values and approximate linearity of the relationship shown in 

Figure 2k imply that strategic sampling is not essential to characterize the relationship. cLHS 

performs best because it ensures that the relationship is observed while still capturing a 

representative distribution of values (unlike SRS). The advantage of the strategic sampling 

methods is also smaller at Cache la Poudre because the soil moisture patterns are most weakly 

related to topography at this catchment. For all of the sampling methods, as the number of 

sampled locations approaches the total number of locations in the catchment, the average NSCE 

approaches 0.08 for the EMT model (Coleman and Niemann, 2013) and 0.11 for the EOF 

method (Busch et al., 2012). Once the NSCE values start to approach 0.08 for the EMT model 

and 0.11 for the EOF method at Tarrawarra, the associated average RMSE and MAE values of 

the estimated patterns are 0.030 v/v and 0.022 v/v, respectively, for the EMT model and 0.029 

v/v and 0.021 v/v, respectively, for the EOF method. As was the case at Tarrawarra and Satellite 

Station, the EMT model performs best when the number of sampled locations is small (less than 

47), but the EOF method performs best when the number of sampled locations is large.  

The accuracy of the estimated spatial average soil moisture at Satellite Station and Cache 

la Poudre is shown in Figure 8. The average mean relative errors at Satellite Station (Figure 8a 

and 8b) are less than 4.5%, while the average mean relative errors at Cache la Poudre (Figure 8c 

and 8d) are less than 8%. When converted to volumetric soil moisture values, these results show 

that the sampling methods can estimate the average with an accuracy greater than 0.021 v/v at 
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Satellite Station, and an accuracy greater than 0.015 v/v at Cache la Poudre.  These values are 

greater than what was observed at Tarrawarra but still relatively small. A very slight advantage is 

usually seen for cLHS at Satellite Station and Cache la Poudre. However, this advantage is not as 

large or consistent as what was observed for Tarrawarra (Figure 4), likely because the 

dependence of soil moisture on topography is weaker at these catchments. SRS performs poorest 

at Satellite Station when the topographic attributes from the EOF method are used and the 

number of sampled locations is small. This behavior occurs because SRS yields many unique 

land units when applied with the 10 topographic attributes of the EOF method. Many of these 

land units are located in the valley bottoms where the soil moisture is generally wetter than the 

spatial average.  When the sample emphasizes such locations, it causes errors in the estimated 

spatial average. SRS does not have this problem when applied with the 4 topographic attributes 

of the EMT model because not as many land units are created. Furthermore, the disadvantage of 

SRS is not observed at Cache la Poudre because a temporally stable hillslope-dependent pattern 

occurs, so the valley bottoms are not particularly wet. 

The variance of the average NSCE values for each number of samples is plotted in Figure 

9 for Satellite Station and Cache la Poudre. At Satellite Station, for almost every number of 

sampled locations, the strategic sampling methods are more reliable than random sampling. 

These differences are fairly small for the EMT model (Figure 9a) but rather large for the EOF 

method (Figure 9b). The difference between these cases is most notable for smaller numbers of 

sampled locations, where SRS generally provides more reliable performance than cLHS. This 

behavior is consistent with what was observed at Tarrawarra and further suggests that the use of 

ancillary variables in the sampling methods and the physical constraints in the EMT model limit 

the likelihood of producing soil moisture estimates that are very inaccurate. At Cache la Poudre, 
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where cLHS consistently produces the most accurate soil moisture estimates (Figure 8), it also 

has the most stable model performance for almost all numbers of sampled locations. However, 

the relative lack of difference in the variance for each of the sampling methods at Cache la 

Poudre suggests that the strategic sampling methods less consistently outperform random 

sampling when the relationships between topography and soil moisture are weaker. 

3.2 Date-Limited Scenario 

Next, the sampling methods are used to determine a limited number of sampling dates.  

Figure 10 presents the results of the date-limited scenario at each of the catchments. Again, the 

average NSCE among the different realizations was used as the metric to evaluate the 

effectiveness of each of the sampling methods. For this analysis, after the downscaling methods 

are calibrated using every soil moisture observation from the selected sampling dates, the true 

spatial average is supplied to each downscaling method as input.  The true spatial average must 

be used in this analysis because soil moisture samples are not collected on all dates.   

Overall, the results in Figure 10 show that little improvement in performance occurs after 

3 to 4 dates have been observed, depending on the sampling method used.  The largest advantage 

of strategic sampling is observed at Tarrawarra when the EMT model is used (Figure 10a) and 

less than 5 dates are selected. The difference is quite large when the number of sampled dates is 

very small. For example, when 2 dates are selected, the average NSCE for random sampling, 

cLHS, and SRS is -0.03, 0.12, and 0.18, respectively. Also, when 3 or more dates are selected, 

the average performance for SRS and cLHS is nearly identical for every number of sampling 

dates considered. The advantage of strategic sampling is not observed when applying the EOF 

method at Tarrawarra (Figure 10b) and not as great for both downscaling methods at Satellite 
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Station (Figure 10c and 10d) and Cache la Poudre (Figure 10e and 10f). The differences are 

likely smaller at Satellite Station and Cache la Poudre because those catchments exhibit 

temporally stable patterns. When selecting dates at Tarrawarra, it is important that dry, 

intermediate, and wet conditions are represented among the sampled dates because the soil 

moisture patterns are different for each condition. The strategic sampling methods ensure their 

inclusion. Comparing the EMT model and EOF method, it can be seen that for almost every 

number of sampling dates, the EOF method outperforms the EMT model. This suggests that the 

EMT model is more sensitive to limiting the number dates than the EOF method. 

3.3 Location-and-Date-Limited Scenario 

Finally, we consider the scenario where both the locations and dates for soil moisture 

monitoring are restricted. For brevity, we consider only the strategic sampling methods. In 

addition, we focus on the cases where 50 locations on 3 dates are selected from a catchment 

using cLHS and as close to 50 locations as possible on 3 dates are selected using SRS. Because 

the sampling dates are limited, the downscaling methods must be provided with the true spatial 

average soil moisture. These numbers of sampling locations and dates are chosen because they 

are near the elbows of the strategic sampling method curves in the previous figures. 

Table 2 displays the results of the location-and-date-limited scenario at all three 

catchments. Focusing on cLHS, which is shown in the top half of the table, the results show that 

when locations and dates for soil moisture monitoring are selected using strategic sampling 

methods, a large percentage of the variation in soil moisture can be explained with observations 

at relatively few locations on relatively few dates. Specifically, when 11 to 16% of the available 

locations are sampled and used for soil moisture monitoring on 23 to 50% of the available dates, 
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the downscaling models perform at 50 to 83% of their maximum performance. The percentage of 

maximum performance that is explained is greatest when the relationship between soil moisture 

and topography is strongest. Additionally, for the cLHS cases considered, the EMT model 

generally outperforms the EOF method. The one exception is when the EOF method slightly 

outperforms the EMT model at Cache la Poudre when considering the NSCE values and 

performs equally well when considering the percentage of maximum performance.  

Results for the SRS method are shown in the bottom half of Table 2. The results are 

similar to those of cLHS in that the downscaling methods are able to explain a substantial portion 

of the variation in the soil moisture patterns when calibrated with observations at relatively few 

locations on relatively few dates. When considering the EMT model attributes the results of 

cLHS and SRS are very consistent. However, the numbers of sampled locations yielded from 

SRS are 60 (5 bins), 58 (5 bins), and 47 (4 bins) at Tarrawarra, Satellite Station, and Cache la 

Poudre. Thus, for the cases considered, with the exception of Cache la Poudre, cLHS performs 

the same as SRS when selecting slightly fewer locations on an equal number of dates. This is in 

agreement with previous results for similar numbers of samples in the location-limited and date-

limited scenarios. When considering the EOF method attributes, the results of cLHS and SRS are 

similar but vary slightly. Here, the numbers of sampled locations yielded from SRS are 43 (2 

bins), 39 (2 bins), and 48 (2 bins) at Tarrawarra, Satellite Station, and Cache la Poudre. At 

Tarrawarra, even though the number of sampled locations decreased from 50 to 43 for cLHS to 

SRS the average model performance increased from 0.19 to 0.21. This increase is very small and 

when considering the standard deviations of 0.10 and 0.07 for cLHS and SRS, respectively, the 

performance is about equal. The smaller number of sampled locations explains the drop in 

performance for the EOF method at Satellite Station from an NSCE of 0.12 for the cLHS method 
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to 0.07 for the SRS method. Furthermore, the drop in NSCE of 0.06 for the cLHS method to 0.03 

for the SRS is seen at Cache la Poudre because, as shown previously, the SRS method tends to 

lag behind cLHS here. Overall, these results suggest that the strategic sampling methods perform 

similarly when used to selected about 50 locations and 3 dates for soil moisture monitoring.  
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4.0 CONCLUSIONS 

The following conclusions can be made from the analyses of this study: 

1. Relatively accurate soil moisture patterns can be generated by the EMT model and EOF 

method when soil moisture is monitored at relatively few locations and/or relatively few 

dates within a catchment of interest. In many cases, sampling beyond about 50 to 100 

locations provides only modest improvements in the ability to reproduce the observed 

soil moisture patterns.  Similarly, monitoring more than 3 to 4 dates also usually provides 

only small gains.  Even when only 10-18% of the locations and 23-50% of the dates are 

strategically sampled, the downscaling methods can achieve 25-83% of their maximum 

performance at the three catchments considered. This conclusion suggests that much 

smaller datasets than Tarrawarra, Satellite Station, and Cache la Poudre could be 

collected in the future, which might allow monitoring of a larger number of different 

catchments in the future. 

2. The strategic sampling methods generally outperform the random sampling method when 

the number of sampled locations and dates are small. When selecting a limited number of 

locations for monitoring, SRS and cLHS ensure that a range of topographic attribute 

values are represented, which helps define the relationships between the attributes and 

soil moisture. When selecting a limited number of dates, SRS and cLHS ensure that 

different soil moisture conditions (and potentially different pattern types) are represented. 

Choosing sampling locations and dates by SRS and cLHS also reduces the risk that a set 

of observations is unrepresentative of the catchment conditions. 

3. When the number of sampled locations is less than about 30, SRS generally performs 

better than cLHS. However, when the number of sampled locations is greater than about 
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30, cLHS almost always outperforms SRS. cLHS ensures that a representative range of 

attribute values is sampled while still respecting the probability distribution of the 

attribute values in the catchment. The specific thresholds that determine when one 

sampling method outperforms another are catchment specific and depend on a number of 

factors including the level of influence of topography on the soil moisture pattern, the 

spatial-structure of the soil moisture pattern, and the temporal stability of the soil 

moisture pattern. 

4. The advantage of cLHS over SRS decreases if the true spatial average soil moisture is 

known and provided to the downscaling methods.  The observations collected by SRS do 

not reproduce the probability distributions of the topographic attributes, so its estimates 

of the spatial average usually have more error.  The advantage of providing the true 

spatial average can be quite large when the number of sampling locations is small.  It is 

worth noting that cLHS also has a practical disadvantage compared to SRS because it 

specifies the exact locations where sampling must be done.  SRS allows randomly-

selected locations within the specified land units (unique combinations of topographic 

attribute values). 

5. Overall, the EMT model performs better than the EOF method when a small number of 

locations on an abundance of dates are used in calibration, while the EOF method 

performs better when an abundance of locations on a limited number of dates are used in 

calibration. For the case when both locations and dates were limited, the EMT model 

performed better than the EOF method at two of three catchments.  The EMT model 

performs better with smaller datasets because it includes physically-based considerations 

about soil moisture, while the EOF method is entirely empirical. 
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Additional research would be beneficial in several areas. The evaluation could be 

expanded to include other sampling and downscaling methods. In particular, downscaling 

methods that utilize other kinds of ancillary variables (e.g., soil texture and/or vegetation) could 

be considered. Also, the topographic attributes that are considered by the EOF method could be 

reduced, which would result in a smaller number of land units and potentially different results. 

Future research could also examine how these results pertain to scales that differ from the multi-

hectare catchments and sub 40 m resolutions considered here. 
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TABLES AND FIGURES 

Table 1: The numbers of sampling locations obtained when different numbers of bins are used in 

the SRS method at Tarrawarra, Satellite Station, and Cache la Poudre.  The numbers of samples 

are shown when the binning is applied to the 4 topographic attributes used in the EMT model 

and the 10 topographic attributes used in the EOF method. 

 Tarrawarra Satellite Station Cache la Poudre 

Bins EMT EOF EMT EOF EMT EOF 

2 9 43 9 39 11 48 

3 22 114 22 91 27 94 

4 38 182 36 153 47 146 

5 60 237 58 216 71 221 

6 80 - 70 - 93 - 

7 105 - 98 - 118 - 

8 130 - 107 - 141 - 

9 162 - 134 - 155 - 

10 188 - 148 - 171 - 

12 228 - 182 - 198 - 

 

Table 2: Summary of the amount of data provided and the average performance by the EMT and 

EOF downscaling methods when 50 locations on 3 dates are selected by the cLHS method and as 

close to 50 locations as possible on 3 dates are selected by the SRS method for calibration at 

Tarrawarra, Satellite Station, and Cache la Poudre. 

 
Downscaling 

Method 

Number & 

(%) of 

Locations 

Number & 

(%) of 

Dates 

Avg. & 

(Std. Dev.) 

of NSCE 

Comparison 

to Maximum 

Performance 

cLHS 

Tarrawarra 
EMT 

EOF 
50 (11) 3 (23) 

0.25 (0.03) 83% 

0.19 (0.10) 54% 

Satellite Station 
EMT 

EOF 
50 (16) 3 (50) 

0.13 (0.04) 76% 

0.12 (0.07) 50% 

Cache la Poudre 
EMT 

EOF 
50 (14) 3 (33) 

0.04 (0.04) 50% 

0.06 (0.06) 50% 

SRS 

Tarrawarra 
EMT 60 (13) 

3 (23) 
0.25 (0.04) 83% 

EOF 43 (10) 0.21 (0.07) 60% 

Satellite Station 
EMT 58 (18) 

3 (50) 
0.13 (0.02) 76% 

EOF 39 (12) 0.07 (0.07) 29% 

Cache la Poudre 
EMT 47 (13) 

3 (33) 
0.04 (0.08) 50% 

EOF 48 (14) 0.03 (0.05) 25% 

 

  



41 

 

 

Figure 1: Application of the cLHS and SRS binning methods to a hypothetical relationship 

between an ancillary variable and soil moisture.  
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Figure 2: The left column shows histograms of topographic attributes that are related to soil 

moisture variability at the three catchments (Tarrawarra, Satellite Station, and Cache la Poudre).  

The center column shows the observed relationship between the selected topographic attribute 

and soil moisture on an example date. Also displayed are correlation coefficients (R) relating the 

ancillary variable values and soil moisture values for each date shown.  The right column shows 

the histogram of soil moisture on the same example date.  Two dates are shown for Tarrawarra 

because the soil moisture patterns are time unstable.  Thus, the important topographic attributes 

change through time. 
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Figure 3: Average performance of the downscaling methods at Tarrawarra when the number of 

sampled locations and the sampling method (Random, cLHS, and SRS) are varied.  Average 

performance is measured by the average of the NSCEs calculated from all available dates and all 

realizations for a given number of samples and sampling method.  The left column considers the 

EMT model, while the right column considers the EOF method.  In the top row, the spatial 

average soil moisture that is supplied to the downscaling methods is estimated from the samples, 

while in the bottom row, the true spatial average soil moisture is supplied. 
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Figure 4: Average mean relative error in the estimated spatial average soil moisture and 

estimated spatial variance of the soil moisture for Tarrawarra obtained from sampled locations 

when the number of samples and sampling methods are varied. The left column considers the 

EMT model and its 4 topographic attributes as ancillary variables, while the right column 

considers the EOF method and its 10 topographic attributes as ancillary variables. The top row 

considers the estimated spatial average while the bottom row considers the estimated spatial 

variance. 
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Figure 5: Variability in the performance of the downscaling methods at Tarrawarra when the 

number of sampled locations and the sampling method (Random, cLHS, and SRS) are varied.  

The vertical axis shows the variance among the different realizations of the average NSCE that is 

calculated from all available dates. The left column considers the EMT model, while the right 

column considers the EOF method.  In the top row, the spatial average soil moisture that is 

supplied to the downscaling methods is estimated from the samples, while in the bottom row, the 

true spatial average soil moisture is supplied. 
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Figure 6: (a) Map of elevation at the Tarrawarra catchment, and (b) the observed soil moisture 

pattern on 27 September 1995. (c,d,e) show the estimated patterns on 27 September 1995 when 

the most accurate set of 9 samples is used in the three sampling methods in the EMT model. 

Accuracy is judged based on all available dates, not just the one shown. (f,g,h) show the 

estimated patterns on 27 September 1995 when the least accurate set of 9 samples is used in the 

three sampling methods.  Similarly, (i,j,k) show the pattern on the same date from the most 

accurate and (l,m,n) show the pattern from the least accurate sample of 38 locations for the EMT 

model at Tarrawarra. The sampling locations associated with each estimated are marked with an 

‘x’.  
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Figure 7: Average performance of the downscaling methods at Satellite Station (top row) and 

Cache la Poudre (bottom row) when the number of sampled locations and the sampling method 

(Random, cLHS, and SRS) are varied.  Average performance is measured by the average of the 

NSCEs calculated from all available dates and all realizations for a given number of samples and 

sampling method.  The left column considers the EMT model, while the right column considers 

the EOF method. 

  



48 

 

 

Figure 8: Average mean relative error in the estimated spatial average soil moisture for Satellite 

Station (top row) and Cache la Poudre (bottom row) obtained from sampled locations when the 

number of samples and sampling methods are varied.  In the left column, the 4 topographic 

attributes used by the EMT model are used as ancillary variables in the sampling methods.  In the 

right column, the 10 topographic attributes used by the EOF method are used. 
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Figure 9: Variability in the performance of the downscaling methods at Satellite Station (top 

row) and Cache la Poudre (bottom row) when the number of sampled locations and the sampling 

method (Random, cLHS, and SRS) are varied.  The vertical axis shows the variance among the 

different realizations of the average NSCE that is calculated from all available dates. The left 

column considers the EMT model, while the right column considers the EOF method. 
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Figure 10: Average performance of the downscaling methods when the number of sampled dates 

and the sampling method (Random, cLHS, and SRS) are varied.  Average performance is 

measured by the average of the NSCEs calculated from all available dates and all realizations for 

a given number of samples and sampling method.  The left column considers the EMT model, 

while the right column considers the EOF method.  The top row considers Tarrawarra, the 

middle row considers Satellite Station, and the bottom row considers Cache la Poudre. 
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