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ABSTRACT

THE ROLE OF INNER-CORE AND BOUNDARY LAYER DYNAMICS ON TROPICAL CYCLONE

STRUCTURE AND INTENSIFICATION

Inner-core and boundary layer dynamics play a vital role in the tropical cyclone life cycle. This

study makes use of analytical solutions and numerical models to gain insight into the role of dynamical

processes involved with the incipient, rapidly intensifying, and eyewall replacement stages. A simpli-

fied, axisymmetric, one-layer, analytical model of tropical cyclone intensification is developed. Rather

than formulating the model with the gradient balance approximation, the model uses the wave–vortex

approximation, an assumption to the kinetic energy of the system, which limits its use to flows with

small Froude numbers. Through filtering the inertia-gravity waves and adding a mass sink so that

potential vorticity is not conserved in the system, the model is solved and provides analytical, time-

evolving solutions that provide insight into long incubation periods prior to rapid intensification, po-

tential vorticity tower development without frictional effects, and storm evolution in time through the

maximum tangential velocity, total energy phase space. To understand the applicability of the forced,

balance model for tropical cyclone intensification, the model is compared to a model using gradient

balance. The comparison shows that the model based on the wave–vortex approximation is appro-

priate for fluids with flow speeds indicative of the external vertical normal mode in which case the

deviation to the fluid depth is small.

To understand another aspect of the inner-core dynamics that influence the radial location of the

mass sink associated with the eyewall convection in the tropical cyclone, boundary-layer dynamics are

considered. Motivated by abrupt jumps in the horizontal wind fields observed in flight-level aircraft

reconnaissance data collected in Hurricanes Allen (1980) and Hugo (1989), an axisymmetric, f -plane

slab boundary layer numerical model with a prescribed pressure forcing is developed. From this model,

two simple analytic models are formulated in addition to two local, steady-state models. These mod-

els allow for the role of shock dynamics in the tropical cyclone boundary layer to be assessed. Two

local models are also developed to evaluate the role of the nonlinear terms in the full numerical slab

model. The local models adequately describe the boundary layer winds outside of the eyewall region.

If a storm is weak or broad, the local models can explain a portion of the structure that develops in

the eyewall region. This result shows that, to capture the hyperbolic nature of the eyewall region, the

nonlinear terms are needed. The nonlinear response allows for the boundary-layer Ekman pumping
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to shift radially inward into the region of high inertial stability. The results from the local models and

full numerical model also show that as the vortex wind field broadens, the convergence associated with

the primary eyewall decays and that a secondary maximum displaced radially outward forms, a feature

indicative of the formation of a secondary eyewall.
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CHAPTER 1

INTRODUCTION

Inner-core and boundary-layer dynamics shape the incubation, deepening, and mature stages of

the tropical cyclone. The three-layer, axisymmetric numerical model developed by Ooyama (1969a) is

the first study to simulate these vortex life cycle stages. Initially, a three-layer model may seem overly

simplistic or even inadequate to capture the vital processes at work in a tropical cyclone. However, this

is not the case. The numerical simulations point to two critical processes within the storm: the time

evolution of the dynamical response to diabatic heating in the eyewall and the Ekman pumping that

results from the frictional convergence that develops in the boundary layer in response to the vortex in

the overlying fluid. Despite this model resolving these features, we are still working towards developing

an understanding of the mechanisms behind each process and the interplay between the boundary

layer and the overlying, free atmosphere.

The Eliassen (1951) balanced vortex model offers insight into the balanced response of the vortex

to diabatic heating. The studies of Shapiro and Willoughby (1982), Schubert and Hack (1982), and the

many related derivatives offer insight into the mechanisms involved in intensity change and rapid in-

tensification. Vigh and Schubert (2009) and Musgrave et al. (2012) present a series of experiments that

illustrate the sensitivity of the tangential wind response due to the placement of the diabatic heating in

relation to the inner-core, high inertial stability region. The location is key to understanding whether a

vortex will rapidly increase the maximum tangential velocity or will expand the wind field and increase

the kinetic energy. Unfortunately, time-dependent, analytic solutions to the Eliassen (1951) balanced

vortex model have not been found and the location of the diabatic heating must be prescribed in or-

der to solve for each balanced state. Naturally, we ask what processes are involved in determining the

location of the diabatic heating.

To understand the radial distribution of the diabatic heating, work as early as Haurwitz (1935, 1936)

points to the boundary layer for an explanation. However, the complexity and nonlinear nature of the

tropical cyclone boundary layer complicate the progress towards developing a complete conceptual

explanation regardless of the myriad of literature on the topic. Returning to the simulations in Ooyama

(1969a), we see a simplification to the boundary layer equations in which gradient balance is assumed
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for the azimuthal momentum equation and the nonlinear term is zero in the radial momentum equa-

tion. Ooyama (1969b) relaxed these assumptions resulting in the Ekman pumping shifting radially in-

ward. Several studies have shown that the location of the Ekman pumping determines the location of

the eyewall convection (e.g., Ooyama 1982; Kepert and Nolan 2014; Frisius and Lee 2016). In addition

to the location of the Ekman pumping, flight-level observations show abrupt jumps in the horizontal

velocity fields, indicating that shock dynamics may play a role in the eyewall region of tropical cyclones

(Williams et al. 2013; Slocum et al. 2014; Schubert et al. 2017). This means that understanding the lo-

cation of this pumping and abrupt jumps in the horizontal velocity fields can help determine trends in

the intensity of the tropical cyclone. Intensity is also influenced by eyewall replacement cycles. Dur-

ing eyewall replacement, the storm intensification often pauses or the storm weakens as a secondary

eyewall develops and eventually supersedes the original primary eyewall as the inner eyewall decays.

Recent work suggests that the boundary layer is critical to this process in that as a secondary maximum

in the radial inflow develops, the inflow and Ekman pumping that are coupled to the primary eyewall

are shut off. Aspects of the boundary layer mechanism involved in eyewall replacement are still be-

ing discussed through observational, theoretical, and modeling work (e.g., Sitkowski et al. 2011; Rozoff

et al. 2012; Kepert 2013; Abarca and Montgomery 2013; Kepert and Nolan 2014; Slocum et al. 2014).

With the goal of contributing to a more complete conceptual model of the life cycle of the tropical

cyclone, this work seeks to address some of the gaps in our current understanding. In chapter 2, we

explore the utility of a forced, balanced model for tropical cyclone intensification that is based on a bal-

ance relation that arises from an approximation to the system’s kinetic energy. In this work, we develop

time-evolving, analytic solutions that provide insight into tropical cyclone incubation, hollow potential

vorticity structures, and energetics within the forced, balanced model. In chapter 3, we return to the

boundary layer to understand the development of the Ekman pumping associated with the frictionally

induced convergence. First, we develop a series of “metaphor” or “toy” models that contain a portion

of the entire system’s dynamics to understand the formation of triangular waves and N-waves in the

context of primary and secondary eyewalls. Then, we develop two local, steady-state models that we

use in conjunction with an axisymmetric slab boundary layer model to understand shock formation

in tropical cyclones. Lastly, we present concluding remarks and discuss the connections between the

boundary layer and vortex in the overlying fluid.
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CHAPTER 2

A FORCED, BALANCED MODEL OF TROPICAL CYCLONE INTENSIFICATION
1

Tropical cyclone intensity and intensification rate garner interest from both the research and op-

erational community. The problem is often framed as how strong could the tropical cyclone become

(e.g., potential intensity) and how does the storm realize that strength (e.g., intensification and rapid

intensification) based on the environmental conditions around the storm. Essentially, potential in-

tensity represents what the “mature” stage (e.g., quasi-steady state) of the “life cycle” could be based

on given a set of boundary layer characteristics and air–sea interaction parameterizations (e.g., Klein-

schmidt 1951; Miller 1958; Emanuel 1986; DeMaria and Kaplan 1994; Holland 1997). While a capti-

vating research problem, potential intensity is not the focus of chapter 2. Instead, we explore some

aspects of the inner-core dynamics that result in intensification and rapid intensification of the vortex.

In addition to potential intensity via sea surface temperature and ocean heat content ideas playing a

role in intensification, other environmental conditions such as shear (e.g., Jones 1995; DeMaria 1996;

Frank and Ritchie 2001) and tropospheric moisture (e.g., Gray 1968; DeMaria et al. 2005; Hill and Lack-

mann 2009) do impact the intensification rate. Ignoring factors leading to unfavorable environmental

influences, the inner-core dynamics dominate, causing the storm to intensify. The classic inner-core

dynamics understanding for intensification is the tangential wind response to forcing, such as diabatic

heating (Eliassen 1951).

The Eliassen (1951) balanced vortex equations are a filtered model for an evolving, axisymmetric

vortex in both hydrostatic and gradient balance. The model as well as the transverse circulation and

geopotential tendency equations that can be derived from it, provide insights into eyewall tilt (e.g.,

Emanuel 1997; Schubert and McNoldy 2010), and eye features, such as hub clouds, clear air moats,

and warm-ring thermal structures (e.g., Schubert et al. 2007; Sitkowski et al. 2012; Stern and Nolan

2012; Stern and Zhang 2013), and intensification. Shapiro and Willoughby (1982), Schubert and Hack

(1982), and others use the Eliassen (1951) balanced vortex model to provide an understanding of the

role of diabatic heating and inertial stability in tropical cyclone intensification. In a series of experi-

ments in which the radial location of an area-averaged region of diabatic heating is changed, Vigh and

Schubert (2009) and Musgrave et al. (2012) show that the sensitivity of the tangential wind tendency

results in either rapid intensification or expansion of the vortex wind field. When the diabatic heating

1This chapter contains model derivation and motivating results included in Schubert et al. (2016).
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is within the region of high inertial stability, the tangential wind tendency is large. However, if the heat-

ing is outside of the radius of maximum wind in the region with lower inertial stability, the tangential

wind tendency is small and only contributes to the integrated kinetic energy of the vortex. In addi-

tion to the theoretical work extending the Eliassen (1951) balanced vortex model, the inertial stability

framework is applied to airborne Doppler radar updraft observations to provide context for intensify-

ing and quasi-steady state systems (Rogers et al. 2013, 2015). These inertial stability ideas represent

one of the intensification mechanisms contained within the literature. The other main mechanisms

can be loosely classified as boundary layer control (e.g., Ooyama 1969a; Smith and Vogl 2008; Kepert

2010a; Williams et al. 2013) and “vorticity dynamics” (for a broader view, see the review articles by

Montgomery and Smith 2014, 2017).

While our understanding of inner-core tropical cyclone dynamics has been advanced through the

insights offered by work based on the Eliassen (1951) balanced vortex model, analytic solutions for the

time evolution of a balanced vortex have not been found. The purpose of this chapter is to present ana-

lytic, time-dependent solutions of an axisymmetric, one-layer, balanced vortex model using the wave–

vortex approximation recently introduced by Salmon (2014). Through evaluating the results from the

model outlined in the next few sections, our goal is to provide insight into the long “incubation” pe-

riod, a term introduced by Ooyama (1969a) based on results from his three-layer model in which the

simulations took a long period of time before undergoing rapid intensification as shown in Fig. 2.1.

Yamasaki (1983) ran a series of simulations using an axisymmetric, nonhydrostatic, cloud permitting

model to simulate the early stages of the “life cycle” of the tropical cyclone (i.e., incipient and deep-

ening). Figure 2.2 shows results from his numerical simulation in which the vortex remains relatively

weak before intensifying and contracting. Figure 2.3 offers insight into this process in terms of rainfall

rate and distribution. As the mass sink or the diabatic heating is concentrated in the eyewall region

during contraction, the vortex responds by deepening (i.e., spinning up, rapid intensification). As will

be shown, the radial distribution of the mass sink is critical to this process. In addition to the long incu-

bation period, we will examine how the size of the vortex evolves through time by analyzing the change

in total energy in the forced, balanced model.

Section 2.1 presents a review of the shallow water primitive equations for an axisymmetric vortex

on an f plane. In section 2.2, the wave–vortex approximation, an approximation made to the kinetic

energy, is introduced. Section 2.3 adds two additional approximations resulting in a forced, balanced

vortex model. Analytic solutions for two- (section 2.3) and three-region (section 2.4) idealizations are
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FIG. 2.1. Tangential velocity (top), radius of maximum tangential velocity (middle), and central

pressure (bottom) from a series of simulations by Ooyama (1969a) using an axisymmetric, three-

layer model. The simulations start with initially weak vortices (5 m s−1) that have radii of maximum

tangential velocity of 25, 50, 75, and 100 km for cases Ai1, Ai2, Ai3, and Ai4 respectively. The time

origin of the integration in the last three cases is shifted to ease comparison and Afi1 is the same as

Ai1, except that the eddy viscosity has a smaller value. Reproduced from Fig. 17 of Ooyama (1969a).

presented to explore the “incubation” time of a vortex and the formation of hollow potential vorticity

structures. Section 2.5 generalizes the analytic solutions to a multi-region model in R space with which

the energetics of the forced, balanced model are examined. Section 2.6 uses an iterative procedure in

r space to compare a multi-region model of the Eliassen (1951) balanced vortex model (balanced vor-

tex 1) to the multi-region model with the balance relation arising from the wave–vortex approximation

(balanced vortex 2) to understand the limits of the theory. Concluding remarks on the forced, balanced
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FIG. 2.2. Time–radius Hovmöller diagram of the tangential velocity (m s−1) at z = 0.9 km for a nu-

merical experiment by Yamasaki (1983) using the axisymmetric, nonhydrostatic, cloud permitting

model (Yamasaki 1977) run at 500 m resolution. After roughly a 24-h period of contraction, hurri-

cane force winds (> 33 m s−1) develop around hour 134. This point marks the start of vortex rapid

intensification before the vortex reaches a quasi-steady state with υmax ∼ 80 m s−1. Reproduced

from Fig. 2 of Yamasaki (1983).

model developed using the wave–vortex approximation and the work presented here are given in sec-

tion 2.7.

2.1 SHALLOW WATER PRIMITIVE EQUATIONS

The axisymmetric shallow water primitive equations on an f plane are

∂ u

∂ t
−( f +ζ)υ+ ∂

∂ r

�

g h + 1
2 (u

2+υ2)
�

= 0, (2.1)

∂ υ

∂ t
+( f +ζ)u = 0, (2.2)

∂ h

∂ t
+
∂ (r uh )

r ∂ r
= 0, (2.3)
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FIG. 2.3. Time–radius Hovmöller diagram of rainfall rates (isolines of 1, 5, 10, and 20 mm (10

min)−1) for a numerical experiment by Yamasaki (1983) using an axisymmetric, nonhydrostatic,

cloud permitting model (Yamasaki 1977) run at 500 m resolution. By hour 140, the eyewall has de-

veloped in response to the contraction and intensification seen in the tangential velocity in Fig. 2.2.

Reproduced from Fig. 1 of Yamasaki (1983).

where u is the radial wind, υ is the tangential wind, h is the fluid depth, g is the acceleration due to

gravity, f is the constant Coriolis parameter, and ζ = ∂ (rυ)/r ∂ r is the relative vorticity. The absolute

angular momentum principle, obtained from (2.2), is

D

D t

�

rυ+ 1
2 f r 2

�

= 0, (2.4)

where

D

D t
=
∂

∂ t
+u

∂

∂ r
(2.5)

is the material derivative. The vorticity equation, also obtained from (2.2), can be written in the form

D ( f +ζ)

D t
+ ( f +ζ)

∂ (r u )

r ∂ r
= 0, (2.6)
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while the continuity equation (2.3) can be written in the form

D h

D t
+h
∂ (r u )

r ∂ r
= 0. (2.7)

Eliminating the divergence between (2.6) with (2.7), we obtain the potential vorticity conservation prin-

ciple

D P

D t
= 0, (2.8)

where

P =
h̄

h

�

f +
∂ (rυ)

r ∂ r

�

(2.9)

is the potential vorticity, with the constant h̄ denoting the fluid depth to which h (r, t ) asymptotes as

r →∞.

2.2 THE WAVE–VORTEX APPROXIMATION

Taking cues from Maxwell’s equations in classical electrodynamics, Salmon (2014) proposed a wave–

vortex approximation of (2.1)–(2.3). In the 2014 work, he derived this approximation by first expressing

the exact shallow water dynamics in the equivalent Hamiltonian form (i.e., classical mechanics), which,

as discussed in the appendix, involves the Poisson bracket and the exact Hamiltonian (total energy). In

the expression for the exact Hamiltonian, the kinetic energy in the fluid column is given by 1
2 (u

2+υ2)h .

In the context of the equivalent Hamiltonian form, the only approximation in the wave–vortex model is

to replace the exact Hamiltonian with an approximate Hamiltonian in which the kinetic energy in the

fluid column is approximated by 1
2 (u

2+υ2)h̄ (i.e., it is assumed that the deviations in the depth of the

fluid h are small in comparison to h̄). Then, for the axisymmetric, shallow water dynamics considered

here, the wave–vortex approximation takes the form

∂ u

∂ t
−Pυ+ g

∂ h

∂ r
= 0, (2.10)

∂ υ

∂ t
+P u = 0, (2.11)

∂ h

∂ t
+ h̄
∂ (r u )

r ∂ r
= 0, (2.12)

where P is defined by (2.9). A detailed derivation of (2.10)–(2.12) using Hamiltonian fluid mechanics is

given in the appendix.

Whenever we replace one set of equations, such as (2.1)–(2.3), with another approximate set, such

as (2.10)–(2.12), there arises the question of identifying variables in the approximate set with variables
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in the original set. If we identify the variables u ,υ, h in the approximate dynamics (2.10)–(2.12) with the

variables u ,υ, h in the parent dynamics (2.1)–(2.3), we conclude that all three equations (2.1)–(2.3) have

been approximated. However, this is not the only interpretation, as noted by Salmon (2014) and Schu-

bert et al. (2016). The identity of variables in the approximate dynamics with variables in the parent

dynamics (2.1)–(2.3) is “unavoidably ambiguous” and represents an “identification error.” For exam-

ple, suppose we write (2.10)–(2.12) in terms of the variable û = (h̄/h )u and make the simple notational

change û→ u , so that (2.10)–(2.12) become

∂

∂ t

�

h

h̄
u

�

−Pυ+ g
∂ h

∂ r
= 0, (2.13)

∂ υ

∂ t
+ ( f +ζ)u = 0, (2.14)

∂ h

∂ t
+
∂ (r uh )

r ∂ r
= 0. (2.15)

Now, if we identify the variables u ,υ, h in (2.13)–(2.15) with the variables u ,υ, h in the parent dynamics

(2.1)–(2.3), we conclude that (2.14) and (2.15) are exact, but (2.13) is an approximated form of (2.1).

Equations (2.10)–(2.12) and (2.13)–(2.15) are equally valid forms of the wave–vortex approximation with

somewhat different interpretations attached to the associated u fields. In the next section, we shall

proceed from equations (2.13)–(2.15) because of the similarity to (2.1)–(2.3), but the analysis could

equally well proceed from (2.10)–(2.12).

Because the notational change û → u has made (2.14) and (2.15) formally identical to (2.2) and

(2.3), the absolute angular momentum and potential vorticity equations derived from (2.14) and (2.15)

are formally identical to (2.4) and (2.8), with the material derivative given by (2.5). Alternatively, if we

proceed from (2.10)–(2.12), we find that the absolute angular momentum and potential vorticity equa-

tions are also given by (2.4) and (2.8) with a slightly modified definition of D /D t , i.e., with a definition

in which the radial advecting velocity is given by (h̄/h )u . As we shall see in section 2.3, the absolute

angular momentum and potential vorticity equations play a crucial role in the analysis.

It is also interesting to note that the linear geostrophic adjustment dynamics of (2.10)–(2.12) or

(2.13)–(2.15) are identical to those of (2.1)–(2.3). This can be seen by simply linearizing each set about

a resting basic state with constant depth h̄ and then noting that the linearized equations from each

set are identical. A discussion of these linearized dynamics can be found in Schubert et al. (1980).

Concerning the nonlinear transient adjustment dynamics of (2.10)–(2.12) or (2.13)–(2.15), they do differ

from those described by (2.1)–(2.3). As can be inferred from the results of Kuo and Polvani (1997), the
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nonlinear transient adjustment dynamics of (2.1)–(2.3) involve the formation and decay of shocks, a

fluid dynamics phenomena arising from Burgers’ equation (Bateman 1915; Burgers 1948; Whitham

1974). As noted by Salmon (2014), the approximate wave–vortex dynamics do not allow inertia–gravity

waves to steepen and form shocks. This is consistent with the notion that the approximate wave–vortex

dynamics is limited to flows with a small Froude number, i.e., to flows in which typical flow speeds are

much less than c = (g h̄ )1/2.

2.3 FORCED, BALANCED MODEL

We now make two changes to the wave–vortex system (2.13)–(2.15). The first change is to include a

mass sink term on the right-hand side of (2.15). The second change is to introduce an approximation

that filters inertia–gravity waves by neglecting the local time derivative term in (2.13). Thus, our forced,

balanced model takes the form

Pυ= g
∂ h

∂ r
, (2.16)

∂ υ

∂ t
+ ( f +ζ)u = 0, (2.17)

∂ h

∂ t
−+∂ (r uh )

r ∂ r
=−hS . (2.18)

Because of the addition of a mass sink term in the continuity equation (2.18), the potential vorticity

equation now becomes

D P

D t
= SP (2.19)

and the total energy principle becomes

G =
d

d t

∫ ∞

0

1
2

�

υ2h̄ + g (h − h̄ )2
�

r d r =

∫ ∞

0

g (h̄ −h )hS r d r. (2.20)

In the remainder of this chapter, we will present analytical solutions of the forced, balanced model

(2.16)–(2.18). Because of the approximation made to the kinetic energy, it should be noted that the

balanced vortex model (2.16)–(2.18) is different than the balanced vortex model of Eliassen (1951),

since the latter is based on gradient wind balance rather than the balance relation (2.16). The Eliassen

(1951) balanced vortex model has been used in many tropical cyclone studies, such as those of Ooyama

(1969a), Shapiro and Willoughby (1982), and Schubert and Hack (1982), and should be regarded as the

more general of the two models because it does not have a small Froude number restriction on its

10



applicability. However, an advantage of the system (2.16)–(2.18) is the ease with which analytic, time-

dependent solutions can be obtained. A comparison of the two models using numerical methods to

find solutions in r -space will be presented towards the end of this chapter.

To evaluate solutions of (2.16)–(2.18), we use the mass sink S (r, t ) to simulate the effect of diabatic

heating in a continuously stratified, compressible fluid. This use of a mass sink has been discussed by

Ooyama (1969a) in the context of an axisymmetric tropical cyclone model having three incompressible

fluid layers and by DeMaria and Pickle (1988) in the context of an axisymmetric tropical cyclone model

having three isentropic fluid layers. The use of S as a proxy for diabatic heating has also been discussed

in the context of a one-layer model by Bouchut et al. (2009) and a two-layer model by Lambaerts et al.

(2011). Fulton and Schubert (1985) provide another interpretation of S in terms of tropical diabatic

heating by performing a vertical normal mode analysis of observed vertical profiles of tropical diabatic

heating. Typical vertical profiles of diabatic heating project onto the external mode (c ≈ 250–300 m

s−1) and the first two internal modes (c ≈ 50–77 m s−1 and 29–47 m s−1), with the exact values of c

depending on the boundary conditions and static stability used in the eigenvalue calculation. Since the

wave–vortex approximation has a small Froude number restriction, we have experimented with values

of c between 250 and 300 m s−1, with the conclusion that the results changed little as c is varied in this

range. When we compare the balance relation based on wave–vortex dynamics to the gradient balance

dynamics in section 2.6, we will explore the validity of assuming values of c consistent with the external

mode. For the results shown here, we have used c = 250 m s−1. As a useful guide to interpretation, the

idealized analytical solutions presented here can be considered most applicable to the vertical mean

structure (i.e., the external mode) of tropical cyclones.

Now, we assume that the mass sink S (r, t ) is a positive constant S1 in the core region and vanishes in

the region outside the core. The core region is bounded by an absolute angular momentum surface that

moves inward with the inward radial flow. The position of this absolute angular momentum surface

is denoted by r1(t ). The function r1(t ) is as yet undetermined but will later be determined as part of

the solution of the potential vorticity prediction/inversion problem. With these assumptions, the mass

sink S (r, t ) can be written in the form

S (r, t ) = S1H [r1(t )− r ] =















S1 if r < r1(t )

1
2S1 if r = r1(t )

0 if r > r1(t ),

(2.21)
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where H [x ] is the Heaviside step function (not to be confused with the Hamiltonian functional used

in the appendix), defined as zero for x < 0, as unity for x > 0, and as 1
2 for x = 0. Because of the form of

the mass sink (2.21), an initial piecewise uniform potential vorticity remains piecewise uniform. The

piecewise uniform initial condition on P is

P (r, 0) = P1H [r10− r ] + f H [r − r10] =















P1 if r < r10

1
2 (P1+ f ) if r = r10

f if r > r10,

(2.22)

where the constant P1 is the initial potential vorticity in the core and the constant r10 is the initial value

of r1(t ).

Given the forcing (2.21) and the initial condition (2.22), we now seek a solution of the potential

vorticity equation (2.19) having the piecewise constant form

P (r, t ) =α1(t )H [r1(t )− r ] +α2(t )H [r − r1(t )]















α1(t ) if r < r1(t )

1
2 [α1(t ) +α2(t )] if r = r1(t )

α2(t ) if r > r1(t ),

(2.23)

where α1(t ) and α2(t ) are as yet undetermined functions of time. Substituting (2.23) into (2.19), we

obtain

0=
∂ P

∂ t
+u
∂ P

∂ r
−SP

=

�

dα1

d t
−S1α1 H [r1(t )− r ]

�

H [r1(t )− r ] +α1

�

d r1

d t
−u

�

δ[r1(t )− r ]

+

�

dα2

d t
−S1α2 H [r1(t )− r ]

�

H [r − r1(t )]−α2

�

d r1

d t
−u

�

δ[r − r1(t )]

=

�

dα1

d t
−S1α1

�

H [r1(t )− r ] +
dα2

d t
H [r − r1(t )]

=









dα1

d t
−S1α1 if r < r1(t )

+
dα2

d t
if r > r1(t )

(2.24)

for r 6= r1(t ), where δ(x ) = d H [x ]/d x is the Dirac delta function. We are able to obtain (2.24) by using

the fact that d r1/d t = u (r1, t ) and H [r1(t )− r ]H [r − r1(t )] = 0 for r 6= r1(t ). When r < r1(t ), the step

functions take on the values H [r1(t )− r ] = 1 and H [r − r1(t )] = 0. The result is the first line of the case
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statement at the end of (2.24). When r > r1(t ), the step functions take on the values H [r1(t )−r ] = 0 and

H [r − r1(t )] = 1. The result is the last line of the case statement at the end of (2.24). Using the initial

uniform condition on P shown in (2.22), the solutions for the coefficients α1 and α2 are

α1(t ) = f e τ1 and α2(t ) = f , (2.25)

where τ1 = S1(t + t1) is a dimensionless time and the constant t1 is defined by e S1t1 = P1/ f , i.e., t1 is the

time that would be required for the vortex to exponentially spin up from a state of rest. Through using

(2.25), the solution (2.23) becomes

P (r, t ) = f e τ1 H [r1(t )− r ] + f H [r − r1(t )] =















e τ1 if r < r1(t )

1

2
(e τ1 +1) if r = r1(t )

1 if r > r1(t ).

(2.26)

To diagnose the wind and mass fields from the potential vorticity field (2.26), we require the solu-

tion of the invertibility principle. The invertibility principle for h can be derived from the combination

of P with the balance condition (2.16), which gives us

1

r

∂

∂ r

�

r

P

∂ h

∂ r

�

− P

g h̄
=− f

g
. (2.27)

With (2.26), (2.27) becomes











∂ 2h

∂ r 2
+

1

r

∂ h

∂ r
−µ2

1h =−µ2
1h̄e −τ1 if r < r1(t )

∂ 2h

∂ r 2
+

1

r

∂ h

∂ r
−µ2

1h =−µ2
1h̄ if r > r1(t ),

(2.28)

where

µ1(t ) =µe τ1 and µ=
f

c
(2.29)

are the inverse Rossby lengths in the two regions. The value of the Rossby lengthµ−1 = (c / f ) in the “far-

field” region is fixed and the value in the core (c / f )e −τ1 decreases exponentially with time. The result

of the decrease in the Rossby length is to increase the dynamical eye size. As discussed by Schubert

and McNoldy (2010), large dynamical eyes provide “room” for subsiding air and the formation of eye

features such as moats, hub clouds, a warm-ring thermal structure, and upper-level cloud overhang

(Schubert et al. 2007).
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FIG. 2.4. The zero (n = 0) and first (n = 1) order modified Bessel functions of the first In and second

Kn kind.

Following the approach outlined in Schubert and Hack (1982), we will express the solution of (2.28)

in terms of the zero order modified Bessel function of the first kind I0(x ) and second kind K0(x ), which

satisfy the following zero order modified Bessel equation, i.e.,

d 2I0(x )

d x 2
+

d I0(x )

x d x
− I0(x ) = 0, (2.30)

d 2K0(x )

d x 2
+

d K0(x )

x d x
−K0(x ) = 0. (2.31)

We will also make use of the derivative relations

d I0(x )

d x
= I1(x ), (2.32)

d K0(x )

d x
=−K1(x ), (2.33)

d [x I1(x )]

x d x
= I0(x ), (2.34)

d [x K1(x )]

x d x
=−K0(x ), (2.35)

and the Wronskian

I0(x )K1(x ) +K0(x )I1(x ) =
1

x
, (2.36)

where I1(x ) and K1(x ) are the first order modified Bessel functions of the first and second kind respec-

tively. For reference, the functions I0(x ), K0(x ), I1(x ) and K1(x ) are shown in Fig. 2.4.
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Returning to the goal of solving the invertibility problem (2.28) for the entire domain, we first solve

it in each of the subregions between the prescribed absolute angular momentum surfaces and enforce

the boundary conditions for r = 0 and r →∞. After this step, we match the h and υ at r = r1(t ). For

example, in the region r < r1(t ), the solution for h consists of the sum of the particular solution h̄e −τ1

and the homogeneous solution proportional to I0(µ1r ), with the other homogeneous solution K0(µ1r )

discarded because it is unbounded at r = 0 as shown by Fig. 2.4. For the region r > r1(t ), the solution

for h consists of the sum of the particular solution h̄ and the homogeneous solution proportional to

K0(µ1r ), with the other homogeneous solution I0(µ1r ) discarded because it is unbounded as r →∞.

The solution for the fluid depth in the two-region model can be written in the form

h (r, t ) = h̄











e −τ1 +
υ1(t )

c

I0(e
τ1µr )

I1(e τ1µr1)
if 0≤ r ≤ r1(t )

1− υ1(t )

c

K0(µr )

K1(µr1)
if r1(t )≤ r <∞,

(2.37)

where the function υ1(t ) is as yet undetermined. In (2.37) and the following two equations, the first

line on the right-hand side, 0 ≤ r ≤ r1(t ), represents the “inner-core” region, while the second line,

r1(t ) ≤ r <∞, represents the “far-field” region. From the balance relation (2.16) and the modified

Bessel function derived relations (2.32)–(2.33), the solution for the tangential wind is

υ(r, t ) =υ1(t )











I1(e
τ1µr )

I1(e τ1µr1)
if 0≤ r ≤ r1(t )

K1(µr )

K1(µr1)
if r1(t )≤ r <∞.

(2.38)

From (2.38), we note that υ(r, t ) is guaranteed to be continuous at r = r1(t ), which validates the choice

of coefficients for I0(µ1r ) and K0(µr ) in (2.37). From (2.38) and the derivative relations (2.34)–(2.35),

the relative vorticity for the two-region model is given by

ζ(r, t )

f
=
υ1(t )

c











e τ1
I0(e

τ1µr )

I1(e τ1µr1)
if 0≤ r ≤ r1(t )

− K0(µr )

K1(µr1)
if r1(t )≤ r <∞.

(2.39)

From (2.39), we note that both ζ and P are discontinuous at r = r1(t ).

We still need to determineυ1(t ) and r1(t ). From (2.37), the continuity of h (r, t ) at r = r1(t ) requires

that

υ1(t )

c
=

(1− e −τ1 ) I1(e
τ1µr1)K1(µr1)

I0(e τ1µr1)K1(µr1) +K0(µr1)I1(e τ1µr1)
. (2.40)
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Because of the absolute angular momentum principle (2.4), the edge of the mass sink r1(t ) is related

to the maximum tangential wind denoted as υ1(t ) for the two-region model by r1(t )υ1(t ) +
1
2 f r 2

1 (t ) =

1
2 f R 2

1 (t ), where the constant R1 is the potential radius of the absolute angular momentum surface. We

rewrite the absolute angular momentum principle in the form

υ1(t )

c
=
(µR1)

2− (µr1)
2

2µr1

. (2.41)

Now, we eliminate υ1(t )/c between (2.40) and (2.41) to obtain

(1− e −τ1 ) I1(e
τ1µr1)K1(µr1)

I0(e τ1µr1)K1(µr1) +K0(µr1)I1(e τ1µr1)
=
(µR1)

2− (µr1)
2

2µr1

. (2.42)

For a given value of τ1 and µR1, (2.42) is a transcendental equation of µr1, the solution of which al-

lows for the determination of υ1(t ) from (2.41). Table 2.1 and Fig. 2.5 have been constructed through

using the transcendental equation (2.42) to find values for υ1(t ) and r1(t ) for the special case of an

initial condition at rest, i.e., P1 = f , t1 = 0, υ10 = 0, and R1 = r10. Table 2.1 and Fig. 2.5 contain four

separate cases in which r10 is set to 100, 200, 300, and 400 km respectively. In Fig. 2.5, the five thin

black lines correspond to constant dimensionless time S1t = 1, 2, 3, 4, 5. The values next to the white

circles indicate the physical time t . The time values t come from the value we select for the S1. If

the value for S1 is constant for each case, then the time values associated with the dimensionless time

S1t = 1, 2, 3, 4, 5 would be the same regardless of the value selected for r10. Another way to select values

for S1 is to mandate that the initial area-averaged mass sink is the same for each choice of r10. This is a

relatively realistic assumption if you look at composites of area-averaged rainfall rates in Atlantic and

Pacific Ocean basin disturbances and tropical cyclones as shown in Table 2.2. These data suggest that

the area-averaged rainfall rates remain constant during the “life cycle” of the tropical cyclone. To make

sure that S1r 2
10 is a constant for each case, we choose S1 = (3 h)−1, (12 h)−1, (27 h)−1, (48 h)−1 for the four

cases r10 = 100, 200, 300, 400 km.

Returning to Fig. 2.5, the 200 km case (blue curve) can be thought of as a small vortex with intense

forcing. This case reaches hurricane force winds in 48 h. Contrasting this case with the 400 km case

(orange curve), we see that the large vortex with weak forcing has a much longer incubation time. To

illustrate this point further, the top panel of Fig. 2.6 shows the intensity as a function of time for each

case with the same area-averaged mass sink. Interestingly, during the start of the incubation period,

the change in intensity is close to linear. The rate begins to increase only after S1t > 1 or F > 0.632.

Unlike Fig. 2.1, the intensification rates between each case highly depend on the radial extent of the
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mass sink. While these cases start at an initial state of rest, the 400 km case (orange curve) resembles the

rapid intensification period from hour 400 to 500 in Ooyama (1969a). While the intensification rate of

the 100 km case (red curve) is not representative of cases in observations, the range of cases presented

here highlights the importance of the radial extent of the initial area-averaged mass sink distribution

in the development of vortices (see Schubert et al. 2016 for a discussion of the potential relevance in

other geophysical vortices). Rather than only evalute the intensity, we can also consider the volume of

fluid removed from the column between the initial time and time t by taking the integral of (2.37) over

the area h̄−h (r, t ), which will involve r I0(µ1r ) and r K0(µr ). Through using (2.34) and (2.35), we obtain

2π

∞
∫

0

�

h̄ −h (r, t )
�

r d r =πr 2
10h̄F , (2.43)

where F = 1− e −S1t . The left-hand side of (2.43) is the total volume of fluid that has been removed

between the initial time t = 0 and time t . πr 2
10h̄ represents the volume of fluid at the initial time t = 0.

This means that F can be interpreted as the fraction of volume removed from the fluid from the initial

time until time t . Next to the white circles in Fig. 2.5 are the values of t associated with the dimension-

less time S1t and F . The values S1t and F provide insight into the incubation time for tropical cyclone

intensification. The values of F in Fig. 2.5 indicate that a large fraction of the fluid must be removed

before the vortices begin to spin up, e.g., when S1t = 2, F = 0.865 and all four of the vortices are sub-23

m s−1 in strength. It is important to note that a large fraction F does not imply that h ≪ h̄ at the center

of the vortex r = 0. The special case of (2.37) for the center of the vortex r = 0 is

h (0, t ) = h̄

�

e −τ1 +
υ1(t )

c

1

I1(e τ1µr1)

�

. (2.44)

The lower panel of Fig. 2.6 shows the value of h̄ −h (0, t ) for the four cases r10 = 100, 200, 300, 400 km.

From the departures from h̄ in Fig. 2.6, we see the fluid depth is only reduced by a small fraction at the

center of the vortex for reasonable values ofυ1(t ). For a comparison to h̄ , the left panel of Fig. 2.7 shows

h̄ −h (r, t ) for the 200 km case that shows that the largest deviations in height are confined within the

region 0≤ r ≤ r1. The reason why we do not violate our small Froude number restriction for reasonable

values of t is that the absolute angular momentum surfaces contract replacing the removed fluid as

mass is removed from the vortex.

In this set of experiments, we terminate the results at 70 m s−1 in Figs. 2.5 and 2.6 and the values in

Table 2.1 at S1t = 5. This choice is arbitrary, but has been done to keep the examples within a physically
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reasonable range and present results acceptable in regards to our small Froude number restriction. It is

possible to obtain solutions at S1t →∞. As S1t →∞, υ1(t )→ c . Because of the absolute angular mo-

mentum principle, r1(t ) for the four cases goes to 1, 4, 9, and 16 km. r1(t ) is prevented from collapsing

to a point vortex because h (0, t )→ 0 as S1t →∞.

Figures 2.7 and 2.8 show the results for only the 200 km case starting from an initial state of rest. In

the plots, h (r, t ), υ(r, t ), and potential vorticity P / f are shown. From the figures, we see that between

t = 0 and t = 60 h, the depth of the fluid falls 300 m from 6371 m to 6071 m. Initially, the drop in the

depth of the fluid is small and h does not start to depart from h̄ until the rate at which r1(t ) contracts

slows. As the radius of maximum velocity collapses from 200 km to 16.7 km, the intensity increases

to 59.5 m s−1. As the inset figure in Fig. 2.8 shows, the potential vorticity in the core exponentially

increases to 148.4 f by t = 60 h.

The results from Figs. 2.5–2.8 display some characteristics similar to those observed in tropical

cyclones and in modeling studies. In comparing the analytic results shown here to Ooyama (1969a), we

see similar properties such as a change in the incubation time based on the initial size of the vortex and

hence the concentration and location of the mass sink. We also note that the work here and Ooyama

(1969a) show that initial size plays a role in the final size of the mature vortex. The results presented here

also appear to offer insight into rapid intensification in convective aggregation studies with a nonzero,

constant Coriolis parameter that use full-physics numerical models (Davis 2015; Wing et al. 2016). The

200 and 300 km cases (blue and green curves in Fig. 2.5) show a qualitatively similar long-incubation

time to the vortices presented in these studies.

2.4 FORMATION AND THINNING OF POTENTIAL VORTICITY RINGS

In order to better understand the effects of eyewall formation, we generalize the two-region model

into a three-region model. We assume that the mass sink is piecewise constant in the three regions: an

inner region 0≤ r < r1(t ) that we define as the “core,” an annular region r1(t )< r < r2(t ) that we define

as the “eyewall” region, and a region r2(t ) < r <∞ that we define as the “far-field” region. The mass

sink is given by

S (r, t ) =















S1 if 0≤ r < r1(t )

S2 if r1(t )< r < r2(t )

0 if r2(t )< r <∞,

(2.45)
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TABLE 2.1. Solutions of the transcendental equation (2.42) for the choices c = 250 m s−1, f = 5×
10−5 s−1, τ1 = S1t , and R1 = r10 (initial state of rest), with four different choices for r10.

r10 = 100 km r10 = 200 km r10 = 300 km r10 = 400 km

S1t P / f r1(t ) υ1(t ) r1(t ) υ1(t ) r1(t ) υ1(t ) r1(t ) υ1(t )

(core) (km) (m s−1) (km) (m s−1) (km) (m s−1) (km) (m s−1)

0.0 1.0 100.0 0.0 200.0 0.0 300.0 0.0 400.0 0.0

0.5 1.6 77.9 1.3 155.9 2.5 233.9 3.8 312.2 5.0

1.0 2.7 60.7 2.6 121.4 5.2 182.4 7.8 243.6 10.3

1.5 4.5 47.3 4.1 94.6 8.2 142.2 12.3 190.0 16.3

2.0 7.4 36.8 5.9 73.7 11.7 110.9 17.5 148.3 23.3

2.5 12.2 28.7 8.0 57.5 16.0 86.5 23.9 115.8 31.7

3.0 20.1 22.3 10.6 44.8 21.2 67.5 31.7 90.5 41.9

3.5 33.1 17.4 13.9 34.9 27.8 52.7 41.4 70.9 54.6

4.0 54.6 13.6 18.1 27.3 36.0 41.3 53.5 55.7 70.4

4.5 90.0 10.6 23.4 21.3 46.4 32.4 68.6 44.1 89.7

5.0 148.4 8.2 30.1 16.7 59.5 25.6 87.3 35.2 112.8

TABLE 2.2. Composite data of the radial distribution of rainfall rates (cm day−1) in tropical systems

in the Atlantic (denoted as hurricane) and Pacific (denoted as typhoon) basins. The data is in 2

degree bins (∼ 200 km). Reproduced from Schubert and Hack (1982), which is based on data from

Gray (1981).

0–2◦ 2–4◦ 4–6◦ 6–8◦ 8–10◦ Area-average

Pre-hurricane 1.9 1.5 0.9 0.5 0.5 0.76

Hurricane 6.3 2.0 0.7 0.3 0.5 0.86

Pre-typhoon 3.4 2.6 1.5 0.7 0.7 1.20

Typhoon 8.3 2.3 0.1 0.8 0.7 1.10

where S1 and S2 are constants. With the forcing (2.45) and the piecewise constant initial condition

P (r, 0) =















P1 if 0≤ r < r10

P2 if r10 < r < r20

f if r20 < r <∞,

(2.46)

an analysis similar to that given in the last section shows that the solution of (2.19) is

P (r, t ) = f















e τ1 if 0≤ r < r1(t )

e τ2 if r1(t )< r < r2(t )

1 if r2(t )< r <∞,

(2.47)
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FIG. 2.5. υ1(t ) versus r1(t ) for four vortices that evolve from resting initial states with r10 =100, 200,

300, 400 km. Labels on the right stand for tropical depression (TD), tropical storm (TS), and Cat-

egory 1–4 hurricanes. Along the five thin black lines, the dimensionless time takes on the respec-

tive values S1t = 1, 2, 3, 4, 5, while the fractional volume removed takes on the respective values

F = 0.632, 0.865, 0.950, 0.982, 0.993. The numbers along each curve denote the time (in hours)

under the assumption that the respective values of S1 are (3 h)−1, (12 h)−1, (27 h)−1, and (48 h)−1,

which means that S1r 2
10 is the same on each colored curve.

where τ1 = S1(t + t1), τ2 = S2(t + t2), and t1 and t2 are defined by e S1t1 = P1/ f and e S2t2 = P2/ f . With the

solution (2.47) for P (r, t ), the invertibility principle (2.27) takes the form



















∂ 2h

∂ r 2
+
∂ h

r ∂ r
−µ2

1h =−µ2
1h̄e −τ1 if 0≤ r < r1(t )

∂ 2h

∂ r 2
+
∂ h

r ∂ r
−µ2

2h =−µ2
2h̄e −τ2 if r1(t )< r < r2(t )

∂ 2h

∂ r 2
+
∂ h

r ∂ r
−µ2h =−µ2h̄ if r2(t )< r <∞,

(2.48)

where

µ1(t ) =µe τ1 , µ2(t ) =µe τ2 , and µ=
f

c
,

are the inverse Rossby lengths in each of the three regions. Note that the Rossby length µ−1 = (c / f ) in

the far-field region is fixed, while the Rossby length (c / f )e −τ1 in the core region and the Rossby length

(c / f )e −τ2 in the eyewall region both decrease exponentially with time.

We can now solve the invertibility problem (2.48) in the entire domain by first solving it in each of

the subregions, enforcing the boundary conditions r = 0 and r →∞, and matching the solutions for h
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FIG. 2.6. υ1(t ) (top) and h̄−h (0, t ) (bottom) two-region model results for four vortices that evolve

from resting initial states with r10 = 100, 200, 300, 400 km as shown in Fig. 2.5. Labels on the right of

the top panel stand for tropical depression (TD), tropical storm (TS), and Category 1–4 hurricanes.

The values of S1 for the four vortices are (3 h)−1, (12 h)−1, (27 h)−1, and (48 h)−1, which means that

S1r 2
10 is the same on each colored curve. The bottom panel is calculated using (2.44).

andυ at r = r1(t ) and r = r2(t ). For example, in the core region, the solution for h consists of the sum of

the particular solution h̄e −τ1 and the homogeneous solution proportional to the zero order modified

Bessel function of the first kind I0(µ1r ), with the other homogeneous solution the zero order modified

Bessel function of the second kind K0(µ1r ) discarded because it is unbounded at r = 0 as shown in

Fig. 2.4. In the far-field region, the solution for h consists of the sum of the particular solution h̄ and the
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FIG. 2.7. Isolines of the depth anomaly h̄ −h (r, t ) (left) and of the tangential wind υ(r, t ) (right),

with the 50 m s−1 contour unlabeled. These results are for a two-region vortex that evolves from

a resting initial state with r10 = 200 km and S1 = (12 h)−1. The angular momentum surface r1(t )

indicated by the thick black line moves inward with time. The value of h̄ is 6371 m, which means

that the contour for the 300 m depth anomaly corresponds to a fluid depth of 6071 m.
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the kinks occurring at the absolute angular momentum surface r = r1(t ). The inset figure shows

P (t )/ f in the core region 0≤ r < r1(t ).
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homogeneous solution proportional to K0(µr ), with the other homogeneous solution I0(µr ) discarded

because it is unbounded at r →∞. In the eyewall region, the solution for h is the sum of the particular

solution h̄e −τ2 and the homogeneous solution, which consists of a linear combination of I0(µ2r ) and

K0(µ2r ). The solution for the fluid depth takes the form

h (r, t ) = h̄



















e −τ1 +
υ1(t )

c

I0(e
τ1µr )

I1(e τ1µ1r )
if 0≤ r ≤ r1(t )

e −τ2 +
υ1(t )

c

F (e τ2µr, e τ2µr2)

G (e τ2µr1, e τ2µr2)
− υ2(t )

c

F (e τ2µr, e τ2µr1)

G (e τ2µr1, e τ2µr2)
if r1(t )≤ r ≤ r2(t )

1− υ2(t )

c

K0(µr )

K1(µr2)
if r2(t )≤ r ≤∞,

(2.49)

where υ1(t ) and υ2(t ) are as yet undetermined functions and

F (x , y ) = I0(x )K1(y ) +K0(x )I1(y ), (2.50)

G (x , y ) = I1(x )K1(y )−K1(x )I1(y ). (2.51)

Note that the special case of (2.49) for the center of the vortex r = 0 is (2.44), the same as the two-region

model. The corresponding solution for the azimuthal wind can be found from the balance relation

(2.16) and the modified Bessel function derivative relations (2.32) and (2.33), from which it follows that

∂ F (e τ2µr, e τ2µr2)

∂ r
= e τ2µG (e τ2µr, e τ2µr2), (2.52)

∂ F (e τ2µr, e τ2µr1)

∂ r
=−e τ2µG (e τ2µ1r, e τ2µr ). (2.53)

The solution for υ(r, t ) is

υ(r, t ) =



















υ1(t )
I1(e

τ1µr )

I1(e τ1µr1)
if 0≤ r ≤ r1(t )

υ1(t )
G (e τ2µr, e τ2µr2)

G (e τ2µr1, e τ2µr2)
+υ2(t )

G (e τ2µr1, e τ2µr )

G (e τ2µr1, e τ2µr2)
if r1(t )≤ r ≤ r2(t )

υ2(t )
K1(µr )

K1(µr2)
if r2(t )≤ r ≤∞.

(2.54)

Note that the continuity ofυ(r, t ) at r = r1(t ) and r = r2(t ) follows directly from the fact that G (x , x ) = 0.

The continuity of h (r, t ) at r = r1(t ) and r = r2(t ) leads to the relations

υ1(t )

c

�

I0(e
τ1µr1)

I1(e τ1µr1)
− F (e τ2µr1, e τ2µr2)

G (e τ2µr1, e τ2µr2)

�

+
υ2(t )

c

�

1

e τ2µr1G (e τ2µr1, e τ2µr2)

�

= e −τ2 − e −τ1 , (2.55)
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and

υ1(t )

c

�

1

e τ2µr1G (e τ2µr1, e τ2µr2)

�

+
υ2(t )

c

�

K0(µr2)

K1(µr2)
− F (e τ2µr2, e τ2µr1)

G (e τ2µr1, e τ2µr2)

�

= 1− e −τ2 , (2.56)

where we have made use of the Wronskian (2.36) to write F (x , x ) = 1/x .

Because of the absolute angular momentum principle, the radius r1(t ) is related to the azimuthal

windυ1(t ) by r1υ1+
1
2 f r 2

1 =
1
2 f R 2

1 , where the constant R1 is the potential radius surface of the interface

between the core and the eyewall region. Similarly, the radius r2(t ) is related to the azimuthal wind

υ2(t ) by r2υ2 +
1
2 f r 2

2 =
1
2 f R 2

2 , where the constant R2 is the potential radius surface of the interface

between the eyewall region and the far-field region. These absolute angular momentum principles

can be written in the forms

υ1(t )

c
=
(µR1)

2− (µr1)
2

2µr1

, (2.57)

υ2(t )

c
=
(µR2)

2− (µr2)
2

2µr2

. (2.58)

For any given t , the four quantities r1, r2, υ1, and υ2 must satisfy (2.54)–(2.58). Equations (2.57)

and (2.58) can be used to eliminate υ1 and υ2 from (2.54) and (2.55) resulting in a coupled pair of

transcendental equations for µr1 and µr2 at the given t . Through using the transcendental equations,

we have solutions of r1, r2, υ1, and υ2 as shown in Table 2.3 and Figs. 2.9 and 2.10. For this three-

region model, we have chosen a configuration in which c = 250 m s−1, f = 5 × 10−5 s−1, r10 = 100

km, r20 = 200 km, S1 = (16 h)−1, S2 = (9 h)−1, t1 = 28 h, and t2 = 0. These choices result in a non-

resting initial state with P1 = 5.75 f , P2 = f , υ10 = 11.8 m s−1, and υ20 = 5.9 m s−1, i.e., the radius

of maximum wind is on the R1 surface initially. As can be seen from Table 2.3, r2(t ) moves inward

faster than r1(t ) so that υ2 grows faster than υ1. By t = 48 h, r2 − r1 ≈ 3 km and υ2 −υ1 ≈ 21.4 m s−1,

i.e., a structure closely resembling a vortex sheet has developed as can be seen in Figs. 2.9 and 2.10.

From the last two columns in Table 2.3 and the inset diagram in Fig. 2.10, the core potential vorticity

exceeds the eyewall potential vorticity until t = 36 h, after which, the potential vorticity within the

eyewall region is larger. In other terms, the potential vorticity field has a monopole structure before

36 h, but as the potential vorticity between r1 and r2 grows, a thinning ring of potential vorticity evolves

after 36 h. Another interesting aspect of this result is that υ1 > υ2 for t < 19 h, while υ1 < υ2 for

t > 19 h. In other words, the radius of maximum tangential wind jumps from the R1 absolute angular

momentum surface to R2 at t ≈ 19 h. In effect, the absolute angular momentum surfaces between
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TABLE 2.3. Solutions of equations (2.55)–(2.58) for the choices c = 250 m s−1, f = 5× 10−5 s−1,

r10 = 100 km, r20 = 200 km, S1 = (16 h)−1, S2 = (9 h)−1, t1 = 28 h, and t2 = 0. The initial vortex has a

maximum wind of 11.8 m s−1 at a radius of 100 km.

t r1(t ) r2(t ) υ1(t ) υ2(t ) P / f P / f

(h) (km) (km) (m s−1) (m s−1) (core) (eyewall)

0 100.0 200.0 11.8 5.9 5.8 1.0

6 83.0 149.4 15.2 10.8 8.4 1.9

12 68.9 112.6 19.0 16.5 12.2 3.8

18 57.3 85.8 23.6 23.2 17.7 7.4

24 47.6 66.1 28.9 31.3 25.8 14.4

30 39.6 51.5 35.1 41.0 37.5 28.0

36 33.0 40.6 42.5 52.6 54.6 54.6

42 27.6 32.4 51.1 66.4 79.4 106.3

48 23.2 26.2 61.2 82.6 115.6 207.1

R1 and R2 moved inward across the radius of maximum wind. This scenario is consistent with the

results shown by Stern et al. (2015), who argue that in real and model tropical cyclones, contraction

of the radius of maximum wind often ceases before peak intensity is reached. This scenario is also

consistent with the arguments of Smith and Montgomery (2015) that the movement of the absolute

angular momentum surfaces is fundamental to understanding intensification. The authors argue that

there is not a one-to-one relationship between these surfaces and the radius of maximum wind and

even if the radius of maximum wind ceases to contract, an inward movement of the absolute angular

momentum surfaces must accompany vortex intensification.

2.5 MULTI-REGION MODEL OF TROPICAL CYCLONE INTENSIFICATION

In this section, we generalize the two- and three-region forced, balanced model solutions to an

arbitrary number of regions. Using this version of the model, we can improve our understanding of

the relationship between intensity and the size of tropical cyclones. Again, we consider the case in

which both the mass sink S (r, t ) and potential vorticity P (r, t ) are piecewise uniform in radius. The

discontinuities in the two fields occur at the points r j (t ), where j = 1, 2, · · · , J . The functions r j (t )

have not yet been determined. Because of (2.4), each of these radii is an absolute angular momentum

surface that moves inward as the vortex intensifies. This means that determining r j (t ) is critical to

understand the radial inflow. We shall refer to the region 0 ≤ r < r1(t ) as the “innermost region,” the

region r j−1(t ) < r < r j (t ) as the “jth region,” and the region rJ (t ) < r <∞ as the “far-field” region. In
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FIG. 2.9. Isolines of the tangential wind υ(r, t ) for the three-region model. The two thick black

lines show the inward movement of the absolute angular momentum surface r1(t ) and r2(t ). Note

that r1(t ) at t = 0 is starting from a non-resting initial state.
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FIG. 2.10. Radial profiles of tangential windυ(r, t ) at 6-h intervals for the three-region model. The

kinks in υ(r, t ) occur at the absolute angular momentum surfaces r1(t ) and r2(t ). With regards to

the kinks in the three-region model, the radius of maximum wind shifts from r1 to r2 at t ≈ 18 h.

As with Fig. 2.8, the inset shows the potential vorticity. In this case, potential vorticity is shown for

the core and eyewall region. Note, the vortex initially has a monotonic potential vorticity structure

that switches to a hollow potential vorticity structure at t ≈ 36 h.
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the far-field region, we assume that there is no mass sink and that the potential vorticity remains equal

to f for all time. The mass sink is given by

S (r, t ) = Sj (t ) for r j−1(t )< r < r j (t ), (2.59)

where the Sj (t ) are specified functions of time for the j = 1, 2, · · · , J . Because of the form of the mass

sink (2.59), an initial piecewise uniform potential vorticity remains piecewise uniform with (2.19) sim-

plifying to

∂ P

∂ t
= Sj P for r j−1(t )< r < r j (t ). (2.60)

The piecewise uniform initial condition on P is

P (r, 0) = Pj for r j−1,0 < r < r j ,0, (2.61)

where the constants Pj are the initial values of the potential vorticity and r j ,0 are the initial values of

r j (t ). With this initial condition, the solution of (2.60) is

P (r, t ) = f e τ j (t ) for r j−1(t )< r < r j (t ), whereτ j (t ) = τ j ,0+

t
∫

0

Sj (t
′)d t ′, (2.62)

is the dimensionless time for the j th region, and where the constants τ j ,0 are defined in terms of the

initial conditions by e τ j ,0 = Pj / f . A simple interpretation of (2.62) is that each region has its own clock

by which it exponentially grows the potential vorticity.

The diagnosis of the mass and wind fields from the potential vorticity field (2.62) requires solving

the invertibility principle. The invertibility principle for h can be derived by combining the definition

of the potential vorticity P with the balance condition (2.16) to obtain

∂

r ∂ r

�

r

P

∂ h

∂ r

�

− P h

g h̄
=− f

g
. (2.63)

With the solutions (2.62) for P (r, t ), the invertibility principle (2.63) takes the form

∂ 2h

∂ r 2
+
∂ h

r ∂ r
−µ2

j h =−µ2
j h̄e −τ j (t ) for r j−1(t )< r < r j (t ), (2.64)

where µ= f /c is the inverse Rossby length in the far-field region and

µ j (t ) =µe τ j (t ) for j = 1, 2, · · · , J (2.65)
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are the inverse Rossby length in the other J regions. As with the two- and three-region models, the

Rossby length (c / f ) in the far-field region is fixed, while the Rossby lengths (c / f )e −τ j (t ) in the other J

regions decrease exponentially with time in regions where Sj and τ j ,0 are nonzero.

We can solve the invertibility problem (2.64) in the entire domain by first solving for the invertibil-

ity problem within each subregion, then enforcing the boundary conditions for r = 0 and r →∞, and

finally matching the solutions for h and υ at each r j (t ). For example, in the innermost region 0 ≤ r <

r1(t ), the solution for h consists of the sum of the particular solution h̄e −τ1(t ) and the homogeneous

solution proportional to I0(µ1r ), with the other homogeneous solution K0(µ1r ) discarded because it is

unbounded at r = 0. Similarly, in the far-field region, the solution for h consists of the sum of the par-

ticular solution h̄ and the homogeneous solution proportional to K0(µr ), with the other homogeneous

solution I0(µr )discarded because it is unbounded as r →∞. In the j th region r j−1 < r < r j (t ), the solu-

tion for h is the sum of the particular solution h̄e −τ j (t ) and the homogeneous solution, which consists

of a linear combination of I0(µ j r ) and K0(µ j r ), or alternatively, a linear combination of F (µ j r,µ j r j )

and F (µ j r,µ j r j−1), where F is defined in (2.67). Then, choosing the coefficients in such a way that

anticipates the requirement of continuity of υ(r, t ) at each r j (t ), the solutions for the fluid depth can

be written in the form

h (r, t ) = h̄





















e −τ1(t )+
υ1(t )

c

I0(µ1r )

I1(µ1r1)
if 0≤ r ≤ r1(t )

e −τ j (t )+
1

c

υ j−1(t )F (µ j r,µ j r j )−υ j (t )F (µ j r,µ j r j−1)

G (u j r j−1,µ j r j )
if r j−1(t )≤ r ≤ r j (t )

1− υJ (t )

c

K0(µr )

K1(µrJ )
if rJ (t )≤ r <∞,

(2.66)

where the values of υ j (t ) are as yet undetermined and where

F (x , y ) = I0(x )K1(y ) +K0(y )I1(y ), (2.67)

G (x , y ) = I1(x )K1(y )−K1(x )I1(y ). (2.68)

The corresponding solution for the azimuthal wind can be found from the balance relation (2.16) and

the Wronskian (2.36).
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It follows that Fx (x , y ) =G (x , y ) =−G (y , x ). Thus, the solution for υ(r, t ) is

υ(r, t ) =





















υ1(t )
I1(µ1r )

I1(µ1r1)
if 0≤ r ≤ r1(t )

υ j−1G (µ j r,µ j r j ) +υ j (t )G (µ j r j−1,µ j r )

G (µ j r j−1,µ j r j )
if r j−1(t )≤ r ≤ r j (t )

υJ (t )
K1(µr )

K1(µrJ )
if rJ (t )≤ r <∞.

(2.69)

Note that (2.69), along with the fact that G (x , x ) = 0, guarantees that υ(r, t ) is continuous at r = r j−1(t )

and r = r j (t ), thus validating the choice of the coefficients in (2.66).

To summarize the development of the j th region model so far, we have obtained the solution (2.62)

for the potential vorticity field P (r, t ), the solution (2.66) for the height field h (r, t ), and the solution

(2.69) for the tangential wind field υ(r, t ). However, we have yet to determine the values of r j (t ) and

υ j (t ). For a given time t , the values of r j (t ) andυ j (t )will now be determined by requiring that h (r, t ) is

continuous at r j (t ) and that r j (t ) and υ j (t ) are consistent with the angular momentum principle. The

continuity of h (r, t ) at r = r1(t ), r = r j (t ) for 2≤ j ≤ J −1, and r = rJ (t ) leads to the relations

υ
(ν+1)
1 (t )

c

 

I0

�

µ1r
(ν)

1

�
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�

µ1r
(ν)

1

� −
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(ν)

1 ,µ2r
(ν)

2

�

G
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µ2r
(ν)

1 ,µ2r
(ν)

2

�

!

+
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(ν+1)
2 (t )

c

 

1

µ2r
(ν)

1 G
�

µ2r
(ν)

1 ,µ2r
(ν)

2

�

!

= e −τ2(t )− e −τ1(t ),

(2.70)
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c
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(2.71)
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= 1− e −τJ (t ), (2.72)

where we have made use of the Wronskian (2.36) to write F (x , x ) = 1/x . Because of the absolute angular

momentum principle, the radius r j (t ) is related to the azimuthal wind υ j (t ) by r j (t )υ j (t ) +
1
2 f r 2

j (t ) =

1
2 f R 2

j , where R j is the potential radius of the j th interface. This angular momentum relation can be

viewed as a quadratic equation for r j (t ), with the solution expressed in the form

r
(ν+1)
j (t ) =

 

R 2
j +
υ

2 (ν+1)
j (t )

f 2

!1/2

−
υ
(ν+1)
j (t )

f
for j = 1, 2, · · · , J , (2.73)
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where we have chosen the root that yields r j (t )> 0. Thus, for a given t , the 2J quantities r
(ν+1)
j (t ) and

υ
(ν+1)
j (t ) for j = 1, 2, · · · , J must satisfy the 2J equations (2.70)–(2.73). The solution of these equations

requires iteration. While there are several ways to proceed, we have chosen the following iterative pro-

cedure. From the current estimates of r
(ν)
j , all the coefficients of υ

(ν+1)
j in (2.70)–(2.72) are known, so

that these equations form a tridiagonal linear algebraic system for the unknown υ
(ν+1)
j ’s. After solving

the tridiagonal system for the υ
(ν+1)
j ’s, the r

(ν+1)
j ’s are updated through (2.73), after which this iterative

cycle repeats until convergence is reached.

2.5.1 Examples from the multi-region model

The multi-region forced, balanced model of tropical cyclone intensification allows for complicated

configurations of the radial distribution of the mass sink. In the two-region model, all the absolute an-

gular momentum surfaces within r1 act in unison. With more complicated distributions of the mass

sink in the multi-region cases, the inward shift of outer absolute angular momentum surfaces is con-

trolled by the inward shift of inner surfaces. Figure 2.11 shows a (r,υ) space diagram with results from

an example in which the number of regions have been expanded from three to six. In the figure, there

are two example experiments in which the mass sink decreases linearly radially outward from the cen-

ter of the vortex (orange case) and increases linearly radially outward from the center (blue case) in a

manner that does not have a constant area-averaged mass sink between the two cases as shown by the

inset bar plot where shorter bars represent a stronger mass sink. The black curves are absolute angular

momentum surfaces R0 = 50, 150, 250, 350, 450 and define the interfaces between the regions. While

both vortices have similar intensities and structures at 24 h, the distribution of the mass sink in the

blue case inhibits the rate of intensification in comparison to the orange case as the outer R surfaces

cannot collapse with the same ease as the orange vortex. This is caused by the outer absolute angular

momentum surfaces in the blue case being delayed until the inner surfaces contract despite having a

larger area-averaged mass sink in the orange case. To explore this effect further, we design a series of

cases with the same area-averaged mass sink but a different radial distribution.

In this set of experiments, the time-independent mass sink is given by

Sj = A







αe
−r̄ 2

j /a
2

+ (1−α)(r̄ /b )2e
−r̄ 2

j /b
2

if 1≤ j ≤ J

0 if j = J +1,

(2.74)
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where r̄ = 1
2 (r j−1 + r j ) and a , b , and α are constants. The constant A will be determined by a normal-

ization procedure. Integrating (2.74) over the area inside r = rJ , we obtain

A =
S̄ r 2

J

J
∑

j=1

¦�

αe
−r̄ 2

j /a
2

+ (1−α)(r̄ /b )2e
−r̄ 2

j /b
2
��

r 2
j − r 2

j−1

�©

, (2.75)

where we have defined S̄ by

S̄ r 2
J =

J
∑

j=1

Sj

�

r 2
j − r 2

j−1

�

. (2.76)

The values of a , b ,α, and S̄ for cases A–D are in Table 2.4. In these cases, the radial distribution of the

mass sink is changed by altering α = 1, 0.8, 0.5, 0.2. Plots of Sj are shown in Fig. 2.12 for the different

values of α. From this figure, we can see that while the area-averaged mass sink is the same, the radial

distributions are different. Figure 2.13 showsυmax(t )and rmax(t ) for cases A–D from Table 2.4. While the

initial rmax values between the four cases span 300 km, the intensification and contraction are similar

during the first 24 h, features that are similar to the two- and three-region model results. Case A shows

intensification that is unimpeded due to the largest mass sink value being located in the innermost

regions. This case most resembles the output from the two-region model shown in Fig. 2.5. The other

cases have more subdued intensification rates due to the mass sink being shifted radially outward as

shown by the black curves that represent contours of equal physical time (t = 24, 72, 120, 168, 216 h)

in Fig. 2.5. On the opposite end of the spectrum, case D shows a vortex with a large initial rmax and a

long incubation time. The mass sink distribution associated with this case causes the vortex to struggle

to contract and intensify. In some respects, case D is similar to the three-region model case shown in

Fig. 2.10. From cases A→D, we see the formation of hollow potential vorticity towers resulting from the

radial shift outward of the mass sink. At all times, case D has a larger eye than case A. However, this

does not tell us anything about the overall structure or damage potential of the tropical cyclone.

2.5.2 E −Vmax diagrams for the multi-region model

Intensity is only one metric for characterizing the strength and damage potential of a tropical cy-

clone. Many of the impacts related to tropical cyclones stem from the size of the tropical cyclone.

To communicate these hazards and understand the dynamical differences between small and large

storms, size metrics for tropical cyclones are needed (e.g., the radii of 17 m s−1 wind in intercardinal

quadrants). A number of climatological studies have attempted to develop other metrics for the size of

the tropical cycle using wind, potential vorticity, brightness temperature from geostationary satellites,
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FIG. 2.11. A plot for a six-region example from the multi-region forced, balanced model. The black

lines represent the absolute angular momentum surfaces on a (υ, r ) plane bounding the regions.

The orange and blue curves show υ(r ) at t = 24, 72, 120, 168, 216 h for the constant mass sink dis-

played in the inset. The inset figure shows the radial distribution of the mass sink between the

absolute angular momentum surfaces for the two vortices. Longer bars represent a weaker mass

sink. Note that this is the inverse of the presentation used for the sink in Fig. 2.12.
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FIG. 2.12. Sj on the domain j = 1, 2, · · · , J for the values of α = 1, 0.8, 0.5, 0.2 for cases A–D and

constant values of a , b , and S̄ , which can be found in Table 2.4. The distribution of the mass sink

shifts radially outward with decreasing α.
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FIG. 2.13. υmax(t ) and rmax(t ) for cases A–D with values of a , b ,α, and S̄ that can be found in Ta-

ble 2.4. Labels on the right stand for tropical depression (TD), tropical storm (TS), and Category

1–4 hurricanes. Along the five thin black lines, the physical time for t = 24, 48, 72, 96, 120 h.

TABLE 2.4. Cases A–D for the multi-region model. The values a , b ,α, S̄ are specified constants

that in conjunction with (2.111) control the radial distribution of the mass sink for each case. The

maximum tangential wind υmax, the deviation in fluid depth h̄ − h (0, t ), and total energy E are

provided for t = 120 h.

Case α a b S̄ υmax h̄ −h (0, t ) E

(km) (km) (m s−1) (m) (1018 J)

A 1.0 500 500 (96 h)−1 55.9 1265 1.78

B 0.8 500 500 (96 h)−1 44.4 850 2.01

C 0.5 500 500 (96 h)−1 36.4 562 2.32

D 0.2 500 500 (96 h)−1 33.3 426 2.47

and area-integrated kinetic energy (Merrill 1984; Liu and Chan 1999; Kimball and Mulekar 2004; Knaff

et al. 2007, 2014; Chan and Chan 2012, 2014, 2015). Viewing area-integrated kinetic energy as one of

the better metrics to understand the destruction potential of a tropical cyclone, both Powell and Rein-

hold (2007) and Maclay et al. (2008) have proposed scales that involve two parameters — maximum

wind speed and area-integrated kinetic energy calculated from aircraft reconnaissance data. In each

of these works, the authors focus on the area-integrated kinetic energy only over the lower troposphere

and only out to a limited radius (e.g., 200 km) due to the extent of radial penetrations from the observa-

tional dataset. While this is a practical limitation in their work, Ooyama (1969a) highlights the effect of

limiting the radius to which the area-integrated kinetic energy is computed. From a model simulation
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FIG. 2.14. Time evolution of the total kinetic energy for regions within radii of 100, 200, 500, and

1000 km. Reproduced from Fig. 10 of Ooyama (1969a). The figure shows that calculating the ki-

netic energy for radii≤ 500 km missed the continued growth and expansion of the wind field even

after the model reaches a quasi-steady state in the maximum tangential velocity.

by Ooyama (1969a), Fig. 2.14 shows that while the area-integrated kinetic energy will either level off or

decrease when the calculation is done within an area of 500 km from the center of the vortex, the wind

field in the far-field region continues to expand after the vortex reaches a quasi-steady state in its maxi-

mum intensity resulting in the continued increase of the integrated kinetic energy. Hill and Lackmann

(2009) and Wang (2009) show that in the presence of adequate middle tropospheric moisture, the size of

a tropical cyclone increases due to the diabatic heating associated with outer and spiral rainbands, an

argument consistent with the inertial stability ideas that originate from work with the Eliassen (1951)

balanced vortex model.

To understand more about the relationship between energy and the maximum tangential velocity

and to see if the forced, balanced model based on the wave–vortex approximation adequately repre-

sents tropical cyclones in terms of E , we will present results from our model in the E −Vmax diagram

space. Our results will be presented as total energy (i.e., kinetic plus available potential) and will be
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computed over the entire domain, which is akin to Ooyama (1969a). To compute the total energy, we

begin with the invertibility principle (2.64) in the form

g 2h̄

P 2
j

∂

r ∂ r

�

r
∂ h

∂ r

�

− g (h − h̄ ) = g h̄
�

1− e −τ j
�

for r j−1(t )< r < r j (t ), (2.77)

where j = 1, 2, · · · , J , J + 1. For the innermost region ( j = 1), the value of r0 is taken to be zero. For the

far-field region ( j = J +1), the outer radius rJ+1 is taken to be infinity, PJ+1 is taken to be f , and τJ+1 is

taken to be zero (i.e., no forcing in the far-field region). We now multiply (2.77) by (h − h̄ ) and integrate

to obtain

r j (t )
∫

r j−1(t )
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r d r = 1
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, (2.78)

where the boundary terms have originated from an integration by parts and we have made use of the

balance relation (2.16). Taking the sum of (2.78) from j = 1 to j = J +1 yields

E =

∞
∫

0

1
2

�

υ2h̄ + g (h − h̄ )2
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r d r = 1
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. (2.79)

The sum on the right-hand side of (2.79) can be written
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The volume deficit integral on the right-hand side of (2.79) can be evaluated using the solution (2.66).

The result is
r j (t )
∫

r j−1(t )

(h − h̄ )r d r = 1
2 h̄

�

r 2
j − r 2

j−1− (R
2
j −R 2

j−1)e
−τ j

�

for 1≤ j ≤ J . (2.81)

Using (2.80) and (2.81) in (2.79), we can write the total energy E as

E = 1
4 g h̄

J
∑

j=1

§

�

h j − h̄
� �

e −τ j − e −τ j+1
� �
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j − r 2

j

�

+ h̄
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1− e −τ j
� �

r 2
j − r 2

j−1−
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R 2
j −R 2

j−1

�

e −τ j

�
ª

. (2.82)

Returning to the cases from Table 2.4, Fig. 2.15 shows the maximum tangential velocity υmax, de-

viation in fluid depth at r = 0, h̄ −h (0, t ), and total energy E during the first 120 h from a resting initial

state. Panels a) and b) show that υmax and h̄ −h (0, t ) are largest for case A, the case with unimpeded

intensification. However, panel c) shows that case D has a larger integrated total energy E than the
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FIG. 2.15. a) maximum tangential wind υmax(t ) (m s−1), b) deviation in fluid depth h̄ −h (0, t ) (m),

and c) total energy E (t ) (1018 J) in the region 0≤ r ≤ 1000 km from t = 0 to 120 h for the cases A–D

with values of a , b ,α, and S̄ that can be found in Table 2.4.

other three cases, i.e., a larger wind field in response to the mass sink at larger radii. In the E − Vmax

space, Fig. 2.16 shows that by the time the vortices reach category 1 strength on the Saffir-Simpson

wind scale, the integrated total energy E for case D is already over twice the energy contained in case A.

Also, Fig. 2.16 indicates that vortices with a mass sink displaced from the center will continue to expand

as they intensify where cases saturate from an integrated total energy E standpoint, e.g., case A where

the mass sink is concentrated in the center. This suggests that storms that struggle to intensify are still

capable of becoming larger and are possibly capable of more damage than more intense storms if am-

ple diabatic heating is present outside of the radius of maximum wind. This result is consistent with

the inertial stability ideas presented by Vigh and Schubert (2009) and Musgrave et al. (2012) as well as

the humidity arguments made by Hill and Lackmann (2009) and Wang (2009).

Eyewall replacement is a mechanism by which storms can change the distribution of the regions

with the largest diabatic heating from close to the core to outside of the original radius of maximum

wind. We can use the multi-region model to assess how much the total energyE changes during eyewall

replacement. Observational work indicates that there should be a jump in kinetic energy (e.g., Maclay

et al. 2008; Sitkowski et al. 2011). Through a modeling study of eyewall replacement, Rozoff et al. (2012)

found a 79% increase in kinetic energy during the cycle. Figure 2.17 offers a schematic view of how

intensity and integrated kinetic energy change before, during, and after eyewall replacement should
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FIG. 2.16. Total energyE versus maximum tangential wind (υmax) for four cases in the multi-region

model configured using the constants from Table 2.4.

appear in the E −Vmax diagram phase space. In Figs. 2.9 and 2.10, we see a three-region model case in

which the absolute angular momentum surface associated with the radius of maximum wind changes.

Rather than starting with a vortex in a resting state, we start with τ j ,0 = 3 in (2.62) for the region 0 ≤

R ≤ 300 km. This configuration is the r10 = 300 km case from the two-region model in section 2.3 .

For the r10 = 300 km case, υmax = 31.7 m s−1 and rmax = 67.5 km when τ = S1t = 3. Next, we select

values for the constant parameters in the mass sink (2.74), α = 0.1, a = b = 500 km, and S̄ = (96 h)−1.

Figure 2.18 shows the evolution of the vortex in the E−Vmax space. The figure shows that development

of the vortex is not smooth. The r10 = 300 km case from the two-region model produces a structure akin

to a modified Rankine vortex that does not have a large amount of energy associated with it. Initially,

we see that the inner eyewall continues to intensify because of the small, nonzero mass sink present

in the inner core due to α = 0.1. But, the outer eyewall quickly develops and switches the vortex from

being energy growth dominated to intensity growth dominated. Once the outer eyewall dominates

(e.g., replacing the inner) in the E −Vmax space, the vortex exhibits the same progression as the resting

cases in Fig. 2.16. After eyewall replacement, the new eyewall often gets “stuck,” in that it does not

contract to the radius of the original eyewall. The evolution seen in Figs. 2.16 and 2.18 may suggest

that the eyewall can only contract radially inward as far as its mass sink will allow unless something,

such as boundary layer processes, allow it to contract further.
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FIG. 2.17. A kinetic energy versus maximum wind speed (Vmax) schematic that shows the evolu-

tion of a vortex from the “incipient,” “deepening,” and “mature” stages of a tropical cyclone (e.g.,

“genesis,” “rapid intensification,” and “quasi-steady state” stages). The dashed portion in the ma-

ture stage is indicative of the behavior of a tropical storm undergoing eyewall replacement. Time

is indicated in 12-h increments from 0 to 216 h along the multi-colored curve, Saffir–Simpson cat-

egories are indicated across the top of the diagram, and the labels “weak giants,” “super giants,”

and “strong dwarfs” are offered to provide context for the phase space. Figure 3 from Musgrave

et al. (2012).

In these experiments, we artificially constructed a jump through changing the radial distribution of

the mass sink to a larger radius to see the total energy E response. In real tropical cyclones or in a model

that includes boundary layer processes, the diabatic heating would evolve in unison with the rest of the

vortex. In this case, the value of α controls the jump in total energy during our eyewall replacement

simulation. Smaller values of α produce larger jumps in the total energy. In Fig. 2.18, we see that the

jump is much larger than the one shown by Rozoff et al. (2012) due in part to our choice of initial vortex

via τ j ,0 and α. Because the multi-region model does not have a means by which to weaken the inner

eyewall as the outer develops, the development in the E−Vmax space is not as clear as what is presented

in the schematic shown in Fig. 2.17. However, Fig. 2.18 shows the energy jump is displacing the mass

sink further from the center of the vortex. In reality, this change would be the result of boundary layer

processes controlling the location of the frictionally induced convergence and Ekman pumping.
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FIG. 2.18. Total energy E versus maximum tangential wind Vmax for an eyewall replacement case

in the multi-region model. This example starts from a nonresting state,τ j ,0 = 3 for 0≤R ≤ 300 km,

and the mass sink constants for (2.74) are α= 0.1, a = b = 500 km, and S̄ = (96 h)−1.

2.6 A COMPARISON OF TWO BALANCED VORTEX MODELS OF TROPICAL CYCLONE INTENSIFICATION

In the previous sections, we developed analytic, time-dependent solutions of an inviscid, axisym-

metric, one-layer, balanced vortex model based on the wave–vortex approximation proposed by Salmon

(2014). This model is similar to Eliassen (1951) except that we made a slight modification to the gra-

dient balance approximation. These analytic solutions provide insight into the relationship between

intensity and size, and the radial movement of the radius of maximum wind relative to contracting

angular momentum surfaces. The consequence of making the wave–vortex approximation is that it

is only valid when the Froude number is small. The Eliassen (1951) balanced vortex model should be

regarded as the more general of the two models because it does not have the small Froude number

restriction. In our two-, three-, and multi-region models, we assumed a forced, balanced model that

is based on the wave–vortex approximation would be valid for vertical profiles of diabatic heating pro-

jected onto the external mode, i.e., c ≈ 250− 300 m s−1. In this section, we will compare the model

based on the wave–vortex approximation, BV2, to a model based on the gradient balanced approxima-

tion, BV1, to show how the wave–vortex approximation breaks down. To make this comparison, we will

solve for both models in r space numerically through using an iterative procedure until the respective

solutions converge.
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2.6.1 The gradient balanced vortex model (BV1)

The governing equations for the inviscid, axisymmetric, one-layer, forced, gradient balanced vortex

model are

�

f +
υ

r

�

υ= g
∂ h

∂ r
, (2.83)

∂ υ

∂ t
+ ( f +ζ)u = 0, (2.84)

∂ h

∂ t
+
∂ (r uh )

r ∂ r
=−hS , (2.85)

where u is the radial wind, υ is the tangential wind, h is the depth of the fluid, g is the acceleration of

gravity, f is the constant Coriolis parameter, ζ = ∂ (rυ)/r ∂ r is the relative vorticity, and S is the mass

sink. The equations represented by (2.83)–(2.85) are referred to as BV1, which is the forced, shallow

water version of the classic Eliassen (1951) balanced vortex model.

The energy principle for BV1 is obtained by taking the sum of −h u times (2.83), hυ times (2.84),

and g (h − h̄ ) times (2.85), where h̄ is the depth of the fluid to which h (r, t ) asymptotes as r →∞. After

integrating over the entire area, we obtain

d (K+P)

d t
= G, (2.86)

where

K=

∞
∫

0

1
2υ

2h r d r, P =

∞
∫

0

1
2 g (h − h̄ )2r d r, and G =

∞
∫

0

g (h̄ −h )hS r d r, (2.87)

are the kinetic energy K, the available potential energy P , and the total energy generation G.

The absolute angular momentum principle, obtained from (2.84), is

D

D t

�

rυ+ 1
2 f r 2

�

= 0, (2.88)

where the material derivative (D /D t ) is (∂ /∂ t )+u (∂ /∂ r ). Using (2.84), the vorticity equation is written

as

D ( f +ζ)

D t
+ ( f +ζ)

∂ (r u )

r ∂ r
= 0, (2.89)

and the continuity equation (2.85) takes the form

D h

D t
+h
∂ (r u )

r ∂ r
=−hS . (2.90)
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Elimination of the divergence between (2.89) and (2.90) leads to the potential vorticity principle

D P

D t
= SP, (2.91)

where P = ( f +ζ)(h̄/h ) is the potential vorticity.

Returning to our definition of potential radius 1
2 f R 2 = rυ+ 1

2 f r 2, we rewrite the absolute angular

momentum principle (2.88) as Ṙ = D R/D t = 0. As outlined by Schubert and Hack (1983), we now

write the material derivative in (R , T ) space as (D /D t ) = (∂ /∂ T )+Ṙ (∂ /∂ R ) = (∂ /∂ T ), where T = t , but

∂ /∂ T implies fixed R , while ∂ /∂ t implies fixed r . We now write (2.91) as

∂ P

∂ T
= SP. (2.92)

Equation (2.91) indicates that the evolution of potential vorticity involves both the radial advection and

generation by a mass sink in the r coordinate. However, in the R coordinate, the evolution of potential

vorticity only involves the mass sink as can be seen by inspecting (2.92). In (2.92), the radial advection

has become implicit in the coordinate transformation. For a mass sink dependent on both R and T ,

the solution of (2.92) is

P (R , T ) = f e τ(R ,T ) where τ(R , T ) = τ0(R ) +

T
∫

0

S (R , T ′)d T ′, (2.93)

where specification of τ0(R ) is equivalent to specification of the initial potential vorticity through the

relation P (R , 0) = f e τ0(R ). The choice τ0(R ) = 0 corresponds to the initial condition P (R , 0) = f (a

resting initial state).

Now, we need to consider how to recover the mass and wind fields from the P (R , T ) solution given

by (2.93). This involves solving a second order differential equation that we can formulate in terms of

eitherυ(r ) or h (r ). In this work, we will only discuss theυ formulation. Next, we combine the gradient

balance relation (2.83) with the radial derivative of the definition of potential vorticity to obtain the

second order differential equation for υ. From here, we can write the invertibility principle for υ(r ),

R (r ), and h (r ) as

r 2 ∂
2υ

∂ r 2
+ r
∂ υ

∂ r
−
�

1+
f P (r 2+R 2)

2g h̄

�

υ= r 2 h

h̄

∂ P

∂ r
, (2.94)

with the boundary conditions

υ= 0 at r = 0 and υ∼ K1(µr ) as r →∞, (2.95)
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and with

R (r ) = r

�

1+
2υ

f r

�1/2

and
h (r )

h̄
=

f R

P r

∂ R

∂ r
, (2.96)

where the inverse Rossby length in the far-field region is defined byµ= f /(g h̄ )1/2. The outer boundary

condition in (2.95) is obtained by noting that we assume P → f , (∂ P /∂ r )→ 0, and R → r as r →∞,

so that (2.94) reduces to the homogeneous, modified Bessel equation. The solution then consists of a

linear combination of the growing, order one modified Bessel function of the first kind I1(µr ) and the

decaying, order one modified Bessel function of the second kind K1(µr ) as shown in Fig. 2.4. Then, by

requiring that the far-field region solution be proportional to the decaying solution K1(µr ), we obtain

the boundary condition given in (2.95). We obtain the two entries in (2.96) from the definitions of

potential radius and potential vorticity.

At any given point in time t , (2.94)–(2.96) are a coupled, nonlinear system of equations with the

unknowns υ(r ), R (r ), and h (r ). An interesting aspect of this formulation of the nonlinear problem is

that for any given t , we know the values of P (R ) from the analytic solution (2.93). However, we do not

know the potential vorticity in physical space P (r ), which is required on both the left- and right-hand

sides of the invertibility principle (2.94). To translate the known P (R ) into P (r ), we need to know the

mapping R (r ), which is one of the unknowns in the system (2.94)–(2.96). In order to solve this system,

we will envision the following iterative procedure. At a given point in time t , we assume we have some

estimate for the values of mapping R (r ) and height in physical space h (r ), so that we also have an esti-

mate for the current values of P (r ). Using these values, we solve (2.94)–(2.95) forυ(r ). Next, we update

our estimates for the values of R (r ) and h (r ). In repeating these steps until we reach convergence, we

will know the mapping of R (r ) and therefore know the physical space potential vorticity distribution

P (r ) in addition to the balanced mass and wind fields h (r ) andυ(r ). Because of (2.93), we can perform

this proposed procedure at any time t without knowledge of the solution at previous times. In other

terms, the determination of the mapping R (r ) at time t is equivalent to finding the accumulated effects

of radial advection on the potential vorticity distribution.

Taking the envisioned procedure proposed above, we consider the spatial discretization method

and iterative solution procedure for the nonlinear system (2.94)–(2.96), which will be solved numeri-

cally on a uniform radial grid defined by r j = j∆r for j = 0, 1, · · · , J −1, J . For the results presented here,

we have chosen the grid spacing∆r = 100 m and J = 10000, corresponding to a computational domain
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size of 1000 km. Using second order accurate, centered finite differences, (2.94)–(2.96) are discretized

in the form
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with the boundary conditions

υ0 = 0 and υ
(ν+1)
J =

�

K1(µrJ )

K1(µrJ−1)
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J−1 , (2.98)

and with the values of R j and h j updated by
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where (2.97) applies for j = 1, 2, · · · , J − 1. The discrete outer boundary condition has been obtained

by noting that, at the outer two grid points, the asymptotic behavior of υ requires that υJ /υJ−1 =

K1(µrJ )/K1(µrJ−1), since the constant of proportionality cancels out. This boundary condition, listed

as the second entry in (2.98), relates the last two values of υ on the grid. At a given time t , knowing

P (R ), we now regard (2.97)–(2.99) as a coupled system in υ j , R j , and h j . Equations (2.97) and (2.98)

form a tridiagonal algebraic system. Assuming that we have current estimates of R j and h j as well as an

estimate of Pj , we can regard this tridiagonal system as linear and solve for υ. We then update our es-

timates of R j and h j using (2.99) to repeat the process. Only after convergence of this iterative process

do we know the mapping R j and physical space distribution of potential vorticity Pj .

2.6.2 The second balanced vortex model (BV2)

The second balanced vortex model is based on the wave–vortex approximation introduced by Salmon

(2014), with two additional assumptions involving axisymmetry and the filtering of inertia-gravity waves

(Schubert et al. 2016). The governing equations for the BV2 system are

Pυ= g
∂ h

∂ r
, (2.100)

∂ υ

∂ t
+ ( f +ζ)u = 0, (2.101)

∂ h

∂ t
+
∂ (r uh )

r ∂ r
=−hS . (2.102)

Because of how we have chosen to identify the variables (see Schubert et al. 2016), the difference be-

tween BV1 and BV2 lies in the balance relations (2.83) and (2.100). Since (2.101) is identical to (2.84)
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and (2.102) is identical to (2.85), the analysis done between (2.88) and (2.93) remains the same. The

difference lies in the invertibility principle.

As with BV1, we will write the energy principle for BV2 by taking the sum of −h u times (2.100), h̄υ

times (2.101), and g (h − h̄ ) times (2.102), and integrate over the entire area. The result for BV2 is

d (K+P)

d t
= G, (2.103)

where

K=

∞
∫

0

1
2υ

2h̄ r d r, P =

∞
∫

0

1
2 g (h − h̄ )2r d r, and G =

∞
∫

0

g (h̄ −h )hS r d r, (2.104)

are the kinetic energy K, the available potential energy P , and the total energy generation G in BV2.

Note that the energy principles for BV1 and BV2 are identical except for the definition of K. In BV2,

the kinetic energy of the fluid column is 1
2υ

2h̄ , which is a good approximation of 1
2υ

2h for situations

in which the deviations in the depth of the fluid are small compared to h̄ .

For BV2, the problem of recovering the wind and mass fields from the P (R , T ) solution given by

(2.93) is nearly identical to BV1. The second order differential equation for υ is now obtained by com-

bining the balance relation (2.100) with the radial derivative of the definition of potential vorticity.

Then, the BV2 invertibility principle for υ(r ), R (r ), and h (r ) can be written as
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with the boundary conditions

υ= 0 at r = 0 and υ∼ K1(µr ) as r →∞, (2.106)

and with

R (r ) = r

�
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�1/2

and
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P r

∂ R

∂ r
. (2.107)

Again, as with BV1, knowing P (R ) at any given time t , we regard (2.105)–(2.107) as a coupled system

in υ(r ), R (r ), and h (r ). The BV2 invertibility (2.105)–(2.107) is identical to the BV1 invertibility (2.94)–

(2.96) except for the coefficients in the υ terms in (2.105) and (2.94). The result of the discretization of

BV2 yields
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with the boundary conditions

υ0 = 0 and υ
(ν+1)
J =

�

K1(µrJ )
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J−1 , (2.109)

and with the values of R j and h j updated by
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where (2.108) applies for j = 1, 2, · · · , J − 1. The discrete form of BV2 (2.108)–(2.110) is nearly identical

to the discrete form of BV1 (2.97)–(2.99) except along the diagonal elements of the tridiagonal systems

(2.97) and (2.108).

2.6.3 Solutions of the forced, balanced models

The last two sections show that the balanced models BV1 and BV2 are nearly identical with the

only difference being in the diagonal elements of the tridiagonal systems (2.97) and (2.108). In the

remainder of this section, we present solutions of the forced, balanced models BV1 and BV2 for the

purpose of comparing the two balance approximations. To make these comparisons, we will set P (R , T )

to be the same in both models. It should be noted that the two models will produce different υ(t ),

h (r ), and R (r ) fields because of the differences between the invertibility principle for each system. The

implication of this difference is that the potential vorticity in physical space P (r ) between BV1 and BV2

will differ.

In this set of experiments, we specify the following radial distribution of the mass sink

S (R ) =
2M

αa 2+ (1−α)b 2

�
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�
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a 2

�
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�

R 2

b 2

�
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�

−R 2

b 2

��

, (2.111)

where a , b ,α, and M are specified constants. Taking (2.111) and multiplying by R , we can integrate by

using
∫∞

0
x e −x 2

d x = 1
2 and

∫∞
0

x 3e −x 2
d x = 1

2 to obtain

M=

∞
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0

SR d R =

∞
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�
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f

�

S r d r. (2.112)

If ζ = 0 initially, the specified M can be interpreted as the area integrated initial mass sink. At later

times, the area integrated mass sink
∫∞

0
S r d r is smaller than M since (ζ/ f )> 0. In all the simulations

presented here, the value of the integrated initial mass sink is chosen to be M = 3 km2 s−1. Next, we

specify the configurations for the experiments as shown in Table 2.5. In experiments A–D, c = (g h̄ )1/2 =
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TABLE 2.5. Parameters and output for BV1 and BV2 for cases A–D where mode is the typical vertical

profile of diabatic heating projected onto the external mode (mode 0) and the first three internal

modes (modes 1–3), c is the phase speed for the mode, h̄ is the fluid depth and c / f is the Rossby

length. The values of the maximum tangential wind υmax,BV1 and υmax,BV2 and the total energy

EBV1, andEBV2 are computed from the model simulations at t = 24 h using the constant parameters

α= 0.9, a = b = 300 km, and M= 3 km2 s−1 used in (2.111) and f = 5×10−5 s−1.

Case Mode h̄ c c / f υmax,BV1 υmax,BV2 EBV1 EBV2

(m) (m s−1) (km) (m s−1) (m s−1) (J) (J)

A 0 6371 250 5000 38.4 38.2 1.85×1017 1.86×1017

B 1 367 60 1200 23.9 26.0 8.73×1015 9.59×1015

C 2 92 30 600 11.1 14.8 1.35×1015 1.55×1015

D 3 41 20 400 6.5 9.6 3.77×1014 4.22×1014

250, 60, 30, 20 m s−1, which corresponds to the depth of the fluid as h̄ = 6371, 367, 92, 41 m. The choices

for c are meant to represent typical vertical profiles of diabatic heating projected onto the external

mode and the first three internal modes (Fulton and Schubert 1985) and will assist in testing when the

two models diverge. The small Froude number restriction for the model based on the wave–vortex

approximation is limited to flow speed υ ≪ c . Figure 2.19 shows the ratio of BV2 over BV1 for the

maximum tangential velocity υmax and energetics — total energy E , kinetic energy K, and potential

energy P . For case A, we see that the ratio of BV2 over BV1 stays close to unity forυmax, E , and K. Once

υmax exceeds 110 m s−1, a value not representative of tropical cyclones, we see a 1-2% difference in

these quantities. There is a larger difference between P in the two models. However, P only represents

a small contribution to the total energy. While the maximum tangential velocity in case B does not

initially diverge, the energy immediately deviates between the two models for the first internal mode.

This suggests that caution should be used for c ≈ 60 m s−1. The differences in the second and third

internal mode, cases C and D, for all four quantities suggest that the wave–vortex approximation is

unacceptable for flows with c < 60 m s−1.

2.7 DISCUSSION

In this work, we explore the application of the wave–vortex approximation to the shallow water

equations for tropical cyclones by developing a simple, one-layer, forced, balanced model for intensifi-

cation. In the simulations, we develop analytic and numerical solutions to show the effects of piecewise

mass sinks confined between absolute angular momentum surfaces. With this framework, we explore

the effect of changing the radial extent of an area-averaged mass sink on the “incubation” time and

intensification rate of vortices using a two-region analytic model with constant forcing. This model is
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FIG. 2.19. The ratio BV2 over BV1 for a) maximum tangential velocity υmax b) total energy E , c)

kinetic energy K and d) potential energy P . The cases A–D, shown in Table 2.5, are run until the

iterative procedure fails to converge on a solution for the two tridiagonal systems for that case.

This value is noted by tmax.

sensitive to the radial extent of the area-averaged mass sink and bounding absolute angular momen-

tum surface. The “incubation” time until rapid intensification of the vortex increases with larger values

for the initial radius of this surface. The results also show that intensity is connected to the fraction of

the initial fluid volume that must be removed before the potential vorticity monopole will develop in

these cases.

Subsequently, the results from the two-region model are generalized to a three-region model, which

we use to create a partition between regions that we designate as the core and the eyewall. This division

between regions allows us to examine the formation and thinning of potential vorticity rings and assess
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the relationship between absolute angular momentum surfaces and the radius of maximum tangen-

tial wind by examining the effects of a mass sink surrounding the nascent eye becoming larger than

anywhere else. The annular region that is bounded by the two absolute angular momentum surfaces

begins to contract radially inward and the annulus begins to shrink. The result is that the potential

vorticity within the annular region grows faster than the inner region, developing a hollow potential

vorticity tower and a ‘U’-shaped tangential wind profile. While the work shown here is in an axisym-

metric framework, the evolution of the results for later times can still be discussed. In this work, we

show the development of thin rings of potential vorticity. In the axisymmetric framework, we see how

these features develop a ‘U’-shaped tangential wind profile. However, using the work of Schubert et al.

(1999), we can assume that the thin rings of potential vorticity will allow for barotropic instability and

a breakdown of this ring at a later time.

The mechanism shown here for generating a hollow potential vorticity tower based on the distribu-

tion of the mass sink is different than the production of this feature due to the frictional boundary layer

(Smith and Vogl 2008; Kepert 2010a; Williams et al. 2013; Slocum et al. 2014). This frictional boundary

layer mechanism involves the production of a shock-like structure through the nonlinear dynamics.

Understanding the relative importance of these two mechanisms in real tropical cyclones remains a

challenging problem. It is also hard to separate these two mechanisms from one another as the eyewall

convection is tied to the region of maximized Ekman pumping (e.g., Ooyama 1969a,b, 1982; Raymond

and Herman 2012; Kepert and Nolan 2014; Frisius and Lee 2016).

Next, we further generalize the model to one that can be run with multiple regions in the R space. In

these results, we compare four different mass sink distributions with a constant value of S̄ . From these

results, we see that the inward movement of absolute angular momentum surfaces can be impeded if

the mass sink is low in the center of the vortex. However, a small amount of mass sink in the center of

the vortex does not inhibit the ability of the wind field to expand. From assessing the model output in

E−Vmax space, we see rapid expansion in the cases where the mass sink is further away from the center.

In the eyewall replacement experiment, we see a jump in the total energy E while the outer eyewall

continues to develop. Interestingly, once the outer eyewall overtakes the inner eyewall in intensity, the

vortex develops as if the inner eyewall never existed, which suggests that an eye that gets “stuck” during

replacement is simply continuing to evolve based on the current structure of the mass sink.

Finally, we compare the forced, balanced model based on the wave–vortex approximation to a

model that uses the gradient balance relation. For the external mode, e.g., c ≈ 250 m s−1, the difference
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between the maximum tangential velocity and the energetics is negligible. When c ≈ 60 m s−1, a value

representative of the first internal mode, the differences in the maximum tangential velocity remain

small for reasonable speed. However the energetics between the model quickly diverge. Simulations

representative of the second and third internal mode show that the wave–vortex approximation can no

longer be considered appropriate due to the small Froude number restriction.

In all the models, we define regions in which forcing is and is not present. For regions in which a

forcing is present, we see that the Rossby length (c / f )e −τ decreases exponentially with time. However,

this work does not explore the implications of this physical property of both balanced vortex models

presented in this chapter. As discussed by Schubert et al. (2007) and Schubert and McNoldy (2010),

larger dynamical eyes should produce eye features such as moats, hub clouds, a warm-ring thermal

structure, and upper-level cloud overhang. This work raises questions relating to the time evolution of

these features in barotropic vortices and whether or not these features would provide a diagnostic tool

for both modeled and real storms.
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CHAPTER 3

SHOCK-LIKE STRUCTURES IN THE SLAB TROPICAL CYCLONE BOUNDARY LAYER
2

Questions such as “why does a tropical cyclone have an eye?”, “what controls the eye size?”, and

“how does eyewall replacement work?” have perplexed the tropical cyclone community. From works

as early as Haurwitz (1935, 1936), studies have turned to the role of the boundary layer to the develop-

ment and formation of inner-core vortex features (e.g., the eye, eyewall). In an interview with Platzman

(1985), Haurwitz explained that in his desire to understand why tropical cyclones have eyes, he turned

to a linearized form of the boundary layer akin to Ekman (1905). Haurwitz rightly assumed that the fric-

tionally induced convergence of boundary layer air and resulting Ekman pumping play vital roles in the

formation and placement of the eye and eyewall. After a respite in the literature, the works by Ooyama

(1969a,b), Rosenthal (1970, 1971), Eliassen (1971), Eliassen and Lystad (1977), and Yamasaki (1977) re-

turned to the boundary layer in search of an explanation of where the Ekman pumping maximizes in

relation to the axis of the tropical cyclone and the radius of maximum winds. While not all of the mass

pumped out of the boundary layer is ventilated into the eyewall, the location of the maximized Ekman

pumping due to frictional convergence is critical in organizing the annular ring of diabatic heating as-

sociated with the eyewall (e.g., Ooyama 1969a,b, 1982; Raymond and Herman 2012; Kepert and Nolan

2014; Frisius and Lee 2016). The placement of this diabatic heating is critical to determining how a

storm will evolve in terms of the intensity and structure (Eliassen 1951; Shapiro and Willoughby 1982;

Schubert and Hack 1982) as discussed in chapter 2. The intensity and structure are directly and in-

directly impacted by the location of eyewall convection (e.g., where the diabatic heating is located in

proximity to the high inertial stability region and diabatic heating associated with outer and spiral rain-

bands). More recent work suggests that the boundary layer has a fundamental role in the formation of

secondary eyewalls and the replacement of the primary eyewall. As these topics have been of interest

to the community from aspects of basic science and forecasting, understanding the level to which the

tropical cyclone boundary layer influences these processes is key to creating a conceptual picture of

the early stages of the “life cycle” of the tropical cyclone.

While recent work has focused on full-physics model simulations during rapid intensification and

secondary eyewall formation to understand the role of the boundary layer in these processes, some

2This chapter contains material and results included in Slocum et al. (2014) and Schubert et al. (2017).
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of the fundamental dynamics of the tropical cyclone boundary layer have yet to be completely under-

stood. The role of the nonlinear terms in the boundary layer equations is one source of disagreement

within the tropical cyclone boundary layer literature (Ooyama 1969a,b; Kepert 2001; Kepert and Wang

2001; Vogl and Smith 2009; Kepert 2017). Ooyama (1969a,b) shows that the inclusion of the nonlinear

terms shifts the Ekman pumping inside of the radius of maximum gradient wind, which would assist

in shifting the annular ring of diabatic heating into the high inertial stability region of the vortex. How-

ever, Kepert (2001) suggests that an Ekman-like linearization is a reasonably first order approximation

to the structure and is adequate in capturing the role of the tropical cyclone boundary layer in the over-

all “life cycle.” In addition to the updraft placement, the nonlinear terms are also responsible for the

development of supergradient winds within the tropical cyclone boundary layer, a well observed fea-

ture (La Seur and Hawkins 1963; Hawkins and Rubsam 1968; Willoughby 1990) that some studies have

deemed a critical feature to reproduce in modeling work (Smith and Vogl 2008; Bryan and Rotunno

2009).

Recently, the literature has turned to the boundary layer to explain secondary eyewall formation

and eyewall replacement. Again, full-physics modeling studies have been used to highlight features

such as the expansion of gradient wind above the boundary layer before the onset of eyewall formation

and replacement as well as a reduction of the inflow to the primary eye (Rozoff et al. 2012). While the

argument has been made that the boundary layer plays a role, the full extent to which this is the case

is not completely understood. The debate over the importance of nonlinear terms in the boundary

layer equations extends to discussions related to secondary eyewall formation and eyewall replace-

ment (Kepert 2013; Abarca and Montgomery 2013; Montgomery et al. 2014; Kepert and Nolan 2014).

To add to the discussion of the role of the boundary layer, we will investigate how and when the

nonlinear terms come into play through using shock dynamics. Figure 3.1 shows observed flight-level

winds from aircraft reconnaissance for Hurricanes Allen (1980) on 06 August and Hugo (1989) on 15

September. For both storms, the NOAA WP-3D Orion aircraft is flying at an altitude near 450 m. In the

tangential and radial wind profiles, abrupt jumps in the wind are present. In Hurricane Allen (1980), the

tangential wind drops from 80 to 40 m s−1 and the radial inflow is reduced by 30 m s−1 over 5 km. The

change for Hurricane Hugo (1989) is much more abrupt with the tangential wind dropping 60 m s−1

and the inflow changing by 35 m s−1 in approximately 1 km. Williams et al. (2013) and Slocum et al.

(2014) interpret these abrupt changes as “shock-like” structures arising from the nonlinear terms in the

boundary layer equations. Shocks can be understood through Burgers’ equation, the simplest equation
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FIG. 3.1. Flight-level winds from aircraft reconnaissance from the NOAA WP-3D Orion for a) Hur-

ricanes Allen on 06 August 1980 and b) Hugo on 15 September 1989. The flight-level altitude for

both storms is near 450 m or 950 hPa. The top row contains the tangential winds υ (blue curve)

and radial winds u (red curve) and the bottom row is the vertical velocity w (gray curve).

combining both nonlinear propagation and diffusive effects (Bateman 1915; Burgers 1948). Williams

et al. (2013) and Slocum et al. (2014) note that the radial momentum equation contains an embedded

Burgers’ equation, which plays a role in flows that are out of gradient balance such as the boundary

layer. In these works, the authors show that near-discontinuous radial and tangential winds and corre-

sponding near-singular frictional updrafts (i.e., Ekman pumping) and vorticity develop from smooth

initial conditions. Slocum et al. (2014) and Schubert et al. (2017) offered a set of “metaphor” or “toy”

models that show that a subset of terms from the full slab boundary layer equations can be solved

through the method of characteristics to assist in understanding the connection between the embed-

ded Burgers’ equation and the inner-core dynamics of tropical cyclones.

This work extends previous work on invoking shock dynamics to understand the tropical cyclone

boundary layer, the placement and magnitude of the frictionally induced convergence, and criteria

for when the nonlinear terms play a vital role in the “life cycle” of tropical cyclones. In section 3.1,
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we present the depth-averaged, f -plane boundary layer equations. In section 3.2, we discuss basic

concepts involved with shock formation using a series of “metaphor” models. Solutions for shocks

with curvature and surface drag effects and for y -independent shocks are obtained in sections 3.2.1

and 3.2.2 . In section 3.3, we develop two different local approximations to the slab boundary layer

equations. In section 3.4, we present results for a steady forcing for the nonlinear model and local

models. In section 3.5, we explore changes to the boundary layer with an expanding wind field to

provide insight into eyewall replacement. Lastly, we provide some concluding remarks in section 3.6.

3.1 SLAB BOUNDARY LAYER MODEL

We consider a depth-averaged, f -plane boundary layer model that is for an axisymmetric, incom-

pressible fluid, as outlined by Williams et al. (2013), Slocum (2013), and Slocum et al. (2014).3 The

horizontal wind components are discontinuous across the top of the boundary layer. In the overlying

layer, the radial wind is assumed to be negligible and the tangential wind is assumed to be in gradient

balance and constant in time. The boundary layer flow is driven by the radial pressure gradient force

that occurs in the overlying fluid. This means that the pressure gradient force is expressed as the spec-

ified function ρ−1(∂ p/∂ r ) = ( f +υgr/r )υgr, where υgr(r ) is the tangential wind in gradient balance.

Kepert (2017) revisited the idea that the boundary layer can be solved as a response to a constant gra-

dient balanced flow in the overlying layer. He concluded that the approximation is representative of

tropical cyclones. The governing system of differential equations take the form
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=−c
D

U
υ

h
+K

∂

∂ r

�

∂ (rυ)

r ∂ r

�

, (3.2)

w =−h
∂ (r u )

r ∂ r
and w− =

1

2
(|w | −w ), (3.3)

where

U = k
�

u 2+υ2
�1/2

(3.4)

3It should be noted that the slab (i.e., depth-averaged) boundary layer model used in this work employs different methods

than the models used by Smith (2003), Smith and Vogl (2008), and Kepert (2010a,b), In the formulation of the slab model used

in these papers, the authors follow Smith (1968) and Ooyama (1969a) by integrating inward from a large radius. The authors

find that certainυgr(r ) profiles produce oscillations and can fail to find a solution inward to r = 0; both features tend to occur

for small, strong vortices. One possible explanation for the existence of these features is the presence of shocks in the fluid

dynamics. Thinking about the problem from the standpoint of the system’s families of characteristics, the information from

large radii does not guarantee a solution of the system with the possibility of shocks. The model used here uses both an inner

and outer boundary condition and integrates in time to find the solution to the slab boundary layer model. The inclusion of

numerical diffusion prevents the model from becoming multivalued if shocks do indeed form (Von Neumann and Richtmyer

1950).
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is the wind speed at 10 m height, f is the constant Coriolis parameter, K is the constant horizontal

diffusivity, and k is the relationship between the 10 m wind and the mean boundary layer wind taken

here as the wind speed throughout the depth, h , of the model. The drag coefficient, c
D

, is assumed to

depend on the 10 m wind speed according to the function

c
D
= 10−3







2.70/U +0.142+0.0764U if U ≤ 25

2.16+0.5406{1−exp[−(U −25)/7.5]} if U ≥ 25,

(3.5)

where the 10 m wind speed U is expressed in m s−1. The first line of (3.5) where U ≤ 25 is based on

Large and Pond (1982) and Large et al. (1994). At extreme wind speeds, the value of c
D

is still up for

debate.4 For U ≥ 25, we have chosen a function based on Powell et al. (2003) and Donelan et al. (2004)

in which the value of c
D

saturates at 2.8×10−3 at large wind speeds. The value of k is also under some

debate. Observational work suggests that a reasonable value is in the range 0.78 ≤ k ≤ 0.83, but the

value could fall within 0.55≤ k ≤ 0.97 (Deardorff 1968; Powell et al. 2003, 2009; Harper et al. 2010). We

have chosen k = 0.80 for the simulations contained in this work. Despite the uncertainties associated

with c
D

and k , we note that the quantitative differences are small and the qualitative interpretation is

unchanged.

3.2 SOME BASIC CONCEPTS INVOLVED WITH SHOCKS

While solving the slab boundary layer model (3.1)–(3.2) requires numerical methods, it is possible

to simplify the slab boundary layer equations to understand portions of the dynamics. In making sim-

plifications to find analytic solutions, we lose some physical effects that are essential to relating the

analytic solutions to tropical cyclones. With this in mind, we will consider the models presented here

as “toys” or “metaphors.” The insight we gain from these models will assist in interpreting the results

from the complete slab boundary layer model. In this section, we will first explore the effect of ignor-

ing the pressure gradient and horizontal diffusion terms, then we will bring back the pressure gradient

terms in a line symmetric framework.

To offer context for these “toy” or “metaphor” models, we will briefly discuss some of the features

that arise from smooth initial conditions in hyperbolic systems. The shock dynamic literature tends

to classify the shock waves into two categories — triangular waves and N-waves (Whitham 1974; LeV-

eque 1992). In Fig. 3.2, the upper panel of the schematic shows an initial condition for the formation

4Equation (3.5) assumes that c
D

levels off at high wind speeds. However, more recent literature argues that c
D

decreases

as the wind speed continues to increase. In the context of the work presented here, the difference in c
D

at high wind speeds

does not change the interpretation of the results.
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of a triangular wave. The profile shows a background wind speed U of −5 m s−1 with a region of en-

hanced flow (i.e., u0(x ) < U ). The lower panel shows the evolution of this profile’s characteristics in

time. The brown line shows the formation of a shock in which the information from the intersecting

characteristics is lost. In Fig. 3.3, the upper panel of the schematic shows an initial condition for the

formation of an N-wave. In this scenario, the initial profile has a region of enhanced inflow and a region

of reduced inflow. The lower panel of Fig. 3.3 shows the evolution of the characteristics. In this case, a

pair of shocks form to develop an N-wave. Schubert et al. (2017) use the formation of triangular waves

and N-waves in solutions to Burgers’ equation to explain aspects of the dynamics associated with pri-

mary and secondary eyewalls in tropical cyclones. At first glance at Figs. 3.2 and 3.3, it is clear why one

would make such an analogy when looking at radial inflow profiles from the tropical cyclone boundary

layer. In that work, the authors apply the Cole–Hopf transformation (Lighthill 1956; Whitham 1974) to

find analytic solutions of Burgers’ equation and make analogies to the tropical cyclone boundary layer.

Keeping the ideas associated with triangular waves and N-waves in mind, we will step through several

of these “metaphor” models.

3.2.1 Solutions for shocks with curvature and surface drag effects

In Slocum et al. (2014), the authors argue that the dependence of shock formation in the u and

υ fields in the tropical cyclone boundary layer depends on the u (∂ u/∂ r ) and u [ f + (∂ υ/∂ r ) + (υ/r )]

terms in (3.1) and (3.2). To understand the flow of information within the system, we approximate

the radial and tangential wind equations in the boundary layer by neglecting the horizontal diffusion

terms, the w− terms, and the agradient forcing (υ−υgr) term. Equations (3.1) and (3.2) simplify to

∂ u

∂ t
+u
∂ u

∂ r
=−u

τ
, (3.6)

∂ υ

∂ t
+u

�

f +
∂ υ

∂ r
+
υ

r

�

=−υ
τ

, (3.7)

where the constant damping time scale τ is a typical value of h/(c
D

U ). As can be shown through a

scale analysis, (3.6) and (3.7) do not capture important features of the tropical cyclone boundary layer.

However, they provide a context for interpreting part of the dynamics involved in the tropical cyclone

boundary layer. To understand the differences between (3.1)–(3.2) and (3.6)–(3.7), it must be noted that

the forcing in the slab model generates the same final u profile regardless of the initial u profile as will

be shown in section 3.4. In this simple model, u must be nonzero and the choice of the initial u profile

affects the time and radius of shock formation.
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x̂1(t) x̂2(t)

−a

u0(x)

x

t

x̂1(t) x̂2(t)

x

U = −5m s−1

FIG. 3.2. The upper panel shows the initial condition u0(x ), which has the constant value U =−5

m s−1 for x ≤ −a and x ≥ 0, and has enhanced inflow, u0(x ) <U , in the region −a < x < 0. The

lower panel shows selected characteristics in the (x , t )plane. According to the equal area property,

the two characteristics labeled x̂1(t ) and x̂2(t )will simultaneously reach the shock at time t if the

secant line between them cuts off equal areas of the u0(x ) curve, as indicated by the gray shaded

region in the upper panel.

We continue to present the work done by Slocum et al. (2014) to find solutions to (3.6)–(3.7), which

can be written in the form

d

d t

�

ue t /τ
	

= 0

d

d t

�

rυe t /τ+ f
�

r̂ t +u0(r̂ )τ
�

t − t̂ (t )
��

u0(r̂ )
	

= 0









on
d r

d t
= u , (3.8)

where (d /d t ) = (∂ /∂ t ) + u (∂ /∂ r ) is the derivative following the boundary layer radial motion. The

characteristics r̂ are defined as

r = r̂ + t̂ (t )u0(r̂ ), (3.9)

with the function t̂ (t ) defined as

t̂ (t ) = τ
�

1− e −t /τ
�

. (3.10)
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u0(x)

x

t
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U = −5m s−1

b c

x̂f 1(t) x̂f 2(t) x̂r 1(t) x̂r 2(t)

x̂f 1(t) x̂f 2(t) x̂r 1(t) x̂r 2(t)

0

FIG. 3.3. The upper panel shows the initial condition u0(x ), which has the constant value U =−5

m s−1 for x ≤ a , x ≥ c , and x = b ; enhanced inflow, u0(x ) < U , in the region a < x < b ; and

reduced inflow, u0(x )>U , in the region b < x < c . The lower panel shows selected characteristics

in the (x , t ) plane. According to the equal area property, the two characteristics labeled x f 1(t ) and

x f 2(t )will simultaneously reach the forward shock if the secant line on the left cuts off equal areas

of the u0(x ) curve. Similarly, the two characteristics labeled xr 1(t ) and xr 2(t )will simultaneously

reach the rear shock if the secant line on the right cuts off equal areas of the u0(x ) curve. In this

example, the forward shock forms sooner and is stronger. Note that the divergent region between

the shocks becomes wider with time.

Integration of (3.8) yields the solutions

u (r, t ) = u0(r̂ )e
−t /τ, (3.11)

rυ(r, t ) =
�

r̂υ0(r̂ )− f
�

r̂ t +u0(r̂ )τ
�

t − t̂ (t )
��

u0(r̂ )
	

e −t /τ. (3.12)

For a given characteristic r̂ , u (r, t ) exponentially damps according to the solution (3.11). However,

(3.12) shows thatυ(r, t ) varies in a much more complicated way with time due to the (r̂ /r )e −t /τ factor.

The result of (3.12) is that υ(r, t ) can increase along characteristics. Another way to think about the

effect of the amplification factor (r̂ /r ) is that it allows for the development of a supergradient region,
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υ > υgr, and a subgradient region, υ < υgr. Through using (3.9), we can eliminate u0(r̂ ) in (3.12) to

obtain another useful form

rυ(r, t ) =

¨

r̂υ0(r̂ ) + f
t

t̂ (t )

�

r̂ + (r − r̂ )

�

τ
�

t − t̂ (t )
�

t t̂ (t )

��

(r̂ − r )

«

e −t /τ. (3.13)

In the context of (3.6) and (3.7), we can understand when the derivatives (∂ u/∂ r ) and (∂ υ/∂ r )

become infinite, i.e. discontinuities develop in u and υ. First, we note that taking (∂ /∂ t ) and (∂ /∂ r )

of (3.9) gives us

−∂ r̂

∂ t
=

u0(r̂ )e
−t /τ

1+ t̂ (t )u ′0(r̂ )
, (3.14)

∂ r̂

∂ r
=

1

1+ t̂ (t )u ′0(r̂ )
. (3.15)

Next, we take (∂ /∂ t +1/τ) and u (∂ /∂ r ) of (3.11) to yield

∂ u

∂ t
+

u

τ
= e −t /τu ′0(r̂ )

∂ r̂

∂ t
=−

e −2t /τu0(r̂ )u
′
0(r̂ )

1+ t̂ (t )u ′0(r̂ )
, (3.16)

u
∂ u

∂ r
= e −2t /τu0(r̂ )u

′
0(r̂ )
∂ r̂

∂ r
=

e −2t /τu0(r̂ )u
′
0(r̂ )

1+ t̂ (t )u ′0(r̂ )
, (3.17)

where the final equalities follow from using (3.14) and (3.15) to eliminate (∂ r̂ /∂ t ) and (∂ r̂ /∂ r ). Then,

taking the sum of (3.16) and (3.17), we see that (3.11) and (3.12) constitute a solution of (3.6) and (3.7).

Now, we can compute the time of shock formation, ts , by assessing the behaviors of the denomina-

tors of the right-hand sides of (3.16) and (3.17). The derivatives (∂ u/∂ t ) and (∂ u/∂ r ) become infinite

if

t̂ (t )u ′0(r̂ ) =−1 (3.18)

along one or more of the characteristics. Returning to the definition of τ, we see that 0 ≤ t̂ (t ) < τ.

This means that if the value t̂ (t ) does not become large enough to satisfy (3.18), a shock will not form.

Stated another way, shock formation is possible if and only if τ[u ′0(r̂s )]<−1, where r̂s is the originating

characteristic for shock formation. In the case of (3.6) and (3.7), r̂s corresponds to the minimum value

of u ′0(r ). Using (3.10) and (3.18), the shock formation time is

ts =−τ ln

�

1+
1

τu ′0(r̂s )

�

, (3.19)
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and the radius of shock formation determined by (3.9) and (3.18) is

rs = r̂s −
u0(r̂s )

u ′0(r̂s )
. (3.20)

An interesting point that arises from (3.19) and (3.20) is that ts is dependent on the damping time scale

τ, but rs is independent of τ.

From the solutions for u (r, t ), (3.11), and υ(r, t ), (3.12), we can compute the solutions for the di-

vergence, δ(r, t ) = ∂ [r u (r, t )]/r ∂ r , and the relative vorticity, ζ(r, t ) = ∂ [rυ(r, t )]/r ∂ r . The boundary

layer divergence or equivalently the boundary layer pumping, w (r, t ) =−hδ(r, t ), is obtained by using

(3.11), which yields

δ(r, t ) =

�

u ′0(r̂ )

1+ t̂ (t )u ′0(r̂ )
+

u0(r̂ )

r

�

e −t /τ. (3.21)

Similarly, the relative vorticity is obtained by differentiation of (3.12), which yields

ζ(r, t ) =

�





h

1+
�

1− r
r̂

�
�

1− 2τ[t−t̂ (t )]
t t̂ (t )

�i

f +ζ0(r̂ )

1+ t̂ (t )u ′0(r̂ )





t

t̂ (t )

r̂

r

− f
t

t̂ (t )

�

1−
�

1− r

r̂

�

�

1−
2τ

�

t − t̂ (t )
�

t t̂ (t )

���

e −t /τ, (3.22)

where ζ0(r ) = ∂ [rυ0(r )]/r ∂ r is the initial relative vorticity. Because of the presence of the 1+ t̂ (t )u ′0(r̂ )

term in the denominators of both (3.21) and (3.22), the relative vorticity ζ(r, t ), divergence δ(r, t ), and

boundary layer pumping w (r, t ) become infinite when t̂ (t )u ′0(r̂ ) =−1.

In a simple example, we will start with an initial condition that allows for the formation of a trian-

gular wave in which

u0(r ) = um

�

4(r /a )3

1+3(r /a )4

�

, (3.23)

υ0(r ) =υm

�

2(r /a )

1+ (r /a )2

�

, (3.24)

where the constants a , um , and υm specify the radial extent and strength of the initially smooth radial

and tangential flow. The derivative of (3.23) is

u ′0(r ) =
12um

a

�

(r /a )2
�

1− (r /a )4
�

[1+3(r /a )4]2

�

, (3.25)
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and the initial relative vorticity is obtained by differentiation of (3.24)

ζ0(r ) =
4υm

a [1+ (r /a )2]
. (3.26)

With the initial conditions (3.23) and (3.24), (3.11) and (3.12) become

u (r, t ) = um

�

4(r /a )3

1+3(r /a )4

�

e −t /τ, (3.27)

υ(r, t ) =

¨

r̂υm

�

2(r /a )

1+ (r /a )2

�

+ f
t

t̂ (t )

�

r̂ + (r − r̂ )

�

τ
�

t − t̂ (t )
�

t t̂ (t )

��

(r̂ − r )

«

e −t /τ, (3.28)

and the characteristic equation (3.20) is defined by

r = r̂ +um

�

4(r /a )3

1+3(r /a )4

�

t̂ (t ). (3.29)

For the initial conditions (3.23) and (3.24), we find that the time of shock formation ts is given by

ts ≈−τ ln

�

1− a

2.032τ|um |

�

, (3.30)

and the position of the shock formation rs is

rs ≈ 0.5426r̂s ≈ 0.2931a . (3.31)

Isolines of the shock formation time ts , as given by (3.30), are shown in Fig. 3.4. As U increases, it

becomes less likely for larger storms with weak inflow to develop a shock. Weak storms, on the other

hand, are more likely to form a shock, but the long time until shock formation indicates that this process

could easily be interrupted. The solutions for u ,υ, w , andζ/ f , as given by (3.27) and (3.28), are plotted

in Fig. 3.5 for the constants U = 35 m s−1, a = 60 km, and um = 4.5, 9 m s−1. The plots cover the region

from 0 ≤ r ≤ 100 km and are for t = 0 and t = ts , where ts = 1.82, 0.91 h is the shock formation time

for each initial condition. The time evolution of the divergence and vorticity along the first shock-

producing characteristic (not shown here) indicates that both examples are vorticity-preferred, i.e.,

|δ|/ζ < 1.

While this model assists in understanding the characteristics r̂ and shock formation time ts in a

subset of the boundary layer equations that includes curvature effects, these cases are dependent upon

the initial radial wind profile because the axisymmetric solutions presented here lack the agradiant

forcing term (υ−υgr).
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FIG. 3.4. Isolines of the shock formation time ts (colored shading) for axisymmetric solutions of

shocks with surface drag effects, as described by (3.30). The abscissa is a measure of the maximum

initial convergence (h) and the ordinate is the wind speed U (m s−1).

3.2.2 Solutions for y -independent shocks

In the previous section, we solve the hyperbolic system of equations using the method of character-

istics through neglecting the horizontal diffusion, the w−, and the pressure gradient forcing terms, but

we kept curvature effects. In this section, we return to the slab boundary layer model equations (3.1)

and (3.2) to make a different set of assumptions to further advance our understanding of the complete

system. As in Schubert et al. (2017), we consider the line-symmetric slab boundary layer equations

∂ u

∂ t
+u
∂ u

∂ x
− f υ+

c
D

U

h
u =− 1

ρ

∂ p

∂ x
, (3.32)

∂ υ

∂ t
+u
∂ υ

∂ x
+ f u +

c
D

U

h
υ= 0, (3.33)

where we now define the wind speed as U = (u 2+υ2)1/2 and where f is the constant Coriolis parameter,

h is the boundary layer depth, and c
D

is the drag coefficient. We set f , h , and c
D

to 5× 10−5 s−1, 1000

m, and 2×10−3 respectively. Similar to the full slab boundary layer model equations, the forcing term

−(1/ρ)(∂ p/∂ x ) is interpreted as a specified geostrophic wind υg because f υg = (1/ρ)(∂ p/∂ x ). In
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FIG. 3.5. The two columns show two examples for shocks as determined by the axisymmetric an-

alytic solutions (3.27) and (3.28). The initial conditions are in the gray curves, while the distribu-

tions at the shock formation times are shown by the red curves. Both cases have U = 35 m s−1 and

a = 60 km with um = 4.5 m s−1 for the left column and um = 9 m s−1 for the right column.

order to find an analytic solution to (3.32) and (3.33), we assume that υg is a constant in t and x for an

infinite domain and subject to the initial conditions

u (x , 0) = u0(x ) and υ(x , 0) =υ0(x ), (3.34)

where u0(x ) and υ0(x ) are specified functions. As noted at the start of this section, the lack of cur-

vature effects and spatial variation in the pressure gradient forcing terms means that we must regard

this model as a metaphor to the full tropical cyclone boundary layer model. However, (3.32) and (3.33)

provide another opportunity to solve the coupled pair of equations analytically and increase our un-

derstanding of shock dynamics within the full slab.
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From the quasi-linear system (3.32) and (3.33), we will introduce the constant Ekman flow com-

ponents u
E

and υ
E

so that we can solve the hyperbolic system through the methods of characteristics.

The nonlinear algebraic system is

− f υ
E
+

c
D

U
E

h
u

E
=− f υg , (3.35)

f u
E
+

c
D

U
E

h
υ

E
= 0, (3.36)

where U
E
= (u 2

E
+υ2

E
)1/2. The solutions to (3.35) and (3.36) are

u
E
=−

�

f (c
D

U
E
/h )

f 2+ (c
D

U
E
/h )2

�

υg , (3.37)

υ
E
=

�

f 2

f 2+ (c
D

U
E
/h )2

�

υg . (3.38)

Equations (3.37) and (3.38) are implicit because of the U
E

dependence on u
E

andυ
E

. Taking the square

of (3.37) and (3.38), we can find an explicit solution for c
D

U
E
/h . Adding the result, we obtain

k 2 =

�

f 2

f 2+k 2

�

k 2
g , (3.39)

where k = c
D

U
E
/h and kg = c

D
υg /h are the inverse of damping time scales. We will interpret k/ f as

the “slab Ekman number” and kg / f as the “forced Ekman number.” We solve (3.39) as a quadratic for

k 2 to obtain

k

f
=

(�

1

4
+

�

kg

f

�2
�1/2

− 1

2

)1/2

. (3.40)

Now, we approximate c
D

U with c
D

U
E

in (3.32) and (3.33)

∂ u

∂ t
+u
∂ u

∂ x
− f υ+

c
D

U
E

h
u =− 1

ρ

∂ p

∂ x
, (3.41)

∂ υ

∂ t
+u
∂ υ

∂ x
+ f u +

c
D

U
E

h
υ= 0, (3.42)

and combine this form with (3.35) and (3.36) to obtain the characteristic form

d (u −u
E
)

d t
− f (υ−υ

E
) +k (u −u

E
) = 0

d (υ−υ
E
)

d t
+ f (u −u

E
) +k (υ−υ

E
) = 0









on
d x

d t
= u , (3.43)

where we will interpret (d /d t ) = (∂ /∂ t ) +u (∂ /∂ x ) as the derivative along a characteristic x̂ .
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TABLE 3.1. The geostrophic wind υg , the corresponding “forced Ekman number” kg / f , the “slab

Ekman number” (or dimensionless damping rate) k/ f , and the steady-state Ekman layer compo-

nents u
E

and υ
E

for five selected cases.

υg kg / f k/ f u
E

υ
E

(m s−1) (m s−1) (m s−1)

10 0.4 0.3746 −3.29 8.77

20 0.8 0.6659 −9.23 13.86

30 1.2 0.8944 −14.91 16.67

40 1.6 1.0846 −19.93 18.38

50 2.0 1.2496 −24.39 19.52

The solutions to the coupled equations u and υ in (3.43) are

u (x , t ) = u
E
+ [u0(x̂ )−u

E
]e −k t cos( f t ) + [υ0(x̂ )−υE

]e −k t sin( f t ), (3.44)

υ(x , t ) =υ
E
− [u0(x̂ )−u

E
]e −k t sin( f t ) + [υ0(x̂ )−υE

]e −k t cos( f t ), (3.45)

where x̂ indicates the label of the initial position of the characteristics. As can be seen by inspecting

(3.44) and (3.45), there will be damped inertial oscillations along each characteristic that will eventually

lead to a steady-state Ekman balance if u0(x ) 6= u
E

and/or υ0(x ) 6=υE
.

We now use (3.44) and substitute u (x , t ) into the right-hand side of (d x/d t ) = u . Next, we integrate

from 0 to t along a characteristic and obtain

x = x̂ +u
E

t + [u0(x̂ )−u
E
]t1(t ) + [υ0(x̂ )−υE

]t2(t ), (3.46)

where the t1(t ) and t2(t ) functions are written as

t1(t ) =
k − e −k t [k cos( f t )− f sin( f t )]

f 2+k 2
, (3.47)

t2(t ) =
f − e −k t [k sin( f t ) + f cos( f t )]

f 2+k 2
. (3.48)

Table 3.1 shows a range of values for the forced Ekman number kg / f , the slab Ekman number k/ f , and

steady-state Ekman layer components u
E

and υ
E

. Plots of t1(t ) and t2(t ) are shown in the two panels

of Fig. 3.6 for the cases where k/ f = 0.7632 and 1.0121, which correspond to υg = 24 and 36 m s−1

respectively. x̂ represents a unique label for each characteristic. These labels can be used to find the

variation of u and υ from (3.44) and (3.45). The shape of the characteristics comes from (3.46). This

means that (3.44)–(3.48) are the solution to (3.32) and (3.33) from 0≤ t ≤ ts .
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FIG. 3.6. The functions t1(t ) (blue curves) and t2(t ) (red curves) for a) k/ f = 0.7632 (υg = 24 m

s−1) and b) k/ f = 1.0121 (υg = 36 m s−1). Note that t1(t ) → k/( f 2 + k 2) (horizontal blue lines)

and t2(t )→ f /( f 2 + k 2) (horizontal red lines) as t →∞. The maximum value of t1(t ) occurs at

t =π/(2 f )≈ 8.7 h, while the maximum value of t2(t ) occurs at t =π/ f ≈ 17.5 h.

As in the previous section, we want to understand when the divergence δ = (∂ u/∂ x ) and the vor-

ticity ζ= (∂ υ/∂ x ) become infinite. First, we will take (∂ /∂ x ) of (3.46) to obtain

∂ x̂

∂ x
=

1

1+ t1(t )δ0(x̂ ) + t2(t )ζ0(x̂ )
. (3.49)
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Using this, we take the (∂ /∂ x ) of (3.44) and (3.45)

δ(x , t ) =
e −k t [δ0(x̂ )cos( f t ) +ζ0(x̂ )sin( f t )]

1+ t1(t )δ0(x̂ ) + t2(t )ζ0(x̂ )
, (3.50)

ζ(x , t ) =
e −k t [δ0(x̂ )sin( f t ) +ζ0(x̂ )cos( f t )]

1+ t1(t )δ0(x̂ ) + t2(t )ζ0(x̂ )
. (3.51)

From the analytical solutions (3.50) and (3.51), we obtain

�

δ2(x , t ) +ζ2(x , t )

δ2
0(x̂ ) +ζ

2
0(x̂ )

�1/2

=
e −k t

1+ t1(t )δ0(x̂ ) + t2(t )ζ0(x̂ )
. (3.52)

Evaluating (3.50)–(3.52), we see that the divergence and vorticity share the same denominators and can

become infinite when

t1(t )δ0(x̂ ) + t2(t )ζ0(x̂ ) =−1 (3.53)

along one or more of the characteristic curves. It is possible that neither t1 and t2 will become large

enough to satisfy the condition in (3.53). Equation (3.53) also alludes to the possibility that shocks can

arise from either the initial divergence or vorticity fields. Schubert et al. (2017) discuss an alternative

derivation of the δ and ζ solutions.

3.2.3 Line-symmetric examples

To increase our understanding of the line-symmetric slab boundary layer equations, our first set

of examples will start with only an initial divergence profile. Then, we look at examples with only an

initial vorticity profile. The advantage of this approach is that we can isolate the effects of t1(t ) and

t2(t ).

In our first example, we will start by looking at the formation of a triangular wave in initially diver-

gent flow with the initial conditions

u0(x ) = u
E
−um

�

1

1+ (x/a )2

�

and υ0 =υE
, (3.54)

where the constants a and um specify the horizontal extent and strength of this initial symmetric di-

vergent flow anomaly. The corresponding initial divergence and vorticity associated with (3.54) are

δ0(x ) =
2um

a

�

x/a

[1+ (x/a )2]2

�

and ζ0(x ) = 0. (3.55)
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We assume that um > 0 so that initially, convergence appears to the left of the origin and divergence to

the right. With the initial conditions (3.54) and (3.55), (3.44) and (3.45) simplify to

u (x , t ) = u
E
−um

�

1

1+ (x̂/a )2

�

e −k t cos( f t ), (3.56)

υ(x , t ) =υ
E
+um

�

1

1+ (x̂/a )2

�

e −k t sin( f t ), (3.57)

and the characteristic equation (3.46) becomes

x = x̂ +u
E

t −um

�

1

1+ (x̂/a )2

�

t1(t ). (3.58)

The solutions (3.50) and (3.51) for the divergence and vorticity simplify to

δ(x , t ) =
δ0(x̂ )e

−k t cos( f t )

1+ t1(t )δ0(x̂ )
, (3.59)

ζ(x , t ) =−ζ0(x̂ )e
−k t sin( f t )

1+ t1(t )δ0(x̂ )
, (3.60)

so that (3.52) becomes
�

δ2(x , t ) +ζ2(x , t )

δ2
0(x̂ )

�1/2

=
e −k t

1+ t1(t )δ0(x̂ )
. (3.61)

From (3.59) and (3.60) or (3.61), we see that shock formation occurs along the characteristic x̂ when

the denominator becomes zero, i.e., t1(t )δ0(x̂ ) =−1. This occurs first along the characteristic with the

minimum value of δ0(x̂ ). For this example, the minimum value of δ0(x̂ ) occurs at x̂ = −a/
p

3 ≡ x̂s , so

that, from (3.55), min[δ0(x̂ )] = δ0(x̂s ) =−(3
p

3/8)(um/a ). Application of (3.61) along the characteristic

x̂ = x̂s yields
�

δ2(x , t ) +ζ2(x , t )

δ2
0(x̂s )

�1/2

=
e −k t

1− (3
p

3/8)(um/a )t1(t )
. (3.62)

Using (3.62), we find that the time of shock formation ts is given implicitly by

t1(ts ) =
8
p

3

9

a

um

≈ 1.54
a

um

, (3.63)

and, from (3.58), the position of the shock formation x̂s is

x̂s =−
p

3a +u
E

ts . (3.64)
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From Fig. 3.6, note that (3.63) has a solution only when (8
p

3/9)(a/um ) is smaller than the maximum

value of t1(t ). The maximum value of t1(t ) occurs at t =π/(2 f )≈ 8.73 h and, from (3.47), has the value

max[t1(t )] =
k + f exp[−(π/2)(k/ f )]

f 2+k 2
. (3.65)

Thus, the condition for shock formation is

um

f a
>

�

um

f a

�

c

≡ 8
p

3

9

�

1+ (k/ f )2

(k/ f ) +exp[−(π/2)(k/ f )]

�

. (3.66)

Equations (3.63) and (3.66) have been used to construct the top panel of Fig. 3.7, which shows iso-

lines of the shock formation time ts and the shock critical condition (thick black curve) in the (um/ f a ,

υg ) plane. There is only a weak dependence of ts on υg , with shock formation times less than one

hour when um/ f a > 9. The three columns of Fig. 3.8 show three examples of the analytical solutions

(3.56)–(3.60). The four rows are plots of u , υ, δ/ f , and ζ/ f as functions of x −u
E

t with the initial con-

ditions given by the gray curves and the distributions at the time of shock formation given by the red

curves. The shock formation times for the three columns are ts = 45, 29, 22 min for the three cases Aδ,

Bδ, and Cδ. As the spatial perturbation to the background flow of the initial u increases, the final jump

in the u field also increases, but the final jump inυ changes little. The time evolution of the divergence

and vorticity along the shock-producing characteristics for the triangular waves is shown by the bluish

curves in the top panel of Fig. 3.9. Since the final jumps in υ are smaller than the corresponding final

jumps in u , all three cases can be classified as divergence-preferred triangular waves.

For the second example, we will look for the formation of an N-wave from an initially divergent

flow with the initial conditions

u0(x ) = u
E
+um

�

2x/a

1+ (x/a )2

�

and υ0(x ) =υE
, (3.67)

where the constants a and um now specify the horizontal extent and strength of this initial antisym-

metric divergent flow anomaly. The initial divergence and vorticity associated with (3.67) are

δ0 =
2um

a

�

1− (x/a )2

[1+ (x/a )2]2

�

and ζ0(x ) = 0. (3.68)
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We assume that um > 0, which is the case leading to the formation of an N-wave and a double shock

structure. With the initial conditions (3.67), the solutions (3.44) and (3.45) become

u (x , t ) = u
E
+um

�

2x̂/a

1+ (x̂/a )2

�

e −k t cos( f t ), (3.69)

υ(x , t ) =υ
E
−um

�

2x̂/a

1+ (x̂/a )2

�

e −k t sin( f t ), (3.70)

and the characteristic equation (3.46) becomes

x = x̂ +u
E

t +um

�

2x̂/a

1+ (x̂/a )2

�

t1(t ). (3.71)

The solutions (3.50) and (3.51) for the divergence and vorticity become

δ(x , t ) =
δ0(x̂ )e

−k t cos( f t )

1+ t1(t )δ0(x̂ )
, (3.72)

ζ(x , t ) =−ζ0(x̂ )e
−k t sin( f t )

1+ t1(t )δ0(x̂ )
, (3.73)

so that (3.52) becomes
�

δ2(x , t ) +ζ2(x , t )

δ2
0(x̂ )

�1/2

=
e −k t

1+ t1(t )δ0(x̂ )
. (3.74)

From (3.72) and (3.73) or (3.74), we see that shock formation occurs along a characteristic x̂ when the

denominator becomes zero, i.e., t1(t )δ0(x̂ ) =−1. This occurs first along the two characteristics with the

minimum value of the initial divergence δ0(x̂ ), i.e., along the two characteristics with the maximum

value of initial convergence. For this example, the two minimum values of δ0(x̂ ) occur at x̂ = ±
p

3a ,

so that, from (3.68), min[δ0(x̂ )] =−um/4a . Application of (3.74) along the two characteristics x̂ =±x̂s ,

where x̂s =
p

3a , yields
�

δ2(x , t ) +ζ2(x , t )

δ2
0(±x̂s )

�1/2

=
e −k t

1− (um/4a )t1(t )
. (3.75)

From (3.75), the time of shock formation ts is given implicitly by

t1(ts ) =
4a

um

, (3.76)

and, from (3.71), the positions of shock formation are

xs = u
E

ts ±3
p

3a . (3.77)
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From Fig. 3.6, note that (3.76) has a solution only when 4a/um is smaller than the maximum value of

t1(t ). The maximum value of t1(t ) occurs at t =π/(2 f )≈ 8.73 h and, from (3.47), has the value

max[t1(t )] =
k + f exp[−(π/2)(k/ f )]

f 2+k 2
. (3.78)

This means that the condition for shock formation is

um

4 f a
>

�

um

4 f a

�

c

≡ 1+ (k/ f )2

(k/ f ) +exp[−(π/2)(k/ f )]
. (3.79)

Isolines of the shock formation time ts , as given implicitly by (3.76), and the shock condition, as

given by (3.79), are shown in the bottom panel of Fig. 3.7. The solutions for u , υ, δ/ f , and ζ/ f , as

given by (3.69)–(3.73), are plotted in Fig. 3.10 for the particular constants υg = 36 m s−1, a = 10 km,

and for the three cases um = 4.5, 6.0, 9.0 m s−1. All three examples evolve into N-waves in u and υ and

singularities in the Ekman pumping on both edges of the widening moat.

The time evolution of the divergence and vorticity along the shock-producing characteristics for

these N-waves is shown by the bluish curves in the lower panel of Fig. 3.9. All three cases are divergence-

preferred, so the discontinuities in u are larger than those in υ.

In the last two examples, we explored the formation of triangular waves and N-waves in initial con-

ditions with nonzero divergence and zero vorticity. Next, we will examine the formation of triangular

waves and N-waves in a series of initial conditions that have zero divergence and nonzero vorticity.

For the first set of simple examples for flow with initial vorticity, we consider the formation of tri-

angular waves with the initial conditions

u0(x ) = u
E

and υ0(x ) =υE
−υm

�

1

1+ (x/b )2

�

, (3.80)

where the constants b and υm specify the horizontal extent and strength of this initial rotational flow

anomaly. The initial divergence and vorticity associated with (3.80) are

δ0(x ) = 0 and ζ0(x ) =
2υm

b

�

1

[1+ (x/b )2]2

�

. (3.81)

We assume υm > 0 so that negative initial vorticity appears to the left of the origin. With these initial

conditions, the solutions (3.44) and (3.45) simplify to

u (x , t ) = u
E
−υm

�

1

1+ (x̂/b )2

�

e −k t sin( f t ), (3.82)
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FIG. 3.7. Isolines of the shock formation time ts (colored shading) and the shock condition (thick

curve) for a) the initial divergence cases resulting in triangular waves, as described by equations

(3.63) and (3.66) and b) the initial divergence cases resulting in N-waves, as described by equations

(3.76) and (3.79). The abscissa in each panel is a dimensionless measure of the maximum initial

convergence. The points Aδ, Bδ, and Cδ in the upper panel correspond to the three columns in

Fig. 3.8, while the points Dδ, Eδ, and Fδ in the lower panel correspond to the three columns in

Fig. 3.10.
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FIG. 3.8. The three columns show three examples with initial divergence only, as determined by

the analytical solutions (3.56)–(3.60). All three lead to the formation of triangular waves in u and

υ. The spatial distributions at t = 0 are shown by the gray curves, while the distributions at shock

formation time are shown by the red curves. All three cases have υg = 36 m s−1, a = 10 km, and

the same initial υ0(x ) = υE
= 17.8 m s−1, so that the initial vorticity is zero. These three examples

correspond to the three points labeled Aδ,Bδ, and Cδ in the top panel of Fig. 3.7.

υ(x , t ) =υ
E
−υm

�

1

1+ (x̂/b )2

�

e −k t cos( f t ), (3.83)

while the characteristic equation (3.46) simplifies to

x = x̂ +u
E

t −υm

�

1

1+ (x̂/b )2

�

t2(t ). (3.84)

The solutions (3.50) and (3.51) for the divergence and vorticity become

δ(x , t ) =
ζ0(x̂ )e

−k t sin( f t )

1+ t2(t )ζ0(x̂ )
, (3.85)

ζ(x , t ) =
ζ0(x̂ )e

−k t cos( f t )

1+ t2(t )ζ0(x̂ )
, (3.86)

72



−40 −35 −30 −25 −20 −15 −10 −5
δ/f

−20

−15

−10

−5

0

5

10

15

20
ζ/f

Initial vorticity

Initial divergence

t

t

a)

Aδ um = 6
Bδ um = 9
Cδ um = 12

Aζ vm = 6
Bζ vm = 9
Cζ vm = 12

−40 −35 −30 −25 −20 −15 −10 −5
δ/f

−20

−15

−10

−5

0

5

10

15

20
ζ/fb)

Initial vorticity

Initial divergence

t

t

Dδ um = 4.5
Eδ um = 6
Fδ um = 9

Dζ vm = 6
Eζ vm = 9
Fζ vm = 12

FIG. 3.9. Time evolution of the vorticity and divergence along the first shock-producing character-

istics for the triangular waves (upper panel) and for the N-waves (lower panel). The bluish curves

are initialized withζ= 0 andδ 6= 0, while the reddish curves are initialized withδ= 0 andζ 6= 0. The

direction of increasing time is indicated by the arrows. The dashed lines are defined by |ζ|= |δ|. In

the upper panel, the three cases Aδ, Bδ, and Cδ are divergence preferred triangular waves, while

the three cases Aζ, Bζ, and Cζ are vorticity preferred triangular waves. In the lower panel, the four

cases Dδ, Eδ, Fδ, and Dζ are divergence-preferred N-waves, while Eζ and Fζ are N-waves with

nearly the same magnitude in the singularities of δ and ζ.

so that (3.52) becomes
�

δ2(x , t ) +ζ2(x , t )

ζ2
0(x̂ )

�1/2

=
e −k t

1+ t2(t )ζ0(x̂ )
. (3.87)

From (3.85) and (3.86) or (3.87), we see that shock formation occurs along the characteristic x̂ when

the denominator becomes zero, i.e., t2(t )ζ0(x̂ ) =−1. This occurs first along the characteristic with the
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FIG. 3.10. The three columns show three examples with initial divergence only, as determined

by the analytical solutions (3.69)–(3.73). All three lead to the formation of N-waves in u and υ.

The spatial distributions at t = 0 are shown by the gray curves, while the distributions at shock

formation time are shown by the red curves. All three cases have υg = 36 m s−1, a = 10 km, and

the same initial υ0(x ) = υE
= 17.8 m s−1, so that the initial vorticity is zero. These three examples

correspond to the three points labeled Dδ, Eδ, and Fδ in the bottom panel of Fig. 3.7.

minimum value of ζ0(x̂ ). For this example, the minimum value of ζ0(x̂ ) occurs at x̂ = −b /
p

3 ≡ x̂s so

that, from (3.81), min[ζ0(x̂ )] = ζ0(x̂s ) = −(3
p

3/8)(υm/b ). Application of (3.87) along the characteristic

x̂ = x̂s yields
�

δ2(x , t ) +ζ2(x , t )

ζ2
0(x̂s )

�1/2

=
e −k t

1− (3
p

3/8)(υm/b )t2(t )
. (3.88)

Thus, the shock formation time ts is given implicitly by

t2(ts ) =
8
p

3

9

b

υm

≈ 1.54
b

υm

, (3.89)

and, from (3.84), the position of shock formation is

xs = u
E

ts −
p

3b . (3.90)
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From Fig. 3.6, note that (3.89) has a solution only when (8
p

3/9)(b /υm ) is smaller than the maximum

value of t2(t ). The maximum value of t2(t ) occurs at t =π/ f ≈ 17.46 h and, from (3.48), has the value

max[t2(t )] =
f + f exp[−π(k/ f )]

f 2+k 2
. (3.91)

The condition for shock formation is

υm

f b
>

�

υm

f b

�

c

≡ 8
p

3

9

�

1+ (k/ f )2

1+exp[−π(k/ f )]

�

. (3.92)

Equations (3.89) and (3.92) have been used to construct the top panel of Fig. 3.11, which shows isolines

of the shock formation time ts and the shock critical condition (thick curve) in the (υm/ f b ,υg ) plane.

There is only a weak dependence of ts on υg .

The solutions for u ,υ,δ/ f , and ζ/ f , as given by (3.82)–(3.86), are plotted in Fig. 3.12 for the con-

stants υg = 36 m s−1, b = 10 km, and υm = 6, 9, 12 m s−1 for cases Aζ, Bζ and Cζ. The plots cover the

spatial interval −80 ≤ x ≤ 80 km and are for t = 0 and t = ts , where ts = 3.5, 2.7, 2.3 h is the shock

formation time for each initial condition.

The time evolution of the divergence and vorticity along the first shock-producing characteristic

is shown by the reddish curves in the top panel of Fig. 3.9. Note that from (3.85) and (3.86) that δ/ζ =

tan( f t ), so that the shock is vorticity-preferred if 0 < f ts < π/4 and is divergence-preferred if π/4 <

f ts <π/2. Aζ, Bζ and Cζ fall in the former range and are vorticity-preferred triangular waves.

For the second set of simple examples for flow with initial vorticity, we consider the formation of

an N-wave with the initial conditions

u0(x ) = u
E

and υ0(x ) =υE
+υm

�

2x/b

1+ (x/b )2

�

, (3.93)

where the constants b andυm now specify the horizontal extent and strength of this initial anti-symmetric

rotational flow anomaly. The initial divergence and vorticity associated with (3.93) are

δ0(x ) = 0 and ζ0(x ) =
2υm

b

�

2x/b

[1+ (x/b )2]2

�

. (3.94)
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We assumeυm > 0, so that negative initial vorticity appears on the winds of a central region of positive

vorticity. With these initial conditions, the solutions (3.44) and (3.45) simplify to

u (x , t ) = u
E
+υm

�

2x̂/b

1+ (x̂/b )2

�

e −k t sin( f t ), (3.95)

υ(x , t ) =υ
E
+υm

�

2x̂/b

1+ (x̂/b )2

�

e −k t cos( f t ), (3.96)

while the characteristic equation (3.46) simplifies to

x = x̂ +u
E

t +υm

�

2x̂/b

1+ (x̂/b )2

�

t2(t ). (3.97)

The solutions (3.50) and (3.51) for the divergence and vorticity become

δ(x , t ) =
ζ0(x̂ )e

−k t sin( f t )

1+ t2(t )ζ0(x̂ )
, (3.98)

ζ(x , t ) =
ζ0(x̂ )e

−k t cos( f t )

1+ t2(t )ζ0(x̂ )
, (3.99)

so that (3.52) becomes
�

δ2(x , t ) +ζ2(x , t )

ζ2
0(x̂ )

�1/2

=
e −k t

1+ t2(t )ζ0(x̂ )
. (3.100)

From (3.98) and (3.99) or (3.100), shock formation occurs along a characteristic x̂ when t2(t )ζ0(x̂ ) =−1.

This occurs first along the two characteristics with the minimum value of the initial vorticity ζ0(x̂ ). For

this example, the two minimum values of ζ0(x̂ ) occur at x̂ = ±
p

3b , so that, from (3.94), min[ζ0(x̂ )] =

−υm/4b . Application of (3.100) along the two characteristics x̂ =±x̂s , where x̂s =
p

3b , yields

�

δ2(x , t ) +ζ2(x , t )

ζ2
0(±x̂s )

�1/2

=
e −k t

1− (υm/4b )t2(t )
. (3.101)

The shock formation time ts is given implicitly by

t2(ts ) =
4b

υm

, (3.102)

and, from (3.97), the positions of shock formation are

xs = u
E

ts ±3
p

3b . (3.103)
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From Fig. 3.6, note that (3.102) has a solution only when 4b /υm is smaller than the maximum value of

t2(t ). The maximum value of t2(t ) occurs at t =π/ f ≈ 17.46 h and from (3.48), has the value

max[t2(t )] =
f + f exp[−π(k/ f )]

f 2+k 2
. (3.104)

Thus, the condition for shock formation is

υm

4 f b
>

�

υm

4 f b

�

c

≡ 1+ (k/ f )2

1+exp[−π(k/ f )]
. (3.105)

Isolines of the shock formation time ts , as given implicitly by (3.102), and the shock condition,

as given by (3.103), are shown in the bottom panel of Fig. 3.11. The solutions for u ,υ,δ/ f , and ζ/ f ,

as given by (3.95)–(3.99), are plotted in Fig. 3.13, using the constants υg = 36 m s−1, b = 10 km, and

υm = 6, 9, 12 m s−1 for cases Dζ, Eζ, and Fζ. The time evolution of the divergence and vorticity along

the first shock-producing characteristic is shown by the reddish curves in the top panel of Fig. 3.9. Dζ

is a divergence-preferred N-wave and Eζ, and Fζ have nearly the same magnitude in the singularities

of δ and ζ.

3.3 DEVELOPMENT OF A LOCAL MODEL

In this section, we return to the axisymmetric, slab boundary layer equations under a specified

pressure field. We develop two local, steady-state models that are approximations of the original set of

equations. The first, Local Model 1 (LM1), neglects the local time derivative (∂ /∂ t ) terms, the horizon-

tal diffusion terms, and the vertical advection w− terms as well as making selective use of the gradient

balance approximation. The second, Local Model 2 (LM2), is a further approximation of LM1. In LM2,

we neglect the surface drag terms in the radial momentum equation, so that the boundary layer wind

becomes the same as the gradient wind in the layer above the boundary layer. LM2 is essentially the

same boundary layer model used by Ooyama (1969a).

First estimates of the axisymmetric flow in the boundary layer of a stationary tropical cyclone can

be obtained by considering local approximations of the slab boundary layer equations (3.1) and (3.2).

The following two subsections consider two different local approximations, designated LM1 and LM2
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FIG. 3.11. Isolines of the shock formation time ts (colored shading) and the shock condition (thick

curve) for a) the initial vorticity cases resulting in triangular waves, as described by equations (3.89)

and (3.92) and b) the initial vorticity cases resulting in N-waves, as described by equations (3.102)

and (3.105). The abscissa in each panel is a dimensionless measure of the maximum initial vor-

ticity. The points Aζ, Bζ, and Cζ in the upper panel correspond to the three columns in Fig. 3.12,

while the points Dζ, Eζ, and Fζ in the lower panel correspond to the three columns in Fig. 3.13.
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FIG. 3.12. The three columns show three examples with initial vorticity only, as determined by the

analytical solutions (3.82)–(3.86). All three lead to the formation of triangular waves. The spatial

distributions at t = 0 are shown by the gray curves, while the distributions at shock formation time

are shown by the red curves. All three cases have υg = 36 m s−1, b = 10 km, and the same initial

u0(x ) = u
E
=−18 m s−1, so that the initial divergence is zero. These three examples correspond to

the three points labeled Aζ, Bζ, and Cζ in the top panel of Fig. 3.11.

using the approximations outlined above to the boundary layer equations (3.1) and (3.2). The resulting

equations can then be written in the form

u
∂ u

∂ r
− ( f +ζ)υ+ ∂

∂ r

�

p

ρ
+ 1

2υ
2

�

=−
c

D
U

h
u , (3.106)

( f +ζ)u =−
c

D
U

h
υ, (3.107)

where the boundary layer relative vorticity is defined by

ζ=
∂ (rυ)

r ∂ r
. (3.108)
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FIG. 3.13. The three columns show three examples with initial vorticity only, as determined by the

analytical solutions (3.95)–(3.99). The spatial distributions at t = 0 are shown by the gray curves,

while the distributions at shock formation time are shown by the red curves. All three cases have

υg = 36 m s−1, a = 10 km, and the same initial u0(x ) = u
E
= 18 m s−1, so that the initial divergence

is zero. These three examples correspond to the three points labeled Dζ, Eζ, and Fζ in the top

panel of Fig. 3.11.

Next, f +ζ is approximated by f +ζgr and (p/ρ) +1/2υ2 by (p/ρ) +1/2υ2
gr to obtain

u
∂ u

∂ r
− ( f +ζgr)υ+ c

D
U

u

h
=−( f +ζgr)υgr, (3.109)

( f +ζgr)u + c
D

U
υ

h
= 0, (3.110)

where the relative vorticity of the gradient wind is

ζgr =
∂ (rυgr)

r ∂ r
. (3.111)

From this point in the derivation, the following steps are taken to provide the equations for LM1 and

LM2.
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3.3.1 Local model 1 (LM1)

The final step to derive LM1 is to neglect the u (∂ u/∂ r ) term in (3.109). By removing this nonlinear

term, the resulting equations for LM1 are

−( f +ζgr)υ+

�

c
D

k (u 2+υ2)1/2

h

�

u =−( f +ζgr)υgr, (3.112)

( f +ζgr)u +

�

c
D

k (u 2+υ2)1/2

h

�

υ= 0. (3.113)

Given a radial profile υgr(r ) and its associated ζgr(r ), we can solve the above equations for u and υ at

each point.

The “solution” of this system of equations is

u =−
�

E

1+E 2

�

υgr, υ=

�

1

1+E 2

�

υgr, (3.114)

where the Ekman number is defined by

E =
c

D
U

h ( f +ζgr)
=

c
D

k (u 2+υ2)1/2

h ( f +ζgr)
. (3.115)

The Ekman number is the ratio of the characteristic value of the drag term, c
D

U 2/h , to the characteris-

tic value of the rotational term, ( f +ζgr)U . This matches the standard definition of the Ekman number

with three main differences: the slab boundary layer depth h is used instead of the characteristic ver-

tical depth scale, the absolute vorticity f +ζgr is used instead of just the planetary component, and E

is unknown because of the dependence on u and υ.

It is important to note that (3.114) is not an explicit solution of the nonlinear equations. Because of

the dependence of E on the u and υ, (3.114) are implicit relations for u and υ in terms of the specified

forcing υgr. However, we can make progress by taking the sum of the squares of the two equations in

(3.114), thereby obtaining

u 2+υ2 =

�

1

1+E 2

�

υ2
gr. (3.116)

After rearranging, (3.116) can be written in the form

E 4+E 2−E 2
f = 0, (3.117)
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where Ef is the “forced Ekman number” and is defined by

Ef =
c

D
kυgr

h ( f +ζgr)
. (3.118)

Solving (3.117) as a quadratic equation for E 2 and choosing the physically relevant root yields

E =

�
�

1

4
+E 2

f

�1/2

− 1

2

�1/2

. (3.119)

If c
D

were considered to be a constant, an assumption that is not unreasonable given relatively con-

stant values are used in other modeling studies (e.g., Bryan 2012; Bryan et al. 2017), then Ef could be

considered as specified, and (3.119) would constitute an explicit solution for the Ekman number E . It

should be noted that in the results presented here, we are considering c
D

to be dependent on U , as

parameterized by (3.5). Then, equations (3.5), (3.115), (3.118), and (3.119) must be iteratively solved to

obtain E , Ef, c
D

, and U , after which u andυ can be calculated from (3.114). After solving for E , the flow

direction can be found as follows. Defining θ as the inflow angle relative to the azimuthal direction, we

can write θ = tan−1(−u/υ), or

θ = tan−1 E , (3.120)

which follows from the use of (3.114). The orange curve in Fig. 3.14 shows E as a function of Ef, with

corresponding values of the inflow angle θ at 5◦ intervals, as indicated by the dots. Since (3.115) and

(3.118) imply that

E

Ef

=
(u 2+υ2)1/2

υgr

, (3.121)

and since the orange curve in Fig. 3.14 falls below the diagonal line E = Ef, the LM1 solutions obey the

inequality (u 2 +υ2)1/2 < υgr, as can also be seen from (3.116). However, as Ef → 0, we have E → Ef

for the LM1 solutions. As an example, the point corresponding to θ = 15◦ on the orange curve has the

value E /Ef = 0.966, so that (u 2+υ2)1/2 ≈υgr to within an accuracy of 3.4%.

3.3.2 Local model 2 (LM2)

Looking at the boundary layer portion of Ooyama (1969a), we see that it is a further approximation

of (3.113). The surface drag term in the first line of (3.113) is neglected, so thatυ=υgr. The surface drag

term in the second line of (3.113) is approximated by (k c
D
υgr/h )υ, so that the LM2 version of (3.114) is

u =−Efυgr, υ=υgr, (3.122)
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FIG. 3.14. The Ekman number E as a function of the “forced Ekman number” Ef, as determined

from (3.119) for LM1 and from (3.124) for LM2. The dots along the two curves give the inflow angle

θ (every 5◦) relative to the azimuthal direction, as determined by (3.120) for LM1 and by (3.125)

for LM2. Note that, for small Ef, the solutions for both LM1 and LM2 approach the diagonal line

E = Ef.

where Ef is again defined by (3.118). Taking the sum of the squares of the two equations in (3.122), we

obtain

u 2+υ2 =
�

1+E 2
f

�

υ2
gr. (3.123)

After rearrangement, (3.123) can be written in the form

E = Ef

�

1+E 2
f

�1/2
, (3.124)

where E is again defined by (3.115). Again, we define θ as tan−1(−u/υ) as the inflow angle relative to

the azimuthal direction and write

θ = tan−1 Ef, (3.125)

which follows from the use of (3.122). Equations (3.124) and (3.125) have been used to produce the

blue LM2 curve in Fig. 3.14.

As can be seen from Fig. 3.14, the LM1 and LM2 models produce very similar solutions when Ef

and E are less than 1/2, but the models produce significantly different solutions when Ef and E exceed

unity. Thus, LM2 should be regarded as inaccurate for values of Ef and E exceeding unity. We noted

that an interesting feature of these solutions, which can be deduced from (3.116) and (3.123), is that
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u 2+υ2 <υ2
gr for LM1, while u 2+υ2 >υ2

gr for LM2. In other words, for LM1, the boundary layer kinetic

energy per unit mass is less than the kinetic energy per unit mass in the overlying fluid. For LM2, the

conclusion is just the opposite. However, for Ef and E less than 0.2, both LM1 and LM2 yield u 2+υ2 ≈

υ2
gr to within a few percent accuracy.

As will be illustrated in greater depth in the next section, Ef and E are less than unity for all radii

for many radial profiles of υgr. However, for certain strong vortices, the values of Ef and E can exceed

unity at radii just outside the maximum values of υgr. At these radii, the numerator in (3.118) is still

relatively large, but the denominator is much reduced (the vorticity skirt effect), so that Ef and E are

locally enhanced, leading to large differences between the solutions LM1 and LM2. However, it should

be pointed out that a radial profile of u (∂ u/∂ r ) is implied at these radii even though this term has

been neglected in the local models. Because of the implied u (∂ u/∂ r ), if the solution of (3.113) in LM1

and LM2 is to be accepted as a self-consistent approximation of the solution to the original equations

(3.1)–(3.5), we must have

R =
|u (∂ u/∂ r )|
( f +ζgr)υgr

≪ 1, (3.126)

where R is the dimensionless ratio. We interpret R as a local Rossby number based on the absolute

vorticity of the gradient flow ( f + ζgr) and on the magnitude and radial scale of the boundary layer

inflow u (∂ u/∂ r ). At radii where R becomes greater than unity, the usefulness of local solutions tends

to disappear because the solutions are not self-consistent. In these regions, the hyperbolic nature of

the original boundary layer problem (3.1)–(3.5) can come into play and shocks can form.

3.4 RESULTS FOR A STEADY FORCING

In this section, we will look at the numerical and local model response to a series of forcing profiles

from idealized vortex profiles. Some of the profiles exhibit characteristics not frequently observed in

tropical cyclones, but the profiles provide context for shock formation. For the forcing profiles, we will

use a polynomial vortex defined as

υgr(r ) =υmax

�

n (r /a )n−1

1+ (n −1)(r /a )n

�

, (3.127)

where the constants υmax, a , and n respectively specify the maximum gradient wind, radius of max-

imum gradient wind, and the shape of the gradient wind profile (larger values of n both increase the
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hollowness of the center of the profile and reduce the vorticity skirt outside the radius of maximum

wind). The vorticity profile corresponding to this vortex is

ζgr(r ) =−υmax

�

(n −1)n (r /a )n−2[(r /a )n −1]

(r /a )2 [1+ (n −1)(r /a )n ]2

�

. (3.128)

The slab boundary layer model is solved numerically using centered, second-order spatial finite

difference methods on the domain 0 ≤ r ≤ 1000 km with a uniform radial spacing of 100 m and a

fourth-order Runge–Kutta time differencing scheme with a time step of 1 s. The forcing illustrates how

the boundary layer flow transitions from one quasi-steady state to another in response to the balanced

wind field υgr(r ) above the boundary layer. The constants for slab boundary layer model and local

models LM1 and LM2 have been chosen as h = 1000 m, f = 5×10−5 s−1, and K = 1500 m2 s−1.

Solutions to the slab boundary layer model and local models LM1 and LM2 are presented in Figs.

3.15 and 3.16 with the specified pressure field using the constants for the polynomial vortex shown in

Table 3.2. The six rows show plots of the tangential velocityυ, the radial velocity u , the vertical velocity

w , the relative vorticity ζ/ f , the inflow angel θ , and the dimensionless ratio R . In the weak cases TS1

and TS2 shown in Fig. 3.15, the values for R are less than unity in the eyewall regions. We see that LM1

and LM2 match the magnitude of the inflow in the slab model reasonably well, but do not replicate the

jump in the inflow, displace the maximum Ekman pumping wmax outside of the radius of maximum

tangential wind, and match the spatial extent of the updraft. This result is similar to the experiment

done by Ooyama (1969b) as shown by Fig. 3.17. While both local models lack the supergradient winds

υ>υgr, LM1 captures the subgradient winds υ<υgr that are produced by the slab model. Figure 3.16

shows the output for the slab boundary layer model and local models LM1 and LM2 for cases Cat1

and Cat3 from Table 3.2. In this case, R is much larger than unity near the region with the radius of

maximum wind and the shock-like structures. While LM1 and LM2 produce unrealistic results for υ,

u , and w in this region, outside of that region, R returns to a value less than unity and the local models

produce winds close to those of the full slab model.

Motivated by the weak Ekman pumping produced in the TS1 case with the slab model, we run the

slab boundary layer and use the polynomial vortex with constant parameters n = 1, 6, 11, 4≤υmax ≤ 80

at 2 m s−1 intervals, and 10≤ a ≤ 150 km at 2 km intervals to assess the changes to the maximum Ekman

pumping wmax and the maximum agradient tangential flow (υ−υgr)max. Figure 3.18 shows contours

for wmax = 1, 2, 4, 8, 16, 32 m s−1 and colored shading for (υ−υgr)max. The n = 1 experiments shown in
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TABLE 3.2. The constants υmax and a for Figs. 3.15 and 3.16 for different values of n . These cases

loosely correspond to characteristic values for weak (TS1) and strong (TS2) tropical storms, and

to category 1 and 3 hurricanes.

Case υmax a n

(m s−1) (km)

TS1 20 50 6

TS2 30 40 6

Cat1 40 30 11

Cat3 50 20 11

panel a) have the largest vorticity skirt of the three cases. We see that the boundary layer model strug-

gles to produce large values of wmax and lacks large supergradient winds υ>υgr with the n = 1 forcing

profile while panels b) and c) develop Ekman pumping atυmax near tropical storm force (17 m s−1) and

hurricane force (33 m s−1) winds. While not shown here, a Gaussian vortex containing a hollowness

parameter was used to assess whether or not ‘U’-shaped wind profiles inside the radius of maximum

wind are responsible for the n = 1 case struggling to produce Ekman pumping. While hollow vortices

will have larger values of (υ−υgr)max because of the rate by which υgr drops off in the center of the

storm and the displacement radially inward of the supergradient winds as illustrated by the top panel

of Fig. 3.17, the results for wmax and the development of shock-like structures remained unchanged,

which suggests that the outer wind structure is critical to this process. This idea is consistent with the

ideas presented using the “metaphor” models in which the methods of characteristics are used to find

solutions for shocks. With the “metaphor” models, we see the flow of information moves from large

radii inward rather than from r = 0 outward.

3.5 THE POTENTIAL ROLE OF SHOCKS IN THE EYEWALL REPLACEMENT CYCLE

Using a full-physics modeling simulation, Rozoff et al. (2012) note that υgr expands prior to the

formation of a secondary eyewall, a finding supported by observational work (Sitkowski et al. 2011;

Didlake and Houze 2011). This expanding wind field is the result of diabatic heating outside of the

radius of maximum wind of the primary eyewall as discussed in chapter 2 and by Wang (2009), Hill

and Lackmann (2009), and Moon and Nolan (2010). To understand the changes in the inflow during

eyewall replacement, Kepert (2013) and Slocum et al. (2014) conducted a series of experiments with a

secondary wind maximum in the balanced wind field above the boundary layer. These results show a

decrease in the inflow for the primary eyewall as the intensity of the outer eyewall increases. However,

these works did not explore an expanding wind field without a secondary maximum to see how the
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FIG. 3.15. Solutions for the TS1 (left column) and TS2 (right column) vortices listed in Table 3.2

for a polynomial vortex (3.127) with the constants n = 6, υmax = 20, 30 m s−1, and a = 50, 40 km.

The rows in each panel are the tangential velocity υ, the radial velocity u , the vertical velocity w ,

the relative vorticity ζ/ f , the inflow angel θ , and the dimensionless radio R for the slab boundary

layer model (green curve) and local models LM1 (orange curve) and LM2 (blue curve).

boundary layer responds to assist with secondary eyewall formation. In the previous section, we see

that an expanding wind field without a secondary maximum reduces or hinders large Ekman pumping

as shown by the simulations with the polynomial vortex with the constant parameter n = 1. As the

wind field continues to expand, a secondary inflow maximum should develop. To understand the role

of shock dynamics during secondary eyewall formation, we will run a set of experiments in the slab

boundary layer model in which we expand the outer wind field. We specify the pressure profile using

the double Gaussian vortex

υgr(r ) =
Γ

2πr

�

1− γΓ1
Γ

�

1+h1

r 2

a 2
1

�

e −r 2/a 2
1 − (1−γ)Γ2

Γ

�

1+h2

r 2

a 2
2

�

e −r 2/a 2
2

�

, (3.129)
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FIG. 3.16. Solutions for the Cat1 (left column) and Cat3 (right column) vortices listed in Table 3.2

for a polynomial vortex (3.127) with the constants n = 11, υmax = 40, 50 m s−1, and a = 30, 20 km.

The rows in each panel are the tangential velocity υ, the radial velocity u , the vertical velocity w ,

the relative vorticity ζ/ f , the inflow angel θ , and the dimensionless radio R for the slab boundary

layer model (green curve) and local models LM1 (orange curve) and LM2 (blue curve). Note that

the ordinate had a different scale than the ordinate in Fig. 3.15.

where a1, a2, h1, h2,Γ1,Γ2, and γ are constant parameters and Γ = γΓ1+(1−γ)Γ2. The vorticity associated

with (3.129) is

ζgr(r ) = γζ1+ (1−γ)ζ2 =
γΓ1

πa 2
1

�

1−h1+h1

r 2

a 2
1

�

e −r 2/a 2
1 +
(1−γ)Γ2
πa 2

2

�

1−h2+h2

r 2

a 2
2

�

e −r 2/a 2
2 . (3.130)

The slab boundary layer model is configured as discussed in section 3.4. Table 3.3 contains pa-

rameters associated with the eyewall replacement cases using (3.129) for the specified pressure forc-

ing υgr(r ) above the boundary layer. In the five experiments, we set Γ1 = 14 × 106 m2 s−1 and Γ2 =

{0, 3.5, 7, 14, 28}×106 m2 s−1 so that we can see how the boundary layer responds to an expanding wind

field. Figure 3.19 contains solutions to the slab boundary layer equations using the prescribed param-

eters. Case A is our control case. With Γ2 = 0, the wind field represents the decay rate originating from
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TABLE 3.3. The parameters for the double Gaussian vortex (3.129) used in cases A–E for the slab

boundary layer model for the eyewall replacement experiments. a1 and a2 determine the hori-

zontal extent of the circulation, h1 and h2 control the hollowness of the profile, Γ1 and Γ2 are the

magnitudes of the circulation, and γ sets the weight given to each vortex. The value of υgr,max and

rgr,max are provided for each set of (3.129) parameters.

Case a1 a2 h1 h2 Γ1 Γ2 γ υgr,max rgr,max

(km) (km) (106 m2 s−1) (106 m2 s−1) (m s−1) (km)

A 10 45 0.6 1.0 14 0 0.5 56.0 15.7

B 10 45 0.6 1.0 14 3.5 0.5 56.1 15.7

C 10 45 0.6 1.0 14 7 0.5 56.2 15.8

D 10 45 0.6 1.0 14 14 0.5 56.5 15.9

E 10 45 0.6 1.0 14 28 0.5 57.0 16.0

a single Gaussian vortex. Case E contains a visible secondary bump in υgr(r ). This case can be con-

sidered to represent the early stages of a secondary eyewall. Cases B and D do not contain any abrupt

features that would suggest the development of a secondary maximum in the radial inflow or outer

region with Ekman pumping. However, we see that the boundary layer response to an expanding wind

fieldυgr(r ) is to cutoff the inflow and reduce the supergradient winds associated with the primary eye-

wall and create a secondary maximum in υ, u , and w that would be associated with the formation of

a secondary eyewall.

3.6 DISCUSSION

In this work, we use a series of models to extend our understanding of the role and development

of shock-like structures in the tropical cyclone boundary layer. In section 3.2, we develop “metaphor”

or “toy” models to look at aspects of the dynamics. In section 3.2.1, we solve the system and examine

the role of the drag coefficient by using the method of characteristics after neglecting the horizontal

diffusion terms, w− terms, and the agradient tangential flow (υ−υgr) terms. We also see that given

certain initial radial wind profiles, shocks may fail to form. Since the analytic model lacks several key

characteristics of real tropical cyclones, we proceed to a second series of “metaphor” or “toy” models

in section 3.2.2 where we use the line-symmetric slab boundary equations to allow us to keep the agra-

dient tangential flow (υ−υgr) terms while continuing to neglect the horizontal diffusion terms and w−

terms. Although the models lack important curvature effects that are present in the axisymmetric for-

mulation, the line-symmetric model helps us to explore analytic solutions that allow for the formation

of triangular waves and N-waves.
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FIG. 3.19. Solutions to cases A–E in Table 3.3 for initial profiles generated with (3.129) where the

value of Γ1 = 14×106 m2 s−1 and Γ2 = {0, 3.5, 7, 14, 28}×106 m2 s−1. The solutions for a) the tangential

wind υ, b) radial wind u , c) relative vorticity ζ/ f , and d) vertical velocity w are for a time after the

boundary layer has reached a quasi-steady state with υgr. The dashed curves in panel a) are the

specified υgr(r ).

Returning to the slab boundary layer model equations in sections 3.3and 3.4, we develop two local,

steady-state models that neglect the local time derivative (∂ /∂ t ) terms, the horizontal diffusion terms,

and the vertical advection w− terms as well as making selective use of the gradient balance approxima-

tion. From these local models, we see that these simplifications are reasonable first approximations of

the axisymmetric, boundary layer flow for weak, broad tropical cyclones and for radii where the ratio

of the gradient flow and magnitude and radial scale of the boundary layer inflow is small ensuring that

the solutions are self-consistent. The results concur that the suggestion regarding a linearized set of

91



boundary layer equations in Kepert (2001) is right under specific circumstances. The slab model re-

sults with the steady-state forcing shown in section 3.4 indicate that the role of the nonlinear term in

the radial momentum equation is highly dependent on intensity and the decay rate of the tangential

wind (e.g., the extent of the vorticity skirt). While both storms are of similar intensity, this idea appears

to be consistent with what is shown by the aircraft reconnaissance data in Fig. 3.1. Hurricane Allen

(1980) has a larger radius of maximum tangential wind and extent to the wind field than the Hurri-

cane Hugo (1989) data. The result is a broad region of inflow that does not have as sharp of a jump. It

appears that the nonlinear terms are vital to organizing the eyewall convection as the storm intensity

nears hurricane force. In other words, the result suggests that the boundary layer plays a limited role in

storm organization during the early incipient or incubation phase of the “life cycle” of the tropical cy-

clone. However, after a long incubation period, the vortex slowly intensifies to a tropical storm, which

allows boundary layer pumping to form just inside or near the radius of maximum wind (e.g., the high

inertial stability region). The location of the frictionally induced convergence concentrates the dia-

batic heating associated with the eyewall and allows the storm to transition to the rapidly intensifying

or deepening phase of the life cycle.

To explore the role of an expanding wind field in eyewall replacement, we use a double Gaussian

vortex in a series of experiments in section 3.5. The experiments show that as the wind field above

the boundary layer expands, the radial inflow associated with the primary eyewall is slowly cut off as a

secondary maximum in radial inflow develops. From these experiments, we can make two conclusions.

We see that the Ekman pumping associated with the primary eyewall can shift radially outward as the

vortex expands. This process could signal the end of the rapidly intensifying or deepening phase of

the life cycle as the eyewall shifts outward away from the high inertial stability region. Also, the results

from these experiments indicate that as the wind field continues to expand, a secondary eyewall will

develop and an eyewall replacement process will commence.

This work does not take into account storm motion. In a series of papers, Chow (1971), Shapiro

(1983), and Ooyama (1984) simulated the frictional boundary layer of the tropical cyclone using a two-

dimensional translating slab model. In these simulations, the authors look at the boundary layer re-

sponse to a vortex translating at 10 m s−1. The results show a region of enhanced convergence dis-

placed slightly to the right on the storm motion vector and strong radial inflow that abruptly stops for

the spatial resolution of these simulations. Curiously, Ooyama (1984) makes a note that a “shock front”

develops in regards to his results without any additional insights, explanations, or references to the
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origin or reason for using such a term. In the context of the axisymmetric work presented here, the de-

velopment of shock-like features in association with storm motion agrees with the notion of the shape

of the gradient tangential wind profile above the boundary layer.
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CHAPTER 4

CONCLUDING REMARKS

In this work, we seek to add to the understanding of the role by which inner-core and boundary

layer dynamics impact the life cycle of the tropical cyclone. We examine the boundary layer and overly-

ing vortex separately so that we can simplify the interpretation of features developing within our results

and present analytic solutions to aspects of the inner-core and boundary layer dynamics. However, the

results highlight the interplay and vital role of each in the life cycle of the tropical cyclone.

In chapter 2, we develop a simple, one-layer, forced, balanced model for the time evolution of the

tropical cyclone. This model uses the wave–vortex approximation developed by Salmon (2014). In this

work, we show that while a large fraction of the initial volume of the vortex has been removed in regions

where a mass sink is present, the vortex is initially slow to intensify providing dynamical insight into

why storms can have a long incubation period before rapidly intensifying. In real tropical cyclones,

environmental factors, such as dry air, also contribute to the development rate by interfering with the

diabatic heating or convection around the incipient vortex. Next, we show how hollow potential vor-

ticity towers can develop without the presence of boundary layer dynamics. In these cases, a smaller

mass sink is located closer to the center than the larger mass sink values. We see that inner absolute

angular momentum surfaces hinder the inward movement of the outer surfaces causing the formation

of vortex sheets and potential vorticity towers. These results also show absolute angular momentum

surfaces sweeping through the radius of maximum wind supporting the idea that there is not a one-

to-one relationship between the absolute angular momentum surfaces and the radius of maximum

wind. Even if the radius of maximum wind ceases to contract, an inward movement of these surfaces

accompanies vortex intensification. Then, we show the evolution of the vortex in the E −Vmax space.

In this space, we see the impact of the radial distribution of the mass sink in controlling storm size and

intensity during storm development and eyewall replacement. Lastly, we compare the balance rela-

tion originating from the wave–vortex approximation to gradient balance because of the small Froude

number restriction resulting from the approximation made to kinetic energy to the model developed

in this work. We see that for the external vertical mode, only minor deviations between the maximum

tangential wind and total energy in the two models. The deviations become significantly larger for

models run with phase speeds characteristic of the first three internal vertical modes. This suggests

that the wave–vortex approximation is applicable to the mean vertical structure of tropical cyclones.
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In chapter 3, we use a series of models to gain insight into the role of shocks originating from the

embedded viscous Burgers’ equation in developing primary and secondary eyewalls in the tropical

cyclone. We develop a series of analytic models to understand formation time and position due to

curvature and surface drag effects before looking at the role of geostrophic forcing in a line-symmetric

model. From these models, we gain insight into the development of triangular waves and N-waves

and the role of shock dynamics to the tropical cyclone boundary layer. Next, we develop two local,

steady-state models that allow us to dissect how the nonlinear terms, especially the u (∂ u/∂ r ) term,

impact the structure of the boundary layer given specified gradient wind profiles in the overlying layer.

From these results, we see that when the inflow angle is small, typically seen in weak vortices, the local

models capture the radial inflow and Ekman pumping produced by the full axisymmetric, slab bound-

ary layer model. However, as the storm intensifies, the ratio of the magnitude of the radial profile of

u (∂ u/∂ r ) to the absolute vorticity of the gradient flow exceeds unity, which means that the local mod-

els fail to capture the hyperbolic nature of the tropical cyclone boundary layer. In the experiments

conducted here, the hyperbolic nature of the system becomes apparent once the storm intensifies to

tropical storm force wind speeds. This suggests that the boundary layer becomes critical to storm orga-

nization and development shortly before the deepening stage of the life cycle. Prior to boundary layer

processes helping to control the development, the evolution of the vortex intensity is likely dominated

by the response to diabatic heating in the overlying vortex as shown in chapter 2. Interestingly, as the

vortex tangential wind field becomes broader, it is easier to maintain unity. As the vortex continues to

broaden, the radial inflow to the primary, inner eyewall is reduced. Eventually, a secondary maximum

in the radial inflow and Ekman pumping develops. This shift captures the transition observed during

secondary eyewall formation and replacement of the primary eyewall. Broadening of the vortex is the

result of the vortex responding to diabatic heating outside of the radius of maximum wind. As shown

in chapter 2, the wind field will expand even if the angular momentum surfaces are hindered from

collapsing.

In closing, we note that several interesting questions arise from this work. First, how does inten-

sification of the vortex control the formation of eye features such as eye moats, warm-ring thermal

structures, etc. Some hints to the connection between the dynamic eye size or Rossby length have

been explored (e.g., Schubert et al. 2007; Schubert and McNoldy 2010). The interaction between the

overlying fluid and boundary layer to these features has not been explored. In regards to shock for-

mation and the interactions between the primary and secondary eyewall, we focus on axisymmetric,
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non-translating pressure fields, which result in a circular shock-like structure. However, tropical cy-

clones are rarely stationary. Features developing in work that has looked at translating storms allude

to a critical need to understand shock dynamics in this framework (e.g., Chow 1971; Shapiro 1983;

Ooyama 1984).
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APPENDIX

HAMILTONIAN FORM OF THE SHALLOW WATER DYNAMICS
5

In the following appendix, we will derive the wave–vortex approximation to the axisymmetric, shallow

water dynamics in the Hamiltonian form by following the procedure outlined by Salmon (2014) and

Schubert et al. (2016). Hamiltonian fluid mechanics is succinct and preserves conservation laws al-

lowing for analytical approximations to the equations of motion. For a review, Salmon (1983), Salmon

(1988), Shepard (1990), and Salmon (1998) discuss Hamiltonian mechanics (i.e., classical mechanics)

and its uses in fluid dynamics in greater detail.

Consider the axisymmetric, shallow water dynamics expressed in the Hamiltonian form

d F

d t
= {F, H } , (A1)

where F [u ,υ, h ] is an arbitrary functional of u (r, t ), υ(r, t ), and h (r, t ) and the Poisson bracket of any

two functionals A[u ,υ, h ] and B [u ,υ, h ] is defined by

{A, B }=
∞
∫

0

��

f +ζ

h

��

δA

δu

δB

δυ
− δB

δu

δA

δυ

�

− δA

δu

∂

∂ r

�

δB

δh

�

+
δB

δu

∂

∂ r

�

δA

δh

��

r d r. (A2)

The Hamiltonian functional H [u ,υ, h ] for the axisymmetric, shallow water primitive equations is

H =

∞
∫

0

�

1

2
(u 2+υ2)h +

1

2
g (h − h̄ )2

�

r d r, (A3)

and the functional derivatives of this Hamiltonian are

δH

δu
= h u , (A4)

δH

δυ
= hυ, (A5)

δH

δh
= g (h − h̄ ) +

1

2
(u 2+υ2). (A6)

5This appendix is reproduced from Schubert et al. (2016) to show how wave–vortex theory is derived using Hamilton’s

principle.
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Using (A1), (A2), and (A4)–(A6), we express the axisymmetric, shallow water dynamics as

d F

d t
=

∞
∫

0

�

δF

δu

�

( f +ζ)υ−
∂
�

g h + 1
2 (u

2+υ2)
�

∂ r

�

− δF

δυ
( f +ζ)u − δF

δh

∂ (r uh )

r ∂ r

�

r d r, (A7)

where we have performed an integration by parts to obtain the last term in the integrand.

A1 Radial momentum equation

For the radial momentum equation, we choose the arbitrary functional F to be

F [u ] =

∞
∫

0

δ(r − r̂ )u (r, t )r d t = u (r̂ , t ), (A8)

where the Dirac delta function δ(r − r̂ ) vanishes for r 6= r̂ and satisfies
∫

δ(r − r̂ )r d r = 1. Then,

δF

δu
=δ(r − r̂ ), (A9)

δF

δυ
= 0, and (A10)

δF

δh
= 0, (A11)

so that (A7) yields

d u (r̂ , t )

d t
=

�

( f +ζ)υ−
∂
�

g h + 1
2 (u

2+υ2)
�

∂ r

�

r=r̂

, (A12)

which can be expressed in the advective form of the radial momentum equation (2.1).

A2 Tangential momentum equation

For the tangential momentum equation, we choose the arbitrary function F to be

F [υ] =

∞
∫

0

δ(r − r̂ )υ(r, t )r d r =υ(r̂ , t ), (A13)

so that

δF

δu
= 0, (A14)

δF

δυ
=δ(r − r̂ ), and (A15)

δF

δh
= 0. (A16)

104



Then, (A1) and (A7) yield

dυ(r̂ , t )

d t
=−

�

( f +ζ)u
�

r=r̂
, (A17)

which can also be expressed in the advective form of the tangential momentum equation (2.2).

A3 Continuity equation

For the mass continuity equation, we choose the arbitrary functional F to be

F [h ] =

∞
∫

0

δ(r − r̂ )h (r, t )r d r = h (r̂ , t ), (A18)

so that

δF

δu
= 0, (A19)

δF

δυ
= 0, and (A20)

δF

δh
=δ(r − r̂ ). (A21)

Then, (A1) and (A7) yield

d h (r̂ , t )

d t
=−

�

∂ (r uh )

r ∂ r

�

r=r̂

, (A22)

which can also be expressed in the advective form of the continuity equation (2.3).

A4 Total energy conservation relation

We note that the choice F [u ,υ, h ] = H [u ,υ, h ] leads to {F, H } = {H , H } = 0 through use of the

Poisson bracket (A2), so that (A1) becomes the total energy conservation relation

d H

d t
= 0. (A23)

A5 The wave–vortex approximation

For the balanced relation proposed by Salmon (2014), the Hamiltonian form of the dynamics is

expressed as

d F

d t
= {F, Hwv} , (A24)

where the definition of the Poisson bracket is unchanged, but the Hamiltonian function (A3) is approx-

imated by

Hwv =

∞
∫

0

�

1

2
(u 2+υ2)h̄ +

1

2
g (h − h̄ )2

�

r d r. (A25)
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The functional derivatives of the Hamiltonian for the wave–vortex model are

δHwv

δu
= h̄ u , (A26)

δHwv

δυ
= h̄υ, (A27)

δHwv

δh
= g (h − h̄ ). (A28)

Comparing (A4)–(A6) to (A26)–(A28) indicates that the influence of the replacement of h by h̄ in the

kinetic energy part of (A25) has spread into all three functional derivatives. Using (A24), (A2), and (A26)–

(A28), we can express the axisymmetric, wave–vortex dynamics as

d F

d t
=

∞
∫

0

�

δF

δu

�

Pυ− g
∂ h

∂ r

�

− δF

δυ
P u − δF

δh

∂ (r uh̄ )

r ∂ r

�

r d r, (A29)

where

P =
h̄

h

�

f +
∂ (rυ)

r ∂ r

�

.

A6 Equations from the wave–vortex approximation

To obtain the wave–vortex balance relation approximation of the radial momentum equation, the

tangential momentum equation, and the continuity equation, we sequentially choose the arbitrary

functional F to be that given in (A8), (A13), and (A18). Then, following the previous arguments, we find

that (A29) yields

d u (r̂ , t )

d t
=

�

Pυ− g
∂ h

∂ r

�

r=r̂

, (A30)

dυ(r̂ , t )

d t
=−(P u )r=r̂ , (A31)

d h (r̂ , t )

d t
=−

�

∂ (r uh̄ )

r ∂ r

�

r=r̂

. (A32)

These last three equations can also be expressed in advective form (2.10)–(2.12). Finally, to obtain the

total energy conservation relation for wave–vortex theory, note that the choice F [u ,υ, h ] =Hwv[u ,υ, h ]

leads to {F, Hwv}= {Hwv, Hwv}= 0 through use of the Poisson bracket (A2), so that (A24) becomes

d Hwv

d t
= 0. (A33)
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