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Spaces for Agreement: A Theory

of Time-Stochastic Dominance

and an Application to Climate Change

Simon Dietz, Nicoleta Anca Matei

Abstract: Many investments involve both a long time horizon and risky returns. Mak-
ing investment decisions thus requires assumptions about time and risk preferences.
Such assumptions are frequently contested, particularly in the public sector, and there
is no immediate prospect of universal agreement. Motivated by these observations, we
develop a theory and method of finding “spaces for agreement.” These are combina-
tions of classes of discount and utility function, for which one investment dominates
another (or “almost” does so), so that all those whose preferences can be represented
by such combinations would agree on the option to choose. The theory combines
the insights of stochastic dominance and time dominance and offers a nonparamet-
ric approach to intertemporal, risky choice. We then apply the theory to climate
change and show using a popular simulation model that even tough carbon emis-
sions targets would be chosen by almost everyone, barring those with arguably “ex-
treme” preferences.

JEL Codes: D61, H43, Q54

Keywords: Almost stochastic dominance, Climate change, Discounting, Integrated
assessment, Project appraisal, Risk aversion, Stochastic dominance, Time dominance,
Time-stochastic dominance

WHEN MAKING INVESTMENT DECISIONS one is frequently confronted with
long time horizons and risky returns. Therefore, assumptions about time and risk
preferences are important. Making such assumptions is always tricky. In the area of
public project appraisal they are especially contested, because, on top of the usual
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challenges of estimating individual preferences, there are positions to be taken on how
to aggregate individual preferences into social preferences.

A particularly good example of a long-run, risky public investment is climate-
change mitigation. It comes as no surprise then that great controversy surrounds pol-
icy proposals to abate greenhouse gas emissions and that this controversy has turned
in large measure on positions taken on time and risk preferences. By now the debate
will be familiar to readers, so a very short summary might suffice here.

In the context of a model where social welfare is the discounted sum of individual
utilities, the pioneering studies of Cline (1992) and Nordhaus (1991, 1994) staked
out debating positions on pure time preference that still hold today—Cline set the
utility discount rate to 0% based on so-called prescriptive ethical reasoning, while
Nordhaus set it to 3% based on a more conventional descriptive analysis of market
rates of investment returns.1 More recently, the Stern Review (Stern 2007) set the
utility discount rate to 0.1% and advocated aggressive emissions abatement, with the
former assumption seemingly causing the latter result.2 However, the Stern Review
also prompted debate about the appropriate utility function, which in the standard
model simultaneously represents risk preferences and preferences to smooth consump-
tion over time. Questions have included the appropriate degree of risk/inequality aver-
sion in an iso-elastic function (e.g., Gollier 2006; Dasgupta 2007; Stern 2008) and the
appropriate function itself (Pindyck 2011; Ikefuji et al. 2013).

Rather than attempting to settle the debate, in this paper we embrace it. Our
starting point is the supposition that debate about time and risk preferences legiti-
mately exists and will endure. Given the ingredients of the debate and the current
state of knowledge, “reasonable minds may differ” (Hepburn and Beckerman 2007).
Why is the debate difficult to resolve? It contains normative and positive elements.
There is a clear sense in which normative differences may never be completely elim-
inated. Positive “uncertainties” could in principle be eliminated by collecting more

1. See Arrow et al. (1996) for a classic comparison of these two points of view, from
where the labels “descriptive” and “prescriptive” hail.

2. See Nordhaus (2007, 2008) for critiques of the Stern Review.
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empirical data from, for instance, market behavior, questionnaire surveys, or labora-
tory experiments, but in reality it is likely that they will also persist (as with long-
standing puzzles in the economics of risk, such as the equity premium and risk-free
rate).

Consequently, we are in the search for partial rather than complete orderings of
choices. We want to establish a theory and method of identifying whether there exist
“spaces for agreement,” that is, combinations of classes of discount and utility function,
for which one investment dominates another (or “almost” does so), so that all decision
makers whose preferences can be represented by such combinations would agree on the
option to be chosen.

Why might this be useful? Given disagreement about appropriate time and risk
preferences, our approach does not require decision makers to make a priori choices
of functional form or parameter values. While this nonparametric approach could be
used to inform investment choice in the private sector, its main use is more likely to
be to bring renewed clarity to hotly contested choices in public policy, such as miti-
gation of climate change. In these areas, the debate about time and risk preferences
might have become a distraction, preventing us from asking whether in fact there are
some meaningful courses of action that both sides could agree to take.

The intellectual antecedents of this paper lie in the theory of Stochastic Domi-
nance (Fishburn 1964; Hadar and Russell 1969; Hanoch and Levy 1969; Rothschild
and Stiglitz 1970) and its offshoots, in particular, Almost Stochastic Dominance
(Leshno and Levy 2002), Time Dominance (Bøhren and Hansen 1980; Ekern 1981),
and extensions of dominance analysis to multivariate problems (Levy and Paroush
1974b; Atkinson and Bourguignon 1982; Karcher, Moyes, and Trannoy 1995).

Stochastic Dominance (SD) is a fundament of the theory of decision making
under uncertainty. It is undoubtedly useful for the sort of problems we have just set
out, precisely because it offers a nonparametric approach to risky choice, whereby
one tests for SD relations for whole preference classes. However, the basic theory of
SD is atemporal. In effect, decisions are made and payoffs obtained in the same time
period. While extensions have been made to the multiperiod case (Levy 1973; Levy
and Paroush 1974a), the decision maker is not permitted to prefer flows of utility in
some periods of time more than in others.3 This is a serious drawback, as it is clear
that most decision makers are impatient, preferring utility now to utility later on.
Time preference is, by contrast, the core focus of the theory of time dominance
(Bøhren and Hansen 1980; Ekern 1981), which takes the SD machinery and applies
it to cash flows, that is, instead of working with cumulative distributions over the
consequence space of a decision, one works with cumulative distributions over time.

3. One exception we are aware of is Scarsini (1986), who looked at a special case of util-
ity discounting. We will clarify the relationship between his paper and ours later.
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Like SD, one tests for a Time Dominance (TD) relation for whole preference classes,
rather than having to pre-specify and parameterize a discount function. The draw-
back of TD, however, is the obverse of SD, namely, that the basic theory has been
developed for certain, rather than uncertain, cash flows, and can only be extended to
the latter under restrictive assumptions (see appendix A).

Another drawback of the basic theory of SD is nicely illustrated by a stylized ex-
ample from Levy (2009)—try to use SD criteria to rank two prospects, one of which
pays out $0.5 with a probability of 0.01 and $1 million with a probability of 0.99,
and the other of which pays out $1 for sure. While it would seem that virtually any
investor would prefer the former, SD cannot be established.4 Arguably this paradox
betrays the disadvantage of SD’s generality—within the classes of utility function
considered, there are some “extreme” (Leshno and Levy 2002) or even “pathological”
(Levy 2009) utility functions, according to which the latter prospect is preferred.5

For this reason Leshno and Levy (2002) derived Almost Stochastic Dominance (Al-
most SD), according to which one compares the area between the cumulative distri-
butions in which SD is violated with the total area between the distributions. Cru-
cially, the ratio of the former to the latter can be given an interpretation in terms of
restrictions on the class of utility functions, and if the restriction is very small, an
Almost SD relation can be argued to exist.

This sets the conceptual task for the present paper, which is to unify the theories
of SD and TD so that we have at our disposal a general framework for choosing
between risky, intertemporal prospects, which admits the possibility of pure-time dis-
counting and makes weak assumptions about the risk characteristics of the prospects:
Time-Stochastic Dominance (TSD). In addition, we extend the notion of Almost
SD to our bidimensional time-risk setup, defining Almost TSD. This provides a way
to exclude extreme combinations of time and risk preferences and promises to greatly
increase the practical usefulness of the framework.

We then make an empirical application of the theory to climate change, by analyz-
ing a set of trajectories for global greenhouse gas emissions—a set of “policies”—using
a stochastic version of the benchmark DICE integrated assessment model devised by

4. Where Fn(x) and Gn(x) are respectively the nth-order cumulative distributions of the
former and latter prospects over realizations x, this is because the first nonzero values of Gn

(x) – Fn(x) are negative as x increases from its lower bound. However, nth-order SD re-
quires that GnðxÞ – FnðxÞ ≥ 0; ∀x, and Gk – 1ðbÞ – Fk – 1ðbÞ ≥ 0; k=1; . . . n, with at least one
strict inequality. See appendix A for further explanation.

5. In the example used, one would be

uðxÞ = x for x � 1

1 for x > 1
:

(
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Nordhaus.6 Our results show the climate-change debate in a new light. Although the
profile of net benefits from climate mitigation is such that “exact” TSD cannot be
established, the less restrictive concept of Almost TSD allows us to show that the
space for agreement on climate change is indeed large. Since Almost TSD is based on
the notion of excluding extreme combinations of time and risk preferences, this result
in particular lends itself to the following rather stark interpretation: only those with
“extreme” preferences over time and risk would prefer not to cut carbon emissions by
a large amount.

The remainder of the paper is set out as follows. In the next short section, we deal
with some analytical preliminaries; in particular, we set out the classes of utility and
discount function that will be of primary focus. In section 2 we establish the theory of
(exact) TSD, while in section 3 we do the same for Almost TSD. Section 4 describes
how we set up the DICE model, while section 5 presents our results, and section 6
concludes.

1. SPACES FOR AGREEMENT

Readers interested in quickly getting up to speed with the existing literatures on SD
and TD theory are referred to the short primer in appendix A. Building on this, let
us take the task at hand as being to rank two prospects X and Y, both of which yield
random cash flows over time. The underlying purpose is to compare the expected
discounted utilities of the prospects at t = 0, that is, for prospect X we compute

NPVv;uðXÞ =ET

0

vðtÞEFu xðtÞ½ �dt =ET

0

vðtÞ Eb

a

uðxÞf ðx; tÞdx
" #

dt; ð1Þ

where x is a realization of the cash flow of prospect X, v is a discount function, and u
is a utility function. Both functions v and u are assumed to be continuous and con-
tinuously differentiable at least once. We make the assumptions, characteristic in the
dominance literature, that the random cash flows of X and Y are both supported on
the finite interval [a, b] and that each prospect pays out over a finite, continuous
time horizon [0,T]. Therefore we can characterize a probability density function
(pdf ) for prospect X at time t ∈ [0,T ], f(x, t), and a counterpart cumulative dis-
tribution function (cdf ) with respect to realization x ∈ [a, b] at time t ∈ [0, T],
F1ðx; tÞ= ∫

x

a
f ðs; tÞds. Note that because utility is additively separable across time in

(1), no particular assumption is required about the serial correlation of the probabil-
ity distribution (Levy and Paroush 1974a).

6. The first version appeared in Nordhaus (1993b, 1993a). We build on the version in
Nordhaus (2008).
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Before characterizing time-stochastic dominance (TSD), we need to define classes
of utility and discount functions. Our broadest class of utility function u : [a, b] → ℝ
is U1= u : u0ðxÞ ≥ 0f g, that is, the class of utility functions, whereby utility is nonde-
creasing as a function of consumption, representing nothing more than (weak)
nonsatiation. It is hard to imagine relevant circumstances in which the appropriate
utility function would not be in U1. More generally, any subset m of utility functions
is defined recursively as

Um = u :u ∈ Um–1 and ð–1ÞmumðxÞ � 0f g;

where, among other things, m represents the number of times that u(x) is differenti-
ated. As well as U1, in this paper we focus on U2= u:u∈U1 and u00ðxÞ � 0f g, which
is the class of nondecreasing, weakly concave utility functions, ruling out risk seeking.
Whether the appropriate utility function is in U2 is a little less clear, but it is almost
certainly a good description of most individual behavior, and there are few if any ar-
guments for public policy evaluation to be based on risk seeking. Eventually we es-
tablish a theorem for TSD of an arbitrarily high order with respect to both time and
risk.

Let us define a corresponding set of discount functions on the time domain, v :
[0, T] → ℝ. The broadest class of discount functions requires simply that at any
point in time more is preferred to less, V0 = {v:v(t) > 0}. However, V0 is of little
interest, since some positive degree of time preference is always required, however
small. Therefore, without compromising the generality of our theory, let us focus our
attention on the first- and second-order restrictions on V0:

V1 = v:v ∈ V0; and v 0ðtÞ < 0f g;

V2 = v:v ∈ V1; and v 00ðtÞ > 0f g:

The class V1 comprises strictly decreasing discount functions, exhibiting positive time
preference, while V2 is the class of strictly decreasing, convex discount functions, ac-
cording to which impatience decreases over time. More generally, any subset n of dis-
count functions is defined recursively as

Vn = v :v ∈ Vn–1 and ð–1ÞnvnðtÞ > 0f g:

Note that V1 and V2 admit both exponential and hyperbolic discounting as special
cases. Exponential discounting has long been the conventional approach to pure time
preference, with debate focusing on the discount rate rather than the functional
specification. However, arguments have been advanced for hyperbolic discounting,
including that it is a more appropriate description of real individual behavior (Laib-
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son 1997) and that it can result from the aggregation of heterogeneous individual
preferences.7

Combinations of these classes of utility and discount functions constitute possi-
ble spaces for agreement. The combination V1 × U1 is the largest possible space for
agreement that we consider, encapsulating any decision maker whose preferences can
be represented by, respectively, a strictly decreasing discount function and a nonde-
creasing utility function, in other words any impatient decision maker with any
attitude to risk. Presumably virtually all decision makers belong to this combination
of classes. By contrast V1 × U2, for instance, encapsulates any impatient decision
maker who is not risk seeking. Whether there is an actual space for agreement de-
pends of course on whether any dominance relations can be established between proj-
ects, for the combination in question. Note that in section 3 we narrow these spaces
for agreement further by placing additional restrictions on V and U with a view to
excluding “extreme” combinations of time and risk preferences.

2. TIME-STOCHASTIC DOMINANCE

A further piece of notational apparatus will enable us to work in a compact, bidimen-
sional form. Denote the integral over time of the pdf by F1ðx; tÞ = ∫

t

0 f ðx;wÞdw, while
the integral over time of the cdf is

F1
1ðx; tÞ =Ex

a

F1ðs; tÞds =Et

0

F1ðx;wÞdw =Et

0

Ex

a

f ðs;wÞdsdw:

Defining dðz; tÞ = gðy; tÞ – f ðx; tÞ, we set

Dj
i ðz; tÞ=Gj

i ðy; tÞ – F j
i ðx; tÞ

for all x, y, z ∈ [a, b] and all t ∈ [0, T]. Given information on the first n and m
derivatives of the discount and utility functions respectively, we recursively define:

Dnðz; tÞ =Et

0

Dn–1ðz;wÞdw

Dmðz; tÞ =Ez

a

Dm–1ðs; tÞds

Dm
n ðz; tÞ =Et

0

Dm
n–1ðz;wÞdw =Ez

a

Dm–1
n ðs; tÞds =Et

0

Ez

a

Dm–1
n–1 ðs;wÞdsdw;

7. Even though those individual preferences are represented by exponential discounting
(see Gollier and Zeckhauser 2005).
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where i ∈ {1, 2, . . . , n} is the order of TD (i.e., the number of integrations with
respect to time) and j ∈ {1, 2, . . . , m} is the order of SD (i.e., the number of
integrations with respect to the probability distribution). Note that our concept of TD
relates to pure time discounting, whereas standard TD relates to discounting of con-
sumption.

With all of our notation now set out, let us characterize TSD for various com-
binations of classes of Uj and Vi.

Definition 1: [Time-stochastic dominance of order n, m] For any two risky, intertem-

poral prospects X and Y,

X >nTmS Y if and only if Δ≡NPVv;uðXÞ –NPVv;uðYÞ ≥ 0; for all ðv; uÞ∈Vn � Um:

In this definition, the ordering > nTmS denotes pure TD of the nth order, com-
bined with SD of the mth order. For example, > 1T1S, which we can shorten to > 1TS,
denotes pure-time and stochastic dominance of the first order.

Proposition 1: [First-order time-stochastic dominance] X > 1TS Y if and only if

D1
1ðz; tÞ ≥ 0; ∀z∈ ½a; b� and ∀ t∈ ½0; T�;

and there is a strict inequality for some (z, t).

Proof: See appendix B.

Proposition 1 tells us that any impatient planner with monotonic nondecreasing
preferences will prefer prospect X to prospect Y, provided the integral over time of
the cdf of Y is at least as large as the integral over time of the cdf of X, for all in-
come levels and all time periods, and is strictly larger somewhere. It maps out a
space for agreement, as we can say that all decision makers with preferences that
can be represented by V1 × U1 will rank X higher than Y, no matter what precisely
is their discount function or utility function within these classes.8

Consider the following stylized example, comprising discrete cash flow distribu-
tions in discrete time. The use of discrete data makes the exposition easy; moreover,
it is also the form of data that would typically be encountered in practical applica-
tions; for instance, the output of the DICE climate-change model is in just this form.
However, it means that we have to relate proposition 1, stated in terms of cumula-
tive distribution functions, to a parallel theorem stated in terms of quantile distribu-
tion functions.

8. Proposition 1 is similar to theorem 3 in Scarsini (1986). However, Scarsini did not
consider any other cases, that is, any other combinations of time and risk preference.
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Example 1: Consider prospects X and Y, each of which comprises a cash flow over five pe-

riods of time and in four states of nature with equal probability (i.e., uniform discrete

distributed):

Instead of integration with respect to time, we simply use summation. For each
additional restriction placed on the curvature of the discount function, a new round
of summation of the cash flows is performed, XnðtÞ = ∑t

w=0Xn–1ðwÞ. Matters on the
stochastic dimension are a little more involved: we extend the quantile approach of
Levy and Hanoch (1970) and Levy and Kroll (1979). Take X to be an integrable
random variable with, for each t ∈ [0, T], a cdf F1(x, t) and an r-quantile function
F–1, r(p, t), the latter of which is recursively defined as

F–1;1ðp; tÞ = inffx:F1ðx; tÞ ≥ pðtÞg;∀t∈ ½0; T�

F–1;rð p; tÞ =Ep

0

F–1;r–1ðy; tÞdy;∀p∈ 0; 1½ �;∀t and r ≥ 2:

Where H–1;r
1 ð p; tÞ=F–1;r

1 ðp; tÞ –G–1;r
1 ð p; tÞ, we can characterize first-order time-

stochastic dominance for quantile distributions:

Proposition 2: (1TSD for quantile distributions). X > 1TS Y if and only if

H–1;1
1 ðp; tÞ = F–1;1

1 ðp; tÞ –G–1;1
1 ðp; tÞ ≥ 0; ∀p∈ 0; 1½ � and t∈ 0; T½ �

and there is a strict inequality for some (p, t).

Proof: See appendix B.

Time Period

Prospect Probability 0 1 2 3 4

1/4 –2 –3 2 2 1
X 1/4 –1 –2 –2 3 1

1/4 0 –2 –2 5 6
1/4 0 0 –2 4 2
1/4 –5 –3 2 3 7

Y 1/4 –4 –3 2 3 1
1/4 –4 –1 –1 0 1
1/4 –4 0 1 1 6

(2)
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It can easily be shown that proposition 2 applies to discrete data.9 However, when
the data are discrete and are not serially independent, as is the case in all of our exam-
ples here and in our climate application later, the order of cumulation matters. The
functions F–1;1

1 ðp; tÞ and G–1;1
1 ðp; tÞ are obtained by first cumulating the cash flows

across time and then reordering from lowest to highest in each time period. Taking
the difference between them gives us H –1;1

1 ðp; tÞ. In essence, since the quantile distri-
bution function is just the inverse of the cumulative distribution function, 1TSD
requires F–1;1

1 ðp; tÞ –G–1;1
1 ðp; tÞ ≥ 0, that is, the inverse of the requirement for 1TSD

in terms of cumulative distributions.
In the case of example 1, computing the quantile distributions gives us:

Therefore, by propositions 1 and 2, X > 1TS Y.
Having established first-order TSD, we can proceed from here by placing an ad-

ditional restriction on the discount function and/or on the utility function. A par-
ticularly compelling case is the assumption of impatience combined with risk aver-
sion/neutrality—(v, u) ∈ V1 × U2—since few would be uncomfortable with the
notion of excluding risk-seeking behavior a priori, especially in the public sector.

Proposition 3: [First-order time and second-order stochastic dominance] X > 1T2S Y if

and only if

D2
1ðz; tÞ ≥ 0; ∀z∈ ½a; b� and ∀ t∈ ½0; T�;

and there is a strict inequality for some (z, t).

Proof: See appendix B.

9. Choose an arbitrary quantile p*(t) ∈ [0, 1] for any t and denote G – 1
1 ðp�; tÞ = z2ðtÞ

and F –1
1 ðp�; tÞ = z1ðtÞ. We need to show that z1(t) ≥ z2(t) for each t. Assume that z1(t) < z2

(t). By definition, x2(t) represents the smallest value for which equation (2) holds and for
this reason z1(t) and z2(t) cannot be located on the same step of the G1

1ðz; tÞ for any t.
Therefore G1

1ðz1; tÞ < G1
1ðz2; tÞ. We have that G1

1ðz1; tÞ < G1
1ðz2; tÞ= p�ðtÞ=F1

1ðz1; tÞ <
F1
1ðz2; tÞ. Thus G1

1ðz1; tÞ < F1
1ðz1; tÞ, which contradicts the initial assumption. This proves

sufficiency, and necessity can be demonstrated in a very similar way.

Time Period

p 0 1 2 3 4

.25 3 3 1 4 4

.5 3 4 2 2 1

.75 4 3 2 3 0
1 4 4 1 4 3
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It is evident from proposition 3 and its proof that, in line with the classical ap-
proach to SD, restricting the utility function by one degree corresponds to integrat-
ing the bidimensional probability distribution D1

1ðz; tÞ once more with respect to the
consequence space.

Example 2: Now consider two different prospects X and Y:

In this example H–1;1
1 ðp; tÞ is:

While in the first four time periods H–1;1
1 ðp; tÞ ≥ 0, the opposite is true when p =

1 in the terminal period. Therefore first-order TSD cannot be established between
these two prospects. However, cumulating once more with respect to the conse-
quence space gives H–1;2

1 ðp; tÞ, which here is:

Time Period

Prospect Probability 0 1 2 3 4

1/4 –4 –1 2 3 9
X 1/4 –1 –3 2 2 7

1/4 –1 –1 2 0 4
1/4 0 0 2 2 2
1/4 –5 –1 2 2 2

Y 1/4 –2 –3 –1 3 6
1/4 –2 0 0 2 5
1/4 0 0 2 1 8

Time Period

p 0 1 2 3 4

.25 1 1 3 3 4

.5 1 1 2 2 3

.75 1 0 2 0 2
1 0 0 0 1 –2

Time Period

p 0 1 2 3 4

.25 1 1 3 3 4

.5 2 2 5 5 7

.75 3 2 7 5 9
1 3 2 7 6 7
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Thus from proposition 3 and by extension of proposition 2 we can say that X >

1T2S Y. What this example illustrates is that, when the violation of first-order TSD
is restricted to the upper quantiles of F–1;1

1 and G–1;1
1 , the additional restriction that

u ∈ U2, which excludes risk-seeking behavior, makes it disappear, because relatively
greater weight is placed on outcomes with low income.

If we want to pursue the further case of (v, u) ∈ V2 × U2, representing a risk-
averse or risk-neutral planner with a decreasing and convex discount function, then
integrate D2

1ðz; tÞ once more with respect to time.

Proposition 4: [Second-order time-stochastic dominance] X > 2TS Y if and only if

i)

D2
1ðz; TÞ ≥ 0; ∀z ∈ a; b½ �;

ii)

D2
2ðz; tÞ ≥ 0; ∀z ∈ a; b½ � and ∀ t ∈ 0; T½ �;

and there is at least one strict inequality.

Proof: See appendix B.

The second part of the dominance condition tells us that, in order for X to
be preferred to Y by any decision maker with preferences consistent with (v, u) ∈
V2 × U2, the cdf of X, integrated twice over time and once more over the con-
sequence space, must be nowhere larger than its counterpart for Y. Additionally,
first-order time and second-order stochastic dominance must hold with respect
to the difference between the distributions in the terminal period T.

Example 3: Now consider another two different prospects:

Time Period

Prospect Probability 0 1 2 3 4

1/4 –5 –2 2 1 8
X 1/4 –3 –3 2 4 10

1/4 –1 –1 –2 0 0
1/4 0 –2 –1 2 4
1/4 –5 –2 –2 5 0

Y 1/4 –4 –3 –2 5 2
1/4 –2 –3 2 0 7
1/4 0 0 2 3 9
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The reader can verify that in this example the condition for first-order TSD of
either X or Y is not met. Further, H–1;2

1 is:

Therefore in this case neither is the condition for first-order time and second-
order stochastic dominance met. The next step is to inspect H–1;2

2 :10

Thus since H–1;2
2 ≥ 0;∀z; t with mostly strict inequalities, and from above

H–1;2
1 ≥ 0;∀p, X > 2TS Y.
The previous cases provide us with the machinery we require to offer a theorem

for TSD that is generalized to the nth order with respect to time and the mth
order with respect to risk.

Suppose that information regarding the first n derivatives of the discount func-
tion (v ∈ Vn) and the first m of the utility function (u ∈ Um) is provided. Then:

Proposition 5: [nth-order time and mth-order stochastic dominance] X nth-order time

and mth-order stochastic dominates Y if and only if

i)

Djþ1
iþ1ðb; TÞ ≥ 0;

Time Period

p 0 1 2 3 4

.25 0 0 4 0 0

.5 1 1 9 0 5

.75 2 4 8 2 5
1 2 2 3 –3 1

Time Period

p 0 1 2 3 4

.25 0 0 4 4 12

.5 1 2 11 15 23

.75 2 6 14 17 29
1 2 4 7 4 5

10.

H –1;2
2 ðp; tÞ = ½F –1;2

2 ðp; tÞ –G – 1;2
2 ðp; tÞ� = op

w=0½F –1;1
2 ðw; tÞ –G –1;1

2 ðw; tÞ�:
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ii)

D jþ1
n ðb; tÞ ≥ 0;∀ t ∈ ½0; T�;

iii)

Dm
iþ1ðz; TÞ ≥ 0; ∀z ∈ ½a; b�;

iv)

Dm
n ðz; tÞ ≥ 0; ∀z ∈ ½a; b� and ∀ t ∈ ½0; T�;

with iv holding as a strong inequality over some subinterval and where i = f0; . . . ; n – 1g
and j = f1; . . . ; m – 1g.

Proof: See appendix B.

Proposition 5 gives necessary and sufficient conditions for dominance for any
decision maker having time and risk preferences represented by (v, u) ∈ Vn × Um.
Note that, for appropriate values of m and n, propositions 1 (1TSD), 3 (1T2SD),
and 4 (2TSD) can be obtained as specific cases. In these cases, conditions i–iii are
not always explicitly required, as the satisfaction of condition iv, which is always
required, can imply that some or all of the other conditions also hold.

3. ALMOST TIME-STOCHASTIC DOMINANCE

In practice, the usefulness of what we might call “exact” dominance analysis can be
limited, since even a very small violation of the conditions for dominance is sufficient
to render the rules unable to order investments. As the example above showed, if a
violation exists in particular at the lower bound of the domain of the cumulative
distribution functions, then no amount of restrictions will make it vanish. Put an-
other way, the downside of a flexible, nonparametric approach is that the broad
classes of preference on which the dominance criteria are based include a small
subset of “extreme” or “pathological” functions, whose implications for choice would
be regarded by many as perverse.11 Leshno and Levy (2002) recognized this problem
in the context of SD and developed a theory of almost stochastic dominance (Almost

11. What is “extreme” is clearly subjective, an obvious difficulty faced by the Almost SD
approach. However, Levy, Leshno, and Leibovitch (2010) offer an illustration of how to
define it using laboratory data on participant choices when faced with binary lotteries. Ex-
treme risk preferences are marked out by establishing gambles that all participants are pre-
pared to take. By making the conservative assumption that no participant has extreme risk
preferences, the most risk-seeking and risk-averse participants mark out the limits, and pref-
erences outside these limits can be considered extreme.
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SD), according to which restrictions are placed on the derivatives of the utility
function, so that extreme preferences are excluded (see appendix A).12 Dominance
relations between risky prospects are then characterized for “almost” all decision
makers.

It is obvious that exact TSD faces the same practical constraints as exact SD. In
this section, we therefore extend our theory to “Almost TSD,” excluding extreme
combinations of time and risk preferences so that prospects can still be ranked. In
particular, by extending the theory to our bidimensional time-risk set-up, we define
and characterize almost first-order TSD and almost first-order time and second-
order stochastic dominance. In doing so, the attention of the analysis shifts subtly to
asking; how many preference combinations must be excluded in order to obtain a
ranking? Put another way, how much smaller is the space for agreement? In general,
the less that need be excluded, the better.

Let us start with Almost first-order TSD. Our basic approach is analogous to
Leshno and Levy (2002) in that we measure the violation of 1TSD relative to the
nonviolation of 1TSD and give the resulting, relative measure of violation meaning
by linking it with a restriction on time and risk preferences. We will need two re-
strictions on preferences, and two corresponding violation measures.

For expositional ease, we begin with a measure of violation ε1T, which is in fact
the violation measure in Leshno and Levy (2002), albeit in our bidimensional frame-
work it is for t = T specifically. For every 0 < ε1T < 0.5, define the following sub-
set of U1:

U1ðε1TÞ = u∈U1 :
u0ðzÞ

inf ½u0ðzÞ� �
1
ε1T

– 1

� �
;∀z∈ ½a; b�; t =T

� �
:

The class U1(ε1T) is the set of nondecreasing utility functions with the added
restriction that the ratio between maximum and minimum marginal utility is bounded
by 1=ε1Tð Þ – 1, that is, extreme concavity/convexity is ruled out. It is easiest to see
what this restriction entails in the case of u ∈ U1(ε1T), where u00(z) is monotonic.
Then we are restricting how much (little) marginal utility members of the class of
functions associate with low income levels at the same time as restricting how little
(much) marginal utility they associate with high income levels. Further narrowing the
scope to the very common case of utility functions with constant elasticity of marginal

12. Tzeng et al. (2012) showed that Leshno and Levy’s theorem for almost second-order
stochastic dominance is incorrect and redefined the concept. They also extended the results
to higher orders.
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utility, the restriction is on the absolute value of the elasticity—∣[u 00(z)z]/[u 0(z)]∣—
such that it cannot be large negative or large positive, and the larger is ε1T the smaller
∣[u 00(z)z]/[u0(z)]∣ must be. Of course this is merely an illustration—the set of utility
functions U1(ε1T) is much larger than the constant-relative-risk aversion functions
alone. In the limit as ε1T approaches 0.5, the only function in U1(ε1T) is linear utility,
where u00 (z) = 0. Conversely as ε1T approaches zero, U1(ε1T) coincides with U1.

We further introduce a restriction γ1 on the product of the marginals of the
discount and utility functions, such that

ðV1 � U1Þðγ1Þ=
fv∈V1; u∈U1 :

–v0ðtÞu0ðzÞ
inf ½ –v0ðtÞu0ðzÞ� � 1

γ1
– 1

h i
:

∀z∈ ½a; b�;∀t∈ ½0; T�g

The class (V1 × U1) (γ1) is the set of all combinations of decreasing pure time
discount function and nondecreasing utility function, with the added restriction
that the ratio between the maximum and minimum products of –v0(t) u0(z) is
bounded by 1=γ1ð Þ – 1. The supremum (infimum) of –v0(t) u0(z) is attained when
v0(t) < 0 is the infimum (supremum) of its set and u0(z) ≥ 0 is the supremum
(infimum) of its.13 Therefore, the combinations of preferences that we are exclud-
ing here will tend to comprise extreme concavity or convexity of the utility and
discount functions somewhere on their respective domains.

Now define the set of realizations z ∈ [a, b] where there is a violation of first-
order TSD as S11:

S11ðD1
1Þ = z ∈ ½a; b�; t ∈ ½0; T� :D1

1ðz; tÞ < 0
� �

:

We also explicitly define S1,T as the subset of S11 when t = T, that is, the difference
between the single-dimensional cumulative distributions over the consequence space
at time T:

S1;TðD1
1Þ = z∈ ½a; b�; t =T :D1

1ðz; TÞ < 0
� �

:

13. It is worth noting that when T is large and v ∈ V2 (say v = e– rt), inf [–v0(t)] will be
attained when t = T, and clearly in the limit as T → ∞, inf [–v0(t)] = 0. Therefore finite
time is required in order to guarantee the existence of sup½ – v0ðtÞ�=inf ½ – v0ðtÞ�. A long time
horizon does not necessarily guarantee TD, especially if a violation occurs at t = 0 (see
Matei and Zoli [2012] for a discussion on this drawback and the dictatorship of the present
in TD criteria).
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Definition 2: [Almost first-order time-stochastic dominance] X dominates Y by Almost

first-order time-stochastic dominance, denoted X > A1TS Y, if and only if

i)

EE
S11

–D1
1ðz; tÞdzdt � γ1ET

0

Eb

a

∣D1
1ðz; tÞ∣dzdt and

ii)

E
S1;T

–D1
1ðz;TÞdz � ε1TEb

a

∣D1
1ðz; TÞ∣dz:

Proposition 6: [A1TSD] X > A1TS Y if and only if, for all (v, u) ∈ (V1 × U1) (γ1) and

u ∈ U1(ε1T),

NPVv;uðXÞ≥NPVv;uðYÞ:

Proof: See appendix B.

To reiterate, the definition of almost first-order TSD contains two measures of
the violation of exact first-order TSD. γ1 measures the cumulative violation of the
nonnegativity condition on D1

1 over all t, relative to the total volume enclosed be-
tween the distributions over all t, while ε1T measures the violation of the same con-
dition at time T only, relative to the total area enclosed between the distributions at
that time. All decision makers exhibiting the “nonextreme” combination of prefer-
ences expressed by the discount and utility functions (v, u) ∈ (V1 × U1) (γ1) and
u ∈ U1(ε1T) will prefer X to Y if and only if conditions i and ii in proposition 6 are
satisfied.

Moving now to almost first-order time and second-order stochastic dominance,
we need three restrictions on preferences and three corresponding violation mea-
sures. First, γ1,2 measures the relative violation of the nonnegativity condition on
D2

1 over all t. It is equivalent to the following restriction on combined time and risk
preferences:

ðV1 � U2Þðγ1;2Þ=
fv∈V1; u∈U2 :

v0ðtÞu00ðzÞ
inf ½v0ðtÞu00ðzÞ� � 1

γ1;2
– 1

h i
∀z∈ ½a; b�;∀t∈ ½0; T�g

:

The set (V1 × U2) (γ1,2) represents all combinations of decreasing pure time dis-
count functions and nondecreasing, weakly concave utility functions, with the added
restriction that the ratio between the maximum and minimum of v0(t) u00 (z) is
bounded by 1=γ1;2

� 	
– 1. The supremum (infimum) of v0(t) u00 (z) is attained when
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v0(t) < 0 and u00 (z) ≤ 0 are the suprema (infima) of their respective sets, and these
sets are defined with respect to all realizations and time periods.

Second, ε2T measures the relative violation of the nonnegativity condition on D2
1

at time T only. As per Leshno and Levy (2002), for every 0 < ε2T < 0.5,

U2ðε2TÞ = u∈U2 :
–u00ðzÞ

inf ½–u00ðzÞ� �
1
ε2T

– 1

� �
;∀z∈ ½a; b�; t =T

� �
:

Class U2(ε2T) is the set of nondecreasing, weakly concave utility functions with the
added restriction that the ratio between maximum and minimum u00 (z) is bounded by
1=ε2Tð Þ – 1. Therefore large changes in u00(z) with respect to z are excluded, where
only realizations at time T are considered.

Third, we need to measure a violation of the nonnegativity condition on the in-
tegral with respect to time of D2

1ðb; tÞ. We denote this λ1b and it is equivalent to
restricting time preferences as follows:

V1ðλ1bÞ = v∈V1 :
–v0ðtÞ

inf ½–v0ðtÞ� � v
1
λ1b

– 1

� �
; z = b;∀t∈ ½0; T�

� �
:

Function V1(λ1b) is the set of decreasing pure time discount functions with the
added restriction that the ratio between maximum and minimum v0(t) is bounded by
1=λ1bð Þ – 1. Hence large changes in v00 (t) are excluded.
Parcel out the subset of realizations S21 where D

2
1 < 0, that is, where the condi-

tion for exact first-order time and second-order stochastic dominance is violated:

S21ðD2
1Þ = z∈ ½a; b�; t∈ ½0; T� :D2

1ðz; tÞ < 0
� �

:

Further explicitly define S2,T as the subset of S21 when t = T:

S2;TðD2
1Þ = z∈ ½a; b�; t =T :D2

1ðz; TÞ < 0
� �

:

And in this case we also need to define a subset of realizations where D2
1ðb; tÞ < 0,

for any t where z = b:

S1;bðD2
1Þ = z = b; t∈ ½0; T� : D2

1ðb; tÞ < 0
� �

:

Definition 3: [Almost first-order time and second-order stochastic dominance] X almost

first-order time and second-order stochastic dominates Y, denoted X > A1T2S Y if and

only if
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i)

EE
S21

–D2
1ðz; tÞdzdt � γ1;2ET

0

Eb

a

jD2
1ðz; tÞjdzdt;

ii)

E
S2;T

–D2
1ðz; TÞdz � ε2TEb

a

jD2
1ðz; TÞjdz;

iii)

E
S1;b

D2
1ðb; tÞdt � λ1bET

0

jD2
1ðb; tÞjdt; and

iv)
D2

1ðb; TÞ ≥ 0:

Proposition 7: [A1T2SD] X > A1T2S Y if and only if, for all (v, u) ∈ (V1 × U2) (γ1,2),

u ∈ U2(ε2T), and v ∈ V1(λ1b),

NPVv;uðXÞ ≥NPVv;uðYÞ:

Proof: See appendix B.

Notice that the definition of almost first-order time and second-order stochastic
dominance has a similar structure to proposition 5. It contains three measures of
the violation of strict dominance, as well as the requirement that D2

1ðb;TÞ ≥ 0, that
is, that the difference between the undiscounted mean values of projects X and Y
respectively is at least zero. The proposition says that all decision makers exhibiting
the “nonextreme” combination of preferences expressed by the discount and utility
functions (v, u) ∈ (V1 × U2) (γ1,2), u ∈ U2(ε2T), and v ∈ V1(λ1b) will prefer X to
Y if and only if conditions i–iv are satisfied.

Example 4. Consider the following two prospects:

Time Period

Prospect Probability 0 1 2 3 4

1/4 –5 –3 0 4 7
X 1/4 0 –3 1 2 10

1/4 0 –2 1 3 9
1/4 0 0 0 1 1
1/4 –5 –1 0 3 9

Y 1/4 –4 –2 –1 0 1
1/4 –2 –3 1 1 5
1/4 –2 –1 –1 2 1
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In this example H–1;1
1 is:

First-order TSD cannot be established between these two prospects. Moreover
it can easily be shown that the occurrence of the violation in the lowest quantile of
H–1;1

1 , in early time periods, means that the violation will persist despite infinitely
repeated cumulation with respect to time and/or the consequence space. However,
it is quite evident from the tables that X performs better than Y most of the time,
so let us inspect this example within the framework of Almost TSD. Doing the nec-
essary calculations:

The small violations reflect what is intuitively obvious from H –1;1
1 ðp; tÞ, namely,

that only a small restriction on the combination of classes of discount and utility
functions is required in order for dominance to be established, since F < G most of
the time in most quantiles.

4. MODELING CLIMATE MITIGATION POLICIES

We now turn to our application of the theory of TSD and Almost TSD to climate-
change mitigation. The question we ask is: can we make choices on emissions abate-
ment, without having to agree on how precisely to structure and parameterize time
and risk preferences in economic models of climate mitigation? Are there combina-
tions of whole classes of discount and utility functions, for which it is possible to say
that some abatement policies are preferred to others?

To offer answers to these questions, we generate quantile data on the consump-
tion benefits of emissions reduction policies using the DICE model. DICE essentially
couples a Ramsey-Cass-Koopmans growth model to a simple climate model by gen-
erating carbon dioxide emissions as a side-effect of production and by connecting cli-
mate change back to output and welfare via a so-called damage function. The model

Time Period

p 0 1 2 3 4

.25 0 –2 –1 3 8

.5 4 3 4 3 4

.75 2 3 3 4 8
1 2 3 4 4 5

A1TSD
A1T2SD

γ1 ε1T γ2 ε2T γ1b

.04 0 .02 0 0
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is described fully in Nordhaus (2008,) and so we confine our discussion here to changes
that we have made.

A Stochastic Version of DICE

Standard versions of DICE are deterministic, with fixed parameters. This is a poor
fit to the problem of evaluating climate policy, however, because risk is a central ele-
ment. Therefore we use a stochastic version of DICE, developed by Dietz and Asheim
(2012). This version randomizes eight parameters in the model so that Monte Carlo
simulation can be undertaken. Table 1 lists the eight parameters, and the form and
parameterization of the pdfs assigned to them.

These eight random parameters, alongside the model’s remaining nonrandom pa-
rameters and initial conditions (as per Nordhaus 2008), are inputs to a Monte Carlo
simulation. In particular, a Latin Hypercube sample of 1,000 runs of the model is
taken. Each run solves the model for a particular, exogenous policy, which as de-
scribed below is a schedule of values for the rate of control of CO2 emissions. From
this is produced a schedule of distributions of consumption per capita (where con-
sumption per capita is equivalent to a cash flow in our theory), which is the focus of
the TSD analysis. The policies themselves are in the spirit of a cost-effectiveness
approach to meeting prespecified climate targets; they are obtained by choosing at
t = 0 a trajectory of emissions controls in order to minimize expected discounted CO2

abatement costs, subject to a constraint on the expected stock of atmospheric CO2.
The eight random parameters were originally selected by Nordhaus (2008), based

on his broader assessment of which of all the model’s parameters had the largest
impact on the value of policies. Their pdfs should all, to varying degrees, be inter-
preted as subjective. The first four parameters in table 1 play a role in determining
CO2 emissions. In one-sector growth models like DICE, CO2 emissions are directly
proportional to output, which is in turn determined in significant measure by produc-
tivity (i)14 and the stock of labor (ii). However, while CO2 emissions are proportional
to output, the proportion is usually assumed to decrease over time due to autono-
mous structural and technical change (iii). A further check on industrial CO2 emis-
sions is provided in the long run by the finite total remaining stock of fossil fuels (iv).

The fifth uncertain parameter is the price of a CO2-abatement backstop tech-
nology. In DICE, the coefficient of the abatement cost function depends on the back-
stop price; hence we obtain abatement cost uncertainty as a result of backstop price
uncertainty.

The sixth and seventh parameters in table 1 capture important uncertainties in
climate science. Parameter vi captures uncertainty about the carbon cycle, via the pro-

14. In particular, we randomize the initial growth rate of TFP. This is a scalar quantity
that propagates through to TFP growth in future years via the structure of DICE (Nord-
haus 2008).
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portion of CO2 in the atmosphere in a particular time period, which dissolves into
the upper ocean in the next period. Uncertainty about the relationship between a
given stock of atmospheric CO2 and temperature is captured by specifying a ran-
dom climate-sensitivity parameter (vii). The climate sensitivity is the increase in
global mean temperature, in equilibrium, that results from a doubling of the atmo-
spheric stock of CO2. In simple climate models like DICE’s, it is critical in deter-
mining how fast and how far the planet is forecast to warm in response to emis-
sions. There is by now much evidence, derived from a variety of approaches (see
Meehl et al. 2007; Roe and Baker 2007), that the pdf for the climate sensitivity
has a positive skew.

The eighth and final uncertain parameter is one element of the damage function
linking temperature and utility-equivalent losses in output. In Dietz and Asheim’s
(2012) version of DICE, the damage function has the following form:

ΩðtÞ = 1

1þ α1ϒðtÞ þ α2ϒðtÞ2 þ ~α3ϒðtÞ½ �7;

where Ω is the proportion of output lost, ϒ is the increase in global mean temper-
ature over the pre-industrial level, and αi, i ∈ {1, 2, 3} are coefficients. The term ~α3

Table 1. Uncertain Parameters for Simulation of DICE

Parameter Units
Functional
Form Mean

Standard
Deviation

(i) Initial growth rate
of TFP

Per year Normal .0092 .004

(ii) Asymptotic global
population

Millions Normal 8,600 18,92

(iii) Rate of
decarbonization

Per year Normal –.007 .002

(iv) Total resources
of fossil fuels

Billion tons of
carbon

Normal 6,000 1,200

(v) Price of back-stop
technology

US$ per ton of
carbon replaced

Normal 1,170 468

(vi) Transfer coefficient
in carbon cycle

Per decade Normal .189 .017

(vii) Climate sensitivity °C per doubling of
atmospheric CO2

Log-normal 1.099* .3912*

(viii) Damage function
coefficient α3

Fraction of global
output

Normal .082 .028

* In natural logarithm space.

(3)
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is a normally distributed random coefficient (viii), so the higher-order term ~α3ϒðtÞ½ �7
captures the uncertain prospect that significant warming of the planet could be
accompanied by a very steep increase in damages. That such a possibility exists has
been the subject of recent controversy, with the approaches of Nordhaus (2008) and
Weitzman (2012) marking out opposing stances. The controversy exists, because
there is essentially no empirical evidence to support calibration of the damage func-
tion at high temperatures (Dietz 2011; Tol 2012); instead there are simply beliefs.
In standard DICE, α3 = 0; thus, there is no higher-order effect, and 5° C warming,
as a benchmark for a large temperature increase, results in a loss of 6% of output. By
contrast, Weitzman (2012) suggests a functional form that can be approximated by
α3 = 0.166. Here ~α3 is calibrated such that the Nordhaus and Weitzman positions
represent minus/plus three standard deviations respectively, and at the mean 5° C
warming results in a loss of utility equivalent to around 7% of output.

Policies to Be Evaluated

We evaluate a set of five exogenous policies governing the rate of control of CO2 emis-
sions, plus a sixth path representing a forecast of emissions in the absence of policy-
driven controls, that is, “business as usual,” or BAU. Our aims in generating this set
are to achieve consistency with the modeling framework described just now, as well as
a degree of representativeness of the broader policy literature on emissions reduction
trajectories (e.g., Clarke et al. 2014).

Each of the five policies limits the atmospheric stock of CO2 to a pre-specified
level. This approach is very similar to many real policy discussions, which aim for a
“stabilization” level of atmospheric CO2 in the very long run. In order to render
the policies consistent with the assumptions we make, we use the stochastic version
of DICE itself to generate the five policy paths. BAU is the baseline scenario from
Nordhaus (2008).

The control variable is the percentage reduction in industrial CO2 emissions
relative to uncontrolled emissions (i.e., not relative to BAU). Each policy path is
generated by solving a stochastic optimization problem, whereby the schedule of
emissions cuts is chosen to minimize abatement costs15 subject to the constraint
that the mean atmospheric stock of CO2, MATðtÞ � MAT , where MAT ∈f450; 500;
550; 600; 650g and where the units are parts per million volume (see fig. 1). This
is done under initial uncertainty about parameters i–vi, since these affect the cost
of abatement and its impact on atmospheric CO2. As with most of the literature,
we assume that the cost-effective path at t = 0 is adhered to, despite the resolution
of all uncertainty just after t = 0, which should be contrasted with more complex

15. Of course, what is cost effective depends on the social objective, so for this part of
the analysis we cannot avoid pre-specifying and parameterizing the social welfare and utility
functions. For this purpose, we make representative choices, namely, that δ(t) = 1.5%, ∀ t,
and the coefficient of relative risk aversion is two.
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approaches that model learning and consequent revisions to the controls (e.g., Kelly
and Kolstad 1999; Lemoine and Traeger 2014).

In an integrated assessment model such as DICE, and especially in running Monte
Carlo simulation, solving this cost-minimization problem is a nontrivial computational
challenge. We solve it using a genetic algorithm (Riskoptimizer) and with two modifi-
cations to the basic optimization problem.16 In addition, we limit the Latin Hyper-
cube sample to 250 draws just for this task.17

Figure 1. Abatement policies in terms of the emissions control rate. A color version of
this figure is available online.

16. First, we only solve for the emissions control rate from 2015 to 2245 inclusive, rather
than all the way out to 2395. This considerably reduces the scope of the optimization
problem, in return for making little difference to the results, since, in the standard version of
DICE, the optimal emissions control rate is 100% when t > 2245, as the backstop abatement
technology becomes the lowest cost energy technology. Our first period of emissions control is
2015, since 2005, the first period of the model, is in the past. Second, we guide the optimiza-
tion by imposing the soft constraint that the emissions control rate is nondecreasing every-
where (via an exponential penalty function when the control rate decreases between any two
time periods). We were able to verify that the algorithm’s best solution satisfied the property
of nondecreasingness in the emissions control rate, and that no solution was found which
returned lower costs, where the control rate was decreasing at any point.

17. In order to ensure comparability with the results of the time-stochastic dominance
analysis, the smaller sample is calibrated on the sample statistics of the larger sample.
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5. RESULTS

Time-Stochastic Dominance Analysis

We carry out the TSD analysis in two parts. In the first part, we examine whether
any of the abatement policies time-stochastic dominates BAU. That is to ask, can we
use the analysis to establish that there is a space for agreement on acting to reduce
greenhouse gas emissions by some nontrivial amount? This would already be of con-
siderable help in understanding the scope of the debate about climate mitigation. In
the second part, we use the framework to compare the emissions reduction policies
themselves—can we further use the framework to discriminate between the set of
policies, so that we end up with a relatively clear idea of the policy that would be
preferred?

Recall from propositions 1 and 2 that first-order TSD requires H–1;1
1 ðp; tÞ ≥

0;∀z; t, with at least one strict inequality. Figure 2 plots H–1;1
1 ðp; tÞ when

MAT∈f450; 500; 550; 600; 650g is compared with BAU. With the darkest shaded
areas indicating a violation of the nonnegativity condition on H–1;1

1 ðp; tÞ, visual in-
spection is sufficient to establish that no abatement policy first-order time-stochastic
dominates BAU, not even the most accommodating 650 parts per million (ppm)
concentration limit.

Although first-order TSD cannot be established between abatement and BAU,
it could still be that one or more of the policies is preferred to BAU according to
first-order time and second-order stochastic dominance. Proposition 3 and its quan-
tile equivalent show that this requires H –1;2

1 ðp; tÞ ≥ 0;∀z; t, with at least one strict
inequality. Figure 3 plots H–1;2

1 when each abatement policy is compared with BAU.
Again, it is straightforward to see that the condition for exact first-order time and
second-order stochastic dominance is not satisfied for any of the policies. This is
because, for all policies, there exists a time period in which the lowest level of con-
sumption per capita is realized under the mitigation policy rather than BAU.

Unable to establish exact TSD of abatement over BAU, we now turn to analyz-
ing Almost TSD. In particular, we look at both almost first-order TSD as set out in
definition 2 and proposition 6, and almost first-order time and second-order stochas-
tic dominance as set out in definition 3 and proposition 7. Recall that γk denotes the
overall volume of violation of exact TSD relative to the total volume enclosed be-
tween Gj

i and F j
i. The term εkT is the violation of exact TSD in the final time period

only, while λ1b is the violation of exact first-order time and second-order stochastic
dominance with respect to realization b. As γk; εkT; λ1b→0:5, the volume/area of vio-
lation accounts for half of the entire volume/area between the cumulative distributions
being compared, while as γk; εkT; λ1b→0 there is no violation.

What is striking about the results of analyzing Almost TSD in table 2 is how
small the violations are. For all of the policies, in particular it is the violation of exact
first-order TSD that is tiny relative to the total volume/area between the distribu-
tions. Therefore, we have a formal result showing that everyone would prefer any of
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the abatement policies to BAU, as long as their time and risk preferences can be
represented by functions in the sets (V1 × U1) (γ1) and U1(ε1T). Moreover, we can
say that those who do not prefer the abatement policies have an extreme combina-
tion of time and risk preferences. Violation of first-order time and second-order
stochastic dominance is also on the whole very small, and note that the condition on

Figure 2. H–1;1
1 ðp; tÞ for MAT ∈f450; 500; 550; 600; 650g. A color version of this figure is

available online.
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D2
1ðb; TÞ in definition 3—equivalently H–1;2

1 ðp; TÞ ≥ 0—is met by all policies. The
overall violation increases with the stringency of the policy.

Let us now use TSD analysis to compare the various abatement policies with
each other. We know from the analysis above that exact TSD will not exist either
to a first order or to a second order with respect to SD. Therefore we can proceed
directly to analyzing violations. In doing so we confine our attention to the least

Figure 3. H –1;2
1 ðp; tÞ for MAT∈f450; 500; 550; 600; 650g. A color version of this figure is

available online.
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restrictive first-order TSD, given the wealth of pairwise comparisons that could po-
tentially be made. Table 3 presents the results, in terms of violations of exact first-
order TSD. The table should be read such that F1

1 is the CO2 limit in the first col-
umn and G1

1 is the limit in the top row. So, for example, γ1 = 0.00859 is the violation
of exact first-order TSD for MAT = 450 over MAT = 650.

Although we might have expected the violations to be relatively large, since the
abatement policy controls are much more similar to each other than they are to
BAU—and they do tend to be higher than in the comparison with BAU—in fact
they are all relatively small in absolute terms, such that for any pair of policies the
lower CO2 limit in the pair is almost dominant. Therefore we can go further and
say that there exists a broad space for agreement, represented by everyone whose
preferences are in the set (V1 × U1) (γ1), for tough emissions reduction targets, as
tough as MAT = 450.

How DICE Yields These Results

The topography of the panels in figure 2 tells us much about the effect of emissions
abatement on consumption per capita in DICE, how this effect is related to time,
and the nature of the uncertainty about the effect. In this century we can see it is
often the case that H –1;1

1 < 0, but the surface appears flat as there is little difference
between the cumulative distributions. In the next century, however, the surface rises

Table 2. Violations of Exact First-Order TSD and Exact First-Order Time and
Second-Order Stochastic Dominance

CO2 Limit (ppm) γ1 ε1T γ1,2 ε2T λ1b

650 .00009 .00003 .00002 8E–07 0
600 .00045 .00003 .00045 2E–06 6.01E–08
550 .00092 .00003 .00231 2E–06 .00014
500 .00188 .00004 .00605 3E–06 .00086
450 .00388 .00004 .01363 4E–06 .00245

Table 3. First-Order TSD Analysis of Abatement Policies against Each Other

650 600 550 500

CO2 Limit (ppm) γ1 ε1T γ1 ε1T γ1 ε1T γ1 ε1T

600 .00255 .00012
550 .00351 .00011 .01054 .00034
500 .00517 .00011 .01260 .00032 .01764 .00050
450 .00859 .00013 .01870 .00036 .02480 .00052 .03701 .00107
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to a peak at high quantiles, revealing that the mitigation policies can yield much
higher consumption per capita than BAU, albeit there is much uncertainty about
whether this will eventuate and there is only a low probability associated with it.
Comparing the policies, we can see that it is more likely that H–1;1

1 < 0, the more
stringent is the limit on the atmospheric stock of CO2. However, what figure 2 does
not show, due to truncating the vertical axes in order to obtain a better resolution
on the boundary between H–1;1

1 < 0 and H–1;1
1 ≥ 0, is that conversely the peak dif-

ference in consumption per capita is higher, the more stringent is the concentration
limit.

What lies behind these patterns? In fact, figure 2 can be seen as a new expression
of a well-known story about the economics of climate mitigation. There are two dif-
ferent sources of violation of first-order TSD. The first is that, in early years, the cli-
mate is close to its initial, relatively benign state, yet significant investment is re-
quired in emissions abatement. This makes it rather likely that consumption per
capita will initially be lower under a mitigation policy than it is under BAU. The
second source of violation is productivity growth, a large source of uncertainty affect-
ing BAU consumption per capita and all that depends on it. In particular, when the
realization of the random productivity-growth parameter is at its lowest, consump-
tion per capita is also at its lowest; moreover, in these contingencies carbon emissions
are very low. In these circumstances even mild emissions reductions are net costly.
This latter effect is therefore isolated in figure 2 where MAT = 650.

On the other hand, in later years the BAU atmospheric stock of CO2 is high, so
the possibility opens up that emissions abatement will deliver higher consumption
per capita. How much higher depends in the main on how much damage is caused
by high atmospheric CO2 and therefore how much damage can be avoided by
emissions abatement. In our version of DICE this is highly uncertain—much more
so than the cost of emissions abatement—and depends principally on the climate
sensitivity and the damage function coefficient ~α3 in (3). It is here that the driving
force can be found behind the tiny violations of exact TSD in table 2, namely, the
small possibility, in the second half of the modeling horizon, that the mitigation
policies will deliver much higher consumption per capita than business as usual. This
is consistent with the observation in previous, related research that the tails of the
distribution are critical in determining the benefits of emissions abatement (e.g.,
Weitzman 2009; Dietz 2011).

6. CONCLUSIONS

In this paper, we have proposed a theory of time-stochastic dominance for ordering
risky, intertemporal prospects. Our theory is built by unifying the insights of sto-
chastic dominance (SD) and time dominance (TD). Like these earlier theories, the
approach is nonparametric and allows orderings to be constructed only on the basis
of partial information about preferences. But our approach generalizes the applica-

Spaces for Agreement Dietz and Matei 113

This content downloaded from 158.143.197.010 on March 02, 2016 03:49:50 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



tion of simple SD to intertemporal prospects, by permitting pure temporal prefer-
ences, just as it generalizes the application of simple TD to risky prospects, by
avoiding the need to make strong assumptions about the characteristics of the pros-
pects (prospects may belong to different risk classes and cash flows may be large/
nonmarginal).

Like other dominance criteria, a possible practical disadvantage of (exact) TSD is
that it may not exist in the data, despite one prospect paying out more than another
most of the time, in most states of nature. Various approaches can be taken to deal
with this. Our choice has been to extend the notion of Almost SD pioneered by
Levy and others to our bidimensional time-risk setup, giving rise to Almost TSD.

The theory can in principle be applied to any investment problem involving mul-
tiple time periods and uncertainty about payoffs; however, given the involving nature
of the analysis, it might prove most useful in highly contentious public-investment
decisions, where there is disagreement about appropriate rates of discount and risk
aversion. A leading example might be the mitigation of climate change, so we applied
the theory to this policy controversy using a stochastic version of the DICE model,
in which eight key model parameters were randomized and Monte Carlo simulation
was undertaken.

We were unable to establish exact TSD in the data, even when moving to second-
order stochastic dominance (with first-order time dominance). However, when we
analyze the related theory of Almost TSD we find that the volume/area of violation
of exact TSD is generally very small indeed, so that we can say that almost all de-
cision makers would indeed favor any of our mitigation policies over BAU, and more-
over that they would favor tougher mitigation policies over slacker alternatives. So the
space for agreement is large in this regard.

Clearly our empirical results depend on the structure of the DICE model and
how we have parameterized it; our approach is only nonparametric as far as pref-
erences are concerned. Of particular note are the key roles played by uncertainty
about climate sensitivity, the curvature of the damage function, and productivity
growth. Our parameterization of the former two is key in producing a small violation
of exact TSD, because when a high climate sensitivity combines with a high curva-
ture on the damage function, the difference in the relevant cumulative payoff distri-
butions becomes very large. Our parameterization of initial TFP growth, specifically
our assumption via an unbounded normal distribution that it could be very low or
even negative over long periods, is conversely key in producing a violation in the first
place. It will be very interesting to see what results are obtained with different
integrated assessment models, or with different implementations of DICE.

Our interpretation of γk, εkT, and λ1b in the application of Almost TSD is also
open to debate, given the nature of the concept. Research on almost dominance
relations is still at a relatively early stage, so we lack data on the basis of which we
can say with high confidence that some preferences are extreme, while others are not.
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Nonetheless our violations are for the most part so small that we are somewhat im-
mune to this criticism. An interim approach that could be taken, which does rather
run counter to the spirit of the TSD approach, is to suppose particular functional
forms for u(x) and v(t), most obviously iso-elastic and exponential respectively, and to
calculate the set of combinations of parameter values for which dominance holds,
based on the violation measures. This is done in Pottier (2015).

APPENDIX A

A Primer on Stochastic Dominance and “Almost” Stochastic Dominance

Stochastic dominance (SD) determines the order of preference of an expected-utility
maximizer between risky prospects, while requiring minimal knowledge of her utility
function. Take any two risky prospects with probability distributions F and G re-
spectively and denote their cumulative distributions F1 and G1 respectively. Assum-
ing the cumulative distributions have finite support on [a, b], F is said to first-order
stochastic dominate G if and only if F1ðxÞ � G1ðxÞ;∀x∈ ½a; b� and there is a strict
inequality for at least one x, where x is a realization from the distribution of payoffs
possible from a prospect. Moreover, it can be shown that any expected-utility maxi-
mizer with a utility function belonging to the set of nondecreasing utility functions
U1 = {u : u0(x) ≥ 0} would prefer F.

First-order SD does not exist if the cumulative distributions cross, which means
that, while it is a powerful result in the theory of choice under uncertainty, the prac-
tical usefulness of the theorem is limited. By contrast, where F2ðxÞ = ∫

x

a F
1ðsÞds and

G2ðxÞ = ∫
x

a G
1ðsÞds, F second-order stochastic dominates G if and only if F2ðxÞ �

G2ðxÞ;∀x∈ ½a; b� and there is a strict inequality for at least one x. It can be shown
that any expected-utility maximizer with a utility function belonging to the set of all
nondecreasing and (weakly) concave utility functions U2 = fu : u∈U1 and u00ðxÞ � 0g
would prefer F, that is, any such (weakly) risk-averse decision maker. Hence second-
order SD can rank inter alia prospects with the same mean but different variances.

Nonetheless, the practical usefulness of second-order SD is still limited, as the
example above illustrated. One could proceed by placing an additional restriction on
the decision maker’s preferences, defining the set U3 = fu:u∈U2 and u000ðxÞ ≥ 0g
and looking for third-order SD. Decision makers exhibiting decreasing absolute risk
aversion have preferences represented by utility functions in U3, and such decision
makers will also exhibit “prudence” in intertemporal savings decisions (Kimball 1990).
Where F3ðxÞ = ∫

x

a F
2ðsÞds and G3ðxÞ = ∫

x

a G
2ðsÞds, F third-order stochastic dominates

G if and only if F3ðxÞ � G3ðxÞ;∀x∈ ½a; b� and EF(x) ≥ EG(x), and there is at least
one strict inequality. However, it can easily be verified in the example that G3ðxÞ –
F3ðxÞ < 0; x∈ ½0:5; 1Þ, yet EF(x) > > EG(x), so third-order SD does not exist.
Moreover SD cannot be established to any order in this example, because the first
nonzero values of G1(x) – F1(x) are negative as x increases from its lower bound, yet
EF(x) > EG(x). Successive rounds of integration will not make this go away.
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A more fruitful route is the theory of Almost SD set out by Leshno and Levy
(2002) and recently further developed by Tzeng, Huang, and Shih (2012). Almost
SD places restrictions on the derivatives of the utility function with the purpose of ex-
cluding the extreme preferences that prevent exact SD from being established. Dom-
inance relations are then characterized for “almost” all decision makers.

For every 0 < εk < 0.5, where k = 1, 2 corresponds to first- and second-order SD,
respectively, define subsets of Uk:

U1ðε1Þ = u∈U1 :
u0ðxÞ

inf ½u0ðxÞ� �
1
ε1
– 1

� �
;∀x

� �
and

U2ðε2Þ = u∈U2 :
–u00ðxÞ

inf ½–u00ðxÞ� �
1
ε2
– 1

� �
;∀x

� �
:

The class U1(ε1) is the set of nondecreasing utility functions with the added restric-
tion that the ratio between maximum and minimum marginal utility is bounded by
1=ε1ð Þ – 1. In the limit as ε1 approaches 0.5, the only function in U1(ε1) is linear
utility. Conversely as ε1 approaches zero, U1(ε1) coincides with U1. The expression
U2(ε2) is the set of nondecreasing, weakly concave utility functions with an analogous
restriction on the ratio between the maximum and minimum values of u00ðxÞ. In the
limit as ε2 approaches 0.5, U2(ε2) contains only linear and quadratic utility functions,
while as ε2 approaches zero, it coincides with U2.

Defining the set of realizations over which exact first-order SD is violated as

S1ðF; GÞ = x∈ ½a; b� :G1ðxÞ < F1ðxÞf g;

F is said to first-order almost stochastic dominate G if and only if

E
S1

F1ðxÞ –G1ðxÞ½ �dx � ε1 :Eb

a

j F1ðxÞ –G1ðxÞ½ �jdx:

Moreover, in a similar vein to exact SD, it can be shown that any expected-utility
maximizer with a utility function belonging to U1(ε1) would prefer F.

Defining the set of realizations over which exact second-order SD is violated as

S2ðF; GÞ = x∈ ½a; b� :G2ðsÞ < F2ðsÞf g;

F second-order almost stochastic dominates G if and only if

E
S2

F2ðxÞ –G2ðxÞ½ �dx � ε2 :Eb

a

j F2ðxÞ –G2ðxÞ½ �jdx;
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and

EFðxÞ ≥ EGðxÞ:

Any expected-utility maximizer with a utility function belonging to U2(ε2) would
prefer F. From these definitions of first- and second-order Almost SD one can see
that εk intuitively represents the proportion of the total area between Fk and Gk in
which the condition for exact SD of the kth order is violated. The smaller is εk, the
smaller is the relative violation.

A Primer on Time Dominance

The theory of time dominance (TD) builds on the SD approach to choice problems
under uncertainty and transfers it to problems of intertemporal choice (Bøhren and
Hansen 1980; Ekern 1981). Denoting the cumulative cash flows of any two invest-
ments X1 and Y1,

18 X is said to first-order time dominate Y if and only if X1ðtÞ ≥
Y1ðtÞ;∀t∈ ½0;T � and there is a strict inequality for some t, where T is the terminal
period of the most long-lived project. Moreover, it can be shown that any decision
maker with a discount function belonging to the set of all decreasing consumption
discount functions cV1 = fbv :bv 0ðtÞ < 0g would prefer X. Thus if the decision maker
prefers a dollar today to a dollar tomorrow, she will prefer X if it first-order time
dominates Y.

Just like SD, first-order TD has limited practical purchase, because the set of
undominated investments remains large, that is, the criterion X1(t) ≥ Y1(t), ∀ t is
restrictive.19 Therefore, proceeding again by analogy to SD, X second-order time
dominates Y if and only if

X1ðTÞ ≥ Y1ðTÞ
and

X2ðtÞ ≥ Y2ðtÞ;∀t ∈ ½0;T �;

where X2ðtÞ = ∫
t

0X1ðτÞdτ and Y2ðtÞ = ∫
t

0Y1ðτÞdτ, and there is at least one strict in-
equality. Any decision maker with a discount function belonging to the set of all de-
creasing, convex consumption discount functions cV2 = fbv : bv∈cV1 and bv 00ðtÞ > 0g
would prefer X. This set includes both the exponential and the hyperbolic discounting.

18. X1ðtÞ = ∫
t

0xðτÞdτ and Y1ðtÞ = ∫
t

0yðτÞdτ ∫
t

0.
19. Indeed, in the domain of deterministic cash flows over multiple time periods, the re-

quirement that X1(0) ≥ Y1(0) means that one investment cannot dominate another by a first,
second, or higher order, if the initial cost is higher, no matter what the later benefits are. This
makes it difficult to compare investments of different sizes. However, this can be worked
around by normalizing the cash flows to the size of the investment (Bøhren and Hansen 1980).
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For the case where no discounting is applied the first constraint imposes a necessary
condition, stating that the undiscounted value of the intertemporal prospect X must be
higher in order to guarantee dominance. Noting how the conditions for second-order
TD are obtained from their counterparts for first-order TD by integration, TD can be
defined to the nth order (see Ekern 1981).

Notice that TD applies to deterministic cash flows. It would be possible to apply
the method to uncertain cash flows, if X and Y were expected cash flows and if a
corresponding risk adjustment were made to fbvg. However, since any two cash flows
X and Y would then be discounted using the same set of risk-adjusted rates, it would
be necessary to assume that the cash flows belong to the same risk class (Bøhren and
Hansen 1980); for example, under the capital asset pricing model they would have to
share the same covariance with the market portfolio. This significantly limits the
reach of the method to uncertain investments. It would also be necessary to assume
that any investments being compared are small (i.e., marginal), since the domain of
fbvg is cash flows and therefore depends on a common assumed growth rate. Neither
of these assumptions is likely to hold in the case of climate change (see Weitzman
[2007] for a discussion of the covariance between climate mitigation and market
returns and Dietz and Hepburn [2013] for a discussion of whether climate mitiga-
tion is nonmarginal).

APPENDIX B

Proof of Proposition 1

Sufficiency

We want to prove that

D1
1ðz; tÞ ≥ 0 ⇒ NPVv;uðXÞ ≥NPVv;uðYÞ

for all t and z for all u∈U1; v∈V1:

Assume that a ≤ z ≤ b. This implies that for z � a; Djðz; tÞ = 0 and for z ≥ b;
D1ðz; tÞ = 0 for all t ∈ [0,T]. Furthermore, we assume that D j

i ðz; 0Þ=0 for all z ∈
[a, b]. Denote by

Δ =NPVv;uðXÞ –NPVv;uðYÞ =ET

0

vðtÞEFuðxÞdt –ET

0

vðtÞEGuðyÞdt

=ET

0

vðtÞ Eb

a

–dðz; tÞuðzÞdz
" #

dt:

Integrating by parts with respect to z, we obtain

Δ =ET

0

vðtÞ uðzÞð–ÞD1ðz; tÞ∣ba – Eb

a

ð–ÞD1ðz; tÞu0ðzÞdz
" #

dt:
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Since a ≤ z ≤ b, the first term in the square brackets is equal to zero. Therefore, we
are left with

Δ =ET

0

Eb

a

vðtÞD1ðz; tÞu0ðzÞdzdt:

Integrating by parts with respect to t, we have

Δ =Eb

a

D1
1ðz; tÞvðtÞ∣T0 – ET

0

D1
1ðz; tÞv0ðtÞdt

" #
u0ðzÞdz

=Eb

a

D1
1ðz; TÞvðTÞu0ðzÞdz – ET

0

Eb

a

D1
1ðz; tÞv0ðtÞu0ðzÞdzdt;

as D1
1ðz; 0Þ=0 for all z ∈ [a,b]. Note that by Fubini’s Theorem (B2) can alternatively

be obtained by integrating first with respect to t and then with respect to z. From our
initial assumption we know that D1

1ðz; tÞ ≥ 0. Hence NPVv;uðXÞ ≥ NPVv;uðYÞ, for all
u∈ U1 and v∈ V1.

Necessity

We have to prove that

NPVv;uðXÞ ≥NPVv;uðYÞ ⇒ D1
1ðz; tÞ ≥ 0

for all u∈U1; v∈V1 for all t and z:

Suppose there is a violation and let ðez;etÞ be the smallest (in the lexicographic sense)
pair (z, t) such that D1

1ðez;et Þ < 0. We will show that there is then a utility functioneu∈U1 and a discount function ev∈V1, for which D1
1ðez;etÞ < 0 implies that NPVv;uðXÞ

< NPVv;uðYÞ, thus contradicting the original assumption.
Since D1

1 is continuous, the violation will also exist in the range ez � z � ezþ ε.
Define the following step function:

euðzÞ = ez z < ez
z z∈ ez;ezþ ε½ �ezþ ε z > ezþ ε

;

8><>:
which can be approximated arbitrarily closely by a continuously differentiable func-
tion in U1 (see Fishburn and Vickson 1978, 75).

Similarly, the following discount function can be defined:

evðtÞ = 1þ pe – pt if 0 � t �et
0þ pe – pt et < t � T

;

(

(B1)

(B2)
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which again can be approximated arbitrarily closely by a function in V1 (see Ekern
1981).

Substituting these functions into (B1) we obtain

Δ =Eezþε

ez Eet
0

D1ðz; tÞdtþ pET

0

e – ptD1ðz; tÞdt
" #

dz

=Eezþε

ez D1
1ðz; tÞ∣et0 þ pET

0

e – ptD1ðz; tÞdt
" #

dz

=Eezþε

ez D1
1ðz;etÞ þ pET

0

e – ptD1ðz; tÞdt
" #

dz:

In the limit as p → 0, p ∫
T

0 e
– ptD1ðz; tÞdt = 0; therefore, for a sufficiently small p,

D1
1ðez;et Þ < 0 implies that NPVv;uðXÞ < NPVv;uðYÞ, contradicting the initial assump-

tion and showing it is necessary that D1
1ðez;et Þ ≥ 0 for all z ∈ [a, b] and t ∈ [0, T].

QED

Proof of Proposition 2

We need to prove that the following equivalence holds:

H – 1
1 ðp; tÞ = F –1

1 ðp; tÞ –G –1
1 ðp; tÞ ≥ 0; ⇔ D1

1ðz; tÞ =G1
1ðz; tÞ – F1

1ðz; tÞ ≥ 0
∀p∈ ½0; 1� and t∈ 0; T½ � ∀z∈ a; b½ � and ∀t∈ 0; T½ �

Assume first that F1
1ðz; tÞ � G1

1ðz; tÞ for all z ∈ [a, b] and all t ∈ [0, T]. This
means that for an arbitrary x*(t) we have F1

1ðx�; tÞ = p�1ðtÞ � G1
1ðx�; tÞ = p�2ðtÞ. In

this way, for given t, x* will represent both the p�th1 quantile of distribution F and
the p�th2 quantile of distribution G.

Since, by assumption, F and G are monotonic increasing functions of z, the quan-
tile functions are monotonic increasing functions of p ∈ [0, 1]. Therefore, knowing
that p�1ðtÞ � p�2ðtÞ and due to the monotonicity of the quantile function, G–1

1 ðp�1; tÞ �
G–1

1 ðp�2; tÞ. Remembering that x�ðtÞ =G–1
1 ðp�2; tÞ = F–1

1 ðp�1; tÞ, it follows that
G–1

1 ðp�1; tÞ � F–1
1 ðp�1; tÞ.

We conclude that, for every t ∈ [0,T], the condition F1
1ðz; tÞ � G1

1ðz; tÞ;
∀z∈ a; b½ � implies F–1

1 ðp; tÞ ≥ G –1
1 ðp; tÞ∀p. The analogous logic can be applied

to show that the reverse condition also holds, that is for a given t; F–1
1 ðp; tÞ ≥

G–1
1 ðp; tÞ will imply F1

1ðz; tÞ � G1
1ðz; tÞ.

Proof of Propositions 3 and 4

Sufficiency

Integrate the expression in (B2) once more with respect to z:
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Δ =Eb

a

D1
1ðz; TÞvðTÞu0ðzÞdz –ET

0

Eb

a

D1
1ðz; tÞv0ðtÞu0ðzÞdzdt;

= vðTÞ u0ðzÞD2
1ðz; TÞ∣ba – Eb

a

u00ðzÞD2
1ðz; TÞdz

" #
–

– ET

0

v0ðtÞ u0ðzÞD2
1ðz; tÞ∣ba – Eb

a

u00ðzÞD2
1ðz; tÞdz

" #
dt:

Now, by the bounding of z, D2
1ða; tÞ = 0 for all t ∈ [0, T] and therefore

Δ = vðTÞu0ðbÞD2
1ðb;TÞ – vðTÞEb

a

u00ðzÞD2
1ðz; TÞdz –

– ET

0

v0ðtÞu0ðbÞD2
1ðb; tÞdtþ ET

0

Eb

a

u00ðzÞv0ðtÞD2
1ðz; tÞdzdt:

From here we can extract the conditions for dominance with respect to V1 × U2

presented in proposition 3. That is, D2
1ðz; tÞ ≥ 0 for all z ∈ [a, b] and all t ∈ [0, T]

is a sufficient condition for NPVv;uðXÞ ≥ NPVv;uðYÞ for all {v, u} ∈ V1 × U2.
Integrating by parts once more with respect to time, we get the dominance con-

ditions for second-order TSD for all {v, u} ∈ V2 × U2:

Δ = u0ðbÞvðTÞD2
1ðb; TÞ – Eb

a

u00ðzÞvðTÞD2
1ðz; TÞdz – u0ðbÞv0ðtÞD2

2ðb; tÞ∣T0 þ

þ u0ðbÞ ET

0

v00ðtÞD2
2ðb; tÞdt

" #
þ Eb

a

u00ðzÞv0ðtÞD2
2ðz; tÞdz∣T0 –

– Eb

a

u00ðzÞ ET

0

v00ðtÞD2
2ðz; tÞdt

" #
dz;

= u0ðbÞvðTÞD2
1ðb; TÞ – Eb

a

u00ðzÞvðTÞD2
1ðz; TÞdz – u0ðbÞv0ðTÞD2

2ðb; TÞþ

þ u0ðbÞ ET

0

v00ðtÞD2
2ðb; tÞdt

" #
þ Eb

a

u00ðzÞv0ðTÞD2
2ðz; TÞdz –

– Eb

a

u00ðzÞ ET

0

v00ðtÞD2
2ðz; tÞdt

" #
dz:

(B3)

(B4)
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From here it is easy to see that the following assumptions

i)
D2

1ðz; TÞ ≥ 0 for all z∈ a; b½ �

ii)
D2

2ðz; tÞ ≥ 0 for all z∈ a; b½ � and all t∈ 0; T½ �

imply that

NPVEF ;v ≥NPVEG;v for all v; uð Þ∈V2 � U2:

This completes the sufficiency part of proposition 4. As in the proof of proposi-
tion 1, the same dominance conditions can also be obtained when integration is per-
formed first with respect to time t and then with respect to z.

Necessity

We pursue a similar approach to the proof of necessity of proposition 1 for each ele-
ment of (B3) and (B4) respectively. Consider a differentiable approximation of the in-
creasing and concave, piecewise linear utility function defined by

euðzÞ = z –ez for a � z < ez
0 for ez � z � b

:

(

Replicate the procedure in the proof of necessity of proposition 1, using this utility
function and the previous discount function. QED

Proof of Proposition 5

Sufficiency

The proof is constructed as a simple extension of the previous analysis. Integrating
by parts repeatedly, we obtain:

NPVv;uðXÞ –NPVv;uðYÞ = o
n – 1

i=0

ð–1ÞiviðTÞ o
m – 1

j=1

ð–1Þ jþ1ujðbÞDjþ1
iþ1 ðb; TÞ

" #
þ

þ o
m – 1

j=1

ð–1Þ jþ1ujðbÞ ET

0

ð–1ÞnvnðtÞDjþ1
n ðb; tÞdt

" #
þ

þ o
n – 1

i=0

ð–1ÞiviðTÞ Eb

a

ð–1Þm – 1umðzÞDm
iþ1ðz;TÞdz

" #
þ

þ ð–1Þmþnþ1Eb

a

ET

0

vnðtÞumðzÞDm
n ðz; tÞdtdz:
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Remember that by assumption the odd-numbered derivatives of the utility function
are positive while the even-numbered derivatives are negative. On the other hand,
the odd-numbered derivatives of the discount function are negative, while the even-
numbered ones are positive. The condition for dominance with respect to Vn × Um

can then be derived. Therefore, if

i)
D jþ1

iþ1 ðb; TÞ ≥ 0;

ii)

D jþ1
n ðb; tÞ ≥ 0;∀ t ∈ ½0; T�;

iii)

Dm
iþ1ðz; TÞ ≥ 0; ∀z ∈ ½a; b�;

iv)

Dm
n ðz; tÞ ≥ 0; ∀z ∈ ½a; b� and ∀ t ∈ ½0;T�;

then NPVv;uðXÞ ≥ NPVv;uðYÞ for all {v, u} ∈ Vn × Um.

Necessity

If we assume that a violation exists and Dm
n ðz; tÞ � 0, we can find a suitable utility

function and follow a similar process to the proofs of proposition 1 and proposition 3
to show that NPVv;uðXÞ < NPVv;uðYÞ, contradicting the initial assumption.

The utility function must satisfy the following conditions:

i)

uk – 1ðzÞ is a piecewise linear function; where k = 2; . . . ; m;

ii)
u j – 1ðbÞ = 0; j = 2; 3; . . . ; k:

Furthermore, umðezÞ ≠ 0 and um(z) ≠ 0 for z∈ ez; ezþ ε½ �, and the sign of um remains
constant on ez; ezþ ε½ �. Following a similar process as before, one obtains the required
contradiction. The same method is employed for each of the terms of the dominance
condition. QED

Proof of Proposition 6

Sufficiency

We want to prove that

X >A1TS Y

⇒NPVv;uðXÞ ≥ NPVv;uðYÞ
∀v∈ ðV1 � U1Þðγ1Þ and ∀u∈U1ðε1TÞ:
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Going back to

Δ =Eb

a

D1
1ðz; TÞvðTÞdz –Eb

a

ET

0

D1
1v

0ðtÞu0ðzÞdtdz

= vðTÞEb

a

u0ðzÞD1
1ðz; TÞdzþ Eb

a

ET

0

ð–ÞD1
1v

0ðtÞu0ðzÞdtdz

= Eþ Γ:

Separate the range [a, b] at time T between the part S1,T, where D1
1ðz; TÞ < 0, and

the complementary part S1;T , where D1
1ðz;TÞ ≥ 0:

E = vðTÞEb

a

u0ðzÞ D1
1ðz; TÞ


 �
dz

= vðTÞE
S1;T

u0ðzÞD1
1ðz; TÞdzþ vðTÞE

S1;T

u0ðzÞD1
1ðz; TÞdz ≥ 0:

Note that the integral over the range S1,T is negative and the integral over S1;T is
positive. In order for E ≥ 0, the area where D1

1ðz; TÞ < 0 must be ε1T smaller
than the total area enclosed between the two distributions. This restriction can
be obtained from the proof of almost first-order stochastic dominance by Leshno
and Levy (2002), simply by requiring that the utility function belong to the subset
U1(ε1T), where the subscript indicates that the bounds on maximum and mini-
mum marginal utility are established with respect to period T specifically.

Turning to Γ, separate [a, b] for all t into S11, defined over ranges where
D1

1ðz; tÞ < 0, and S11, the range over which D1
1ðz; tÞ≥0, so that we obtain

Γ=EE
S11

D1
1ðz; tÞ


 �
– v0ðtÞu0ðzÞð Þdzdt

þEE
S11

D1
1ðz; tÞ


 �
– v0ðtÞu0ðzÞð Þdzdt ≥ 0:

The first element of Γ is negative and is minimized when the product of the mar-
ginals of the discount and utility functions [–v0(t) u0(z)] is maximized, while the
second element is positive and minimized when [–v0(t) u0(z)] is minimized. Hence
denoting inf z ∈ ½a;b�∀t –v0ðtÞu0ðzÞf g = θ and supz ∈ ½a;b�∀t –v0ðtÞu0ðzÞf g = θ, the minimum
value of Γ is

Γ� = θEE
S11

D1
1ðz; tÞ


 �
dzdtþ θEE

S11

D1
1ðz; tÞ


 �
dzdt ≥ 0:

It follows that, for a given combination of discount and utility functions, Γ ≥ 0 if Γ* ≥
0, which can be rewritten as
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sup½–v0ðtÞu0ðzÞ� � inf ½–v0ðtÞu0ðzÞÞ�
EE

S11

D1
1ðz; tÞdzdt

EE
S11

D1
1ðz; tÞdzdt

:

Let (v, u) ∈ (V1 × U1) (γ1), then by definition of (V1 × U1) (γ1), we know that

½–v0ðtÞu0ðzÞ� � sup½–v0ðtÞu0ðzÞ� � inf ½–v0ðtÞu0ðzÞ� 1
γ1
– 1

� �
;

which implies Γ* ≥ 0 and therefore NPVv,u(X) ≥ NPVv,u(Y).

Necessity

Begin by assuming the opposite of necessity, that is, that NPVv,u(X) < NPVv,u(Y),
for all functions (v, u) ∈ (V1 × U1) (γ1) and for all u ∈ U1(ε1T), implies X > A1TSY.
We will prove that this cannot be the case.

Suppose that

i)

EE
S11

½–D1
1ðz; tÞ�dzdt > γ1ET

0

Eb

a

jD1
1ðz; tÞjdzdt and

ii)

E
S1;T

½–D1
1ðz; TÞ�dz > ε1TEb

a

D1
1ðz; TÞdz:

Let θ and θ be two positive real numbers such that γ1 = θ= θ þθ
� 	
 �

. Consider the
pair of functions (v, u) ∈ (V1 × U1) (γ1) and where u ∈ U1(ε1T), whose product
has the following properties:

v0ðtÞuðbÞ = 0;

vðTÞu0ðzÞ = 0;

v0ðtÞu0ðzÞ = – θ on S11 and

v0ðtÞu0ðzÞ = – θ on S11:

In other words, the product of v and u is a function proportional to

vðtÞuðzÞ = zt – bt – zT þ bT:
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It follows then that

NPVv;uðXÞ –NPVv;uðYÞ = θEE
S11

D1
1ðz; tÞ


 �
dzdtþ θEE

S11

D1
1ðz; tÞ


 �
dzdt

=EE
S11

D1
1ðz; tÞ


 �
dzdt –

θ

θ þ θE
T

0

Eb

a

jD1
1ðz; tÞjdzdt

≥ 0;

which contradicts the initial assumption and proves that

NPVv;uðXÞ ≥ NPVv;uðYÞ⇒X >A1TS Y:

∀ v; uð Þ∈ ðV1 � U1Þðγ1Þ and ∀u∈U1ðε1TÞ

QED

Proof of Proposition 7

Sufficiency

We want to prove that

X >A1T2S Y

⇒NPVv;uðXÞ ≥ NPVv;uðYÞ
∀ v; uð ÞðV1 � U2Þðγ1;2Þ;∀u∈U2ðε2TÞ and ∀v∈V1ðλ1bÞ

Integrate the previous expression for Δ once more with respect to z, obtaining

Δ = vðTÞ u0ðzÞD2
1ðz; TÞ∣ba – Eb

a

u00ðzÞD2
1ðz; TÞdz

" #
þ

þ ET

0

–v0ðtÞ u0ðzÞD2
1ðz; tÞ


 �
∣badt – ET

0

–v0ðtÞ Eb

a

u00ðzÞD2
1ðz; tÞdz

" #
dt ≥ 0

vðTÞu0ðbÞD2
1ðb; TÞ þ u0ðbÞET

0

–v0ðtÞD2
1ðb; tÞdt –

–vðTÞEb

a

u00ðzÞD2
1ðz; TÞdzþ ET

0

Eb

a

–v0ðtÞð Þ –u00ðzÞð ÞD2
1ðz; tÞdzdt ≥ 0

vðTÞu0ðbÞD2
1ðb; TÞ þ Λþ Eþ Γ ≥ 0:

Hence in the case of almost first-order time and second-order stochastic dominance
four elements must be nonnegative. The product vðTÞu0ðbÞD2

1ðb; TÞ must simply

(B5)
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be nonnegative. The remaining three elements must be nonnegative overall, but can
be partitioned into a region of violation and a region of nonviolation, with three re-
spective restrictions on the relative violation.

Define the set of realizations where D2
1ðb; tÞ < 0, for any t where z = b as S1,b

and its complement as S1;b , so that

Λ = u0ðbÞE
S1;b

–v0ðtÞð ÞD2
1ðb; tÞdtþ u0ðbÞE

S1;b

–v0ðtÞð ÞD2
1ðb; tÞdt:

The integral over S1,b is negative while the integral over its complement S1;b is pos-
itive. Therefore, in an analogous fashion to the proof of proposition 6, in order for Λ ≥
0 the area where D2

1ðb; tÞ < 0 must be λ1b smaller than the total area enclosed be-
tween the two distributions, where the restriction is obtained by requiring that any
discount function v belong to V1(λ1b).

E is similar to E in the previous proof. By restricting the utility function to belong
to the subset U2(ε2T), we obtain the requirement that in period T the area where
D2

1ðz;TÞ < 0 cannot be larger that ε2T multiplied by the total area between the two
distributions.

Moving to Γ, define an interval of violation and its complement in the usual way:

Γ =EE
S21

–v0ðtÞð Þ –u00ðzÞð ÞD2
1ðz; tÞdzdt þEE

S21

–v0ðtÞð Þ –u00ðzÞð ÞD2
1ðz; tÞdzdt:

Again, following the proof of proposition 6, define inf z∈a;b�∀t v0ðtÞu00ðzÞf g = ϑ and
supz∈½a;b�∀t v0ðtÞu00ðzÞf g = ϑ, so that the minimum Ω is

Γ
�
= ϑEE

S21

D2
1ðz; tÞdzdtþ ϑEE

S21

D2
1ðz; tÞdzdt:

Both elements of Γ are relatively larger than the corresponding elements of Γ
�
.

We are looking for a set of preferences (V1 × U2) (γ1,2) for which Γ
�
≥ 0, which

are

sup½v0ðtÞu00ðzÞ� � inf ½v0ðtÞu00ðzÞ�
EE

S21

D2
1ðz; tÞ


 �
dzdt

EE
S21

F2
1ðz; tÞ –G2

1ðz; tÞ

 �

dzdt

sup½v0ðtÞu00ðzÞ� � inf ½v0ðtÞu00ðzÞÞ�
EE

S22

G2
1ðz; tÞ – F2

1ðz; tÞ

 �

dzdt

EE
S22

F2
1ðz; tÞ –G2

1ðz; tÞ

 �

dzdt
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By letting (v, u) ∈ (V1 × U2) (γ1,2), then, by definition of (V1 × U2) (γ1,2), we
know that

½v0ðtÞu00ðzÞ� � sup½v0ðtÞu00ðzÞ� � inf ½v0ðtÞu00ðzÞ� 1
γ1;2

– 1

� �
;

which implies that Ω* ≥ 0 holds and therefore, NPVv;uðXÞ ≥NPVv;uðYÞ.

Necessity

Starting from equation (B5) and using the increasing and concave utility function
defined in proving necessity in proposition 3, the proof proceeds in just the same
fashion as for proposition 6 and is therefore omitted. QED
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