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ABSTRACT 

 

ECOLOGIC FACTORS AND TICK-BORNE RELAPSING FEVER IN THE WESTERN UNITED 

STATES:  COUNTY AND ZIP CODE ANALYSES 

 

 Tick-borne relapsing fever (TBRF) is a rare bacterial disease caused primarily by 

Borrelia hermsii and Borrelia turicatae in the western United States and transmitted by 

Ornithodoros species soft ticks.  No spatial analyses have been attempted for TBRF, and 

previous epidemiologic studies were limited to case series and outbreak investigations.  

This study employed ArcGIS to map counties and zip codes with identified cases of TBRF 

and neighboring control counties and zip codes.  A total of 140 counties with reported 

cases of TBRF, identified in a previous publication, and 243 counties with no reported 

cases in 12 states were included in the county level analysis.  The zip code level analysis 

included 60 zip codes with cases of TBRF and 193 control zip codes in California and 

Washington, using information provided by state health departments.  Ecologic factors, 

including elevation, precipitation, average minimum temperature, average maximum 

temperature, and land cover, in these areas were compared by frequency analysis and 

logistic regression analyses.  The occurrence of TBRF was associated with elevation, 

temperature, and evergreen forest land cover in county level analyses, and with 

elevation and temperature in zip code level analyses.  No associations were found with 
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precipitation or additional land cover variables and TBRF occurrence.  Counties (0.25 > p 

> 0.0003) and zip codes (0.0007 > p > 0.03) with cases were seen in higher proportions 

at elevations above 500 meters than control counties and zip codes, and elevation was 

included in logistic regression models at both levels of analysis.  A higher proportion of 

counties with cases were observed in the middle of the range of temperature values, 

while control counties were evenly distributed (0.01 > p > 0.0004). The association with 

temperature at the zip code level was less consistent, with higher case zip code 

proportions observed at lower temperatures (0.08 > p > 0.01).  A temperature variable 

was included in logistic regression analyses at both levels of analysis.  Evergreen forest 

was the majority land cover type in a greater proportion of counties with cases when 

compared to control counties (total land cover p = 0.04) and this variable was only 

significant in the county level logistic regression analyses.  The distribution of land cover 

variables was not significant at the zip code level (p = 0.82) and no zip code level land 

cover variables were significant in logistic regression analyses. 

Similar associations were observed when using logistic regression to analyze high 

risk counties and control counties (p = 0.005), and high risk zip codes and control zip 

codes (p = 0.006).   Zip code level analyses of California produced a logistic regression 

model containing an elevation variable (p = 0.0002), while the best model for 

Washington contained the same variables found in the complete zip code level analysis 

(p = 0.07).  These results suggest that ecologic factors including elevation and 

temperature play a role in areas where TBRF occurs.  These factors likely influence the 

distribution and/or abundance of the tick vectors responsible for this disease or their 
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preferred hosts.  Further refinement of these analyses could lead to the construction of 

a predictive model that could be used to highlight areas of increased risk of TBRF. 
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CHAPTER 1 

 

Tick-borne relapsing fever (TBRF) is one of eight endemic tick-borne diseases in 

the United States and is one of the five of these tick-borne diseases that is not nationally 

notifiable (MMWR, 1997).  Cases of TBRF were reported in the United States as early as 

the beginning of the 20th century.  TBRF was first recognized as a public health concern 

at a symposium held by the American Association for the Advancement of Science in 

1942.  By that time, cases had been documented from the west coast to Texas and the 

symposium was held to educate public health officers and physicians regarding the 

characteristics and spread of the disease (Moursund, 1942).  Since that symposium, 

research on TBRF has increased understanding of the responsible organism and vector, 

clinical manifestations, pathogenesis, and epidemiology.  However, research on this 

disease is limited, especially compared to Lyme disease, a related tick-borne illness.  In 

fact, the majority of past research on TBRF occurrence consists primarily of case series 

and outbreak investigations.  Further research is needed to gain a more complete 

picture of this disease and its effect on public health. 

Past studies have provided an understanding of the locations and environments 

that are optimal for transmission of this disease.  While observational studies such as
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outbreak investigations have provided insight on TBRF occurrence on localized scale, 

few descriptive studies have examined TBRF distribution patterns on a larger scale, for 

instance the county level.  No research has been published that examines counties or zip 

codes where TBRF has been reported and compares them to surrounding areas where 

no cases have been reported using ecologic correlates.  Systematic examination of these 

issues could lead to an increased understanding of the disease and a more targeted 

approach to disease prevention. 

Analyses of the relationship between disease distribution and ecologic correlates 

have been conducted in numerous publications at varying scales, such as county, parish, 

zip code and census tract.  Such analyses were conducted for other tick-borne diseases, 

including Lyme disease and tularemia (Eisen et al., 2006, Eisen et al., 2008b), but not for 

TBRF.  This study used methods shown to be effective in analyzing other diseases and 

applied the same methodology to TBRF in an attempt to approach the disease from a 

new perspective.  Characterizing counties and zip codes where TBRF cases have been 

reported and comparing them to neighboring areas where no cases were reported will 

elucidate potential ecologic differences between areas with and without disease.  

Additionally, comparison between county level and zip code level analysis will give 

insight into the scale necessary for such associations with disease to be observed.  

Examining correlations between elevation, habitat type, average temperature, 

precipitation and location of TBRF cases is a previously unattempted approach to 

analyzing the factors that affect the occurrence of this disease.  The overall goal of this 

project was to provide insight into ecologic factors that affect TBRF occurrence and 
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inform future research to increase understanding of this little known and often 

forgotten disease.
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Background 

Tick-borne relapsing fever (TBRF) is characterized by recurring febrile episodes 

accompanied by a variety of nonspecific symptoms including headache, myalgia, 

arthalgia, shaking chills and abdominal distress.  Tick-borne relapsing fever is endemic in 

the western United States, southern British Columbia, the plateau regions of Mexico, 

Central and South America, Central Asia, along the Mediterranean, and throughout the 

majority of Africa (Dworkin et al., 1998).  TBRF is a bacterial infection, caused by Borrelia 

species spirochetes.  Different species of bacteria that cause TBRF are found worldwide, 

but in North America infections are caused primarily by B. hermsii and B. turicatae.  The 

bacteria are transmitted by several species of soft ticks of the genus Ornithodoros 

(family Argasidae), with the species of Borrelia named for the species of tick that 

transmits it (e.g. Ornithodoros hermsii transmits Borrelia hermsii).  Research on TBRF in 

the U.S. has been limited, especially compared to Lyme disease, and it is believed to be 

an underreported disease in most areas where it is endemic (Dworkin et al., 2002b). 

2.1.1 Organism 

Borrelia spirochetes are actively motile, helical organisms that cause recurring 

disease cycles through a process in antigenic variation (Stoenner et al., 1982), in which 
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the surface proteins expressed by the spirochete change over the course of infection 

(Barbour, 1990).  It has been demonstrated that the Borrelia serotype (which is based 

on bacterial surface antigens) does not change while the bacteria are in an infected tick, 

only during the course of human infection (Schwan et al., 1998).  Soft ticks of the family 

Argasidae (Ornithodoros species) transmit the species that cause TBRF, but Borrelia 

infections have occurred via blood transfusion, intravenous drug use, and laboratory 

accidents (Beck 1942, Favorova et al. 1971, Lopez-Cortez et al. 1989).   

There are other spirochetes in the Borrelia genus that cause related diseases.  

Borrelia burgdorferi is the causative agent of Lyme disease.  B. burgdorferi spirochetes 

are spread through the bite of hard ticks of the Ixodes genus and cases occur primarily in 

northeastern, north-central areas of the United States, with some cases reported in 

western coastal states as well.  Though clinical presentation and endemic regions differ 

between Lyme disease and TBRF, the two diseases can produce similar results on some 

diagnostic assays.  Two-tiered diagnostic testing for Lyme disease reduces the likelihood 

of such cross-reactivity.  Another related pathogen, Borrelia recurrentis, is transmitted 

by the human body louse and causes a more severe infection known as louse-borne 

relapsing fever (LBRF).  The disease is clinically similar to TBRF, but typically only one 

relapse is observed.  LBRF is prevalent in some African countries and is not endemic in 

the United States (Murray et al., 2002). 
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2.1.2 Vector 

Ornithodoros hermsii and Ornithodoros turicata, the two most common vectors 

of TBRF in the United States, have similar lifestyles but different habitats and hosts.  O. 

hermsii, one of the smallest species of Ornithodoros ticks, lives in coniferous forests at 

elevations between 1,500 and 8,000 feet, primarily in western states, including 

Washington, Idaho, Oregon, California, Nevada, Arizona, New Mexico, Utah, and 

Colorado (Cooley et al., 1944).  Its primary hosts are ground squirrels, tree squirrels and 

chipmunks (Dworkin et al., 1998).  Humans are incidental hosts often exposed at night 

while staying in structures that have been poorly rodent-proofed, such as rustic cabins.   

O. turicata is found from Kansas west to California and south to Mexico, but lives 

in drier habitats at lower elevations (Cooley et al., 1944).  It is significantly larger than O. 

hermsii, and unlike O. hermsii, secretes large amounts of infectious coxal fluid either 

during or after feeding.   These ticks have often been recovered from underground 

burrows, and preferential hosts are currently unknown, although coyotes and rodents 

are among the suspected hosts.  Many human exposures to O. turicata have occurred in 

caves in Texas (Rawlings, 1995).   

In both species of ticks, Borrelia species can be transmitted by any life cycle 

stage, and tick infection occurs primarily from feeding on the blood of an infected host.  

Blood meals are brief, usually lasting between 15 and 90 minutes.  Persistent infection 

of tick salivary glands (Schwan et al., 1998) with spirochetes allows for rapid 

transmission (within a minute) during the short feeding period (Davis, 1955).  The 
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spirochetes can be passed from one stage of the life cycle to another (trans-stadial 

transmission), and are also vertically transmitted from an infected tick to her offspring.  

Trans-ovarial (vertical) transmission is possible in both of the discussed Ornithodoros 

species, but is much more common in O. turicata than O. hermsii.  In contrast to hard 

ticks, the female Ornithodoros ticks lay clutches of eggs after each blood meal and can 

live for years in a favorable environment.   

Ornithodoros parkeri can be found throughout the west in areas similar to that 

of O. turicata (Thompson et al., 1969).  Only one human case of TBRF has been directly 

linked to an O. parkeri bite (Davis, 1955). 

2.1.3 Pathogenesis 

Following the bite of an infected tick, Borrelia spirochetes migrate to the host’s 

blood stream where they begin to multiply, eventually reaching an estimated bacterial 

blood concentration between 105 and greater than 106 spirochetes per milliliter of blood 

during symptomatic disease (Stoenner et al., 1982).  In contrast to the high level 

spirochetemia observed during febrile episodes, organisms are microscopically 

undetectable in the bloodstream during asymptomatic periods.  Animal data suggest 

that during these afebrile intervals the bacteria are sequestered in internal organs such 

as the liver, spleen, bone marrow and central nervous system.  Antigenic variation is 

responsible for the recurring cycles of spirochetemia and resulting fevers associated 

with TBRF (Felsenfeld, 1971).   
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The two groups of outer membrane proteins that participate in antigenic 

variation are known as “variable small proteins” (vsp) and “variable large proteins” (vlp).  

Originally, both groups were collectively known as “variable major proteins” or “vmp” 

(Hinnebusch et al., 1998).  These proteins are encoded in DNA sequences on linear 

plasmids (Barbour, 1990).  These proteins are expressed sequentially on the surface of 

the bacteria, thereby changing the antigenic identity of the bacteria.  Up to 40 different 

serotypes have been identified from the progeny of a single cell of B. hermsii, strain HS1 

(Restrepo et al., 1994).  These multiple alterations prevent the host from eradicating the 

bacteria, leading to recurrent febrile episodes (Dworkin et al., 2002b).   

Information concerning possible complications of TBRF has primarily been 

observed from experimental animals and autopsies from fatal louse-borne relapsing 

fever (LBRF) cases.  Observed complications associated directly with TBRF include 

nonspecific dermatologic symptoms (Southern et al., 1969), renal and urologic 

involvement, as well as thrombocytopenia.  Additional complications observed in small 

numbers of TBRF cases include:  hypoxia, elevated liver enzyme levels, arrhythmia, 

myocarditis, and acute respiratory distress syndrome (ARDS) (MMWR, 2007).  Mortality 

from TBRF in the United States is rare and primarily associated with complications 

during pregnancy, including spontaneous abortion, premature birth, or neonatal death 

(Goubau, 1984).   
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2.1.4 Clinical Manifestations 

Recurring episodes of fever is the symptom that is most characteristic of TBRF.  

Several other nonspecific symptoms of TBRF include altered sensorium, headache, 

myalgia, arthalgia, abdominal pain, and vomiting.  Diarrhea can occur in about 25% of 

cases (Dworkin et al., 1998).  The mean incubation period for TBRF is about 7 days, with 

a range of 4 to more than 18 days (Southern et al., 1969).  The average length of the first 

febrile episode is 3 days with a range between 12 hours to 17 days (Goubau, 1984) and 

the average time between first episode and first relapse is 7 days.  Most cases will 

experience 2 relapses during the course of infection and around 22% will experience 4 

or more relapses (Dworkin et al., 2002a).  Mortality associated with TBRF is very low, 

with only a handful of deaths reported.  TBRF infection during pregnancy can result in 

more severe disease, miscarriage or birth of an infected infant (Dworkin et al., 1998). 

The Jarisch-Herxheimer Reaction, an increase in symptom severity, is a common 

complication among cases of TBRF and LBRF that can occur shortly after antibiotic 

treatment.  Diagnosis of TBRF is often difficult because of individual variability between 

cases and misdiagnosis as other diseases which present with multiple febrile episodes 

(Dworkin et al., 2002b). 

2.1.5 Laboratory Diagnostic Techniques 

Detection of spirochetes in a patient’s blood during a febrile episode, along with 

a compatible patient history, provides confirmation of a TBRF infection (Burgdorfer, 

1976).  A drop of blood, stained with Wright’s or Giemsa stain, or a wet mount of blood 
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can be used to detect spirochete motility using bright-field microscopy.  A dark field 

microscope and direct or indirect immunofluorescent staining are also utilized.  

Spirochetes may be overlooked in the blood for a number of reasons, including lack of 

suspicion of relapsing fever and examination of blood taken during an asymptomatic 

interval (Dworkin et al., 2002b).  Polymerase chain reaction (PCR) is occasionally used to 

identify minute quantities of Borrelia species DNA which may be present in blood.  

Serologic confirmation of TBRF requires a four-fold rise in antibody titer between acute 

and convalescent serum samples, or a single reactive sample if paired sera are 

unavailable.  Commonly used serologic assays include the indirect immunofluorescent 

antibody test (IFA), the enzyme-linked immunosorbent assay (ELISA), and the 

immunoblot.  The ELISA is used most frequently, and often run in parallel with another 

test, such as the Western blot, to distinguish between B. hermsii and Borrelia 

burgdorferi (Lyme disease) antibodies.  Evaluation of sensitivity and specificity has been 

prevented by small numbers of serum samples from confirmed TBRF patients (Fritz et 

al., 2004).   Additionally, the variability in outer surface proteins expressed over time 

may lead to reduced reactivity with a positive sample because the antigens expressed in 

the sample may be different than those used in the assay (Dworkin et al., 2002b). 

2.1.6 Treatment 

TBRF is effectively treated with antibiotics, most commonly penicillin, 

doxycycline, erythromycin, and tetracycline.  A common complication of antibiotic 

treatment is the Jarisch-Herxheimer reaction (JHR) which may occur on initial treatment 
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of relapsing fever with an effective antibiotic (Dworkin et al., 2002b).  Symptoms of JHR 

include hypotension, tachycardia, chills, rigors, diaphoresis and elevated body 

temperature, which usually begin within one to four hours of initial antibiotic dose.  In a 

group of 61 TBRF cases with information available, a JHR was observed in 54% (33 cases) 

of those treated with antibiotics (Dworkin et al., 1998).  This high frequency of patients 

experiencing a JHR indicates that those being treated for TBRF should be kept under 

observation for at least two hours after beginning antibiotic treatment.  Study in LBRF 

cases has shown spirochetes disappearing from circulation as large amounts of 

cytokines are released by the immune system, in addition to altered spirochete 

morphology with an increased susceptibility to phagocytosis.  The stimulus that triggers 

the massive cytokine release is currently unknown (Griffin, 1998), but it may be related 

to the death of large numbers of spirochetes in the bloodstream and the release of 

endotoxin and other immunogenic antigens from these dying spirochetes.  No deaths 

from this reaction have been reported in North America (Dworkin et al., 2002b). 

2.1.7 Prevention and Control 

Control measures for TBRF are difficult to implement because of the longevity of 

the tick vector and the variety of tick host species that can serve as TBRF reservoirs.  

Prophylactic antimicrobials can be taken after tick exposure, but this often isn’t effective 

since most tick exposure among cases of TBRF goes unnoticed (Cutler 2010).  Prevention 

of TBRF involves avoiding dwellings and natural areas which may be infested with 

rodents and ticks.  Rodent-proofing homes and rustic cabins, while reducing rodent 



12 
 

habitats around homes, may also reduce the risk of acquiring TBRF (Dworkin et al., 

2002b). 

2.2 Epidemiology 

TBRF is endemic in the western United States, southern British Columbia, the 

plateau regions of Mexico and Central and South America, the Mediterranean, Central 

Asia and throughout most of Africa (Dworkin et al., 1998).  The first reported case of 

TBRF in the United States occurred in a traveler to Texas in 1905 (Wynns, 1942) and the 

first documented case in the western U.S. was in 1915 in Jefferson County, Colorado 

(Meador, 1915).  TBRF is not a nationally notifiable disease (MMWR, 1997), meaning 

that reporting of cases isn’t required nationwide, but it is reportable in eleven of the 

states where it is endemic.   

A publication by Mark Dworkin provides the most complete description of the 

epidemiology of TBRF in the United States currently available (Dworkin et al., 2002a).  

Records and report forms of TBRF cases were obtained from state health departments 

in TBRF endemic and neighboring states.  The authors identified 450 cases of TBRF (300 

confirmed and 150 probable, by their definitions) across 12 western states, many of 

which had records dating back to the 1970’s.  The states in which cases of TBRF were 

reported, from most cases to least, are:  California, Colorado, Washington, Idaho, 

Oregon, Texas, Arizona, Nevada, Utah, New Mexico, Wyoming, and Montana.  In these 

12 states, 51% of all TBRF cases were reported in only 13 counties which the authors 

speculated may be because of “better awareness and reporting of TBRF in those 
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counties, greater popularity of those sites for human visits, a greater density of the tick 

vector population in those areas, or a combination of these factors.”  Seasonality was 

examined for those cases with an available onset date and it was found that the 

majority of cases occurred in the summer months, especially July and August, when 

Borrelia hermsii was the suspected agent.  The causative agent of TBRF in Texas was 

more likely to be Borrelia turicatae, and majority of cases were diagnosed in the early 

winter months keeping with exposure to the agent during cave exploration.  The 

majority of patients (57%) reported staying in a cabin or rural dwelling and about 40% of 

cases were traveling outside their state of residence when exposed.  For those with 

information available, the average number of relapses was 2 and 50 cases experienced 

symptoms of the Jarisch-Herxheimer Reaction (JHR).  The major limitation of this study 

was that information on cases is limited because TBRF is not a nationally notifiable 

disease and reporting is passive in many states.  The authors speculated that this could 

result in an “underestimation of the distribution and magnitude of TBRF in the United 

States” (Dworkin et al., 2002a). 

2.3 Outbreak Investigations 

Several outbreaks of tick-borne relapsing fever have been documented in the 

western United States over the past few decades.  These outbreaks have provided 

valuable information about the distribution of, and risk factors for contracting, TBRF. 

One of the first documented outbreaks of TBRF on a large scale occurred on 

Browne Mountain, near Spokane Washington, in March 1968 (Thompson et al., 1969).  
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There were 11 cases of TBRF among the 42 boy scouts and scoutmasters camping in the 

area.  Those who spent at least one night in a rodent infested cabin had a much higher 

chance of contracting TBRF (10 out of 20 became ill) than those who camped only in 

tents (1 in 22 became ill).  Diagnosis of TBRF was based on clinical and epidemiological 

data, as well as observation of spirochetes in one patient’s blood.  Additionally, 2 of 18 

O. hermsii ticks collected from the cabin were shown to be infected with spirochetes.  

The high attack rate among those staying in the cabin highlights the importance of this 

environment for the transmission of TBRF. 

Two separate outbreaks of TBRF occurred almost two decades apart at the same 

area of the North Rim of Grand Canyon National Park in Arizona.  The first of these 

outbreaks occurred in the summer of 1973 and included symptoms compatible with 

TBRF in 27 employees and 35 overnight guests (Boyer et al., 1977).  Of these 62 cases, 

16 were confirmed by observation of Borrelia spirochetes in peripheral blood smears or 

inoculated Swiss mice.  The authors found a significant association between TBRF and 

sleeping in rustic log cabins, and large amounts of rodent nesting materials were 

recovered from cabins where patients had stayed.  In 1990, in the same area, another 

smaller outbreak of TBRF occurred.  During this outbreak, 15 visitors and 2 employees 

had illness that met the confirmed or probable case definitions (Paul et al., 2002).  Most 

guests stayed in the same northwest group of cabins in which the outbreak occurred in 

1973 (RR=8.2 for northwest vs. southeast cabins) and seven of the patients stayed in the 

same cabin in the northwest group (RR=98 versus other cabins).  All cabins were 

subsequently evaluated and rodent-proofed as necessary.  Nests of pine squirrels, an 
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important reservoir for TBRF, were observed in cabins where TBRF was likely 

contracted.  It was speculated that an epizootic of plague could have reduced the 

rodent population, leading the ticks to seek blood meals from humans staying in cabins 

in the park.  In both outbreaks the number of TBRF cases was likely underestimated. 

In August and September of 1989, six cases of TBRF were reported among 

persons who had at different times spent the night in the same cabin at Big Bear Lake, 

San Bernardino County, California (MMWR, 1990).  Of these six cases, TBRF was 

serologically confirmed in two patients and spirochetes were observed in blood smears 

of two others.  Inhabited ground squirrel burrows were found under the cabin, but no 

infected ticks were recovered.  This outbreak was unusual because the illness was 

especially severe in one patient who likely suffered from meningeal inflammation.  

Additionally, four out of six patients had significant gastrointestinal symptoms (nausea 

and vomiting) and were initially diagnosed with viral gastroenteritis.  Gastrointestinal 

symptoms usually occur in a lower percentage of cases of TBRF. 

In late June of 1995, 23 members of a family from Nebraska and Kansas stayed in 

a rental cabin in Estes Park, Colorado (Trevejo et al., 1998).  By late July 1995, 11 (48%) 

of the 23 family members had become ill.  The symptoms of this illness were compatible 

with TBRF.  Additionally, 5 of 30 (17%) other lodgers of this cabin were shown to have 

symptoms compatible with TBRF.  Telephone interviews were conducted to determine 

behaviors while staying in the cabin.  Case-patients were more likely to have slept in the 

top bunk bed (OR=5.2) or on the floor (OR=28.0) than those that didn’t become ill.  
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Spirochetes were not detected in any patient peripheral blood smears; however, 

Borrelia hermsii was cultured from the blood of one patient.  Among 13 convalescent 

serum samples tested, 3 were positive, 8 were equivocal, and 2 were negative.  Four 

case-patients met the definition of a confirmed case, nine were listed as probable and 

three were suspected cases.  There was evidence of rodent infestation around the 

cabin, including two rodent carcasses, rodent nesting material and feces.  Small 

mammal trapping yielded multiple rodents, of which two Uinta chipmunks were culture-

positive for B. hermsii.  This outbreak confirmed chipmunks as important reservoirs for 

TBRF and illustrated the importance of awareness when staying in cabins in endemic 

areas. 

2.4 Spatial Modeling 

Spatial modeling of disease distribution and ecological factors has been done 

with other vector-borne diseases, but not with tick-borne relapsing fever.  This approach 

is useful for identifying areas where risk of exposure may be elevated to better target 

surveillance and control measures (Eisen et al., 2008a).  

A model of Lyme disease risk was constructed using information on disease 

incidence in California (Eisen et al., 2006).  A single county, Mendocino County, was 

used to develop a model incorporating areas with high densities of nymphs of Ixodes 

pacificus and cases of Lyme disease.  From these areas of high risk, habitat features 

were identified that were associated with Lyme disease, and these features were 

compared to Lyme disease cases occurring in the entire state of California.  From this a 
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statewide predictive model was made to ascertain areas of high risk of exposure to I. 

pacificus nymphs which demonstrated strong associations with elevated Lyme disease 

risk.  Of importance in this paper is the use of zip-code level data in the model, rather 

than county-level data.  The authors conclude that the zip-code scale is useful “to detect 

small, isolated areas with elevated disease risk that otherwise may go undetected” 

(Eisen et al., 2006).  This is especially useful in the western United States, where 

counties are often large and ecologically diverse. 

Similar processes were used to construct spatial risk models for human plague in 

both the southwestern United States (Eisen et al., 2007b) and in the West Nile region of 

Uganda (Winters et al., 2009).  In both studies, ecologic correlates of disease incidence 

were identified via logistic regression and entered in a predictive model that identified 

areas where cases are likely to occur, including areas where plague may be 

underreported.  Plague is a severe and well reported disease, so the models are fairly 

complete.  The publication by Winters et al. provided the basis for the analysis used in 

this project. 

Mapping and modeling of tularemia, another tick-borne bacterial disease, was 

completed for a nine-state area in the south-central United States (Eisen et al., 2008b).  

ArcGIS (ESRI, Redlands, CA) was used to map county-based tularemia incidence from 

1990-2003 for nine states, which was analyzed along with data concerning elevation, 

average climate data, vegetation index and land-cover classifications.  Association 

between habitat type, such as dry forest, grassland, areas near water and tularemia 
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incidence was determined by ordinal logistic regression, since tularemia incidence data 

weren’t normally distributed.  From this regression model, predictive models of risk 

exposure to tularemia were produced for Arkansas and Missouri, the two states where 

the majority of cases were reported.  This was feasible because reporting for this 

disease is fairly comprehensive.  The model was evaluated by utilizing areas where cases 

were and were not reported and habitats that were positively and negatively associated 

with tularemia risk.  The study found associations between habitat and disease risk, but 

the authors suggest that finer-scale models may be more useful for targeting prevention 

measures and informing local medical personnel. 
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CHAPTER 3:  COUNTY LEVEL ANALYSIS 

3.1 Background 

Analysis of the relationship between TBRF occurrence and ecologic factors was 

conducted at two different scales.  The initial analysis involved examining the 

distribution of tick-borne relapsing fever at the county level.  Information for this level 

of analysis was taken from the publication “The Epidemiology of Tick-borne Relapsing 

Fever in the United States” (Dworkin et al., 2002a).  This publication contains the most 

complete information regarding the distribution of TBRF in the United States.  It 

includes 450 cases from 12 states, reported from January 1977 to January 2000. These 

cases are grouped at the county level, with county of exposure known for the majority 

of cases, rather than using county of residence as a surrogate.  A summary of the 

number of counties with TBRF cases in each state is provided in Table 3.1.  Comparison 

of those counties in which TBRF has been documented to neighboring counties where 

TBRF has not been reported may provide useful information regarding ecologic features 

that influence transmission of TBRF.  Mapping cases for an entire state can provide 

information on certain habitat types and areas where cases were exposed.  Comparing 

the distribution of TBRF between multiple states can confirm that certain habitats are 

suitable for transmission.  A potential concern with analysis at this level is that many 

counties in the western United States where TBRF is most common are large, potentially 
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containing significant variation in habitat types and elevations.  Examination of these 

areas on a finer scale, which was performed in the zip code level analysis, may yield 

more specific associations between landscape features and TBRF occurrence. 

Table 3.1:  Counties with cases of tick-borne relapsing fever (TBRF) in the western 
United States, 1977-2000 

State Number of Counties 
with TBRF 

Total Number 
of Counties 

Arizona 3 15 

California 21 57 

Colorado 21 62 

Idaho 8 44 

Montana 1 56 

Nevada 4 16 

New Mexico 33 33 

Oregon 12 36 

Texas 16 254 

Utah 6 29 

Washington 13 39 

Wyoming 2 23 

*From Dworkin et al., 2002a 

3.2 Hypothesis 

There is a significant relationship between one or more ecologic factors and the 

occurrence of cases of TBRF at both the county and zip code levels.  

3.3 Specific Aims 

 Obtain data regarding TBRF cases at the county level for 12 western states in 

which it is endemic (Dworkin et al., 2002a). 

 Identify counties without cases of TBRF adjacent to those counties with 

reported cases. 
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 Analyze features of counties with and without TBRF and compare both groups 

using frequency analysis.  Features to be analyzed include:  elevation, land 

cover designations, precipitation, minimum and maximum temperature. 

 Extract values for each potential ecologic covariate using ArcGIS.  

 Identify features that are statistically associated with the presence and absence 

of TBRF at the county level using logistic regression models. 

 Compare high risk counties with control counties to identify any unique 

associations not observed in the full case county analysis.  

 Discuss the results of the analyses and attempt to draw conclusions from the 

associations found. 

 

3.4 Methods 

This research protocol was submitted to the Institutional Review Boards (IRB) of 

both Colorado State University and the Centers for Disease Control and Prevention and 

designated as exempt.  Approval from the IRB’s of the states of California and 

Washington was not required and therefore not pursued. 

3.4.1 Case and Control County Selection 

Counties with cases of TBRF (Dworkin et al., 2002a) were identified and used to 

create a layer file in ArcGIS, versions 9.3 and 10, (ESRI, Redlands, CA).  These counties 

with cases of TBRF are henceforth referred to as “case counties.”  There were 140 

counties in 12 states with recognized cases of TBRF.  As in the original publication, each 

case county was categorized according to the total number of cases identified in the 

county during the original study.  The categorization of counties by total number of 



22 
 

TBRF cases was done both for display purposes and an analysis comparing the counties 

with higher numbers of cases to control counties.  Table 3.2 provides more detail as to 

the number of counties within each category. 

Table 3.2:  Number of tick-borne relapsing fever (TBRF) cases per county among 
counties with reported cases in the western United States, 1977-2000 

Case Numbers Number of Counties 

1-5 125 

6-10 4 

11-15 5 

> 15 6 

*From Dworkin et al., 2002a 

Neighboring counties without TBRF cases that share a contiguous border were 

selected to serve as “control counties” in the analysis.  These counties were selected 

using the “Selection” menu item and using the “Select By Location” feature in ArcGIS.  

Any county that touched the boundary of a county in the “case county” layer was 

selected using this operation.  Control counties were only included if they were located 

in one of the same 12 states as the case counties.  The selected counties were then 

exported as a layer file in ArcGIS.  A total of 243 counties were chosen as control 

counties.  Both case and control counties were displayed using the GCS_WGS_1984 

projection. 

3.4.2 Ecologic Data 

Elevation was derived from a 1 km resolution digital elevation model (USGS/ESRI, 

Redlands, CA).  The elevation for each county was assessed using the minimum, 

maximum and average values for that county.  This was intended to account for any 
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variability in elevation that may occur across larger counties with varied topography.  

Elevation data was displayed in the GCS_WGS_1984 projection.  Land cover 

classification was derived from the National Land Cover Dataset (USDA, National 

Resources Conservation Service [NRCS]), available for each state individually.  The land 

cover type that was identified as the “majority” for each county was the one associated 

with that county.  Land cover layers were displayed in the projections NAD_1983_10N 

through NAD_1983_14N, depending on the state being analyzed.  Data for precipitation, 

minimum and maximum temperature were derived from individual models of each 

using annual averages from 1971 to 2000 (PRISM Climate Group, Oregon State 

University).  These data corresponded well with the time span during which most of the 

cases included in this study were documented.  Minimum, maximum, and mean values 

were obtained in each county for each variable to account for any variation that might 

occur across each county for these three potential covariates as well. 

3.4.3 ArcGIS Analysis 

Maps were created using each of the ecologic variables to be analyzed, as well as 

the map layers for the case and control counties.  If the projections were not the same 

for all layers, the “Project” tool was used to convert layers to the same projection.  Once 

all layers were displayed in the same projection, “Zonal Statistics,” were used to extract 

the data from the ecologic variable layers.  Zonal statistics extracts information from the 

raster data used to represent the ecologic variables and calculates summary statistics 

(e.g. minimum, maximum, mean, and majority) for each county within the data layers 
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for case and control counties.  This information was then added to a spreadsheet in 

Microsoft Excel 2007 (Microsoft, Redmond, WA), where information from all counties 

was consolidated and organized for statistical analysis.     

See Figures 3.1 and 3.2 for the distribution case and control counties, respectively. 

3.5 Statistical Analysis 

3.5.1 Variable Definition 

All counties where TBRF cases were identified were listed as “case.”  Neighboring 

counties with no cases of TBRF reported were listed as “control.” The minimum, 

maximum, and mean values of the four continuous ecologic variables (i.e. elevation, 

average precipitation, average minimum temperature and average maximum 

temperature) were each treated independently.  For example, average precipitation 

variable was analyzed as three different variables named PPT_MIN, PPT_MAX, and 

PPT_MEAN, each of which contained the minimum, maximum, and mean average 

precipitation values for each county, respectively.  The land cover variable was 

categorized numerically, with the number representing the majority land cover or 

habitat type in each county.  The land cover variable was further divided into a series of 

design or “dummy” variables, with each one representing an individual land cover type.  

If that specific land cover type was the majority in a county, it was coded “1.”  If it was 

not the majority, it was coded “0.”  The individual habitat types represented by these 

variables included: open water, developed land, barren land, deciduous forest, 

evergreen forest, shrub/scrub, grassland/herbaceous, crop/livestock and wetlands. 
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3.5.2 Frequency Analyses 

The distribution of case and control counties was first compared by frequency 

analysis.  Each ecologic variable was divided into categories based on the range of 

values observed in that variable.  The proportion of case and control counties in each 

category was calculated by dividing the number of case or control counties in each 

category by the total number case or control counties.  The proportions of case and 

control counties in each category were compared and differences in the proportions of 

case and control counties were noted in the results.  The overall distribution of the 

counties in these categories was also noted.  Additionally, a chi-square value was 

calculated for each variable using the distribution of values observed in the frequency 

tables.  A statistically significant chi-square value indicated a difference in the 

distribution between case and control counties.   

3.5.3 Logistic Regression Analyses 

Binomial logistic regression was conducted on all variables using methods 

described in Applied Logistic Regression (Hosmer and Lemeshow, 2000).  All statistical 

analyses were carried out using the JMP (SAS, Cary, NC) statistical software package, 

version 9.02.   

First, a univariable logistic regression analysis was run for each potential 

covariate against the dichotomous outcome variable “Case Status,” which listed 

counties as either “case” or “control.”  A p-value less than 0.25 for the chi-square 

statistic was required for consideration for the multivariable model.  Once the potential 
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covariates were identified, both forward and backward stepwise logistic regression were 

run, and the results of each were compared.  Similar variables that were significant in 

the model (e.g. multiple temperature variables) were checked for correlation to each 

other using a Spearman correlation test.  Any two variables with a Spearman’s ρ > 0.8 

could not both be included in the final model.  In the case of two correlated variables, 

the decision on which one to include in the model was based on p-values and 

performance with other variables in the purposeful variable selection process. 

Using the stepwise analyses and Spearman’s correlation test as guides, a more 

purposeful variable selection was conducted without the use of an automated system.  

After purposeful variable selection was completed, the model coefficients, effect 

likelihood ratios and Wald statistics were compared to those of the larger models 

created through stepwise regression to confirm that no drastic changes occurred in the 

model because of the elimination of variables.  The lack of any such changes in these 

measures confirms that the model with fewer variables was as effective as the larger 

model.  At this stage in the model building process, all variables that were not selected 

for the multivariable model were added again to identify any that may only have an 

effect in the presence of other variables.  This model, containing all the significant and 

relevant variables, is referred to as the “preliminary main effects model” (Hosmer and 

Lemeshow, 2000).  
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3.5.4 Evaluation of Selected Variables and Interaction 

After the main variables included in the model were established, the assumption 

of linearity of all continuous variables was tested.  A smoothed scatterplot was created 

for continuous variables by dividing continuous variables into categories and plotting 

the proportion of cases in each category against the category itself.  From this plot, the 

shape of the data was noted and variables without obvious linear trends were 

considered for transformation or categorization.  Additionally, a quartile analysis was 

conducted for some variables.  This involved splitting the data into quartiles and 

constructing three design variables, which were run in a model together and 

individually.  Whether these design variables were an improvement over the continuous 

variable, coupled with the shape of the scatterplot, lead to a decision regarding possible 

alteration of the variable.  The same methods were applied to variables not included in 

the multivariate model to confirm that alteration did not produce a variable that made a 

significant contribution to the model.  This model is referred to as the “main effects 

model” (Hosmer and Lemeshow, 2000). 

After the main variables in the model were chosen, interactions between the 

terms were examined.  For consideration as a contributing factor in the model, any 

interaction term was required to be both statistically significant and biologically 

plausible.   
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3.5.5 Comparison of Potential Models 

Following identification of interaction terms, multiple potential models were 

compared using various statistical measures, such as Akaike information criterion (AICc) 

(Akaike, 1974), receiver operator characteristic curves (ROC), and the goodness of fit (or 

lack of fit) chi-square statistic.  The goodness of fit test indicates whether the variables 

included in the model are sufficient.  If the Χ2 value is not significant (p > 0.05), it 

indicated that no more variables need to be added to the model.  The ROC curve is a 

plot of all sensitivity values on the y-axis against all (1 - sensitivity) values on the x-axis.  

The area under the curve (AUC) of the ROC curve describes the overall accuracy of the 

model without the need for a threshold or cutpoint (Fielding & Bell, 1997).  The AUC 

values range from 0.5 to 1.0, with values closer to 0.5 providing poor discrimination 

between the two groups being classified, and values closer to 1.0 providing excellent 

discrimination between these two groups.   Akaike information criterion is a tool used 

for model selection only that provides no information regarding the quality of a 

particular model.  The AICc values were used to compare candidate models and choose 

the most concise or parsimonious model.  The model with the lowest AICc value was 

considered the best model, but models within two AICc units were considered as 

competing models (Eisen et al, 2010).  Finally, sensitivity, specificity, positive predictive 

value (PPV) and negative predictive value (NPV) were calculated for each model being 

considered using a probability cut-off value that maximized both sensitivity and 

specificity.  Using the information provided by these tests, the final multivariable model 

was selected from the competing models by choosing the one with the highest 
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sensitivity and the best balance among specificity, PPV and NPV (Eisen et al., 2010).  This 

was the model that best represented the relationship between the presence or absence 

of TBRF cases in a county and the ecologic covariates examined. 

3.6 Results 

3.6.1 Study Population Characteristics 

All summary information regarding cases is taken from “The Epidemiology of 

Tick-Borne Relapsing Fever in the United States” (Dworkin et al, 2002a).  In this case 

series, 52% were males, 40% were females, and 8% were missing gender information.  

The median patient age was 35 years old.  There were 300 confirmed cases and 150 

probable cases included in this study.  A confirmed case was defined as fever and the 

observation of spirochetes by microscopy.  A probable case was defined as relapsing 

illness with either serologic evidence of infection or epidemiologically appropriate 

exposure.  No further details on method of diagnosis were available.  Month of onset of 

illness was documented for 425 out of 450 cases.  The most common months of onset 

were July (24%) and August (23%), with large numbers of cases documented in June and 

September as well.  Further detail regarding the distribution of TBRF cases by month of 

illness onset is available in Figure 2 in “The Epidemiology of Tick-Borne Relapsing Fever 

in the United States” (Dworkin et al, 2002a). 
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3.6.2 Frequency Analysis of Ecologic Variables 

Each ecologic variable was divided into categories based on the range of the data 

displayed by the 140 case counties and 243 control counties being analyzed.  In each 

category, the proportion of case counties was compared to the proportion of control 

counties.  The three majority land cover classifications that were present in the highest 

number of case counties were:  shrub/scrub (40.7%), evergreen forest (37.9%) and 

grassland/herbaceous (15.7%).   Evergreen forest was the only land cover type that had 

a higher percentage in case counties than control counties, with a difference of 14.4% 

observed.  The variable for majority crop or livestock area was associated with more 

control counties than case counties, with a difference of about 8%, implying a negative 

association with TBRF occurrence.  The remaining land cover variables were represented 

in a small number of total counties and had similar frequencies in case and control 

counties.  The overall distribution of the land cover variables was significant, with a Χ2 = 

21.58 (p = 0.04).  The general pattern of the three elevation variables was lower case 

county percentages at lower elevations and higher percentages at higher elevations, 

when compared to control county percentages in the same category.  The variables for 

mean and maximum elevation were statistically significant, while the variable for 

minimum elevation was not significant (p = 0.25).  No apparent pattern was observed 

across the three precipitation variables, with both case and control county frequencies 

highest among the lower and middle categories; however, the variable for maximum 

precipitation in a county was statistically significant (p = 0.003), with slightly higher 

proportions of case counties observed at higher precipitation levels.  With the three 
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maximum temperature and the three minimum temperature variables, there was a 

higher frequency of cases observed in the middle temperature categories, as opposed to 

the highest and lowest temperature categories.  For most temperature variables, 

control county percentages were generally evenly distributed among all categories and 

all temperature variables had a statistically significant chi-square value (p < 0.01 for all 

variables).  Table 3.3 displays the results of the frequency analysis in greater detail. 

Table 3.3:  Distribution across selected ecologic variables of counties with reported tick-
borne relapsing fever (TBRF) cases and neighboring control counties in the western 
United States, 1977-2000 

Majority Land Cover No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of 
Control Counties 

Open Water 0 1 0.0% 0.4% 

Developed Land 2 3 1.4% 1.2% 

Barren Land 0 1 0.0% 0.4% 

Deciduous Forest 0 4 0.0% 1.6% 

Evergreen Forest 53 57 37.9% 23.5% 

Shrub/Scrub 57 110 40.7% 45.3% 

Grassland/Herbaceous 22 36 15.7% 14.8% 

Crop/Livestock Area 5 28 3.6% 11.5% 

Wetlands 0 2 0.0% 0.8% 

*Land Cover: Χ2
 = 21.58, p = 0.04 

Minimum Elevation 
(meters) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 500 48 103 34.3% 42.4% 

501-1000 22 44 15.7% 18.1% 

1001-1500 36 55 25.7% 22.6% 

1501-2000 27 29 19.3% 11.9% 

> 2000 7 12 5.0% 4.9% 

Maximum Elevation 
(meters) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 1000 17 69 12.1% 28.4% 

1001-2000 24 53 17.1% 21.8% 

2001-3000 42 61 30.0% 25.1% 

3001-4000 47 54 33.6% 22.2% 

> 4000 10 6 7.1% 2.5% 
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Mean Elevation 
(meters) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 500 12 61 8.6% 25.1% 

501-1000 29 52 20.7% 21.4% 

1001-1500 32 45 22.9% 18.5% 

1501-2000 32 46 22.9% 18.9% 

2001-2500 21 26 15.0% 10.7% 

> 2500 14 12 10.0% 4.9% 

*Min. Elevation: Χ
2
 = 5.41, p = 0.25; Max. Elevation: Χ

2
 = 21.19, p = 0.0003; Mean Elevation: Χ

2
 = 19.41, p = 0.002 

Minimum 
Precipitation (mm) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 250 50 71 35.7% 29.2% 

251-500 59 95 42.1% 39.1% 

501-750 20 41 14.3% 16.9% 

751-1000 6 22 4.3% 9.1% 

> 1000 5 14 3.6% 5.8% 

Maximum 
Precipitation (mm) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 500 7 41 5.0% 16.9% 

501-1000 51 102 36.4% 42.0% 

1001-1500 35 51 25.0% 21.0% 

1501-2000 26 17 18.6% 7.0% 

> 2000 21 32 15.0% 13.2% 

Mean Precipitation 
(mm) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 250 3 15 2.1% 6.2% 

251-500 57 101 40.7% 41.6% 

501-750 43 61 30.7% 25.1% 

751-1000 19 35 13.6% 14.4% 

> 1000 18 31 12.9% 12.8% 

*Min. Precipitation: Χ
2
 = 5.39, p = 0.25; Max. Precipitation: Χ

2
 = 21.32, p = 0.003; Mean Precipitation: Χ

2
 = 4.16, p=0.38 

Minimum Tmin 
(Celsius) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< -10 17 30 12.1% 12.3% 

-10 to -5 45 47 32.1% 19.3% 

-5 to 0 40 48 28.6% 19.8% 

0 to 5 18 35 12.9% 14.4% 

5 to 10 7 38 5.0% 15.6% 

> 10 13 45 9.3% 18.5% 
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Maximum Tmin 
(Celsius) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 0 6 16 4.3% 6.6% 

0 to 5 57 79 40.7% 32.5% 

5 to 10 51 62 36.4% 25.5% 

10 to 15 21 73 15.0% 30.0% 

> 15 5 13 3.6% 5.3% 

Mean Tmin (Celsius) No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< -5 5 8 3.6% 3.3% 

-5 to 0 29 52 20.7% 21.4% 

0 to 5 65 73 46.4% 30.0% 

5 to 10 25 55 17.9% 22.6% 

> 10 16 55 11.4% 22.6% 

*Min. Tmin: Χ
2
 = 22.78, p = 0.0004; Max. Tmin: Χ

2
 = 16.28, p = 0.003; Mean Tmin: Χ

2
 = 13.65, p = 0.009  

Minimum Tmax 
(Celsius) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 0 4 54 2.9% 22.2% 

0 to 5 35 56 25.0% 23.0% 

5 to 10 45 34 32.1% 14.0% 

10 to 15 26 20 18.6% 8.2% 

15 to 20 9 45 6.4% 18.5% 

> 20 21 34 15.0% 14.0% 

Maximum Tmax 
(Celsius) 

No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 15 10 18 7.1% 7.4% 

15 to 20 50 102 35.7% 42.0% 

20 to 25 48 43 34.3% 17.7% 

25 to 30 29 77 20.7% 31.7% 

> 30 3 3 2.1% 1.2% 

Mean Tmax (Celsius) No. of Counties 
with TBRF 

No. of Control 
Counties 

Percentage of Counties 
with TBRF 

Percentage of Control 
Counties 

< 10 6 13 4.3% 5.3% 

10 to 15 40 63 28.6% 25.9% 

15 to 20 52 61 37.1% 25.1% 

20 to 25 27 49 19.3% 20.2% 

> 25 15 57 10.7% 23.5% 

*Min. Tmax: Χ
2
 = 19.25, p = 0.002; Max. Tmax: Χ

2
 = 15.51, p = 0.004; Mean Tmax: Χ

2
 = 12.51, p = 0.01 
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3.6.3 Logistic Regression Analyses of Ecologic Variables 

Univariate logistic regression analysis indicated that seven variables chosen for 

analysis were correlated with the presence or absence of TBRF in a county and 11 were 

not.  Variables that did not have a statistically significant relationship with TBRF 

occurrence at the county level included:  the maximum value for minimum temperature, 

the maximum value for maximum temperature, the maximum and mean values for 

precipitation, shrub/scrub, open water, deciduous forest, developed land, 

grassland/herbaceous, wetlands, and barren land.  These variables were not considered 

for inclusion in the multivariable model.  Both forward and backward stepwise 

regression produced similar results, and the variables selected for the multivariable 

model included:  minimum and mean values for elevation, minimum temperature and 

maximum temperature, as well as the majority evergreen forest variable.  Since multiple 

elevation and temperature variables are represented in this model, a Spearman 

correlation test was run to determine if there was any correlation among the variables 

either within or between groups.  The two elevation variables and four temperature 

variables were highly correlated within their own groups (e.g. minimum elevation was 

correlated with mean elevation), with ρ > 0.8 in every case.  However, none of the 

variables were correlated with another variable outside their specific group, for example 

no elevation variables were highly correlated with any of the temperature variables.  

From these analyses it was determined that the final multivariable model would contain 

variables for elevation, temperature and specifically the land cover variable for the 

majority of a county being evergreen forest. 
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3.6.4 Purposeful Variable Selection 

After these preliminary analyses were complete, a more purposeful variable 

selection was conducted to identify those to be included in the final model.  Elevation 

and temperature variables were run in multivariable models in different combinations 

to determine whether any statistically significant relationships existed.  Of all the 

possible combinations of the two elevation and four temperature variables, only the 

variables for mean elevation and the mean value for maximum temperature produced a 

model that was statistically significant as a whole, as well as each being statistically 

significant individually within the model (p < 0.1).  After these two variables were 

chosen, the variable representing the majority land cover type for a county being 

evergreen forest was added to the model.  The model containing all three variables was 

also statistically significant as a whole and for each individual variable.  Wald statistics, 

effect likelihood ratios and variable coefficients were compared between the larger 

model containing multiple elevation and temperature variables and the smaller model 

containing only one of each.  Only very minor changes were observed in the various 

measures, indicating that the loss of variables from the larger model did not negatively 

impact the model in a meaningful way.  Therefore, the preliminary main effects model 

included the variables for mean elevation, the mean value for maximum temperature, 

and majority evergreen forest. 
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3.6.5 Assumption of Linearity Evaluation 

The linearity assumption for the two continuous variables (mean elevation and 

the mean value for maximum temperature) was tested by examining the smoothed 

scatterplot and performing quartile analysis on each.  For the smoothed scatterplot, the 

continuous data were divided into categories and plotted against the percentage of case 

counties in each group.  The overall shape of the data was observed, which helped 

inform decisions about transformation or categorization of the variables.  The plot for 

the mean elevation variable suggested that the linearity assumption was valid. 

 

Figure 3.3:  Proportion of case counties by mean county elevation, western United 
States, 1977-2000.  A case county is defined as a county with reported tick-borne 

relapsing fever (TBRF) cases; control counties are neighboring counties without reported 
TBRF cases. Percentage calculated as the number of case counties divided by total case 

and control counties within each environmental category. 

 

In order to check the linearity assumption further, the mean elevation variable 

was divided into quartiles and three design variables were created to represent these 

quartiles, with the lowest quartile serving as the reference group.  These design 
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variables did nothing to improve the model and only the one comparing the highest 

quartile of elevation values to the lower three quartiles was statistically significant.  

Similarly, the shape of the data does not indicate that a transformation is needed and 

attempted transformations, such as squaring the variable, did nothing to improve its 

statistical significance.  Therefore the mean elevation was left as a continuous variable.  

The same methods were used to assess the assumption of linearity in the 

variable for mean value of maximum temperature in a county.  Initial observation of the 

smoothed scatterplot heavily implied that the variable was not linear, with higher 

percentages of case counties in the middle temperature values compared to the higher 

and lower values.  Quartile categorical analysis confirmed this, but produced two design 

variables that were significant.  The variable was divided into tertiles and the design 

variable that was statistically significant compared the middle tertile to the upper and 

lower ones.  This design variable was chosen to be included in the final model because it 

characterized the pattern observed in the mean maximum temperature variable 

without violating the assumption of linearity. 
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Figure 3.4:  Proportion of case counties by mean value for average maximum 

temperature, western United States, 1977-2000.  A case county is defined as a county 

with reported tick-borne relapsing fever (TBRF) cases; control counties are neighboring 

counties without reported TBRF cases. Percentage calculated as the number of case 

counties divided by total case and control counties within each environmental category.  

   

The only precipitation variable that was statistically significant in the univariable 

analysis, minimum precipitation, was evaluated using the quartile method to confirm 

that it would not become significant if converted to a categorical variable.  Only the 

design variable for the highest quartile was significant, but it became non-significant 

once added to the multivariable model (p = 0.42).  It did nothing to improve the whole 

model and was therefore excluded.  Likewise, transforming variables that were non-

significant did not improve their performance in any model constructed. 

3.6.6 Interaction Terms 

The main effects model included the variables for:  mean elevation 

(ELEV_MEAN), the design variable comparing the middle tertile of mean maximum 
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temperature values to the highest and lowest tertiles (DUMMYT2), and majority 

evergreen forest (EVGRN-FOR_MAJ).  Interactions between all three major variables 

were evaluated and it was found that the interaction terms between the temperature 

design variable and the variables for elevation and evergreen forest were statistically 

significant, while the interaction term for elevation and evergreen forest was highly 

non-significant (p = 0.87).  Exclusion of the non-significant interaction term only 

improved the model as a whole, so it was not considered for inclusion in the final model.  

Both interaction terms that were statistically significant seemed biologically plausible, 

and were considered for the final model. 

3.6.7 Comparing Multivariable Models 

The goodness of fit chi-square statistic was compared among all four candidate 

models being considered, however it was statistically significant for all four models (p < 

0.05).  This implied that additional terms were needed in the final multivariable model, 

but a model constructed using all potential variables also had a statistically significant 

chi-square goodness of fit statistic.  Likewise, all models with transformed or 

categorized variables were statistically significant for goodness of fit.  The specific 

goodness of fit chi-square statistic used in the JMP software package could not be 

identified, but it is possible that the test used was not the most appropriate choice for 

the data.  Alternatively, there could be factors influencing the data that were not 

considered in this analysis.  Regardless, goodness of fit was similar for all models and 

was not considered in choice of the final multivariable model. 
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A total of four models were considered as candidates for the final multivariable 

model.  The variables included in each model are listed below. 

1. Mean elevation, mean maximum temperature design variable, majority 

evergreen forest, and interaction terms for (elevation*temperature) and  

(evergreen forest*temperature) 

2. Mean elevation, mean maximum temperature design variable, majority 

evergreen forest 

3. Mean elevation, mean maximum temperature design variable, majority 

evergreen forest, and the interaction term for (elevation*temperature) 

4. Mean elevation, mean maximum temperature design variable, majority 

evergreen forest, and the interaction term for (evergreen forest*temperature) 

Table 3.4:  Candidate models for the county level analysis of the relationship between 
ecologic variables and tick-borne relapsing fever (TBRF) occurrence, western United 
States, 1977-2000 

Mod. 
ID 

Negative 
log-
likelihood 

K AICc Δ 
AICc 

ROC 
AUC  

Sensitivity Specificity PPV NPV Independent model 
variables 

1 231.61 5 475.5 0 0.68 62 70 54 76 ELEV_MEAN, 
DUMMYT2, EVGRN-
FRST_MAJ 

2 237.67 3 483.5 7.96 0.66 47 79 57 72 ELEV_MEAN, 
DUMMYT2, EVGRN-
FRST_MAJ 

3 234.0 4 478.1 2.65 0.68 53 75 55 73 ELEV_MEAN, 
DUMMYT2, EVGRN-
FRST_MAJ 

4 237.08 4 484.3 8.84 0.66 49 78 56 72 ELEV_MEAN, 
DUMMYT2, EVGRN-
FRST_MAJ 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MEAN = 
mean elevation, DUMMYT2 = mean maximum temperature design variable, EVGRN-FOR_MAJ = majority evergreen 
forest. 
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Akaike information criterion (AICc) was examined for each model chosen.  The 

model with the lowest value was considered the best, but models within two AICc units 

were considered competing models.  Model 1 had the lowest AICc value, but Model 3 

was almost within two AICc units.  The ROC AUC values are the same for the two 

models, so sensitivity, specificity, PPV and NPV were compared.  Model 1 had the higher 

sensitivity value, with only minor drops in specificity and PPV.  Model 1 was chosen as 

the final multivariable model for the county level analysis.  Specifics on the final model 

parameters can be found in Table 3.5. 

Table 3.5:  Parameter estimates for the selected multivariate logistic regression model 
for the relationship between ecologic variables and tick-borne relapsing fever (TBRF) 
occurrence at the county level, western United States, 1977-2000 

 Parameter Estimates Likelihood ratio test 

Model covariates Estimate SE 95% C.I. Χ
2
 df p-value 

Intercept -1.59 0.34 (-2.29, -0.96) 22.37 1 <.0001 

ELEV_MEAN 0.001 0.0002 (0.0006, 0.0015) 22.05 1 <.0001 

DUMMYT2 -0.38 0.13 (-0.64, -0.11) 7.88 1 0.005 

EVGRN-FRST_MAJ -0.64 0.17 (-0.99, -0.32) 16.76 1 <.0001 

EVGRN-FRST_MAJ*DUMMYT2 0.35 0.17 (0.03, 0.70) 4.76 1 0.03 

ELEV_MEAN*DUMMYT2 -0.001 0.0002 (-0.001, -0.0003) 10.94 1 0.0009 

*df = degrees of freedom; ELEV_MEAN = mean elevation, DUMMYT2 = mean maximum temperature design variable, 
EVGRN-FOR_MAJ = majority evergreen forest; Whole Model Test Χ

2
 = 39.68, df = 5, p < 0.0001; goodness of fit Χ

2
 = 

463.22, p = 0.002 

 

3.6.8 Analysis of High Risk Counties vs. Control Counties 

To determine whether counties with higher case numbers possessed any unique 

correlations that may have been obscured by the large number of counties with only 

one case, an analysis was conducted comparing those counties with more than five 

cases against control counties.  This was conducted using the same methods described 
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in the analysis comparing all case and control counties.  The data from the 15 counties 

with greater than 5 cases reported were first regressed against all 243 control counties 

included in the full analysis.  Following that, they were compared to only the 54 control 

counties that shared a border with them, to determine if there was a stronger 

correlation when compared to only neighboring counties. 

The analysis comparing the 15 high case counties to all 243 control counties 

yielded similar results to the full county level analysis.  Stepwise regression produced 

multivariable models containing variables for elevation, evergreen forest, precipitation, 

and several for temperature.  The temperature variables were all correlated, but no 

other variables were correlated with each other.  Purposeful variable selection led to 

the creation of a model containing variables for elevation (ELEV_MAX) and majority 

evergreen forest.  The interaction term between the two variables was also found to be 

significant.  The two models, with and without the interaction term, were compared to 

each other as indicated above to determine which best represented the relationship 

between high case counties and all controls.  The model without the interaction term 

was chosen because of its higher sensitivity value.  

Table 3.6:  Candidate models for the analysis of the relationship between ecologic 
variables and tick-borne relapsing fever (TBRF) occurrence for high risk counties and all 
control counties, western United States, 1977-2000 

Mod. 
ID 

Negative 
log-
likelihood 

K AIC Δ 
AIC 

ROC 
AUC  

Sensitivity Specificity PPV NPV Independent 
model variables 

1 51.92 2 109.94 3.24 0.76 65 87 99 13 ELEV_MAX, EVGRN-
FOR_MAJ 

2 49.28 3 106.72 0 0.78 61 87 99 12 ELEV_MAX, EVGRN-
FOR_MAJ 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MAX= 
mean elevation, EVGRN-FOR_MAJ = majority evergreen forest. 
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The same procedure was followed to compare the 15 high case counties to only 

their 54 neighboring control counties.  Univariate analysis provided only one elevation 

and two temperature variables that were significant, with p < 0.1.  Stepwise regression 

was performed on all variables with p < 0.2, but the only variable that was significant in 

both stepwise analyses was the variable for minimum value for average maximum 

temperature in a county (TMAX_MIN).  No attempt to combine any two variables in a 

model was successful and this particular maximum temperature variable was the most 

statistically significant and had the lowest AICc value, indicating it was the best model 

for this particular analysis.   

3.7 Conclusions 

Moderate values of maximum temperature (between 0 and 25°C, depending on the 

specific variable), elevations above 500 meters, and evergreen forest habitat were 

associated with TBRF occurrence at the county level, based on both the frequency and 

logistic regression analyses.  The percentage of TBRF case counties was higher than 

control counties in higher elevation categories and lower than control counties in lower 

elevation categories for the mean and maximum elevation variables (p < 0.002).  There 

was a higher case county frequency associated with the middle range of average 

temperatures when compared to the more even distribution of control counties across 

all temperature categories, with p < 0.01 for all six temperature variables.  Evergreen 

forest was the majority land cover in a greater proportion of case counties than control 

counties, with a difference of 14% observed, and the overall distribution of the land 
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cover variables was significant (p = 0.04).  Additionally, interactions between 

temperature and both elevation and majority evergreen forest were shown to be 

statistically significant.  Precipitation displayed very little association with TBRF 

occurrence at the county level, with the exception of the statistically significant 

maximum precipitation variable observed in the frequency analysis (p = 0.003) and the 

statistically significant univariate logistic regression model for minimum precipitation.  

The analyses comparing high risk counties and controls yielded similar associations to 

those found in the full county level analysis.  This indicates that the associations 

observed between ecologic variables and case counties did not differ in areas where 

more cases were recorded.  The consistency among the multiple analyses performed 

provides confirmation that there was an association between elevation, temperature, 

and evergreen forest and TBRF occurrence at the county level for these data. 
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CHAPTER 4: ZIP CODE LEVEL ANALYSIS 

4.1 Background 

Following the county level analysis, cases of TBRF were analyzed at the zip code 

level.   County level spatial modeling may be acceptable for diseases occurring in the 

eastern United States, but sub-county scale analyses of disease risk are preferable in the 

western United States where counties are often large and encompass considerable 

environmental variability (Eisen and Eisen, 2008).  The finer scale of the zip code level 

analysis could lead to different, and possibly more precise, results than the county level 

analysis.  Data analyzed for the zip code level analysis included only cases with known 

zip code of exposure located in California and Washington, two of the states with the 

highest number of reported TBRF cases (Dworkin et al., 2002a).    Examination of TBRF 

distribution and comparison of areas with TBRF to neighboring areas without TBRF has 

not been attempted previously at the zip code level.   

4.2 Specific Aims 

 Obtain data regarding TBRF cases at the zip code level using information 

provided by the state health departments of Washington and California. 
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 Identify zip codes without cases of TBRF adjacent to those zip codes with 

reported cases. 

 Obtain data for ecologic variables in the areas being studied.  Variables to be 

analyzed included:  elevation, land cover designations, precipitation, minimum 

and maximum temperature. 

 Extract values for each potential ecologic covariate using ArcGIS.  

 Identify features that are statistically associated with the presence of TBRF at 

the zip code level using logistic regression models. 

 Perform the same analyses for each state individually to determine if any 

differences exist between states. 

 Compare high risk zip codes to control zip codes to identify any unique 

associations not observed in the complete zip code analysis. 

 Discuss the results of the analyses and attempt to draw conclusions from the 

associations found. 

 If a model is successfully created, attempt to apply it to zip codes in Oregon and 

use it to identify areas of potential increased risk for TBRF. 

 

4.3 Methods 

4.3.1 Case and Control Zip Code Selection 

Information was requested regarding reported cases of TBRF from the state 

health departments of California, Colorado, and Washington.  The information 

requested included:  zip code of exposure (or zip code of residence if exposure location 

was unknown), age, gender, month of onset of illness, and the method by which TBRF 

was diagnosed.  No personal identifiers were provided for any of the individual cases 

used in this study.  Upon further examination of the data collected, zip code of 
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residence was found to be a poor surrogate for zip code of exposure since very few 

cases were infected in their zip code of residence.  Zip code of residence and zip code of 

exposure were available for 87 cases in the state of California.   Among these 87 cases, 

zip code of exposure was the same as zip code of residence for only 16 cases (about 

18%).  This information, coupled with the knowledge that cases were often exposed to 

TBRF while traveling, often outside their state of residence (Dworkin et al, 2002a), led to 

the decision to include only cases where zip code of exposure was available in the 

analysis.   

The data received from the Colorado Department of Public Health and 

Environment did not contain sufficient information to identify zip code of exposure for 

any of the cases listed and was therefore excluded from this analysis.   

TBRF cases that met the inclusion criteria were summed based on zip code 

where exposure to TBRF occurred.  Based on the total number of TBRF cases in each zip 

code, a category was assigned to each zip code.  These case number categories were 

similar to the categories used in the county level analysis (i.e. 1-3, 4-6, 7-9, or 10 cases 

per zip code).  These categories were not used for statistical analysis, but for map 

display purposes only.  A total of 54 cases from Washington and 87 cases from California 

were included in the analysis.  These 141 cases occurred in 60 different zip codes:  29 in 

Washington and 31 in California.   
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Table 4.1:  Number of zip codes with reported cases of tick-borne relapsing fever (TBRF), 
California and Washington, 1990-2010 

Case Categories Number of Zip Codes 

1-3 52 

4-6 4 

7-9 3 

10 1 

 

Neighboring zip codes without TBRF cases that share a contiguous border were 

selected to serve as “control zip codes” in the analysis.  These zip codes were selected 

using the “Select By Location” feature in ArcGIS (ESRI, Redlands, CA).  Any zip code that 

touched the boundary of a case zip code was selected using this operation.  Control zip 

codes were only included if they were located in either Washington or California.  The 

selected zip codes were then exported as a layer file in ArcGIS.  A total of 193 zip codes 

were chosen as control zip codes.  Both case and control zip codes were displayed using 

the GCS_WGS_1984 projection. 

4.3.2 Ecologic Data 

The ecologic data analyzed in the zip code analysis were the same data used in 

the county level analysis.  Elevation was derived from a 1 km resolution digital elevation 

model (USGS/ESRI, Redlands, CA).  The elevation for each zip code was assessed using 

the minimum, maximum and average values for that zip code.  This was intended to 

account for any variability in elevation that may occur across larger zip codes with varied 

topography.  Elevation data were displayed in the GCS_WGS_1984 projection.  Land 

cover classification was derived from the National Land Cover Dataset (USDA, NRCS) 
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available for each individual state.  The land cover type that was identified as the 

“majority” for each zip code was the one assigned to with that zip code.  Land cover 

layers were displayed in the projections NAD_1983_10N through NAD_1983_14N, 

depending on the state being analyzed.  Data for precipitation, minimum and maximum 

temperature were derived from individual models of each using annual averages from 

1971 to 2000 (PRISM Climate Group, Oregon State University).  While this time span 

included several years outside the years when cases were documented (1990-2010), it 

provided a good representation of an average value for these variables.  Minimum, 

maximum, and mean values were obtained for each variable to account for any 

variation that might occur across each zip code. 

4.3.3 ArcGIS Analysis 

Maps were created in ArcGIS in the same manner as the county level analysis, 

using each of the ecologic variables to be analyzed, as well as the map layers for the 

case and control zip codes.  If the projections were not the same for all layers, the 

“Project” tool was used to convert layers to the same projection.  Once all layers were 

displayed in the same projection, “Zonal Statistics,” located in the “Spatial Analyst” 

toolbox, was used to generate summary statistics for each zip code from the ecologic 

variable layers.  This information was then added to a spreadsheet in Microsoft Excel 

2007 (Microsoft, Redmond, WA), where information from all zip codes was consolidated 

and organized for statistical analysis.     

See Figures 4.1 and 4.2 for the distribution case and control zip codes, respectively. 
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4.4 Statistical Analysis 

4.4.1 Variable Definition 

Statistical Analysis was conducted using methods similar to those used in the 

county level analysis.   All zip codes where TBRF cases were identified were listed as 

“case” zip codes.  Neighboring zip codes with no cases of TBRF reported were listed as 

“control.”  The minimum, maximum, and mean values of the four continuous ecologic 

variables (i.e. elevation, average precipitation, average minimum temperature and 

average maximum temperature) were each treated as their own variable and assigned 

the same labels used in the county level analysis.  The land cover variable was 

categorized numerically, with the number representing the majority land cover or 

habitat type in each zip code.  The land cover variable was further divided into a series 

of design or “dummy” variables, with each one representing an individual land cover 

type, as was done in the county level analysis.  The individual habitat types represented 

by these variables included:  open water, developed land, evergreen forest, 

shrub/scrub, grassland/herbaceous, and crop/livestock area. 
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Figure 4.1:  Distribution of zip codes with cases of tick-borne relapsing fever (TBRF), 1990-2010 
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Figure 4.2:  Distribution of control zip codes without reported tick-borne relapsing fever cases 
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4.4.2 Frequency Analyses 

The distribution of case and control zip codes was compared by frequency 

analysis as in the county level analysis.  Each ecologic variable was divided into 

categories and the proportion of case and control zip codes in each category was 

calculated.  The proportions of case and control zip codes in each category were 

compared and a chi-square value was calculated for each variable using the distribution 

of values observed in the frequency tables.  A statistically significant chi-square value 

indicated a difference in the distribution between case and control zip codes. 

4.4.3 Logistic Regression Analyses 

Binomial logistic regression was conducted on all variables using the methods 

listed in Applied Logistic Regression (Hosmer and Lemeshow, 2000).  All statistical 

analysis was carried out using the JMP (SAS, Cary, NC) statistical software package, 

version 9.02.   

First, a univariable logistic regression analysis was run for each potential 

covariate against the dichotomous outcome variable “Case Status,” which listed zip 

codes as either “case” or “control.”  Forward and backward stepwise regression were 

run as described in the county level analysis, and Spearman correlation coefficients 

were used to identify correlation among response variables.   

Purposeful variable selection was completed, the model coefficients, effect 

likelihood ratios and Wald statistics were compared to those of the larger models 
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created through stepwise regression to confirm that no drastic changes occurred in the 

model because of the elimination of variables.  All variables that were not selected for 

the multivariable model were added again to identify any that may only have an effect 

in the presence of other variables. 

4.4.4 Evaluation of Selected Variables and Interaction   

After the main variables included in the model were established, the assumption 

of linearity of all continuous variables was checked.  Smoothed scatterplot and quartile 

analysis were conducted for continuous variables to inform a decision regarding 

transformation or categorization of the variables.  The same methods were applied to 

variables not included in the multivariable model to confirm that alteration did not 

produce a variable that made a significant contribution to the model.  After the main 

variables in the model were chosen, interactions between the terms were examined 

using the methods described in the county level analysis.   

4.4.5 Comparison of Potential Models 

The multiple potential models were compared as before, using various statistical 

measures, such as Akaike information criterion (AICc) (Akaike, 1974), receiver operator 

characteristic curves (ROC), and the goodness of fit (or lack of fit) chi-square statistic.  

Sensitivity, specificity, positive predictive value (PPV) and negative predictive value 

(NPV) were calculated for each model and the final multivariable model was selected 

from the competing models by choosing the one with the highest sensitivity and the 

best balance among the other three measures.  
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4.4.6 Model Validation 

The final multivariable model for the total zip code analysis was validated for use 

as a predictive model using a leave-one-out method to ensure that the trends observed 

were not heavily reliant on any one case or control zip code.  This method involves 

removing one zip code from the model, running the model and obtaining the AUC value 

from the ROC curve.  After this is accomplished, the zip code is replaced and the next zip 

code is removed, the model run again, and the AUC value obtained.  This was performed 

sequentially for every zip code in the model.  The average and range of the AUC values 

were analyzed to confirm that the absence of any single zip code did not drastically 

affect the overall accuracy of the model that was chosen (Fielding & Bell, 1997). 

4.4.7 California and Washington Individual Models 

The above methods, with the exception of the model validation step, were 

applied to create individual logistic regression models for California and Washington.  

Zip codes from each state were separated into two tables and the ecologic data 

associated with these zip codes were analyzed in the same manner as the data set that 

included both states.   

4.4.8 Predictive Risk Model 

A predictive model was constructed using the complete zip code level logistic 

regression model to apply the variables found to be associated with TBRF in Washington 

and California to the state of Oregon.  This was done to highlight areas where TBRF may 
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be more likely to occur, and where increased surveillance for TBRF may be beneficial.  

This model may not be completely accurate since the disease is underreported and it 

would only be based on reported TBRF cases. 

The final logistic regression model was entered into the “Raster Calculator” tool 

in the “Spatial Analyst” toolbox of ArcGIS, version 10.  The model is represented by the 

equation: 

Logit (P) = β0 + β1x1 + β2x2 [expression 1] 

where P is the probability that TBRF is present in a zip code and β0 is the intercept.  The 

values   β1 and β2 represent the coefficients of the variables x1 and x2, respectively.  This 

equation produced an output raster layer that was used to define areas as high or low 

risk in “Raster Calculator” by entering values into the equation: 

P = e Logit (P)/ (1 + e Logit (P)) [expression 2] (Eisen et al., 2010) 

The output raster from the above equation corresponded with the probability values 

observed during the sensitivity and specificity analysis.  Using the “Reclassify” tool on 

the “Spatial Analyst” toolbox, raster values were dichotomized based on the cutoff p-

value that maximized sensitivity and specificity.  Any values below the cutoff were 

coded as “0” to signify low risk and any values above the cutoff were coded as “1” to 

signify high risk.  The output from this analysis was a raster layer that displayed areas 

that were more likely to contain cases of TBRF based on the final model chosen for the 

total zip code level analysis. 
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4.5 Results 

4.5.1 Study Population Characteristics 

I. California 

The California Department of Health Services identified and submitted 160 cases 

of TBRF for analysis between the years of 1990 and 2009.  Of these 160 cases, zip code 

of residence was known for 147 cases and zip code of exposure was known for 87 cases.    

Cases where exposure to TBRF occurred outside of California were excluded from the 

analysis.  Descriptive summaries included all cases with the appropriate information, not 

just those used in the final analysis. 

The gender distribution of cases in California was heavily skewed towards males, 

with almost twice as many males infected as females.  Of the 156 cases where gender 

was available, 100 (64%) were male and 56 (36%) were female.   

Information regarding age was available for 156 of the cases of TBRF submitted 

for analysis.  The youngest case reported was one year of age; the oldest case was 86 

years of age.  The mean age was 34 and the median age was 35.  A broad spectrum of 

ages was represented, with most age groups containing 15 to 25 cases.  The age group 

with the greatest number of cases was 40-49.  The distribution of case is illustrated in 

the Figure 4.3, divided into ten year categories. 
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Figure 4.3:  Distribution of reported tick-borne relapsing fever (TBRF) cases by patient 
age, California, 1990-2009 

 

Month of onset of illness was available for 159 cases.  Similar to the findings of 

previous studies (Dworkin et al, 2002a; Dworkin et al, 1998), cases of TBRF present 

primarily in the summer and early autumn months.  Of the 159 cases where month of 

onset was known:  11% occurred in June, 30% occurred in July, 29% occurred in August, 

and 11% occurred in September.  The distribution of month of onset for all cases in 

California is available in Figure 4.4. 
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Figure 4.4:  Distribution of tick-borne relapsing fever (TBRF) cases by month of onset of 
illness, California, 1990-2009 

The method by which TBRF was diagnosed was available for 149 cases.  

Observation of spirochetes on a peripheral blood smear was the most common method 

(77%) and serology was second most common (13%).  Cases diagnosed by all methods 

were included in the analysis to improve statistical power.  Only a small number of cases 

(2%) were not laboratory confirmed by any method.  See Figure 4.5 for a summary of 

diagnostic methods. 

 

Figure 4.5:  Distribution of tick-borne relapsing fever (TBRF) cases by method of 
diagnosis, California 1990-2009 
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II. Washington 

The Washington State Department of Health identified 115 cases of TBRF that 

occurred in Washington or were diagnosed in the state of Washington between 1990 

and 2010.  Zip code of exposure was identified based on the information reported 

regarding the location of exposure.  The majority of the towns in which most cases were 

exposed have only one zip code, which allowed for precise identification of zip code of 

exposure.  Cases where exposure occurred in a state other than Washington or 

exposure location information was insufficient for identification of zip code of exposure 

were excluded from analysis (n = 61).  Zip code of residence was provided for only one 

case, which was excluded from analysis.  A total of 54 cases of TBRF where zip code of 

exposure was identified were included in the analysis.   

The gender of TBRF cases was known for all 115 Washington cases.  Cases were 

split almost equally between genders, with 52% male and 48% female.  Age data were 

available for all but one of the cases from Washington.  Among cases, the minimum age 

was less than one year old, the maximum age was 89 years old, the mean age was 35, 

and the median age was 38.  Like the California data, ages were varied with no apparent 

clustering in any specific age group.  The highest number of cases was observed in the 

40-49 age group, and similar case numbers were seen in the 0-9 and 10-19 age groups. 

The distribution of case ages is illustrated in Figure 4.6, with ages divided into 10 year 

categories. 
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Figure 4.6:  Distribution of reported tick-borne relapsing fever (TBRF) cases by patient 
age, Washington, 1990-2010 

 

Month of onset of illness was available for all 115 cases (Figure 4.7).  The 

seasonal distribution was typical of tick-borne relapsing fever, and other tick-borne 

diseases:  14% in June, 24% in July, 28% in August, and 11% in September.   

 

Figure 4.7:  Distribution of tick-borne relapsing fever (TBRF) cases by month of onset of 
illness, Washington, 1990-2010 
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The method by which TBRF was diagnosed was provided for all 115 Washington 

cases.  As with cases from California, the most common diagnostic methods were blood 

smear (65%) and serology (11%).  For 19 cases, the exact method of diagnosis was 

unknown but the diagnosis was made through a laboratory test.  All cases where zip 

code of exposure was identified were included in the final analysis to increase statistical 

power.  Cases where diagnosis was based solely on clinical information were not 

included in the analysis because of the absence of information regarding zip code of 

exposure.  A summary of diagnostic methods is presented in Figure 4.8. 

 

Figure 4.8:  Distribution of tick-borne relapsing fever (TBRF) cases by method of 
diagnosis, 1990-2010 

 

4.5.2 Frequency Analysis of Ecologic Variables 

Each variable was divided into categories based on the range of the data displayed by 

the 60 case zip codes and 193 control zip codes being analyzed.  In each category, the 

proportion of case zip codes was compared to the proportion of control zip codes. These 
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frequency data are displayed in Table 4.2.  The three land cover types with the highest 

number of total zip codes were:  evergreen forest (129), shrub/scrub (67), and 

crop/livestock area (27).  Evergreen forest had the highest percentage of case and 

control zip codes of all land cover types, but a difference of nearly 10% was observed 

between case zip codes (58.3%) and control zip codes (48.7%). The shrub/scrub land 

cover classification was the second most common, but it displayed similar proportions 

among case and control zip codes.  Unlike the county level analysis, the overall 

distribution of the land cover variables was not significant (p = 0.82), indicating there 

was not a significant difference between the distribution of case and control zip codes.  

As with the county level analysis, all three elevation variables showed case zip codes 

with lower proportions at lower elevations and higher proportions at higher elevations 

when compared to the proportions of control zip codes in the same categories (p < 0.03 

for all variables).  The precipitation variables were not statistically significant (p > 0.45 

for all variables) and displayed no consistent differences between the proportion of case 

and control zip codes in each category, with percentages generally higher in the lower 

and middle categories in both groups.  Proportions of case and control zip codes were 

similar in most categories among the six temperature variables analyzed, with the 

highest percentages of zip codes observed in the lower and middle temperature 

categories among both groups; however, all temperature variables were statistically 

significant (p < 0.08 for all variables) and higher proportions of case zip codes were 

observed in some lower temperature categories.       
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Table 4.2:  Distribution across selected ecologic variables of zip codes with reported tick-
borne relapsing fever (TBRF) cases and neighboring control zip codes, California and 
Washington, 1990-2010 
Majority Land Cover No. of Zip Codes 

with TBRF 
No. of Control 

Zip Codes 
Percentage of Zip 
Codes with TBRF 

Percentage of Control 
Zip Codes 

Open Water 1 1 1.7% 0.5% 

Developed Land 4 18 6.7% 9.3% 

Evergreen Forest 35 94 58.3% 48.7% 

Shrub/Scrub 14 53 23.3% 27.5% 

Grassland/Herbaceous 0 6 0.0% 3.1% 

Crop/Livestock Area 6 21 10.0% 10.9% 

*Land Cover: Χ2
 = 5.12, p = 0.82 

Minimum Elevation 
(meters) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 500 20 109 33.3% 56.5% 

501-1000 20 51 33.3% 26.4% 

1001-1500 8 22 13.3% 11.4% 

1501-2000 5 8 8.3% 4.1% 

> 2000 7 3 11.7% 1.6% 

Maximum Elevation 
(meters) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 1000 12 65 20.0% 33.7% 

1001-2000 16 68 26.7% 35.2% 

2001-3000 24 44 40.0% 22.8% 

3001-4000 6 14 10.0% 7.3% 

> 4000 2 2 3.3% 1.0% 

Mean Elevation 
(meters) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 500 5 32 8.3% 16.6% 

501-1000 22 90 36.7% 46.6% 

1001-1500 11 33 18.3% 17.1% 

1501-2000 7 21 11.7% 10.9% 

2001-2500 13 12 21.7% 6.2% 

> 2500 2 5 3.3% 2.6% 

*Min. Elevation: Χ
2
 = 19.13, p = 0.0007; Max. Elevation: Χ

2
 =10.83, p = 0.03; Mean Elevation: Χ

2
 = 14.37, p = 0.01 

Minimum 
Precipitation (mm) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 250 7 32 11.7% 16.6% 

250-500 29 92 48.3% 47.7% 

501-750 12 31 20.0% 16.1% 

751-1000 9 18 15.0% 9.3% 

> 1000 3 20 5.0% 10.4% 
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Maximum 
Precipitation (mm) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 500 10 49 16.7% 25.4% 

500-1000 18 58 30.0% 30.1% 

1001-1500 15 37 25.0% 19.2% 

1501-2000 10 24 16.7% 12.4% 

> 2000 7 25 11.7% 13.0% 

Mean Precipitation 
(mm) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 250 1 12 1.7% 6.2% 

250-500 18 69 30.0% 35.8% 

501-750 16 39 26.7% 20.2% 

751-1000 9 25 15.0% 13.0% 

> 1000 16 48 26.7% 24.9% 

*Min. Precipitation: Χ
2
 = 3.71, p = 0.45; Max. Precipitation: Χ

2
 = 2.92, p = 0.57; Mean Precipitation: Χ

2
 = 3.37, p = 0.50 

Minimum Tmin 
(Celsius) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< -5 11 23 18.3% 11.9% 

-5 to 0 29 55 48.3% 28.5% 

0 to 5 15 83 25.0% 43.0% 

5 to 10 3 21 5.0% 10.9% 

> 10 2 11 3.3% 5.7% 

Maximum Tmin 
(Celsius) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 0 6 4 10.0% 2.1% 

0 to 5 36 107 60.0% 55.4% 

5 to 10 13 56 21.7% 29.0% 

> 10 5 26 8.3% 13.5% 

Mean Tmin (Celsius) No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 0 16 28 26.7% 14.5% 

0 to 5 37 116 61.7% 60.1% 

5 to 10 5 37 8.3% 19.2% 

> 10 2 12 3.3% 6.2% 

*Min. Tmin: Χ
2
 = 12.82, p = 0.01; Max. Tmin: Χ

2
 = 9.34, p = 0.03; Mean Tmin: Χ

2
 = 7.84, p = 0.05 

Minimum Tmax 
(Celsius) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 5 10 16 16.7% 8.3% 

5 to 10 22 50 36.7% 25.9% 

10 to 15 20 81 33.3% 42.0% 

15 to 20 4 21 6.7% 10.9% 

> 20 4 25 6.7% 13.0% 
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Maximum Tmax 
(Celsius) 

No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 15 11 14 18.3% 7.3% 

15 to 20 35 117 58.3% 60.6% 

20 to 25 12 44 20.0% 22.8% 

> 25 2 18 3.3% 9.3% 

Mean Tmax (Celsius) No. Zip Codes 
with TBRF 

No. of Control 
Zip Codes 

Percentage of Zip Codes 
with TBRF 

Percentage of Control 
Zip Codes 

< 10  1 6 1.7% 3.1% 

10 to 15 40 91 66.7% 47.2% 

15 to 20 14 52 23.3% 26.9% 

> 20 5 44 8.3% 22.8% 

*Min. Tmax: Χ
2
 = 8.24, p = 0.08; Max. Tmax: Χ

2
 = 7.97, p = 0.05; Mean Tmax: Χ

2
 = 8.88, p = 0.03 

4.5.3 Logistic Regression Analyses of Ecologic Variables 

Results of the univariate logistic regression analysis were similar to those of the 

county level analysis.  All three elevation variables (all p < 0.003) and all six temperature 

variables (all p < 0.03) displayed a statistically significant relationship with the presence 

of TBRF in a zip code.  None of the precipitation variables had a statistically significant 

relationship with TBRF occurrence.  Likewise, the land cover variables, including the 

variable for majority evergreen forest, were not significant in univariate analyses.  Both 

forward and backward stepwise logistic regression were run on the temperature and 

elevation variables with the requirement to enter analysis being p < 0.25 and the 

requirement to leave the analysis being p > 0.1.   The majority land cover variable for 

evergreen forest was included because of its significance in the county level model, as 

well as its association with over 50% of case zip codes.  Backward stepwise regression 

yielded a model including only the variable for minimum elevation, while forward 

stepwise regression yielded a model with variables for minimum elevation, minimum 

maximum temperature, and majority developed land.  The variable for majority 
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developed land had a p = 0.14, so it was not considered for further analysis.  Using these 

analyses as a guide, a more purposeful variable selection was conducted. 

4.5.4 Purposeful Variable Selection 

Beginning with the minimum elevation variable because of its significance in 

both stepwise analyses, terms were added to the model individually in order to select 

potential candidates for the final model.  All the variables identified as statistically 

significant were added to the model containing the minimum elevation variable, and 

only the variable for minimum value of maximum temperature produced a model in 

which both terms were significant both individually and as a whole.  No other variable 

added to the model containing these two terms was statistically significant.  Likewise, 

no other combination of variables produced a model that could be considered as an 

alternative.  To be certain no other terms were needed, all variables not included in the 

two term model were added again and the full model was run.  The results of this model 

indicated that the additional terms were not an improvement over the two term model, 

with none of them showing statistical significance on an individual level.  It was 

determined that minimum elevation and minimum maximum temperature were the 

two main terms in the zip code model.  A Spearman ρ = -0.23 confirmed that the two 

variables were not correlated with each other and could both be included in the final 

model. 
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4.5.5 Assumption of Linearity Evaluation 

The assumption of linearity for the two variables included in the model was 

tested by smoothed scatterplot and quartile analysis, as before.  Based on the 

scatterplot (Figure 4.9), the minimum elevation variable is roughly linear, with 

percentage of cases increasing with elevation category.  

 

Figure 4.9:  Proportion of case zip codes by minimum zip code elevation, California and 
Washington, 1990-2010.  A case zip code is defined as a zip code with reported tick-

borne relapsing fever (TBRF) cases; control zip codes are neighboring zip codes without 
reported TBRF cases. Percentage calculated as the number of case zip codes divided by 

total case and control zip codes within each environmental category. 

 

Quartile analysis on the minimum elevation variable showed that the three 

design variables representing the second, third and fourth quartiles were statistically 

significant when all were included in the same model; however, only the design variable 

representing the highest quartile was significant individually.  There was no 

improvement to the model when examining these design variables either individually or 
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in combination with the minimum value for the maximum temperature variable, so it 

was decided to keep minimum elevation as a continuous variable. 

A linear trend was also observed in the scatterplot for minimum value of the 

maximum temperature variable (Figure 4.10), with the difference being the percentage 

of case counties decreased with increasing temperature. 

 

Figure 4.10:  Proportion of case zip codes by minimum value for maximum temperature 
in a zip code, California and Washington, 1990-2010.  A case zip code is defined as a zip 

code with reported tick-borne relapsing fever (TBRF) cases; control zip codes are 
neighboring zip codes without reported TBRF cases. Percentage calculated as the 
number of case zip codes divided by total case and control zip codes within each 

environmental category. 

 

In the quartile analysis, only the design variable for the highest quartile was 

statistically significant when run with the other two design variables and when run 

individually.  There was no apparent benefit to using the design variable for the highest 

quartile compared to the original variable so the variable for the minimum value of 

maximum temperature was left as a continuous variable.  A model using the design 

variables for the highest quartiles of the elevation and temperature variables produced 
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values similar to those seen in the model with the two continuous variables, but the 

AICc value was ten units higher than the lowest value; therefore, it was not considered 

as a candidate for the final multivariable model.  Additionally, transformations applied 

to the variables did not improve their performance in any model. 

The precipitation variable that was closest to statistical significance in the 

univariate analysis (PPT_MAX) was divided into quartiles and design variables created 

from these categories were analyzed via logistic regression as with other variables.  Only 

the design variable representing the third quartile of the maximum precipitation 

variable was significant when in a model with the other two design variables, and none 

of them were significant separately.  The significant design variable was no longer 

significant when included in a model with the elevation and temperature variables in 

any form, so it was not considered for inclusion in the final multivariable model.  All 

three precipitation variables were correlated with each other, so the results of this 

analysis were considered representative of all precipitation variables. 

4.5.6 Interaction Terms 

Since only two variables were included in the final model, only the interaction 

term between the elevation and temperature variables was considered for inclusion in 

the final model.  While inclusion of the interaction term did not affect the whole model 

test of significance, the interaction term itself was not statistically significant (p = 0.68).  

Since the interaction term did not improve the model, it was not included in the final 

model. 
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4.5.7 Comparing Multivariable Models 

Goodness of fit chi-square statistics were similar among all four candidate models, 

with all p-values around 0.3.  Since all p-values were not significant, the goodness of fit 

for each model did not play a role in final model selection.  The variables included in the 

four candidate models are listed below: 

1. Minimum elevation  

2. Minimum elevation and the minimum value for maximum temperature 

3. Minimum elevation, minimum maximum temperature, and interaction term 

4. Minimum elevation, minimum maximum temperature, majority developed land  

Table 4.3:  Candidate models for the zip code level analysis of the relationship between 
ecologic variables and tick-borne relapsing fever (TBRF) occurrence, California and 
Washington, 1990-2010 

Model 
ID 

Negative 
log-
likelihood 

K AIC Δ 
AIC 

ROC 
AUC  

Sensitivity Specificity PPV NPV Independent 
model variables 

1 131.41 1 266.87 1.99 0.65 78 48 32 88 ELEV_MIN 

2 129.42 2 264.94 0.06 0.68 67 67 39 87 ELEV_MIN, 
TMAX_MIN 

3 129.34 3 266.84 2.16 0.68 67 66 38 86 ELEV_MIN, 
TMAX_MIN 

4 128.36 3 264.88 0 0.69 68 66 38 87 ELEV_MIN, 
TMAX_MIN, 
DEVLP_MAJ 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN = 
minimum elevation; minimum maximum temperature = TMAX_MIN; DEVLP_MAJ = majority developed land 

 

Models must be within two AICc units to be considered competing, which is true 

of all except Model 3.  ROC AUC values were compared and were found to vary no more 

than 0.04 units between models.  Since there was little distinction among ROC AUC 

values, the model with the highest sensitivity and best balance among specificity, PPV 
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and NPV was chosen.  Model 1 had the highest sensitivity (78%), but was removed from 

consideration by having the lowest specificity (48%).  Models 2 and 4 had nearly 

identical values among all statistical measures considered.  Ultimately, Model 2 was 

chosen because it behaved similarly to Model 4 while containing one less variable, 

indicating the variable was superfluous. The most parsimonious model, chosen as the 

final multivariable model, contains the variables for minimum elevation and the 

minimum value for maximum temperature in a zip code.  Specifics on model parameters 

can be found in Table 4.4. 

Table 4.4:  Parameter estimates for the selected multivariate logistic regression model 
of the relationship between ecologic variables and tick-borne relapsing fever (TBRF) 
occurrence at the zip code level, California and Washington, 1990-2010 

 Parameter Estimates Likelihood ratio test 

Model covariates Estimate SE 95% C.I. Χ
2
 df p-value 

Intercept -1.16 0.43 (-2.02, -0.33) 7.21 1 0.007 

ELEV_MIN 0.0009 0.0003 (0.0004, 0.0015) 11.28 1 0.0008 

TMAX_MIN -0.06 0.03 (-0.12, -0.001) 3.98 1 0.046 

*df = degrees of freedom; ELEV_MIN = minimum elevation; minimum maximum temperature = TMAX_MIN; Whole 
Model Test Χ

2
 = 18.33, df = 2, p = 0.0001; goodness of fit Χ

2
 =258.84, p = 0.32 

 

4.5.8 Model Validation 

The final multivariate model selected above was subjected to a leave-one-out 

method of model validation to ensure it was not sensitive to any particular case or 

control zip code (Fielding & Bell, 1997).  The method involved removing one zip code, 

running the model, recording the ROC AUC, replacing the excluded zip code and 

removing the next zip code.  This was done sequentially for all 253 case and control zip 

codes.  The minimum, maximum and mean AUC values are reported below.  It was 
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determined that overall accuracy of the model was not heavily influenced by one 

specific zip code and none were excluded from the final model. 

Table 4.5:  ROC AUC values from the leave-one-out validation of the zip code logistic 
regression model of the relationship between ecologic factors and tick-borne relapsing 

fever (TBRF) occurrence, California and Washington, 1990-2010 

 Min Max Average Complete Model AUC 

ROC AUC 0.677 0.694 0.683 0.683 

*ROC AUC = area under receiver operator characteristic curve 

4.5.9 Predictive Risk Model 

The final model, containing the variables for minimum elevation and the 

minimum value for maximum temperature, was entered into the Raster Calculator tool 

in ArcGIS as described in Section 4.5.7.  The values for the coefficients and the intercept 

were entered as they appear in the final equation, but the original raster layers were 

used in place of the minimum values from each zip code used in the statistical analysis.  

This was done because the Raster Calculator tool requires a map layer to be used in the 

preparation of a new raster layer.  Since the minimum, maximum and mean 

temperature and elevation values were correlated with each other, it was considered 

acceptable to use the source layers from which they were derived as the variables in 

the regression equation.  The output raster layer produced by the first equation was 

used in place of the “Logit (P)” variable in expression 2, and Raster Calculator used the 

second equation to produce a second raster layer.  Using the “Reclassify” tool in ArcGIS, 

values in this raster layer were dichotomized into categories based on the cutoff p-

value that maximized sensitivity and specificity (p = 0.2341).  Any raster values less than 
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0.2341 were considered low risk and coded as “0” while any values greater than or 

equal to 0.2341 were considered high risk and coded as “1.”  This produced an output 

raster layer that represented the predictive risk model and displayed the high and low 

risk areas as two different colors. 

Unfortunately, the predictive risk model had very limited ability to distinguish 

areas of high and low risk.  Originally it was planned to create a predictive risk model 

derived from the zip code model of Washington and California and apply it to Oregon, 

to determine which areas showed signs of elevated risk.  Upon examination of the 

predictive model layer, the entire state of Oregon was classified as “low risk.”  In fact, 

the layer covered the entirety of the United States and consisted of over 3,000,000 

raster units, but only 22 units total were considered “high risk.”  All of the 22 units were 

located in either Washington or California and were located within case zip codes.  

Since the predictive model provided very little distinction between low and high risk 

areas, it was not considered for further analysis.   

4.5.10 Analysis of High Risk Zip Codes vs. Control Zip Codes 

As with the county level analysis, high risk zip codes were examined to 

determine if they possessed any unique correlations that may have been obscured by 

the greater number of lower risk zip codes in the total zip code level analysis.  The data 

from the 13 zip codes with more than two cases reported were regressed against both 

the total number of control zip codes (n= 193) and only the zip codes with which they 
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share a border (n= 38).  The results of these analyses were similar to those observed in 

the full zip code analysis. 

For the analysis which included all controls, all elevation and temperature 

variables, as well as some precipitation and land cover variables, produced statistically 

significant univariate regression models.  Both stepwise regression models implied that 

the final model should include an elevation and temperature variable, but only one of 

each since variables were correlated within groups as before.  Purposeful variable 

selection confirmed that elevation and temperature would be included in the final 

model; however, several temperature variables produced acceptable models in 

combination with the same minimum elevation variable.  Three candidate models were 

compared in the same manner described in the complete zip code model.  A 

comparison of the models can be found in Table 4.6.  Model 3 was chosen as the final 

model because it provided the best balance among sensitivity, specificity, PPV and NPV.  

All three candidate models showed the same correlation between elevation, 

temperature and TBRF occurrence observed in the total zip code model. 
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Table 4.6:  Candidate models for the analysis of the relationship between ecologic 
variables and tick-borne relapsing fever (TBRF) occurrence for high risk and all control 
zip codes, California and Washington, 1990-2010 

Mod. 
ID 

Negative 
log-
likelihood 

K AIC Δ 
AIC 

ROC 
AUC 

Sensitivity Specificity PPV NPV Independent model 
variables 

1 33.08 2 72.3 0 0.89 100 63 15 100 ELEV_MIN, 
TMAX_MEAN 

2 33.49 2 73.1 0.81 0.88 85 73 17 99 ELEV_MIN, 
TMIN_MAX 

3 33.63 2 73.4 1.09 0.88 69 94 45 98 ELEV_MIN, 
TMAX_MIN 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN= 
minimum elevation, TMAX_MEAN = mean maximum temperature, TMIN_MAX = maximum minimum temperature, 
TMAX_MIN = minimum maximum temperature. 

 

The analysis of high risk zip codes and only neighboring control zip codes 

produced fewer significant associations restricted to a few elevation and temperature 

variables in the univariate analyses.  Stepwise regression produced multivariate models 

that were only significant if they contained multiple temperature variables, which once 

again were correlated with each other.  The only combination of two different variables 

that produced a viable model was the design variable for the highest quartile of 

minimum elevation values (DUMMY-ELQ4) and the variable for the maximum value of 

maximum temperature in each zip code.  This multivariate model was compared to the 

three best univariate models using the measures presented in Table 4.7 to determine 

which model was the most appropriate choice.  Model 1, the only multivariate model, 

was chosen because of the balance among the values examined.  It displayed the same 

association between elevation, temperature and TBRF occurrence seen in all previous 

levels of analysis. 
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Table 4.7:  Candidate models for the analysis of the relationship between ecologic 
variables and tick-borne relapsing fever (TBRF) occurrence for high risk and adjacent 
control zip codes, California and Washington, 1990-2010 

Mod. 
ID 

Negative 
log-
likelihood 

K AIC Δ 
AIC 

ROC 
AUC  

Sensitivity Specificity PPV NPV Independent model 
variables 

1 23.81 2 54.1 0.33 0.76 62 92 73 88 DUMMY-ELQ4, 
TMAX_MAX 

2 24.78 1 53.8 0 0.75 54 89 64 85 ELEV_MIN 

3 25.06 1 54.4 0.57 0.74 69 76 50 88 TMIN_MAX 

4 25.12 1 54.5 0.69 0.75 85 66 46 93 TMIN_MEAN 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN= 
minimum elevation, DUMMY-ELQ4 = design variable for highest quartile of ELEV_MIN, TMIN_MAX = maximum 
minimum temperature, TMIN_MEAN = mean minimum temperature. 

 

4.5.11 California and Washington Individual Models 

The same methods used in the construction and selection of the zip code 

multivariate model for both states were applied to California and Washington 

individually.  The univariate analysis for California yielded significant models for all three 

elevation variables and all six temperature variables much like the analysis with both 

states included.  Both forward and backward stepwise regression yielded a model 

containing only the variable for minimum elevation.  A more purposeful variable 

selection method confirms that no variables are significant when added to the model 

containing minimum elevation.  A smoothed scatterplot revealed a linear distribution 

for the variable (Figure 4.11), and quartile analysis showed that only the design variable 

for the highest quartile was statistically significant. 
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Figure 4.11: Proportion of case zip codes by minimum zip code elevation, California, 
1990-2009.  A case zip code is defined as a zip code with reported tick-borne relapsing 
fever (TBRF) cases; control zip codes are neighboring zip codes without reported TBRF 
cases. Percentage calculated as the number of case zip codes divided by total case and 

control zip codes within each environmental category. 

 

To further investigate, both the minimum value for maximum temperature and 

maximum precipitation variables were examined via quartile analysis.  None of the 

precipitation design variables were significant and only the design variable for the top 

quartile of the temperature variable was significant.  No combination of minimum 

elevation or its design variable and any of these variables produced a model where the 

second variable added was significant individually.  A model containing minimum 

elevation and the design variable for the highest quartile of the maximum temperature 

variable was considered because of the AICc value of the model, but it seemed an 

unlikely choice for the final multivariable model.  Interaction terms were considered for 

the models with more than one variable and the four best models were chosen based 

on their AICc values.  Details are presented in Table 4.8. 
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Table 4.8:  Candidate models for the zip code level analysis of the relationship between 
ecologic variables and tick-borne relapsing fever occurrence in California, 1990-2009 

Mod. 
ID 

Negative 
log-
likelihood 

K AIC Δ 
AIC 

ROC 
AUC 

Sensitivity Specificity PPV NPV Independent model 
variables 

1 62.06 1 128.2 0 0.71 71 62 39 86 ELEV_MIN 

2 64.45 1 133.0 4.78 0.66 74 57 37 87 DUMMY-ELQ4 

3 61.87 2 129.9 1.72 0.71 71 64 40 87 ELEV_MIN, 
DUMMY-TX4 

4 61.7 3 131.8 3.53 0.71 74 60 39 87 ELEV_MIN, 
DUMMY-TX4 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN= 
minimum elevation, DUMMY-ELQ4 = design variable for highest quartile of ELEV_MIN, DUMMYTX4 = design variable 
for highest quartile of minimum maximum temperature variable. 

 

Model 1 was chosen because of its balance of sensitivity, specificity, PPV and NPV.  The 

only model within two AICc units of Model 1 was Model 3, which displayed only very 

minor changes in the four values being examined despite the inclusion of an additional 

variable.  It was decided that the model containing only the minimum elevation variable 

was the most parsimonious model for the zip code analysis of California. 

Table 4.9:  Parameter estimates for the selected logistic regression model for the 
relationship between ecologic variables and tick-borne relapsing fever (TBRF) 
occurrence at the zip code level in California, 1990-2009 

 Parameter Estimates Likelihood ratio test 

Model covariates Estimate SE 95% C.I. Χ
2
 df p-value 

Intercept -2.34022 0.452143 (-3.30, -1.51) 26.79 1 <.0001* 

ELEV_MIN 0.00126 0.000355 (0.0006, 0.0019) 14.183 1 0.0002* 

*df = degrees of freedom; ELEV_MIN = minimum elevation; Whole Model Test Χ
2
 = 14.18, df = 1, p = 0.0002; goodness 

of fit Χ
2
 =108.58, p = 0.31 

 

The same methods were applied to zip code data for the state of Washington 

but the variables behaved differently than the total zip code and California only 

analyses.  None of the variables examined in the univariate analysis were significant.  
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Since no variables were significant individually, forward and backward stepwise 

regression were conducted to determine if any variables were significant in 

combination.  Backward stepwise regression produced a model with variables for 

maximum temperature, and mean and maximum precipitation.  All three variables are 

significant, but the 95% confidence interval for maximum temperature’s coefficient 

contains zero, and the two precipitation variables are highly correlated with each other 

(ρ = 0.93).  Attempting to remove either precipitation variable yielded a model that is 

not statistically significant.  Forward stepwise regression produced a model containing 

two elevation variables, the mean value for minimum temperature and majority 

crop/livestock land cover.  The model as a whole was not significant and none of the 

terms were significant individually (p > 0.1).  Removing any of these variables did not 

produce a combination that improved on the model containing all of them.  Attempting 

to create a model that included the same terms as the total zip code level model 

(minimum elevation and maximum temperature) produced one in which the terms were 

significant (p < 0.1).  Adding the interaction term did little to improve the model, but it 

was considered as a potential candidate.  Quartile analysis was performed on minimum 

elevation, the minimum value for maximum temperature, and maximum precipitation 

as before, to determine if the variables were statistically significant when examined as 

categories.  Only the design variables for the two middle quartiles of minimum elevation 

were significant together and none of the design variables for the temperature and 

precipitation variables were significant in any combination.  The two candidate models 

were compared by AICc, sensitivity, specificity, PPV and NPV values.   
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Table 4.10:  Candidate models for the zip code level analysis of the relationship between 
ecologic variables and tick-borne relapsing fever occurrence in Washington, 1990-2010 

Mod. 
ID 

Negative 
log-
likelihood 

K AIC Δ AIC ROC 
AUC 

Sensitivity Specificity PPV NPV Independent model 
variables 

1 66.59 2 139.4 0 0.66 62 71 38 87 ELEV_MIN, 
TMAX_MIN 

2 66.34 3 141.1 1.68 0.67 69 65 36 88 ELEV_MIN, 
TMAX_MIN 

*K = number of estimated parameters in the model; AICc = Akaike information criterion; ROC AUC = area under 
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN= 
minimum elevation, TMAX_MIN = minimum maximum elevation. 

  

Model 1 contained only the two main terms, while Model 2 included the interaction 

term as well.  Sensitivity and ROC AUC improved with the addition of the interaction 

term, but specificity decreased.  Since the improvement in sensitivity was minor, and 

addition of the interaction term caused the model to have a non-significant p-value (p = 

0.12), Model 1 was chosen as the final multivariate model.  Additional detail on the 

model is shown in Table 4.11.   

Table 4.11:  Parameter estimates for the selected multivariate logistic regression model 
for the relationship between ecologic variables and tick-borne relapsing fever (TBRF) 
occurrence at the zip code level in Washington, 1990-2010 

 Parameter Estimates Likelihood ratio test 

Model covariates Estimate SE 95% C.I. Χ
2
 df p-value 

Intercept -1.244 0.716 (-2.72, 0.12) 3.02 1 0.08 

ELEV_MIN 0.002 0.001 (-0.0003, 0.005) 3.03 1 0.08 

TMAX_MIN -0.093 0.055 (-0.203, 0.014) 2.91 1 0.09 

*df = degrees of freedom, ELEV_MIN = minimum elevation, TMAX_MIN = minimum maximum elevation; Whole 
Model Test Χ

2
 = 5.32, df = 2, p = 0.07; goodness of fit Χ

2
 =133.18, p = 0.36 
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4.6 Conclusions 

As with the county level analysis, the zip code level analysis suggests that higher 

elevations and lower maximum temperature in a zip code were associated with 

occurrence of TBRF cases.  Analysis suggested that increasing elevation was associated 

with increasing case zip code frequency (p = 0.0007), while case frequency was higher 

than control zip code frequency among lower categories of most temperature variables 

(p = 0.08).  No consistent associations were observed among average precipitation 

variables (all p > 0.45), further suggesting there was no relationship between these 

variables and TBRF occurrence at the county or zip code level.  While no land cover 

variable was statistically significant (p = 0.82), the majority land cover type was 

evergreen forest in most of the zip codes analyzed. 

Ultimately, the final multivariate model indicated an association between elevation, 

temperature and occurrence of TBRF cases at the zip code level.  This increased the 

credibility of the county level analysis and reinforced the validity of these findings.  

Likewise, the results of the high risk zip codes and the individual state analyses were 

consistent with the full analysis, despite a much smaller sample size.  The consistency of 

the associations observed across all levels of analysis provided confidence in the results 

of these analyses. 
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CHAPTER 5:  DISCUSSION 

5.1 County Level Analysis 

For the full county level analysis, 140 counties with cases of TBRF were compared to 243 

control counties in order to determine if any associations existed between the TBRF 

occurrence and variables for the five ecologic factors examined.  The majority land cover 

type was chosen because it was the measure that represented the character of the 

county and the type of area where individuals would be most likely to be exposed to 

TBRF.  The frequency analysis indicated that, when compared to control counties, a 

higher proportion of case counties had evergreen forest as the majority land cover and a 

lower proportion of case counties had crop and livestock areas as the majority land 

cover (p = 0.04).  This indicated an association between TBRF and counties which 

primarily contained evergreen forest, which was consistent with the increased risk of 

TBRF exposure in rustic cabins (Dworkin et al., 2002a).  The distribution of counties 

observed in the elevation variables implied that there were greater proportions of case 

counties than control counties at higher elevations (> 500 meters).  The minimum 

elevation variable (p = 0.25) was not associated with TBRF occurrence, further 

reinforcing the idea that TBRF occurrence is associated with higher elevations.  The 

associations between case counties, higher elevations and evergreen forest are 

consistent with the typical habitat type of Ornithodoros hermsi, the primary vector of 

TBRF in the western United States (Dworkin et al., 2002b).  Among the precipitation 
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variables, no statistically significant difference in proportions was observed between 

case and control counties, with the exception of the maximum precipitation variable (p 

= 0.003).  The significance of this single precipitation variable could indicate a 

relationship between higher precipitation and TBRF occurrence, possibly related to the 

tick vector or its preferred rodent host.  Conversely, the significance of the maximum 

precipitation variable could be an errant result due to chance and the lack of 

significance displayed by the minimum and mean variables could be a more accurate 

representation of the relationship between TBRF occurrence and precipitation.  No 

association between TBRF occurrence and precipitation has been previously 

documented in the literature to date and these findings suggest there is no consistent 

association at the county level.  Case proportions were highest among the middle 

temperature categories, implying that TBRF exposure was more common in areas with a 

moderate climate (all p < 0.01).  Control counties were evenly distributed among 

categories in most temperature variables, lending further support for an association 

between TBRF and temperature at the county level.  Associations similar to those found 

in the frequency analysis were observed in the logistic regression analyses. 

The logistic regression model developed to explore the relationship between 

these ecologic variables and TBRF occurrence at the county level included variables for 

mean elevation, the mean value for maximum temperature, and majority evergreen 

forest land cover type.  Statistically significant interaction terms between the maximum 

temperature variable and both the elevation and majority evergreen forest variables 

were identified and included in the final model.  Higher elevations generally have lower 
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maximum temperatures, and areas with evergreen forest tend to have cooler climates.  

It was relationships such as these that contributed to the significance of the interaction 

terms. 

All of the logistic regression models produced in this analysis had a goodness of 

fit statistic that was statistically significant.  The significant goodness of fit statistic 

indicated that it was possible that other factors influence the occurrence of TBRF that 

were not included in this analysis; however, given the breadth of analyses performed, it 

was not probable that the inclusion of any of the variables considered would have 

improved this measure.  Further, the exact goodness of fit statistic used by the JMP 

software package was not identified and may not be the most appropriate test for this 

particular data set.  No other option for goodness of fit tests was available. 

While the final model was the best option among the four most likely models in 

this analysis, its overall accuracy was not very high.  The AUC of the ROC was below the 

range considered acceptable discrimination (0.7 < ROC < 0.8) and well below the range 

considered excellent discrimination (0.8 < ROC < 0.9) (Hosmer & Lemeshow, 2000).  The 

model did discriminate between case and control counties, but with less accuracy than 

desired.  Similarly, sensitivity was lower than ideal, with the model’s ability to correctly 

identify cases only slightly above 60%.  Specificity was better, but the overall ability of 

the model to correctly discriminate between case and control counties was not 

exceptional.  However, the ability to discriminate between case and control counties for 

a rare disease, based only on ecologic variables, is evidence of the association between 

these variables and TBRF occurrence. 
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The analyses that focused on the high risk counties provided results similar to 

those seen in the analysis of all case counties.  When high risk counties were compared 

to all the control counties variables for elevation and majority evergreen forest were 

significant in combination; when the high risk counties were compared to only 

neighboring control counties, a univariate model containing only a maximum 

temperature variable was judged to be the best model.  These were the same 

associations observed in the final multivariable model for the complete county analysis, 

with the exception being the maximum elevation variable and the minimum value for 

the maximum temperature variable were included, rather than the variable for the 

mean value of each.  Since the same associations were detected, the inclusion of fewer 

variables in the high risk county analyses was a product of reduced sample size.  Even 

with the loss of over 100 counties, these variables were still associated with TBRF 

occurrence at the county level.  The higher case numbers observed in some of these 

counties can be explained by TBRF outbreaks that occurred at some point during the 

span of time included in the study.  At least four of the high risk counties had a 

documented TBRF outbreak occur between 1977 and 2000 (Paul et al., 2002; MMWR, 

1990; Trevejo et al., 1998; Fritz et al., 2004).  The increased case numbers of TBRF seen 

in these counties could also be related to “better awareness and reporting of TBRF in 

those counties, greater popularity of those sites for human visits, a greater density of 

the tick vector population in those areas, or a combination of these factors” (Dworkin et 

al., 2002a).  The logistic regression analyses suggest that the difference between 
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counties with higher and lower case numbers was not accounted for by the ecologic 

variables examined in these analyses.           

The final model chosen to represent the relationship between TRBF occurrence 

and the ecologic variables analyzed at the county level showed an association between 

temperature, elevation and evergreen forest habitat.  While similar associations have 

been observed during outbreak investigations, these associations still existed when 

analyzing the cases at the scale of the county where the cases were infected.  If 

associations can be detected using only these variables on this scale, it is possible that a 

model including additional variables on a finer scale may be able to accurately map 

areas of increased risk of TBRF.   

5.2 Zip Code Level Analysis 

In the zip code analysis, 60 zip codes in California and Washington, identified as 

exposure locations for cases of TBRF, were compared to 193 surrounding control zip 

codes to determine if detectable associations existed between TBRF occurrence and the 

ecologic variables at the zip code level.  Similar to the county level frequency analysis, 

evergreen forest had the highest proportion of case and control zip codes among land 

cover variables.  A difference of 9.6% was observed between case zip codes and control 

zip codes for the majority evergreen forest variable, indicating that evergreen forest 

may be associated with TBRF occurrence at the zip code level as well; however, this 

association was not statistically significant (p = 0.82).  As with the county level analysis, 

all three elevation variables were statistically significant (all p < 0.03), with case zip 

codes observed in lower proportions at lower elevations and higher proportions at 
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higher elevations when compared to proportions of control zip codes in the same 

categories.  There was no statistically significant difference between the proportions of 

case and control counties in the three precipitation variables (all p > 0.45).  This further 

confirmed that there is no consistent detectable association between TBRF occurrence 

and precipitation at the zip code or county level.  Unlike the county level analysis, case 

zip code proportions were higher than control zip codes in lower temperature 

categories of most of the six temperature variables.  All temperature variables were 

statistically significant (all p < 0.08) and both case and control zip codes were more 

common in the lower and middle temperature categories.  The findings of the frequency 

analysis did not deviate substantially from those of the county level analysis, with the 

exception of case proportions being higher among lower values rather than middle 

values in the temperature variables, the smaller difference between case and control zip 

codes for the majority evergreen forest variable, and the lack of statistical significance in 

the distribution of land cover variables.  The results of the frequency analysis were 

largely confirmed in the logistic regression analyses.   

As with the county level analysis, associations were found between an elevation 

and a maximum temperature variable and occurrence of TBRF at the zip code level.  For 

the county level analysis, the mean values for the two variables were included in the 

final model while the minimum values of the variables were included in the zip code 

model.  All three variables within each group (e.g. minimum, maximum and mean 

elevation) were correlated with each other at both levels of analysis, so the specific 
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variables that were chosen (ELEV_MIN and TMAX_MIN) were the most statistically 

significant within that particular group.   

 Unlike the county level analysis, none of the zip code level land cover variables 

showed a significant association with TBRF occurrence in logistic regression analyses.  

The variable for majority evergreen forest was represented in over 50% of case zip 

codes, but was also represented in 50% of control zip codes.  The lack of significance of 

land cover variables in the zip code level logistic regression analyses may have been a 

product of smaller scale, potentially leading to case and control zip codes being over-

matched.  Many of the counties included in this study were large, increasing the 

likelihood that neighboring case and control counties would be ecologically dissimilar 

based on the area included.  The smaller area of most zip codes led to more case and 

control zip codes being characterized by the same variable for majority land cover, 

simply because smaller neighboring areas are more likely to be ecologically similar. 

The goodness of fit chi-square statistic was not significant, indicating sufficient 

explanatory terms were included in the model.  There were almost certainly other 

factors that influence presence or absence of TBRF in a zip code, but none of the 

variables excluded from the final model improved it in any way.  Why the goodness of 

fit statistic was significant in the county level analysis but not the zip code level analysis 

remains unclear. 

As with the county analysis, the overall accuracy of the final model was not as 

high as preferred, but not dismally low.  The ROC AUC value was 0.68, which 
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approached, but was not included in the range of values (0.7 < ROC < 0.8) that produces 

“acceptable discrimination” (Hosmer & Lemeshow, 2000).  The sensitivity and 

specificity values were similarly lower than ideal, but close to values that would have 

provided an acceptable ability to correctly identify true positives and negatives.  

Compared to the final model that was selected, Model 1 in the total zip code analysis 

provided an improved estimate of sensitivity (+ 11%) but the drastic decrease in 

specificity (- 19%) removed it from consideration for the final model.  An acceptable 

balance of all such measures was achieved in the final model, but addition of terms not 

considered in this analysis may improve the accuracy of this model.  The smaller scale of 

the zip code model led to only a marginal improvement in sensitivity (+5%) and a slight 

decrease in specificity (-2%) when compared to the county model.  Since only two 

states were included in the zip code analysis compared to the twelve states included in 

the county analysis, the reduction in scope led to the lack of improvement of overall 

accuracy for the zip code model.    

 The results of the analyses comparing high risk and control zip codes did not 

deviate drastically from the total zip code analysis.  The analysis that compared high risk 

zip codes to all control zip codes yielded several different potential models, all 

containing the minimum elevation variable and a temperature variable.  The model that 

was chosen contained the same variables as the final model in the complete zip code 

analysis.  The analysis that compared high risk zip codes only to neighboring control zip 

codes identified correlations with fewer ecologic variables because of the reduced 

sample size.  Ultimately, a final model was chosen that contained the design variable for 
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the highest quartile of the minimum elevation variable and the maximum value of the 

maximum temperature variable.  The associations between high risk and control zip 

codes were the same combination of elevation and temperature observed in the full zip 

code analysis.  This implied that zip codes with higher case numbers do not appreciably 

differ from zip codes with lower case numbers as far as these ecologic variables are 

concerned.  It is likely that the same factors that may have led to increased case 

numbers at the county level (outbreaks, greater human visitation, etc.) contributed to 

the higher case numbers observed in these high risk zip codes.  

The comparison of TBRF occurrence between California and Washington 

reinforced conclusions drawn from the total zip code analysis and highlighted 

differences between the two states.  Overall, California had much more variety among 

zip codes with a greater range of values in most continuous variables.  This was easily 

explained by the state’s size and ecologic diversity and the fact that zip codes used in 

this analysis came from areas across California.  The range displayed in the data allowed 

many variables to be significant individually and led to a univariate model being chosen 

as the final model.  Washington had much less variety in terms of the range of data 

represented, so differences between case and control zip codes were less pronounced.  

Like California, case zip codes were distributed across the state; however, Washington 

is a smaller and less ecologically diverse state than California, which led to the more 

limited range in data among the continuous variables.  This limited data range may have 

been the cause of no single variable having a statistically significant association with the 

presence or absence of TBRF among Washington zip codes.  Additionally, the only 
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combination that produced an adequate model was the two variables that comprised 

the total zip code model.  Each state’s data contributed an aspect to the total zip code 

model:  California’s data showed a strong association between TBRF occurrence and 

elevation, while Washington’s data only produced a significant model with the inclusion 

of both elevation and temperature.  Individual models of states with stark differences in 

ecologic factors (e.g. Oregon and New Mexico) may provide more insight into different 

factors that influence TBRF occurrence across the western United States. 

The predictive risk model failed to adequately distinguish between areas of high 

and low risk, or rather areas that are more or less likely to have cases of TBRF.  The 

failure of this model had many contributing factors.  The statistical analysis from which 

the multivariate model was created was conducted using each zip code as one data 

point, and from that a single value was chosen for each variable to represent that zip 

code.  The coefficients and intercepts from that equation were then applied to the 

raster layers from which they were derived, which contained a much greater range and 

amount of data than was used to create the multivariate model.  Despite the variables 

within each variable type being correlated with one another, it is probable that 

examining the entire range of values for a zip code would produce a different result 

than a single value representing that entire area.  The scale and scope of these analyses 

also played a role in the failure of the model.  For instance, examination of the ecologic 

variables at the site of an outbreak may produce a predictive risk model that could be 

applied to surrounding local areas.   
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Additionally, the overall accuracy of the model used to create it almost certainly 

played a role in the failure of the predictive risk model.  The ROC AUC value indicates 

that the model was unable to produce acceptable discrimination between case and 

control zip codes.  With a sensitivity of 67% and a specificity of 67%, the model does a 

poor job of correctly identifying case and control zip codes.  The ecologic variables 

considered in this analysis were only a small portion of factors that may influence TBRF 

occurrence.  Identification and inclusion of additional factors of influence should yield a 

more accurate predictive risk model.  Finally, the data available for this analysis were 

limited in terms of areas where cases have been reported.  Since this is almost certainly 

not a complete accounting for cases of TBRF in these two states, the quality of the 

predictive model produced would have been poor even if it had provided better 

distinction between areas of high and low risk. 

5.3 Biological Perspectives 

 The analyses conducted examined only the chosen ecologic variables and the 

occurrence of TBRF in the western United States.  Beyond these ecologic factors, no 

additional explanatory measures were considered to describe TBRF occurrence in these 

areas.  Since broad ecologic measures were used in analysis, it is almost certain that 

unaccounted for biological factors are being described by the model.  Optimal areas for 

TBRF transmission contain ecology that is hospitable to the Ornithodoros tick vectors 

and their preferred rodent hosts, such as chipmunks and ground squirrels, and are also 

commonly visited by their incidental human hosts (Dworkin et al., 2002a).  Ornithodoros 
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hermsi tick habitat, typically areas of coniferous forest at elevations between 1,500 and 

8,000 feet (Dworkin et al., 2002a), is represented in the patterns observed in the land 

cover and elevation variables.  Evergreen forest was the majority land cover in more 

case than control areas and higher proportions of case areas were observed at higher 

elevations (> 500 meters) at both the county and zip code levels.  It is also possible that 

areas with reported TBRF cases are more likely contain rustic cabins or vacation homes, 

or to be popular travel destinations in the summer months.  The presence of rustic 

dwellings or increased human visitation could be features that distinguish counties or 

zip codes with cases from control counties and zip codes with similar ecologic 

characteristics.  Several TBRF outbreaks were located near or within national parks, such 

as the north rim of the Grand Canyon (Boyer et al., 1977; Paul et al., 2002) and Estes 

Park, Colorado (Trevejo et al., 1998).  Others occurred in similarly popular outdoor 

travel destinations, such as Big Bear Lake, California (MMWR, 1998) and Browne 

Mountain in Washington (Thompson et al., 1969).  Future spatial analyses will provide a 

more complete explanation of factors that influence where the disease occurs if an 

attempt to account for the peridomestic nature of TBRF transmission is made.  

5.4 Comparison of Findings with Previous Literature 

 No publications examining TBRF occurrence and ecologic factors at either the 

county or zip code level were found in the published literature to date.  Results similar 

to those observed in the zip code analysis regarding seasonality of TBRF were reported 

in a previous publication (Dworkin et al., 2002a).  Ornithodoros hermsi habitat was 



97 
 

previously characterized as higher elevation areas consisting of primarily coniferous 

forest (Dworkin et al., 2002a), which corresponds to the associations found with higher 

elevations at the county and zip code levels and evergreen forest land cover at the 

county level.  No association between TBRF occurrence and temperature has been 

published, but the lack of similar ArcGIS analyses for this disease suggests that this 

association was not previously explored.  Similar analyses were used to examine smaller 

areas in the western United States to explore relationships between ecologic factors and 

plague (Eisen et al., 2007b) and shared risk of plague and hantavirus (Eisen et al., 

2007a).  Additionally, relationships between disease occurrence and ecologic factors 

were successfully identified at both the county level with tularemia (Eisen et al., 2008b) 

and the zip code level with West Nile virus (Winters et al., 2008). 

5.5 Study Strengths and Limitations 

5.5.1 Study Strengths 

This study contained the most complete information available in published 

literature regarding cases of TBRF at the county-level (Dworkin et al., 2002a), in 

addition to the new zip code level data from state health departments.  Analysis 

conducted at both the county and zip code level, as well as several analyses within 

these levels, allowed for comparisons to be made between scales and strengthened 

similar conclusions observed in multiple analyses.  Only cases with known zip code of 

exposure were included in the analysis, eliminating reliance on zip code of residence as 

a surrogate.  The data used in the variables for minimum temperature, maximum 
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temperature, and precipitation were an average value for that area calculated using 

annual average values for a 30 year period.  This approximated an average value in 

these ecologic factors for a sizable period of time.  Use of minimum, maximum and 

mean values for temperature and precipitation in each county or zip code increased the 

likelihood that associations with TBRF occurrence would not be missed solely because 

of the summary measure chosen to represent that area.   

5.5.2 Study Limitations 

While these were the most complete data available, TBRF is still an 

underreported disease.  Conclusions drawn from these case areas were valid for the 

case areas, but some associations may be missed because data about TBRF cases was 

incomplete and not all cases were reported.  Cases that were reported as positive 

based on serological evidence alone could be the result of an earlier infection, making 

the exposure location incorrect.  Likewise, the cases with only a clinical history could 

have been misdiagnosed, leading to inclusion of a zip code where no actual TBRF cases 

were documented.   Misclassification could also be a concern with the “probable” case 

group in the publication used for the county level analysis (Dworkin et al., 2002a).  If 

some probable cases were not actual TBRF cases, it may bias the outcome toward the 

null. 

The data analyzed at both the county and zip code levels of analysis were case 

counts that measured prevalence of reported TBRF in an area over a period of decades.  

These were not density dependent or population based measures and provided no 
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measure of incidence for this disease.  This issue is further complicated by the fact that 

that TBRF is often contracting while traveling (Dworkin et al., 2002a), implying that 

cases exposed in an area may not be a part of the population of that area.  A measure 

accounting for population or human visitation in an area being analyzed should be 

incorporated into future analyses.    

This study was conducted on the county and zip code scales, therefore findings 

cannot be applied to individual TBRF cases mapped below the zip code level.  The 

associations identified by this study were ecologic in nature, and do not provide a 

complete description of factors required for TBRF transmission.  Given the often 

peridomestic nature of TBRF exposure, there were likely other factors that affected 

TBRF transmission on a much smaller scale than was examined during the course of this 

study.  These unaccounted for confounding factors could have influenced the results of 

these analyses.   For instance, the amount of rustic cabins, the primary exposure 

location for B. hermsii infection, in a county or zip code is a probable confounder of the 

association between TBRF occurrence and the ecologic factors measured because it is 

related to both the exposure and the disease.  A measure accounting for rustic 

dwellings in an area should be incorporated into any similar analyses conducted in the 

future. 

Neighboring counties and zip codes were chosen as controls because they were 

likely to be ecologically similar to areas with cases.  This choice in control areas could 

have led to case and control areas being matched on the ecologic factors examined in 
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these analyses.  Since counties in the western United States are large and ecologically 

diverse, case and control counties were less likely to display ecologic similarities.  

However, the smaller scale of the zip codes analyzed increased the likelihood that case 

and control zip codes would be ecologically similar, possibly leading to case and control 

areas being over-matched at this level of analysis.  This could lead to control zip codes 

being more similar to case zip codes, diminishing the ability to differentiate between 

case and control zip codes for the ecologic variables analyzed.  This ecologic similarity 

between smaller, neighboring areas may have contributed to the lack of significance of 

the majority evergreen forest land cover variable in the zip code logistic regression 

analyses.  This could be addressed by the random selection of unaffected counties and 

zip codes throughout the state being analyzed, rather than the use of neighboring 

control areas. 

Since this study used exposure at the group level for the areas studied, there is 

potential for ecological fallacy in the interpretation of the results.  This could lead to 

identification of significant associations that were not true, and incorrect conclusions 

based on these associations.  This is especially true of the majority land cover variables.  

For example, if a county or zip code with TBRF cases is characterized by majority 

evergreen forest, but contains smaller areas of deciduous forest, it is possible that cases 

were infected in deciduous forest areas of that county or zip code; however, since the 

majority land cover variable in that area was evergreen forest, it would be inaccurately 

associated with TBRF occurrence.  The county and zip code level measures of the 

ecologic variables used in these analyses do not represent the precise locations in which 
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cases were exposed to TBRF and the results of these analyses should not be applied to 

individual TBRF cases.         

The temperature and precipitation variables used for this analysis provided 

average values for a 30 year period from 1971 to 2000.  These variables did not account 

for possible substantial changes that may have influenced TBRF occurrence, but 

provided an average value for temperature and precipitation in the areas studied.  

Additionally, the years included in the average for these variables do not completely 

coincide with the years TBRF cases were reported in both levels of analysis, but the 

average of the variables was considered an acceptable indication of the behavior of the 

variables over a similar span of time.  Likewise, the map layers for land cover of each 

state were only accurate when they were created.  Since both analyses encompassed 

TBRF cases occurring over a period of 20 years or more, the landscape of the areas 

where these cases were exposed may not remain constant.  Using the majority land 

cover for each area analyzed was done to capture the overall character of each county 

or zip code, which may be less likely to change over time than a specific area within a 

county or zip code.           

5.6 Recommendations for Future Studies 

 This study provided evidence of associations between ecologic factors and TBRF 

occurrence at the county and zip code levels, but the associations observed did not fully 

characterize areas where TBRF was observed.  Analyses could be repeated at either the 

county or zip code level, but additional factors related to TBRF occurrence should be 
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investigated.  Previous studies have identified a strong association with staying in a 

rustic cabin and exposure to TBRF.  Exploring this association on a county or zip code 

level by using some measure as a surrogate for the amount of rustic cabins in an area, 

while accounting for the ecologic variables explored in this analysis, may further refine 

the model of TBRF occurrence at these levels.  Human visitation or tourism revenue is 

an aspect of an area that should be explored in future analyses.   Additionally, analysis 

of ecologic and additional factors in a smaller area, such as census tract, could provide 

more specific associations with TBRF occurrence.  Performing a spatial analysis in an 

area where an outbreak occurred by mapping individual case exposure locations would 

provide much more specific evidence of associations with TBRF cases.  The ecologic 

variables examined could be specific to at least the month in which the outbreak 

occurred, providing a much more accurate characterization of the conditions under 

which cases were exposed to TBRF.  Finally, mapping the habitat of the Ornithodoros 

species tick vectors responsible for TBRF transmission could lead to a much improved 

predictive model for areas of greater TBRF risk.  This approach has been successfully 

attempted with Ixodes pacificus, (Eisen et al., 2006), the tick species that is the primary 

vector of Lyme disease in California, and would provide an additional layer of detail to 

any larger scale future analyses of TBRF. 
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