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ABSTRACT

ECOLOGIC FACTORS AND TICK-BORNE RELAPSING FEVER IN THE WESTERN UNITED

STATES: COUNTY AND ZIP CODE ANALYSES

Tick-borne relapsing fever (TBRF) is a rare bacterial disease caused primarily by
Borrelia hermsii and Borrelia turicatae in the western United States and transmitted by
Ornithodoros species soft ticks. No spatial analyses have been attempted for TBRF, and
previous epidemiologic studies were limited to case series and outbreak investigations.
This study employed ArcGIS to map counties and zip codes with identified cases of TBRF
and neighboring control counties and zip codes. A total of 140 counties with reported
cases of TBRF, identified in a previous publication, and 243 counties with no reported
cases in 12 states were included in the county level analysis. The zip code level analysis
included 60 zip codes with cases of TBRF and 193 control zip codes in California and
Washington, using information provided by state health departments. Ecologic factors,
including elevation, precipitation, average minimum temperature, average maximum
temperature, and land cover, in these areas were compared by frequency analysis and
logistic regression analyses. The occurrence of TBRF was associated with elevation,
temperature, and evergreen forest land cover in county level analyses, and with

elevation and temperature in zip code level analyses. No associations were found with



precipitation or additional land cover variables and TBRF occurrence. Counties (0.25>p
>0.0003) and zip codes (0.0007 > p > 0.03) with cases were seen in higher proportions
at elevations above 500 meters than control counties and zip codes, and elevation was
included in logistic regression models at both levels of analysis. A higher proportion of
counties with cases were observed in the middle of the range of temperature values,
while control counties were evenly distributed (0.01 > p > 0.0004). The association with
temperature at the zip code level was less consistent, with higher case zip code
proportions observed at lower temperatures (0.08 > p > 0.01). A temperature variable
was included in logistic regression analyses at both levels of analysis. Evergreen forest
was the majority land cover type in a greater proportion of counties with cases when
compared to control counties (total land cover p = 0.04) and this variable was only
significant in the county level logistic regression analyses. The distribution of land cover
variables was not significant at the zip code level (p = 0.82) and no zip code level land
cover variables were significant in logistic regression analyses.

Similar associations were observed when using logistic regression to analyze high
risk counties and control counties (p = 0.005), and high risk zip codes and control zip
codes (p = 0.006). Zip code level analyses of California produced a logistic regression
model containing an elevation variable (p = 0.0002), while the best model for
Washington contained the same variables found in the complete zip code level analysis
(p =0.07). These results suggest that ecologic factors including elevation and
temperature play a role in areas where TBRF occurs. These factors likely influence the

distribution and/or abundance of the tick vectors responsible for this disease or their



preferred hosts. Further refinement of these analyses could lead to the construction of

a predictive model that could be used to highlight areas of increased risk of TBRF.
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CHAPTER 1

Tick-borne relapsing fever (TBRF) is one of eight endemic tick-borne diseases in
the United States and is one of the five of these tick-borne diseases that is not nationally
notifiable (MMWR, 1997). Cases of TBRF were reported in the United States as early as
the beginning of the 20" century. TBRF was first recognized as a public health concern
at a symposium held by the American Association for the Advancement of Science in
1942. By that time, cases had been documented from the west coast to Texas and the
symposium was held to educate public health officers and physicians regarding the
characteristics and spread of the disease (Moursund, 1942). Since that symposium,
research on TBRF has increased understanding of the responsible organism and vector,
clinical manifestations, pathogenesis, and epidemiology. However, research on this
disease is limited, especially compared to Lyme disease, a related tick-borne illness. In
fact, the majority of past research on TBRF occurrence consists primarily of case series
and outbreak investigations. Further research is needed to gain a more complete

picture of this disease and its effect on public health.

Past studies have provided an understanding of the locations and environments

that are optimal for transmission of this disease. While observational studies such as



outbreak investigations have provided insight on TBRF occurrence on localized scale,
few descriptive studies have examined TBRF distribution patterns on a larger scale, for
instance the county level. No research has been published that examines counties or zip
codes where TBRF has been reported and compares them to surrounding areas where
no cases have been reported using ecologic correlates. Systematic examination of these
issues could lead to an increased understanding of the disease and a more targeted

approach to disease prevention.

Analyses of the relationship between disease distribution and ecologic correlates
have been conducted in numerous publications at varying scales, such as county, parish,
zip code and census tract. Such analyses were conducted for other tick-borne diseases,
including Lyme disease and tularemia (Eisen et al., 2006, Eisen et al., 2008b), but not for
TBRF. This study used methods shown to be effective in analyzing other diseases and
applied the same methodology to TBRF in an attempt to approach the disease from a
new perspective. Characterizing counties and zip codes where TBRF cases have been
reported and comparing them to neighboring areas where no cases were reported will
elucidate potential ecologic differences between areas with and without disease.
Additionally, comparison between county level and zip code level analysis will give
insight into the scale necessary for such associations with disease to be observed.
Examining correlations between elevation, habitat type, average temperature,
precipitation and location of TBRF cases is a previously unattempted approach to
analyzing the factors that affect the occurrence of this disease. The overall goal of this

project was to provide insight into ecologic factors that affect TBRF occurrence and



inform future research to increase understanding of this little known and often

forgotten disease.



CHAPTER 2: LITERATURE REVIEW

2.1 Background

Tick-borne relapsing fever (TBRF) is characterized by recurring febrile episodes
accompanied by a variety of nonspecific symptoms including headache, myalgia,
arthalgia, shaking chills and abdominal distress. Tick-borne relapsing fever is endemic in
the western United States, southern British Columbia, the plateau regions of Mexico,
Central and South America, Central Asia, along the Mediterranean, and throughout the
majority of Africa (Dworkin et al., 1998). TBRF is a bacterial infection, caused by Borrelia
species spirochetes. Different species of bacteria that cause TBRF are found worldwide,
but in North America infections are caused primarily by B. hermsii and B. turicatae. The
bacteria are transmitted by several species of soft ticks of the genus Ornithodoros
(family Argasidae), with the species of Borrelia named for the species of tick that
transmits it (e.g. Ornithodoros hermsii transmits Borrelia hermsii). Research on TBRF in
the U.S. has been limited, especially compared to Lyme disease, and it is believed to be

an underreported disease in most areas where it is endemic (Dworkin et al., 2002b).

2.1.1 Organism

Borrelia spirochetes are actively motile, helical organisms that cause recurring

disease cycles through a process in antigenic variation (Stoenner et al., 1982), in which



the surface proteins expressed by the spirochete change over the course of infection
(Barbour, 1990). It has been demonstrated that the Borrelia serotype (which is based
on bacterial surface antigens) does not change while the bacteria are in an infected tick,
only during the course of human infection (Schwan et al., 1998). Soft ticks of the family
Argasidae (Ornithodoros species) transmit the species that cause TBRF, but Borrelia
infections have occurred via blood transfusion, intravenous drug use, and laboratory

accidents (Beck 1942, Favorova et al. 1971, Lopez-Cortez et al. 1989).

There are other spirochetes in the Borrelia genus that cause related diseases.
Borrelia burgdorferi is the causative agent of Lyme disease. B. burgdorferi spirochetes
are spread through the bite of hard ticks of the Ixodes genus and cases occur primarily in
northeastern, north-central areas of the United States, with some cases reported in
western coastal states as well. Though clinical presentation and endemic regions differ
between Lyme disease and TBRF, the two diseases can produce similar results on some
diagnostic assays. Two-tiered diagnostic testing for Lyme disease reduces the likelihood
of such cross-reactivity. Another related pathogen, Borrelia recurrentis, is transmitted
by the human body louse and causes a more severe infection known as louse-borne
relapsing fever (LBRF). The disease is clinically similar to TBRF, but typically only one
relapse is observed. LBRF is prevalent in some African countries and is not endemic in

the United States (Murray et al., 2002).



2.1.2 Vector

Ornithodoros hermsii and Ornithodoros turicata, the two most common vectors
of TBRF in the United States, have similar lifestyles but different habitats and hosts. O.
hermsii, one of the smallest species of Ornithodoros ticks, lives in coniferous forests at
elevations between 1,500 and 8,000 feet, primarily in western states, including
Washington, Idaho, Oregon, California, Nevada, Arizona, New Mexico, Utah, and
Colorado (Cooley et al., 1944). Its primary hosts are ground squirrels, tree squirrels and
chipmunks (Dworkin et al., 1998). Humans are incidental hosts often exposed at night

while staying in structures that have been poorly rodent-proofed, such as rustic cabins.

O. turicata is found from Kansas west to California and south to Mexico, but lives
in drier habitats at lower elevations (Cooley et al., 1944). It is significantly larger than O.
hermsii, and unlike O. hermsii, secretes large amounts of infectious coxal fluid either
during or after feeding. These ticks have often been recovered from underground
burrows, and preferential hosts are currently unknown, although coyotes and rodents
are among the suspected hosts. Many human exposures to O. turicata have occurred in

caves in Texas (Rawlings, 1995).

In both species of ticks, Borrelia species can be transmitted by any life cycle
stage, and tick infection occurs primarily from feeding on the blood of an infected host.
Blood meals are brief, usually lasting between 15 and 90 minutes. Persistent infection
of tick salivary glands (Schwan et al., 1998) with spirochetes allows for rapid

transmission (within a minute) during the short feeding period (Davis, 1955). The



spirochetes can be passed from one stage of the life cycle to another (trans-stadial
transmission), and are also vertically transmitted from an infected tick to her offspring.
Trans-ovarial (vertical) transmission is possible in both of the discussed Ornithodoros
species, but is much more common in O. turicata than O. hermsii. In contrast to hard
ticks, the female Ornithodoros ticks lay clutches of eggs after each blood meal and can

live for years in a favorable environment.

Ornithodoros parkeri can be found throughout the west in areas similar to that
of O. turicata (Thompson et al., 1969). Only one human case of TBRF has been directly

linked to an O. parkeri bite (Davis, 1955).

2.1.3 Pathogenesis

Following the bite of an infected tick, Borrelia spirochetes migrate to the host’s
blood stream where they begin to multiply, eventually reaching an estimated bacterial
blood concentration between 10° and greater than 1065pirochetes per milliliter of blood
during symptomatic disease (Stoenner et al., 1982). In contrast to the high level
spirochetemia observed during febrile episodes, organisms are microscopically
undetectable in the bloodstream during asymptomatic periods. Animal data suggest
that during these afebrile intervals the bacteria are sequestered in internal organs such
as the liver, spleen, bone marrow and central nervous system. Antigenic variation is
responsible for the recurring cycles of spirochetemia and resulting fevers associated

with TBRF (Felsenfeld, 1971).



The two groups of outer membrane proteins that participate in antigenic
variation are known as “variable small proteins” (vsp) and “variable large proteins” (vip).
Originally, both groups were collectively known as “variable major proteins” or “vmp”
(Hinnebusch et al., 1998). These proteins are encoded in DNA sequences on linear
plasmids (Barbour, 1990). These proteins are expressed sequentially on the surface of
the bacteria, thereby changing the antigenic identity of the bacteria. Up to 40 different
serotypes have been identified from the progeny of a single cell of B. hermesii, strain HS1
(Restrepo et al., 1994). These multiple alterations prevent the host from eradicating the

bacteria, leading to recurrent febrile episodes (Dworkin et al., 2002b).

Information concerning possible complications of TBRF has primarily been
observed from experimental animals and autopsies from fatal louse-borne relapsing
fever (LBRF) cases. Observed complications associated directly with TBRF include
nonspecific dermatologic symptoms (Southern et al., 1969), renal and urologic
involvement, as well as thrombocytopenia. Additional complications observed in small
numbers of TBRF cases include: hypoxia, elevated liver enzyme levels, arrhythmia,
myocarditis, and acute respiratory distress syndrome (ARDS) (MMWR, 2007). Mortality
from TBRF in the United States is rare and primarily associated with complications
during pregnancy, including spontaneous abortion, premature birth, or neonatal death

(Goubau, 1984).



2.1.4 Clinical Manifestations

Recurring episodes of fever is the symptom that is most characteristic of TBRF.
Several other nonspecific symptoms of TBRF include altered sensorium, headache,
myalgia, arthalgia, abdominal pain, and vomiting. Diarrhea can occur in about 25% of
cases (Dworkin et al., 1998). The mean incubation period for TBRF is about 7 days, with
a range of 4 to more than 18 days (Southern et al., 1969). The average length of the first
febrile episode is 3 days with a range between 12 hours to 17 days (Goubau, 1984) and
the average time between first episode and first relapse is 7 days. Most cases will
experience 2 relapses during the course of infection and around 22% will experience 4
or more relapses (Dworkin et al., 2002a). Mortality associated with TBRF is very low,
with only a handful of deaths reported. TBRF infection during pregnancy can result in
more severe disease, miscarriage or birth of an infected infant (Dworkin et al., 1998).
The Jarisch-Herxheimer Reaction, an increase in symptom severity, is a common
complication among cases of TBRF and LBRF that can occur shortly after antibiotic
treatment. Diagnosis of TBRF is often difficult because of individual variability between
cases and misdiagnosis as other diseases which present with multiple febrile episodes

(Dworkin et al., 2002b).

2.1.5 Laboratory Diagnostic Techniques

Detection of spirochetes in a patient’s blood during a febrile episode, along with
a compatible patient history, provides confirmation of a TBRF infection (Burgdorfer,

1976). A drop of blood, stained with Wright’s or Giemsa stain, or a wet mount of blood



can be used to detect spirochete motility using bright-field microscopy. A dark field
microscope and direct or indirect immunofluorescent staining are also utilized.
Spirochetes may be overlooked in the blood for a number of reasons, including lack of
suspicion of relapsing fever and examination of blood taken during an asymptomatic
interval (Dworkin et al., 2002b). Polymerase chain reaction (PCR) is occasionally used to
identify minute quantities of Borrelia species DNA which may be present in blood.
Serologic confirmation of TBRF requires a four-fold rise in antibody titer between acute
and convalescent serum samples, or a single reactive sample if paired sera are
unavailable. Commonly used serologic assays include the indirect immunofluorescent
antibody test (IFA), the enzyme-linked immunosorbent assay (ELISA), and the
immunoblot. The ELISA is used most frequently, and often run in parallel with another
test, such as the Western blot, to distinguish between B. hermsii and Borrelia
burgdorferi (Lyme disease) antibodies. Evaluation of sensitivity and specificity has been
prevented by small numbers of serum samples from confirmed TBRF patients (Fritz et
al.,, 2004). Additionally, the variability in outer surface proteins expressed over time
may lead to reduced reactivity with a positive sample because the antigens expressed in

the sample may be different than those used in the assay (Dworkin et al., 2002b).

2.1.6 Treatment

TBRF is effectively treated with antibiotics, most commonly penicillin,
doxycycline, erythromycin, and tetracycline. A common complication of antibiotic

treatment is the Jarisch-Herxheimer reaction (JHR) which may occur on initial treatment

10



of relapsing fever with an effective antibiotic (Dworkin et al., 2002b). Symptoms of JHR
include hypotension, tachycardia, chills, rigors, diaphoresis and elevated body
temperature, which usually begin within one to four hours of initial antibiotic dose. In a
group of 61 TBRF cases with information available, a JHR was observed in 54% (33 cases)
of those treated with antibiotics (Dworkin et al., 1998). This high frequency of patients
experiencing a JHR indicates that those being treated for TBRF should be kept under
observation for at least two hours after beginning antibiotic treatment. Study in LBRF
cases has shown spirochetes disappearing from circulation as large amounts of
cytokines are released by the immune system, in addition to altered spirochete
morphology with an increased susceptibility to phagocytosis. The stimulus that triggers
the massive cytokine release is currently unknown (Griffin, 1998), but it may be related
to the death of large numbers of spirochetes in the bloodstream and the release of
endotoxin and other immunogenic antigens from these dying spirochetes. No deaths

from this reaction have been reported in North America (Dworkin et al., 2002b).

2.1.7 Prevention and Control

Control measures for TBRF are difficult to implement because of the longevity of
the tick vector and the variety of tick host species that can serve as TBRF reservoirs.
Prophylactic antimicrobials can be taken after tick exposure, but this often isn’t effective
since most tick exposure among cases of TBRF goes unnoticed (Cutler 2010). Prevention
of TBRF involves avoiding dwellings and natural areas which may be infested with

rodents and ticks. Rodent-proofing homes and rustic cabins, while reducing rodent

11



habitats around homes, may also reduce the risk of acquiring TBRF (Dworkin et al.,

2002b).

2.2 Epidemiology

TBRF is endemic in the western United States, southern British Columbia, the
plateau regions of Mexico and Central and South America, the Mediterranean, Central
Asia and throughout most of Africa (Dworkin et al., 1998). The first reported case of
TBRF in the United States occurred in a traveler to Texas in 1905 (Wynns, 1942) and the
first documented case in the western U.S. was in 1915 in Jefferson County, Colorado
(Meador, 1915). TBRF is not a nationally notifiable disease (MMWR, 1997), meaning
that reporting of cases isn’t required nationwide, but it is reportable in eleven of the

states where it is endemic.

A publication by Mark Dworkin provides the most complete description of the
epidemiology of TBRF in the United States currently available (Dworkin et al., 2002a).
Records and report forms of TBRF cases were obtained from state health departments
in TBRF endemic and neighboring states. The authors identified 450 cases of TBRF (300
confirmed and 150 probable, by their definitions) across 12 western states, many of
which had records dating back to the 1970’s. The states in which cases of TBRF were
reported, from most cases to least, are: California, Colorado, Washington, Idaho,
Oregon, Texas, Arizona, Nevada, Utah, New Mexico, Wyoming, and Montana. In these
12 states, 51% of all TBRF cases were reported in only 13 counties which the authors

speculated may be because of “better awareness and reporting of TBRF in those

12



counties, greater popularity of those sites for human visits, a greater density of the tick
vector population in those areas, or a combination of these factors.” Seasonality was
examined for those cases with an available onset date and it was found that the
majority of cases occurred in the summer months, especially July and August, when
Borrelia hermsii was the suspected agent. The causative agent of TBRF in Texas was
more likely to be Borrelia turicatae, and majority of cases were diagnosed in the early
winter months keeping with exposure to the agent during cave exploration. The
majority of patients (57%) reported staying in a cabin or rural dwelling and about 40% of
cases were traveling outside their state of residence when exposed. For those with
information available, the average number of relapses was 2 and 50 cases experienced
symptoms of the Jarisch-Herxheimer Reaction (JHR). The major limitation of this study
was that information on cases is limited because TBRF is not a nationally notifiable
disease and reporting is passive in many states. The authors speculated that this could
result in an “underestimation of the distribution and magnitude of TBRF in the United

States” (Dworkin et al., 2002a).

2.3 Outbreak Investigations

Several outbreaks of tick-borne relapsing fever have been documented in the
western United States over the past few decades. These outbreaks have provided

valuable information about the distribution of, and risk factors for contracting, TBRF.

One of the first documented outbreaks of TBRF on a large scale occurred on

Browne Mountain, near Spokane Washington, in March 1968 (Thompson et al., 1969).
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There were 11 cases of TBRF among the 42 boy scouts and scoutmasters camping in the
area. Those who spent at least one night in a rodent infested cabin had a much higher
chance of contracting TBRF (10 out of 20 became ill) than those who camped only in
tents (1 in 22 became ill). Diagnosis of TBRF was based on clinical and epidemiological
data, as well as observation of spirochetes in one patient’s blood. Additionally, 2 of 18
O. hermisii ticks collected from the cabin were shown to be infected with spirochetes.
The high attack rate among those staying in the cabin highlights the importance of this

environment for the transmission of TBRF.

Two separate outbreaks of TBRF occurred almost two decades apart at the same
area of the North Rim of Grand Canyon National Park in Arizona. The first of these
outbreaks occurred in the summer of 1973 and included symptoms compatible with
TBRF in 27 employees and 35 overnight guests (Boyer et al., 1977). Of these 62 cases,
16 were confirmed by observation of Borrelia spirochetes in peripheral blood smears or
inoculated Swiss mice. The authors found a significant association between TBRF and
sleeping in rustic log cabins, and large amounts of rodent nesting materials were
recovered from cabins where patients had stayed. In 1990, in the same area, another
smaller outbreak of TBRF occurred. During this outbreak, 15 visitors and 2 employees
had illness that met the confirmed or probable case definitions (Paul et al., 2002). Most
guests stayed in the same northwest group of cabins in which the outbreak occurred in
1973 (RR=8.2 for northwest vs. southeast cabins) and seven of the patients stayed in the
same cabin in the northwest group (RR=98 versus other cabins). All cabins were

subsequently evaluated and rodent-proofed as necessary. Nests of pine squirrels, an
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important reservoir for TBRF, were observed in cabins where TBRF was likely
contracted. It was speculated that an epizootic of plague could have reduced the
rodent population, leading the ticks to seek blood meals from humans staying in cabins

in the park. In both outbreaks the number of TBRF cases was likely underestimated.

In August and September of 1989, six cases of TBRF were reported among
persons who had at different times spent the night in the same cabin at Big Bear Lake,
San Bernardino County, California (MMWR, 1990). Of these six cases, TBRF was
serologically confirmed in two patients and spirochetes were observed in blood smears
of two others. Inhabited ground squirrel burrows were found under the cabin, but no
infected ticks were recovered. This outbreak was unusual because the illness was
especially severe in one patient who likely suffered from meningeal inflammation.
Additionally, four out of six patients had significant gastrointestinal symptoms (nausea
and vomiting) and were initially diagnosed with viral gastroenteritis. Gastrointestinal

symptoms usually occur in a lower percentage of cases of TBRF.

In late June of 1995, 23 members of a family from Nebraska and Kansas stayed in
a rental cabin in Estes Park, Colorado (Trevejo et al., 1998). By late July 1995, 11 (48%)
of the 23 family members had become ill. The symptoms of this illness were compatible
with TBRF. Additionally, 5 of 30 (17%) other lodgers of this cabin were shown to have
symptoms compatible with TBRF. Telephone interviews were conducted to determine
behaviors while staying in the cabin. Case-patients were more likely to have slept in the

top bunk bed (OR=5.2) or on the floor (OR=28.0) than those that didn’t become ill.
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Spirochetes were not detected in any patient peripheral blood smears; however,
Borrelia hermsii was cultured from the blood of one patient. Among 13 convalescent
serum samples tested, 3 were positive, 8 were equivocal, and 2 were negative. Four
case-patients met the definition of a confirmed case, nine were listed as probable and
three were suspected cases. There was evidence of rodent infestation around the
cabin, including two rodent carcasses, rodent nesting material and feces. Small
mammal trapping yielded multiple rodents, of which two Uinta chipmunks were culture-
positive for B. hermsii. This outbreak confirmed chipmunks as important reservoirs for
TBRF and illustrated the importance of awareness when staying in cabins in endemic

areas.

2.4 Spatial Modeling

Spatial modeling of disease distribution and ecological factors has been done
with other vector-borne diseases, but not with tick-borne relapsing fever. This approach
is useful for identifying areas where risk of exposure may be elevated to better target

surveillance and control measures (Eisen et al., 2008a).

A model of Lyme disease risk was constructed using information on disease
incidence in California (Eisen et al., 2006). A single county, Mendocino County, was
used to develop a model incorporating areas with high densities of nymphs of Ixodes
pacificus and cases of Lyme disease. From these areas of high risk, habitat features
were identified that were associated with Lyme disease, and these features were

compared to Lyme disease cases occurring in the entire state of California. From this a
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statewide predictive model was made to ascertain areas of high risk of exposure to /.
pacificus nymphs which demonstrated strong associations with elevated Lyme disease
risk. Of importance in this paper is the use of zip-code level data in the model, rather
than county-level data. The authors conclude that the zip-code scale is useful “to detect
small, isolated areas with elevated disease risk that otherwise may go undetected”
(Eisen et al., 2006). This is especially useful in the western United States, where

counties are often large and ecologically diverse.

Similar processes were used to construct spatial risk models for human plague in
both the southwestern United States (Eisen et al., 2007b) and in the West Nile region of
Uganda (Winters et al., 2009). In both studies, ecologic correlates of disease incidence
were identified via logistic regression and entered in a predictive model that identified
areas where cases are likely to occur, including areas where plague may be
underreported. Plague is a severe and well reported disease, so the models are fairly
complete. The publication by Winters et al. provided the basis for the analysis used in

this project.

Mapping and modeling of tularemia, another tick-borne bacterial disease, was
completed for a nine-state area in the south-central United States (Eisen et al., 2008b).
ArcGIS (ESRI, Redlands, CA) was used to map county-based tularemia incidence from
1990-2003 for nine states, which was analyzed along with data concerning elevation,
average climate data, vegetation index and land-cover classifications. Association

between habitat type, such as dry forest, grassland, areas near water and tularemia
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incidence was determined by ordinal logistic regression, since tularemia incidence data
weren’t normally distributed. From this regression model, predictive models of risk
exposure to tularemia were produced for Arkansas and Missouri, the two states where
the majority of cases were reported. This was feasible because reporting for this
disease is fairly comprehensive. The model was evaluated by utilizing areas where cases
were and were not reported and habitats that were positively and negatively associated
with tularemia risk. The study found associations between habitat and disease risk, but
the authors suggest that finer-scale models may be more useful for targeting prevention

measures and informing local medical personnel.
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CHAPTER 3: COUNTY LEVEL ANALYSIS

3.1 Background

Analysis of the relationship between TBRF occurrence and ecologic factors was
conducted at two different scales. The initial analysis involved examining the
distribution of tick-borne relapsing fever at the county level. Information for this level
of analysis was taken from the publication “The Epidemiology of Tick-borne Relapsing
Fever in the United States” (Dworkin et al., 2002a). This publication contains the most
complete information regarding the distribution of TBRF in the United States. It
includes 450 cases from 12 states, reported from January 1977 to January 2000. These
cases are grouped at the county level, with county of exposure known for the majority
of cases, rather than using county of residence as a surrogate. A summary of the
number of counties with TBRF cases in each state is provided in Table 3.1. Comparison
of those counties in which TBRF has been documented to neighboring counties where
TBRF has not been reported may provide useful information regarding ecologic features
that influence transmission of TBRF. Mapping cases for an entire state can provide
information on certain habitat types and areas where cases were exposed. Comparing
the distribution of TBRF between multiple states can confirm that certain habitats are
suitable for transmission. A potential concern with analysis at this level is that many

counties in the western United States where TBRF is most common are large, potentially
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containing significant variation in habitat types and elevations. Examination of these
areas on a finer scale, which was performed in the zip code level analysis, may yield

more specific associations between landscape features and TBRF occurrence.

Table 3.1: Counties with cases of tick-borne relapsing fever (TBRF) in the western
United States, 1977-2000

State Number of Counties  Total Number
with TBRF of Counties

Arizona 3 15
California 21 57
Colorado 21 62
Idaho 8 44
Montana 1 56
Nevada 4 16
New Mexico 33 33
Oregon 12 36
Texas 16 254
Utah 6 29
Washington 13 39
Wyoming 2 23

*From Dworkin et al., 2002a

3.2 Hypothesis

There is a significant relationship between one or more ecologic factors and the

occurrence of cases of TBRF at both the county and zip code levels.

3.3 Specific Aims

e Obtain data regarding TBRF cases at the county level for 12 western states in
which it is endemic (Dworkin et al., 2002a).

e |dentify counties without cases of TBRF adjacent to those counties with
reported cases.
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e Analyze features of counties with and without TBRF and compare both groups
using frequency analysis. Features to be analyzed include: elevation, land
cover designations, precipitation, minimum and maximum temperature.

e Extract values for each potential ecologic covariate using ArcGIS.

e Identify features that are statistically associated with the presence and absence
of TBRF at the county level using logistic regression models.

e Compare high risk counties with control counties to identify any unique
associations not observed in the full case county analysis.

e Discuss the results of the analyses and attempt to draw conclusions from the
associations found.

3.4 Methods

This research protocol was submitted to the Institutional Review Boards (IRB) of
both Colorado State University and the Centers for Disease Control and Prevention and
designated as exempt. Approval from the IRB’s of the states of California and

Washington was not required and therefore not pursued.

3.4.1 Case and Control County Selection

Counties with cases of TBRF (Dworkin et al., 2002a) were identified and used to
create a layer file in ArcGIS, versions 9.3 and 10, (ESRI, Redlands, CA). These counties
with cases of TBRF are henceforth referred to as “case counties.” There were 140
counties in 12 states with recognized cases of TBRF. As in the original publication, each
case county was categorized according to the total number of cases identified in the

county during the original study. The categorization of counties by total number of
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TBRF cases was done both for display purposes and an analysis comparing the counties
with higher numbers of cases to control counties. Table 3.2 provides more detail as to

the number of counties within each category.

Table 3.2: Number of tick-borne relapsing fever (TBRF) cases per county among
counties with reported cases in the western United States, 1977-2000

Case Numbers Number of Counties

1-5 125
6-10 4
11-15 5
>15 6

*From Dworkin et al., 2002a

Neighboring counties without TBRF cases that share a contiguous border were
selected to serve as “control counties” in the analysis. These counties were selected
using the “Selection” menu item and using the “Select By Location” feature in ArcGIS.
Any county that touched the boundary of a county in the “case county” layer was
selected using this operation. Control counties were only included if they were located
in one of the same 12 states as the case counties. The selected counties were then
exported as a layer file in ArcGIS. A total of 243 counties were chosen as control
counties. Both case and control counties were displayed using the GCS_WGS_1984

projection.

3.4.2 Ecologic Data

Elevation was derived from a 1 km resolution digital elevation model (USGS/ESRI,
Redlands, CA). The elevation for each county was assessed using the minimum,

maximum and average values for that county. This was intended to account for any
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variability in elevation that may occur across larger counties with varied topography.
Elevation data was displayed in the GCS_WGS_1984 projection. Land cover
classification was derived from the National Land Cover Dataset (USDA, National
Resources Conservation Service [NRCS]), available for each state individually. The land
cover type that was identified as the “majority” for each county was the one associated
with that county. Land cover layers were displayed in the projections NAD_1983 10N
through NAD 1983 14N, depending on the state being analyzed. Data for precipitation,
minimum and maximum temperature were derived from individual models of each
using annual averages from 1971 to 2000 (PRISM Climate Group, Oregon State
University). These data corresponded well with the time span during which most of the
cases included in this study were documented. Minimum, maximum, and mean values
were obtained in each county for each variable to account for any variation that might

occur across each county for these three potential covariates as well.

3.4.3 ArcGIS Analysis

Maps were created using each of the ecologic variables to be analyzed, as well as
the map layers for the case and control counties. If the projections were not the same
for all layers, the “Project” tool was used to convert layers to the same projection. Once
all layers were displayed in the same projection, “Zonal Statistics,” were used to extract
the data from the ecologic variable layers. Zonal statistics extracts information from the
raster data used to represent the ecologic variables and calculates summary statistics

(e.g. minimum, maximum, mean, and majority) for each county within the data layers
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for case and control counties. This information was then added to a spreadsheet in
Microsoft Excel 2007 (Microsoft, Redmond, WA), where information from all counties

was consolidated and organized for statistical analysis.

See Figures 3.1 and 3.2 for the distribution case and control counties, respectively.

3.5 Statistical Analysis

3.5.1 Variable Definition

All counties where TBRF cases were identified were listed as “case.” Neighboring

III

counties with no cases of TBRF reported were listed as “control.” The minimum,
maximum, and mean values of the four continuous ecologic variables (i.e. elevation,
average precipitation, average minimum temperature and average maximum
temperature) were each treated independently. For example, average precipitation
variable was analyzed as three different variables named PPT_MIN, PPT_MAX, and
PPT_MEAN, each of which contained the minimum, maximum, and mean average
precipitation values for each county, respectively. The land cover variable was
categorized numerically, with the number representing the majority land cover or
habitat type in each county. The land cover variable was further divided into a series of
design or “dummy” variables, with each one representing an individual land cover type.
If that specific land cover type was the majority in a county, it was coded “1.” If it was
not the majority, it was coded “0.” The individual habitat types represented by these
variables included: open water, developed land, barren land, deciduous forest,

evergreen forest, shrub/scrub, grassland/herbaceous, crop/livestock and wetlands.
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3.5.2 Frequency Analyses

The distribution of case and control counties was first compared by frequency
analysis. Each ecologic variable was divided into categories based on the range of
values observed in that variable. The proportion of case and control counties in each
category was calculated by dividing the number of case or control counties in each
category by the total number case or control counties. The proportions of case and
control counties in each category were compared and differences in the proportions of
case and control counties were noted in the results. The overall distribution of the
counties in these categories was also noted. Additionally, a chi-square value was
calculated for each variable using the distribution of values observed in the frequency
tables. A statistically significant chi-square value indicated a difference in the

distribution between case and control counties.

3.5.3 Logistic Regression Analyses

Binomial logistic regression was conducted on all variables using methods
described in Applied Logistic Regression (Hosmer and Lemeshow, 2000). All statistical
analyses were carried out using the JMP (SAS, Cary, NC) statistical software package,

version 9.02.

First, a univariable logistic regression analysis was run for each potential
covariate against the dichotomous outcome variable “Case Status,” which listed

I”

counties as either “case” or “control.” A p-value less than 0.25 for the chi-square
statistic was required for consideration for the multivariable model. Once the potential
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covariates were identified, both forward and backward stepwise logistic regression were
run, and the results of each were compared. Similar variables that were significant in
the model (e.g. multiple temperature variables) were checked for correlation to each
other using a Spearman correlation test. Any two variables with a Spearman’s p > 0.8
could not both be included in the final model. In the case of two correlated variables,
the decision on which one to include in the model was based on p-values and

performance with other variables in the purposeful variable selection process.

Using the stepwise analyses and Spearman’s correlation test as guides, a more
purposeful variable selection was conducted without the use of an automated system.
After purposeful variable selection was completed, the model coefficients, effect
likelihood ratios and Wald statistics were compared to those of the larger models
created through stepwise regression to confirm that no drastic changes occurred in the
model because of the elimination of variables. The lack of any such changes in these
measures confirms that the model with fewer variables was as effective as the larger
model. At this stage in the model building process, all variables that were not selected
for the multivariable model were added again to identify any that may only have an
effect in the presence of other variables. This model, containing all the significant and

III

relevant variables, is referred to as the “preliminary main effects model” (Hosmer and

Lemeshow, 2000).
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3.5.4 Evaluation of Selected Variables and Interaction

After the main variables included in the model were established, the assumption
of linearity of all continuous variables was tested. A smoothed scatterplot was created
for continuous variables by dividing continuous variables into categories and plotting
the proportion of cases in each category against the category itself. From this plot, the
shape of the data was noted and variables without obvious linear trends were
considered for transformation or categorization. Additionally, a quartile analysis was
conducted for some variables. This involved splitting the data into quartiles and
constructing three design variables, which were run in a model together and
individually. Whether these design variables were an improvement over the continuous
variable, coupled with the shape of the scatterplot, lead to a decision regarding possible
alteration of the variable. The same methods were applied to variables not included in
the multivariate model to confirm that alteration did not produce a variable that made a
significant contribution to the model. This model is referred to as the “main effects

III

model” (Hosmer and Lemeshow, 2000).

After the main variables in the model were chosen, interactions between the
terms were examined. For consideration as a contributing factor in the model, any
interaction term was required to be both statistically significant and biologically

plausible.
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3.5.5 Comparison of Potential Models

Following identification of interaction terms, multiple potential models were
compared using various statistical measures, such as Akaike information criterion (AICc)
(Akaike, 1974), receiver operator characteristic curves (ROC), and the goodness of fit (or
lack of fit) chi-square statistic. The goodness of fit test indicates whether the variables
included in the model are sufficient. If the X value is not significant (p > 0.05), it
indicated that no more variables need to be added to the model. The ROC curve is a
plot of all sensitivity values on the y-axis against all (1 - sensitivity) values on the x-axis.
The area under the curve (AUC) of the ROC curve describes the overall accuracy of the
model without the need for a threshold or cutpoint (Fielding & Bell, 1997). The AUC
values range from 0.5 to 1.0, with values closer to 0.5 providing poor discrimination
between the two groups being classified, and values closer to 1.0 providing excellent
discrimination between these two groups. Akaike information criterion is a tool used
for model selection only that provides no information regarding the quality of a
particular model. The AlCc values were used to compare candidate models and choose
the most concise or parsimonious model. The model with the lowest AlCc value was
considered the best model, but models within two AlCc units were considered as
competing models (Eisen et al, 2010). Finally, sensitivity, specificity, positive predictive
value (PPV) and negative predictive value (NPV) were calculated for each model being
considered using a probability cut-off value that maximized both sensitivity and
specificity. Using the information provided by these tests, the final multivariable model

was selected from the competing models by choosing the one with the highest
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sensitivity and the best balance among specificity, PPV and NPV (Eisen et al., 2010). This
was the model that best represented the relationship between the presence or absence

of TBRF cases in a county and the ecologic covariates examined.

3.6 Results

3.6.1 Study Population Characteristics

All summary information regarding cases is taken from “The Epidemiology of
Tick-Borne Relapsing Fever in the United States” (Dworkin et al, 2002a). In this case
series, 52% were males, 40% were females, and 8% were missing gender information.
The median patient age was 35 years old. There were 300 confirmed cases and 150
probable cases included in this study. A confirmed case was defined as fever and the
observation of spirochetes by microscopy. A probable case was defined as relapsing
iliness with either serologic evidence of infection or epidemiologically appropriate
exposure. No further details on method of diagnosis were available. Month of onset of
illness was documented for 425 out of 450 cases. The most common months of onset
were July (24%) and August (23%), with large numbers of cases documented in June and
September as well. Further detail regarding the distribution of TBRF cases by month of
iliness onset is available in Figure 2 in “The Epidemiology of Tick-Borne Relapsing Fever

in the United States” (Dworkin et al, 2002a).
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3.6.2 Frequency Analysis of Ecologic Variables

Each ecologic variable was divided into categories based on the range of the data
displayed by the 140 case counties and 243 control counties being analyzed. In each
category, the proportion of case counties was compared to the proportion of control
counties. The three majority land cover classifications that were present in the highest
number of case counties were: shrub/scrub (40.7%), evergreen forest (37.9%) and
grassland/herbaceous (15.7%). Evergreen forest was the only land cover type that had
a higher percentage in case counties than control counties, with a difference of 14.4%
observed. The variable for majority crop or livestock area was associated with more
control counties than case counties, with a difference of about 8%, implying a negative
association with TBRF occurrence. The remaining land cover variables were represented

in a small number of total counties and had similar frequencies in case and control

counties. The overall distribution of the land cover variables was significant, with a X*
21.58 (p =0.04). The general pattern of the three elevation variables was lower case
county percentages at lower elevations and higher percentages at higher elevations,
when compared to control county percentages in the same category. The variables for
mean and maximum elevation were statistically significant, while the variable for
minimum elevation was not significant (p = 0.25). No apparent pattern was observed
across the three precipitation variables, with both case and control county frequencies
highest among the lower and middle categories; however, the variable for maximum
precipitation in a county was statistically significant (p = 0.003), with slightly higher

proportions of case counties observed at higher precipitation levels. With the three
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maximum temperature and the three minimum temperature variables, there was a
higher frequency of cases observed in the middle temperature categories, as opposed to
the highest and lowest temperature categories. For most temperature variables,
control county percentages were generally evenly distributed among all categories and
all temperature variables had a statistically significant chi-square value (p < 0.01 for all

variables). Table 3.3 displays the results of the frequency analysis in greater detail.

Table 3.3: Distribution across selected ecologic variables of counties with reported tick-
borne relapsing fever (TBRF) cases and neighboring control counties in the western
United States, 1977-2000

No. of Counties No. of Control

Majority Land Cover

Percentage of Counties Percentage of

with TBRF Counties with TBRF Control Counties
Open Water 0 1 0.0% 0.4%
Developed Land 2 3 1.4% 1.2%
Barren Land 0 1 0.0% 0.4%
Deciduous Forest 0 4 0.0% 1.6%
Evergreen Forest 53 57 37.9% 23.5%
Shrub/Scrub 57 110 40.7% 45.3%
Grassland/Herbaceous 22 36 15.7% 14.8%
Crop/Livestock Area 5 28 3.6% 11.5%
Wetlands 0 2 0.0% 0.8%

*Land Cover: X* =21.58, p = 0.04

Minimum Elevation No. of Counties No. of Control

Percentage of Counties  Percentage of Control

(meters) with TBRF Counties with TBRF Counties
<500 48 103 34.3% 42.4%
501-1000 22 44 15.7% 18.1%
1001-1500 36 55 25.7% 22.6%
1501-2000 27 29 19.3% 11.9%
> 2000 7 12 5.0% 4.9%
Maximum Elevation No. of Counties No. of Control Percentage of Counties  Percentage of Control
(meters) with TBRF Counties with TBRF Counties
<1000 17 69 12.1% 28.4%
1001-2000 24 53 17.1% 21.8%
2001-3000 42 61 30.0% 25.1%
3001-4000 47 54 33.6% 22.2%
> 4000 10 6 7.1% 2.5%
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Mean Elevation

No. of Counties

No. of Control

Percentage of Counties

Percentage of Control

(meters) with TBRF Counties with TBRF Counties
<500 12 61 8.6% 25.1%
501-1000 29 52 20.7% 21.4%
1001-1500 32 45 22.9% 18.5%
1501-2000 32 46 22.9% 18.9%
2001-2500 21 26 15.0% 10.7%
> 2500 14 12 10.0% 4.9%

*Min. Elevation: X* = 5.41, p = 0.25; Max. Elevation: X = 21.19, p = 0.0003; Mean Elevation: X* = 19.41, p = 0.002

Minimum

Precipitation (mm)

No. of Counties
with TBRF

No. of Control
Counties

Percentage of Counties
with TBRF

Percentage of Control
Counties

<250 50 71 35.7% 29.2%
251-500 59 95 42.1% 39.1%
501-750 20 41 14.3% 16.9%
751-1000 6 22 4.3% 9.1%

> 1000 5 14 3.6% 5.8%
Maximum No. of Counties No. of Control Percentage of Counties  Percentage of Control
Precipitation (mm) with TBRF Counties with TBRF Counties

<500 7 41 5.0% 16.9%
501-1000 51 102 36.4% 42.0%
1001-1500 35 51 25.0% 21.0%
1501-2000 26 17 18.6% 7.0%

>2000 21 32 15.0% 13.2%

Mean Precipitation No. of Counties No. of Control Percentage of Counties  Percentage of Control
(mm) with TBRF Counties with TBRF Counties

<250 3 15 2.1% 6.2%
251-500 57 101 40.7% 41.6%
501-750 43 61 30.7% 25.1%
751-1000 19 35 13.6% 14.4%

> 1000 18 31 12.9% 12.8%

*Min. Precipitation: X = 5.39, p = 0.25; Max. Precipitation: X = 21.32, p =0.003; Mean Precipitation: X = 4.16, p=0.38

Minimum Tmin

No. of Counties

No. of Control

Percentage of Counties

Percentage of Control

(Celsius) with TBRF Counties with TBRF Counties
<-10 17 30 12.1% 12.3%
-10to -5 45 47 32.1% 19.3%
-5to0 40 48 28.6% 19.8%
Oto5 18 35 12.9% 14.4%
5to 10 7 38 5.0% 15.6%
>10 13 45 9.3% 18.5%

34




Maximum Tmin

No. of Counties

No. of Control

Percentage of Counties

Percentage of Control

(Celsius) with TBRF Counties with TBRF Counties
<0 6 16 4.3% 6.6%
Oto5 57 79 40.7% 32.5%
5to 10 51 62 36.4% 25.5%
10to 15 21 73 15.0% 30.0%
>15 5 13 3.6% 5.3%
Mean Tmin (Celsius) No. of Counties No. of Control Percentage of Counties  Percentage of Control
with TBRF Counties with TBRF Counties
<-5 5 8 3.6% 3.3%
-5to 0 29 52 20.7% 21.4%
Oto5 65 73 46.4% 30.0%
5to 10 25 55 17.9% 22.6%
>10 16 55 11.4% 22.6%

*Min. Tmin: X* = 22.78, p = 0.0004; Max. Tmin: X* = 16.28, p = 0.003; Mean Tmin: X°

Minimum Tmax

No. of Counties

No. of Control

Percentage of Counties

=13.65, p=0.009

Percentage of Control

(Celsius) with TBRF Counties with TBRF Counties
<0 4 54 2.9% 22.2%
Oto5 35 56 25.0% 23.0%
5to 10 45 34 32.1% 14.0%
10to 15 26 20 18.6% 8.2%
15to 20 9 45 6.4% 18.5%
>20 21 34 15.0% 14.0%
Maximum Tmax No. of Counties No. of Control Percentage of Counties  Percentage of Control
(Celsius) with TBRF Counties with TBRF Counties
<15 10 18 7.1% 7.4%
15to 20 50 102 35.7% 42.0%
20 to 25 48 43 34.3% 17.7%
25to0 30 29 77 20.7% 31.7%
>30 3 3 2.1% 1.2%
Mean Tmax (Celsius) No. of Counties No. of Control Percentage of Counties  Percentage of Control
with TBRF Counties with TBRF Counties
<10 6 13 4.3% 5.3%
10to 15 40 63 28.6% 25.9%
15to 20 52 61 37.1% 25.1%
20to 25 27 49 19.3% 20.2%
>25 15 57 10.7% 23.5%

*Min. Tmax: X* = 19.25, p =0.002; Max. Tmax: X = 15.51, p = 0.004; Mean Tmax: X
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3.6.3 Logistic Regression Analyses of Ecologic Variables

Univariate logistic regression analysis indicated that seven variables chosen for
analysis were correlated with the presence or absence of TBRF in a county and 11 were
not. Variables that did not have a statistically significant relationship with TBRF
occurrence at the county level included: the maximum value for minimum temperature,
the maximum value for maximum temperature, the maximum and mean values for
precipitation, shrub/scrub, open water, deciduous forest, developed land,
grassland/herbaceous, wetlands, and barren land. These variables were not considered
for inclusion in the multivariable model. Both forward and backward stepwise
regression produced similar results, and the variables selected for the multivariable
model included: minimum and mean values for elevation, minimum temperature and
maximum temperature, as well as the majority evergreen forest variable. Since multiple
elevation and temperature variables are represented in this model, a Spearman
correlation test was run to determine if there was any correlation among the variables
either within or between groups. The two elevation variables and four temperature
variables were highly correlated within their own groups (e.g. minimum elevation was
correlated with mean elevation), with p > 0.8 in every case. However, none of the
variables were correlated with another variable outside their specific group, for example
no elevation variables were highly correlated with any of the temperature variables.
From these analyses it was determined that the final multivariable model would contain
variables for elevation, temperature and specifically the land cover variable for the

majority of a county being evergreen forest.
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3.6.4 Purposeful Variable Selection

After these preliminary analyses were complete, a more purposeful variable
selection was conducted to identify those to be included in the final model. Elevation
and temperature variables were run in multivariable models in different combinations
to determine whether any statistically significant relationships existed. Of all the
possible combinations of the two elevation and four temperature variables, only the
variables for mean elevation and the mean value for maximum temperature produced a
model that was statistically significant as a whole, as well as each being statistically
significant individually within the model (p < 0.1). After these two variables were
chosen, the variable representing the majority land cover type for a county being
evergreen forest was added to the model. The model containing all three variables was
also statistically significant as a whole and for each individual variable. Wald statistics,
effect likelihood ratios and variable coefficients were compared between the larger
model containing multiple elevation and temperature variables and the smaller model
containing only one of each. Only very minor changes were observed in the various
measures, indicating that the loss of variables from the larger model did not negatively
impact the model in a meaningful way. Therefore, the preliminary main effects model
included the variables for mean elevation, the mean value for maximum temperature,

and majority evergreen forest.
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3.6.5 Assumption of Linearity Evaluation

The linearity assumption for the two continuous variables (mean elevation and
the mean value for maximum temperature) was tested by examining the smoothed
scatterplot and performing quartile analysis on each. For the smoothed scatterplot, the
continuous data were divided into categories and plotted against the percentage of case
counties in each group. The overall shape of the data was observed, which helped
inform decisions about transformation or categorization of the variables. The plot for

the mean elevation variable suggested that the linearity assumption was valid.
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Figure 3.3: Proportion of case counties by mean county elevation, western United
States, 1977-2000. A case county is defined as a county with reported tick-borne
relapsing fever (TBRF) cases; control counties are neighboring counties without reported
TBRF cases. Percentage calculated as the number of case counties divided by total case
and control counties within each environmental category.

In order to check the linearity assumption further, the mean elevation variable
was divided into quartiles and three design variables were created to represent these
guartiles, with the lowest quartile serving as the reference group. These design
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variables did nothing to improve the model and only the one comparing the highest
guartile of elevation values to the lower three quartiles was statistically significant.
Similarly, the shape of the data does not indicate that a transformation is needed and
attempted transformations, such as squaring the variable, did nothing to improve its

statistical significance. Therefore the mean elevation was left as a continuous variable.

The same methods were used to assess the assumption of linearity in the
variable for mean value of maximum temperature in a county. Initial observation of the
smoothed scatterplot heavily implied that the variable was not linear, with higher
percentages of case counties in the middle temperature values compared to the higher
and lower values. Quartile categorical analysis confirmed this, but produced two design
variables that were significant. The variable was divided into tertiles and the design
variable that was statistically significant compared the middle tertile to the upper and
lower ones. This design variable was chosen to be included in the final model because it
characterized the pattern observed in the mean maximum temperature variable

without violating the assumption of linearity.
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Figure 3.4: Proportion of case counties by mean value for average maximum
temperature, western United States, 1977-2000. A case county is defined as a county
with reported tick-borne relapsing fever (TBRF) cases; control counties are neighboring

counties without reported TBRF cases. Percentage calculated as the number of case
counties divided by total case and control counties within each environmental category.

The only precipitation variable that was statistically significant in the univariable
analysis, minimum precipitation, was evaluated using the quartile method to confirm
that it would not become significant if converted to a categorical variable. Only the
design variable for the highest quartile was significant, but it became non-significant
once added to the multivariable model (p = 0.42). It did nothing to improve the whole
model and was therefore excluded. Likewise, transforming variables that were non-

significant did not improve their performance in any model constructed.

3.6.6 Interaction Terms

The main effects model included the variables for: mean elevation

(ELEV_MEAN), the design variable comparing the middle tertile of mean maximum
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temperature values to the highest and lowest tertiles (DUMMYT2), and majority
evergreen forest (EVGRN-FOR_MAIJ). Interactions between all three major variables
were evaluated and it was found that the interaction terms between the temperature
design variable and the variables for elevation and evergreen forest were statistically
significant, while the interaction term for elevation and evergreen forest was highly
non-significant (p = 0.87). Exclusion of the non-significant interaction term only
improved the model as a whole, so it was not considered for inclusion in the final model.
Both interaction terms that were statistically significant seemed biologically plausible,

and were considered for the final model.

3.6.7 Comparing Multivariable Models

The goodness of fit chi-square statistic was compared among all four candidate
models being considered, however it was statistically significant for all four models (p <
0.05). This implied that additional terms were needed in the final multivariable model,
but a model constructed using all potential variables also had a statistically significant
chi-square goodness of fit statistic. Likewise, all models with transformed or
categorized variables were statistically significant for goodness of fit. The specific
goodness of fit chi-square statistic used in the JMP software package could not be
identified, but it is possible that the test used was not the most appropriate choice for
the data. Alternatively, there could be factors influencing the data that were not
considered in this analysis. Regardless, goodness of fit was similar for all models and

was not considered in choice of the final multivariable model.
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A total of four models were considered as candidates for the final multivariable

model. The variables included in each model are listed below.

1. Mean elevation, mean maximum temperature design variable, majority
evergreen forest, and interaction terms for (elevation*temperature) and
(evergreen forest*temperature)

2. Mean elevation, mean maximum temperature design variable, majority
evergreen forest

3. Mean elevation, mean maximum temperature design variable, majority
evergreen forest, and the interaction term for (elevation*temperature)

4. Mean elevation, mean maximum temperature design variable, majority

evergreen forest, and the interaction term for (evergreen forest*temperature)

Table 3.4: Candidate models for the county level analysis of the relationship between
ecologic variables and tick-borne relapsing fever (TBRF) occurrence, western United
States, 1977-2000

Negative Sensitivity  Specificity PPV NPV Independent model

log- variables
likelihood
1 231.61 5 475.5 0 0.68 62 70 54 76 ELEV_MEAN,
DUMMYT2, EVGRN-
FRST_MAJ

2 237.67 3 483.5 7.96 0.66 47 79 57 72 ELEV_MEAN,
DUMMYT2, EVGRN-
FRST_MAJ

3 234.0 4 4781 265 068 53 75 55 73  ELEV_MEAN,
DUMMYT2, EVGRN-
FRST_MAJ

4 237.08 4 484.3 8.84 0.66 49 78 56 72 ELEV_MEAN,
DUMMYT2, EVGRN-
FRST_MAJ

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under

receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MEAN =

mean elevation, DUMMYT2 = mean maximum temperature design variable, EVGRN-FOR_MAJ = majority evergreen

forest.
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Akaike information criterion (AlCc) was examined for each model chosen. The
model with the lowest value was considered the best, but models within two AlCc units
were considered competing models. Model 1 had the lowest AlCc value, but Model 3
was almost within two AlCc units. The ROC AUC values are the same for the two
models, so sensitivity, specificity, PPV and NPV were compared. Model 1 had the higher
sensitivity value, with only minor drops in specificity and PPV. Model 1 was chosen as
the final multivariable model for the county level analysis. Specifics on the final model

parameters can be found in Table 3.5.

Table 3.5: Parameter estimates for the selected multivariate logistic regression model
for the relationship between ecologic variables and tick-borne relapsing fever (TBRF)
occurrence at the county level, western United States, 1977-2000

Parameter Estimates Likelihood ratio test
Model covariates Estimate 3 95% C.I. X p-value
Intercept -1.59 0.34 (-2.29, -0.96) 22.37 1 <.0001
ELEV_MEAN 0.001 0.0002 (0.0006, 0.0015) 22.05 1 <.0001
DUMMYT2 -0.38 0.13 (-0.64, -0.11) 7.88 1 0.005
EVGRN-FRST_MAI -0.64 0.17 (-0.99, -0.32) 16.76 1 <.0001
EVGRN-FRST_MAJ*DUMMYT2 0.35 0.17 (0.03, 0.70) 4.76 1 0.03
ELEV_MEAN*DUMMYT2 -0.001 0.0002 (-0.001, -0.0003) 10.94 1 0.0009

*df = degrees of freedom; ELEV_MEAN = mean elevation, DUMMYT2 = mean maximum temperature design variable,
EVGRN-FOR_MAJ = majority evergreen forest; Whole Model Test X = 39.68, df =5, p < 0.0001; goodness of fit X =
463.22, p = 0.002

3.6.8 Analysis of High Risk Counties vs. Control Counties

To determine whether counties with higher case numbers possessed any unique
correlations that may have been obscured by the large number of counties with only
one case, an analysis was conducted comparing those counties with more than five

cases against control counties. This was conducted using the same methods described
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in the analysis comparing all case and control counties. The data from the 15 counties
with greater than 5 cases reported were first regressed against all 243 control counties
included in the full analysis. Following that, they were compared to only the 54 control
counties that shared a border with them, to determine if there was a stronger
correlation when compared to only neighboring counties.

The analysis comparing the 15 high case counties to all 243 control counties
yielded similar results to the full county level analysis. Stepwise regression produced
multivariable models containing variables for elevation, evergreen forest, precipitation,
and several for temperature. The temperature variables were all correlated, but no
other variables were correlated with each other. Purposeful variable selection led to
the creation of a model containing variables for elevation (ELEV_MAX) and majority
evergreen forest. The interaction term between the two variables was also found to be
significant. The two models, with and without the interaction term, were compared to
each other as indicated above to determine which best represented the relationship
between high case counties and all controls. The model without the interaction term

was chosen because of its higher sensitivity value.

Table 3.6: Candidate models for the analysis of the relationship between ecologic
variables and tick-borne relapsing fever (TBRF) occurrence for high risk counties and all
control counties, western United States, 1977-2000

Negative A ROC Sensitivity Specificity PPV NPV  Independent
log- AIC  AUC model variables
likelihood
1 51.92 2 109.94 3.24 0.76 65 87 99 13 ELEV_MAX, EVGRN-
FOR_MAJ
2 49.28 3 106.72 0 0.78 61 87 99 12 ELEV_MAX, EVGRN-
FOR_MAJ

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MAX=
mean elevation, EVGRN-FOR_MAJ = majority evergreen forest.
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The same procedure was followed to compare the 15 high case counties to only
their 54 neighboring control counties. Univariate analysis provided only one elevation
and two temperature variables that were significant, with p < 0.1. Stepwise regression
was performed on all variables with p < 0.2, but the only variable that was significant in
both stepwise analyses was the variable for minimum value for average maximum
temperature in a county (TMAX_MIN). No attempt to combine any two variables in a
model was successful and this particular maximum temperature variable was the most
statistically significant and had the lowest AlICc value, indicating it was the best model

for this particular analysis.

3.7 Conclusions

Moderate values of maximum temperature (between 0 and 25°C, depending on the
specific variable), elevations above 500 meters, and evergreen forest habitat were
associated with TBRF occurrence at the county level, based on both the frequency and
logistic regression analyses. The percentage of TBRF case counties was higher than
control counties in higher elevation categories and lower than control counties in lower
elevation categories for the mean and maximum elevation variables (p < 0.002). There
was a higher case county frequency associated with the middle range of average
temperatures when compared to the more even distribution of control counties across
all temperature categories, with p < 0.01 for all six temperature variables. Evergreen
forest was the majority land cover in a greater proportion of case counties than control

counties, with a difference of 14% observed, and the overall distribution of the land
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cover variables was significant (p = 0.04). Additionally, interactions between
temperature and both elevation and majority evergreen forest were shown to be
statistically significant. Precipitation displayed very little association with TBRF
occurrence at the county level, with the exception of the statistically significant
maximum precipitation variable observed in the frequency analysis (p = 0.003) and the
statistically significant univariate logistic regression model for minimum precipitation.
The analyses comparing high risk counties and controls yielded similar associations to
those found in the full county level analysis. This indicates that the associations
observed between ecologic variables and case counties did not differ in areas where
more cases were recorded. The consistency among the multiple analyses performed
provides confirmation that there was an association between elevation, temperature,

and evergreen forest and TBRF occurrence at the county level for these data.
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CHAPTER 4: ZIP CODE LEVEL ANALYSIS

4.1 Background

Following the county level analysis, cases of TBRF were analyzed at the zip code
level. County level spatial modeling may be acceptable for diseases occurring in the
eastern United States, but sub-county scale analyses of disease risk are preferable in the
western United States where counties are often large and encompass considerable
environmental variability (Eisen and Eisen, 2008). The finer scale of the zip code level
analysis could lead to different, and possibly more precise, results than the county level
analysis. Data analyzed for the zip code level analysis included only cases with known
zip code of exposure located in California and Washington, two of the states with the
highest number of reported TBRF cases (Dworkin et al., 2002a). Examination of TBRF
distribution and comparison of areas with TBRF to neighboring areas without TBRF has

not been attempted previously at the zip code level.

4.2 Specific Aims

e Obtain data regarding TBRF cases at the zip code level using information
provided by the state health departments of Washington and California.
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Identify zip codes without cases of TBRF adjacent to those zip codes with
reported cases.

Obtain data for ecologic variables in the areas being studied. Variables to be
analyzed included: elevation, land cover designations, precipitation, minimum
and maximum temperature.

Extract values for each potential ecologic covariate using ArcGlIS.

Identify features that are statistically associated with the presence of TBRF at
the zip code level using logistic regression models.

Perform the same analyses for each state individually to determine if any
differences exist between states.

Compare high risk zip codes to control zip codes to identify any unique
associations not observed in the complete zip code analysis.

Discuss the results of the analyses and attempt to draw conclusions from the
associations found.

If a model is successfully created, attempt to apply it to zip codes in Oregon and
use it to identify areas of potential increased risk for TBRF.

4.3 Methods

4.3.1 Case and Control Zip Code Selection

Information was requested regarding reported cases of TBRF from the state

health departments of California, Colorado, and Washington. The information

requested included: zip code of exposure (or zip code of residence if exposure location

was unknown), age, gender, month of onset of illness, and the method by which TBRF

was diagnosed. No personal identifiers were provided for any of the individual cases

used in this study. Upon further examination of the data collected, zip code of
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residence was found to be a poor surrogate for zip code of exposure since very few
cases were infected in their zip code of residence. Zip code of residence and zip code of
exposure were available for 87 cases in the state of California. Among these 87 cases,
zip code of exposure was the same as zip code of residence for only 16 cases (about
18%). This information, coupled with the knowledge that cases were often exposed to
TBRF while traveling, often outside their state of residence (Dworkin et al, 2002a), led to
the decision to include only cases where zip code of exposure was available in the

analysis.

The data received from the Colorado Department of Public Health and
Environment did not contain sufficient information to identify zip code of exposure for

any of the cases listed and was therefore excluded from this analysis.

TBRF cases that met the inclusion criteria were summed based on zip code
where exposure to TBRF occurred. Based on the total number of TBRF cases in each zip
code, a category was assigned to each zip code. These case number categories were
similar to the categories used in the county level analysis (i.e. 1-3, 4-6, 7-9, or 10 cases
per zip code). These categories were not used for statistical analysis, but for map
display purposes only. A total of 54 cases from Washington and 87 cases from California
were included in the analysis. These 141 cases occurred in 60 different zip codes: 29 in

Washington and 31 in California.
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Table 4.1: Number of zip codes with reported cases of tick-borne relapsing fever (TBRF),
California and Washington, 1990-2010

Case Categories ‘ Number of Zip Codes

1-3 52
4-6
7-9
10 1

Neighboring zip codes without TBRF cases that share a contiguous border were
selected to serve as “control zip codes” in the analysis. These zip codes were selected
using the “Select By Location” feature in ArcGIS (ESRI, Redlands, CA). Any zip code that
touched the boundary of a case zip code was selected using this operation. Control zip
codes were only included if they were located in either Washington or California. The
selected zip codes were then exported as a layer file in ArcGIS. A total of 193 zip codes
were chosen as control zip codes. Both case and control zip codes were displayed using

the GCS_WGS_1984 projection.

4.3.2 Ecologic Data

The ecologic data analyzed in the zip code analysis were the same data used in
the county level analysis. Elevation was derived from a 1 km resolution digital elevation
model (USGS/ESRI, Redlands, CA). The elevation for each zip code was assessed using
the minimum, maximum and average values for that zip code. This was intended to
account for any variability in elevation that may occur across larger zip codes with varied
topography. Elevation data were displayed in the GCS_WGS_1984 projection. Land

cover classification was derived from the National Land Cover Dataset (USDA, NRCS)
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available for each individual state. The land cover type that was identified as the
“majority” for each zip code was the one assigned to with that zip code. Land cover
layers were displayed in the projections NAD_1983 10N through NAD_1983 14N,
depending on the state being analyzed. Data for precipitation, minimum and maximum
temperature were derived from individual models of each using annual averages from
1971 to 2000 (PRISM Climate Group, Oregon State University). While this time span
included several years outside the years when cases were documented (1990-2010), it
provided a good representation of an average value for these variables. Minimum,
maximum, and mean values were obtained for each variable to account for any

variation that might occur across each zip code.

4.3.3 ArcGIS Analysis

Maps were created in ArcGIS in the same manner as the county level analysis,
using each of the ecologic variables to be analyzed, as well as the map layers for the
case and control zip codes. If the projections were not the same for all layers, the
“Project” tool was used to convert layers to the same projection. Once all layers were
displayed in the same projection, “Zonal Statistics,” located in the “Spatial Analyst”
toolbox, was used to generate summary statistics for each zip code from the ecologic
variable layers. This information was then added to a spreadsheet in Microsoft Excel
2007 (Microsoft, Redmond, WA), where information from all zip codes was consolidated

and organized for statistical analysis.

See Figures 4.1 and 4.2 for the distribution case and control zip codes, respectively.
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4.4 Statistical Analysis

4.4.1 Variable Definition

Statistical Analysis was conducted using methods similar to those used in the
county level analysis. All zip codes where TBRF cases were identified were listed as
“case” zip codes. Neighboring zip codes with no cases of TBRF reported were listed as
“control.” The minimum, maximum, and mean values of the four continuous ecologic
variables (i.e. elevation, average precipitation, average minimum temperature and
average maximum temperature) were each treated as their own variable and assigned
the same labels used in the county level analysis. The land cover variable was
categorized numerically, with the number representing the majority land cover or
habitat type in each zip code. The land cover variable was further divided into a series
of design or “dummy” variables, with each one representing an individual land cover
type, as was done in the county level analysis. The individual habitat types represented
by these variables included: open water, developed land, evergreen forest,

shrub/scrub, grassland/herbaceous, and crop/livestock area.
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Figure 4.1: Distribution of zip codes with cases of tick-borne relapsing fever (TBRF), 1990-2010
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Figure 4.2: Distribution of control zip codes without reported tick-borne relapsing fever cases
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4.4.2 Frequency Analyses

The distribution of case and control zip codes was compared by frequency
analysis as in the county level analysis. Each ecologic variable was divided into
categories and the proportion of case and control zip codes in each category was
calculated. The proportions of case and control zip codes in each category were
compared and a chi-square value was calculated for each variable using the distribution
of values observed in the frequency tables. A statistically significant chi-square value

indicated a difference in the distribution between case and control zip codes.

4.4.3 Logistic Regression Analyses

Binomial logistic regression was conducted on all variables using the methods
listed in Applied Logistic Regression (Hosmer and Lemeshow, 2000). All statistical
analysis was carried out using the JMP (SAS, Cary, NC) statistical software package,

version 9.02.

First, a univariable logistic regression analysis was run for each potential
covariate against the dichotomous outcome variable “Case Status,” which listed zip
codes as either “case” or “control.” Forward and backward stepwise regression were
run as described in the county level analysis, and Spearman correlation coefficients

were used to identify correlation among response variables.

Purposeful variable selection was completed, the model coefficients, effect

likelihood ratios and Wald statistics were compared to those of the larger models
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created through stepwise regression to confirm that no drastic changes occurred in the
model because of the elimination of variables. All variables that were not selected for
the multivariable model were added again to identify any that may only have an effect

in the presence of other variables.

4.4.4 Evaluation of Selected Variables and Interaction

After the main variables included in the model were established, the assumption
of linearity of all continuous variables was checked. Smoothed scatterplot and quartile
analysis were conducted for continuous variables to inform a decision regarding
transformation or categorization of the variables. The same methods were applied to
variables not included in the multivariable model to confirm that alteration did not
produce a variable that made a significant contribution to the model. After the main
variables in the model were chosen, interactions between the terms were examined

using the methods described in the county level analysis.

4.4.5 Comparison of Potential Models

The multiple potential models were compared as before, using various statistical
measures, such as Akaike information criterion (AlCc) (Akaike, 1974), receiver operator
characteristic curves (ROC), and the goodness of fit (or lack of fit) chi-square statistic.
Sensitivity, specificity, positive predictive value (PPV) and negative predictive value
(NPV) were calculated for each model and the final multivariable model was selected
from the competing models by choosing the one with the highest sensitivity and the
best balance among the other three measures.
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4.4.6 Model Validation

The final multivariable model for the total zip code analysis was validated for use
as a predictive model using a leave-one-out method to ensure that the trends observed
were not heavily reliant on any one case or control zip code. This method involves
removing one zip code from the model, running the model and obtaining the AUC value
from the ROC curve. After this is accomplished, the zip code is replaced and the next zip
code is removed, the model run again, and the AUC value obtained. This was performed
sequentially for every zip code in the model. The average and range of the AUC values
were analyzed to confirm that the absence of any single zip code did not drastically

affect the overall accuracy of the model that was chosen (Fielding & Bell, 1997).

4.4.7 California and Washington Individual Models

The above methods, with the exception of the model validation step, were
applied to create individual logistic regression models for California and Washington.
Zip codes from each state were separated into two tables and the ecologic data
associated with these zip codes were analyzed in the same manner as the data set that

included both states.

4.4.8 Predictive Risk Model

A predictive model was constructed using the complete zip code level logistic
regression model to apply the variables found to be associated with TBRF in Washington

and California to the state of Oregon. This was done to highlight areas where TBRF may
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be more likely to occur, and where increased surveillance for TBRF may be beneficial.
This model may not be completely accurate since the disease is underreported and it

would only be based on reported TBRF cases.

The final logistic regression model was entered into the “Raster Calculator” tool
in the “Spatial Analyst” toolbox of ArcGIS, version 10. The model is represented by the

equation:
Logit (P) = Bo + B1x1 + B2X> [expression 1]

where P is the probability that TBRF is present in a zip code and Bg is the intercept. The
values B; and B, represent the coefficients of the variables x; and x,, respectively. This
equation produced an output raster layer that was used to define areas as high or low

risk in “Raster Calculator” by entering values into the equation:
P =e" 8P/ (1 + ¢ 8" ®) [expression 2] (Eisen et al., 2010)

The output raster from the above equation corresponded with the probability values
observed during the sensitivity and specificity analysis. Using the “Reclassify” tool on
the “Spatial Analyst” toolbox, raster values were dichotomized based on the cutoff p-
value that maximized sensitivity and specificity. Any values below the cutoff were
coded as “0” to signify low risk and any values above the cutoff were coded as “1” to
signify high risk. The output from this analysis was a raster layer that displayed areas
that were more likely to contain cases of TBRF based on the final model chosen for the

total zip code level analysis.
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4.5 Results

4.5.1 Study Population Characteristics

|. California

The California Department of Health Services identified and submitted 160 cases
of TBRF for analysis between the years of 1990 and 2009. Of these 160 cases, zip code
of residence was known for 147 cases and zip code of exposure was known for 87 cases.
Cases where exposure to TBRF occurred outside of California were excluded from the
analysis. Descriptive summaries included all cases with the appropriate information, not

just those used in the final analysis.

The gender distribution of cases in California was heavily skewed towards males,
with almost twice as many males infected as females. Of the 156 cases where gender

was available, 100 (64%) were male and 56 (36%) were female.

Information regarding age was available for 156 of the cases of TBRF submitted
for analysis. The youngest case reported was one year of age; the oldest case was 86
years of age. The mean age was 34 and the median age was 35. A broad spectrum of
ages was represented, with most age groups containing 15 to 25 cases. The age group
with the greatest number of cases was 40-49. The distribution of case is illustrated in

the Figure 4.3, divided into ten year categories.
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Figure 4.3: Distribution of reported tick-borne relapsing fever (TBRF) cases by patient
age, California, 1990-2009

Month of onset of illness was available for 159 cases. Similar to the findings of
previous studies (Dworkin et al, 2002a; Dworkin et al, 1998), cases of TBRF present
primarily in the summer and early autumn months. Of the 159 cases where month of
onset was known: 11% occurred in June, 30% occurred in July, 29% occurred in August,
and 11% occurred in September. The distribution of month of onset for all cases in

California is available in Figure 4.4.
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Figure 4.4: Distribution of tick-borne relapsing fever (TBRF) cases by month of onset of
illness, California, 1990-2009

The method by which TBRF was diagnosed was available for 149 cases.
Observation of spirochetes on a peripheral blood smear was the most common method
(77%) and serology was second most common (13%). Cases diagnosed by all methods
were included in the analysis to improve statistical power. Only a small number of cases
(2%) were not laboratory confirmed by any method. See Figure 4.5 for a summary of

diagnostic methods.

| Clinical/Epi

B Serology

E Smear

W Smear/Serology
W Other Microscopy

M Unknown

Figure 4.5: Distribution of tick-borne relapsing fever (TBRF) cases by method of
diagnosis, California 1990-2009
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Il. Washington

The Washington State Department of Health identified 115 cases of TBRF that
occurred in Washington or were diagnosed in the state of Washington between 1990
and 2010. Zip code of exposure was identified based on the information reported
regarding the location of exposure. The majority of the towns in which most cases were
exposed have only one zip code, which allowed for precise identification of zip code of
exposure. Cases where exposure occurred in a state other than Washington or
exposure location information was insufficient for identification of zip code of exposure
were excluded from analysis (n = 61). Zip code of residence was provided for only one
case, which was excluded from analysis. A total of 54 cases of TBRF where zip code of

exposure was identified were included in the analysis.

The gender of TBRF cases was known for all 115 Washington cases. Cases were
split almost equally between genders, with 52% male and 48% female. Age data were
available for all but one of the cases from Washington. Among cases, the minimum age
was less than one year old, the maximum age was 89 years old, the mean age was 35,
and the median age was 38. Like the California data, ages were varied with no apparent
clustering in any specific age group. The highest number of cases was observed in the
40-49 age group, and similar case numbers were seen in the 0-9 and 10-19 age groups.
The distribution of case ages is illustrated in Figure 4.6, with ages divided into 10 year

categories.
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Figure 4.6: Distribution of reported tick-borne relapsing fever (TBRF) cases by patient
age, Washington, 1990-2010

Month of onset of illness was available for all 115 cases (Figure 4.7). The
seasonal distribution was typical of tick-borne relapsing fever, and other tick-borne

diseases: 14% in June, 24% in July, 28% in August, and 11% in September.
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Figure 4.7: Distribution of tick-borne relapsing fever (TBRF) cases by month of onset of
illness, Washington, 1990-2010
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The method by which TBRF was diagnosed was provided for all 115 Washington
cases. As with cases from California, the most common diagnostic methods were blood
smear (65%) and serology (11%). For 19 cases, the exact method of diagnosis was
unknown but the diagnosis was made through a laboratory test. All cases where zip
code of exposure was identified were included in the final analysis to increase statistical
power. Cases where diagnosis was based solely on clinical information were not
included in the analysis because of the absence of information regarding zip code of

exposure. A summary of diagnostic methods is presented in Figure 4.8.

Unknown "lab Clinical/Epi
confirmed" 4%
17%

Smear/Serology
3%

Figure 4.8: Distribution of tick-borne relapsing fever (TBRF) cases by method of
diagnosis, 1990-2010

4.5.2 Frequency Analysis of Ecologic Variables

Each variable was divided into categories based on the range of the data displayed by
the 60 case zip codes and 193 control zip codes being analyzed. In each category, the

proportion of case zip codes was compared to the proportion of control zip codes. These
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frequency data are displayed in Table 4.2. The three land cover types with the highest
number of total zip codes were: evergreen forest (129), shrub/scrub (67), and
crop/livestock area (27). Evergreen forest had the highest percentage of case and
control zip codes of all land cover types, but a difference of nearly 10% was observed
between case zip codes (58.3%) and control zip codes (48.7%). The shrub/scrub land
cover classification was the second most common, but it displayed similar proportions
among case and control zip codes. Unlike the county level analysis, the overall
distribution of the land cover variables was not significant (p = 0.82), indicating there
was not a significant difference between the distribution of case and control zip codes.
As with the county level analysis, all three elevation variables showed case zip codes
with lower proportions at lower elevations and higher proportions at higher elevations
when compared to the proportions of control zip codes in the same categories (p < 0.03
for all variables). The precipitation variables were not statistically significant (p > 0.45
for all variables) and displayed no consistent differences between the proportion of case
and control zip codes in each category, with percentages generally higher in the lower
and middle categories in both groups. Proportions of case and control zip codes were
similar in most categories among the six temperature variables analyzed, with the
highest percentages of zip codes observed in the lower and middle temperature
categories among both groups; however, all temperature variables were statistically
significant (p < 0.08 for all variables) and higher proportions of case zip codes were

observed in some lower temperature categories.
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Table 4.2: Distribution across selected ecologic variables of zip codes with reported tick-
borne relapsing fever (TBRF) cases and neighboring control zip codes, California and
Washington, 1990-2010

Majority Land Cover

No. of Zip Codes

No. of Control

Percentage of Zip

Percentage of Control

with TBRF Zip Codes Codes with TBRF Zip Codes
Open Water 1 1 1.7% 0.5%
Developed Land 4 18 6.7% 9.3%
Evergreen Forest 35 94 58.3% 48.7%
Shrub/Scrub 14 53 23.3% 27.5%
Grassland/Herbaceous 0 6 0.0% 3.1%
Crop/Livestock Area 6 21 10.0% 10.9%

*Land Cover: X*=5.12, p = 0.82

Minimum Elevation No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
(meters) with TBRF Zip Codes with TBRF Zip Codes

<500 20 109 33.3% 56.5%
501-1000 20 51 33.3% 26.4%
1001-1500 8 22 13.3% 11.4%
1501-2000 5 8 8.3% 4.1%

>2000 7 3 11.7% 1.6%
Maximum Elevation No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
(meters) with TBRF Zip Codes with TBRF Zip Codes
<1000 12 65 20.0% 33.7%
1001-2000 16 68 26.7% 35.2%
2001-3000 24 44 40.0% 22.8%
3001-4000 6 14 10.0% 7.3%

> 4000 2 2 3.3% 1.0%

Mean Elevation No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
(meters) with TBRF Zip Codes with TBRF Zip Codes
<500 5 32 8.3% 16.6%
501-1000 22 90 36.7% 46.6%
1001-1500 11 33 18.3% 17.1%
1501-2000 7 21 11.7% 10.9%
2001-2500 13 12 21.7% 6.2%

> 2500 2 5 3.3% 2.6%

*Min. Elevation: X = 19.13, p = 0.0007; Max. Elevation: X° =10.83, p = 0.03; Mean Elevation: X* = 14.37, p = 0.01

Minimum No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
Precipitation (mm) with TBRF Zip Codes with TBRF Zip Codes
<250 7 32 11.7% 16.6%
250-500 29 92 48.3% 47.7%
501-750 12 31 20.0% 16.1%
751-1000 9 18 15.0% 9.3%

> 1000 3 20 5.0% 10.4%
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Maximum No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
Precipitation (mm) with TBRF Zip Codes with TBRF Zip Codes

<500 10 49 16.7% 25.4%
500-1000 18 58 30.0% 30.1%
1001-1500 15 37 25.0% 19.2%
1501-2000 10 24 16.7% 12.4%

> 2000 7 25 11.7% 13.0%

Mean Precipitation No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
(mm) with TBRF Zip Codes with TBRF Zip Codes
<250 1 12 1.7% 6.2%
250-500 18 69 30.0% 35.8%
501-750 16 39 26.7% 20.2%
751-1000 9 25 15.0% 13.0%

> 1000 16 48 26.7% 24.9%

*Min. Precipitation: X = 3.71, p = 0.45; Max. Precipitation: X = 2.92, p=0.57; Mean Precipitation: X = 3.37,p=0.50

Minimum Tmin No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control

(Celsius) with TBRF Zip Codes with TBRF Zip Codes

<-5 11 23 18.3% 11.9%

-5to0 29 55 48.3% 28.5%

Oto5 15 83 25.0% 43.0%

5to 10 3 21 5.0% 10.9%

>10 2 11 3.3% 5.7%

Maximum Tmin No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control

(Celsius) with TBRF Zip Codes with TBRF Zip Codes

<0 6 4 10.0% 2.1%

Oto5 36 107 60.0% 55.4%

5to 10 13 56 21.7% 29.0%

>10 5 26 8.3% 13.5%

Mean Tmin (Celsius) No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
with TBRF Zip Codes with TBRF Zip Codes

<0 16 28 26.7% 14.5%

Oto5 37 116 61.7% 60.1%

5to 10 5 37 8.3% 19.2%

>10 2 12 3.3% 6.2%

*Min. Tmin: X* = 12.82, p = 0.01; Max. Tmin: X = 9.34, p = 0.03; Mean Tmin: X = 7.84, p = 0.05

Minimum Tmax No. Zip Codes No. of Control Percentage of Zip Codes Percentage of Control
(Celsius) with TBRF Zip Codes with TBRF Zip Codes

<5 10 16 16.7% 8.3%

5to 10 22 50 36.7% 25.9%

10to 15 20 81 33.3% 42.0%

15to 20 4 21 6.7% 10.9%

>20 4 25 6.7% 13.0%
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Maximum Tmax No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control

(Celsius) with TBRF Zip Codes with TBRF Zip Codes
<15 11 14 18.3% 7.3%
15to 20 35 117 58.3% 60.6%
20 to 25 12 44 20.0% 22.8%
>25 2 18 3.3% 9.3%
Mean Tmax (Celsius) No. Zip Codes No. of Control Percentage of Zip Codes  Percentage of Control
with TBRF Zip Codes with TBRF Zip Codes
<10 1 6 1.7% 3.1%
10to 15 40 91 66.7% 47.2%
15to 20 14 52 23.3% 26.9%
>20 5 44 8.3% 22.8%

*Min. Tmax: X° = 8.24, p = 0.08; Max. Tmax: X° = 7.97, p = 0.05; Mean Tmax: X = 8.88, p = 0.03

4.5.3 Logistic Regression Analyses of Ecologic Variables

Results of the univariate logistic regression analysis were similar to those of the
county level analysis. All three elevation variables (all p < 0.003) and all six temperature
variables (all p < 0.03) displayed a statistically significant relationship with the presence
of TBRF in a zip code. None of the precipitation variables had a statistically significant
relationship with TBRF occurrence. Likewise, the land cover variables, including the
variable for majority evergreen forest, were not significant in univariate analyses. Both
forward and backward stepwise logistic regression were run on the temperature and
elevation variables with the requirement to enter analysis being p < 0.25 and the
requirement to leave the analysis being p > 0.1. The majority land cover variable for
evergreen forest was included because of its significance in the county level model, as
well as its association with over 50% of case zip codes. Backward stepwise regression
yielded a model including only the variable for minimum elevation, while forward
stepwise regression yielded a model with variables for minimum elevation, minimum
maximum temperature, and majority developed land. The variable for majority
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developed land had a p = 0.14, so it was not considered for further analysis. Using these

analyses as a guide, a more purposeful variable selection was conducted.

4.5.4 Purposeful Variable Selection

Beginning with the minimum elevation variable because of its significance in
both stepwise analyses, terms were added to the model individually in order to select
potential candidates for the final model. All the variables identified as statistically
significant were added to the model containing the minimum elevation variable, and
only the variable for minimum value of maximum temperature produced a model in
which both terms were significant both individually and as a whole. No other variable
added to the model containing these two terms was statistically significant. Likewise,
no other combination of variables produced a model that could be considered as an
alternative. To be certain no other terms were needed, all variables not included in the
two term model were added again and the full model was run. The results of this model
indicated that the additional terms were not an improvement over the two term model,
with none of them showing statistical significance on an individual level. It was
determined that minimum elevation and minimum maximum temperature were the
two main terms in the zip code model. A Spearman p =-0.23 confirmed that the two
variables were not correlated with each other and could both be included in the final

model.
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4.5.5 Assumption of Linearity Evaluation

The assumption of linearity for the two variables included in the model was
tested by smoothed scatterplot and quartile analysis, as before. Based on the
scatterplot (Figure 4.9), the minimum elevation variable is roughly linear, with

percentage of cases increasing with elevation category.
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Figure 4.9: Proportion of case zip codes by minimum zip code elevation, California and
Washington, 1990-2010. A case zip code is defined as a zip code with reported tick-
borne relapsing fever (TBRF) cases; control zip codes are neighboring zip codes without
reported TBRF cases. Percentage calculated as the number of case zip codes divided by
total case and control zip codes within each environmental category.

Quartile analysis on the minimum elevation variable showed that the three
design variables representing the second, third and fourth quartiles were statistically
significant when all were included in the same model; however, only the design variable
representing the highest quartile was significant individually. There was no

improvement to the model when examining these design variables either individually or
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in combination with the minimum value for the maximum temperature variable, so it

was decided to keep minimum elevation as a continuous variable.

A linear trend was also observed in the scatterplot for minimum value of the
maximum temperature variable (Figure 4.10), with the difference being the percentage

of case counties decreased with increasing temperature.
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Figure 4.10: Proportion of case zip codes by minimum value for maximum temperature
in a zip code, California and Washington, 1990-2010. A case zip code is defined as a zip
code with reported tick-borne relapsing fever (TBRF) cases; control zip codes are
neighboring zip codes without reported TBRF cases. Percentage calculated as the
number of case zip codes divided by total case and control zip codes within each
environmental category.

In the quartile analysis, only the design variable for the highest quartile was
statistically significant when run with the other two design variables and when run
individually. There was no apparent benefit to using the design variable for the highest
guartile compared to the original variable so the variable for the minimum value of
maximum temperature was left as a continuous variable. A model using the design

variables for the highest quartiles of the elevation and temperature variables produced
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values similar to those seen in the model with the two continuous variables, but the
AlCc value was ten units higher than the lowest value; therefore, it was not considered
as a candidate for the final multivariable model. Additionally, transformations applied

to the variables did not improve their performance in any model.

The precipitation variable that was closest to statistical significance in the
univariate analysis (PPT_MAX) was divided into quartiles and design variables created
from these categories were analyzed via logistic regression as with other variables. Only
the design variable representing the third quartile of the maximum precipitation
variable was significant when in a model with the other two design variables, and none
of them were significant separately. The significant design variable was no longer
significant when included in a model with the elevation and temperature variables in
any form, so it was not considered for inclusion in the final multivariable model. All
three precipitation variables were correlated with each other, so the results of this

analysis were considered representative of all precipitation variables.

4.5.6 Interaction Terms

Since only two variables were included in the final model, only the interaction
term between the elevation and temperature variables was considered for inclusion in
the final model. While inclusion of the interaction term did not affect the whole model
test of significance, the interaction term itself was not statistically significant (p = 0.68).
Since the interaction term did not improve the model, it was not included in the final

model.
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4.5.7 Comparing Multivariable Models

Goodness of fit chi-square statistics were similar among all four candidate models,
with all p-values around 0.3. Since all p-values were not significant, the goodness of fit
for each model did not play a role in final model selection. The variables included in the

four candidate models are listed below:

1. Minimum elevation
2. Minimum elevation and the minimum value for maximum temperature
3. Minimum elevation, minimum maximum temperature, and interaction term

4. Minimum elevation, minimum maximum temperature, majority developed land

Table 4.3: Candidate models for the zip code level analysis of the relationship between
ecologic variables and tick-borne relapsing fever (TBRF) occurrence, California and
Washington, 1990-2010

Negative Sensitivity  Specificity PPV NPV Independent
log- model variables
likelihood
1 131.41 1 266.87 199 0.65 78 48 32 88 ELEV_MIN
2 129.42 2 26494 0.06 0.68 67 67 39 87 ELEV_MIN,
TMAX_MIN
3 129.34 3  266.84 216 0.68 67 66 38 86 ELEV_MIN,
TMAX_MIN
4 128.36 3 264.88 0 0.69 68 66 38 87  ELEV_MIN,
TMAX_MIN,
DEVLP_MAIJ

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN =
minimum elevation; minimum maximum temperature = TMAX_MIN; DEVLP_MAJ = majority developed land
Models must be within two AlCc units to be considered competing, which is true
of all except Model 3. ROC AUC values were compared and were found to vary no more

than 0.04 units between models. Since there was little distinction among ROC AUC

values, the model with the highest sensitivity and best balance among specificity, PPV
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and NPV was chosen. Model 1 had the highest sensitivity (78%), but was removed from
consideration by having the lowest specificity (48%). Models 2 and 4 had nearly
identical values among all statistical measures considered. Ultimately, Model 2 was
chosen because it behaved similarly to Model 4 while containing one less variable,
indicating the variable was superfluous. The most parsimonious model, chosen as the
final multivariable model, contains the variables for minimum elevation and the
minimum value for maximum temperature in a zip code. Specifics on model parameters

can be found in Table 4.4.

Table 4.4: Parameter estimates for the selected multivariate logistic regression model
of the relationship between ecologic variables and tick-borne relapsing fever (TBRF)
occurrence at the zip code level, California and Washington, 1990-2010

Parameter Estimates Likelihood ratio test

Model covariates Estimate SE 95% C.I. X df p-value
Intercept -1.16 0.43 (-2.02, -0.33) 7.21 1 0.007
ELEV_MIN 0.0009 0.0003 (0.0004, 0.0015) 11.28 1 0.0008
TMAX_MIN -0.06 0.03 (-0.12, -0.001) 3.98 1 0.046

*df = degrees of freedom; ELEV_MIN = minimum elevation; minimum maximum temperature = TMAX_MIN; Whole
Model Test X* = 18.33, df = 2, p = 0.0001; goodness of fit X* =258.84, p = 0.32

4.5.8 Model Validation

The final multivariate model selected above was subjected to a leave-one-out
method of model validation to ensure it was not sensitive to any particular case or
control zip code (Fielding & Bell, 1997). The method involved removing one zip code,
running the model, recording the ROC AUC, replacing the excluded zip code and
removing the next zip code. This was done sequentially for all 253 case and control zip

codes. The minimum, maximum and mean AUC values are reported below. It was
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determined that overall accuracy of the model was not heavily influenced by one

specific zip code and none were excluded from the final model.

Table 4.5: ROC AUC values from the leave-one-out validation of the zip code logistic
regression model of the relationship between ecologic factors and tick-borne relapsing
fever (TBRF) occurrence, California and Washington, 1990-2010

[\ E Average Complete Model AUC

ROC AUC 0.677 0.694 0.683 0.683

*ROC AUC = area under receiver operator characteristic curve

4.5.9 Predictive Risk Model

The final model, containing the variables for minimum elevation and the
minimum value for maximum temperature, was entered into the Raster Calculator tool
in ArcGIS as described in Section 4.5.7. The values for the coefficients and the intercept
were entered as they appear in the final equation, but the original raster layers were
used in place of the minimum values from each zip code used in the statistical analysis.
This was done because the Raster Calculator tool requires a map layer to be used in the
preparation of a new raster layer. Since the minimum, maximum and mean
temperature and elevation values were correlated with each other, it was considered
acceptable to use the source layers from which they were derived as the variables in
the regression equation. The output raster layer produced by the first equation was
used in place of the “Logit (P)” variable in expression 2, and Raster Calculator used the
second equation to produce a second raster layer. Using the “Reclassify” tool in ArcGIS,
values in this raster layer were dichotomized into categories based on the cutoff p-

value that maximized sensitivity and specificity (p = 0.2341). Any raster values less than
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0.2341 were considered low risk and coded as “0” while any values greater than or
equal to 0.2341 were considered high risk and coded as “1.” This produced an output
raster layer that represented the predictive risk model and displayed the high and low

risk areas as two different colors.

Unfortunately, the predictive risk model had very limited ability to distinguish
areas of high and low risk. Originally it was planned to create a predictive risk model
derived from the zip code model of Washington and California and apply it to Oregon,
to determine which areas showed signs of elevated risk. Upon examination of the
predictive model layer, the entire state of Oregon was classified as “low risk.” In fact,
the layer covered the entirety of the United States and consisted of over 3,000,000
raster units, but only 22 units total were considered “high risk.” All of the 22 units were
located in either Washington or California and were located within case zip codes.
Since the predictive model provided very little distinction between low and high risk

areas, it was not considered for further analysis.

4.5.10 Analysis of High Risk Zip Codes vs. Control Zip Codes

As with the county level analysis, high risk zip codes were examined to
determine if they possessed any unique correlations that may have been obscured by
the greater number of lower risk zip codes in the total zip code level analysis. The data
from the 13 zip codes with more than two cases reported were regressed against both

the total number of control zip codes (n=193) and only the zip codes with which they
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share a border (n=38). The results of these analyses were similar to those observed in

the full zip code analysis.

For the analysis which included all controls, all elevation and temperature
variables, as well as some precipitation and land cover variables, produced statistically
significant univariate regression models. Both stepwise regression models implied that
the final model should include an elevation and temperature variable, but only one of
each since variables were correlated within groups as before. Purposeful variable
selection confirmed that elevation and temperature would be included in the final
model; however, several temperature variables produced acceptable models in
combination with the same minimum elevation variable. Three candidate models were
compared in the same manner described in the complete zip code model. A
comparison of the models can be found in Table 4.6. Model 3 was chosen as the final
model because it provided the best balance among sensitivity, specificity, PPV and NPV.
All three candidate models showed the same correlation between elevation,

temperature and TBRF occurrence observed in the total zip code model.
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Table 4.6: Candidate models for the analysis of the relationship between ecologic
variables and tick-borne relapsing fever (TBRF) occurrence for high risk and all control
zip codes, California and Washington, 1990-2010

Negative ROC Sensitivity Specificity PPV Independent model
log- V] variables
likelihood
1 33.08 2 72.3 0 0.89 100 63 15 100 ELEV_MIN,
TMAX_MEAN
2 33.49 2 73.1 081 0.88 85 73 17 99 ELEV_MIN,
TMIN_MAX
3 33.63 2 73.4 1.09 0.88 69 94 45 98 ELEV_MIN,
TMAX_MIN

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN=
minimum elevation, TMAX_MEAN = mean maximum temperature, TMIN_MAX = maximum minimum temperature,
TMAX_MIN = minimum maximum temperature.

The analysis of high risk zip codes and only neighboring control zip codes
produced fewer significant associations restricted to a few elevation and temperature
variables in the univariate analyses. Stepwise regression produced multivariate models
that were only significant if they contained multiple temperature variables, which once
again were correlated with each other. The only combination of two different variables
that produced a viable model was the design variable for the highest quartile of
minimum elevation values (DUMMY-ELQ4) and the variable for the maximum value of
maximum temperature in each zip code. This multivariate model was compared to the
three best univariate models using the measures presented in Table 4.7 to determine
which model was the most appropriate choice. Model 1, the only multivariate model,
was chosen because of the balance among the values examined. It displayed the same
association between elevation, temperature and TBRF occurrence seen in all previous

levels of analysis.
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Table 4.7: Candidate models for the analysis of the relationship between ecologic
variables and tick-borne relapsing fever (TBRF) occurrence for high risk and adjacent
control zip codes, California and Washington, 1990-2010

Negative Sensitivity  Specificity PPV NPV Independent model
log- VELELIES
likelihood

1 23.81 2 541 033 0.76 62 92 73 88 DUMMY-ELQ4,

TMAX_MAX

2 24.78 1 53.8 0 0.75 54 89 64 85 ELEV_MIN

3 25.06 1 54.4 0.57 0.74 69 76 50 88 TMIN_MAX

4 25.12 1 545 0.69 0.75 85 66 46 93 TMIN_MEAN

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN=
minimum elevation, DUMMY-ELQ4 = design variable for highest quartile of ELEV_MIN, TMIN_MAX = maximum
minimum temperature, TMIN_MEAN = mean minimum temperature.

4.5.11 California and Washington Individual Models

The same methods used in the construction and selection of the zip code
multivariate model for both states were applied to California and Washington
individually. The univariate analysis for California yielded significant models for all three
elevation variables and all six temperature variables much like the analysis with both
states included. Both forward and backward stepwise regression yielded a model
containing only the variable for minimum elevation. A more purposeful variable
selection method confirms that no variables are significant when added to the model
containing minimum elevation. A smoothed scatterplot revealed a linear distribution
for the variable (Figure 4.11), and quartile analysis showed that only the design variable

for the highest quartile was statistically significant.
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Figure 4.11: Proportion of case zip codes by minimum zip code elevation, California,
1990-2009. A case zip code is defined as a zip code with reported tick-borne relapsing
fever (TBRF) cases; control zip codes are neighboring zip codes without reported TBRF
cases. Percentage calculated as the number of case zip codes divided by total case and

control zip codes within each environmental category.

To further investigate, both the minimum value for maximum temperature and
maximum precipitation variables were examined via quartile analysis. None of the
precipitation design variables were significant and only the design variable for the top
guartile of the temperature variable was significant. No combination of minimum
elevation or its design variable and any of these variables produced a model where the
second variable added was significant individually. A model containing minimum
elevation and the design variable for the highest quartile of the maximum temperature
variable was considered because of the AlICc value of the model, but it seemed an
unlikely choice for the final multivariable model. Interaction terms were considered for
the models with more than one variable and the four best models were chosen based

on their AlCc values. Details are presented in Table 4.8.
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Table 4.8: Candidate models for the zip code level analysis of the relationship between
ecologic variables and tick-borne relapsing fever occurrence in California, 1990-2009

Negative Sensitivity Specificity PPV NPV Independent model
log- AUC VELELIES
likelihood
1 62.06 1 128.2 0 0.71 71 62 39 86 ELEV_MIN
2 64.45 1 133.0 4.78 0.66 74 57 37 87 DUMMY-ELQ4
3 61.87 2 129.9 1.72 0.71 71 64 40 87 ELEV_MIN,
DUMMY-TX4
4 61.7 3 131.8 3,53 0.71 74 60 39 87 ELEV_MIN,
DUMMY-TX4

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN=
minimum elevation, DUMMY-ELQ4 = design variable for highest quartile of ELEV_MIN, DUMMYTX4 = design variable
for highest quartile of minimum maximum temperature variable.

Model 1 was chosen because of its balance of sensitivity, specificity, PPV and NPV. The
only model within two AlCc units of Model 1 was Model 3, which displayed only very
minor changes in the four values being examined despite the inclusion of an additional
variable. It was decided that the model containing only the minimum elevation variable

was the most parsimonious model for the zip code analysis of California.

Table 4.9: Parameter estimates for the selected logistic regression model for the
relationship between ecologic variables and tick-borne relapsing fever (TBRF)
occurrence at the zip code level in California, 1990-2009

Parameter Estimates Likelihood ratio test
Model covariates Estimate 3 95% C.I. X df p-value
Intercept -2.34022 0.452143 (-3.30,-1.51) 26.79 1 <.0001*
ELEV_MIN 0.00126 0.000355 (0.0006, 0.0019) 14.183 1 0.0002*

*df = degrees of freedom; ELEV_MIN = minimum elevation; Whole Model Test X = 14.18, df = 1, p = 0.0002; goodness
of fit X* =108.58, p = 0.31

The same methods were applied to zip code data for the state of Washington
but the variables behaved differently than the total zip code and California only

analyses. None of the variables examined in the univariate analysis were significant.
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Since no variables were significant individually, forward and backward stepwise
regression were conducted to determine if any variables were significant in
combination. Backward stepwise regression produced a model with variables for
maximum temperature, and mean and maximum precipitation. All three variables are
significant, but the 95% confidence interval for maximum temperature’s coefficient
contains zero, and the two precipitation variables are highly correlated with each other
(p =0.93). Attempting to remove either precipitation variable yielded a model that is
not statistically significant. Forward stepwise regression produced a model containing
two elevation variables, the mean value for minimum temperature and majority
crop/livestock land cover. The model as a whole was not significant and none of the
terms were significant individually (p > 0.1). Removing any of these variables did not
produce a combination that improved on the model containing all of them. Attempting
to create a model that included the same terms as the total zip code level model
(minimum elevation and maximum temperature) produced one in which the terms were
significant (p < 0.1). Adding the interaction term did little to improve the model, but it
was considered as a potential candidate. Quartile analysis was performed on minimum
elevation, the minimum value for maximum temperature, and maximum precipitation
as before, to determine if the variables were statistically significant when examined as
categories. Only the design variables for the two middle quartiles of minimum elevation
were significant together and none of the design variables for the temperature and
precipitation variables were significant in any combination. The two candidate models

were compared by AlCc, sensitivity, specificity, PPV and NPV values.
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Table 4.10: Candidate models for the zip code level analysis of the relationship between
ecologic variables and tick-borne relapsing fever occurrence in Washington, 1990-2010

Negative AIC AAIC ROC Sensitivity Specificity PPV NPV Independent model
log- AUC VELELIES
likelihood
1 66.59 2 139.4 0 0.66 62 71 38 87 ELEV_MIN,
TMAX_MIN
2 66.34 3 141.1 1.68 0.67 69 65 36 88 ELEV_MIN,
TMAX_MIN

*K = number of estimated parameters in the model; AlCc = Akaike information criterion; ROC AUC = area under
receiver operator characteristic curve; PPV = positive predictive value; NPV = negative predictive value; ELEV_MIN=
minimum elevation, TMAX_MIN = minimum maximum elevation.

Model 1 contained only the two main terms, while Model 2 included the interaction
term as well. Sensitivity and ROC AUC improved with the addition of the interaction
term, but specificity decreased. Since the improvement in sensitivity was minor, and
addition of the interaction term caused the model to have a non-significant p-value (p =
0.12), Model 1 was chosen as the final multivariate model. Additional detail on the

model is shown in Table 4.11.

Table 4.11: Parameter estimates for the selected multivariate logistic regression model
for the relationship between ecologic variables and tick-borne relapsing fever (TBRF)
occurrence at the zip code level in Washington, 1990-2010

Parameter Estimates Likelihood ratio test
Model covariates Estimate SE 95% C.I. X p-value
Intercept -1.244 0.716 (-2.72,0.12) 3.02 1 0.08
ELEV_MIN 0.002 0.001 (-0.0003, 0.005) 3.03 1 0.08
TMAX_MIN -0.093 0.055 (-0.203, 0.014) 291 1 0.09

*df = degrees of freedom, ELEV_MIN = minimum elevation, TMAX_MIN = minimum maximum elevation; Whole
Model Test X* = 5.32, df = 2, p = 0.07; goodness of fit X* =133.18, p = 0.36
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4.6 Conclusions

As with the county level analysis, the zip code level analysis suggests that higher
elevations and lower maximum temperature in a zip code were associated with
occurrence of TBRF cases. Analysis suggested that increasing elevation was associated
with increasing case zip code frequency (p = 0.0007), while case frequency was higher
than control zip code frequency among lower categories of most temperature variables
(p =0.08). No consistent associations were observed among average precipitation
variables (all p > 0.45), further suggesting there was no relationship between these
variables and TBRF occurrence at the county or zip code level. While no land cover
variable was statistically significant (p = 0.82), the majority land cover type was

evergreen forest in most of the zip codes analyzed.

Ultimately, the final multivariate model indicated an association between elevation,
temperature and occurrence of TBRF cases at the zip code level. This increased the
credibility of the county level analysis and reinforced the validity of these findings.
Likewise, the results of the high risk zip codes and the individual state analyses were
consistent with the full analysis, despite a much smaller sample size. The consistency of
the associations observed across all levels of analysis provided confidence in the results

of these analyses.
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CHAPTER 5: DISCUSSION
5.1 County Level Analysis
For the full county level analysis, 140 counties with cases of TBRF were compared to 243
control counties in order to determine if any associations existed between the TBRF
occurrence and variables for the five ecologic factors examined. The majority land cover
type was chosen because it was the measure that represented the character of the
county and the type of area where individuals would be most likely to be exposed to
TBRF. The frequency analysis indicated that, when compared to control counties, a
higher proportion of case counties had evergreen forest as the majority land cover and a
lower proportion of case counties had crop and livestock areas as the majority land
cover (p =0.04). This indicated an association between TBRF and counties which
primarily contained evergreen forest, which was consistent with the increased risk of
TBRF exposure in rustic cabins (Dworkin et al., 2002a). The distribution of counties
observed in the elevation variables implied that there were greater proportions of case
counties than control counties at higher elevations (> 500 meters). The minimum
elevation variable (p = 0.25) was not associated with TBRF occurrence, further
reinforcing the idea that TBRF occurrence is associated with higher elevations. The
associations between case counties, higher elevations and evergreen forest are
consistent with the typical habitat type of Ornithodoros hermsi, the primary vector of

TBRF in the western United States (Dworkin et al., 2002b). Among the precipitation
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variables, no statistically significant difference in proportions was observed between
case and control counties, with the exception of the maximum precipitation variable (p
= 0.003). The significance of this single precipitation variable could indicate a
relationship between higher precipitation and TBRF occurrence, possibly related to the
tick vector or its preferred rodent host. Conversely, the significance of the maximum
precipitation variable could be an errant result due to chance and the lack of
significance displayed by the minimum and mean variables could be a more accurate
representation of the relationship between TBRF occurrence and precipitation. No
association between TBRF occurrence and precipitation has been previously
documented in the literature to date and these findings suggest there is no consistent
association at the county level. Case proportions were highest among the middle
temperature categories, implying that TBRF exposure was more common in areas with a
moderate climate (all p <0.01). Control counties were evenly distributed among
categories in most temperature variables, lending further support for an association
between TBRF and temperature at the county level. Associations similar to those found
in the frequency analysis were observed in the logistic regression analyses.

The logistic regression model developed to explore the relationship between
these ecologic variables and TBRF occurrence at the county level included variables for
mean elevation, the mean value for maximum temperature, and majority evergreen
forest land cover type. Statistically significant interaction terms between the maximum
temperature variable and both the elevation and majority evergreen forest variables

were identified and included in the final model. Higher elevations generally have lower
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maximum temperatures, and areas with evergreen forest tend to have cooler climates.
It was relationships such as these that contributed to the significance of the interaction
terms.

All of the logistic regression models produced in this analysis had a goodness of
fit statistic that was statistically significant. The significant goodness of fit statistic
indicated that it was possible that other factors influence the occurrence of TBRF that
were not included in this analysis; however, given the breadth of analyses performed, it
was not probable that the inclusion of any of the variables considered would have
improved this measure. Further, the exact goodness of fit statistic used by the IMP
software package was not identified and may not be the most appropriate test for this
particular data set. No other option for goodness of fit tests was available.

While the final model was the best option among the four most likely models in
this analysis, its overall accuracy was not very high. The AUC of the ROC was below the
range considered acceptable discrimination (0.7 < ROC < 0.8) and well below the range
considered excellent discrimination (0.8 < ROC < 0.9) (Hosmer & Lemeshow, 2000). The
model did discriminate between case and control counties, but with less accuracy than
desired. Similarly, sensitivity was lower than ideal, with the model’s ability to correctly
identify cases only slightly above 60%. Specificity was better, but the overall ability of
the model to correctly discriminate between case and control counties was not
exceptional. However, the ability to discriminate between case and control counties for
a rare disease, based only on ecologic variables, is evidence of the association between

these variables and TBRF occurrence.
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The analyses that focused on the high risk counties provided results similar to
those seen in the analysis of all case counties. When high risk counties were compared
to all the control counties variables for elevation and majority evergreen forest were
significant in combination; when the high risk counties were compared to only
neighboring control counties, a univariate model containing only a maximum
temperature variable was judged to be the best model. These were the same
associations observed in the final multivariable model for the complete county analysis,
with the exception being the maximum elevation variable and the minimum value for
the maximum temperature variable were included, rather than the variable for the
mean value of each. Since the same associations were detected, the inclusion of fewer
variables in the high risk county analyses was a product of reduced sample size. Even
with the loss of over 100 counties, these variables were still associated with TBRF
occurrence at the county level. The higher case numbers observed in some of these
counties can be explained by TBRF outbreaks that occurred at some point during the
span of time included in the study. At least four of the high risk counties had a
documented TBRF outbreak occur between 1977 and 2000 (Paul et al., 2002; MMWR,
1990; Trevejo et al., 1998; Fritz et al., 2004). The increased case numbers of TBRF seen
in these counties could also be related to “better awareness and reporting of TBRF in
those counties, greater popularity of those sites for human visits, a greater density of
the tick vector population in those areas, or a combination of these factors” (Dworkin et

al., 2002a). The logistic regression analyses suggest that the difference between
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counties with higher and lower case numbers was not accounted for by the ecologic
variables examined in these analyses.

The final model chosen to represent the relationship between TRBF occurrence
and the ecologic variables analyzed at the county level showed an association between
temperature, elevation and evergreen forest habitat. While similar associations have
been observed during outbreak investigations, these associations still existed when
analyzing the cases at the scale of the county where the cases were infected. If
associations can be detected using only these variables on this scale, it is possible that a
model including additional variables on a finer scale may be able to accurately map
areas of increased risk of TBRF.

5.2 Zip Code Level Analysis

In the zip code analysis, 60 zip codes in California and Washington, identified as
exposure locations for cases of TBRF, were compared to 193 surrounding control zip
codes to determine if detectable associations existed between TBRF occurrence and the
ecologic variables at the zip code level. Similar to the county level frequency analysis,
evergreen forest had the highest proportion of case and control zip codes among land
cover variables. A difference of 9.6% was observed between case zip codes and control
zip codes for the majority evergreen forest variable, indicating that evergreen forest
may be associated with TBRF occurrence at the zip code level as well; however, this
association was not statistically significant (p = 0.82). As with the county level analysis,
all three elevation variables were statistically significant (all p < 0.03), with case zip

codes observed in lower proportions at lower elevations and higher proportions at
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higher elevations when compared to proportions of control zip codes in the same
categories. There was no statistically significant difference between the proportions of
case and control counties in the three precipitation variables (all p > 0.45). This further
confirmed that there is no consistent detectable association between TBRF occurrence
and precipitation at the zip code or county level. Unlike the county level analysis, case
zip code proportions were higher than control zip codes in lower temperature
categories of most of the six temperature variables. All temperature variables were
statistically significant (all p < 0.08) and both case and control zip codes were more
common in the lower and middle temperature categories. The findings of the frequency
analysis did not deviate substantially from those of the county level analysis, with the
exception of case proportions being higher among lower values rather than middle
values in the temperature variables, the smaller difference between case and control zip
codes for the majority evergreen forest variable, and the lack of statistical significance in
the distribution of land cover variables. The results of the frequency analysis were
largely confirmed in the logistic regression analyses.

As with the county level analysis, associations were found between an elevation
and a maximum temperature variable and occurrence of TBRF at the zip code level. For
the county level analysis, the mean values for the two variables were included in the
final model while the minimum values of the variables were included in the zip code
model. All three variables within each group (e.g. minimum, maximum and mean

elevation) were correlated with each other at both levels of analysis, so the specific
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variables that were chosen (ELEV_MIN and TMAX_MIN) were the most statistically
significant within that particular group.

Unlike the county level analysis, none of the zip code level land cover variables
showed a significant association with TBRF occurrence in logistic regression analyses.
The variable for majority evergreen forest was represented in over 50% of case zip
codes, but was also represented in 50% of control zip codes. The lack of significance of
land cover variables in the zip code level logistic regression analyses may have been a
product of smaller scale, potentially leading to case and control zip codes being over-
matched. Many of the counties included in this study were large, increasing the
likelihood that neighboring case and control counties would be ecologically dissimilar
based on the area included. The smaller area of most zip codes led to more case and
control zip codes being characterized by the same variable for majority land cover,

simply because smaller neighboring areas are more likely to be ecologically similar.

The goodness of fit chi-square statistic was not significant, indicating sufficient
explanatory terms were included in the model. There were almost certainly other
factors that influence presence or absence of TBRF in a zip code, but none of the
variables excluded from the final model improved it in any way. Why the goodness of
fit statistic was significant in the county level analysis but not the zip code level analysis

remains unclear.

As with the county analysis, the overall accuracy of the final model was not as

high as preferred, but not dismally low. The ROC AUC value was 0.68, which
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approached, but was not included in the range of values (0.7 < ROC < 0.8) that produces
“acceptable discrimination” (Hosmer & Lemeshow, 2000). The sensitivity and
specificity values were similarly lower than ideal, but close to values that would have
provided an acceptable ability to correctly identify true positives and negatives.
Compared to the final model that was selected, Model 1 in the total zip code analysis
provided an improved estimate of sensitivity (+ 11%) but the drastic decrease in
specificity (- 19%) removed it from consideration for the final model. An acceptable
balance of all such measures was achieved in the final model, but addition of terms not
considered in this analysis may improve the accuracy of this model. The smaller scale of
the zip code model led to only a marginal improvement in sensitivity (+5%) and a slight
decrease in specificity (-2%) when compared to the county model. Since only two
states were included in the zip code analysis compared to the twelve states included in
the county analysis, the reduction in scope led to the lack of improvement of overall

accuracy for the zip code model.

The results of the analyses comparing high risk and control zip codes did not
deviate drastically from the total zip code analysis. The analysis that compared high risk
zip codes to all control zip codes yielded several different potential models, all
containing the minimum elevation variable and a temperature variable. The model that
was chosen contained the same variables as the final model in the complete zip code
analysis. The analysis that compared high risk zip codes only to neighboring control zip
codes identified correlations with fewer ecologic variables because of the reduced

sample size. Ultimately, a final model was chosen that contained the design variable for
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the highest quartile of the minimum elevation variable and the maximum value of the
maximum temperature variable. The associations between high risk and control zip
codes were the same combination of elevation and temperature observed in the full zip
code analysis. This implied that zip codes with higher case numbers do not appreciably
differ from zip codes with lower case numbers as far as these ecologic variables are
concerned. It is likely that the same factors that may have led to increased case
numbers at the county level (outbreaks, greater human visitation, etc.) contributed to

the higher case numbers observed in these high risk zip codes.

The comparison of TBRF occurrence between California and Washington
reinforced conclusions drawn from the total zip code analysis and highlighted
differences between the two states. Overall, California had much more variety among
zip codes with a greater range of values in most continuous variables. This was easily
explained by the state’s size and ecologic diversity and the fact that zip codes used in
this analysis came from areas across California. The range displayed in the data allowed
many variables to be significant individually and led to a univariate model being chosen
as the final model. Washington had much less variety in terms of the range of data
represented, so differences between case and control zip codes were less pronounced.
Like California, case zip codes were distributed across the state; however, Washington
is a smaller and less ecologically diverse state than California, which led to the more
limited range in data among the continuous variables. This limited data range may have
been the cause of no single variable having a statistically significant association with the

presence or absence of TBRF among Washington zip codes. Additionally, the only
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combination that produced an adequate model was the two variables that comprised
the total zip code model. Each state’s data contributed an aspect to the total zip code
model: California’s data showed a strong association between TBRF occurrence and
elevation, while Washington’s data only produced a significant model with the inclusion
of both elevation and temperature. Individual models of states with stark differences in
ecologic factors (e.g. Oregon and New Mexico) may provide more insight into different

factors that influence TBRF occurrence across the western United States.

The predictive risk model failed to adequately distinguish between areas of high
and low risk, or rather areas that are more or less likely to have cases of TBRF. The
failure of this model had many contributing factors. The statistical analysis from which
the multivariate model was created was conducted using each zip code as one data
point, and from that a single value was chosen for each variable to represent that zip
code. The coefficients and intercepts from that equation were then applied to the
raster layers from which they were derived, which contained a much greater range and
amount of data than was used to create the multivariate model. Despite the variables
within each variable type being correlated with one another, it is probable that
examining the entire range of values for a zip code would produce a different result
than a single value representing that entire area. The scale and scope of these analyses
also played a role in the failure of the model. For instance, examination of the ecologic
variables at the site of an outbreak may produce a predictive risk model that could be

applied to surrounding local areas.
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Additionally, the overall accuracy of the model used to create it almost certainly
played a role in the failure of the predictive risk model. The ROC AUC value indicates
that the model was unable to produce acceptable discrimination between case and
control zip codes. With a sensitivity of 67% and a specificity of 67%, the model does a
poor job of correctly identifying case and control zip codes. The ecologic variables
considered in this analysis were only a small portion of factors that may influence TBRF
occurrence. ldentification and inclusion of additional factors of influence should yield a
more accurate predictive risk model. Finally, the data available for this analysis were
limited in terms of areas where cases have been reported. Since this is almost certainly
not a complete accounting for cases of TBRF in these two states, the quality of the
predictive model produced would have been poor even if it had provided better

distinction between areas of high and low risk.

5.3 Biological Perspectives

The analyses conducted examined only the chosen ecologic variables and the
occurrence of TBRF in the western United States. Beyond these ecologic factors, no
additional explanatory measures were considered to describe TBRF occurrence in these
areas. Since broad ecologic measures were used in analysis, it is almost certain that
unaccounted for biological factors are being described by the model. Optimal areas for
TBRF transmission contain ecology that is hospitable to the Ornithodoros tick vectors
and their preferred rodent hosts, such as chipmunks and ground squirrels, and are also

commonly visited by their incidental human hosts (Dworkin et al., 2002a). Ornithodoros
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hermsi tick habitat, typically areas of coniferous forest at elevations between 1,500 and
8,000 feet (Dworkin et al., 2002a), is represented in the patterns observed in the land
cover and elevation variables. Evergreen forest was the majority land cover in more
case than control areas and higher proportions of case areas were observed at higher
elevations (> 500 meters) at both the county and zip code levels. It is also possible that
areas with reported TBRF cases are more likely contain rustic cabins or vacation homes,
or to be popular travel destinations in the summer months. The presence of rustic
dwellings or increased human visitation could be features that distinguish counties or
zip codes with cases from control counties and zip codes with similar ecologic
characteristics. Several TBRF outbreaks were located near or within national parks, such
as the north rim of the Grand Canyon (Boyer et al., 1977; Paul et al., 2002) and Estes
Park, Colorado (Trevejo et al., 1998). Others occurred in similarly popular outdoor
travel destinations, such as Big Bear Lake, California (MMWR, 1998) and Browne
Mountain in Washington (Thompson et al., 1969). Future spatial analyses will provide a
more complete explanation of factors that influence where the disease occurs if an

attempt to account for the peridomestic nature of TBRF transmission is made.

5.4 Comparison of Findings with Previous Literature

No publications examining TBRF occurrence and ecologic factors at either the
county or zip code level were found in the published literature to date. Results similar
to those observed in the zip code analysis regarding seasonality of TBRF were reported

in a previous publication (Dworkin et al., 2002a). Ornithodoros hermsi habitat was
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previously characterized as higher elevation areas consisting of primarily coniferous
forest (Dworkin et al., 2002a), which corresponds to the associations found with higher
elevations at the county and zip code levels and evergreen forest land cover at the
county level. No association between TBRF occurrence and temperature has been
published, but the lack of similar ArcGIS analyses for this disease suggests that this
association was not previously explored. Similar analyses were used to examine smaller
areas in the western United States to explore relationships between ecologic factors and
plague (Eisen et al., 2007b) and shared risk of plague and hantavirus (Eisen et al.,
2007a). Additionally, relationships between disease occurrence and ecologic factors
were successfully identified at both the county level with tularemia (Eisen et al., 2008b)

and the zip code level with West Nile virus (Winters et al., 2008).

5.5 Study Strengths and Limitations

5.5.1 Study Strengths

This study contained the most complete information available in published
literature regarding cases of TBRF at the county-level (Dworkin et al., 2002a), in
addition to the new zip code level data from state health departments. Analysis
conducted at both the county and zip code level, as well as several analyses within
these levels, allowed for comparisons to be made between scales and strengthened
similar conclusions observed in multiple analyses. Only cases with known zip code of
exposure were included in the analysis, eliminating reliance on zip code of residence as

a surrogate. The data used in the variables for minimum temperature, maximum
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temperature, and precipitation were an average value for that area calculated using
annual average values for a 30 year period. This approximated an average value in
these ecologic factors for a sizable period of time. Use of minimum, maximum and
mean values for temperature and precipitation in each county or zip code increased the
likelihood that associations with TBRF occurrence would not be missed solely because

of the summary measure chosen to represent that area.

5.5.2 Study Limitations

While these were the most complete data available, TBRF is still an
underreported disease. Conclusions drawn from these case areas were valid for the
case areas, but some associations may be missed because data about TBRF cases was
incomplete and not all cases were reported. Cases that were reported as positive
based on serological evidence alone could be the result of an earlier infection, making
the exposure location incorrect. Likewise, the cases with only a clinical history could
have been misdiagnosed, leading to inclusion of a zip code where no actual TBRF cases
were documented. Misclassification could also be a concern with the “probable” case
group in the publication used for the county level analysis (Dworkin et al., 2002a). If
some probable cases were not actual TBRF cases, it may bias the outcome toward the

null.

The data analyzed at both the county and zip code levels of analysis were case
counts that measured prevalence of reported TBRF in an area over a period of decades.

These were not density dependent or population based measures and provided no
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measure of incidence for this disease. This issue is further complicated by the fact that
that TBRF is often contracting while traveling (Dworkin et al., 2002a), implying that
cases exposed in an area may not be a part of the population of that area. A measure
accounting for population or human visitation in an area being analyzed should be

incorporated into future analyses.

This study was conducted on the county and zip code scales, therefore findings
cannot be applied to individual TBRF cases mapped below the zip code level. The
associations identified by this study were ecologic in nature, and do not provide a
complete description of factors required for TBRF transmission. Given the often
peridomestic nature of TBRF exposure, there were likely other factors that affected
TBRF transmission on a much smaller scale than was examined during the course of this
study. These unaccounted for confounding factors could have influenced the results of
these analyses. For instance, the amount of rustic cabins, the primary exposure
location for B. hermsii infection, in a county or zip code is a probable confounder of the
association between TBRF occurrence and the ecologic factors measured because it is
related to both the exposure and the disease. A measure accounting for rustic
dwellings in an area should be incorporated into any similar analyses conducted in the

future.

Neighboring counties and zip codes were chosen as controls because they were
likely to be ecologically similar to areas with cases. This choice in control areas could

have led to case and control areas being matched on the ecologic factors examined in
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these analyses. Since counties in the western United States are large and ecologically
diverse, case and control counties were less likely to display ecologic similarities.
However, the smaller scale of the zip codes analyzed increased the likelihood that case
and control zip codes would be ecologically similar, possibly leading to case and control
areas being over-matched at this level of analysis. This could lead to control zip codes
being more similar to case zip codes, diminishing the ability to differentiate between
case and control zip codes for the ecologic variables analyzed. This ecologic similarity
between smaller, neighboring areas may have contributed to the lack of significance of
the majority evergreen forest land cover variable in the zip code logistic regression
analyses. This could be addressed by the random selection of unaffected counties and
zip codes throughout the state being analyzed, rather than the use of neighboring

control areas.

Since this study used exposure at the group level for the areas studied, there is
potential for ecological fallacy in the interpretation of the results. This could lead to
identification of significant associations that were not true, and incorrect conclusions
based on these associations. This is especially true of the majority land cover variables.
For example, if a county or zip code with TBRF cases is characterized by majority
evergreen forest, but contains smaller areas of deciduous forest, it is possible that cases
were infected in deciduous forest areas of that county or zip code; however, since the
majority land cover variable in that area was evergreen forest, it would be inaccurately
associated with TBRF occurrence. The county and zip code level measures of the

ecologic variables used in these analyses do not represent the precise locations in which
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cases were exposed to TBRF and the results of these analyses should not be applied to

individual TBRF cases.

The temperature and precipitation variables used for this analysis provided
average values for a 30 year period from 1971 to 2000. These variables did not account
for possible substantial changes that may have influenced TBRF occurrence, but
provided an average value for temperature and precipitation in the areas studied.
Additionally, the years included in the average for these variables do not completely
coincide with the years TBRF cases were reported in both levels of analysis, but the
average of the variables was considered an acceptable indication of the behavior of the
variables over a similar span of time. Likewise, the map layers for land cover of each
state were only accurate when they were created. Since both analyses encompassed
TBRF cases occurring over a period of 20 years or more, the landscape of the areas
where these cases were exposed may not remain constant. Using the majority land
cover for each area analyzed was done to capture the overall character of each county
or zip code, which may be less likely to change over time than a specific area within a

county or zip code.

5.6 Recommendations for Future Studies

This study provided evidence of associations between ecologic factors and TBRF
occurrence at the county and zip code levels, but the associations observed did not fully
characterize areas where TBRF was observed. Analyses could be repeated at either the

county or zip code level, but additional factors related to TBRF occurrence should be
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investigated. Previous studies have identified a strong association with stayingin a
rustic cabin and exposure to TBRF. Exploring this association on a county or zip code
level by using some measure as a surrogate for the amount of rustic cabins in an area,
while accounting for the ecologic variables explored in this analysis, may further refine
the model of TBRF occurrence at these levels. Human visitation or tourism revenue is
an aspect of an area that should be explored in future analyses. Additionally, analysis
of ecologic and additional factors in a smaller area, such as census tract, could provide
more specific associations with TBRF occurrence. Performing a spatial analysis in an
area where an outbreak occurred by mapping individual case exposure locations would
provide much more specific evidence of associations with TBRF cases. The ecologic
variables examined could be specific to at least the month in which the outbreak
occurred, providing a much more accurate characterization of the conditions under
which cases were exposed to TBRF. Finally, mapping the habitat of the Ornithodoros
species tick vectors responsible for TBRF transmission could lead to a much improved
predictive model for areas of greater TBRF risk. This approach has been successfully
attempted with Ixodes pacificus, (Eisen et al., 2006), the tick species that is the primary
vector of Lyme disease in California, and would provide an additional layer of detail to

any larger scale future analyses of TBRF.
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