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ABSTRACT 
 

 

 

THE RESPONSE OF A ROCKY MOUNTAIN FOREST SYSTEM TO A SHIFTING  
 

DISTURBANCE REGIME 
 
 
 

Climate change is likely to drive widespread forest declines and transitions as 

temperatures shift beyond historic ranges of variability. Warming temperatures and shifting 

precipitation patterns may lead to increasing disturbances from wildfire, insect outbreaks, 

drought, and extreme weather events, which may greatly accelerate rates of ecosystem change.  

However, the role of disturbance in shaping forest response to climate change is not well 

understood. Better understanding the impacts of changing disturbance patterns on forest decline 

and recovery will allow us to better predict how forest ecosystems may adapt to a warming 

world. 

Severe wildfires and bark beetle outbreaks are currently affecting large areas of forest 

throughout western North America, and increasing disturbance size and severity will have 

uncertain impacts on forest persistence. The goal of my dissertation was to investigate the factors 

shaping disturbance response in a region of the San Juan Mountains, Colorado, which has 

undergone impacts from a high-severity spruce beetle outbreak and wildfire in the last 15 years. I 

conducted three separate studies in the burn area of the West Fork Complex wildfire, which 

burned in 2013, and in surrounding beetle-affected spruce-fir forests. The goals of each study 

were to 1) assess whether the severity of spruce beetle outbreaks occurring before wildfire 

resulted in compounded disturbance interactions affecting vegetation recovery, 2) determine how 

the severity of each disturbance type influenced fine-scale below-canopy temperature patterns 
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across the landscape, and 3) assess how conifer seedling regeneration densities were influenced 

by effects of disturbance severity on seed dispersal, temperature, and vegetation structure.  

I found that disturbances influenced seedling regeneration and ecosystem resilience 

through several mechanisms. First, pre-fire beetle outbreak severity was negatively correlated 

with post-fire vegetation cover, indicating that the combined disturbances were inhibiting 

regeneration beyond what may have been expected with fire alone. Second, disturbances had 

significant effects on below-canopy temperatures, with burned areas ~0.5 °C warmer than 

unburned forest areas and differences in overnight minimum temperatures resulting from loss of 

live canopy in unburned, beetle-killed forests. Third, the large fire size and high severity resulted 

in very little spruce seed dispersal or conifer regeneration in most of the burned area, while 

spruce regeneration in unburned forest was negatively correlated with increasing overstory 

mortality from the spruce beetle.  

My results indicate that disturbance is playing an important role in determining the future 

trajectory of the forest in my study area. The West Fork Complex fire has caused a severe 

ecosystem transformation, has increased landscape exposure to warming temperatures, and is 

preventing forest re-establishment as a result of a lack of seed sources. The spruce beetle 

outbreak has not resulted in such a severe transformation, but is possibly leading to reduced 

forest resilience by reducing spruce seedling re-establishment and by altering fuel structures to 

make forests more prone to high soil burn severity if fire follows within ~10 years. Warming of 

below-canopy microclimates is not exacerbated by spruce beetle outbreak, and is rather partially 

offset by cooling of overnight temperatures. These findings provide insights into how forest 

responses to climate change may be shaped by disturbance processes, which are occurring with 

increasing severity and frequency worldwide.  
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CHAPTER 1: Introduction 
 
 
 
Climate Change, Disturbance, and the Future of Forests 

  Climate change is expected to have a dramatic impact on forest ecosystems worldwide. 

Global average surface temperatures have increased by 0.85 °C since 1880, and are projected to 

increase by an additional 1-2 °C by the mid-21st century (IPCC, 2014). Relative to the pace of 

observed climate change, forests are dominated by slow-growing organisms that may have 

difficulty adapting to novel conditions. Forest species which are unable to adapt in place may 

therefore undergo declines in regions where climate is becoming unsuitable, and will only persist 

by colonizing newly suitable areas (Aitken et al., 2008). This response is likely to lead to 

widespread shifts in forest distributions and productivity across the globe, with implications for 

global terrestrial carbon pools, nutrient and water cycling, and wildlife habitat (Kirschbaum, 

2000; Lenoir et al., 2008).   

 Some of the most severe climate impacts to forests may arise from amplifying effects of 

disturbances (Overpeck et al., 1990; Dale et al., 2001; Allen et al., 2010; Bentz et al., 2010; Seidl 

et al., 2017). A warming atmosphere increases evaporative demand and will thereby increase 

drought stress on vegetation (Williams et al., 2010; Berg et al., 2016), especially in regions such 

as the subtropical latitudes and Mediterranean where mean annual precipitation is projected to 

decrease (IPCC, 2014). Severe drought stress on forests increases the likelihood of widespread 

tree die-offs and increases tree susceptibility to insect infestation (Allen et al., 2010). Warming 

also prolongs fire seasons and leads to low fuel moisture, increasing wildfire occurrence in 

flammable forest types where there are sources of ignitions (Jolly et al., 2015). In regions where 

precipitation is expected to increase, such as the equatorial and high latitudes, increasing wetness 
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and heavy rainstorms may facilitate pathogen spread (IPCC, 2014; Pautasso et al., 2015). 

Climate change is also expected to increase the frequency and severity of extreme weather 

events, increasing forest impacts from tropical storms, cyclones, winter storms, tornadoes, 

windthrow, floods, and avalanches (Dale et al., 2001; Seidl et al., 2017).  

Disturbance Regimes  

 Forest disturbances are relatively discrete biotic or abiotic events that significantly alter 

the structure of an ecosystem, usually by causing high mortality in dominant species (White & 

Pickett, 1985). Interactions among climate, geomorphology, and species assemblages may 

determine a recurring pattern of particular disturbance types, known as the disturbance regime 

(Sousa, 1984; White & Pickett, 1985; Turner et al., 1998). These regimes may be an integral part 

of ecosystem functioning, contributing to movement of nutrients and organisms, regeneration, 

succession, and landscape diversity (Turner, 2010). Disturbance regimes are also an important 

evolutionary filter for organisms on the landscape and play a role in shaping species assemblages 

and adaptations (Johnstone et al., 2016). Changing disturbance regimes therefore have the 

potential to alter forest ecosystem structure and function, amplifying changes driven by shifting 

climates.  

Climate change is modifying disturbance regimes by changing the size, severity, and 

frequency of multiple disturbance types (Turner, 2010). Increasing disturbance frequencies and 

footprints also increase the probability of disturbances interacting in space and time, potentially 

producing disturbance interactions or compounded effects on vegetation recovery (Paine et al., 

1998; Buma, 2015). Interacting disturbances may produce negative feedbacks in many cases, 

such as when past disturbances reduce forest density and create forest gaps, which limit the 

severity of future disturbance by insect outbreaks or fire (Bigler et al., 2005; Kulakowski & 
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Veblen, 2007). On the other hand, positive feedbacks may result from other types of disturbance 

interactions, such as windthrow events leading to localized insect outbreaks (Seidl & Rammer, 

2017). Additionally, compounded effects from multiple disturbances may arise when the 

combination of two events produces unexpected effects on ecosystem recovery that would not 

result from one event alone (Paine et al., 1998). This may occur when two disturbances closely 

overlap in time. For example, shortening fire return intervals may cause forests regenerating 

from pre-fire seed banks to re-burn before trees have matured, leaving no seed bank for a second 

regeneration (Buma et al., 2013).   

Ecosystem Resilience and Transitions 

Ecosystem transformations may occur where the cumulative impacts from disturbances 

and reduced climate suitability prevent dominant species from adapting to or recovering from 

changing conditions (Johnstone et al., 2016). Conversely, ecosystem resilience allows systems to 

absorb change and maintain relationships between populations and state variables (Holling, 

1973). Ecosystem stability, a related concept, refers to the capacity of the system to resist being 

altered by external perturbations (Lewontin, 1969; Holling, 1973). Most ecosystems that appear 

stable over time have evolved species assemblages and individual species adaptations that confer 

resilience to localized disturbances, allowing the ecosystem to return to a prior state each time a 

disturbance occurs (Johnstone et al., 2016). Recovery from disturbances at specific places and 

times results in stability over large spatial and temporal scales. However, species’ adaptations to 

a particular disturbance regime may not result in resilience when disturbances begin to routinely 

increase in extent or severity or create novel disturbance interactions. Resilience may be further 

undermined by climatic shifts that make dominant species less well-adapted to the physical 

environment.  
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Declines in forest resilience to disturbance may result in state transitions to non-forest 

ecosystems, or to systems with altered species composition and structure. These novel states may 

represent alternative stable states which cannot be expected to return to the prior, forested state 

even if warming temperatures stabilize or decrease or if disturbance regimes return to historic 

norms. Alternative stable states exist where multiple ecosystem types may arise from alternate 

disturbance trajectories and shifts in environmental parameters, and which require large 

perturbations to destabilize once established (Lewontin, 1969; Beisner et al., 2003). Disturbances 

not only allow species to more rapidly re-assemble in alignment with novel climate conditions, 

but also remove biological material from the landscape that would allow for forest recovery (i.e. 

seeds banks, resprouting roots) and may help to drive transitions to alternative stable states 

(Holling & Gunderson, 2002; Johnstone et al., 2016). Warming conditions increase the 

likelihood of these transitions by reducing the stability of species assemblages formed by past 

climates. 

Alternative state transitions may be highly beneficial for adaptation to climate change in 

long-lived species (Thom et al., 2017). Some disturbance types, such as fire and insect outbreaks, 

may be more likely to occur at the warmest ends of a species’ distribution where trees are under 

the greatest climatic stress. Tree die-offs may then allow more warm-adapted species to colonize 

sites without competition from the overstory (Iverson et al., 2011; Serra-Diaz et al., 2015). 

Disturbances also create a transition from forest dominance by large, well-established trees to 

dominance by regenerating seedlings, which are typically more susceptible to mortality from 

high temperatures and drought (Grubb, 1977). Seedling mortality may drive more gradual 

ecosystem transitions if novel climate conditions are sustained during the period of tree re-

establishment.  
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Understanding Forest Trajectories in a Changing Climate 

 Impacts of climate change on particular species can be estimated using future climate 

projections made by general circulation models (GCMs). These projections can be used to 

predict future areas of potential decline and colonization based on change in suitability of climate 

variables correlated with historical species distributions, an exercise known as bioclimate 

modeling (Box, 1981; Guisan & Zimmerman, 2000). Bioclimate models have been widely used 

to assess the impacts of various climate change scenarios on forest species (Pearson & Dawson, 

2003; Hijmans & Graham, 2006). However, it is not well understood how predictions based on 

climate suitability alone will ultimately be influenced by complex processes arising from 

changing disturbance regimes, processes of species movement, and species interactions 

(Franklin, 2010; Iverson et al., 2011). Given the occurrence of widespread forest disturbances 

associated with current warming, understanding the effects of changing climates on future 

distributions depends on understanding how disturbance patterns and recovery processes may 

help guide ecosystems toward alternative stable states.  

 Assessing impacts of climate on forest communities is often limited by a lack of available 

climate data at spatial scales relevant to biological processes. Mismatches between scales of 

observation and scales of process can significantly affect the assessed relationships between 

ecosystem variables, and is a common problem in ecology (Levin, 1992). Observed climate data 

is typically interpolated from weather stations and projected onto spatial grids with cell sizes ~1 

km2 or greater, and future projections are typically made at scales of several km2 (IPCC, 2014; 

Harris et al., 2014). However, biotic processes such as seedling establishment and survival occur 

at much finer scales. It has been demonstrated that the spatial scale of climate representations can 
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strongly affect assessments and projections of the influences of climate on vegetation (Austin & 

van Niel, 2011; Slavich et al., 2014). 

‘Topoclimate’ refers to the influence of topographic variations on temperature and 

moisture patterns along gradients of elevation, aspect, and slope position at spatial scales 

typically < 1 km (Dobrowski, 2011). In forest ecosystems, temperature and moisture may also be 

strongly affected by canopy structure and variation in microclimate as well (de Frenne et al., 

2016). These complex variations may be of importance for predicting broader-scale patterns of 

decline, as pockets of cooler temperatures and elevated moisture can provide microrefugia within 

landscapes where species may be at risk of extirpation (Ashcroft, 2010). Landscape patterns in 

which climatically unsuitable areas are interrupted by microrefugia may allow particular species 

and cover types to persist with patchy distributions rather than become extirpated completely. 

Microrefugia can also preserve seed sources, provide bases for expansion during favorable 

climate windows, and create ‘stepping stones’ for dispersal to more suitable climates (Hannah et 

al., 2014). Understanding how forest species trajectories may be influenced by microrefugia 

requires that climate influences be considered at the relatively fine topoclimate scale.  

Climate and disturbances may also influence future forest distributions through effects on 

species dispersal mechanisms. Species cannot realize their potential distributions in locations 

with improving climate suitability if they cannot disperse to those locations, and seed availability 

may additionally influence the likelihood of species persistence and the available genetic 

diversity for in situ adaptation (Clark et al., 2001; Kremer et al., 2012; Corlett & Wescott, 2013). 

Canopy disturbances have the potential to cause ecosystem transitions by limiting seed 

availability. For example, forest recovery after a large wildfire may be mediated not only by 

climate, but by the severity of the wildfire and the availability of live seed sources within the 
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burned patch (Turner et al., 1999). Long distances between seed sources and suitable sites for 

germination can mediate species’ relationships to climatic factors across landscapes, particularly 

for wind-dispersed species with small dispersal ranges (Urza & Sibold, 2017; Kemp et al., 2019). 

Partial canopy disturbance may also reduce the numbers of large, high seed crop-producing trees 

in forests that reproduce through seed masting. In some circumstances, warming temperatures 

can further limit overall seed production in surviving trees (Zlotin & Parmenter, 2008; Smaill et 

al., 2011).  

Disturbance and Recovery in Forests of the Southern Rockies  

 The Southern Rocky Mountains extend from southern Wyoming to northern New 

Mexico. Most of the region is dominated by conifer forest, with high-elevation subalpine zones 

(~2,700-3,600 m) dominated by Engelmann spruce (Picea engelmannii), subalpine fir (Abies 

lasiocarpa), lodgepole pine (Pinus contorta) and aspen (Populus tremuloides). Mid-elevation 

zones are dominated by aspen stands and mixed-conifer forests composed of spruces, firs, 

ponderosa pine, and Douglas fir (Pseudotsuga menziesii). Montane zones (~1,800-2,700 m 

elevation) are mainly dominated by ponderosa pine (Pinus ponderosae) and transition to 

woodlands dominated by piñon pine (Pinus edulis) and Rocky Mountain juniper (Juniperus 

scopulorum) at lower elevations.  

The region has warmed significantly in the past century (~ +0.2-0.8 °C) and has 

experienced several severe, multi-year droughts since 1999 (Gonzalez et al., 2018). In the last 

three decades, forests of the Southern Rockies have seen a severe increase in the number of large 

wildfires and in annual area burned (Dennison et al., 2014). These increases have been attributed 

to higher summer temperatures, earlier snowmelt, and more frequent severe droughts as a result 

of anthropogenic warming (Westerling et al., 2006; Abatzoglou & Williams, 2016). Factors 
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driving fire regime changes in montane ponderosa pine and mixed-conifer forests are complex, 

as historic fire patterns are influenced by indigenous land use, European settlement, and 20th-

century fire suppression leading to densely stocked forests in some areas (Brown et al., 1999). In 

higher-elevation subalpine forests, historic fire occurrence has not been as greatly influenced by 

human activities and has been more strongly linked to warm and dry climate conditions 

(Schoennagel et al., 2004; Sibold & Veblen, 2006). Warming and increasing aridity therefore 

may increase fire frequency and alter fire regimes in high-elevation forest zones.   

Fires in subalpine forests have historically occurred infrequently (~50-300 year return 

intervals) and tend to be stand-replacing, as dominant spruces, firs, and lodgepole pine have not 

evolved fire-resistant traits such as thick bark (Agee, 1998). Rather, subalpine forest species have 

mainly evolved fire-resilient traits such as serotinous cones and wind-dispersed seeds (Enright et 

al., 2014). These resilience mechanisms may be highly sensitive to shifting fire regimes if 

increasing fire size, severity, and frequency result in large burned areas with few surviving trees 

or seed sources. Evidence from throughout the U.S. Rockies shows that many fires in the last 

decade have been followed by limited conifer re-establishment (Stevens-Rumann & Morgan, 

2019). While regeneration failures have been primarily documented in lower-elevation dry 

forests, limited seedling numbers have also been observed in subalpine forests due to a 

combination of limited seed dispersal and post-fire drought conditions (Harvey et al., 2016; Urza 

& Sibold, 2017). These limits to seedling re-establishment may indicate that fires are catalyzing 

ecosystem transitions, and that these patterns are likely to become more widely observed with 

continued warming and severe fire seasons. 

In addition to the increase in fire activity, western North America has also experienced 

unprecedented bark beetle outbreaks in the last two decades. Bark beetles are wood-boring 
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insects that lay larvae in the phloem of host trees, causing tree mortality as the growing larvae 

cut off nutrient flow to the canopy. While large outbreaks have occurred in the past, typically 

associated with blowdown events, recent outbreaks have been exacerbated by widespread and 

prolonged droughts that weaken tree defenses (Bentz et al., 2010; Hart et al., 2014). Warming 

winters also allow for larger beetle populations, as beetles are killed by extreme cold 

temperatures (Bentz et al., 2009). The extent and synchronicity of bark beetle outbreaks in 

multiple host forest types had not been previously documented, and is thought to be a symptom 

of a climatic shift which will leave a long-lasting legacy on western conifer forests (Raffa et al., 

2008).  

Bark beetle activity in the Southern Rockies has declined in the last several years as 

infestations have spread through mature host trees (CSFS, 2018). Beetles prefer large-diameter 

trees that may be several hundred years old, meaning that forests affected by severe outbreaks 

will not be susceptible again in the foreseeable future. In high-elevation forests affected by 

mountain pine beetle (Dendroctonus ponderosae; lodgepole pine hosts) or spruce beetle 

(Dendroctonus rufipennis; Engelmann spruce hosts), post-beetle recovery is typically dominated 

by advanced regeneration of seedlings established prior to the outbreak (DeRose & Long, 2007; 

Collins et al., 2011; Kayes & Tinker, 2012). Unlike wildfire, bark beetle outbreaks have not led 

to documented regeneration failures or abrupt ecosystem transformations. 

  Since extensive beetle outbreaks begin in the late 1990s, the potential for disturbance 

interactions with wildfire has been a major management concern. Beetle-killed stands may 

experience understory regeneration that may increase fine surface fuel loads, while large fuel 

loads may increase as dead trees fall (Jenkins et al., 2008). These changes to fuel structure can 

theoretically increase wildfire severity and lead to more active crown fire (Schoennagel et al., 
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2012). However, a number of studies have shown that this is not necessarily the case, and that 

the links between fuel structure and fire activity may be irrelevant in relation to the influences of 

fire weather and topography (Simard et al., 2011; Harvey et al., 2014; Andrus et al., 2016).  

Research Objectives 

 My dissertation research focused on the effects of recent, severe wildfire and spruce 

beetle outbreak in the eastern San Juan Mountains of southwest Colorado. Fieldwork for each 

chapter took place near Wolf Creek Pass in the Rio Grande National Forest, straddling the 

Continental Divide. The area is dominated by Engelmann spruce and mixed-fir forests with 

interspersed aspen stands. Spruce beetles in the San Juans were first detected in the Weminuche 

Wilderness Area in 2004 and had become widespread throughout the study area by ~2008. My 

study area also included area burned by the West Fork Complex wildfire in 2013. The West Fork 

Complex was composed of three individual lightning-caused fires and was the second-largest fire 

ever recorded in Colorado, burning over 44,000 ha of recently beetle-killed spruce-fir forest. 

Severe disturbances in this region of the San Juan Mountains provided an opportunity to 

conduct a detailed examination of ecosystem response. Forest recovery in this area is influenced 

by multiple factors, including compounded disturbance interactions, novel disturbance severities 

and extents, and complex warming patterns over a landscape with varying topography. Chapters 

2-4 of this dissertation explore various components of the potential effects of changing 

disturbance regimes on future forest trajectories and the potential implications for climate change 

response. In Chapter 2, I examined the effects of high-severity wildfire interacting with prior 

high-severity spruce beetle outbreak to produce compounded effects on vegetation recovery. I 

present a remote sensing methodology for assessing pre-fire spruce beetle disturbance severity, 

and use a spatially structured model to determine the relationship between spruce beetle severity 
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and post-fire vegetation cover. In Chapter 3, I used in situ temperature sensor data to assess the 

influences of fine-scale topography and disturbance impacts to forest overstory on below-canopy 

temperatures. The results of this study have implications for understanding how ecosystem 

recovery may vary as a result of heterogeneity in exposure to broader warming at the below-

canopy scale. In Chapter 4, I utilized below-canopy temperature records, topography, canopy 

structure, and understory cover data to determine the relative influence of these factors on spruce 

and fir seedling establishment. These results provide an indication of ecosystem resilience to 

each disturbance. Results from Chapters 2-4 are synthesized in Chapter 5. 
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CHAPTER 2: Evidence of Compounded Disturbance Effects on Vegetation Recovery 
Following High-Severity Wildfire and Spruce Beetle Outbreak 

 

 

 

Summary 

Spruce beetle (Dendroctonus rufipennis) outbreaks are rapidly spreading throughout 

subalpine forests of the Rocky Mountains, raising concerns that altered fuel structures may 

increase the ecological severity of wildfires. Although many recent studies have found no 

conclusive link between beetle outbreaks and increased fire size or canopy mortality, few studies 

have addressed whether these combined disturbances produce compounded effects on short-term 

vegetation recovery. We tested for an effect of spruce beetle outbreak severity on vegetation 

recovery in the West Fork Complex fire in southwestern Colorado, USA, where much of the 

burn area had been affected by severe spruce beetle outbreaks in the decade prior to the fire. 

Vegetation recovery was assessed using the Landsat-derived Normalized Difference Vegetation 

Index (NDVI) two years after the fire, which occurred in 2013. Beetle outbreak severity, defined 

as the basal area of beetle-killed trees within Landsat pixels, was estimated using vegetation 

index differences (dVIs) derived from pre-outbreak and post-outbreak Landsat images. Of the 

seven dVIs tested, the change in Normalized Difference Moisture Index (dNDMI) was most 

strongly correlated with field measurements of beetle-killed basal area (R2 = 0.66). dNDMI was 

included as an explanatory variable in sequential autoregressive (SAR) models of NDVI2015. 

Models also included pre-disturbance NDVI, topography, and weather conditions at the time of 

burning as covariates. SAR results showed a significant correlation between NDVI2015 and 

dNDMI, with more severe spruce beetle outbreaks corresponding to reduced post-fire vegetation 

cover. The correlation was stronger for models which were limited to locations in the red stage 

of outbreak (outbreak ≤ 5 years old at the time of fire) than for models of gray-stage locations 
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(outbreak > 5 years old at the time of fire). These results indicate that vegetation recovery 

processes may be negatively impacted by severe spruce beetle outbreaks occurring within a 

decade of stand-replacing wildfire.    

Introduction 

Climate-related disturbances in North American forests have been increasing in 

frequency and extent in recent decades (Cohen et al., 2016). In the Rocky Mountain region, the 

increasing pressures of novel climate conditions, prolonged droughts, insect outbreaks, and 

larger and more severe wildfires have sparked concerns that multiple disturbances may drive 

fundamental shifts in species compositions and ecosystem processes (Buma, 2015; Kulakowski, 

Matthews, Jarvis, & Veblen, 2013; Stephens et al., 2013). Events which alter recovery processes 

and drive ecosystems toward new stable states are known as ‘compound disturbances’ (Paine, 

Tegner, & Johnson, 1998), and may play an important role in shaping the structure and 

composition of future forests (Dale et al., 2001; Turner, 2010). However, evidence supporting 

clear compounded effects of multiple disturbances in western forest systems is not well 

documented. An improved understanding of interactions between disturbances is important for 

building an understanding of multiple disturbance processes, and for informing management 

decisions in systems undergoing changes in disturbance regimes.  

One of the most pressing research questions related to multiple disturbances in western 

forest systems is whether severe bark beetle outbreaks can increase the ecological severity of 

subsequent wildfires (Hicke, Johnson, Hayes, & Preisler, 2012; Jenkins, Hebertson, Page, & 

Jorgenen, 2008; Negrón et al., 2008). Millions of hectares of western conifer forests have been 

recently affected by several species of bark beetle, including the mountain pine beetle 

(Dendroctonus ponderosae), spruce beetle (Dendroctonus rufipennis), western balsam bark 
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beetle (Dryocoetes confusus), Douglas-fir beetle (Dendroctonus pseudotsugae), and pinyon Ips 

beetle (Ips confusus) (Meddens, Hicke, & Ferguson, 2012). These insects have caused forest 

mortality at an unprecedented scale over the last two decades, due in large part to warming 

temperatures and aging forest stands (Negrón & Fettig, 2014; Raffa et al., 2008). The spruce 

beetle in particular is spreading rapidly through high-elevation subalpine forests as a possible 

result of increasing summer temperatures, which may shorten beetle development cycles, and 

increasing winter temperatures, which may allow larger populations to survive (DeRose & Long, 

2012; Hansen & Bentz, 2003). Spruce beetles are likely to continue spreading to higher 

elevations and more northerly latitudes throughout the Rocky Mountain region (Bentz et al., 

2010).  

In the southern Rockies (southern Wyoming to northern New Mexico), the primary 

spruce beetle host species is Engelmann spruce (Picea engelmannii). P. engelmannii typically 

co-occurs with subalpine fir (Abies lasiocarpa) at elevations ranging from about 2,850-3,500 m 

a.s.l. (Peet, 1978). Spruce-fir forests are characterized by infrequent, high-severity wildfire and 

fire occurrence is climate-limited rather than fuel-limited (Agee, 1998; Arno, 1980; Bessie & 

Johnson, 1995; Romme & Knight; 1981; Sibold, Veblen, & González, 2006). As a result of the 

typically long intervals between fires in these systems, fuels tend to be densely stocked (Bessie 

& Johnson, 1995; Sibold et al., 2006). However, surface fuels are often limited (Schoennagel, 

Veblen, & Romme, 2004), and beetle outbreaks may affect the fuel structure of recently killed 

stands by transferring fine fuels from the canopy to the forest floor. 

Severe spruce beetle outbreaks can cause up to 100% mortality in mature spruce stands 

and result in complete loss of overstory canopy (Bentz et al., 2009). During an outbreak, host 

trees are killed within 1-2 years of attack as beetles bore into the bark and feed on phloem 
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tissues. Loss of canopy needles continues for 2-5 years after the initial attack, after the tree has 

been killed (known as the “red stage”) (Bentz et al., 2009). The red stage is followed by a “gray 

stage” in which all needles have been shed and fine fuels begin to decompose on the forest floor 

(Hicke et al., 2012). During this time, coarse surface fuel loads may increase as standing dead 

trees begin to fall from root rotting and blowdowns (Meigs, Kennedy, & Cohen, 2011). 

Accumulation of fuels on the forest floor can potentially increase the severity of surface fire 

(Agee & Skinner, 2005), leading managers to speculate that fuel removal may be necessary to 

mitigate wildfire impacts (Collins, Rhoades, Hubbard, & Battaglia, 2011).   

Assessing the impact of bark beetle outbreaks on fire severity is challenging, due to the 

difficulty in accurately quantifying outbreak severity (referring to the number or density of killed 

trees within a stand) after fires have damaged physical evidence of beetle activity (Assal, Sibold, 

& Reich, 2014). Although aerial imagery and aerial detection survey (ADS) data can be used to 

classify where outbreaks have occurred at broad scales, it is difficult to determine how severity 

may vary at fine spatial scales. ADS is carried out annually by multiple resource agencies in the 

US and provides classifications of severity within hand-drawn outbreak extent polygons, but 

these classifications provide only a single severity estimate within areas which may vary widely 

in size (e.g. >1,000 ha). Remotely sensed vegetation indices (VIs) derived from satellite imagery 

offer the potential to estimate outbreak severity with greater spatial accuracy than ADS (30-m 

resolution from Landsat imagery), and can be used to characterize canopy change from outbreaks 

over a greater spatial extent than is feasible using field methods. Remote sensing techniques have 

been widely applied to detect canopy change from bark beetle outbreaks and other types of 

disturbance (Assal et al., 2014; Assal, Anderson, & Sibold, 2016; Goodwin et al., 2008; Hais, 

Jonášová, Langhammer, & Kučera, 2009; Hart & Veblen, 2015; Havašová, Bucha, Ferenčik, & 
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Jakuš, 2015; Meddens, Hicke, Vierling, & Hudak, 2013; Walter & Platt, 2013; Wilson & Sader, 

2002). Multi-date image differencing of VIs provides a quantitative indicator of spectral change 

from forest canopy mortality (Healey, Yang, Cohen, & Pierce, 2006; Jin & Sader, 2005), which 

may serve as an effective metric for canopy loss from beetle outbreak. 

An additional challenge in assessing the relationship between outbreak severity and fire 

impacts is that a number of contingent factors may affect the nature of the disturbance 

interaction. These factors may complicate the effect of beetle outbreaks on fuel structures, alter 

the effect of fuel structure on fire behavior and burning intensity, or may affect vegetation 

recovery independently from fuel structure. First, the fuel structure of beetle-killed stands 

changes with time following the initial outbreak. Older beetle-killed stands contain greater 

amounts of downed woody material and ladder fuels from sapling regeneration, which allow 

faster surface spread and increase the probability of fire spreading to the crown (Harvey, Donato, 

Romme, & Turner, 2014). However, more recently killed stands may retain more fallen needles 

on the forest floor which increase fine surface fuel loads (Simard, Romme, Griffin, & Turner, 

2011). The effect of fuel structure on fire severity can also vary with weather conditions at the 

time of burning, such that extreme temperatures, humidity levels, and wind speed are more likely 

to result in faster fire spread and complete combustion of fuels (Bebi, Kulakowski, & Veblen, 

2003; Harvey et al., 2014; Kulakowski, Veblen, & Bebi, 2003). Additionally, topographic factors  

influence fire behavior (e.g., fire intensity may be greater on steeper slopes or at high slope 

positions) (Bigler et al., 2003) and spatial patterns in vegetation recovery (e.g., faster recovery on 

north-facing slopes due to greater moisture availability, or at lower elevations due to warmer 

temperatures and longer growing season) (Ireland & Petropoulos, 2015; Petropoulos, Griffiths, & 

Kalivas, 2014). 
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Several recent studies have assessed impacts of beetle outbreaks on fire severity, and 

many have found no evidence of a conclusive link between disturbances (Agne, Woolley, & 

Fitzgerald, 2016; Andrus, Veblen, Harvey, & Hart, 2016; Bebi et al., 2003; Bigler et al., 2005; 

Harvey et al., 2014; Harvey, Donato, Romme, & Turner, 2013; Hicke et al., 2012; Kulakowski et 

al., 2003; Kulakowski & Veblen, 2007; Meigs, Zald, Campbell, Keeton, & Kennedy, 2016; 

Meng, Dennison, Huang, Moritz, & D’Antonio, 2015; Simard et al., 2011). However, previous 

methods of assessing fire severity may not thoroughly address all potential effects on ecosystem 

recovery. “Fire severity” is a somewhat ambiguous term in the literature (Keeley, 2009), and 

most beetle-wildfire interaction studies have primarily focused on impacts to canopy vegetation 

and aboveground cover immediately after the fire. These methods do not directly account for 

impacts to belowground soil properties which may have a longer-term effect on vegetation 

recovery, such as destruction of the seed bank, alteration of soil structure, loss of organic matter, 

or increases in hydrophobicity (Certini, 2005; DeBano, Neary, & Ffolliott, 1998). Because the 

primary effect of spruce beetle outbreaks on forest stands is to shift fuels from the canopy to the 

forest floor, it is possible that outbreaks may impact these properties without creating any 

significant effect on canopy mortality. Moreover, in forests characterized as having stand-

replacing fire regimes where nearly all canopy trees are killed (Sibold et al., 2006), it is not clear 

how bark beetles could exacerbate mortality associated with wildfire.  

To determine whether spruce beetle outbreak severity shows an effect on short-term 

vegetation recovery from fire, we used the Landsat-derived Normalized Difference Vegetation 

Index (NDVI) to assess understory vegetation recovery two years after a large, high-severity 

wildfire. NDVI provides an indicator of grass and herbaceous cover in early recovery stages 

(Hope, Tague, & Clark, 2007; Ireland & Petropoulos, 2015; Petropoulos et al., 2014). We chose 
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the West Fork Complex fire in southwestern Colorado, USA, as a case study because this event 

exemplifies an extreme wildfire event co-occurring with severe spruce beetle disturbance. The 

goals of the study were to 1) determine a Landsat-derived index which would allow us to 

estimate pre-fire spruce beetle severity using a multi-date image difference, and 2) determine the 

relationship of NDVI two years after the burn to pre-fire beetle outbreak severity, accounting for 

the influences of topography, weather at time of burning, and pre-disturbance NDVI.  

Methods 

Study Area 

The West Fork Complex fire burned from June 5 – July 6, 2013.  The complex consisted 

of three lightning-caused wildfires: Papoose (20,084 ha), West Fork (23,705 ha), and Windy 

Pass (573 ha). A total of over 44,000 hectares of subalpine spruce/fir forest in the Rio Grande 

National Forest, San Juan National Forest, and private lands northeast of Pagosa Springs, 

Colorado, were burned (Figure 2-1). Fire spread was driven by strong winds and high 

temperatures, causing up to 7,500 ha of spread in a single day. Firefighting management was 

minimal due to steep terrain and hazardous conditions presented by fire behavior in beetle-killed 

forest, and because the fire primarily burned areas designated as wilderness. The US Forest 

Service’s Burned Area Emergency Response (BAER) program classified the majority of the burn 

as ‘high-severity’, indicating complete canopy mortality and loss of understory vegetation (US 

Forest Service Remote Sensing Applications Center, 2015). 
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Figure 2-1. Overview map of the West Fork Complex burn area. Locations of the nearest 
weather station (Blue Park RAWS) and field sampling locations around Wolf Creek Pass are 

indicated. Area in red indicates burn area classified as ‘high severity’ by the US Forest Service 

Burned Area Emergency Response (BAER). Red square in inset shows the location of the study 
area within Colorado. Base imagery is from the USGS National Map server. 

 

The burn area was dominated by P. engelmannii and A. lasiocarpa, with some lodgepole 

pine (Pinus contorta), quaking aspen (Populus tremuloides), and Douglas fir (Pseudotsuga 

menziesii). Elevation ranges from ~2700 – 4000 m a.s.l. with steep slopes and rugged 

topography. Mean temperatures range from -7.80° C in January to 11.50° C in July, and annual 

precipitation is 95 cm (PRISM climate data; http://www.prism.oregonstate.edu/). Significant 

spruce beetle activity within the burn perimeter was first detected by ADS in 2004 (data 
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available from US Forest Service; https://www.fs.usda.gov/detail/r2/forest-

grasslandhealth/?cid=fsbdev3_041629). The outbreak was very severe, affecting more than 80% 

of spruce/fir forest within the study area by the time of the 2013 fire. 

 

Landsat Image Processing 

Processing steps for Landsat images and other explanatory variables are outlined in 

Figure 2-2. We acquired Landsat 7 ETM+ and Landsat 8 OLI (path 34, row 34) surface 

reflectance images collected in 2002, 2006, 2012, 2013, and 2015 (see Table 2-1 for image dates 

and sensor types). Images were pre-processed to surface reflectance using the Landsat 

Ecosystem Disturbance Adaptive Processing System (LEDAPS) (Masek et al., 2006). The 2002 

image predated the earliest detection of spruce beetle mortality by ADS, and was assumed to 

represent undisturbed canopy conditions. Subsequent images represent distinct points in the 

disturbance history of the site: mid-beetle outbreak (2006), mid-beetle outbreak and immediately 

pre-fire (2012), immediately post-fire (2013), and following two years of post-fire recovery 

(2015). We selected cloud-free images representing growing-season conditions at each time 

point (August, or the latest available growing-season date for which a cloud-free image was 

available). The 2006 and 2012 images contained missing data areas due to Landsat 7’s Scan Line 

Corrector Error, which accounted for ~5% of the study area. We excluded these missing data 

areas in the 2012 image from the final analysis.  
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Figure 2-2. Processing steps used to derive model variable layers from data sources. 

 

Table 2-1. Date and sensor type for Landsat scenes used in analysis. 

Image Sensor Date 

Pre-disturbance  L7 ETM+ August 10, 2002 

Mid-beetle outbreak L7 ETM+ June 18, 2006 

Post-beetle outbreak, pre-fire L7 ETM+ June 18, 2012 

Immediately post-fire L8 OLI August 16, 2013 

2 years post-fire L8 OLI August 06, 2015 
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Although the images were pre-processed to eliminate atmospheric biases between image 

dates, slight band differences between Landsat 7 ETM+ and Landsat 8 OLI may result in 

systematic biases between images collected with the different sensor types. In order to eliminate 

this bias when comparing images, we applied a normalization technique to the 2015 image using 

pseudo-invariant features (PIFs). We manually selected 40 PIFs as single pixels representing 

non-vegetative features where reflectance should be constant between image dates (such as bare 

soil above tree line, water bodies, and major roads). A linear regression calculation between each 

image band was used to adjust the 2015 image according to the method described by Schott et al. 

(Schott, Salvaggio, Volchok, 1988). In all cases the fit of the regression line used in band 

adjustment calculations was R2 ≥ 0.86. 

Beetle Severity Indices  

i. Field Validation 

We assessed the ability of Landsat-derived VIs to approximate spruce beetle 

severity using field measurements of beetle-caused spruce mortality. In August of 2015, 

we collected measurements in 58 unburned, beetle-affected spruce/fir plots within ~5 km 

of the West Fork Complex burn perimeter (see Figure 2-1). Fifteen sampling locations 

were chosen in ArcMap 10.0 (ESRI, 2010) to achieve a diverse representation of 

topographic characteristics, outbreak severities, and outbreak ages (determined by ADS). 

Including plots in different outbreak stages accounted for potential differences in spectral 

response caused by regeneration in older beetle-killed stands. Each sampling location 

consisted of a 180 m-long east-west transect with four 20 x 20 m evenly spaced sampling 

plots. In one transect we only established two plots, because spruce stands were 

surrounded by flat, wet subalpine fir-dominated site conditions which are uncharacteristic 
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of the total study area. Outbreak severities ranged from 0 - 100% beetle-caused mortality 

in overstory trees. 

We used a handheld GPS to place plots within ~3 m of the center of a 2 x 2 

Landsat pixel grid (60 x 60 m). We measured diameter at breast height (DBH) of all dead 

P. engelmannii trees with evidence of recent beetle activity within each 20 x 20 m plot 

area, and converted these measurements to total basal area. Basal area of beetle-killed 

trees within plot areas (400 m2) was our selected metric of beetle outbreak severity, and 

was assumed to estimate total change in canopy cover from pre-outbreak to post-

outbreak. Our metric of beetle severity is therefore an absolute value of beetle-killed P. 

engelmannii basal area per 400 m2 (20 x 20 m plot area) rather than a percentage of total 

canopy. Standing dead trees with no evidence of beetle activity were small in diameter, 

and we assumed that these trees did not significantly affect the spectral changes resulting 

from beetle outbreak. 

ii. Vegetation Indices 

We tested seven VIs which have been shown to respond to canopy disturbance: 

the Normalized Difference Moisture Index (NDMI; Gao, 1996; Wilson & Sader, 2002), 

Normalized Burn Ratio (NBR; Key & Benson, 1999; Meigs et al., 2011), Vegetation 

Condition Index (VCI; Havašová et al., 2015; Vogelmann, 1990), Moisture Stress Index 

(MSI; Havašová et al., 2015; Jakubauskas & Price, 2000), and two Disturbance Indices 

(DI and DI’) based on the Tasseled Cap transformation (Crist & Cicone, 1984; Hais et al., 

2009; Healey, Cohen, Zhiqiang, & Krankina, 2005; Liu, Liu, Huang, Liu, & Zhao, 2014). 

VIs were calculated using combinations of two or more Landsat bands (see Table 2-2 for 

index calculations).  
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Table 2-2. Equations used to calculate Landsat vegetation indices (VIs) used to approximate 
beetle severity. 

Index Equation 

NDVI (Near-infrared – Red)/(Near-infrared + Red) 

NDMI (Near-infrared – Mid-infrared)/(Near-infrared + Mid-infrared) 

NBR (Near-infrared – Thermal-infrared)/(Near-infrared + Thermal-
infrared) 

VCI Thermal-infrared/Near-infrared 

MSI Mid-infrared/Near-infrared 

DI TCBright – (TCGreen + TCWet)* 

DI’ TCWet - TCBright* 

*Refers to Tasseled Cap Brightness, Greenness, and Wetness transformations of Landsat bands, 
rescaled according to the method described by Healey et al. [67]. 

 

For each VI, we calculated a multi-date image difference by subtracting 2002 pre-

disturbance values from the 2015 value (dVI = VI2015 – VI2002). We compared these 

image differences to field measurements of beetle-caused overstory mortality by 

calculating the means of dVI values extracted from the 2 x 2 (60 x 60 m) pixel grid area 

surrounding field plot centers. We used mean values to account for potential spatial 

inaccuracies in the GPS location of the plot and overlay with the Landsat grid. 

Relationships between dVIs and plot-level values of basal area of beetle-killed trees were 

assessed using ordinary least squares (OLS) regression. The dVI which yielded the 

highest OLS R2 value was assumed to be the best indicator of beetle outbreak severity, 

and the difference in the selected index from 2002 to 2012 (VI2012 – VI2002) was included 

as an explanatory variable in post-fire NDVI models. 
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Other Explanatory Variables 

i. Topography 

Topographic variables included slope, elevation, aspect, and topographic position 

index (TPI). TPI is a numeric indicator of slope position, with higher values representing 

locations closer to ridgetops and lower values representing valley bottoms (Wilson & 

Gallant, 2000). Aspect was transformed to relative ‘northness’ using the formula 

abs(aspect – 180), so that values range from 0-180 as aspect increases from south-facing 

to north-facing. All topographic predictor variables were derived from a 1/3 arc-second 

digital elevation model (DEM), resampled to a resolution of 30 m.  

ii. Weather 

NDVI models included variables accounting for daily weather conditions over the 

two-week burn period. This was done using daily burn perimeter maps, which we 

obtained from the USGS Geospatial Multi-agency Coordination (GeoMAC) Wildland 

Fire Support service (US Geological Survey, 2015a). Each of these daily burn areas was 

classified with the corresponding mean daily values for air temperature, humidity, and 

wind speed. Daily weather station data was obtained from the Blue Park Remote 

Automated Weather Station (RAWS; National Interagency Fire Center, 2015).  

iii. Outbreak Stage 

We determined outbreak stage using the earliest year of spruce beetle detection 

from ADS data. Using annual ADS extents for all years since 1994, we determined that 

2004 was the earliest year when significant spruce beetle activity was mapped within the 

study area. Polygon areas with detection years 2004-2008 were classified as gray-stage, 
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while polygons with detection years 2009-2013 were classified as red-stage (Figure 2-3). 

These areal extent layers were used to clip explanatory variable areas to red and gray-

stage locations. We examined red and gray-stage locations in separate models to 

determine how relationships between outbreak severity and vegetation recovery varied 

between outbreak stages. 

 
Figure 2-3. Extent of study area classified as red or gray-stage beetle outbreak in 2012. Green 
area depicts spruce/fir forest with no outbreak detected. 

 

NDVI Models 

Explanatory variable layers were clipped to areas of spruce/fir forest cover type which 

burned at high severity. The spruce/fir forest cover mask layer was derived from the Southwest 
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Regional Gap Assessment (SWReGAP) land cover classification (US Geological Survey, 

2015b), using category labels which corresponded to subalpine spruce/fir forest type (Figure 

2-3). The high severity mask layer was derived from a 4-level BAER classification product 

based on the Landsat-derived relativized change in Normalized Difference Burn Ratio (RdNBR; 

Figure 2-1). We generated a predictor variable matrix by sampling pixel values from clipped 

layers along a 60x60 m point lattice (sampling at every other pixel).  

i. Sequential Autoregression  

The effects of spatial autocorrelation must be taken into account when assessing 

patterns in a contagious disturbance such as wildfire, because spatial dependence in either 

the response or the explanatory variables can violate assumptions of observation 

independence and inflate parameter values (Lennon, 2000; Wimberly, Cochrane, Baer, & 

Pabst, 2009). Variogram analysis revealed spatial autocorrelation in the NDVI layers for 

up to ~500 m of lag distance. We therefore modeled post-fire vegetation cover using 

spatial error sequential autoregressive models (SAR) to account for the effects of positive 

spatial autocorrelation in the data. The formula for the error SAR model is given by the 

equation 

𝑦 = 𝒙𝜷 +  𝜆𝑾(𝑦 − 𝒙𝜷) +  𝜀 

where 𝑦 is the dependent variable (modeled with a gamma likelihood), 𝒙 is a vector of 

predictor variables, 𝜷 is a vector of coefficients, λ is the autoregressive coefficient, 𝑾 is 

a spatial weights matrix, and ε is a random error term. All variables in 𝒙 are assumed to 

be measured without error. We determined the spatial weights matrix 𝑾 using the inverse 

distance of neighbors within 125 m of sample locations. All statistical analyses were 
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carried out in R 3.3.1 (R Core Development Team, 2013) using the ‘spdep’ package 

(Bivand, 2014).  

ii. Variable Scale 

To further account for the spatially connected nature of wildfire, we considered 

how variable scale may affect relationships between vegetation recovery patterns and 

explanatory variables. Wildfire is a rapid-spreading, contagious process, and fire 

behavior is likely to be influenced by topographic and fuel characteristics over a broader 

area than that covered by a 30-m Landsat pixel. Because fire behavior influences the 

degree of fuel consumption and burning intensity across the landscape, and can 

ultimately influence patterns of vegetation recovery (Odion & Davis, 2000), we expect 

that spatial neighborhood effects influence the relationship of topographic and fuel 

variables to post-recovery NDVI assessed at 30-m resolution. We accounted for 

neighborhood effects of explanatory variables using square moving-window average 

functions on our topographic variables and beetle severity index, which implicitly 

accounts for fuel structure. This process generated new 30-m raster layers by calculating 

new values for each pixel using the averages of surrounding pixels within our selected 

window sizes of 90, 150, and 300 m (corresponding to 3x3, 5x5, and 10x10 pixel grids, 

respectively). We determined the most appropriate scale of analysis for each variable 

using univariate SAR models for each variable at each scale to predict NDVI2015. The 

best-fitting model based on Akaike’s Information Criterion (AIC) value was used to 

select the scale for each variable to be included in the final multivariate model. This scale 

selection process ensures that the explanatory power of each variable is maximized in the 
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final multivariate model (Falk, Miller, McKenzie, & Black, 2007; Parks, Parisien, & 

Miller, 2011). 

iii. Multivariate Models 

After determining the best-fitting scales for explanatory variables, we used a 

stepwise selection procedure to select a model from a full set of explanatory variables: 

𝑁𝐷𝑉𝐼2015~ 𝑑𝑉𝐼 + 𝑠𝑙𝑜𝑝𝑒 + 𝑛𝑜𝑟𝑡ℎ𝑛𝑒𝑠𝑠 + 𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑃𝐼+ 𝑚𝑒𝑎𝑛 𝑎𝑖𝑟 𝑡𝑒𝑚𝑝. + 𝑚𝑒𝑎𝑛 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 + 𝑚𝑒𝑎𝑛 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑+ 𝑁𝐷𝑉𝐼2002 

 

We selected the combination of variables that minimized AIC value for both the red and 

gray stage. Relative importance of each variable to the final model was determined by 

removing variables from the final selected model and calculating the change in AIC 

(ΔAIC). 

Results 

Beetle Severity Indices 

 R2 values indicated that dNDMI was the index most strongly correlated to field-measured 

basal area of beetle-killed spruce (Table 2-3). The R2 value of the OLS regression was 0.66, 

indicating a relatively strong correlation (Figure 2-4). Furthermore, visual inspection of spatial 

patterns in dNDMI at multiple time points showed that values were responsive to outbreaks 

detected by ADS (Figure 2-5). Although the magnitude of dNDMI values varies as a result of 

scale differences in the post-outbreak image, there were clear spatial patterns within images 

indicating that lower values of dNDMI (darker-colored areas in the right-hand column of Figure 

2-5) correspond to known beetle outbreaks (areas detected by ADS; shaded orange in the left-

hand column of Figure 2-5) at multiple time points. The close relationship between dNDMI and 
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field-measured spruce mortality, in addition to temporal trends of ADS detection, indicates that 

dNDMI is a good proxy for beetle outbreak severity. dNDMI was therefore selected as a proxy 

for beetle outbreak severity in NDVI models. 

Table 2-3. R2 values from OLS regression tests comparing changes in each vegetation index 
from 2002-2015 (dVIs) to the beetle-killed basal area of spruce in field plots measured in 2015.  

Index R2 

dNDMI 0.66 

dDI 0.65 

dVCI 0.62 

dNBR 0.61 

dNDVI 0.60 

dMSI 0.60 

dDI’ 0.56 

 

 

 

Figure 2-4. Relationship of observed basal area of killed P. engelmannii in 20 m × 20 m field 
plots to the mean change in Normalized Difference Moisture Index (NDMI) from 2002 to 2015 
(dNDMI) for a 4x4 neighborhood of 30-m grid cells surrounding plot centers.  
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Figure 2-5. Comparison between spruce beetle outbreak extent detected by ADS from 2002 to 
the indicated year (left; ADS polygons shown in orange) and dNDMI (right). Top dNDMI = 
NDMI2006 – NDMI2002; bottom dNDMI = NDMI2012 – NDMI2002. Color scale for dNDMI is based 
on standard deviations within images. 
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NDVI Recovery 

Comparison of NDVI2013 and NDVI2015 to NDVI2002 reveals that NDVI has increased 

toward pre-disturbance values in the two years following wildfire, compared to relatively 

homogenous values in 2013 (Figure 2-6). However, NDVI2015 values are generally lower than 

their corresponding 2002 values. The pattern of recovery is heterogeneous, with some areas in 

the southern portions of the West Fork and Papoose burn areas showing slower recovery 

compared to the rest of the burn area (Figure 2-7).  

 

Figure 2-6. Pattern in Landsat-derived NDVI for locations in the West Fork Complex burn area 
that burned at high severity, compared to undisturbed 2002 conditions. NDVI2013 is the growing-
season NDVI immediately after the fire (August, 2013) and NDVI2015 is the NDVI two years 
after the fire (August, 2015). Solid line represents a 1:1 relationship. 
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Figure 2-7. Growing-season NDVI for the Papoose burn area (top row), and West Fork and 
Windy Pass burn areas (bottom row). NDVI images are clipped to spruce/fir forest cover type. 
Left images are from August, 2002 (pre-disturbance) and right images are from August, 2015 (2 
years post-fire recovery). 
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SAR Model Results 

i. Univariate 

Univariate relationships between explanatory variables and NDVI2015 determined 

by SAR are summarized in Table 2-4. These results present the best-fitting scales for all 

variables where a moving-window average calculation was applied. The relationship of 

vegetation cover to dNDMI is highly significant (p < 0.0001) in both the red-stage and 

gray-stage sample subset, but the slopes of the relationships are opposite. dNDMI is 

positively correlated to NDVI2015 in red-stage models, indicating that lower values of 

dNDMI (indicating greater mortality from spruce beetle outbreak) are correlated with 

lower vegetation cover in 2015. This relationship is negative in gray-stage models. 

NDVI2002 is the strongest single-variable predictor in both red and gray-stage 

models, based on AIC value. All topographic variables are significant in both subsets, 

while weather variables are not consistently significant. Topographic variables were 

selected at greater spatial scales, either at 150 m or 300 m. In the gray-stage subset, all 

topographic variables predicted NDVI2015 more accurately than dNDMI. In the red-stage 

subset, dNDMI was a more accurate predictor than either slope or TPI, or any weather 

variable. 
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Table 2-4. Results of univariate SAR models predicting 2015 NDVI for point locations in gray-
stage and red-stage pre-fire spruce beetle outbreak, with the best-performing scale of moving-
window averages selected for dNDMI, slope, northness, and TPI. Variables in bold are 
significant within a 95% confidence interval. Models are ranked by AIC value. 

Gray-stage:     

Variable β Std. error AIC p 

NDVI2002 0.48 8.9 x 10-3 -51473 <0.0001 

northness150 6.9 x 10-4 3.7 x 10-5 -49056 <0.0001 

elevation -3.0 x 10-4 1.6 x 10-5 -49047 <0.0001 

slope300 -3.7 x 10-3 3.3 x 10-4 -48844 <0.0001 

TPI300 -0.16 0.033 -48738 <0.0001 

dNDMI90 -0.068 0.015 -48736 <0.0001 

air temperature 2.6 x 10-3 1.0 x 10-3 -48723 <0.05 

humidity -2.5 x 10-4 1.8 x 10-4 -48718 0.16 

wind speed 5.8 x 10-4 2.5 x 10-3 -48716 0.82 

Red-stage:     

Variable β Std. error AIC p 

2002 NDVI 0.49 7.8 x 10-3 -59878 <0.0001 

elevation -2.3 x 10-4 1.1 x 10-5 -56696 <0.0001 

northness150 3.5 x 10-4 3.3 x 10-5 -56410 <0.0001 

TPI300 -0.27 0.028 -56397 <0.0001 

dNDMI300 0.24 0.028 -56373 <0.0001 

slope150 -7.7 x 10-4 1.6 x 10-4 -56323 <0.0001 

humidity 5.0 x 10-4 1.9 x 10-4 -56306 <0.01 

air temperature 8.6 x 10-4 7.5 x 10-4 -56301 0.25 

wind speed -1.2 x 10-3 2.1 x 10-3 -56300 0.56 

 

ii.  Multivariate 

In both gray-stage and red-stage models, including dNDMI as a predictor 

improved model fit according to AIC. The best-fitting models selected from a full set of 
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variables are given in Table 2-5. The best-fitting model for gray-stage locations explained 

71% of variance in NDVI2015, and included all explanatory variables except air 

temperature and wind speed. The top-performing model for red-stage locations explained 

68% of variance in NDVI2015 and included all explanatory variables except humidity and 

wind speed. Variable importance calculations showed that NDVI2002 is by far the most 

important variable in both red and gray-stage models (Figure 2-8). dNDMI had a higher 

importance value in both models than any other explanatory variables. 

 
Table 2-5. Top-performing multivariate SAR models predicting 2015 NDVI for point 
locations in red-stage and gray-stage of spruce beetle outbreak prior to fire. R2 values 
give the overall fit between predictions and observations.  

Stage Best-fitting model R2 

Gray-stage NDVI2015 ~ NDVI2002 + dNDMI90 + 
slope300 + northness150 + TPI300 + 
elevation + humidity 

0.71 

Red-stage NDVI2002 + dNDMI300 + slope150 + 
northness150 + TPI300 + elevation + air 
temp. 

0.68 
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Figure 2-8. Variable importance plots for the best-fitting multivariate models for red and gray-
stage outbreak locations. Variable importance is determined by the ΔAIC between the full model 
and model with the indicated variable removed. 

 

Parameter estimates for the top-performing multivariate SAR models revealed 

variable relationships similar to those determined by univariate models (Table 2-6). 

dNDMI is highly significant (p <0.0001) and exhibits a positive relationship to NDVI2015 

in both gray-stage and red-stage models, but NDVI2002 is the strongest predictor in both 

model subsets. Topographic variables are also significant predictors in all models, with 
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slope, elevation, and TPI exhibiting negative correlations with NDVI2015 while northness 

exhibits a positive correlation. Humidity is negatively correlated with NDVI2015 in the 

gray-stage model while air temperature is negatively correlated with NDVI2015 in the red-

stage model. All signs of variable relationships are consistent between gray-stage and 

red-stage models. The parameter estimate for dNDMI is greater in magnitude in the top-

performing red-stage model (β = 0.40 ± 0.027) than in the top-performing gray-stage 

model (β = 0.25 ± 0.015), indicating that dNDMI has a greater influence on NDVI2015 in 

the red-stage model.  

Table 2-6. Parameter estimates, standard errors, and significance values for top-
performing multivariate SAR models predicting 2015 NDVI. Variables in bold are 
significant within a 95% confidence interval.  

Gray-stage:    

Variable β Std. Error p-value 

dNDMI90 0.25 0.015 <0.0001 

NDVI2002 0.52 9.5 x 10-3 <0.0001 

slope300 -3.4 x 10-3 3.0 x 10-4 <0.0001 

northness150 4.5 x 10-4 3.5 x 10-5 <0.0001 

elevation -1.9 x 10-4 1.6 x 10-5 <0.0001 

TPI300 -0.065 0.031 <0.05 

humidity -7.4 x 10-4 1.6 x 10-4 <0.0001 

    

Red-stage:    

Variable β Std.Error p-value 

dNDMI300 0.40 0.027 <0.0001 

NDVI2002 0.49 7.9 x 10-3 <0.0001 

slope150 -1.3 x 10-3 1.4 x 10-4 <0.0001 

northness150 1.8 x 10-4 3.3 x 10-5 <0.0001 
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elevation -1.4 x 10-4 1.2 x 10-5 <0.0001 

TPI300 -0.17 0.026 <0.0001 

air temperature -1.9 x 10-3 6.6 x 10-4 <0.01 

 

Discussion 

 Because dNDMI is negatively correlated with spruce beetle outbreak severity, the results 

of multivariate SAR models indicate that recovery of NDVI in the West Fork Complex fire was 

negatively correlated with the severity of spruce beetle outbreaks which occurred in the decade 

or so prior to the fire. The direction of the univariate relationship between dNDMI and NDVI2015 

matched that of the multivariate relationship in red-stage models but was reversed in gray-stage 

models, possibly indicating that the compounded disturbance effect becomes less significant with 

increasing time between disturbances. However, when all relevant variables were accounted for 

there was a consistently negative relationship between beetle outbreak severity and NDVI2015 in 

both stages. Although dNDMI did not explain NDVI2015 as strongly as NDVI2002 (according to 

ΔAIC), the significant correlation between the indicator of beetle severity and NDVI2015 suggests 

the presence of a compounded disturbance effect on the rate and trajectory of vegetation 

recovery. 

Our results add a new dimension of understanding to those of recent studies which have 

found no correlation between outbreak severity and subsequent fire severity when accounting for 

differences in outbreak stage, burning conditions, or topography (Hicke et al., 2012). Most of 

these studies have assessed fire severity by measuring immediate post-fire impacts to 

aboveground vegetation, using remotely sensed indices such as dNBR or RdNBR (Andrus et al., 

2016; Bigler et al., 2005; Harvey et al., 2013; Meigs et al., 2016; Meng et al., 2015) or field-

based metrics such as scorch height, percent surface char, or percent overstory mortality (Andrus 



46 

et al., 2016; Harvey et al, 2013; Harvey et al., 2014). We focused on the effects of high-severity 

fire only, which made up a majority of the West Fork Complex burn area. Previous studies have 

addressed whether there is a linked interaction between beetle outbreaks and the impact of fire 

on existing vegetation, but may not fully address all mechanisms of compounded interactions on 

vegetation recovery (see Buma [2015] for a review of linked and compound disturbance). We 

propose that a significant negative relationship between beetle outbreak severity and vegetation 

recovery was observed in the West Fork Complex because the pre-fire beetle outbreak may have 

played a significant role in fire behavior at the soil surface; an effect which has not been 

thoroughly explored by previous beetle-wildfire interaction studies. 

This difference in linked vs. compounded disturbance effects can be seen when 

comparing the results of our study to the findings of Andrus et al. (2016), who also examined 

beetle-wildfire interactions in the West Fork Complex. That study found no effect of spruce 

beetle outbreak on canopy tree mortality, percent surface char, or RdNBR immediately after the 

fire. Although those results provide important insights into the effect of spruce beetle outbreaks 

on fire behavior and canopy mortality, these metrics of fire severity may not account for 

ecologically important impacts to chemical properties of soils, vegetative seed banks, or 

resprouting roots. Moreover, remotely sensed metrics based on differences between pre-fire and 

post-fire imagery may underestimate fire severity if greenness in the pre-fire imagery is reduced 

by a severe beetle outbreak (Falk et al., 2007). This may be a reason why previous studies have 

found a consistently negative correlation between bark beetle outbreaks and RdNBR in 

subsequent fires (Meigs et al., 2016; Meng et al., 2015).   

Effects of spruce beetle outbreak on regeneration processes may be a more significant 

ecological impact than effects to canopy loss, due to the typical high severity of fires in 
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subalpine forests. High canopy mortality is expected in subalpine systems because climatic 

conditions typically make fires infrequent, and the long interval between fire results in dense fuel 

stocking (Sibold et al., 2006). P. engelmannii and A. lasiocarpa are shade-tolerant species, 

meaning that mature stands become stocked with ladder fuels which incur a high probability of 

active crown fire (Schoennagel et al., 2004). They are also thin-barked species, and mortality can 

be high from low-intensity surface fire alone (Bessie & Johnson, 1995; McCarley et al., 2017). 

Because we expect subalpine fires to be stand-replacing regardless of beetle-caused changes to 

canopy structure (Ryan & Reinhardt, 1988), it is important to consider other mechanisms by 

which multiple disturbances may interact to produce compounded effects. If beetle outbreaks are 

significantly increasing surface fuel loads, this may explain impacts on vegetation recovery 

resulting from increased heat released by burning at the soil surface (DeRose & Long, 2009).  

dNDMI as an Indicator of Beetle Severity 

Past studies have assessed pre-fire beetle mortality in the field after fire has occurred, 

which requires close examination of all trees within a field plot for larval galleries beneath the 

bark. This is a time-consuming process, and may also be prone to underestimation of mortality 

when the bark and wood surface have been damaged by fire (Assal et al., 2014). Differencing 

and single-date classification of NDMI time series have proven to be effective methods for 

detecting and quantifying outbreaks of North American and European spruce beetle (Hais et al., 

2009; Havašová et al., 2015; Meddens et al., 2013), mountain pine beetle (Goodwin et al., 2008; 

Walter & Platt, 2013), and canopy gaps due to disturbance in coniferous forests (Assal et al., 

2016). In our study, dNDMI was a reliable estimator of spruce mortality from bark beetles, and 

other dVIs also correlated well with field measurements. Remote sensing estimates likely 
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provide a more objective measurement of pre-fire beetle disturbance compared to field 

measurements taken after fires have occurred. 

We observed that spruce cover was high in most of our study area and that high 

abundance of subalpine fir was restricted to flat valley bottoms, which made up a low proportion 

of the total area. Our severity quantification method was therefore focused on spruce-dominated 

stands (where spruce made up >50% of total basal area). Consideration should be taken in 

applying the dNDMI severity quantification method to areas with more mixed forest 

communities, as it is possible that growth in secondary species between image dates could cause 

dNDMI to underestimate spruce mortality (Hart & Veblen, 2015). In our study area these areas 

included stands classified as aspen woodlands, which represented ~8% of the total burn area and 

were not included in models.  

NDVI and Vegetation Recovery 

NDVI tends to increase rapidly in the two years following fire occurrence (Ireland & 

Petropoulos, 2015; Petropoulos et al., 2014). NDVI in the West Fork Complex also increased 

rapidly, and overall NDVI values are correlated with pre-disturbance values. Post-fire vegetation 

is characterized by grass and forb understory rather than by the pre-fire forest canopy, but 

because NDVI is sensitive to understory vegetation (Buma, 2012), the importance of NDVI2002 in 

models of NDVI2015 indicates that some factors relating to site greenness are unaltered by fire. 

Differences between pre-disturbance and post-disturbance NDVI may be the result of alteration 

of soils and microclimate which affect the ability of understory species to re-establish.  

It is important to note that understory recovery is not necessarily an indicator of overstory 

regeneration (Buma, 2012). However, rates of understory succession have been shown to affect 
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forest seedling regrowth, community resilience, and recovery of soil properties. For example, 

reduced cover following high-severity wildfire in subalpine forests has been found to correlate 

with reduced soil nitrogen, which could have long-term impacts on seedling establishment 

(Turner, Romme, Smithwick, Tinker, & Zhu, 2011). Reduced recruitment of early successional 

species can also be an indicator of severely altered soil properties following fire (Dzwonko, 

Loster, & Gawrónski, 2015). Given the high severity of the West Fork Complex, it is likely that 

altering of soil properties will influence variation in overall vegetation recovery across the burn 

area. However, future differences in vegetation composition will be also determined by climate, 

seed dispersal, topography, and future disturbance (Healey et al., 2006).  

Mediating Factors in the Relationship Between Beetle Severity and Vegetation Recovery 

Comparing univariate to multivariate relationships between beetle outbreak severity and 

NDVI2015 in red and gray stages reveals that in the gray stage, the effect of beetle severity is 

mediated to a greater extent by other explanatory variables. This difference may indicate that the 

effect of beetle-caused canopy mortality on fire impacts diminishes over time. This may be due 

to the fact that fine surface fuels decompose or are lost from the site after the initial outbreak 

[10]. Canopy loss from spruce beetle outbreak also allows for the recruitment of grass, forbs, and 

shrubs in the understory, which may be able to germinate or resprout rapidly after the fire (Aplet, 

Laven, & Smith, 1988; Hicke et al., 2012).  

Multivariate models indicated that outbreak severity has a significant influence on post-

fire recovery, but did not have a greater effect than topography or pre-disturbance NDVI. 

Topography is important in influencing fire behavior and micro-climate conditions which can 

promote or impede vegetation recovery (Meng et al., 2018; Prichard & Kennedy, 2014). The 

influence of topographic variables in multivariate models was expected, given results of previous 
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NDVI recovery studies (Ireland & Petropoulos, 2015; Petropoulos et al., 2014). The selection of 

topographic variables at coarser spatial scales was also expected, given that fire spread is rapid 

and is unlikely to respond to topographic variation over fine scales, and that vegetation recovery 

is likely to be somewhat homogenous within small areas with similar species compositions. 

Weather within daily burn perimeters did not play a significant role in predicting NDVI 

recovery in our models. This result is not unexpected due to the coarse resolution of the data, 

where the entirety of a daily burn area was attributed with a single value of mean air temperature, 

humidity, and wind speed. Weather factors at the time of burning certainly play a role in the 

spread of fire and consumption of vegetation and litter, but in this study weather did not appear 

to have a strongly significant influence on soil alteration and post-fire recovery. This may be due 

to the coarse scale of weather data applied to daily burn extents, or because the majority of the 

study area burned under extreme conditions beyond a threshold where weather may have become 

more significant.  

Management Implications 

Warming climates are resulting in a shift toward large, high-impact wildfires occurring at 

greater frequency throughout western North America (Westerling, Hidalgo, Cayan, & Swetnam, 

2006), and the question of whether bark beetles and wildfires produce compounded effects has 

important implications for managing to promote ecosystem resilience (Jenkins, Page, Hebertson, 

& Alexander, 2012). Salvage logging has been proposed to mitigate the effects of beetle 

disturbance and fuel loading on high-severity wildfire. Our results suggest that increased severity 

of beetle outbreak can inhibit short-term post-fire vegetation recovery, which may be caused by 

accumulation of surface fuels. This mechanism may suggest that treatments to reduce surface 

fuels can promote ecosystem resilience from fire. However, these activities pose a risk toward 
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altering recovery dynamics and facilitating future species composition shifts (Jonášová & Prach, 

2008), and may reduce long-term carbon storage in forests (Donato, Simard, Romme, Harvey, & 

Turner, 2013). Two additional issues suggest that salvage logging would not mitigate the 

compounded impacts of beetles and wildfire. First, because salvage logging is focused on the 

removal of dead trees in contrast to fuels on the forest floor, it would not be expected to alter 

beetle-fire implications for fire characteristics at the soil level. Second, the short period of time 

in which surface fuels increase the ecological consequences of fire and the highly random nature 

of wildfires in time and space, implies that salvage logging with the goal of averting the impacts 

of beetle-wildfire interactions is not a logical management action. Nonetheless, salvage 

prescriptions have the potential to contribute to other land management objectives in addition to 

timber production. For example, salvage prescriptions located close to communities in the 

wildland-urban interface may act as fire breaks and contribute to community and fire fighter 

safety, and give fire managers confidence in allowing some natural fires to burn.  

Impacts of severe beetle outbreak on vegetation recovery also create additional need for 

enhanced post-fire restoration efforts in areas where outbreak was known to have occurred prior 

to burning. Our model results indicate that these efforts should prioritize high-elevation, steep, 

south-facing slopes, as these topographic factors also show a significant effect on vegetation 

recovery. Restoration of ground vegetation mitigates flooding hazards, prevents soil erosion, and 

mitigates rising soil temperatures and evapotranspiration potential (Cawson, Sheridan, Smith, & 

Lane, 2013). Facilitating understory vegetation recovery may therefore prove beneficial for 

preventing drastic ecological change in severely burned landscapes affected by severe spruce 

beetle outbreaks. 
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Conclusions 

 Although many studies have tried to determine whether bark beetles lead to larger, more 

frequent, or more severe wildfires, there have been a number of limitations to determining the 

true ecological impacts of these overlapping disturbances. Our study quantified pre-fire beetle 

impacts using the Landsat-derived dNDMI, which likely provides a more accurate measure of 

beetle severity compared to studies focused on post-fire field measurements. We also used 

Landsat-based measurements of NDVI recovery to address how beetle-fire interactions may 

result in compounded effects on surface fuels and soil recovery, and found more conclusive 

evidence supporting a compounded disturbance interaction compared to studies which have 

assessed fire severity as a metric of canopy mortality. Future research should focus on long-term 

examinations of recovery dynamics following wildfires in beetle-killed forests, which will be 

important for improving understanding of how compounded disturbance interactions from bark 

beetles and wildfire will affect future forest communities. Additionally, future high-severity fires 

in beetle-killed spruce forests will need to be studied to determine whether the compounded 

effects observed in the West Fork Complex are consistent across geographic areas. Although 

many recent studies have concluded that there is no evidence of a link between beetle outbreaks 

and increased fire severity, our results indicate that the combined disturbances may result in 

compounded effects on vegetation recovery. 
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CHAPTER 3: Effects of Wildfire and Spruce Beetle Disturbance on Topoclimate in a 
Rocky Mountain Forest 

 
 
 
Summary 

 Forests of the Rocky Mountains have recently experienced extensive and severe canopy 

loss from wildfires and bark beetle outbreaks. Recovery of these ecosystems will take several 

decades, and it is difficult to project how current and future warming temperatures will affect 

forest persistence and extirpation in the future. Recent work has highlighted the potential 

importance of fine-scale topography and canopy cover in determining the below-canopy 

environment in mountain forests, which may have an important mediating effect on regional-

scale climate changes. The aim of this study was to determine how fire and spruce beetle 

outbreak within the last 10-15 years have impacted below-canopy temperatures in a region of the 

San Juan Mountains, southwest Colorado, USA, where these disturbances have been particularly 

severe. We used a network of sensors to record temperatures for a full year in burned and beetle-

impacted areas. Using a Bayesian multiple regression model that accounted for spatial structure, 

we assessed the relative influence of topographic variables (elevation, aspect, slope, topographic 

position, and solar radiation), live tree basal area, and burned/unburned status on daily maximum 

and minimum temperatures. Model parameters indicated that burned area was warmer than 

unburned forest by ~0.5 °C. Conversely, increasing spruce mortality in unburned, beetle-killed 

forests did not meaningfully affect daily maximum temperatures but resulted in cooling of daily 

minimum temperatures by up to ~1.0 °C. These results indicate that severe wildfire may 

exacerbate effects of climate change and increase the probability of ecosystem transitions. 

However, the effects of bark beetle outbreaks are more complex. Cooling of overnight minimum 
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temperatures may counteract warming trends, but an increase in diurnal temperature ranges may 

have uncertain ecological consequences.   

Introduction 

 Spatial variability in warming trends can strongly influence biotic community responses 

to climate change (Ackerly et al., 2010). This is particularly true in mountain regions, where 

broad-scale warming patterns may be substantially buffered by variations in elevation, aspect, 

exposure, and cold air drainage across small geographic areas (Dobrowski, 2011; Lenoir et al., 

2013). Canopy structure in mountain forests plays an additional role in mediating surface-level 

microclimates (Ashcroft & Gollan, 2012; Chen et al., 1999; Geiger, 1950). Understanding the 

effects of climate change on fine-scale biotic processes, such as seedling establishment and 

survival, therefore depends on accurate representation of fine-scale temperature patterns 

determined by physiography and overstory condition. Disturbances may create abrupt changes in 

overstory that may result in shifts in below-canopy temperatures even when physiographic 

conditions remain constant over time. However, effects of canopy disturbance on microclimates 

are not well understood.  

Disturbances such as fires, insect outbreaks, blowdowns, and drought-related die-offs 

alter the below-canopy environment by removing overstory vegetation. Overstory loss increases 

the amount of daytime shortwave radiation reaching the ground surface, which can elevate 

daytime maximum temperatures and evapotranspiration potential. Such changes may exacerbate 

broader warming trends and limit seedling recruitment in locations where dominant species are 

at risk of warming-related decline (Dobrowski et al., 2015). However, canopy loss can also lead 

to greater overnight cooling, as forest canopies intercept outgoing ground-surface longwave 

radiation (Geiger, 1950). Although some studies have demonstrated that canopy cover plays a 
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significant role in buffering extreme daytime maximum temperatures and overnight minimum 

temperatures (Frey et al., 2016; Holden et al., 2016; Ma, Concilio, Oakley, North, & Chen, 

2010), it is not clear how overall below-canopy microclimates are altered by varying disturbance 

types or severities.  Furthermore, the importance of disturbance on microclimate is not typically 

considered at the landscape scale in relation to other drivers of spatial variability.  

Investigating the effects of disturbance and topographic variation on below-canopy 

temperatures is limited by a scarcity of long-term temperature data in forest stands. However, a 

number of recent studies have investigated the use of inexpensive temperature logger networks 

to create high-resolution topoclimate models in topographically complex areas (e.g. Ashcroft & 

Gollan, 2012; Bruening, Tran, Bunn, Weiss, & Salzer, 2017; Greiser et al., 2018; Holden et al., 

2016; Isaak, Wenger, & Young, 2017; Meineri & Hylander, 2017). These studies used detailed 

physiographic data and remotely-sensed canopy variables to model climate variability at 

resolutions of < 1 km. Detailed climate models in mountain regions are valuable for 

understanding species-climate relationships at fine scales, as well as for identifying potential 

microrefugia where species may be protected from climate stress in the near future (Ashcroft, 

2010; Dobrowski, 2011). Additionally, understanding how disturbances influence these fine-

scale patterns is increasingly important as anthropogenic climate change causes forests to 

experience increasing disturbance frequency and severity (Seidl et al., 2017). 

Mountain forests in the western United States are currently facing risks of decline and 

species transitions as a result of warming and associated disturbance. Over the past century the 

region has seen a temperature increase of ~1.5 °C (González et al., 2018), with resulting 

increases in wildfire area (Abatzoglou & Williams, 2016) and tree mortality from bark beetles 

and drought (Allen et al., 2010; Meddens, Hicke, & Ferguson, 2012) in the last few decades. 
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Many of these changes are taking place in topographically complex landscapes with high spatial 

variability in warming patterns. Whether these disturbances drive permanent transitions to new 

forest cover types, or from forest to non-forest, will depend on the extent to which disturbance 

severity and climate shifts over the next few decades will overcome resilience mechanisms 

favoring ecosystem stability (Johnstone et al., 2016; Turner, 2010). It is largely thought that 

disturbances reduce forest resilience to climate change, and will ultimately accelerate forest 

adaptations by allowing species to migrate to more suitable climates (Overpeck, Rind, & 

Goldberg, 1990; Thom, Rammer, & Seidl, 2017).   

There is evidence that recent climate shifts are limiting forest regeneration and allowing 

for expansion of warm-adapted species in severely disturbed areas in the southern Rockies (Bell, 

Bradford, & Lauenroth, 2014a; Landhaeusser, Deshaies, & Lieffers, 2010; Rother & Veblen, 

2016). However, a thorough understanding of the effect of climate on post-disturbance 

ecosystem change is limited when coarse-scale climate data is used to explain fine-scale biotic 

processes (Austin & Van Niel, 2011). Microrefugia may play a more important role in buffering 

climate change than what has previously been assumed, while topographic exposure to high 

temperatures on low-elevation, southwest-facing slopes may accelerate change (Wilkin, Ackerly, 

& Stephens, 2016). Extensive, severe forest disturbances have the potential to modify these 

patterns of climate change exposure for biota affected by temperatures below the canopy. 

In this study, we used a network of temperature loggers to collect a 1-year record of 

below-canopy temperatures in a topographically complex mountain forest recently affected by 

severe disturbances. Our study region in the San Juan Mountains, southwest Colorado, USA, was 

impacted by the West Fork Complex wildfire in 2013 and by severe overstory mortality from a 

spruce beetle outbreak beginning ca. 2004. The outbreak was in the early gray stage at the time 
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of sampling, in which dead trees remained standing but had lost needles and fine twigs from the 

canopy. The area is dominated by subalpine spruce-fir forests which are expected to decline by 

the end of the 21st century as a result of shifting climate suitability (Bell, Bradford, & Lauenroth, 

2014b). The goal of the study was to quantify differences in temperature in burned vs. unburned 

forest and across a gradient of beetle kill severity in unburned forest. We used spatially 

structured Bayesian multiple regression models in order to determine the relative influence of 

topographic gradients and disturbance type and severity, while accounting for the inherent spatial 

structure of landscape temperature patterns.   

Methods 

Study Area 

The study focused on an approximately 25 x 25 km area in the Rio Grande National 

Forest in the San Juan Mountains, Colorado. Study sites were located within ~20 km of the Wolf 

Creek Pass summit on US Highway 160, straddling the Continental Divide. Elevations of study 

sites ranged from ~2,700 m to 3,300 m a.s.l. The forest in this area is dominated by subalpine 

species including Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) 

with lower abundances of white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii), blue 

spruce (Picea pungens) and lodgepole pine (Pinus contorta). Quaking aspen (Populus 

tremuloides) is present at lower elevations north of the Continental Divide. The high-elevation 

climate is characterized by cool summers (12 °C average July mean), cold winters (-8 °C average 

January mean) and high precipitation (1,200 cm annual average). Most precipitation falls as 

winter snow or in monsoonal rainstorms in July and August.  

The West Fork Complex fire burned over 44,500 ha of spruce and fir-dominated forest in 

June-July, 2013. Our study area included one of the three distinct burn areas making up the 
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complex, the West Fork burn (Figure 3-1). Most of the burn area was high-severity, consuming 

nearly all overstory vegetation (MTBS, 2013). By the time of the fire much of the burn area had 

already experienced significant mortality from a spruce beetle outbreak which had killed a 

majority of overstory P. engelmannii trees (CSFS, 2018). The forest outside of the burn area has 

similarly experienced a large degree of beetle-caused mortality. The greatest outbreak severity 

occurred in the Weminuche Wilderness area, with severity decreasing east of Highway 160 

(Carlson, Sibold, Assal, & Negron, 2017). 

 

Figure 3-1. Study area map with study sites indicated. Star in inset map indicates the location of 
the study area within the western United States.  
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Site Selection 

We selected 90 sites in burned and unburned forest to evaluate temperatures in relation to 

topography and canopy cover. We selected sites in a Geographic Information System (GIS) to 

achieve an optimal representation of elevations, aspects, slope positions, and spruce beetle 

outbreak severities. In order to evaluate temperatures along a gradient of canopy cover in beetle-

killed forest, we placed a greater number of sites in unburned than in burned areas (30 burned, 60 

unburned). We recorded the precise location of sites in the field using a handheld Global 

Positioning System (GPS) device.  

Temperature Data 

We used Logtag TRIX-8® temperature sensors to record below-canopy temperatures at 

each study site. Sensors were programmed to record every 3 hours beginning at midnight. We 

housed sensors within plastic shields covered in reflective tape so that they would not be encased 

in snow and so that readings would not be influenced by direct solar radiation (Holden, Klene, 

Keefe, & Moisen, 2013). Sensor shields were attached to the north-facing sides of tree trunks ~2 

m above the ground. We initially placed sensors in September of 2016 and downloaded all 

temperature data in the summer of 2018. Temperature records were summarized as a daily time 

series of maximum and minimum temperatures (Tmax, Tmin).  

i. Data Cleaning 

 Of the 90 sensors placed in the field, 85 were successfully recovered with a 

complete data record (27 burned, 58 unburned). We were unable to use data from the 

winter of 2016-2017 due to a clear influence of snow insulation at many sites. However, 

data from the winter of 2017-2018 did not show this effect, presumably due to drought 

and high winter temperatures in that year. Furthermore, some sites showed anomalously 
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high daytime temperatures (>30 °C) which were perhaps influenced by direct solar 

radiation penetrating the radiation shield. We checked for temperature anomalies at each 

site by plotting a time series of daily maxima and minima against data recorded at the 

Wolf Creek Summit Snow Telemetry (SNOTEL) weather station (NRCS, 2018). There 

was a strong linear correlation between Logtag® data and SNOTEL data, and we were 

able to visually identify outliers (Figure 3-2). Outlying values were removed from the 

dataset. 

 

Figure 3-2. a) Example time series used to identify erroneous temperature records. Daily 
maximum temperature is subtracted from SNOTEL weather station values to identify outliers. 
Outliers (circled in red) were removed from the dataset and filled using a linear regression based 
on SNOTEL data (b).  

 

Because missing values at certain sites influence seasonal temperature averages 

derived from 3-hourly records, we filled in the manually removed records using ordinary 

least squares regression. For each site, we fit a regression function between the Logtag® 

daily maximum/minimum temperatures and corresponding SNOTEL temperatures. Fit was 

high for all sites (R2 > 0.8). The regression function was then used to predict the removed 

daily values from corresponding SNOTEL values. We used this procedure to fill data gaps 

a) b) 
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no longer than 12 consecutive days and no more than 12 days out of the complete record 

for any site.  

Field Data 

Basal area of live trees was used as a proxy for canopy cover at each temperature sensor 

site. We measured basal area within a 20x20 m plot area centered on the sensor and oriented 

along north-south and east-west axes. We measured diameter at breast height (DBH) of all trees 

rooted within the plot area and recorded species and live/dead status. DBH measurements were 

then converted to total live and dead basal area for each species. We additionally recorded slope 

and aspect at plot centers.  Aspect was transformed along a northeast to southwest-facing scale 

according to the following formula: Taspect = sin(aspect + 45) + 1 (Beers, Dress, & Wensel, 

1966). 

Topographic Variables in GIS 

We used a 1/3-arcsecond digital elevation model (DEM) to calculate elevation, relative 

elevation, and equinox solar radiation for DEM cells overlapping plot GPS coordinates. All 

variables were calculated in ArcMap 10.4 (ESRI, 2016). Relative elevation was calculated by 

subtracting elevation of the DEM cell overlaying the plot center from the mean of a 5x5 cell 

neighborhood. This method gives an estimate of slope position along a numeric scale, with more 

negative values indicating valley bottoms and higher values indicating peaks. Slope position 

serves as an indicator of cold-air drainage, as valley bottoms collect cool, dense air and thereby 

may experience lower nighttime and winter temperatures compared to surrounding upslope 

locations (Bergen, 1968). Similarly, sites with greater topographic exposure to solar radiation 

may experience higher daytime maximum temperatures (Bristow & Campbell, 1984). Solar 

radiation was calculated in ArcMap using the Solar Radiation tool.  
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Analysis 

 We used a Bayesian multiple linear regression approach to determine relative influences 

of each explanatory variable (Table 3-1) on temperature averages. We fit models using four 

different averages of temperatures – summer Tmax, summer Tmin, winter Tmax, and winter 

Tmin, where summer is defined as the (mostly) snow-free season of June-October and winter is 

defined as November-May. Tmax and Tmin are the seasonal averages of daily maximum and 

minimum temperatures. For each temperature summary, we fit models using two different 

formulations. The first included all burned and unburned sites and included a binary ‘Burned’ 

covariate (0 = unburned, 1 = burned). These models were designed to determine the overall 

temperature difference between the burned area and surrounding unburned forest, and did not 

include a live canopy covariate because the majority of burned sites contained no live canopy. 

The second set of models included a live canopy covariate and used unburned sites only. 

 
Table 3-1. Variables used in Bayesian multiple regression models. 

Variable Description 
Topography 

Elevation DEM values 
Relative elevation Elevation of sites relative to the mean elevation of neighboring 

DEM grid cells within a 5x5 cell neighborhood 
Slope Measured in the field at plot centers 
Solar radiation at equinox Calculated from a DEM using ArcGIS tools 
Taspect Transformation of aspect measured in the field at plot centers 

(Beers et al., 1966) 
Disturbance  

log(Canopy) Total basal area of all live trees >1 m in height within 20 x 20 
m plot areas, log-transformed (measured in unburned plots 
only) 

Burned/Unburned Binary variable (0 – unburned, 1 – burned) 
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The linear regression equation for each model takes the form 

𝑦𝑖~ normal(𝜇𝑖, 𝜎2) 𝜇𝑖 =  𝛽0 +  𝜷𝑿𝑖′ 
 

where 𝑦𝑖 is the is the observed average temperature for a given site, i in {1, … n}, derived from 

the Logtag record, 𝜇𝑖 and 𝜎2 are the mean and variance of the normal distribution from which 𝑦𝑖 
is drawn, 𝛽0 is a random intercept, 𝑿 is a matrix of observed explanatory variables, and 𝜷 is a 

vector of unknown coefficients. We assumed temperatures and explanatory variables were 

measured without error.    

i. Spatial Modeling with INLA/SPDE  

While we expected that topography and canopy variables would explain 

observed temperature patterns well, temperatures are also influenced by large-scale 

atmospheric processes which are not explicitly modeled here. We therefore expected 

that model residuals would show spatial autocorrelation, and that a modeling 

approach accounting for spatial covariance in the data was needed. We addressed this 

by adding a spatial random effects term to the model using the stochastic partial 

differential equation (SPDE) approach described by Lindgren, Rue, & Lindstrom 

(2011). The SPDE method represents space as a continuous Gaussian field and uses 

Matérn covariance functions to derive a discrete Gaussian Markov random field 

(GMRF) from observed point locations, using measured GPS coordinates as spatial 

indices. The GMRF is defined by creating a mesh over the spatial domain using 

Delaunay triangulation, allowing for a finite combination of piecewise functions 

based on Matérn covariance parameters which are used to populate a sparse precision 
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matrix (Lindgren & Rue, 2015; Figure 3-3). The sparse precision matrix allows for 

computationally efficient model fitting based on approximations of spatial covariance 

parameters.  

 

Figure 3-3. Delaunay triangulations of point data, used to build Gaussian Markov Random Field 
precision matrices for a) all burned and unburned sites and b) unburned sites only. 
 
 

 The Bayesian linear predictor model including the GMRF spatial effects term, 𝑢𝑖, 
is written as  𝜇𝑖 =  𝛽0 +  𝜷𝑿𝑖 + 𝑢𝑖 
 where 𝑢𝑖 is approximated from a 0-mean GMRF with precision matrix, 𝑸, with the 

equation  𝒖 ~ multivariate normal(𝟎, 𝑸−1(𝜅, 𝜏)) 

where 𝜅 and 𝜏 are parameters for the Matérn covariance function used to populate 𝑸. The 

spatial process for all points in the spatial domain (𝒔) is modeled as a continuous 

field 𝑢(𝒔) where the Gaussian white noise process is modeled with a stationary solution 

to the Mátern covariance function. The solution is given by the equation 

a) b) 
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(𝜅2 − 𝛥)𝛼2(𝜏𝑢(𝒔)), 𝒔 ∈  Ω 

where 𝜅 is the spatial scale parameter, 𝛥 is the Laplacian differential operator, 𝛼 is a 

smoothness parameter (set to 2), 𝜏 is a variance parameter, and Ω is the spatial domain. 

For a set of discrete locations 𝑖 = {1, … 𝑛} in a 2-dimensional spatial field, 𝑢(𝒔) can be 

estimated by the equation  

𝑢(𝒔) = ∑ 𝜓𝑖𝑛
𝑖=1 (𝒔)𝑢𝑖 

where 𝜓𝑖(∙) are piecewise linear basis functions and 𝒖 = {𝑢1, … 𝑢𝑛} are fitted on 

covariances between observed data points (see Lindgren et al., 2011).  

The full model expression for the posterior and joint distribution is as follows:  

[𝜷, 𝜎2, 𝜅, 𝜏|𝒚] ∝ ∏[𝑦𝑖 |𝜷, 𝑿𝑖′, 𝑢𝑖 , 𝜎2][𝒖|𝟎, 𝑸−𝟏(𝜅, 𝜏)][𝜷][𝜎2][𝜅][𝜏]𝑛
𝑖=1  

where 𝒚 are observed temperature averages for each site and 𝑛 is the number of observed 

sites (𝑛=87 for all sites, 𝑛=58 for unburned sites). The model was fit using Integrated 

Nested Laplace Approximation (INLA) with the R package ‘INLA’ (Rue, Martino, & 

Chopin, 2009; R Core Team, 2019). The observed data, 𝒚, was modeled with a Gaussian 

likelihood, with the mean predicted by the linear function and variance (𝜎2) as an 

unknown parameter. Prior distributions for parameters 𝜷, 𝜎2, 𝜅, and 𝜏 were set using a 

Penalized Complexity (PC) method developed for SPDE spatial models by Fuglstad, 

Simpson, Lindgren, & Rue (2018; also see Simpson, Rue, Riebler, Martins, & Sorbye, 

2017). PC priors are designed to shrink unknown parameters to an effect of 0, resulting in 
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weakly informative priors for the fixed effects, the variance, and the spatial field. In R-

INLA, the SPDE parameters 𝜅 and 𝜏 are reformulated as r and σ, which can be more 

intuitively defined as the empirical range and marginal standard deviation of the GMRF 

(see Lindgren & Rue, 2015).  

Hyperparameters 𝑟𝑜, 𝑟𝑃, 𝜎𝑜, and 𝜎𝑃 are defined such that Pr(𝑟 <  𝑟𝑜) =  𝑟𝑃 and Pr(𝜎 <  𝜎𝑜) =  𝜎𝑃. We specified values 𝑟𝑜=sd(𝒚)/10, 𝑟𝑃=0.5, 𝜎𝑜=12, and 𝑟𝑃=0.5, 

according to the method suggested by Bakka et al. (2018) in which the standard deviation 

is about 20% of the diameter of the study region and range is about 10% of the standard 

deviation of the data. We set weakly informative PC priors for the fixed effects 

parameters and random error, 𝜷 and 𝜎2.  

ii. Model Evaluation  

We used 3-fold cross-validation to evaluate the predictive performance of our 

models. For each model, we withheld observed values at 1/3 of sites (n=29 for 

burned/unburned models, n=19 for beetle-killed models). Models were fit using the 

remaining observations, and predictions were compared to the withheld observed data 

using log-predictive densities (LPD, Gelman, Hwang, & Vehtari., 2014) of 𝑀=10,000 

posterior samples. LPD gives the total probability density of the observed out-of-sample 

data, 𝒚𝑜𝑜𝑠, conditioned on predictions made by a model fit with withheld data, and is 

defined by the equation  

log[𝒚𝑜𝑜𝑠|𝒚] ≈  log (∑ [𝒚𝑜𝑜𝑠|𝒚, 𝜽(𝑚)]𝑀𝑚=1 𝑀 ) 
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where 𝒚 is the observed data used to fit the model, and 𝜽(𝑚) is the full set of parameters 

for the 𝑘th sample. We withheld a different random subset of sites in each cross-

validation run and averaged log-predictive densities across all three runs. We additionally 

performed diagnostics for models fit to the complete dataset using the probability integral 

transform (PIT; Angus, 1994), computed using a leave-one-out cross-validation 

procedure included in the R-INLA package. PIT gives the likelihood of an observation 

being less than or greater than the predicted value, such that a uniform distribution 

indicates a lack of model bias. 

iii. Estimating Change in Temperature Due to Beetle-Kill 

In order to estimate the temperature effect of partial canopy loss from spruce 

beetles, we used models to estimate the difference in temperatures before and after beetle 

kill. After fitting initial models using field measurements of live canopy basal area, we 

re-fit models using the sum of live tree basal area and standing dead spruce basal area. 

n=1000 samples were drawn from the posterior distribution of estimated y values and 

subtracted by observed y values to obtain a posterior for the temperature difference for 

each site.    

Results 

The mean of all summer and winter temperatures for all sites was 5.0 °C (std. dev. = 8.3 

°C). The mean temperature for sites in the burned area was 5.4 °C and mean temperature for sites 

in unburned forests was 4.8 °C. Temperature ranges for all sites were as follows – mean summer 

Tmax: 12.2 – 20.6 °C; mean summer Tmin: 1.8 – 8.2 °C; mean winter Tmax: -0.5 – 9.8 °C; 

mean winter Tmin:-10.8 – -3.8 °C. Our Logtag®-recorded mean temperature is similar to the 

mean of monthly PRISM temperatures for June 2017-May 2018 (5.3 °C), and is 1.7 °C warmer 
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than the 1981-2010 normal annual mean temperature for Wolf Creek Pass (PRISM online data; 

prism.nacse.org).  

Model Performance  

Validations using withheld sites indicated a good overall correlation between predicted 

values (95% credible intervals) and observed values (Figure 3-4). Fit was highest for summer 

mean Tmax for both burned/unburned and beetle-killed models (mean LPDs of 1,398 and 947, 

respectively) and lowest for winter Tmin (mean LPDs of 894 and 537, respectively). PIT plots 

revealed a uniform distribution for all models, indicating no significant model bias.   
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Figure 3-4. Comparisons of predicted vs. observed values for 4 temperature summaries, from 3-

fold model cross-validation runs using randomly withheld sites. Left column: models fit using all 
sites and a binary Burned variable; right column: models fit using unburned sites only and a live 
canopy basal area variable. a-b): average summer Tmax, c-d): average summer Tmin, e-f): 
average winter Tmax, g-h): average winter Tmin. Dashed lines indicate 1:1 relationships. Error 
bars indicate equal-tailed 95% credible intervals for predicted value posterior distributions; 
points indicate posterior means. Point symbols correspond to individual validation runs. 

 

Parameter Estimates 

We determined the relative effects of each explanatory variables on temperatures by 

plotting the posterior means and equal-tailed 95% credible intervals (CIs) for 𝛽’s from models fit 

using standardized covariates (Figure 3-5). Elevation had a strong negative effect on summer 

Tmax (>95% probability that 𝛽 < 0) but not on other temperature variables. Relative elevation 

had a strong effect on winter Tmax/Tmin and winter Tmax (>95% probability that 𝛽 > 0), such 

that temperatures increased with increasing topographic relief (conversely, temperatures were 

colder in valley bottoms). Temperatures were also higher in burned than in unburned areas 

(>95% probability that 𝛽 > 0) for all temperature variables except summer Tmin. In unburned-

only models, live canopy basal area had a positive effect on Tmin and winter Tmax (>90% 

probability that 𝛽 > 0) but did not have a strong effect on summer Tmax. Temperatures 

additionally increased with increasing solar radiation and with decreasing Taspect, 

corresponding with more southwest-facing slopes. There was no strong effect of the field-

measured slope on Tmax or Tmin in either season, although DEM-derived slope is a component 

of the solar radiation calculation. Posterior means and 95% CIs for 𝛽’s based on unstandardized 

covariate values are listed in Table 3-2.  
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Figure 3-5. Posterior means (points) and equal-tailed 95% credible intervals (vertical lines) for 
predictor variable coefficients (𝛽) in models predicting each of 4 temperature summaries 
(average summer Tmax, average summer Tmin, average winter Tmax, and average winter 
Tmin). Top row shows results for models fit using all sites and a binary Burned variable; bottom 
row gives results for models fit using unburned sites only and a live canopy basal area variable 
(Live BA). Coefficient values are based on standardized predictor variables.  
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Table 3-2. Posterior means (in parentheses) and equal-tailed 95% credible intervals for β’s for all 8 models. β’s are for unstandardized 
covariates. 

Model  

# 

Disturbance 

covariate 

y Intercept Burned Live 

Canopy 

Basal 

Area 

(cm2/m2) 

Elevation 

(m) 

Relative 

elevation 

(m) 

Slope (°) Solar rad. 

(WH m-2) 

Taspect  

(no units) 

1 

Burned vs. 
unburned 

Summer 
mean 
Tmax 

12.04 –
14.68 

(13.36) 

0.215 – 
0.604 
(.410) 

- 
-0.0050 –     
-0.0040 

(-0.0045) 

-0.0006 – 
0.0023 

(0.0008) 

-0.012 – 
0.003 

(-0.0043) 

0.0000 – 
0.0001 

(0.0001) 

-0.140 – 
0.042 

(-0.0492) 

2 Summer 
mean 
Tmin 

-3.86 – 
2.25 

(1.56) 

-0.197 – 
 0.702 
(0.253) 

- 
-0.0015 –      
-0.0006  

(-0.0004) 

0.006 – 
0.013 

(0.010) 

-0.010 – 
0.023  

(0.007) 

0.0000 – 
0.0005 

(0.0002) 

-0.227 – 
0.092  

(-0.092) 

3 Winter 
mean 
Tmax 

10.72 – 
14.04 

(12.38) 

0.487 – 
0.986 

(0.737) 
- 

-0.0048 –     
-0.0036  

(-0.0042) 

-0.0017 – 
0.0018 

(0.0000) 

-0.0153 – 
0.0020 

(-0.0066) 

0.0000 – 
0.0003 

(0.0002) 

-0.316 –  
-0.102 

(-0.209) 

4 Winter 
mean 
Tmin 

-2.65 – 
3.02 

(0.19) 

0.156 – 
0.966 

(0.561) 
- 

-0.0017 – 
0.0004  

(-0.0007) 

0.008 – 
0.014 

(0.011) 

-0.012 – 
0.025 

(0.007) 

-0.0002 – 
0.0005 

(0.0002)  

-0.383 – 
0.106 

(-0.138) 

5 

Live canopy 
cover 
(unburned 
sites only) 

Summer 
mean 
Tmax 

39.99 – 
47.73 

(43.86) 
- 

-0.188 – 
0.079 

(-0.054) 

-0.0104 –  
-0.0078 

(-0.0091) 

-0.002 – 
0.005 

(0.002) 

-0.025 – 
0.014 

(-0.006) 

-0.0001 – 
0.0006  

(0.0003) 

-0.350 – 
0.135 

(-0.107) 

6 Summer 
mean 
Tmin 

-7.19 – 
3.33 

(-1.93) 
- 

0.004 – 
0.382 

(0.193) 

-0.0013 – 
0.0023 

(0.0005) 

0.005 – 
0.014 

(0.010) 

-0.017 – 
0.037  

(0.010) 

-0.0043 – 
0.0009 

(0.0004) 

-0.436 – 
0.181 

(-0.127) 

7 Winter 
mean 
Tmax 

27.13 – 
38.46 

(32.80) 
- 

-0.245 – 
0.073 

(-0.086) 

-0.0112 –  
-0.0074 

(-0.0093) 

-0.0050 – 
0.0043 

(-0.0004) 

-0.028 – 
0.017 

(-0.005) 

0.0000 – 
0.0008 

(0.0004) 

-0.672 – 
-0.070 

(-0.371) 

8 Winter 
mean 
Tmin 

-17.38 –  
-5.43 

(-11.40) 
- 

-0.026 – 
0.416 

(0.195) 

-0.0018 – 
0.0022 

(0.0002) 

0.0085 – 
0.0188 

(0.0137) 

-0.024 – 
0.038  

(0.007) 

-0.0003 – 
0.0009 

(0.0003) 

-0.617 – 
0.205 

(-0.206) 



80 

Disturbance Effects on Temperature  

We observed a very slight decrease in predicted summer Tmax with increasing live tree 

basal area when all other standardized covariates were held at their zero means (Figure 3-6). 

Predicted summer Tmin and winter Tmax/Tmin increased with increasing live tree basal area 

such that sites with no live overstory were expected to have winter minimum temperatures 

approximately 1-2 °C cooler than sites with the highest amounts of live basal area (~45 cm2/m2). 

Figure 3-7 shows simulated temperature changes from pre- to post-beetle outbreak for sampled 

sites along an axis of overstory P. engelmannii percent mortality (dead spruce basal area as a 

percent of total live/dead basal area). Simulated values gave a maximum difference in winter 

Tmin of ~1.5 °C at sites with 100% beetle-caused mortality. Credible intervals (95%) for 

temperature differences in burned vs. unburned sites with similar topographic settings are ~0.2 – 

1.0 °C for Tmax and ~-0.2 – 1.0 °C for Tmin.  
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Figure 3-6. Marginal effects plots showing the effect of increasing live tree basal area on summer 
mean Tmax/Tmin and winter mean Tmax/Tmin at mean values of all topographic variables in 
unburned, beetle-killed models. Black line indicates mean of the posterior distribution for 
predicted temperature values, gray ribbon indicates 95% credible interval.  
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Figure 3-7. Simulated difference in summer Tmax and winter Tmin in beetle-killed sites, plotted 
along an axis of spruce overstory mortality %. Points indicate means of posterior distributions 
for predicted values, gray ribbon indicates 95% confidence intervals.  
 
 

Discussion 

SPDE model results indicate that canopy-removing disturbances influence below-canopy 

microclimates, although the nature and magnitude of the change varies with disturbance type and 

severity. Burned sites are, on average, ~0.25 – 0.50 °C warmer than unburned sites when 

topographic variables are included. Conversely, beetle-killed sites experience mean overnight 

cooling of ~1.0 °C compared to sites with abundant live canopy in comparable topographic 

settings, but do not experience significantly warmer daytime maximum temperatures. These 
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temperature effects are small but significant in relation to the overall range of temperatures 

resulting from topographic variation (~10 °C difference between highest and lowest-elevation 

sites).  

Importance of Topography and Canopy Variables 

Our modeled coefficients for topographic variables are mostly consistent with those of 

previous studies modeling topoclimate at fine spatial scales. Working in the Sierra Nevadas, 

Dobrowski, Abatzoglou, Greenberg, & Schladow (2009) similarly found that elevation was a 

strong driver of daytime maximum temperatures but that relative elevation was a more 

significant driver of overnight minimum temperatures. Topographic relief and cold air drainage 

is typically an important process in steep mountain environments when temperatures are cold 

(Barry, 2008), which likely explains why relative elevation had a strong effect on daily 

maximum temperatures in winter but not summer. Additionally, we found that increasing 

Taspect (i.e., more northeast-facing slopes) were associated with lower wintertime maximum 

temperatures but showed no effect on summertime temperatures. This may be because north-

facing slopes retain more snowpack at high-elevation Rocky Mountain sites, which may 

contribute more substantially to cooling in the winter than in the summer when snow has melted 

on both north and south-facing slopes (Tennant et al., 2017). Our temperature records represent a 

year with exceptionally low snowpack and a warm winter, so it is not clear whether these effects 

would be seen in years with normal snowpack. However, winters like the one of 2017-2018 may 

be indicative of normal conditions in the next few decades.  

In contrast to our results, other studies have previously shown that forest canopies have a 

significant cooling effect on daytime maximum temperatures (Ashcroft & Gollan, 2012; Greiser 

et al., 2018). A key difference between our study and previous studies is that we examined the 
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effect of canopy variation due to spruce beetle disturbance as opposed to harvesting or variations 

in forest vs. non-forest. Spruce beetle-killed sites contain many dead standing trees which may 

still play a functional role in shading the ground surface, while a lack of soil disturbance allows 

for greater understory vegetation cover which may reduce temperatures through 

evapotranspiration (Geiger, 1950; Jonášová & Prach, 2004). It is also important to note that our 

study sites were all located in stands which had been impacted by bark beetle in approximately 

the last decade, and that killed spruce trees still retain branches and larger twigs after losing their 

needles (Figure 3-8). The burned area also contained many standing dead trees, but the fire had 

consumed most canopy material but the boles (Figure 3-8). Furthermore, Ashcroft & Gollan 

(2012) noted that cooling effects were only significant when canopies were very dense (>90% 

canopy cover). While our study sites included undisturbed canopies, it is possible that coniferous 

forest at our maximum measured live basal area (~45 m2/ha) was not sufficient to create an 

observable cooling effect.  

 

   

Figure 3-8. Left: A typical beetle-killed spruce stand with fine material attached to standing dead 
trees. Right: Burned trees with only boles and large branches remaining. 
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Ecological Implications 

We found that sites within the West Fork Complex burn area experience warmer 

maximum and minimum daily temperatures compared to sites in similar topographic settings in 

forested area outside the burned area. This warming can potentially exacerbate broader warming 

trends, leading to reduced snowpack, earlier snowmelt, and greater soil drying throughout the 

summer (González et al., 2018). This drying effect may limit germination of P. engelmannii and 

A. lasiocarpa seedlings in years where precipitation is too low to provide adequate moisture 

(Andrus, Harvey, Rodman, Hart, & Veblen, 2018). However, snowpack depletion and limitations 

in seedling establishment will vary along substantial topographic gradients. Lower-elevation, 

more southwest-facing sites are more likely to experience depleted snowpack and limited 

seedling re-establishment than higher-elevation, northeast-facing sites. Furthermore, our results 

suggest that sites with low relative elevation (i.e., valley bottoms) experience cooler minimum 

and wintertime maximum temperatures, though they will not necessarily mitigate extreme 

summer maximum temperatures. These cooler temperatures may favor snowpack retention and 

reduce overall soil moisture loss, creating more favorable conditions for spruce-fir regeneration 

and refugia for forest species during periods of drought.  

Our results indicate that disturbance from spruce beetle outbreak, in contrast to 

disturbance from high-severity fire, does not exacerbate warming trends. Rather, partial canopy 

removal appears to reduce mean temperatures by increasing overnight cooling. This disturbance 

may therefore favor continued seedling germination for P. engelmannii and A. lasiocarpa despite 

the declines predicted by species distribution models based on projected shifts in annual mean 

temperature (Bell et al., 2014a). This cooling may also favor snowpack retention, as well as 

buffer against warming-related shifts in understory vegetation composition (De Frenne et al., 
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2013). However, the increase in diurnal temperature ranges resulting from cooling of overnight 

temperatures may produce a number of less predictable ecological effects. For example, broader 

warming trends may contribute to early spring snowmelt which may increase risks of frost 

damage to vegetation in beetle-killed stands experiencing colder overnight temperatures 

(Williams, Henry, & Sinclair, 2015).   

Implications for Climate-Driven Ecosystem Transitions 

Disturbances have the potential to accelerate shifts in forest species composition and 

ecosystem properties in response to climate change (Overpeck et al., 1990; Thom, Rammer, & 

Seidl, 2017). Abrupt and widespread mortality in dominant canopy species alters competitive 

interactions, opens up opportunities for new species to establish on forest floors, and may reduce 

rates of dispersal and regeneration, allowing species to be more rapidly replaced by more warm-

adapted species (Johnstone et al., 2016). Our results indicate that disturbance also play an 

important role in regulating how organisms beneath the forest canopy experience warming 

trends. Because our study area is located in a region where climate suitability for subalpine forest 

species is projected to decline substantially by the end of the 21st century (Bell et al., 2014b), 

microclimate buffering from both topography and disturbance may have an important influence 

on when and where climatic tipping points are reached.   

 The warming observed within the West Fork Complex burn perimeter, in which most 

sampled sites experienced 100% canopy mortality, suggests that severe wildfires may be 

important processes accelerating climate-driven ecosystem transitions. Increased exposure to 

extreme high temperatures and soil drying may lead to reduced seedling establishment, 

predicting a decline in the previously dominant forest community (Stevens-Rumann et al., 2018; 

Turner, 2010). These shifts toward warmer and drier microclimates compound additional 
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limitations on forest community resilience resulting from reduced seed dispersal within large, 

high-severity burn patches (Harvey, Donato, & Turner, 2016) and alterations to soil water-

holding capacity and biota (Certini, 2005; Savage, Mast, & Feddema, 2013).  

It is less clear from our results how spruce beetle outbreak may interact with broader 

warming patterns to influence species persistence. Previous research has shown that regeneration 

is not typically inhibited in bark beetle-killed stands, although post-outbreak harvesting may shift 

regeneration dominance away from shade-tolerant species (Collins, Rhoades, Hubbard, & 

Battaglia, 2011). Our results suggest that unmanaged beetle-killed stands may be sufficiently 

shaded by standing dead trees to not experience an increase in daytime maximum temperatures. 

However, management actions such as salvage logging may result in post-disturbance conditions 

more closely mimicking those of a severely burned site with elevated daytime temperatures, 

thereby increasing the likelihood of regeneration failures due to increased soil surface warming 

and drying (Hood, Nelson, Rhoades, & Tinker, 2017). Additionally, stands may experience 

further temperature increases over time as standing dead trees fall. Fallen logs may create 

favorable microenvironments for seedling establishment, but it is not clear how these 

microclimates may interact with changes in below-canopy topoclimate to affect long-term 

recruitment and survival patterns. Processes of tree-fall and decomposition after beetle outbreaks 

will continue to impact stands for many decades, and how ecosystem shifts will be impacted by 

these long-term legacies is a remaining question.  

Climate-driven ecosystem transitions are most likely to occur at the warm edges of 

species distributions, such as low-elevation, southwest-facing slopes lacking cold-air drainage or 

moisture-collecting features (Hoylman et al., 2018). Our results indicate that wildfires and bark 

beetle outbreak also play a role in determining the fine-scale spatial patterns of exposure to high 
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temperatures. However, interactions between disturbance-related changes to microclimate and 

overall warming trends are complex. Notably, bark beetle outbreaks may mitigate trends in 

increasing minimum temperatures. Because minimum temperatures have increased more rapidly 

than maximum temperatures over the last several decades in the central San Juans (Rangwala & 

Miller, 2010), spruce beetle outbreaks have the potential to enhance forest stand resilience 

against warming trends. Decreased overnight temperatures may help sites retain soil moisture 

throughout the growing season and prevent invasions by more warm-adapted species. However, 

it should be noted that needle loss from bark beetle outbreaks has been shown to accelerate 

snowmelt as a result of increased below-canopy solar radiation, resulting in depleted overall 

snowpack in spite of the fact that needle loss also reduces snowfall interception (Pugh & Small, 

2013).  

Conclusions 

Our below-canopy temperature records indicate that forest microclimates are influenced 

by fine-scale topography as well as by canopy disturbance patterns in a mountain landscape 

severely impacted by wildfire and spruce beetle outbreaks. Severely burned sites experienced an 

overall temperature increase compared to unburned forest in similar topographic settings. 

However, decreasing canopy cover in unburned, beetle-killed sites was associated with decreases 

in overnight minimum temperatures and no significant change in daytime maximum 

temperatures. These results indicate that wildfires may play a role in accelerating climate-driven 

species transitions in mountain forests by compounding regional warming trends, particularly at 

the warm edges of distributions for high-elevation species. Reductions in minimum temperatures 

in severely beetle-killed forests may play some role in mitigating warming trends, at least as long 

as sites are dominated by standing dead trees with an undisturbed ground surface. These 
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differing effects of disturbance on fine-scale temperatures greatly complicate patterns of climate 

change exposure on forests, particularly in landscapes with complex topography.  
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CHAPTER 4: Canopy Structure, Seed Dispersal, and Fine-Scale Climate Interact to 
Shape Seedling Response to Disturbance in a Rocky Mountain Subalpine Forest   

 

 

 

Summary 

Warming climates are creating disturbance regime shifts in western North American 

forests, particularly by causing large, severe wildfires and extensive bark beetle outbreaks. In this 

study we examined the response of seed dispersal and conifer seedling establishment to recent 

wildfire and spruce beetle (Dendroctonus rufipennis) outbreak in a subalpine spruce-fir forest in 

the San Juan Mountains, Colorado, and determined implications for ecosystem resilience. We 

assessed Engelmann spruce (Picea engelmannii) seed availability by establishing seed traps in 

areas burned by the West Fork Complex fire, and in surrounding unburned forest affected by the 

spruce beetle. We conducted conifer seedling counts at each seed trap site to assess recent (<10 

years) establishment, and assessed effects of temperature on seedling abundance using Logtag® 

temperature sensors. These measurements were then used to determine 1) how seed availability 

varies within the burn area and across varying levels of spruce beetle severity, and 2) how 

seedling regeneration is affected by seed availability, temperatures, canopy cover, and understory 

cover. We found very low rates of both seed dispersal and conifer seedling establishment in the 

burned area, though there was abundant aspen regeneration at lower elevations. In unburned, 

beetle-killed forests, we found that the severity of spruce overstory mortality did not strongly 

affect seed availability but nevertheless appeared to have a strong negative effect on spruce 

seedling densities. Seedling densities for both spruce and subalpine fir (Abies lasiocarpa) were 

also influenced by below-canopy temperatures, aspect, and understory litter and shrub cover. 

These results indicate that the West Fork Complex fire has potentially resulted in a long-term 

loss of conifer forest. High-severity spruce beetle outbreaks have also limited regeneration, 



97 

although seedlings are still present in the majority of beetle-killed sites. Future patterns of re-

establishment will also be strongly influenced by topography and future warming trends.  

Introduction  

 Forest ecosystems of western North America have long experienced periodic 

disturbances from bark beetle outbreaks and wildfires. However, climate change creates doubt 

around whether ecosystems can be expected to recover as they have in the past (IPCC, 2014). 

Evidence from around the globe suggests that forest disturbance frequency, severity, and extent 

are increasing as a result of warming temperatures, and that these novel disturbance regimes may 

exceed species’ recovery mechanisms (Allen et al., 2010; Seidl et al., 2017). Furthermore, 

warming temperatures and drought stress may create unsuitable conditions for re-establishment 

by tree species which originally established under much cooler climates decades or centuries ago 

(Johnstone et al., 2016).  

 For the past two decades, abnormally hot and dry conditions have caused unprecedented 

bark beetle outbreaks and wildfire activity in the southern Rocky Mountains (Bentz et al., 2010; 

Rocca, Brown, MacDonald, & Carrico, 2014). Bark beetles have caused tens of millions of 

hectares of conifer mortality across western North America, while annual area burned in the 

southern Rockies has more than tripled since the 1970’s (Westerling, 2016). Recent studies 

documented declines in seedling recruitment following forest fires in the Rockies which have 

been attributed to warm, arid post-fire conditions (Harvey, Donato, & Turner, 2016; Rother & 

Veblen, 2016; Savage, Mast, & Feddema, 2013; Stevens-Rumann et al., 2018). Increasing fire 

size and severity may also contribute to reduced establishment, as non-serotinous species such as 

Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) are not able to 

disperse large distances into the interiors of burned patches with no available seed sources 
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(Harvey et al., 2016; Turner, Romme, & Gardner, 1999; Urza & Sibold, 2017). Impacts of bark 

beetle outbreaks on seedling recruitment have not been as widely documented, but there is 

evidence that higher-severity outbreaks may limit recruitment of shade-tolerant species (Pelz, 

Rhoades, Hubbard, & Smith, 2018).  

 There are several mechanisms by which increasing disturbance severity may reduce 

species’ resilience to extreme events (Holling, 1973). In addition to reducing seed source 

availability within severe burn patches, severe wildfires may also alter soil chemistry, lead to 

severe erosion, and elevate ground-surface temperatures (Carlson, Sibold, Assal, & Negron, 

2017; Certini, 2005; Carlson et al., in prep). Bark beetle outbreaks typically affect the canopy 

less than fire and do not disturb the soil surface, but may impact seedling regeneration by 

selectively killing large, seed-producing trees (Schmid & Frye, 1977). Canopy mortality 

additionally alters microclimate, light environments, and soil moisture on the ground surface, 

and may increase seedling exposure to warming temperatures (Dobrowski et al., 2015; Edburg et 

al., 2012). However, canopy disturbance can also promote regeneration with suitable temperature 

and moisture conditions and sufficient seed supply. Fires expose mineral soils and provide 

opportunities for seedling establishment (Johnstone & Chapin, 2006), while bark beetle 

outbreaks may release the growth of understory seedlings and create ideal seedling microhabitats 

under downed logs (Jonášová & Prach, 2004; Veblen, Hadley, & Reid, 1991).  

 Disturbances may complicate expected species shifts toward higher elevations and 

latitudes in response to climate change (Turner, 2010). Patches of overstory mortality with 

varying severity may result in differing patterns of seedling establishment, which may or may 

not correspond with warming patterns (Redmond & Kelsey, 2018). Because forests are slow-

growing, and seedlings are more vulnerable to climate than adult trees, post-disturbance 
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establishment successes and failures will have long-term effects on the future trajectories of 

forests (Bell, Bradford, & Lauenroth, 2014; Perovich & Sibold, 2016). Understanding how 

forests are currently regenerating after severe overstory mortality events in the Rocky Mountains 

will improve understanding of future forest vulnerabilities to high temperatures and drought 

(Johnstone et al., 2016).  

 Disturbances may make species more vulnerable to climatic stress in subalpine forests of 

the southern Rockies (~2,700-3,600m in elevation; Dobrowski et al., 2015). Dominant spruce 

and fir species are shade-tolerant and do not benefit greatly from increased light availability 

following canopy removal (Knapp & Smith, 1982). Seedling germination and survival also 

depends on adequate soil moisture and snowpack (Andrus, Harvey, Rodman, Hart, & Veblen, 

2018), which may be reduced by disturbance (Pugh & Small, 2013). However, seedlings may 

benefit from longer growing seasons (Hill, Ex, Aldridge, & Prolic, 2019). Furthermore, the 

topographic complexity of the southern Rockies may create fine-scale patches across the 

landscape where topographic conditions (i.e., north-facing slopes, high elevations, and cold-air 

drainages) allow sites to remain sufficiently cool and moist to continue supporting cold-adapted 

spruce and fir (Dobrowski, 2011). Canopy loss from bark beetle outbreaks may additionally 

result in cooling of overnight temperatures, mitigating the effects of warming on soil moisture 

and snowpack losses (Carlson et al., in prep).  

 The aim of this study was to determine how severe bark beetle outbreaks and wildfire in 

the San Juan Mountains of southwest Colorado have influenced seedling establishment rates. 

This region is warming rapidly, with an increase in mean annual temperature of ~1.6 °C since 

2000 (PRISM climate data, http://prism.nacse.org). The area also experienced a severe drought 

from the fall of 2017 to the summer of 2018. Engelmann spruce (Picea engelmannii)-dominated 
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forests in this area have undergone one of the most severe outbreaks of spruce beetles 

(Dendroctonus rufipennis) of the ongoing North American outbreak, beginning ca. 2004 (CSFS, 

2018), and in 2013 over 110,000 ha of spruce-fir forest were burned by the West Fork Complex 

wildfire. In order to improve understanding of the drivers of potential ecosystem transitions, we 

used hierarchical Bayesian models to assess the effects of each disturbance (spruce beetle 

outbreak and fire) on seed dispersal, understory composition, and post-disturbance seedling 

recruitment densities. We used a network of in situ temperature sensors to assess how seedling 

densities were affected by variations in below-canopy climate due to differences in canopy cover 

and topographic setting. Determining the nature of relationships between disturbance severity, 

fine-scale temperatures, and seedling recruitment will improve understanding of how subalpine 

forests are responding to the combined influences of warming and disturbance. 

Methods 

Study Area  

 Field sampling was located within a ~625 km2 area around Wolf Creek Pass in the 

eastern San Juan Mountains (Figure 4-1). Terrain is steep and varied with elevations ranging 

from ~2,700 to 3,600 m. The forest is dominated by Engelmann spruce and subalpine fir (Abies 

lasiocarpa). White fir (Abies concolor), Douglas fir (Pseudotsuga menziesii), blue spruce (Picea 

pungens), and quaking aspen (Populus tremuloides) are also present. The high-elevation climate 

is characterized by mild summers, cold winters, and a short growing season. Most precipitation 

falls as winter snow (514 mm/year average) or rains brought by monsoonal storms in July-

September (262 mm/year average). The area was burned by the West Fork Complex wildfire in 

2013, a 44,515-ha event which burned at moderate to high severity (MTBS, 2013). Most of the 

unburned forest is in the early gray stage following the spruce beetle outbreak, in which most 
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killed trees have lost all needles but are still standing with fine twigs and branches remaining in 

the canopy. 

 

Figure 4-1. Map of study sites. Inset map shows the location of the study area within the western 

United States. 

 

Field Data 

i. Site Selection  

We selected 58 sites in unburned forest and 27 sites in the West Fork Complex 

burn area to sample seedling abundance, seed dispersal, below-canopy temperatures, soil 

moisture, overstory mortality, understory composition, and seed counts. We selected sites 

in GIS to achieve a distribution of sites over gradients in elevation, aspect, topographic 

position, and spruce beetle outbreak severity. More sites were placed in unburned forest 
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in order to assess the effects of canopy cover gradients on temperature (Carlson et al., in 

prep) and seed abundance.  

ii. Seed Dispersal  

We placed 30 cm × 30 cm square seed traps on the ground surface at each of our 

sites in order to sample wind-dispersed seed rain from P. engelmannii (PIEN) and other 

conifer species (FIR, mainly A. lasiocarpa with low abundances of A. concolor and P. 

menziesii). Insects and animals do not play a significant role in seed dispersal for any of 

these species (Alexander, 1987). Traps were square baskets constructed from fine mesh, 

covered with hardware cloth with 0.64-cm openings to prevent seed predation. The traps 

were then fixed to the ground with metal stakes. We initially placed the traps at each field 

site in early September, 2016, before the period of peak seed dispersal for PIEN 

(Alexander, 1987). 

We collected seeds following snowmelt in June-early July of 2017 and again in 

late May-June of 2018. After separating PIEN seeds from litter and other material in the 

trap, we counted all viable conifer seeds. We used seeds from PIEN and FIR species to 

assess dispersal patterns in the burned area. In unburned sites, we only assessed the effect 

of PIEN seed counts on PIEN seedling abundance in order to assess the potential effect of 

spruce beetle outbreak on limiting seed dispersal. Because FIR species have not 

undergone major disturbance in our study area, we did not assess patterns in FIR seed 

abundance.  
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iii. Temperature Data 

We collected detailed temperature data for each of our sites using Logtag® 

temperature sensors programmed to record every three hours. Sensors were placed inside 

plastic radiation shields covered in reflective tape to prevent direct solar radiation, and 

attached to tree trunks ~2 m above the ground. We initially placed sensors at each burned 

and unburned site in the fall of 2016, at the same time that seed traps were placed. We 

assessed seedling abundance in relation to temperatures recorded during the snow-free 

season of 2017 (June-October). Temperature records were summarized as the mean of all 

daily maximum and daily minimum temperatures over the growing-season period, 

hereafter referred to as Tmax and Tmin.  

We did not assess the effect of winter temperatures on seedling abundance for 

three reasons: first, temperature records during the winter of 2016-2017 were unusable at 

many sites due to influence of snow cover on the temperature sensors; second, 

temperatures during the winter of 2017-2018 were affected by an exceptionally low 

snowpack which may not be representative of the past decade in which our seedlings 

established; and third, summer and winter temperatures were strongly correlated for 

individual sites. While temperatures for a single growing season may not represent the 

average conditions of the past several years of seedling recruitment, we assumed that 

temperature records reflect topographic influences on climate that remain consistent over 

time. Our goal was therefore not to determine absolute ideal temperatures for PIEN 

seedlings, but to determine the extent to which seedling abundances are influenced by 

these relative differences in temperature.  
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iv. Canopy Cover and Topographic Characteristics  

We assessed live canopy and overstory mortality at each unburned site within a 

20 m × 20 m square plot area (Error! Reference source not found.). Plots were m

easured from the tree where temperature sensors were fixed and extended 10 m in each of 

the four cardinal directions. We measured diameter at breast height (DBH) of all trees 

taller than breast height that were rooted within the plot and recorded species and 

live/dead status. DBH measurements were used to derive the total basal area of all live 

trees, of live PIEN, of live FIR, of live P. tremuloides (POTR), and of dead PIEN. To 

characterize site topography, we measured aspect and slope at all plot centers. We 

converted aspect to a relative northeast-to-southwest-facing scale using Taspect = 

sin(aspect + 45) + 1 (Beers, Dress, & Wensel, 1966).   

v. Understory 

We measured understory composition using fifteen 1 m × 1 m subplots per plot 

(Figure 4-2). Subplots were placed at randomly selected intervals along the central north-

south and east-west-running transects of the plot. We placed subplots using a PVC frame 

and visually estimated percent cover of each of eight understory classes: Moss, Grass, 

Forbs, Shrub, Litter, Bare, Coarse Woody Debris (CWD; defined as being >5 cm at the 

widest point), and Rock. Subplot percent cover estimates were then used to derive the 

mean and standard deviation of plot-level percent cover for each understory class. 

vi. Seedling Counts  

We conducted seedling counts for each site during August-September of 2018. 

We measured the same 20 m × 20 m plot areas used to assess overstory and counted all 

tree species <1 m in height. Counts included both conifer and POTR seedlings. We 
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assessed seedling age for conifers by counting terminal bud scars associated with annual 

growth, which has been shown to be a reasonably accurate method for aging PIEN 

seedlings up to 14 years old (Urza & Sibold, 2013). In order to assess the effects of recent 

disturbance on seedling impact we considered seedlings < 10 years old.  

 

 
Figure 4-2. Diagram of field sampling design. Temperature sensors were mounted on tree trunks 
with seed traps placed at the base of the tree. Square area represents a 20×20 m plot centered 
around the sensor and seed trap along north-south and east-west axes, used to measure overstory 
basal area and seedling counts. Central lines represent transects used to place randomly spaced 
1×1 m understory subplots (gray squares).  

Analysis  

Our analysis goals were to 1) determine the effect of disturbance on seed dispersal, and 2) 

to determine the relative influence of seed dispersal, temperature, overstory, and understory on 

post-disturbance PIEN and FIR seedling establishment. Due to low seedling counts in the burned 

area, we only modeled abundances in unburned, beetle-killed sites. We assessed patterns of burn 

severity on seed and seedling abundance in the burned area by mapping seedling counts over a 

burn severity layer obtained from the Monitoring Trends in Burn Severity (MTBS) database 
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(https://mtbs.gov). For unburned sites, we used a Bayesian hierarchical modeling approach in 

order to account for uncertainty in understory cover and seed abundances. All models were fit by 

Markov Chain Monte Carlo simulations with 10,000 iterations, implemented with the JAGS (Just 

Another Gibbs Sampler) algorithm in the ‘rjags’ package in R (Plummer, 2017; Plummer, 2018; 

R Core Team, 2019).  

i. Seed Dispersal Model 

We used a hierarchical Bayesian model to assess the relationship between live 

PIEN basal area and seed abundance in unburned sites. For sites with live PIEN, we 

calculated the basal area of all live PIEN trees at least 30 cm in diameter 

(𝐿𝑖𝑣𝑒𝑃𝐼𝐸𝑁𝑂𝑣𝑒𝑟30). Although Alexander (1987) reported that a diameter of 38 cm is 

required for PIEN trees to become significant seed producers, there were only two sites 

with live trees of that diameter. Expected annual seed abundance at each site 𝑗 was 

treated as a latent variable, 𝜆𝑠,𝑗, from which observed seed counts in 2017 and 2018 were 

drawn. Observed seed counts for each site and year 𝑖 (𝑠𝑖𝑗) were modeled as a Poisson 

distribution with the mean, 𝜆𝑠,𝑗 predicted with the equations  

𝜆𝑠,𝑗 ~ gamma(𝜇𝑠,𝑗2𝜎𝑠2 , 𝜇𝑠,𝑗𝜎𝑠2 ) 𝜇𝑠,𝑗 = 𝛾1 + 𝛾2(𝐿𝑖𝑣𝑒𝑃𝐼𝐸𝑁𝑂𝑣𝑒𝑟30𝑗) 

 

where 𝛾𝑠’s are unknown coefficients, 𝜇𝑠,𝑗 is the mean of a gamma distribution predicting 𝜆𝑠,𝑗, and 𝜎𝑠2 is the unknown variance of the gamma distribution. 𝜇𝑠 and 𝜎𝑠2 were used to 

derive shape and rate parameters using moment-matching equations. 𝛾’s and 𝜎𝑠2 were 

assigned uninformative priors. The full posterior expression for the seed count model is  
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[𝛾1, 𝛾2, 𝜎𝑠2|𝒔]~ ∏ ∏ Poisson(𝑠𝑖,𝑗|𝜆𝑠,𝑗58
𝑗=1 ) 2

𝑖=1 × gamma(𝜆𝑠,𝑗|𝛾1, 𝛾2, 𝜎𝑠2, 𝐿𝑖𝑣𝑒𝑃𝐼𝐸𝑁𝑂𝑣𝑒𝑟30)× normal(𝛾1|0, 0.001)× normal(𝛾2|0, 0.001)× inverse gamma(𝜎𝑠2|0.001, 0.001) 

 

ii. Seedling Abundance Model 

We used additional Bayesian models to determine how PIEN and FIR seedling 

counts varied with site temperature, aspect, overstory composition, and understory (all 

potential relationships are diagrammed in Figure 4-3; variable descriptions are given in 

Table 4-1). We fit models using both PIEN and FIR seedlings <10 years old as the 

response variable. For each site 𝑗, seedling count (𝑦𝑗) was modeled as Poisson 

distributions with mean 𝜆𝑗 predicted by a linear combination of site variables 

(temperature, topography, and overstory; assumed to be measured without error), and 

hierarchical understory and seed count variables. The model is described by the equations 

𝑦𝑗  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑗) 𝜆𝑗 = exp(𝛽0 + 𝜷𝑿𝑗′ + 𝜷𝑈𝑼𝑗′ + 𝛽𝑠𝜆𝑠,𝑗) 

 

where 𝑿 is a matrix of predictor variables (those assumed to be measured without error), 𝑼 is a matrix of latent understory cover values constrained by means and standard 

deviations of subplots, 𝜆𝑠,𝑗 is a latent variable representing annual mean seed count, and 𝜷, 𝜷𝑼 and 𝛽𝑠 are coefficients. In these models, expected seed count (𝜆𝑠) was assigned an 

uninformative prior rather than being predicted by 𝐿𝑖𝑣𝑒𝑃𝐼𝐸𝑁𝑂𝑣𝑒𝑟30. This was because 
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a term for live PIEN overstory was already included in 𝑿 as a direct effect on seedling 

abundance. The full posterior expression for the seedling abundance model is  

[𝛽0, 𝜷𝑋 , 𝜷𝑈, 𝛽𝑠, 𝝀𝑠, 𝑼|𝒚, 𝒔] ~ ∏ ∏ Poisson(𝑦𝑗|𝛽0, 𝜷𝑈, 𝑼𝑗′, 𝜷𝑠, 𝜆𝑠,𝑗, 𝜷𝑋 , 𝑿𝑗′)58
𝑗=1

2
𝑖=1× Poisson(𝑠𝑖,𝑗|𝜆𝑠,𝑗)gamma(𝜆𝑠,𝑗|0.001, 0.001)× ∏ beta𝑝𝑈

𝑘=1 (𝑼𝑗,𝑘| 𝑚𝑗,𝑘, 𝑠𝑑𝑗,𝑘)normal(𝛽𝑈,𝑘|0, 0.001)
× ∏ normal(𝛽𝑋,𝑙|0, 0.001)𝑝𝑋

𝑙=1×  normal(𝛽𝑠|0, 0.001)×  normal(𝛽0|0. , 0.001) 
 
 

where 𝑚𝑗,𝑘, 𝑠𝑑𝑗,𝑘 are the observed mean and standard deviation of 15 understory subplots 

at site 𝑗 for understory category 𝑘, and are used for deriving shape and range parameters 

for the beta distribution using moment-matching equations. 𝛽’s were assigned 

uninformative normal priors.  
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Figure 4-3. Diagram of hypothesized relationships between measured variables and seedling 

counts. Latent variables (red) are treated as unobserved, random variables in hierarchical 

Bayesian models. 

 

Table 4-1. Candidate variables for Bayesian seedling abundance models. 

Variable Description 

Site variables (𝑿′) 
Tmax Mean growing-season daily maximum 

temperature 
Tmax2 Quadratic form of Tmax 
Tmin Mean growing-season daily minimum 

temperature 
Tmin2 Quadratic form of Tmin  
Taspect Transformed aspect measured at plot 

center (Beers et al., 1966) 
Slope Slope measured at plot center 
LivePIEN Basal area of live spruce trees > 5 cm 

in diameter 
LiveFIR Basal area of live fir trees (subalpine 

and white fir) > 5 cm in diameter 
LivePIENOver30 Basal area of live spruce trees > 30 cm 

in diameter 
POTR  Count of aspen seedlings < 1 m in 

height 
Understory variables (𝑼′) 

Moss Percent cover of each understory 
category (drawn from beta Grass 
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Forb distributions defined by observed 
means and standard deviations from 
15 subplots) 

Shrub 
Litter 
CWD 
Rock 
Bare 

Seed count (𝜆𝑠) PIEN seed count (PIEN models only; 
mean of Poisson distribution for 
observed values) 

 

iii. Indicator Variable Selection  

Due to the large number of predictor variables in the seedling abundance model 

(Error! Reference source not found.), we selected a parsimonious model using an i

ndicator variable selection procedure (George & McCulloch, 1993). This involved adding 

a vector of binary indicator variable terms, 𝒛, to the model such that each variable 𝑛 in 

the linear regression model is multiplied by 𝑧𝑛 ∗ 𝛽𝑛. The model was then fit using 

MCMC sampling, with each iteration assigning a value of 0 or 1 to 𝑧’s to effectively 

include or exclude variables from the model. The posterior means of 𝑧’s indicate overall 

variable importance (means closer to 0 mean variables are unimportant, means closer to 1 

indicate greater importance). We assigned priors to 𝑧’s and 𝛽’s with the ‘slab-and-spike’ 

method described by Kuo & Mallick (1998), which uses independent distributions for 

both variables. The prior distribution for each 𝑧𝑚 term was  

𝑧𝑚 ~ Bernoulli(𝜌) 

where 𝜌 was constrained by an informative beta prior resulting in a most likely value of 

0.5. The prior distribution for each 𝛽𝑚 was  

𝛽𝑚 ~ normal(0, 𝜏) 
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where 𝜏 was assigned an uninformative inverse gamma prior. The full model expression 

with indicator variables included is 

[𝛽0, 𝜷𝑋 , 𝜷𝑈, 𝛽𝑠, 𝝀𝑠 , 𝑼, 𝒛, 𝜌, 𝜏|𝒚, 𝒔] ~ ∏ ∏ Poisson(𝑦𝑗|𝛽0, 𝜷𝑈, 𝒛𝑈, 𝑼𝑗′, 𝛽𝑠, 𝑧𝑠, 𝜆𝑠,𝑗, 𝜷𝑋 , 𝒛𝑋 , 𝑿𝑗′)58
𝑗=1

2
𝑖=1× Poisson(𝑠𝑖,𝑗|𝜆𝑠,𝑗)gamma(𝜆𝑠,𝑗|0.001, 0.001)× ∏ beta𝑝𝑈

𝑘=1 (𝑼𝑗,𝑘| 𝑚𝑗,𝑘, 𝑠𝑑𝑗,𝑘)  ×  normal(𝛽𝑈,𝑘|0, 𝜏)Bernoulli(𝑧𝑈,𝑘|𝜌)× ∏ normal(𝛽𝑋,𝑙|0, 𝜏)Bernoulli(𝑧𝑋,𝑙|𝜌)𝑝𝑋
𝑙=1× normal(𝛽𝑠|0, 𝜏)Bernoulli(𝑧𝑠|𝜌)× beta(𝜌|5, 5)× inverse gamma(τ|0.001, 0.001)×  normal(𝛽0|0. , 0.001) 

 
 

We used the posterior means of 𝑧’s to determine variable subsets to include in final 

models, using a threshold of 0.5. We then fit final models without indicators to find 

posterior distributions for 𝛽’s.  

 
Results 

Seed Dispersal 

 We collected seeds from 26 of the 30 burned sites and 58 of the 60 unburned sites in at 

least one year. We were unable to obtain seed counts at the remaining sites due to lost traps or 

trap covers becoming separated. In the burned area, only two sites had non-zero PIEN seed 

counts in both years (average per-year counts of 1.5 and 0.5 seeds). Both sites were located less 

than 100 m from unburned edges (Figure 4-4). No FIR seeds were present in any seed collections 

in burned sites. Mean seed count in unburned sites was 5.0 seeds per year, with a maximum of 

117 seeds collected in one year at a single site. There were 22 unburned sites with 0 seeds 
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counted in either collection year. The Bayesian regression model for unburned sites indicated 

that there is a positive relationship between expected mean seed count (𝜆𝑠) and site-level basal 

area of PIEN > 30 cm in diameter, with a 94.9% probability that the regression coefficient (𝛾2) is 

greater than 0 (95% credible interval = -0.012 – 0.172; Figure 4-5).  

 

 

Figure 4-4. Map of seed counts in and adjacent to the West Fork Complex burned area, overlain 

with burn severity classes from MTBS. Counts are averaged between collection years in 2017 

and 2018. Only sites where seed traps were recovered in at least one year are shown.  

 



113 

 

Figure 4-5. Modeled relationship between expected seed counts (𝑠) and basal area of live PIEN > 

30 cm in diameter in unburned forest. Black line=means of posterior distributions for 𝑠; gray 

shaded area=2.5th-97.5th percentile ranges. Points are observed values in both collection years. 

 

Seedling Abundance 

 In the burned area, only three sites contained conifer seedlings established in the 5 years 

since the fire. Each of these sites was located < 100 m from unburned forest near the edge of the 

burn perimeter (Figure 4-6). These sites had also burned at low severity and contained seedlings 

older than 5 years which had survived the fire. None of the sites with seedlings had any viable 

seeds captured in seed traps, although one trap contained a single seed wing. In contrast to the 

low rates of conifer regeneration, many burned sites contained abundant POTR regeneration 

(mean density: 788.81 ± 1,460.5 suckers/ha). POTR suckers were only present at sites below 

3,341 m in elevation (Figure 4-7). 
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Figure 4-6. Map of seedlings in the West Fork Complex burn area that established since the year 

of the fire (2013), with burn severity classes from MTBS. 

 

 

Figure 4-7. Map of POTR suckers in the West Fork Complex burn area, with burn severity 

classes from MTBS.  
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In unburned sites, the average density of sampled PIEN seedlings under 10 years old was 

250.0 ± 420.7 seedlings/ha (mean ± one std. deviation) and the average density of PIEN 

seedlings 10 years or older was 252.2 ± 234.4 seedlings/ha. Ten sites contained no PIEN 

seedlings < 10 years old, although PIEN seedlings > 10 years old were present at all sites. The 

average density of FIR seedlings < 10 years old was 278.0 ± 427.6 seedlings/ha, and the density 

of FIR seedlings 10 years or older was 289.7 ± 344.8 seedlings/ha. Very few seedlings had 

established in the last three years (mean densities: 20.7 ± 57.6 seedlings/ha for PIEN, 19.0 ± 57.3 

seedlings/ha for FIR). Temporal patterns in seedling establishment were similar for PIEN and 

FIR, with a majority of seedlings > 10 years old (Figure 4-8). Low abundances of seedlings 

established in 2016-2018 correspond with severe drought in 2018 as measured by the Palmer 

Drought Severity Index (PDSI; data from http://climateengine.org/). However, low PDSI values 

in 2012-2013 do not appear to affect seedling abundances.  
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Figure 4-8. PIEN and FIR seedlings by year of establishment for seedlings up to 10 years old, 

compared to annual PDSI. 

 

 The indicator variable selection procedure for PIEN models resulted in a final model that 

included Tmax, Tmin, Taspect, DeadPIEN, LiveFIR, and all understory categories except Rock 

(Table 4-2). Seed count was not included. Although only the quadratic forms of Tmax and Tmin 

had mean 𝑧’s > 0.5, we retained both the linear and quadratic forms of both variables. For FIR 

models, indicator variable selection resulted in a final model that included LiveFIR, POTR 

seedling count, and understory percent cover of Moss, Litter, CWD, and Bare. Temperature 

variables, Taspect, DeadPIEN, and understory percent cover of Grass, Forb, and Shrub were not 

included in FIR seedling models. Slope and LivePIEN were not included in either PIEN or FIR 

models.  



117 

 
Table 4-2. Posterior means of indicator variables (z’s) for all explanatory variables in models 
predicting seedling abundances for both P. engelmannii (PIEN) and fir spp. (FIR). Values in 
bold are above the threshold of 0.5, and corresponding variables were included in final models. 
The full quadratic expressions of temperature variables were included. PIEN seed count was not 
considered in FIR models.   

Variable 𝑧 – PIEN model 𝑧 – FIR model 

Intercept  1.00 0.97 

Site variables (X')  

Tmax 0.47 0.44 

Tmax2 0.54 0.44 

Tmin 0.46 0.39 

Tmin2 0.53 0.44 

Taspect 0.86 0.30 

Slope 0.37 0.41 

LivePIEN 0.29 0.34 

DeadPIEN 0.94 0.28 

LiveFIR 0.82 0.99 

POTR 0.32 0.69 

Understory variables (U')  

Moss 0.52 0.90 

Grass 0.64 0.40 

Forb 0.56 0.48 

Shrub 0.86 0.41 

Litter 0.92 0.67 

CWD 0.56 0.99 

Rock 0.38 0.45 

Bare 0.53 0.77 

PIEN seed count (s) 0.39 - 

 

  
 Variables in the final PIEN seedling abundance model with a >95% probability of being 

non-zero (and therefore strongly explaining seedling patterns) include Taspect, DeadPIEN, 

LiveFIR, Tmin (quadratic form), Shrub, and Litter (Table 4-3). PIEN seedling abundance shows 

a strongly positive response to Taspect (i.e., more north-facing aspects), a strongly negative 

response to increasing basal area of DeadPIEN, negative responses to increasing Shrub and Litter 

cover, and positive responses to increasing Bare and Grass cover (Figure 4-9). Seedling 
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abundance also decreases at the high ends of temperature ranges for both Tmax and Tmin, and 

mean response to Tmin indicates an optimal temperature at the colder end of the sampled range 

(~2 °C). Variables with a >95% probability of being non-zero in FIR models include LiveFIR, 

POTR, CWD, and Bare (Table 4-3). FIR seedling abundance responds positively to increasing 

LiveFIR overstory basal area and to increasing POTR seedling abundance, and responds 

negatively to increasing CWD and Bare percent cover (Figure 4-10).  

  
Table 4-3. Variables in PIEN and FIR seedling abundance models and probabilities that 𝛽’s are 
greater or less than 0. (+) indicates that 𝛽𝑚𝑒𝑎𝑛 > 0; (-) indicates that 𝛽𝑚𝑒𝑎𝑛 < 0. Values above 

0.95 are in bold, indicating a >95% probability that 𝛽 ≠ 0.    
PIEN Model  FIR Model 

Variable  Pr(𝜷 ≠ 0) Variable  Pr(𝜷 ≠ 0) 
Taspect 0.97 (+) LiveFIR >0.99 (+) 
DeadPIEN 0.97 (-) POTR 0.99 (+) 
LiveFIR >0.99 (+) Moss 0.92 (+) 
Tmax 0.93 (-) Litter 0.93 (+) 
Tmax2 0.91 (+) CWD  >0.99 (-) 
Tmin >0.99 (+) Bare 0.97 (-) 
Tmin2 >0.99 (-)   
Moss 0.65 (-)   
Shrub >0.99 (-)    
Litter 0.99 (-)   
Bare 0.89 (+)   
CWD 0.54 (-)   
Grass 0.82 (+)   
Forb 0.65 (-)   
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Figure 4-9. Marginal response plots for all variables included in final PIEN seedling abundance 
models. Plots show the expected response of seedling abundance to each variable when all other 
variables are held at their mean values. Black lines show posterior means of predicted responses, 
gray shaded area shows the 95% credible interval. 
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Figure 4-10. Marginal response plots for all variables included in final FIR seedling abundance 
models. Plots show the expected response of seedling abundance to each variable when all other 
variables are held at their mean values. Black lines show posterior means of predicted responses, 
gray shaded area shows the 95% credible interval.  
 

Discussion 

Patterns of Regeneration in the West Fork Burn Area 

 We did not observe any conifer regeneration in severely burned areas of the West Fork 

Complex burn area five years after the fire. Conifer re-colonization appeared to be constrained 

by lack of adequate seed dispersal, as seedling absence corresponded with an absence of 

available seed captured in seed traps and absence of live trees to serve as seed sources. Given 

that most of the forested area burned at high severity, we may expect to see these patterns of 

extremely low conifer regeneration throughout the interior of the burned area. We can infer from 

these results that much of the previously forested burned area will remain unforested for the 

foreseeable future. Current regeneration patterns suggest that lower elevations of the burn area 
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will remain aspen-dominated for the next several decades or longer while higher elevations with 

no aspen regeneration may remain unforested meadows.  

 Seed dispersal limitations are evident, as 90% of our seed traps in the burned area 

contained no conifer seeds. Seeds were only present in low numbers in traps located near the 

burn edge. This pattern was not unexpected given that Engelmann spruce and subalpine fir 

typically re-colonize burned areas by wind-dispersed seeds which do not typically travel farther 

than 100 m (Alexander, 1987). Although our seed trap design does not fully capture rare, long-

distance seed dispersal events across the landscape (Nathan & Muller-Landau, 2000), the lack of 

seedlings at 90% of sites within the burned area suggests that these events are not leading to 

conifer re-establishment. Furthermore, regeneration has apparently not resulted from the pre-fire 

canopy seed bank. This can be an important seed source for post-fire regeneration in Engelmann 

spruce forests when seed production is abundant (Pounden, Greene, & Michaletz, 2014). In the 

West Fork Complex, it is very likely that pre-fire cone production was diminished by the severe 

spruce beetle outbreak which killed most large-diameter spruce trees in the previous decade 

(Carlson et al., 2017).  

 Declining conifer regeneration following wildfire has become a common pattern across 

the western United States in the last two decades, as a result of increasing post-fire drought stress 

and low seed availability due to increasing fire sizes (Stevens-Rumann & Morgan, 2019). These 

regeneration failures indicate that fires are catalyzing climate-driven ecosystem transitions. Our 

results provide an additional example of post-fire regeneration failure in a high-elevation forest 

type. We can attribute this apparent forest transition to lack of seed dispersal, although the 

absence of seeds in most of our study sites obscures the potential concurrent role of warming and 

drought in limiting seedling establishment (Harvey et al., 2016; Kemp, Higuera, Morgan, & 
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Abatzoglou, 2019; Urza & Sibold, 2017). Although droughts were not severe in the four years 

following the fire (Figure 4-8), mean annual temperatures at Wolf Creek Pass have warmed by 

an average of 0.44 °C since 1895 (PRISM climate data). Carlson et al. (in prep) found that mean 

temperatures in the burned area are elevated by ~0.5 °C compared to unburned areas. Re-

establishing seedlings may therefore be experiencing temperatures significantly warmer than 

those experienced when the original forest established, which may be beyond a threshold for 

regeneration.  

Patterns of Regeneration in Spruce Beetle-Killed Forest 

 Spruce beetle outbreak at Wolf Creek Pass has not resulted in regeneration failures and 

the apparent ecosystem transition that is observed in the West Fork Complex fire. Despite high 

canopy mortality of Engelmann spruce in most of our study sites, there is abundant advance 

regeneration in the sub-canopy by both PIEN and FIR seedlings > 10 years old. Low abundances 

of seedlings < 10 years old, which are assumed to have established after the beetle outbreak, are 

typical for severely beetle-killed spruce-fir forests (Astrup, Coates, & Hall, 2008; DeRose & 

Long, 2010). However, extremely low abundances of seedlings established in the last three years 

may indicate potential future trends that may arise from warming and severe droughts. 

We observed a drop-off in seedling establishment from 2016-2018 which may be related 

to severe drought in 2018. While these drought conditions were not present in 2016-2017, the 

lagged effect might be attributed to mortality of newly established seedlings in fall 2017-summer 

2018. We did not observe the same low seedling abundances in 2012-2013 despite a low PDSI in 

those years. Both droughts were characterized by hot summers, low monsoon-season 

precipitation, and early snowmelt, while the drought of 2017-2018 also included very warm fall 

temperatures and extremely low winter snow cover. In addition to growing-season soil moisture, 
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snowpack has been shown to strongly correlate with spruce and fir seedling establishment in 

both observational studies and growth experiments (Andrus et al., 2018; Kueppers et al., 2017). 

If warm fall-winter droughts such as the one in 2017-2018 are likely to occur more frequently in 

the San Juan Mountains in the near future, these events may limit future seedling establishment. 

  Our Bayesian analysis of site factors contributing to seedling abundance revealed that 

increasing temperatures may lead to greater declines in both PIEN and FIR establishment, 

especially on drier, southwest-facing slopes. Our temperature data only represents a single 

growing season and therefore is not necessarily representative of absolute temperature-

abundance relationships, but temperature patterns are reflective of relative spatial difference in 

temperatures which depend on topographic setting (Carlson et al., in prep; Dobrowski, 2011). 

Our modeled temperature relationships therefore suggest that regional warming will cause PIEN 

and FIR seedling distributions to shift toward higher elevations, northeast-facing slopes, or 

valley bottoms with sufficient cold-air drainage to remain within their optimal temperature 

ranges. Due to differing responses to Tmax vs. Tmin, warming may be expected to affect PIEN 

distributions differently than FIR distributions.  

 Seedling abundance models also revealed that the severity of spruce beetle mortality (as 

measured by basal area of standing dead PIEN) has strong effects on PIEN seedling 

establishment in relation to temperature and other site factors. A possible explanation for this 

relationship is that spruce beetle outbreak results in seed limitations as large-diameter, cone-

producing trees die off. There is limited evidence for this mechanism from our seed dispersal 

model, but our variable selection procedure indicated that seed counts did not explain PIEN 

seedling abundance. It is possible that our analysis is limited by only having seed collections 

over two years, which may not fully capture year-to-year variability in seed production. 
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Engelmann spruce produce bumper seed crops roughly every 2-5 years, and seed production is 

affected by multi-year weather conditions which impact various stages of seed development 

(Alexander, 1987; Buechling, Martin, Canham, Shepperd, & Battaglia, 2016). Longer-term seed 

monitoring may be needed to more accurately assess effects of spruce beetle outbreak on overall 

seed supply. 

 Our results show that spruce seedling abundance is affected by live canopy cover, with 

seedlings responding positively to increasing overstory FIR cover and negatively to increased 

spruce canopy loss. Although we did not see strong evidence that this is explained by seed 

dispersal, these relationships may be additionally influenced by changes in the below-canopy 

environment associated with live canopy. Dobrowski et al. (2015) observed that seedling 

densities correspond with undisturbed forest cover across the western U.S., and hypothesize that 

this may be due to canopy cover buffering microclimates against broader warming trends. Spruce 

beetle outbreak does not lead to greater below-canopy warming, but may lead to greater 

overnight cooling (Carlson et al., in prep) which may increase risk of frost damage at the onset 

of the growing season and potentially inhibit growth at cool edges of PIEN distribution (Carlson 

et al., in prep; Hill et al., 2019; Noble & Alexander, 1977). Canopy loss may also lead to greater 

rates of snow ablation and earlier snowmelt (Pugh & Small, 2013). An additional unexplored 

mechanism is the potential feedback between overstory die-offs and declines in below-ground 

ectomycorrhizal associations, which has been shown to reduce seedling growth and survival in 

lodgepole pine stands affected by mountain pine beetle (Karst et al., 2015).   

 Finally, our analysis explored the role of understory composition in determining seedling 

abundance. We found that there were likely to be fewer PIEN seedlings at sites with greater litter 

and shrub cover, consistent with current understanding that PIEN prefers to establish on exposed 
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mineral soil (Knapp & Smith, 1982; Noble & Alexander, 1977). Overstory mortality may be 

indirectly affecting PIEN regeneration by allowing for greater shrub growth as below-canopy 

light availability increases (Stone & Wolfe, 1996). Needle fall from the canopy may also initially 

increase understory litter cover following outbreak, creating a less favorable environment for 

PIEN seedling re-establishment. Furthermore, our results show that CWD did not favor seedling 

establishment for either PIEN or FIR and appeared to strongly inhibit FIR establishment. It 

should be noted that most CWD we observed was from recent tree-fall as a result of the beetle 

outbreak. This relationship may change over time as logs decompose and form moist micro-sites 

for seedling establishment.  

Conclusions 

 This study assessed patterns of seedling regeneration in the West Fork Complex burn 

area and surrounding areas affected by a severe spruce beetle outbreak. Our results support two 

key conclusions: first, that conifer regeneration in the burned area is severely limited due to a 

lack of available seed sources; and second, that overstory mortality in spruce beetle-killed forests 

is confounding the response of seedling regeneration to temperature and other site 

characteristics. The extremely low seedling abundances in the West Fork burn area fit in with a 

pattern being observed across the western United States, in which increasing fire sizes and 

severities in tandem with increasing post-fire aridity are reducing rates of forest regeneration. In 

beetle-killed forest, the negative response of PIEN seedling establishment to increasing overstory 

mortality from spruce beetles has implications for long-term predictions of forest decline with 

climate change. While it is understood that temperature effects on seedling recruitment may vary 

at fine spatial scales in mountain forests, extensive canopy disturbances are also playing an 

important role in accelerating forest decline.   
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CHAPTER 5: Synthesis 
 

 

 

The goal of my dissertation was to better understand how forest recovery patterns are 

being affected by disturbance severities and interactions which appear to exceed any recorded 

precedent in the Southern Rockies. Because these disturbances are linked to a rapid warming 

trend throughout the region, regeneration patterns may be indicative of the potential for 

disturbance-mediated ecosystem transitions driven by shifting climate suitability. In my research 

I considered three potential mechanisms by which disturbances may facilitate change: (1) 

recovery patterns being influenced by compounded disturbance interactions, (2) loss of canopy 

cover influencing the exposure of regenerating seedlings to warming trends, and (3) regeneration 

responses to temperature being mediated by disturbance effects on seed availability or other 

changes to the micro-environment. Understanding these factors allows for a more complete 

understanding of the role of disturbance in shaping forest ecosystem responses to climate change.  

 The geographic region selected for my dissertation work played an important role in my 

study design and interpretation of results. I chose to study the effects of the West Fork Complex 

fire and surrounding spruce beetle-killed forest because this area represented a region with 

particularly severe disturbance effects. The San Juan mountain range is at the southern edge of 

the North American distribution for the subalpine spruce-fir forest type (i.e., the “warm” edge), 

indicating that widespread mortality could begin a process of extirpation as these forest types 

shift to higher, cooler latitudes. My results found that this may be the case in areas affected by 

the West Fork Complex fire, but is not clearly so in unburned forests affected by the spruce 

beetle outbreak. However, there are some indications that high-severity spruce beetle outbreak 

may be making forests more vulnerable to forest decline with future warming and wildfires.   
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 In Chapter 2, I found that there was a negative correlation between remotely sensed pre-

fire spruce beetle outbreak severity and vegetation cover two years after the West Fork Complex 

fire. Quantifying outbreak severity has posed a challenge for researchers working in forests 

where beetle evidence has been destroyed by naturally occurring wildfire. However, I was able 

to obtain a reliable estimate using a simple Landsat-derived vegetation change index (dNDMI), 

which correlated well with field measurements of dead spruce basal area when compared with 

the dNDMI from imagery taken at the time of field sampling (R2 = 0.67). Using this index, I was 

able to model the relationship between beetle-caused canopy mortality and post-fire NDVI. The 

analysis also accounted for several other topographic and fire weather variables, derived from 

publicly available digital elevation models, weather station data, and fire perimeters.  

This landscape-scale approach was highly advantageous in terms of using archived 

Landsat imagery to study a long-term disturbance and recovery process. Focusing on multi-year 

patterns highlights an important consideration for understanding disturbance interactions 

between beetle outbreak and fire – namely, that pre-fire disturbance can have compounded 

disturbance impacts beyond those affecting immediate post-fire overstory mortality, which has 

been the most common metric of fire severity used in previous studies. A reasonable hypothesis 

is that bark beetle outbreaks cause needles and branches to fall to the ground, increasing surface 

fuel loads and causing more intense burning of soil matter. However, this study approach was 

limited in its ability to identify causal mechanisms. Future research may build upon this 

understanding of landscape-scale pattern by investigating the processes explaining how bark 

beetle outbreaks may lead to increased soil burn severity, and how this process may affect 

longer-term ecosystem development.  
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 In Chapter 3, I used a detailed network of below-canopy temperature sensors to 

determine that fine-scale temperature patterns in forests are mediated by canopy modification 

from disturbance. I found that burned areas experienced an overall warming of ~0.5 °C 

compared to unburned forest, and that spruce beetle-killed forests experienced a cooling of 

overnight minimum temperatures with decreasing canopy cover (by up to ~1.0 °C) and little 

change in daytime maximum temperatures. In my topographically complex study area, the 

magnitude of these temperature effects was comparable to those from variations in elevation, 

aspect, cold-air drainage, and exposure. While it is well-understood that forest canopies buffer 

microclimates against both extreme hot and cold temperatures and may play a role in reducing 

tree species’ exposure to broader warming patterns, my study was the first, to my knowledge, to 

explicitly model how this buffering effect can be impacted by disturbance. 

My results reveal that disturbance can play a role in pushing ecosystems beyond 

thresholds of climate suitability, but that this role varies with different disturbance types and 

severities. Severe wildfire appears to exacerbate warming and may potentially limit regeneration 

in regions where warm and dry conditions are beginning to exceed physiological limits for 

seedling re-establishment. Partial canopy disturbance from bark beetle outbreaks, on the other 

hand, had a more complex effect. Loss of canopy led to greater overnight cooling through 

radiative heat loss, but standing dead trees and understory vegetation apparently provide enough 

ground surface shading to prevent daytime temperatures from largely increasing. Recognizing 

how these topoclimate patterns are influenced by different disturbance types and severities will 

help to improve understanding of how abrupt disturbances may interact with shifting climatic 

suitability for forest species, help to identify ecologically important refugia, and help to avoid 
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oversimplistic assumptions about how warming temperatures will cause species distributions to 

shift.  

In Chapter 4, I built upon the understanding of disturbance effects on below-canopy 

temperature gained in Chapter 3 to model how other factors may be influencing regeneration 

success in combination with temperature. I found that (1) both seed dispersal and seedling 

regeneration for conifers are currently very limited in the West Fork burn area, and (2) there is a 

negative correlation between Engelmann spruce seedling regeneration and overstory spruce 

mortality in spruce beetle-killed forest stands. From these results I can conclude that the size and 

severity of the West Fork fire has greatly limited seed availability in the interior of the burn and 

that this is likely to limit forest recovery for the foreseeable future. From the results of Chapter 3 

I may infer that exacerbated warming could be limiting seedling establishment, but the overall 

lack of seedlings in my study sites precludes statistical analysis to determine support for this 

hypothesis. In beetle-killed stands, I did not find evidence that the decline in seedling abundance 

with increasing overstory mortality was explained by seed limitation. While my 2-year study 

design could not fully account for potential temporal variability in seed production, other factors 

may explain this effect. These include effects on soil moisture resulting from increased solar 

radiation reaching the ground surface, changes to understory resulting from canopy opening, or 

potential loss of symbiotic mycorrhizae with overstory decline.  

Results from within the West Fork burn area fit into other recent studies noting limited 

seedling regeneration following wildfire throughout the western US. These instances have raised 

speculations that wildfires are triggering widespread ecosystem transitions in a warming climate. 

Regeneration failures have most often been attributed to post-fire drought and/or seed dispersal 

limitations resulting from large, high-severity burns. The results of my study provide another 
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example of seedlings failing to re-establish following fire due to a lack of seed dispersal, and is 

one of relatively few examples in a high-elevation subalpine forest type. Although subalpine 

forests experience colder temperatures and higher precipitation compared to lower-elevation 

conifer forests, and therefore experience fire less frequently, warming may drive more 

widespread fires and subsequent ecosystem transitions in the near future. Conversely, 

regeneration in beetle-killed forests did not appear to be so severely limited. Advance 

regeneration and continued seedling establishment indicates that these forests will be resilient to 

the current beetle outbreak, although it is unclear how this recovery trajectory may be modified 

by warming and future disturbances. Reduced seedling establishment with increasing spruce 

beetle outbreak severity may be an indicator of reduced resilience to future stress, which may 

persist for several decades before smaller surviving trees reach maturity.  

 Overall, the results of my dissertation provide new insights into disturbance recovery 

trajectories in the southern Rocky Mountains. I investigated factors in my research which may 

have been overlooked in previous research into forest disturbance and recovery processes, 

including how the effects of interacting disturbances may manifest in long-term recovery 

patterns, how climate change exposure may be misunderstood due to disturbance impacts to the 

below-canopy environment, and how regeneration response to changing temperatures may be 

mediated by a number of ecological changes brought on by disturbance. Better understanding of 

these complexities will help researchers to understand how climate change may impact societally 

important forest resources, and to better adapt and prepare for future change.  

 


