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ABSTRACT 

 

 

 

SUSTAINABILITY IMPLICATIONS OF CARBON DELIVERY IN 

MICROALGAE CULTIVATION FOR THE PRODUCTION OF BIOFUEL1 

 

 

Supplementation of carbon is critical for high productivity cultivation of most 

microalgae. Moreover, using microalgae for atmospheric CO2 mitigation to combat climate 

change is promising, as waste sources and atmospheric CO2 can be utilized to produce useful 

products. The challenge is developing technologies, processes, and strategies that utilize carbon 

effectively such that the overall system is sustainable. Through engineering systems modeling 

combined with techno-economic and life-cycle assessments, this study examined the 

implications of various delivery methods of carbon to a production-scale algal biorefinery. Five 

primary carbon sources were considered: atmospheric CO2; CO2 from direct chemical or power 

plant waste emissions; CO2 that has been concentrated from waste sources and compressed; 

inorganic carbon in the form of sodium bicarbonate salt; and organic carbon in the form of 

cellulosic sugars derived from corn stover. Each source was evaluated assuming co-location as 

well as pipeline transportation up to 100 km. The sensitivity of results to carbon utilization 

efficiency was also considered. Sustainability results indicate that economics are more 

prohibitive than energy and emissions. Of the scenarios evaluated, only two met both the 

economic and environmental criteria of contributing less than $0.50 GGE−1 and 20 gCO2-eq MJ−1 

to the overall system, respectively: uncompressed, pure sources of gaseous CO2 with pipeline 

                                            
1 The content of this thesis is from a 2018 submission to the Journal of CO2 Utilization by Michael D. Somers and 

Jason C. Quinn entitled “Sustainability of Carbon Delivery to an Algal Biorefinery: A Techno-economic and Life-

cycle Assessment” currently in review. 
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transportation of 40 km or less; and compressed, supercritical CO2 from pure sources for pipeline 

transportation up to 100 km. The scalability of algal biofuels based on these results shows carbon 

to be the limiting nutrient in an algal biorefinery with a total US production capability of 360 

million gallons of fuel per year. 
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1. Introduction 

The prevalence of fossil-derived fuels to power the world’s modern energy system, 

including coal and natural gas for electricity generation and petroleum for transportation, is 

unsustainable. Quite simply, these resources are finite, and cannot support the global human 

population indefinitely. A more immediate concern, however, is severe and rapid global climate 

change due to the atmospheric accumulation of carbon dioxide (CO2) and other greenhouse gases 

primarily from the burning of fossil fuels. This sobering reality has prompted researchers to 

investigate alternative fuels and CO2 mitigation strategies in an effort to decelerate and avert 

lasting consequences. 

One such area of investigation is microalgae. Like terrestrial plants, most microalgae fix 

carbon from CO2 during photosynthesis. However, microalgae have the advantage with regard to 

CO2 fixation, as they use it at a higher rate and supplementation can be controlled [1,2]. Using 

microalgae to combat climate change is promising, as waste sources and atmospheric CO2 can be 

utilized to produce useful products such as renewable fuels. The current challenge is the holistic 

development of strategies, technologies, and processes to improve the sustainability of utilizing 

CO2 for microalgae cultivation [3–5]. Currently, CO2 does not represent a limited resource, but 

effective delivery and utilization of CO2 is critical for large-scale microalgae systems. Various 

methods of carbon supplementation have been explored, with direct injection of CO2 enriched 

gas predominately used. Carbon can also be delivered through bicarbonate solutions, cellulosic 

sugars or dissolved carbon in urban wastewaters [1,2,6–11]. However, the sustainability of 

delivering carbon by these methods remains underexplored. 

Although carbon is a requisite nutrient for the growth of microalgae it is often neglected 

in sustainability assessments [12,13]. Most assessments to-date assume co-location with an 
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industrial point source of waste CO2 without consideration to siting or scalability. Typical 

sources of CO2 considered for algal cultivation are waste streams from power or chemical 

manufacturing plants. These sources of CO2 range in concentration from low, approximately 3-5 

wt% and 12-15 wt% from natural gas and coal-fired power plants, respectively, to high, at 99 

wt% from ethanol plants or other chemical plants, like ammonia or hydrogen [14]. However, 

even if co-location is assumed, the additional cost and energy to transport and deliver CO2 on-

site are typically absent; rather, the assumption implies that co-location constitutes a free source 

of CO2. Some studies have considered the implications of on-site gaseous delivery with results 

showing a significant impact; specifically, up to 20-25% of the operational costs of the growth 

system are attributed to on-site gaseous carbon delivery [14–21]. The failure to integrate CO2 

delivery on-site or further transport to the growth facility represents a severe oversight. 

Proposed options for CO2 transportation and delivery to algal biorefineries have included 

pipelines or commercially-available, bottled CO2 [16]. The practicality of bottled CO2 for large-

scale production is questionable, so pipeline transportation is considered the only viable option. 

Further pipeline options include transportation of flue gas at low or high pressures, or 

transportation of pure, supercritical CO2. The concentration of the CO2 source will influence the 

pipeline design and the distance over which CO2 may be cost-effectively transported [14]. There 

is a tradeoff between the capital cost of a pipeline and its power consumption, the latter of which 

increases operational costs and negatively impacts life-cycle metrics [16]. For example, it may 

be more cost-effective to transport pure CO2 in terms of capital expenses (smaller volume, 

therefore smaller pipeline), but at the cost of greater power consumption [14]. The distance over 

which CO2 may be cost-effectively transported will influence siting options and resource 

assessments, as fewer point-sources may be suitable due to surrounding land availability. In 
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general, low-pressure transportation over short distances is preferred, but not necessarily 

practical, as the short distance limits cultivation siting and the size of the cultivation facility [17]. 

Previous studies have attempted to address the question of the economical transport distance of 

CO2 from industrial point sources, as well as comparison to the purchase of commercially 

available CO2. The earliest assessments were completed by Benemann et al. [22] and Kadam 

[23]. Benemann et al. concluded that the maximum economical distance of CO2 transported as 

low-pressure flue gas in 2-meter diameter pipes was 5 km. Kadam evaluated the cost difference 

between transporting flue gas versus purified, or concentrated CO2, over 100 km, and found that 

for a 500 MW coal-fired power plant, the cost of delivery for purified CO2 was $40.50 metric 

tonne−1 and the cost for direct flue gas was $57.20 metric tonne−1. Based on this early work, 

some recent publications have attempted to integrate considerations of CO2 transport, delivery, 

or cost, but are limited to very specific case studies and are often underreported [14–18,20,24–

30]. To feasibly scale any proposed algal biorefinery, a thorough understanding of carbon 

resource transportation and delivery is critical. 

Another consideration for CO2 cost and delivery is utilization efficiency. In addition to 

productivity and facility size, the CO2 utilization efficiency, or the efficiency at which 

microalgae consumes available CO2 during growth, directly impacts the volume demand of CO2 

delivered to an algal cultivation facility [14]. Many microalgae-based biofuel sustainability 

assessments of assume that greater than 75% of the CO2 is utilized or recovered in the biomass 

with no validated experimental evidence [18,19,24,27,31,32]. Some authors have even suggested 

that the efficacy of CO2 injection into algal bioreactors may be significantly less than proponents 

have claimed [1,13]. Although CO2 is not currently a limited resource, overestimation of carbon 
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utilization efficiency may result in the underprediction of economic feasibility and 

environmental impacts. 

The primary objective of this work was to explore the sustainability implications, both 

economic and environmental, of delivering carbon to a production-scale algal biorefinery. 

Techno-economic assessment (TEA) and life-cycle assessment (LCA) were applied to a 

supporting engineering process model to estimate the effective cost per carbon in the produced 

biomass, minimum fuel selling price (MFSP), global warming potential (GWP) and net energy 

ratio (NER) for several carbon delivery scenarios. The carbon sources considered included 

atmospheric CO2; CO2 from direct chemical or power plant waste emissions; CO2 that has been 

concentrated from waste sources and compressed; inorganic carbon in the form of sodium 

bicarbonate salt; and organic carbon in the form of cellulosic sugars derived from corn stover. 

Each source was evaluated assuming co-location as well as pipeline transportation up to 100 km. 

Discussion focuses on solutions that were proven to be both economically and environmentally 

viable, sensitivity to transportation distance, investigation of the impact of utilization efficiency, 

and the implications of results on the scalability of algal systems based on resource availability. 
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2. Methods 

TEA and LCA require an engineering process model to serve as the foundation for 

assessment. For this study, a modular engineering process model was developed from literature 

to include all sub-processes of microalgae cultivation, harvest and conversion to biofuel, as well 

as upstream models for carbon transportation and delivery. The modularity of the model 

facilitates evaluation of the alternative carbon delivery scenarios. The following sections outline 

the assumptions and equations that underlie the engineering process model, detail the carbon 

sources evaluated in this study, and present the TEA and LCA methods and metrics. 

2.1. Engineering Process Model 

 
Figure 1 Flow diagram for the engineering process model of an algal biorefinery used in this study. Figure shows 

the system boundary, subprocesses, and mass and energy flow between subprocesses. 

Carbon Delivery

Cultivation

Harvest/
Dewatering

Conversion

Upgrading
Combined Heat 

& Power

Transportation & 
Distribution

Combustion

CO2/Bicarb/Sugar

Algae

Recycle Water

Nutrients

Makeup
Water

Outgas

+ Evaporation

Algae

Bio-oil

Biofuel

Biofuel

Hydrogen

Produced
Gas

Recycle Water

+ Nutrients

Solids

Air

Recycle CO2

Utilities

Legend:

System Boundary
Mass Flow
Energy Flow



6 

The engineering process model developed for this study included all relevant sub-

processes for a Well-to-Wheels (WTW) system boundary, including cultivation, 

harvest/dewatering, conversion and upgrading, a combined heat and power (CHP) plant, 

transportation and distribution of the biofuel product (T&D), and combustion. A complete 

process flow diagram is shown in Figure 1, and table of key sub-process model parameters is 

presented in Table A.1 in the Appendix. 

Cultivation: The model assumes cultivation of Galdieria sulphuraria in 10-acre open-

raceway ponds circulated by paddlewheels and characterized based on pond models described by 

Davis et al. [24] and Stephenson et al. [33]. The pond circulation energy was estimated to be 

approximately 1.42 kW ha−1. For the baseline, pure CO2 was assumed to be delivered via gas 

sparging and was estimated to require approximately 0.08 kW ha−1. This energy requirement 

would increase for sparging more dilute sources of CO2 like power plant flue gas. Energy for 

pumping water and culture to and from harvesting, respectively, was estimated to be 

approximately 0.6 kJ kg−1, and off-site make-up water delivery was estimated to be 

approximately 1 kJ kg−1 water. To enable valid comparisons between inorganic and organic 

carbon sources, G. sulphuraria was selected as it can be grown phototrophically, 

heterotrophically, or mixotrophically [8,10]. It has a carbon, nitrogen, and phosphorus (C:N:P) 

ratio of 91:17:1 and an assumed composition of 8.9%, 53.3%, and 18.1% lipids, protein, and 

carbohydrates, respectively (Lammers, personal communication, manuscript in preparation; 

[34]). Nitrogen and phosphorus were assumed to be supplied by ammonia and diammonium 

phosphate (DAP) [24]. Baseline productivity and cultivation area were assumed to be 25 g m−2 

day−1 and 2020 ha (5000 acres) to achieve a constant biomass yield of 506 metric tonnes day−1 

[24,35]. The total land area for the facility is 3080 ha (7615 acres) and includes infrastructure 
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requirements corresponding to a packing factor of approximately 0.66 [24]. Seasonality and 

other temporal effects of productivity were not considered in this study, but the potential 

implications are discussed. Combined baseline cultivation energy requirements, including pond 

circulation, CO2 sparging, and on-site circulation of water and other material streams was 

estimated to be approximately 1.2 kJ kg−1 AFDW algae. 

Harvest/Dewatering: A three-step harvest and dewatering process was assumed to 

concentrate the algae from 0.5 g L−1 to 20 wt% ash-free dry weight (AFDW), which is suitable 

for downstream thermochemical conversion [24,36]. This three-step process comprised 

bioflocculation, dissolved air flotation (DAF), and centrifugation [24,30,32,37]. Combined 

harvest energy requirements were estimated to be approximately 0.73 kJ kg−1 AFDW algae. 

Algal losses and separated water are assumed to be recycled to the ponds in the cultivation stage 

at a net algal separation efficiency of 81%. 

Conversion and Upgrading: The downstream conversion process of microalgae to fuel 

products was assumed to be hydrothermal liquifaction (HTL) with upgrading through 

hydrotreating modeled based on Jones et al. [36]. Products of HTL include bio-oil, solids, an 

aqueous phase, and off-gas (primarily methane). Based on experimental data for the conversion 

of G. sulphuraria via HTL, a bio-oil yield of 35% AFDW algae was assumed (Lammers, 

personal communication; [34]). The bio-oil is further upgraded by hydrotreating and 

hydrocracking to diesel and naphtha fuel. For this study, it was assumed that the hydrogen for the 

hydrotreating process was purchased commercially. The aqueous phase is processed through 

catalytic hydrothermal gasification (CHG), during which additional off-gas is produced. The 

nutrient-laden water is then assumed to be recycled to the ponds in the cultivation stage. The 

produced gas from HTL, CHG, and hydrotreating is assumed to be sent to a co-located CHP 
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plant to generate on-site electricity and heat [26,38]. Combined electricity and heat requirements 

for downstream conversion were estimated to be approximately 3 kJ kg−1 AFDW algae, and 

recoverable energy from CHP was estimated to be approximately 3.3 kJ kg−1 AFDW algae. 

To complete the system, transportation and distribution of the fuel product was included 

and considers proportions of fuel transported to a terminal by barge, rail, and heavy-duty truck, 

then further transported to individual stations by truck [26,39]. Energy requirements for 

transportation and distribution was estimated to be approximately 0.06 kJ kg−1 AFDW algae. 

Emissions from combustion of the fuel product as well as emissions credits are discussed 

separately in Section 2.5. 

2.2. Carbon Sources 

 
Figure 2 Flow diagram illustrating the carbon delivery cases evaluated in this study. Organic and inorganic sources 

of carbon were considered, including optional processing to concentrate a dilute CO2 source, transportation to an 

algal facility via pipeline and algal facility distribution. This carbon delivery model was coupled with a traditional 

engineering process model for an algal biorefinery. 
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This study considered five primary inorganic and organic carbon sources and included 

both point sources and processing, as well as transportation to an algal facility, Figure 2. The five 

primary sources were atmospheric CO2; CO2 from direct chemical or power plant waste 

emissions; CO2 that has been concentrated from waste sources and compressed; inorganic carbon 

in the form of sodium bicarbonate salt; and organic carbon in the form of cellulosic sugars 

derived from corn stover. Each source of carbon is described in greater detail below, followed by 

its respective transportation method. It was assumed for all cases that carbon is supplied to the 

ponds 12 hours day−1, representing algal growth only during the daylight hours. 

Atmospheric CO2: Algae may be grown on atmospheric CO2, but because of its low 

concentration in air (400 ppm) and mass transfer potential, algal productivity may be up to 90% 

lower than that of a higher concentration of CO2 supplemented by gas sparging [1,2]. For the 

case of growth on atmospheric CO2, the productivity was assumed to be 2.5 g m−2 day−1, an 

order-of-magnitude lower than the baseline. To maintain a constant biomass yield of 506 metric 

tonnes day−1, the facility area was increased to 30,800 ha (76,120 acres). One advantage of 

growth on atmospheric CO2 is that no additional provisions are required to supply carbon to the 

algae. In this case, it was assumed that CO2 would be delivered directly to the algal culture by 

surface diffusion. Thus, transportation and utilization efficiency are excluded in the analysis. 

Direct Waste Emissions CO2: Point sources considered for waste CO2 emissions included 

natural gas and coal power plants, as well as ethanol, ammonia, and hydrogen plants [14]. 

Emissions from natural gas power plants contain 3-5 wt% CO2, emissions from coal power 

plants contain 12-15 wt% CO2, and ethanol, ammonia, and hydrogen plants emit waste streams 

of CO2 at greater than 99 wt% concentration. Algal productivity on these waste emissions of CO2 

was assumed to be equal to the baseline of 25 g m−2 day−1. The disadvantage of using plant waste 
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emissions directly, specifically dilute sources like natural gas and coal power plant flue gases, is 

that transporting and delivering large volumes of gas to the algal ponds is challenging and cost 

intensive [24]. For these cases, it was assumed that the gas is transported by pipeline both off-site 

and on-site at low-pressure and delivered to the algae ponds via gas sparging. Depending on the 

sparging method, the utilization efficiency may range from 20-90% [1,24,27,40]. The utilization 

efficiency assumed for the primary cases was 90%, followed by a sensitivity of utilization 

efficiencies from 10% to 100%. 

Captured CO2: CO2 from these same point sources (and including atmospheric CO2) may 

alternatively be concentrated and compressed to a supercritical state prior to transportation. A 

common method to capture CO2 from the atmosphere and power plant emissions is using a 

monoethanolamine (MEA) solution that is then heated and regenerated to release a nearly pure 

stream of CO2 [41]. Algal productivity on these pure streams of captured CO2 was assumed to be 

equal to the baseline of 25 g m−2 day−1. Although it is more energy intensive to compress CO2, in 

a supercritical state it can be readily transported and in smaller pipelines, as it has liquid-like 

properties. For these cases, it was assumed that the CO2 is transported by pipeline at supercritical 

pressures and delivered to the algae ponds via gas sparging. The utilization efficiency assumed 

for the primary cases was 90%, followed by a sensitivity of 10% to 100%. 

Sodium Bicarbonate: Algae may also be grown on CO2 that has been captured in the 

form of soluble bicarbonate salts [2,7,11]. However, algal growth on bicarbonate requires a high 

pH environment [7]. It is unknown if G. sulphuraria may be grown on bicarbonate but was 

assumed for the purposes of this study. Sodium bicarbonate was selected for this study, as it is 

one of the more common and inexpensive bicarbonate salts. Sodium bicarbonate is commercially 

produced from sodium carbonate (soda ash), which is mined from trona ore and treated with 
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CO2. Algal productivity on sodium bicarbonate was assumed to be equal to the baseline of 25 g 

m−2 day−1. It was also assumed that the bicarbonate was transported by pipeline and delivered to 

the algae ponds as an aqueous solution. Since the carbon is dissolved, the utilization efficiency 

was assumed to be 100%. 

Cellulosic Sugar: Some algae may be grown heterotrophically or mixotrophically on 

organic carbon such as cellulosic sugars. It has been demonstrated that G. sulphuraria may be 

grown both heterotrophically and mixotrophically, so a case was considered for enhanced 

mixotrophic growth on cellulosic sugars derived from corn stover [10,42]. In mixotrophic 

growth, a proportion of the microalgae growth is phototrophic on CO2 and the remaining is 

heterotrophic growth on sugars. Previous work on heterotrophic growth of G. sulphuraria on 

pure sugars yielded a volumetric productivity of 1.08-1.15 g L−1 day−1, with a substrate yield 

(mass ratio of algae biomass to input sugar) of 0.48-0.50 [10]. Based on experimental trials at 

Arizona State University, mixotrophic algal productivity was assumed for this case to be 1.37 g 

L−1 day−1 (equivalent to approximately 91 g m−2 day−1) with a substrate yield of 0.97 (Lammers, 

personal communication). The increase over previously demonstrated heterotrophic productivity 

is reflective of the additional phototrophic growth. It should be noted that this productivity was 

demonstrated indoors and in closed, glass tubular photobioreactors, therefore the assumption that 

this productivity could be achieved in outdoor open-raceway ponds is for the purposes of this 

study only. At this enhanced productivity, the facility area was decreased to 850 ha (2090 acres) 

to maintain a constant biomass yield of 506 metric tonnes day−1. As with the bicarbonate case, it 

was assumed that the cellulosic sugar was transported by pipeline and delivered to the algae 

ponds as an aqueous solution. The utilization efficiency was also assumed to be 100%. 
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2.3. Carbon Capture and Transportation Models 

Models were developed to characterize the properties, processing, and transportation of 

the carbon sources considered. Parameters characterizing this modeling may be found in Table 

A.2 in the Appendix. Critical to the modeling of CO2 capture and transportation are accurate 

fluid properties as they change as the gas deviates from ideal behavior. Power plant waste 

emissions were modeled as gas mixtures of air and 4 wt% and 13.5 wt% CO2 for natural gas and 

coal, respectively. Density, viscosity, compressibility factor, and specific heats for these gas 

mixtures and pure CO2 were tabulated using NIST REFPROP for appropriate pressures and 

temperatures [43]. 

Carbon Capture: The carbon capture method considered in this study was 

monoethanolamine (MEA) scrubbing. In this process, CO2 gas mixtures are passed through an 

absorber with MEA solvent to capture the CO2. The solvent is then heated and regenerated to 

release the captured CO2 as a pure stream. This is an energy-intensive process, and the first and 

second laws of thermodynamics define the minimum work required for CO2 separation. Also, the 

work required for separation increases as the concentration of CO2 in the gas mixture decreases 

[41]. To estimate the energy for separation of CO2 from the atmosphere and power plant waste 

emissions, a formulation of minimum thermodynamic work as a function of gas mixture molar 

fractions combined with an empirical estimate of second-law efficiency was applied [41]. For 

atmospheric CO2 capture (400 ppm), capture from a natural gas power plant (4 wt%), and 

capture from a coal power plant (13.5 wt%), energy requirements were estimated to be 34.4, 1.4, 

0.5 MJ (kg CO2)
−1, respectively. Combined capital costs for carbon (CO2) capture and 

compression equipment were proportionally scaled from costs presented in National Energy 
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Technology Laboratory reports for similar systems [44]. The equipment cost, including capital 

and installation, was estimated to be $38,361 per metric tonne CO2 captured per day. 

Compression: Once separated, CO2 may be compressed and cooled for pipeline 

transportation as a supercritical fluid. Pipeline transport conditions are typically 10-15 MPa and 

35°C [41,45]. Gas compression to these pressures results in increased temperature, which may 

exceed the material limits of a compressor. Therefore, compression occurs in several stages with 

cooling. In the model developed for this study the maximum compressor temperature was 150°C 

and the maximum compression ratio per stage was 6 [46]. The temperature increase for each 

compression stage was determined using isentropic relations for temperature and pressure, and a 

compression ratio and number of stages was determined as to not violate the previous criteria. 

Between each compression stage, the gas was cooled to 25°C. Energy requirements for 

compression and cooling were based on equations for isentropic compression and basic heat 

work, respectively [41,45,46]. For compression to 14 MPa with inter-stage cooling, the energy 

requirement was estimated to be 1 MJ (kg CO2)
−1. As indicated above, combined capital costs 

for carbon (CO2) capture and compression equipment were estimated to be $38,361 per metric 

tonne CO2 captured per day [44]. 

Transportation: Pipeline transportation was modeled for all carbon sources and cases, 

except for growth on atmospheric CO2. The primary design parameter of a pipeline is diameter, 

which must be sized for a given pressure and flowrate, which is further a function of facility 

carbon demand. For this study, a steel pipeline was modeled based on characteristic equations for 

internal compressible flow, accounting for fluid compressibility and friction losses [41,45,46]. 

Losses due to elevation change or bends were neglected. This formulation is iterative and 

requires a target pressure drop and an initial estimate of pipeline diameter based on a desired 
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flow velocity for a given mass flowrate, which varies for each carbon source (see Table A.2 in 

the Appendix). The model solves for a pipeline diameter to meet the specified criteria which is 

then adjusted to a standard nominal pipe size, as described by McCoy and Rubin [45]. 

Depending on pressure losses and properties of the fluid to be transported, intermediate 

booster compressor stations may be required to re-pressurize the fluid for transportation over 

long distances. Similarly, several pipelines running in parallel may be required to accommodate 

a large fluid volume. The model accounts for both scenarios by limiting the pipeline diameter to 

2 m and adding a booster station or parallel pipeline if the diameter exceeds that limit to 

accommodate a large pressure drop or fluid volume, respectively. Energy requirements for 

booster stations were based on equations for isentropic compression or pumping for gaseous and 

liquid (or supercritical) transport, respectively. Booster stations are required for direct waste 

emissions from natural gas and coal power plants, which added up to an estimated 247.2 and 

66.2 kW km−1, respectively, to overcome pressure losses for a 100 km pipeline. Aqueous 

transportation of sodium bicarbonate (100 g L−1) and cellulosic sugar (127 g L−1) require an 

estimated pumping power of 21.9 and 12.8 kW km−1, respectively. 

Capital costs – including materials, labor, right-of-way, and miscellaneous other costs – 

in addition to operation and maintenance costs, were based on a steel pipeline cost model for the 

Midwest region [45]. Pipeline equipment capital and installation costs for transporting direct 

waste emissions from a natural gas power plant, coal power plant, and pure sources of CO2 were 

estimated to be $33.2M (million), $5.3M, and $1.6M km−1, respectively. These dilute and low-

pressure sources of CO2 require significant pipeline infrastructure and several pipelines to 

accommodate the large gas volumes. Alternatively, liquid transportation of captured and 

compressed CO2 was estimated to cost $197K km−1 in equipment capital and installation. 
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Aqueous transportation of sodium bicarbonate and cellulosic sugar were estimated to cost $405K 

and $184.6K km−1, respectively. 

On-site Distribution: Three methods for the on-site distribution of carbon were 

considered for low-pressure gas, pressurized CO2, and aqueous carbon. Davis et al. [24] 

describes two designs for the distribution of CO2. The first design assumes distribution of CO2-

enriched gas from direct waste sources like natural gas or coal power plants using fans and 

blowers. The second design assumes liquid storage of pure CO2 which is slowly heated and 

vaporized to distribute throughout the facility at moderate pressure. The energy requirements 

were estimated to be 37.1 and 142.6 kJ (kg gas)−1, respectively. Equipment capital and 

installation costs were estimated to be $9,974 and $4,783 (kg gas hr−1)−1, respectively. Both 

bicarbonate and cellulosic sugar were assumed to be delivered as aqueous solutions and were 

distributed on-site with make-up water delivery, requiring no additional energy, capital costs, or 

other provisions. 

2.4. Techno-economic Assessment 

TEA for this study was based on the costs reported by Davis et al. [24] for upstream 

systems (cultivation and harvest/dewatering), with downstream costs based on the work of Jones 

et al. [36] and Schwab et al. [35]. All costs were converted to 2014 U.S. dollars. The capital and 

operating costs drawn from these studies were adjusted to account for differences in the overall 

process modeled. Capital costs of equipment for on-site CO2 distribution and downstream 

processing were scaled using appropriate exponents and relevant material mass flow rates. 

Scaling was required due to the lower bio-oil yield of G. sulphuraria for downstream processing. 

Equipment costs for on-site hydrogen production were also removed, and hydrogen was added as 

a material input. Other operating costs were scaled proportionally with mass flow rate, and 
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included nutrients (ammonia and DAP), electricity, and natural gas. CO2 feedstock costs at $45 

metric tonne−1 were removed entirely for the baseline model to be replaced with the different 

scenarios considered in this study. Costs included direct and indirect capital investment for the 

algal facility and any carbon delivery systems, land, variable operating costs of raw materials and 

energy inputs, fixed operating costs of labor, maintenance, and insurance, and co-product credits 

for excess electricity sold back to the grid. Costs for select cases are outlined in Table A.3 and 

Table A.4 in the Appendix. 

Capital costs, operational costs, and yield of the system were input into a 30-year 

discounted cash flow rate of return (DCFROR) analysis. Nth-plant assumptions were considered 

for the DCFROR [24,36,47], which most notably assumes an internal-rate-of-return (IRR) of 

10%, a 35% tax rate, and 330 days of operation per year for 30 years. The DCFROR analysis 

outputs a minimum fuel selling price (MFSP) for a functional unit of 1 gallon of gasoline 

equivalent (GGE), which was calculated for the diesel and naphtha fuel products using ratios of 

heating values. For individual cases, the difference in MFSP relative to the baseline constituted 

the effective cost in net-present-value (NPV) for the defined transportation and delivery of the 

given carbon source. Using the MFSP difference, biomass and fuel production mass flow rates 

and mass flow rate of carbon input, the cost of carbon was calculated on a per mass basis of the 

carbon feedstock, as well as on a normalized, per carbon basis. 

2.5. Life-cycle Assessment 

The mass and energy balance calculated from the engineering process model supported 

the LCA work. The output of the LCA was the environmental impact of the system quantified by 

a global warming potential (GWP) and net energy ratio (NER) of the process. The functional unit 

for both GWP and NER was 1 MJ of fuel product. 
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Life-cycle inventory (LCI) data from various public databases and literature sources was 

gathered for all raw material and energy inputs, and may be found in Table A.5 in the Appendix. 

This data, combined with the 100-year global warming equivalence factors of 1, 34 and 298 for 

carbon dioxide (CO2), methane (CH4) and dinitrogen oxide (N2O), respectively, were used to 

calculate the GWP in gCO2-eq MJ−1 [48]. Emissions credits were applied for the carbon captured 

in the produced fuel and HTL solids, as well as for the electricity and natural gas displaced by 

on-site CHP. Emissions from combustion of the fuel were included for the WTW system 

boundary. 

In additional to GWP, NER was calculated for the process. NER is defined as the ratio of 

direct energy input to direct energy output of the process. Direct energy inputs represent process 

consumption of electricity and natural gas for heat, minus credits for on-site generation via CHP. 

The direct energy output is the energy content of the produced fuel based on its heating value. 

An NER of less than one is typically considered favorable. 
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3. Results and discussion 

A modular engineering system model was developed and validated from literature 

sources for an algal biorefinery. Coupled to this model was the development of various carbon 

feedstocks and a pipeline transportation and delivery model. Modularity supported the evaluation 

of various alternative carbon delivery pathways including atmospheric CO2, CO2 from direct 

chemical or power plant waste emissions, CO2 that has been concentrated from waste sources 

and compressed, inorganic carbon in the form of sodium bicarbonate salt, and organic carbon in 

the form of cellulosic sugars derived from corn stover. The engineering system model was 

coupled with economic and environmental impact modeling. TEA and LCA results were used to 

evaluate the different carbon delivery methods compared to a baseline scenario with regard to 

carbon feedstock cost, fuel selling price, process emissions, and process energy. Sensitivity to 

transportation distance and carbon utilization efficiency, as well as other resource considerations 

are discussed. 

3.1. Baseline Scenario Results 

All cases were evaluated relative to a common baseline, which assumes that the carbon 

feedstock is pure CO2 that has been captured and stored as a liquid in a pressurized storage 

system, as described by Davis et al. [24], with no associated economic or energetic cost aside 

from the energy allocated to on-site delivery of pure CO2 to the ponds at 90% utilization 

efficiency. The baseline MFSP, GWP, and NER were calculated to be $6.47 GGE−1, 28.1 gCO2-

eq MJ−1, and 0.13 MJ MJ−1, respectively. Figures and breakdowns by cost category or sub-

process may be found in Figure A.1, Figure A.2, and Figure A.3 in the Appendix. By reporting 

results relative to a common baseline case, scenarios may be compared directly to understand the 

differences in economic and environmental impacts. 
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3.2. Cost of Carbon 

 
Figure 3 Effective cost in 2014 $US of the carbon sources evaluated in this study. Results are shown in two panels: 

A) full range of results, B) results less than $350 metric tonne−1. (Atm. – Atmosphere, Nat. Gas – Natural Gas, 

Bicarb. – Sodium Bicarbonate) Sources include gaseous CO2, sodium bicarbonate, and cellulosic sugars derived 

from corn stover. CO2 sources may be in the form of a direct waste stream like power plant flue gas or captured CO2 

that is concentrated and compressed. Results are presented on a mass (metric tonne) basis of each respective carbon 

source (yellow), as well as on a mass basis of carbon in the resulting biomass (purple). Transportation distances are 

presented for co-located sources and 100 km of added transport via pipeline. All cases assume 90% utilization of the 

carbon by the microalgae, except for bicarbonate and sugar which assume 100%. 

Prices of carbon feedstocks on the market are typically given on a mass basis of the 

feedstock itself. Prices may fluctuate marginally with production volume according to basic 

economic principles, but in general and for the purposes of this study, feedstock prices stay 

relatively fixed. However, a kilogram of CO2, sodium bicarbonate, and cellulosic sugar are not 

equivalent for similar applications, as the mass percentage of carbon contained in each of those 

feedstocks differs. As such, the advertised feedstock prices on a mass basis cannot be directly 

compared. Furthermore, in the case of microalgae cultivation, the utilization efficiency of a 

carbon resource, as well as any recycling of carbon within the system, will influence the 

A) 

B) 
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effective feedstock cost as part of the production process, even if the feedstock price is 

unchanged. Figure 3 presents the effective costs for each carbon source considered in this study 

on a per mass basis of the carbon feedstock (yellow), as well as on a normalized, per carbon 

basis (purple). As utilization efficiency decreases, the effective cost of carbon when applied to 

the production process will increase. 

Costs in Figure 3 are reported as effective costs, which account for off-site transportation 

costs (if not co-located), on-site provisions for distribution to the ponds, any capital and 

operational cost tradeoffs for the facility based on productivity, and raw material purchase costs 

for the carbon feedstock, all levelized by calculating the NPV of the 30-year cashflow. On a 

carbon basis, the highest effective costs (greater than $400 per metric tonne carbon) were 

associated with growth on atmospheric CO2; utilization of direct emissions from a natural gas or 

coal power plant with 100 km of pipeline transportation; captured and pressurized CO2 from the 

atmosphere; and sodium bicarbonate. Midrange effective costs (between $150 and $400 per 

metric tonne carbon) were associated with direct emissions from a co-located natural gas power 

plant; direct emissions from a pure CO2 source with 100 km of pipeline transportation; captured 

and pressurized CO2 from a natural gas or coal power plant; and cellulosic sugar. The lowest 

effective costs (less than $150 per metric tonne carbon) were associated with utilizing direct 

emissions from a co-located coal power plant or pure CO2 source; and captured and pressurized 

CO2 from a pure source. Because direct waste streams of CO2 are dilute (except pure CO2 

sources) and transported at low-pressure, the volume to be transported is much greater, so 

transportation costs for all direct waste streams of CO2 were significantly higher than all other 

cases. Transporting compressed CO2 as a supercritical fluid by pipeline over 100 km added 

$11.50 per metric tonne of CO2, whereas the lowest cost to transport a direct emissions source at 
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low-pressure was $86.50 per metric tonne corresponding to a pure source, with costs increasing 

for coal and natural gas flue gas. These results demonstrate that low-pressure transport represents 

a significant challenge for gaseous carbon delivery. 

All cases were evaluated for an algal productivity of 25 g m−2 day−1, with two exceptions: 

growth on atmospheric CO2 was assumed to be an order-of-magnitude less at only 2.5 g m−2 

day−1 and mixotrophic growth on cellulosic sugars was assumed to be 91 g m−2 day−1. In the case 

of atmospheric CO2 there is no raw material purchase cost, as the CO2 diffuses from ambient air, 

but due to the order-of-magnitude increase in facility area and capital costs to compensate for the 

low algal productivity (while maintaining a fixed biomass yield of 506 metric tonnes day−1), 

there is an effective cost of the carbon relative to the baseline of $1806 per metric tonne of CO2. 

Conversely, mixotrophic growth on cellulosic sugars increases productivity by more than 3-fold, 

which results in a significant decrease in facility area and capital costs at the expense of an 

increase in variable operating costs from sugar. The raw material purchase price of cellulosic 

sugars was assumed to be $396 per metric tonne of sugar, but the effective cost was only $139 

per metric tonne of sugar with 100 km of pipeline transportation. The dramatic increase in 

productivity offsets the high cost of carbon. The effective cost of sodium bicarbonate changed 

very little from a raw material purchase price of $200 per metric tonne of bicarbonate to $208 

with 100 km of pipeline transportation because of minimal energy inputs and no assumed 

increase or decrease of algal productivity from 25 g m−2 day−1. These specific cases illustrate that 

productivity and associated capital and operational cost tradeoffs may have an influence on the 

effective cost of carbon source that are not reflected in the raw material purchase cost. 
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3.3. Carbon Sourcing Impacts on Selling Price of Fuel 

 
Figure 4 Minimum biofuel selling price (MFSP) in 2014 $US per gallon of gasoline equivalent (GGE) for the 

carbon sources evaluated in this study. Reported as a difference relative to the baseline MFSP of $6.47 GGE−1. 

Results are shown in two panels: A) full range of results, B) results less than $4 GGE−1. (Atm. – Atmosphere, Nat. 

Gas – Natural Gas, Bicarb. – Sodium Bicarbonate) Transportation distances are presented for co-located sources and 

100 km of added transport via pipeline. All cases assume 90% utilization of the carbon by the microalgae, except for 

bicarbonate and sugar which assume 100%. 

A minimum biofuel selling price (MFSP) was calculated for each carbon feedstock based 

on the 30-year cashflow. MFSP is presented in Figure 4 as a difference relative to the baseline 

result of $6.47 GGE−1. Fuel selling price is directly proportional to the cost of carbon, with 

similar trends observed comparatively. However, the allowable cost for the provision of carbon 

is dependent on the overall process design and fuel price target. If a future target MFSP is $5 

GGE−1, which currently exceeds conventional fuel costs, a 10% allocation for the provision of 

carbon would be $0.50 GGE−1. Although it is arbitrary, if that threshold is considered in this 

study, the only carbon feedstock cases that meet that criterion are utilization of direct emissions 

A) 

B) 
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from a co-located pure CO2 source and pressurized CO2 from a pure source with pipeline 

transportation of 100 km or less. 

CO2 from the atmosphere, natural gas and coal power plants, and carbon delivered in the 

form of sodium bicarbonate and cellulosic sugar do not meet the $0.50 GGE−1 criterion. CO2 

from the atmosphere is not viable due to the significant decrease in expected algal productivity, 

or alternatively, the high energy cost to capture and concentrate CO2 from the atmosphere. For 

the case of growth on atmospheric CO2, if the productivity were to remain at 25 g m−2 day−1, 

there would be little expected change in the fuel cost relative to the baseline. This represents an 

optimal solution for carbon delivery to algal systems but presents a significant technical 

challenge. CO2 from a natural gas power plant is not viable due to either the prohibitive capital 

cost of gaseous transport (both off-site and on-site) or high energy cost to capture and 

concentrate the CO2. At a CO2 concentration of only 3-5 wt%, much of the energy consumption 

and infrastructure are used to transport or process a substantial proportion of unusable, inert gas. 

Lastly, CO2 from a coal power plant is second to pure sources, but it increases the cost of fuel by 

a minimum of $0.66 GGE−1 for direct waste emissions from a co-located plant. Like natural gas 

power plants, at a CO2 concentration of 12-15 wt%, direct waste emissions from a coal power 

plant require additional energy and infrastructure to transport and process unusable gas. 

Although cost penalties for the processing or transportation of large gas volumes are 

alleviated, neither sodium bicarbonate nor cellulosic sugar proved to be viable based on the 

$0.50 GGE−1 criterion. The commercial raw material purchase price of sodium bicarbonate at 

$200 per metric tonne is cost prohibitive, and unlike cellulosic sugar, growth on bicarbonate is 

assumed to not increase productivity. The significant productivity gain did lower the effective 

cost of cellulosic sugar, but the decrease was not significant enough for cellulosic sugar to be 
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viable. However, the offset of capital to operating expenditures and decrease in required land 

area may still make cellulosic sugar an attractive option if proven at a commercial scale. For both 

sodium bicarbonate and cellulosic sugar, a significant decrease in raw material prices could 

improve their viability, but the feasibility of lowering prices was not investigated. Based on the 

carbon sources considered and their impact on MFSP, results suggest that pure sources of 

gaseous CO2 represent the most promising option in terms of economics. 

3.4. Greenhouse Gas Emissions & Direct Energy Usage 

The global warming potential (GWP) was calculated for each carbon feedstock based on 

the metric of CO2-equivalent (CO2-eq), which incorporates CO2, CH4, and N2O based on their 

respective 100-year global warming potentials. GWP results are presented in Figure 5 as a 

difference relative to the baseline of 28.1 gCO2-eq MJ−1 for algal biorefinery modeled. The 

allowable CO2-eq emissions for the provision of carbon is dependent on the overall process 

design and remaining emissions allocation to meet the Renewable Fuel Standard (RFS) [49]. The 

RFS is a federal program managed by the U.S. Environmental Protection Agency (EPA) which 

mandates that advanced fuels, which include microalgae-based fuels, must meet a 50% 

greenhouse gas (GHG) reduction relative to a 2005 petroleum baseline. On a well-to-wheels 

(WTW) basis, this 50% reduction is approximately equal to 45 gCO2-eq MJ−1. Therefore, for this 

study to meet the RFS, an additional 17 gCO2-eq MJ−1 may be allocated for carbon delivery. 

Direct waste emissions from a co-located coal power plant; a pure source with 100 km of 

pipeline transportation; and cellulosic sugar with 100 km of pipeline transportation are the only 

cases that meet this criterion. However, additional emissions may be allocated to carbon delivery 

if the baseline process were more energy efficient or included other carbon credits. The 

allocation for carbon delivery would need to be increased to 20, 24, and 32 gCO2-eq MJ−1 for 
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pressurized CO2 from a pure source with 100 km of pipeline transportation; direct waste 

emissions from a coal power plant with 100 km of pipeline transportation; and pressurized CO2 

from a coal power plant with 100 km of pipeline transportation, respectively, to meet the RFS 

emissions criteria. 

 
Figure 5 Global warming potential (GWP) in grams of CO2-equivalent per MJ of fuel for the carbon sources 

evaluated in this study. Reported as a difference relative to the baseline GWP of 28.1 gCO2-eq MJ−1. Results are 

shown in two panels: A) full range of results, B) results less than 60 gCO2-eq MJ−1. (Atm. – Atmosphere, Nat. Gas – 

Natural Gas, Bicarb. – Sodium Bicarbonate) Transportation distances are presented for co-located sources and 100 

km of added transport via pipeline. All cases assume 90% utilization of the carbon by the microalgae, except for 

bicarbonate and sugar which assume 100%.  

It should be noted that based on the assumptions for transportation of a direct, pure CO2 

source at low-pressure, there are no additional emissions as it was found that the outlet pressure 

at the source is sufficient for transport over the 100 km distance considered. Similarly, no 

additional emissions are associated with transporting compressed CO2 as the pressure to bring 

CO2 to a supercritical state was found to be sufficient for transportation over the distance 

considered. Co-location with a direct source of pure CO2 or a cellulosic sugar production facility 

A) 

B) 
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were found to lower emissions relative to the baseline, as the provisions for on-site delivery of 

the carbon are less energy intensive. It should also be noted that with the exception of 

transporting direct emissions from a natural gas power plant, the GWP associated with capturing 

and compressing CO2 exceeds the GWP associated with transporting and delivering direct waste 

streams of CO2 at low-pressure. This is because capturing and compressing CO2 is much more 

energy intensive and is required even if the point source is co-located in order for the CO2 to be 

temporarily stored on-site as a liquid. 

CO2 from the atmosphere or a natural gas power plant and carbon delivered in the form 

of sodium bicarbonate are not likely to meet the RFS of 45 gCO2-eq MJ−1. CO2 from the 

atmosphere is not viable due to the high energy to capture and concentrate CO2 from the 

atmosphere or alternatively, the significant decrease in algal productivity assumed. Similarly, 

CO2 from a natural gas power plant is not viable even if co-located due to either the high energy 

necessary to transport the large gas volume (both off-site and on-site) or high energy to capture 

and concentrate the CO2. Lastly, sodium bicarbonate is prohibitive as the carbon it contains was 

extracted from the ground and would not have otherwise been emitted into the atmosphere 

(unlike power plant exhaust emissions). This results in a net positive carbon emission as it 

represents sequestered carbon being released. 

Direct energy usage for the overall process was also calculated to determine the net 

energy ratio (NER), which is presented in Figure 6 as a difference relative to the baseline of 0.13 

MJ MJ−1 for the algal biorefinery modeled. The baseline NER is low due to the integration of 

CHP with the process using biogas (primarily methane) from the downstream conversion 

process, as well as efficient technologies for upstream cultivation and harvest. For reference, the 

NER of conventional petroleum diesel is approximately 0.18 [50]. It was previously indicated 
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that an NER of less than one is considered favorable, which allows for an additional 0.87 MJ 

MJ−1 for carbon delivery relative to the baseline. The only scenario in this study that does not 

meet this criterion is CO2 captured from the atmosphere, as it is energetically intensive. In 

general, NER is proportional to GWP, with the exception of sodium bicarbonate and cellulosic 

sugar, whose emissions are not directly tied to energy consumption but to their feedstocks. 

 
Figure 6 Net energy ratio (NER) in MJ direct process energy per MJ of fuel for the carbon sources evaluated in this 

study. Reported as a difference relative to the baseline NER of 0.13 MJ MJ−1. Results are shown in two panels: A) 

full range of results, B) results less than 0.75 MJ MJ−1. (Atm. – Atmosphere, Nat. Gas – Natural Gas, Bicarb. – 

Sodium Bicarbonate) Transportation distances are presented for co-located sources and 100 km of added transport 

via pipeline. All cases assume 90% utilization of the carbon by the microalgae, except for bicarbonate and sugar 

which assume 100%.  

The scenarios with the lowest NER contribution included direct waste emissions from a 

co-located coal power plant; direct waste emissions from a pure source with 100 km of pipeline 

transportation; sodium bicarbonate with 100 km of pipeline transportation; and cellulosic sugar 

with 100 km of pipeline transportation. When co-located, direct waste emissions from a pure 

source, sodium bicarbonate, and cellulosic sugar were found to reduce the NER, as they are 

A) 

B) 
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energetically favorable to the baseline. This is because energetic provisions to transport and 

deliver CO2 on-site are reduced through low-pressure delivery, or eliminated entirely in the case 

of sodium bicarbonate and cellulosic sugar, as they are delivered as aqueous solutions with the 

make-up water. Although NER can be a valuable measure of the viability of energy products like 

fuels, it was found to be less restrictive than MFSP or GWP in evaluating the sustainability of 

carbon delivery. 

3.5. Sensitivity to Transportation Distance 

Microalgae cultivation is dependent on specific land and siting criteria for scalability and 

resource considerations [20], so it is critical to evaluate scenarios for which carbon must be 

transported over potentially long distances to be supplied to an algal facility. In this study, 

pipeline transportation up to 100 km was considered for delivering direct waste CO2 emissions 

from power plants or pure sources, captured and compressed pure CO2 in a supercritical state, 

and solutions of sodium bicarbonate and cellulosic sugars. Results for MFSP and GWP are 

presented in Figure 7 as differences relative to the baseline of $6.47 GGE−1 and 28.1 gCO2-eq 

MJ−1, respectively, for transport distances ranging from 0 to 100 km. 

In general, MFSP is relatively insensitive to transportation distance, with the exception of 

transporting direct waste streams of CO2 at low-pressure from power plants or pure sources. To 

transport the large volume of direct, dilute waste streams of CO2 at low-pressure, several 

pipelines were required to keep the diameter and flow velocity within the design limits. Due to 

large diameter pipes, as well as parallel pipelines, the overall cost is a strong function of pipeline 

length. For all cases, costs are relatively proportional to pipeline length. It should be noted that 

the trends are not exactly linear due to discontinuous pipeline diameters. 
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Figure 7 A) Minimum fuel selling price (MFSP) in 2014 $US per gallon of gasoline equivalent and B) global 

warming potential (GWP) in grams of CO2-equivalent per MJ of fuel for the carbon sources evaluated in this study 

vs. transport distance via pipeline. Reported as differences relative to the baseline MFSP and GWP of $6.47 GGE−1 

and 28.1 gCO2-eq MJ−1, respectively. All cases assume 90% utilization of the carbon by the microalgae, except for 

bicarbonate and sugar which assume 100%. 

A question of interest in the literature is the maximum distance over which low-pressure, 

direct waste streams of CO2, like power plant flue gases, may be transported cost effectively. 

One way to answer this question is to determine the distance for which the direct waste stream 

cost matches that of transporting captured and compressed pure CO2 100 km in a supercritical 

pipeline. The results from this study suggest that flue gas from a natural gas power plant cannot 

be transported any distance for the same cost as transporting captured and compressed CO2 from 

an equivalent plant 100 km. Flue gas from a coal power plant may be transported up to 4 km, 

A) 

B) 
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while waste CO2 emissions from a pure source may be transported up to 40 km. These results are 

similar to those reported in literature. Benemann et al. [22] concluded that the maximum 

economical distance of CO2 transported as low-pressure flue gas in 2-meter diameter pipes was 5 

km, and Quinn et al. [20] reported 4.8 km for a similar case. In the 2016 Billion-Ton Report 

published by the U.S. Department of Energy, it was reported that for a natural gas power plant, 

coal power plant, and ethanol plant, cost-effective distances for CO2 transport are less than 0.5 

miles (0.8 km), 5 miles (8 km), and greater than 20 miles (32.2 km), respectively [14]. The 

consistency of literature and the results from this study reinforces the conclusion that transport of 

low-pressure flue gas is limited to short distances. 

Similar to MFSP, GWP is relatively insensitive to transportation distance, with the 

exception of transporting direct waste streams of CO2 at low-pressure from power plants. Due to 

significant losses, booster stations (equally spaced) are required for those pipelines greater than 

40 km, which can be seen in Figure 7 as step increases in GWP. It should be noted again that 

there is no difference between co-location and transport cases (under 100 km) for captured and 

compressed CO2 as it must still be compressed on-site to be temporarily stored as a liquid. These 

results demonstrate the significant challenge and energy required to transport CO2 in a gaseous 

state over great distance. 

3.6. Sensitivity to Carbon Utilization Efficiency 

Unless CO2 is directly supplied to open raceway ponds dissolved in water, gaseous losses 

to the atmosphere are expected. As CO2 utilization efficiency decreases, a greater volume of CO2 

supply is needed. This increase in volume results in additional resource cost and energy, so there 

is incentive to maximize utilization efficiency. However, to achieve high utilization efficiency, 

expensive technologies and control strategies may be required, so it is important for process 
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designers to understand the tradeoffs between sustainability metrics and CO2 utilization. Carbon 

utilization efficiencies reported in literature are wide-ranging; [1] reported a utilization efficiency 

of 26% for an internal loop airlift reactor, while the Aquatic Species Program reported greater 

than 90% utilization efficiency in an outdoor open-raceway pond through counterflow injection 

of CO2 [40]. The risk is that estimates for carbon utilization efficiency have been used in 

sustainability assessments without regard to their actual accuracy. The original sources and 

designs to achieve a given utilization are often not considered and therefore no longer accurately 

represented in theoretical assessments. This knowledge gap could have significant implications 

on the economic and environmental impacts of carbon delivery and presents an opportunity for 

future research. 

For the purposes of this study, sensitivity to carbon utilization efficiency was considered. 

Presented in Figure 8 are model results of MFSP and GWP for all gaseous CO2 cases (excluding 

atmosphere) as a function of utilization efficiency. In general, direct waste CO2 is less sensitive 

than captured and compressed CO2, and to some extent, all cases increase nonlinearly as 

utilization efficiency decreases. The least sensitive cases are direct waste CO2 from coal power 

plants or pure sources, for which 70-80% or 20-30% utilization efficiency may be acceptable 

with little penalty, respectively. This is due to low energy requirements and operating costs. All 

other case results indicate a need for greater than 90% utilization efficiency without incurring 

significant penalties to MFSP and GWP. Captured and compressed CO2 is more sensitive than 

direct waste emissions due to the significant energy requirements and added operating costs. 

Direct waste emissions are more sensitive for natural gas power plants than coal power plants or 

pure sources because of the significant increase in gaseous volume. These results demonstrate 

the importance of understanding and not overestimating the carbon utilization efficiency. 
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Figure 8 A) Minimum fuel selling price (MFSP) in 2014 $US per gallon of gasoline equivalent and B) global 

warming potential (GWP) in grams of CO2-equivalent per MJ of fuel for the carbon sources evaluated in this study 

vs. CO2 utilization efficiency. Reported as differences relative to the baseline MFSP and GWP of $6.47 GGE−1 and 

28.1 gCO2-eq MJ−1, respectively. All cases assume co-location with the microalgae facility. 

3.7. Resource Considerations 

For the purposes of this study, the sustainability of carbon delivery was evaluated 

assuming annual average algal productivity values. In practice, however, algal productivity will 

be variable. Davis et al. [24] reported an annual average of 25 g m−2 day−1 but indicated that the 

summer peak and winter low would be 35 and 11.7 g m−2 day−1, respectively. Designing a 

facility to manage the variability of production throughout the year can be accomplished in one 

of two ways: design and size the facility for summer peak productivity at the cost of 

underutilization during the winter or design the facility for an average productivity and include 

A) 

B) 
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biomass and resource storage to offset extra growth during the summer peak period and maintain 

production yields. The latter is preferred as it minimizes equipment and costs, but material 

storage is a challenge. Productivity may also vary on an hourly and daily basis, which poses a 

significant challenge to carbon delivery. Photosynthetic algae can only grow and use CO2 during 

the daylight hours, but CO2 sources like power plant emissions are available 24 hours a day. This 

suggests the need for adequate carbon storage so that an algal facility may be decoupled from its 

source of carbon and provide a reliable carbon sink for industries considering algae as a carbon 

capture and utilization (CCU) strategy. Of the sources considered in this study, only captured and 

compressed CO2, sodium bicarbonate and cellulosic sugar could be sustainably stored. In 

general, further research is required to fully understand the implications of variable productivity 

on the sustainability of carbon delivery and resource assessment. 

The results from this study may be used to better inform detailed resource assessments, 

but for the purposes of demonstration, a basic resource assessment was investigated. According 

to 2016 data from the EPA, 1911 million metric tonnes (Mt) of CO2 is emitted every year by 

1816 point sources of CO2 emissions [51] in the United States. A map of these point sources in 

the continental US may be seen in Figure 9. It should be noted that the EPA database includes 

only sources that emit greater than 25,000 metric tonnes of CO2 per year, and of those sources, 

only coal and natural gas power plants, fertilizer (ammonia), hydrogen, and ethanol plants were 

included in the 1911 Mt CO2 year−1 estimate. Of this estimate, 65.6%, 29.6%, 1.5%, 2.3%, and 

1% of the CO2 emissions are from coal power plants, natural gas power plants, ammonia, 

hydrogen, and ethanol plants, respectively. The results from this study suggest that coal and 

natural gas power plants are not sustainable sources, so those may be eliminated. Furthermore, 

the highest potential productivity for microalgae within the continental United States may be 
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achieved in southern California, Arizona, New Mexico, and west Texas [20]. With those 

constraints applied, only 20 of the 1816 sources remain, which comprise less than 0.5% of the 

potential CO2 resource to be captured in microalgae and converted to fuel. Assuming 30% fuel 

yield, 90% CO2 utilization, and neglecting land restrictions, this results in a maximum potential 

of approximately 360 million gallons of fuel per year. Though the potential for fuel production is 

significant, the potential to capture and recycle CO2 emissions from existing point sources is not. 

While this assessment is limited, it does highlight the need for a more detailed, geographically-

resolved assessment leveraging the results from this study. 

 
Figure 9 CO2 point source locations in the continental US. Emissions reported as one-thousand metric tonnes CO2-eq 

per year. Point sources include natural gas and coal power plants, ammonia production, hydrogen production, and 

ethanol plants. 
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4. Conclusions 

In this study, carbon delivery was considered for an algal biorefinery and further 

evaluated for sustainability. The carbon sources evaluated were CO2 (atmospheric, direct 

chemical or power plant waste emissions, and concentrated), sodium bicarbonate salt, and 

cellulosic sugars, and evaluated both co-located and transported by pipeline. It was found that the 

economics of carbon delivery are more prohibitive to a sustainable system than energy and 

emissions. The only two cases to meet both the economic and environmental criteria of 

contributing less than $0.50 GGE−1 and 20 gCO2-eq MJ−1 to the system, respectively, were 

uncompressed, pure sources of gaseous CO2 with pipeline transportation of 40 km or less; and 

compressed, supercritical CO2 from pure sources for pipeline transportation up to 100 km. The 

scalability of algal biofuels based on these results show carbon to be the limiting nutrient in an 

algal biorefinery. Carbon delivery is often overlooked in sustainability assessments, but this 

study demonstrates its importance. The results of this research may be used by the algal research 

community to inform other techno-economic assessments, life-cycle assessments, resource 

assessments, and new process designs to better evaluate the impacts and define the requirements 

of carbon source selection for a sustainable system. 
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5. Future Work 

This work demonstrated the importance of including the delivery of carbon in the system 

boundary for an algal biorefinery, but additional work may be done to further improve and refine 

the assessment. As discussed previously, adding temporal resolution to the productivity 

assumptions, and subsequently carbon demand, would provide valuable insight about the 

influence of seasonality, day and night cycles, and carbon storage challenges. It may also be 

valuable to consider other algal strains, bio-oil yield, and other fuel pathway technologies in a 

future assessment. Results from this work also demonstrated the importance of carbon utilization 

efficiency, as the economic and environmental sustainability metrics were shown to be very 

sensitive to this parameter. There is potential to study and improve the utilization efficiency of 

carbon by microalgae, and future work could include both modeling and experimental efforts to 

better predict and quantify the carbon mass transfer for various cultivation strategies. Finally, 

this work could be used as the foundation for evaluating any future “next generation” carbon 

capture technologies, or to complete a more detailed resource assessment, which could consider 

in greater detail geography and land availability constraints. 

Although this study focused on a near-term assessment of the carbon resource for an algal 

biorefinery, the long-term implications are also important. Instituting a tax on carbon emissions 

would have a significant and positive impact on the viability and sustainability of algal fuels, as 

it could cause the price of conventional fuels to increase and offer incentives to large emitters to 

capture or utilize their waste emissions. However, as the world transitions to renewable and 

cleaner energy sources, the supply of waste CO2 will decrease, bringing into question the long-

term sustainability of the resource for algal fuels. As point sources like power plants are 

decommissioned, it will be important to do further research on utilizing atmospheric CO2.  
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Appendix: Supplementary Information 

Table A.1 Algal Facility Mass and Energy Balance Parameters 

Stage Parameter Value Units Source 

Cultivation     

Growth Water evaporation 0.35% % day−1 [24] 

 Pond circulation energy 1.42 kW ha−1 [33] 

 Harvest concentration 0.5 g L−1 [24] 

On-site material flow Flue gas CO2 delivery 37.1 kJ kg−1 [24] 

 Pure CO2 delivery 142.6 kJ kg−1  

 Water/culture circulation 0.6 kJ kg−1  

 Make-up water delivery 1 kJ kg−1  

Harvest/Dewatering     

Bioflocculation Biomass concentration 2% wt% AFDW algae [37] 

 Separation efficiency 90% %  

Dissolved Air Flotation Biomass concentration 6% wt% AFDW algae [24,32] 

(DAF) Separation efficiency 95% %  

 Energy 1.33 x 10−4 kWh g−1  

Centrifuge Biomass concentration 20% wt% AFDW algae [30] 

 Separation efficiency 95% %  

 Energy 3.3 kWh m−3  

Conversion & Upgrading     

Hydrothermal Liquefaction Bio-oil yield 35% wt% AFDW algae * 

(HTL) Oil 7.4% wt% algae slurry [36] 

 Aqueous 91% wt% algae slurry  

 Biogas 0.9% wt% algae slurry  

 Solids 0.7% wt% algae slurry  

 Electricity 29.9 kJ kg−1 algae slurry  

 Heat 295.5 kJ kg−1 algae slurry  

Catalytic Hydrothermal Recycle water & nutrients 96% wt% aqueous [36] 

Gasification (CHG) Biogas 4% wt% aqueous  

 Electricity 29.8 kJ kg−1 aqueous  

 Heat 197.1 kJ kg−1 aqueous  

Hydrotreating Hydrogen input 0.06 g g−1 bio-oil [36] 

 Diesel output 61.9% wt% bio-oil  

 Naphtha output 12.1% wt% bio-oil  

 Aqueous 16.9% wt% bio-oil  

 Biogas 9.1% wt% bio-oil  

 Electricity 211.6 kJ kg−1 bio-oil  

 Heat 563.8 kJ kg−1 bio-oil  

Combined Heat & Power Electricity 35% % [26] 

(CHP) Heat 12% % [38] 

Transportation & Distribution 

(T&D) 

Energy 4.4 x 10−3 MJ MJ−1 [26,39] 

* Lammers, personal communication 
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Table A.2 Carbon Source and Transportation Parameters 

Carbon Source Parameter Value Units Source 

Atmospheric CO2 Productivity 2.5 g m−2 day−1  

 Facility area 30800 ha  

Plant Waste Emissions CO2 Productivity 25 g m−2 day−1 [24] 

 Facility area 3080 ha [24] 

 Supply temperature 40 °C [41] 

 Pipeline pressure 140 kPa [14,26,41] 

 Pipeline velocity 15 m s−1 [26] 

 Pipeline temperature 12 °C [41] 

 Blower efficiency 50% % [26] 

Captured CO2 Productivity 25 g m−2 day−1 [24] 

 Facility area 3080 ha [24] 

 MEA absorber temperature 40 °C [41] 

 CO2 capture efficiency 90% % [41] 

  MEA solvent consumption 2.34 x 10−3 kg (kgCO2)−1 [52] 

 Supply temperature 120 °C [41] 

 Supply pressure 140 kPa [41] 

 Pipeline max pressure 14 MPa [41,45] 

 Compressor max temperature 150 °C [46] 

 Max compression ratio 6 n/a [46] 

 Pipeline velocity 1.36 m s−1 [45] 

 Pipeline temperature 12 °C [41] 

 Compressor efficiency 85% % [41] 

Sodium Bicarbonate Productivity 25 g m−2 day−1 [24] 

 Facility area 3080 ha [24] 

 Aqueous concentration 100 g L−1  

 Pipeline pressure 825 kPa  

 Pipeline velocity 2 m s−1  

 Pump efficiency 67% % [24] 

Cellulosic Sugar Productivity 91 g m−2 day−1 * 

 Facility area 850 ha  

 Aqueous concentration 127 g L−1 [42] 

 Pipeline pressure 825 kPa  

 Pipeline velocity 2 m s−1  

 Pump efficiency 67% % [24] 

* Lammers, personal communication 
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Table A.3 DCFROR Inputs 

Parameter Cases 

Carbon Source Pure 

(baseline) 

Atmosphere Natural Gas 

(direct) 

Natural Gas 

(direct) 

Coal 

(direct) 

Transportation (km) - - - 100 - 

Algal Facility Cap-Ex $534,059,247 $3,449,860,790 $689,247,456 $689,247,456 $597,671,515 

Land Cost $22,800,000 $227,889,033 $22,800,000 $22,800,000 $22,800,000 

Carbon Feedstock (year−1) - - - - - 

Carbon Delivery Cap-Ex - - - $3,370,995,672 - 

Carbon Delivery Op-Ex (year−1) - - - $16,241,924 - 

Other Variable Op-Ex (year−1) $19,163,499 $39,756,836 $29,152,809 $29,152,809 $20,774,915 

Fixed Op-Ex (year−1) $18,016,993 $118,979,313 $20,010,953 $20,010,953 $18,778,172 

Co-Product Credits (year−1) $589,725 - - - - 

Carbon Source Coal 

(direct) 

Pure 

(direct) 

Pure 

(direct) 

Atmosphere 

(captured) 

Natural Gas 

(captured) 

Transportation (km) 100 - 100 - - 

Algal Facility Cap-Ex $597,671,515 $543,954,757 $543,954,757 $534,059,247 $534,059,247 

Land Cost $22,800,000 $22,800,000 $22,800,000 $22,800,000 $22,800,000 

Carbon Feedstock (year−1) - - - - - 

Carbon Delivery Cap-Ex $549,626,859 - $163,111,658 $31,215,666 $31,215,666 

Carbon Delivery Op-Ex (year−1) $4,399,901 - $390,402 $183,146,932 $13,686,962 

Other Variable Op-Ex (year−1) $20,774,915 $19,163,499 $19,163,499 $19,163,499 $19,163,499 

Fixed Op-Ex (year−1) $18,778,172 $18,055,046 $18,055,046 $17,921,834 $17,921,834 

Co-Product Credits (year−1) - $1,295,518 $1,295,518 $589,725 $589,725 

Carbon Source Natural Gas 

(captured) 

Coal 

(captured) 

Coal 

(captured) 

Pure 

(compressed) 

Pure 

(compressed) 

Transportation (km) 100 - 100 - 100 

Algal Facility Cap-Ex $534,059,247 $534,059,247 $534,059,247 $534,059,247 $534,059,247 

Land Cost $22,800,000 $22,800,000 $22,800,000 $22,800,000 $22,800,000 

Carbon Feedstock (year−1) - - - - - 

Carbon Delivery Cap-Ex $50,590,609 $31,215,666 $50,590,609 - $19,374,943 

Carbon Delivery Op-Ex (year−1) $14,061,486 $9,132,486 $9,507,010 $4,940,386 $5,314,910 

Other Variable Op-Ex (year−1) $19,163,499 $19,163,499 $19,163,499 $19,163,499 $19,163,499 

Fixed Op-Ex (year−1) $17,921,834 $17,921,834 $17,921,834 $17,921,834 $17,921,834 

Co-Product Credits (year−1) $589,725 $589,725 $589,725 $589,725 $589,725 

Carbon Source Bicarbonate 

 

Bicarbonate Sugar Sugar  

Transportation (km) - 100 - 100  

Algal Facility Cap-Ex $523,229,917 $523,229,917 $291,067,918 $291,067,918  

Land Cost $22,800,000 $22,800,000 $6,265,931 $6,265,931  

Carbon Feedstock (year−1) $120,055,954 $120,055,954 $68,160,388 $68,160,388  

Carbon Delivery Cap-Ex - $42,540,789 - $19,374,943  

Carbon Delivery Op-Ex (year−1) - $1,572,031 - $1,073,605  

Other Variable Op-Ex (year−1) $19,163,499 $19,163,499 $19,172,575 $19,172,575  

Fixed Op-Ex (year−1) $17,776,052 $17,776,052 $9,668,921 $9,668,921  

Co-Product Credits (year−1) $1,795,423 $1,795,423 $3,298,411 $3,298,411  
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Table A.4 Chemical/Utility Costs 

Parameter Value Units Source 

Ammonia $0.851 $ kg−1 [24] 

Diammonium Phosphate $0.694 $ kg−1 [24] 

Sodium Bicarbonate $0.20 $ kg−1 [53] 

Cellulosic Sugar $0.396 $ kg−1 [42] 

Hydrogen $3.00 $ scf−1 [54] 

Monoethanolamine $2.00 $ kg−1 [53] 

Natural Gas $0.0051 $ scf−1 [36] 

Electricity $0.0682 $ kWh−1 [24] 

 
Table A.5 Life-cycle Inventory (LCI) Data 

Parameter Value Units Source 

Ammonia 2.43 gCO2 g−1 [39] 

 9.87 x 10−3 gCH4 g−1  

 4.97 x 10−5 gN2O g−1  

    

Diammonium Phosphate 1.16 gCO2 g−1 [39] 

 3.78 x 10−3 gCH4 g−1  

 2.399 x 10−5 gN2O g−1  

    

Sodium Carbonate 5.65 x 10−1 gCO2 g−1 [55] 

 1.79 x 10−5 gCH4 g−1  

 2.77 x 10−6 gN2O g−1  

    

Cellulosic Sugar 1.142 x 10−1 gCO2-eq g−1 [42] 

    

Hydrogen 12.71 gCO2 g−1 [39] 

 5.447 x 10−2 gCH4 g−1  

 2.8 x 10−4 gN2O g−1  

    

Monoethanolamine 2.65 x 10−2 gCO2-eq g−1 [52] 

    

Natural Gas (Extraction) 1.7 x 10−2 gCO2 g−1 [55] 

 3.4 x 10−3 gCH4 g−1  

    

Natural Gas (Combustion) 1.96 gCO2 m−3 [55] 

 3.6 x 10−5 gCH4 m−3  

 3.6 x 10−5 gN2O m−3  

    

Electricity 600 gCO2-eq kWh−1 [39] 
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Figure A.1 Breakdown of MFSP baseline ($6.47 GGE−1) in 2014 $US. Cost categories include capital costs, 

variable and fixed operating costs, and tax. 

 
Figure A.2 Breakdown of GWP baseline (28.1 gCO2-eq MJ−1) for a WTW system boundary. Baseline assumes no 

carbon delivery considerations. (SLMT – Site-level material transfers, CHP – Combined heat and power, TD&C – 

Transportation, distribution and combustion) 

 
Figure A.3 Breakdown of direct energy and NER baseline (0.13 MJ MJ−1). Baseline assumes no carbon delivery 

considerations. (SLMT – Site-level material transfers, CHP – Combined heat and power, TD&C – Transportation, 

distribution and combustion) 
 


