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ABSTRACT

NUMBER-THEORETIC PROPERTIES OF THE BINOMIAL DISTRIBUTION WITH

APPLICATIONS IN ARITHMETIC GEOMETRY

Alina Bucur et al. showed that the distribution of the number of points on a smooth

projective plane curve of degree d over a finite field of order q is approximated by a particular

binomial distribution. We generalize their arguments to obtain a similar theorem concerning

hypersurfaces in projective m-space. We briefly describe Bucur and Kedlaya’s generalization

to complete intersections. We then prove theorems concerning the probability that a binomial

distribution yields an integer of various certain properties, such as being prime or being

squarefree. Finally, we show how to apply such a theorem, concerning a property P , to

yield results concerning the probability that the numbers of points on random complete

intersections possess property P .

ii



ACKNOWLEDGEMENTS

Thanks to my advisor Jeff Achter for all his help. Thanks also to Leif Anderson for

designing the document class used for this dissertation.

iii



TABLE OF CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2. The numbers of points on hypersurfaces and complete intersections . . . . . . . 4

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3. Complete intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3. Statistics on binomial distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2. Coprime integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Integers that are k-free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. The number-of-divisors function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5. Integers k-wise relatively prime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6. Prime numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.7. The case αn = 1/n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8. Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 4. Statistics on the number of points on complete intersections . . . . . . . . . . . . . . 47

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

iv



CHAPTER 1

Introduction

The binomial distribution is a probability distribution that indicates the probability of

obtaining t successes, given n independent trials with probability of success α. That is, if

we fix n and α, we have the distribution

Prob(X = t) = Bα,n(t) =

(
n

t

)
αt(1− α)n−t.

The starting point for my research is a paper by Alina Bucur et al. [3], concerning

the distribution of the number of points on a smooth projective plane curve of degree d

over a finite field of order q. Adapting arguments of Poonen [14], they showed that, in a

suitable sense, this distribution is approximated by a particular binomial distribution, whose

parameters n and α depend on q. More precisely, they proved, for each t, that the probability

of choosing a curve with t points gets arbitrarily close to the estimate given by the binomial

distribution, provided that d and q approach infinity and d is large relative to q. My first

work was to understand their result and see that their arguments could be generalized to

obtain a similar theorem concerning hypersurfaces in projective m-space.

My other work attempts to obtain information on the probability that the number of

points on a complete intersection (or on multiple complete intersections chosen indepen-

dently) will have a certain property. For instance, we might try to estimate the probability

that the number of points will be prime, squarefree, and so on. There are two steps to this

process. First, we consider picking an integer according to the binomial distribution, and

we prove a theorem concerning the probability that this integer will be (say) prime. Second,

we see that this theorem, together with the results concerning complete intersections, tells
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us about the probability of picking a complete intersection with (say) a prime number of

points.

I will now describe the progress made along these lines. J. E. Nymann and W. J. Leahey

show [11] that the probability that k integers chosen according to the binomial distribution

are relatively prime is 1/ζ(k). This result is not directly applicable since Nymann and

Leahey assume that the parameter α is fixed, whereas in our application we need it to

vary with q. However, their arguments can be generalized to allow α to vary (with certain

restrictions), and this provides a strong enough result to apply to complete intersections.

We also present an argument giving the probability that an integer chosen according to the

binomial distribution is kth-power free, which again turns out to be 1/ζ(k). Jerry Hu has

determined the probability that s integers chosen according to the uniform distribution are

k-wise relatively prime [18]. His proof can be adapted to give an analogous result concerning

the binomial distribution.

Using these results we can prove, for instance, that the number of points on a smooth

hypersurface in Pm(Fq) of degree d is squarefree with probability 6/π2, provided that q and

d increase to infinity appropriately. See Chapter 4 for more general and precise statements.

It is more difficult to analyze the probability that an integer chosen according to the

binomial distribution is prime. Ideally, we would find an analogue of the prime number

theorem. After some time, I came up with the following plan. First, we will assume that

the parameter α is constant, and let the number of trials n vary. Consider, for each n, the

probability that an integer chosen according to the binomial distribution with n trials and

parameter α will be prime. Form the exponential generating function from the sequence of

probabilities for various n. We then wish to show that this generating function is admissible

in a sense defined by W. K. Hayman [6]. This requires verifying some analytic properties
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of the function. Hayman showed that once these properties have been proved, we obtain an

asymptotic expression for the coefficients of the generating function. This would give our

“binomial” prime number theorem. If we could get a sufficiently good error term, we might

even be able to apply this to counting points on hypersurfaces or complete intersections.

Section 3.8 describes this in more detail.
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CHAPTER 2

The numbers of points on hypersurfaces and

complete intersections

2.1. Introduction

Bjorn Poonen, in [14], analyzed the limiting probability that an intersection of a hyper-

surface with a given quasiprojective scheme of dimension m (over a finite field) is smooth of

dimension m − 1, as the degree of the hypersurface tends to infinity. Bucur et al. [3] used

Poonen’s ideas to show that the distribution of the number of points on a smooth projective

plane curve is approximated by a binomial distribution. They did this by determining the

error terms that arise in Poonen’s argument. In Section 2.2 we follow Bucur et al., showing

that essentially the same argument applies to the distribution of the number of points on

a smooth projective hypersurface. At some points we have been more explicit about the

hypotheses required for the various lemmas.

In a later paper [4], Alina Bucur and Kiran S. Kedlaya proved a similar result about

complete intersections. We discuss this result in Section 2.3.

2.2. Hypersurfaces

Fix m ≥ 1. Let Sd be the set of homogeneous polynomials F (X0, . . . , Xm) of degree

d over Fq and let Sns
d be the subset of polynomials corresponding to smooth hypersurfaces

HF = F (X0, . . . , Xm) = 0.

For a prime power q, we let nq = #Pm(Fq) = 1 + q + q2 + · · ·+ qm. We also denote by p

the characteristic of Fq.
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Let Z be a finite subscheme of Pm. Let U = Pm \Z. Then U is smooth of dimension m.

We also let T denote a subset of H0(Z,OZ). Let r denote a real number. Let U<r be the

closed points of U of degree less than r and U>r the ones with degree greater than r. Also,

let s = #U<r.

Let Pd,r = {F ∈ Sd : F |Z ∈ T and HF∩U is smooth of dimension m−1 at all P ∈ U<r}.

(We consider HF to be smooth of every dimension at any point it does not contain.)

Lemma 2.1. For any subscheme Y ⊆ Pm, the map φd : Sd = H0(Pm,OPm(d)) −→

H0(Y,OY (d)) is surjective for d ≥ dimH0(Y,OY )− 1.

Proof. Lemma 2.1 in [14]. �

Lemma 2.2. For d ≥ (m+ 1)rs+ dimH0(Z,OZ)− 1, we have

#Pd,r
#Sd

=
#T

#H0(Z,OZ)

∏
P∈U<r

(
1− q−(m+1) degP

)
.

Proof. For each P ∈ U<r, let mP be the ideal sheaf of P on U , and let VP be the closed

subscheme of U corresponding to the ideal sheaf m2
P . That is, VP is a first-order neighborhood

of P ; the restriction of a function f ∈ H0(U,OU) to VP contains the information not only

of the value of f at P but the first-order derivative at P . Then, dimH0(VP ,OVP ) = (m +

1) degP < (m+ 1)r. Let V =
⋃
VP .

Consider the map

φd : Sd = H0(Pm,OPm(d)) −→ H0(V ∪ Z,OV ∪Z(d)) ' H0(Z,OZ)×
∏

P∈U<r

H0(VP ,OVP ),
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where we pick a (noncanonical) isomorphism between H0(VP ,OVP (d)) and H0(VP ,OVP ).

Then, the dimension of the codomain of φd is

dimH0(Z,OZ) +
∑
P∈U<r

(m+ 1) degP < dimH0(Z,OZ) + (m+ 1)rs.

Thus, since d ≥ (m+ 1)rs+ dimH0(Z,OZ)− 1, Lemma 2.1 implies that φd is surjective.

Now, HF is not smooth of dimension m− 1 at P if and only if the restriction of F to a

section of OVP is 0. Thus, Pd,r is the inverse image of

T ×
∏

P∈U<r

(
H0(VP ,OVP ) \ {0}

)
under φd.

We can conclude that

#Pd,r
#Sd

=
#
[
T ×

∏
P∈U<r (H0(VP ,O(VP )) \ {0})

]
#[H0(Z,OZ)×

∏
P∈U<r H

0(VP ,OVP )]

=
#T

#H0(Z,OZ)

∏
P∈U<r

(
1− q−(m+1) degP

)
.

�

Proposition 2.3. To each P ∈ Pm(Fq), associate a random variable YP taking the value

1 with probability 1/q and the value 0 with probability (q−1)/q, and let the random variables

be independent. Then, for d ≥ nq − 1 and t ≥ 0,

#{F ∈ Sd : #HF (Fq) = t}
#Sd

= Prob
(
t =

∑
YP

)
.
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Proof. Take Z to be an mP -neighborhood for each point P ∈ Pm(Fq). Thus

H0(Z,OZ) =
∏

P∈Pm(Fq)

OP/mP .

Now, the isomorphisms OP/mP
∼= Fq give an isomorphism

(2.1) H0(Z,OZ) ∼=
⊕

P∈Pm(Fq)

Fq.

Thus, we see that dimH0(Z,OZ) = nq and #H0(Z,OZ) = qnq . For a ∈ H0(Z,OZ), let

aP ∈ Fq denote the value of the P -component of the direct sum (2.1). (Note: we can interpret

a as a function on Z, and aP as the value of the function at P .) Suppose R ⊆ Pm(Fq) has

cardinality t. We want to count all hypersurfaces HF such that HF (Fq) = R. Let

T = {a ∈ H0(Z,OZ) : ∀P ∈ Pm(Fq) aP = 0⇔ P ∈ R}.

Then #T = (q − 1)nq−t. By taking r = 0 in Lemma 2.2, we see that, when d ≥ nq − 1,

{#F ∈ Sd : HF (Fq) = R}
#Sd

=
#Pd,0
#Sd

=
#T

#H0(Z,OZ)
=

(q − 1)nq−t

qnq

=

(
1

q

)t(
q − 1

q

)nq−t
= Prob(YP = 1⇔ P ∈ R).

If we sum over all R ⊆ Pm(Fq) with #R = t, we obtain

#{F ∈ Sd : #HF (Fq) = t}
#Sd

=
∑

#R=t

Prob(YP = 1⇔ P ∈ R) = Prob
(
t =

∑
YP

)
.

�
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Lemma 2.4. For any sequence {xi} of nonnegative real numbers with
∑
xi < 1, we have

1 ≤
∞∏
i=1

(1− xi)−1 ≤ 1

1−
∑
xi
.

Proof. The first inequality is evident. To prove the second, for any k, we have

k∏
i=1

(1− xi)−1 =
k∏
i=1

∞∑
j=0

xji =
∑

a1,...,ak≥0

xa11 · · ·x
ak
k <

∞∑
j=0

(x1 + · · ·+ xk)
j =

1

1− (x1 + · · ·+ xk)
.

Letting k increase to infinity, we obtain the result. �

Define

ζU(z) =
∏

P closed point of U

(1− q−z degP )−1.

Proposition 2.5. The product ζU(z) converges absolutely for Re z > m.

Proof. Fix z such that Re z > m. The number of closed points of degree e in U is

less than 2qme. Hence, for any r ≥ 0, we have
∑

P∈U>r |q
−z degP | < 2

∑
j>r |q(m−z)j|, which

converges since Re(m − z) < 0. Thus, we can choose r so that
∑

P∈U>r |q
−z degP | < 1. To

prove the absolute convergence of ζU(z), it suffices to prove this with finitely many terms

removed from the product. Thus, since

∏
P∈U>r

|(1− q−z degP )−1| ≤
∏

P∈U>r

(1− |q−z degP |)−1

converges by Lemma 2.4, the result is proved. �

Lemma 2.6. We have, for r > logq
2q
q−1

and d ≥ (m+ 1)rs+ dimH0(Z,OZ)− 1,

1 ≤ #Pd,r
#Sd

/
#T

ζU(m+ 1)#H0(Z,OZ)
≤ 1 +

2q−r

1− q−1 − 2q−r
.

8



Proof. Suppose first that r is an integer. Similarly to Proposition 2.5, since the number

of closed points of degree e in U is less than 2qme, we have that

∑
degP≥r

q−(m+1) degP < 2
∑
j≥r

q−j =
2q−r

1− q−1
< 1.

Then, by Lemma 2.4,

1 ≤
∏

degP≥r

(1− q−(m+1) degP )−1 ≤ 1

1− 2q−r

1−q−1

= 1 +
2q−r

1− q−1 − 2q−r
.

Thus,

1 ≤ ζU(m+ 1)
∏

P∈U<r

(1− q−(m+1) degP ) ≤ 1 +
2q−r

1− q−1 − 2q−r
.

If r is not an integer, we can obtain the same inequality by applying the above reasoning to

dre. To complete the proof, compare this with Lemma 2.2. �

Note: In the previous lemma, if we only care about integral values of r, then for q = 2 we

have the condition r ≥ 3, for q = 3 the condition r ≥ 2, and for q ≥ 4 the condition r ≥ 1.

Lemma 2.7. For a closed point P ∈ U of degree e ≤ d/(m+ 1), we have

#{F ∈ Sd : HF ∩ U is not smooth of dimension m− 1 at P}
#Sd

= q−(m+1)e.

Proof. Special case of Lemma 2.3 of [14]. �

Let Qd,r be the set of all F ∈ Sd such that there exists a closed point P ∈ U with

r ≤ degP ≤ d/(m+ 1) and HF ∩ U not smooth of dimension m− 1 at P .

Lemma 2.8.

#Qd,r
#Sd

≤ 2q−r

1− q−1
.

9



Proof. As in the proof of Lemma 2.6, by replacing r by dre we reduce to the case where

r is an integer. We have, by definition of Qd,r,

#Qd,r
#Sd

≤
∑

P∈U,r≤degP≤d/(m+1)

#{F ∈ Sd : HF ∩ U is not smooth of dimension m− 1 at P}
#Sd

.

Thus, using Lemma 2.7 and the fact that the number of closed points of degree e in U is

bounded above by 2qme, we have

#Qd,r
#Sd

≤
∑

P∈U,r≤degP≤d/(m+1)

q−(m+1)e ≤ 2

d/(m+1)∑
e=r

q−e ≤ 2
∞∑
e=r

q−e =
2q−r

1− q−1
.

�

Let A≤d denote the set of polynomials in Fq[x1, . . . , xm] of degree at most d.

Lemma 2.9. If P ∈ Am(Fq) is of degree e, then

#{f ∈ A≤d : f(P ) = 0}
#A≤d

≤ q−min(d+1,e).

Proof. Lemma 2.5 in [14]. �

In what follows we will use the following notation. Let γ = b(d−1)/pc and η = bd/pc. If

we have polynomials f0 ∈ A≤d, g1, . . . , gm ∈ A≤γ and h ∈ A≤η, then we define the polynomial

f ∈ A≤d by f = f0 + gp1x1 + · · ·+ gpmxm +hp. The ith partial derivative is given by Di = ∂
∂xi

.

Define W0 = U and, for each 1 ≤ i ≤ m, define Wi = U ∩ {D1f = · · · = Dif = 0}. Notice

that Dif = Dif0 + gpi for 1 ≤ i ≤ m, so even if we have only specified f0 and g1, . . . , gi, the

partial derivatives D1f, . . . , Dif (and hence the schemes W1, . . . ,Wi) are determined, even

though f itself is not. Hence the statement of the following lemma makes sense.

10



Lemma 2.10. If we have 0 ≤ i < m and have fixed f0 and g1, . . . , gi so that dimWi ≤

m− i, then

#{gi+1 ∈ A≤γ : dimWi+1 = dimWi}
#A≤γ

≤ (d− 1)iqγ−1.

Proof. If dimWi+1 = dimWi, then (Wi+1)red must contain some (m − i)-dimensional

component of (Wi)red. By Bézout’s theorem, the number of such components is at most

(d− 1)i, as degDif ≤ d− 1 and deg Ū = 1 (where Ū is the Zariski closure of U .). Consider

some (m− i)-dimensional component V . Since dimV ≥ 1, there is some coordinate xj such

that xj(V ) is a 1-dimensional subscheme of A1. Then, since any nonzero polynomial in xj

does not vanish on all of A1, such a polynomial does not vanish on V . From the formula

Dif = Dif0 + gpi , we see that the set {gi+1 : (Wi+1)red ⊇ V } is either empty or a coset of

the subspace {gi+1 : gi+1(P ) = 0,∀P ∈ V }. Since this subspace cannot contain nonzero

polynomials in the variable xj alone, its dimension is at most dimA≤γ − (γ+ 1). Since there

are at most (d−1)i choices for V , the number of choices for gi+1 for which dimWi+1 = dimWi

is at most (d− 1)qdimA≤γ − (γ+1). This proves the result. �

Lemma 2.11. If we have fixed f0 and g1, . . . , gm so that dimWm = 0, then

#{h ∈ A≤η : Hf ∩Wm ∩ U>d/(m+1) = ∅}
#A≤η

≤ (d− 1)mq−min(η+1,d/(m+1)).

Proof. For any P ∈ Wm ∩ U>d/(m+1), the set {h ∈ A≤η : P ∈ Hf} is either empty or a

coset of {h0 ∈ A≤η : h0(P ) = 0}. Hence, by Lemma 2.9,

#{h ∈ A≤η : P ∈ Hf}
#A≤η

≤ q−min(η+1,d/(m+1)).

By Bézout’s theorem, #Wm ≤ (d− 1)m. The proof is complete. �

11



Define Qhigh
d to be the set of all F ∈ Sd such that there exists a closed point P ∈ U with

degP > d/(m+ 1) and HF ∩ U not smooth of dimension m− 1 at P .

Lemma 2.12. Suppose d ≥ 3. Then,

#Qhigh
d

#Sd
≤ (m+ 1)(d− 1)mq−min(η+1,d/(m+1)) + 2(m+ 1)(d− 1)m−1q−γ−1.

Proof. We can find a bound for Qhigh
d by assuming that U ⊆ Am and multiplying the

result by m + 1. We will pick f0, g1, . . . , gm, and h uniformly at random, in that order.

This determines f itself uniformly at random, since for each fixed choice of g1, . . . , gm and

h, each f is determined by exactly one f0. We are looking to bound the number of f ∈ A≤d

such that f is not smooth of dimension m − 1 at some P ∈ U>d/(m+1). For each P , this is

equivalent to asserting that f(P ) = (D1f)(P ) = · · · = (Dmf)(P ) = 0, or P ∈ Hf ∩Wm. We

thus seek to bound Prob(Hf ∩Wm ∩ U>d/(m+1) = ∅), which is bounded above by

Prob(dimWm > 0) + Prob(Hf ∩Wm ∩ U>d/(m+1) = ∅| dimWm = 0).

Now, dimWm > 0 implies that Wi = Wi+1 for some i. Thus, by summing the result of

Lemma 2.10 for all 0 ≤ i < m, we obtain an upper bound for the first summand in the above

expression. Lemma 2.11 gives an upper bound for the second summand. Thus by combining

Lemma 2.10 and Lemma 2.11 we determine the desired upper bound. (To obtain a simpler

expression we replace 1 + (d− 1) + · · ·+ (d− 1)m−1 with 2(d− 1)m−1.) �

Let P denote the set of all F ∈ Sd such that HF ∩ U is smooth of dimension m− 1 and

F |Z ∈ T .

Let φd,r =
(

#Qd,r + #Qhigh
d

)
/(#Sd).

12



Lemma 2.13. Suppose d ≥ 3. Then, we have

0 ≤ φd,r ≤
2q−r

1− q−1
+ (m+ 1)(d− 1)mq−min(η+1,d/(m+1)) + 2(m+ 1)(d− 1)m−1q−γ−1.

Moreover, for r > logq
2q
q−1

and d ≥ (m+ 1)rs+ dimH0(Z,OZ)− 1,

1 ≤
(

#P
#Sd

+ φd,r

)/
#T

ζU(m+ 1)#H0(Z,OZ)
≤ 1 +

2q−r

1− q−1 − 2q−r
.

Proof. Since P = Pd,r \ (Qd,r ∪Qhigh
d ), this is the result of combining Lemmas 2.6, 2.8,

and 2.12. �

Let ψd = φd,(logq d)/(m+1).

The next lemma estimates the probability that a hypersurface is smooth.

Lemma 2.14. If d ≥ 3, then

0 ≤ ψd ≤
2d−1/(m+1)

1− q−1
+ (m+ 1)(d− 1)mq−min(η+1,d/(m+1)) + 2(m+ 1)(d− 1)m−1q−γ−1.

Moreover, there exists dm depending only on m such that for all d ≥ dm,

1 ≤
(

#Sns
d

#Sd
+ ψd

)/
ζPm(m+ 1)−1 ≤ 1 +

2d−1/(m+1)

1− q−1 − 2d−1/(m+1)
.

Proof. Let r =
logq d

m+1
. If d > 4m+1, then d > (2q/(q−1))m+1, so that r > logq

2q
q−1

. Also,

from s < 2qmr and logq d ≤ log2 d, we obtain (m + 1)rs < 2dm/(m+1) log2 d, which is o(d) as

d→∞. Hence, if d is sufficiently large, we may apply Lemma 2.13 with Z = ∅ and T = {0}

to obtain the result. �

Theorem 2.15. To each P ∈ Pm(Fq), associate a random variable XP taking the value

1 with probability (nq − qm)/nq and the value 0 with probability qm/nq, and let the random
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variables be independent. Then, for d ≥ (m+ 1)nq − 1 and t ≥ 0,

∣∣∣∣#{F ∈ Sns
d : #HF (Fq) = t}/(#Sns

d )

Prob (t =
∑
XP )

− 1

∣∣∣∣
≤ cqt(d−1/(m+1) + (d− 1)mq−min(bd/pc+1,d/(m+1)) + (d− 1)m−1q−b(d−1)/pc−1),

where c depends only on m.

Proof. Take Z to be an m2
P -neighborhood for each point P ∈ Pm(Fq). Thus

H0(Z,OZ) =
∏

P∈Pm(Fq)

OP/m2
P .

Now, consider the Fq-module isomorphisms OP/m2
P
∼= Fm+1

q given by

(b0 + b1x1 + · · ·+ bmxm) 7→ (b0, b1, . . . , bm),

where we have chosen coordinates so that P = 0. These give an isomorphism

(2.2) H0(Z,OZ) ∼=
⊕

P∈Pm(Fq)

Fm+1
q .

Thus, we see that dimH0(Z,OZ) = (m + 1)nq and #H0(Z,OZ) = q(m+1)nq . For a ∈

H0(Z,OZ), let aP = (aP,0, . . . , aP,m) ∈ Fm+1
q denote the value of the P -component of the

direct sum (2.2). Suppose R ⊆ Pm(Fq) has cardinality t. We want to count all hypersurfaces

HF such that F is smooth and HF (Fq) = R. Let

T = {a ∈ H0(Z,OZ) : ∀P ∈ Pm(Fq) (aP 6= 0 and (aP,0 = 0⇔ P ∈ R))}.

14



Then #T = (qm − 1)t(q − 1)nq−tqm(nq−t). Let r =
logq d

m+1
. By using these values of Z, T , and

r in Lemma 2.13, we find (for d ≥ (m+ 1)nq − 1)

(2.3) 1 ≤
(

#{F ∈ Sns
d : HF (Fq) = R}

#Sd
+ ψd

)/
Y ≤ 1 +M,

where

M =
2d−1/(m+1)

1− q−1 − 2d−1/(m+1)

and

Y =
#T

ζU(m+ 1)#H0(Z,OZ)
.

We want to combine this with Lemma 2.14 to find an estimate for (#{F ∈ Sns
d : HF (Fq) =

R})/(#Sns
d ). Now, using (2.3), we can find an upper bound for

#{F∈Sns
d :HF (Fq)=R}

#Sd
, and using

Lemma 2.14 we can find a lower bound for
#Sns

d

#Sd
. By dividing these, we find that

#{F ∈ Sns
d : HF (Fq) = R}

#Sns
d

/
(Y ζPm(m+ 1)) ≤

1 +M − ψd
Y

1− ψdζPm(m+ 1)
.

The latter expression is equal to

(2.4) 1 +
M − ψd

Y
+ ψdζPm(m+ 1)

1− ψdζPm(m+ 1)
.

From this, we find that an upper bound for (2.4) is

(2.5) 1 + c1(d−1/(m+1) + (d− 1)mq−min(bd/pc+1,d/(m+1)) + (d− 1)m−1q−b(d−1)/pc−1).

for some c1 > 0. (The denominators appearing in (4), in M and in the upper bound for φd

are bounded away from 0, so by making c large enough we may omit them.)
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Similarly, to obtain a lower bound, we find that

#{F ∈ Sns
d : HF (Fq) = R}

#Sns
d

/
(Y ζPm(m+ 1)) ≥

1− ψd
Y

1 +M − ψdζPm(m+ 1)
,

which equals

1−
M − ψdζPm(m+ 1) + ψd

Y

1 +M − ψdζPm(m+ 1)
.

Now, Y is a rational expression in q of degree −t. From this, we find that a lower bound for

the above is

(2.6) 1− c2q
t(d−1/(m+1) + (d− 1)mq−min(bd/pc+1,d/(m+1)) + (d− 1)m−1q−b(d−1)/pc−1),

for some c2 > 0.

Since

ζPm(m+ 1)

ζU(m+ 1)
= ζZ(m+ 1) =

(
1

1− q−m−1

)nq
=

(
qm+1

qm+1 − 1

)nq
,

we have

Y ζPm(m+ 1) =

(
qm+1

qm+1 − 1

)nq (qm − 1)t(q − 1)nq−tqm(nq−t)

q(m+1)nq

=

(
nq − qm

nq

)t(
qm

nq

)nq−t
= Prob(XP = 1⇔ P ∈ R).

If we sum the latter expression over allR ⊆ Pm(Fq) with #R = t, we obtain Prob (t =
∑
XP ).

Now, Y ζPm(m+ 1) multiplied by (2.5) is an upper bound for

#{F ∈ Sns
d : HF (Fq) = R}

#Sns
d

,
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and so summing over all R with #R = t, we find that Prob (t =
∑
XP ) multiplied by (2.5)

is an upper bound for

#{F ∈ Sns
d : #HF (Fq) = t}

#Sns
d

.

Similarly, Prob (t =
∑
XP ) multiplied by (2.6) is a lower bound for the same expression.

This completes the proof. �

2.3. Complete intersections

While the work in the previous section was being done Alina Bucur and Kiran S. Kedlaya,

in [4], proved a result about complete intersections analogous to the prior result of [3] about

plane curves. Here we simply record the special case we will use.

Theorem 2.16. Let 1 ≤ j ≤ m be an integer, and consider tuples d = (d1, . . . , dj) of

positive integers such that (m + 1)nq − 1 ≤ d1 ≤ · · · ≤ dj. For any f = (f1, . . . , fj) ∈

Sd1 × · · · × Sdj , let Hf = Hf1 ∩ · · ·Hfj . Consider some R ⊆ Pm(Fq) of size t. Suppose

q, d1, . . . , dj vary such that d1 →∞, d1 ≥ (m + 1)nq and dj = o((qd1/max(m+1,p))1/m). Then,

the probability that a smooth Hf of dimension m − j contains the points of R but no other

point of Pm(Fq) is

(
q−jL(q,m, j)

1− q−j + q−jL(q,m, j)

)t(
1− q−j

1− q−j + q−jL(q,m, j)

)nq−t
+O((d1 − nq + 1)(−2j−1)/m + dmj q

−d1/max(m+1,p)),

where

L(q,m, j) =

j−1∏
i=1

(1− q−(m−i)).

Proof. This follows from Theorem 1.2 and Corollary 1.3 of [4]. (Our notation is a bit

different.) �
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CHAPTER 3

Statistics on binomial distributions

3.1. Introduction

In the previous section, we saw that the distribution of points on a random smooth hyper-

surface (or, more generally, a smooth complete intersection) is approximated by a binomial

distribution. This provides a possible avenue of answering various statistical questions about

complete intersections. For instance, if we wish to determine the probability that the number

of points on a complete intersection is squarefree, we could determine the same probabil-

ity for integers chosen according to a binomial distribution, and we will obtain the same

probability (in the limit) for complete intersections. See Chapter 4 for more details on this

process.

Throughout Chapter 3, we will consider α ∈ (0, 1), and put β = 1− α. For each n ≥ 0,

the probability measure of the binomial distribution is

Bα,n({t}) =

(
n

t

)
αtβn−t

on the set of nonnegative integers. This gives the probability of t successes when running n

independent trials, each of whose probability of success is α. To simplify the notation, we

will generally write just Bn(t). Thus, in the theorems that follow, we allow α to vary with

n, which is necessary for our application. (We do, however, assume that α is bounded away

from 1, since allowing α to approach 1 would be not be useful for us.) We will write αn and

βn to emphasize the dependence on n.
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Sometimes, it will be convenient to approximate the binomial distribution with a normal

distribution, with pdf

Nn(x) = (2πnαnβn)−1/2e−
1
2
u2(x),

where u(x) = (x − a)/σ, σ = (nαnβn)1/2, and a = αnn. (Here a and σ are the mean and

standard deviation, respectively, of Nn.) The relationship between the binomial distribution

and the normal approximation is given by the following.

Theorem 3.1. There is a constant λ2 ∈ R such that,

∑
x∈Z

|Bn(x)−Nn(x)| = |βn − αn|σ−1λ2 +O(σ−2).

Proof. This is Theorem 3 of [15], which also determines explicitly the value of λ2. �

3.2. Coprime integers

Nymann and Leahey [11] calculated the probability that integers chosen according to

the binomial distribution are coprime. However, they assumed that α was constant as n

approached infinity. This is unsuitable for us, so here we generalize their argument to allow

α to vary, with certain restrictions.

Our result in this section is the following.

Theorem 3.2. Suppose that αn is bounded away from 1, and that αn = ω((log n)b/n),

where b = 1 if k ≥ 3 and b = 2 if k = 2. Then, as n goes to infinity, the probability that k

integers chosen according to the binomial distribution, with n Bernoulli trials with probability

of success αn, are coprime tends to 1/ζ(k).

The lower bound on αn could probably be improved. However, the result fails for

αn = 1/n (see Section 3.7), so we are close to the true range in which the theorem holds.
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Throughout this section, we will assume, unless stated otherwise, that the restrictions on

αn hold. Note that for k = 2 there is a stronger hypothesis on αn. Most of the time, this

stronger hypothesis is not needed. The places where we must appeal to it are explicitly

noted.

Let In = {m ∈ Z : 0 ≤ m ≤ n}. If Pn is a probability measure on In and k is a

positive integer, then P k
n is the k-fold product measure on Ikn. Let Skn = {(x1, . . . , xk) ∈ Ikn :

gcd(x1, . . . , xk) = 1}. For an integer d > 0, let An(d) = {j ∈ In : j ≡ 0 (mod d)}.

Lemma 3.3. Let n ≥ 1. For any probability distribution Pn on In, we have

P k
n (Skn) =

n∑
d=1

µ(d)
[
(Pn(An(d)))k − (Pn({0}))k

]
.

Proof. Lemma 1 of [11]. �

From now on we specialize to the binomial distribution Bn. Fix an integer k ≥ 2. Let

εn(d) = Bn(An(d))− d−1.

Lemma 3.4.

Bk
n(Skn) =

n∑
d=1

µ(d)d−k +
k∑
j=1

(
k

j

) n∑
d=1

µ(d)dj−k(εn(d))j − (1− αn)kn
n∑
d=1

µ(d).

Proof. By Lemma 3.3,

Bk
n(Skn) =

n∑
d=1

µ(d)
[
(d−1 + εn(d))k − βknn

]
.

We obtain the result by applying the binomial theorem to the first term in the brackets. �

The first summand in Lemma 3.4,
∑n

d=1 µ(d)d−k, approaches 1/ζ(k) as n → ∞. Thus,

Theorem 3.2 will be established if we show that the remaining terms go to 0.
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Lemma 3.5.

lim
n→∞

βknn

n∑
d=1

µ(d) = 0.

Proof. Let un = α−1
n . We have, for all sufficiently large n,

∣∣∣∣∣βknn
n∑
d=1

µ(d)

∣∣∣∣∣ < nβknn = n(1− u−1
n )unαnkn

< ne−αnkn < ne−k logn = n1−k,

which goes to 0 as n→∞. �

Lemma 3.6. If αn is bounded away from 1 but has no other restrictions, we have |εn(d)| =

O((αnn)−1/2) uniformly in d as n→∞.

Proof. Nymann and Leahey show, in the proof of Lemma 3 of [11] that

|εn(d)| ≤ 3Bn(s),

where s = bαn(n+ 1)c. The result follows from Theorem 3.1. �

Lemma 3.7. For 1 ≤ j < k,

lim
n→∞

n∑
d=1

µ(d)dj−k(εn(d))j = 0.

Proof. It suffices to show that
∑
dj−k|εn(d)|j → 0. Suppose first that j − k > 1. By

Lemma 3.6, the sum is O((αnn)−j/2), which is o((log n)−j/2) by our hypothesis on αn. Hence

the value approaches 0. If j − k = 1, the sum is O((αnn)−j/2 log n), which again approaches

0. (If j = 1, then k = 2 and we use our stronger hypothesis on αn.) �
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We will fix a function h : N −→ R with the property that
√

(log n)/αn = o(h(n)) and

h(n) = o(
√
n ). (For instance, we could take h to be the geometric mean.)

For the next lemma we will, like Nymann and Leahey, need the following theorem ([10],

p. 266):

Theorem 3.8. Let {Xk}1≤k≤n be independent random variables. Put S =
∑n

k=1 Xk. Let

s be the standard deviation of S and let c be the maximum value of |Xk/s|. Fix some ε > 0

such that εc ≤ 1. Then,

Prob(S/s > ε) < exp

(
−ε

2

2

(
1− εc

2

))
.

The next lemma shows that the probability of being a certain distance from the mean

decays more rapidly than 1/n.

Lemma 3.9. ∑
|k−αnn|>αnh(n)n1/2

Bn(k) = o(n−1).

Proof. To apply the theorem, for each 1 ≤ k ≤ n, letXk be a random variable taking the

value 1−αn with probability αn and−αn with probability 1−αn. (Thus theXk are identically

distributed with mean 0.) Let ε = h(n)
√
αn/(1− αn). We have s =

√
nαn(1− αn) and

c = a/s, where a = max(αn, 1 − αn). Thus, we see that εc = ah(n)n−1/2 ≤ 1 for n � 0.

Hence, Theorem 3.8 applies, and yields

Prob(S > αnh(n)n1/2) < exp

(
− h2(n)αn

2(1− αn)

(
1− ah(n)n−1/2

2

))
< exp(αn(h3(n)n−1/2 − h2(n))).
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We claim that the last expression is o(n−1), which is equivalent to claiming that

αnh
3(n)n−1/2 − αnh2(n) + log n

tends to −∞. Our hypotheses on h show that h2(n) = ω(h3(n)n−1/2) and αnh
2(n) =

ω(log n), so this is true. Now, the random variable S is a sum of n random variables taking

either the value 1 − αn or −αn, and S itself has the value k − αnn, where k is the number

of times that 1 − αn was chosen. Moreover the probability that S has this value is Bn(k).

Hence, we have shown that

∑
k−αnn>αnh(n)n1/2

Bn(k) = o(n−1).

By repeating the same argument with Xk replaced with −Xk, we obtain the result. �

Lemma 3.10. If 1 ≤ d ≤ n such that no multiple of d lies in (αn(n − h(n)n1/2), αn(n +

h(n)n1/2)), we have, uniformly in d, that |εn(d)| = O(d−1).

Proof. Consider the sum
∑

k≡0 (mod d) Bn(k). The previous lemma shows that the sum

is o(n−1), and since n−1 ≤ d−1, we are done. �

Lemma 3.11. If Kn is the number of integers d ∈ [αnh(n)n1/2, αn(n − h(n)n1/2)], for

which some multiple lies in (αn(n− h(n)n1/2), αn(n+ h(n)n1/2)), then

Kn = O(αnh(n)n1/2 log(n1/2/h(n))).

Proof. Let u = αnn, v = αnh(n)n1/2, and s = (u+ v)/v. Suppose kd ∈ (u− v, u+ v).

Since d ≤ u − v, k ≥ 2. Also, since d ≥ v, we have kv ≤ u + v, and so k ≤ s. Thus there

are s− 1 possible values for k. For each possible k, the corresponding d’s lie in the interval
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((u − v)/k, (u + v)/k)), which contains at most 2v/k + 1 integers. So, a bound for Kn is

given by

s∑
k=2

(2v/k + 1) ≤ 2v log s+ (s− 1) = 2αnh(n)n1/2 log(n1/2/h(n) + 1) + n1/2/h(n)

= O(αnh(n)n1/2 log(n1/2/h(n))).

�

Proof of Theorem 3.2. By Lemmas 3.4, 3.5, and 3.7, it suffices to show that

lim
n→∞

n∑
d=1

|εn(d)|k = 0.

To do this, define n1 = bαnh(n)n1/2c, n2 = bαn(n−h(n)n1/2)c, and n3 = bαn(n+h(n)n1/2)c.

For sufficiently large n, we have n1 < n2 < n3 < n, so we can express the sum as

n∑
d=1

=

n1∑
d=1

+

n2∑
d=n1+1

+

n3∑
d=n2+1

+
n∑

d=n3+1

.

We will show that each of these four sums goes to 0.

First sum. Lemma 3.6 gives

n1∑
d=1

= O(n1(αnn)−k/2) = O(n1(αnn)−1) = O(h(n)n−1/2).

Second sum. We further divide this sum into two components. The first is that over

those d for which no multiple lies in (αn(n− h(n)n1/2), αn(n+ h(n)n1/2)). By Lemma 3.10,

this sum is

(αnn)(1−k)/2O

(
n2∑
n1+1

d−1

)
= O((αnn)(1−k)/2 log n),
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which goes to 0. (If k = 2, we use the stronger hypothesis on αn.) For the rest of the d’s,

we apply Lemma 3.11 to find that the sum over those d’s is

O(αnh(n)n1/2 log(n1/2/h(n))(αnn)−k/2) = O(h(n)n−1/2 log(n1/2/h(n))).

We will show that the latter expression goes to 0. To do this, for each n > 0, define the

function gn(x) = x log(n1/2/x) for x > 0. The functions gn are increasing on (0, n1/2/e).

Now, by hypothesis, we have h(n) = o(n1/2). Hence, for any ε > 0, we have h(n) < εn1/2 for

sufficiently large n. So if we further have ε < 1/e, we find that h(n)n−1/2 log(n1/2/h(n)) <

n−1/2gn(εn1/2) = −ε log ε, which goes to 0 as ε→ 0.

Third sum. Similar to first sum.

Fourth sum. Apply Lemma 3.10 as in the first part of the second sum. �

3.3. Integers that are k-free

For k ≥ 2, a positive integer is said to be k-free if it is not divisible by the kth power

of a prime. Nymann and Leahey determined in [12] the probability that an integer chosen

according to the binomial distribution is k-free, assuming that α is constant. Here, we prove

the same by a different method, while allowing α to vary. We will call a quantity negligible

if it is O((αnn)−c) for all c ∈ R. In this section, we make use of the normal approximation

Nn to the binomial distribution, discussed at the beginning of Chapter 3. Nn decays quite

rapidly as the distance from the mean increases. In particular, if a function f(n) has the

property |f(n) − αnn| ≥ (αnn)1/2+ε, then Nn(f(n)) is negligible. If P is a polynomial and

f(n) is negligible, then f(n)P (αnn) is also negligible, and (provided αn is bounded away

from 1) Nn(n)P (n) is negligible.
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Theorem 3.12. Let αn be bounded away from 1, and suppose αn = ω(1/n). As n→∞,

the probability of an integer chosen according to the binomial distribution being k-free tends

to 1/ζ(k).

Proof. Let Sk(x) be the set of all k-free integers at most x and fk(x) the number of k-

free integers at most x. Using Theorem 3.1, we have Bn(Sk(n)) = Nn(Sk(n))+O((αnn)−1/2).

Applying summation by parts, we have

Nn(Sk) = Nn(n)fk(n)−
∫ n

1

N ′n(t)

(
t

ζ(k)
+Rk(t)

)
dt,

where Rk(t) is a remainder term to be described. The term Nn(n)fk(n) is negligible. More-

over,

−
∫ n

1

N ′n(t)
t

ζ(k)
dt =

1

ζ(k)

(
−(Nn(n)n−Nn(1)) +

∫ n

1

Nn(t) dt

)
.

Here, Nn(n)n and Nn(1) are negligible. In order to show

(3.1) lim
n→∞

∫ n

1

Nn(t) dt = 1,

perform a change of variables t = σv + a to obtain

1√
2π

∫ (n−a)/σ

(1−a)/σ

e−
1
2
v2 dv.

Since the restrictions on αn show that the limits of integration approach −∞ and∞ respec-

tively as n→∞, (3.1) is established.
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Now we consider the remainder term. We have Rk(t) = O(t1/k) ([16], p. 213). So the

error is at most a constant times

∫ n

1

|N ′n(t)|t1/k dt =

∫ a

1

N ′n(t)t1/k dt−
∫ n

a

N ′n(t)t1/k dt,

which is, ignoring negligible terms,

2Nn(a)a1/k − 1

k

∫ n

1

Nn(t)t1/k−1 dt.

The term on the left is O((αnn)1/k−1/2). For the integral on the right, we may replace it with

∫ n

`

Nn(t)t1/k−1 dt,

where ` = a− a3/4. (The error is negligible since the integrand is negligible on the excluded

interval, and the width of the excluded interval is less than a.) This latter integral is bounded

above by

`1/k−1

∫ n

`

Nn(t) dt,

which goes to 0 since ` increases without bound. Hence, provided k > 2, we have our

result. To handle the case k = 2, we use the stronger bound R2(t) = O(f(t)) where

f(t) = t1/2 exp(−A log1/2 t) for some A ([16], p. 213). Thus, in this case, the error is at

most a constant times ∫ n

1

|N ′n(t)|f(t) dt.

Since f(t) = o(t1/2) and f ′(t) = O(t−1/2), we may make a similar argument to show that

this integral goes to 0. �
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3.4. The number-of-divisors function

The result here is not a probability calculation, but it is of a similar flavor, and we will

use it later. It concerns the function τ(n), the number of divisors of n. For a function f ,

we write f(1)(x) = f(x + 1) − f(x) for the first differences of f . Similarly f(2) denotes the

first differences of f(1). The mth derivative of f will be denoted f (m). In this section we will

denote Nn by simply N . We will write

T (x) =
∑

1≤j≤x

τ(j).

Dirichlet showed that

T (x) = x log x+ (2γ − 1)x+ ∆(x),

where ∆(x) = O(
√
x) and γ is Euler’s constant [17]. We will establish an analogue of this

for the binomial distribution. Our argument here is similar to that of the previous section,

but more complicated. First, we need the following.

Lemma 3.13. For αn bounded away from 1 and αn = ω(1/n), and for t ∈ Z and c ∈ R,

n∑
x=t

N(x) = 1 +O((αnn)−c).

Proof. What follows is similar to pp. 43–44 of [5], but we give the complete argument.

Fix an integer m > 0. The Euler–Maclaurin summation formula ([5], pp. 40–42) yields

n∑
x=t

N(x) =

∫ n

t

N(x) dx+
1

2
(N(n)−N(t)) +

m∑
k=1

B̃2k

(2k)!
(N (2k−1)(n)−N (2k−1)(t))

−
∫ n

t

N (2m)(x)
B̃2m(x− bxc)

(2m)!
dx,
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where B̃2m (the Bernoulli numbers) and B̃2m(x) (the Bernoulli polynomials) satisfy

(3.2) |B̃2m(x− bxc)| ≤ |B̃2m|.

For each j > 0, the jth derivative of N is of the form N(x) multiplied by a polynomial. This

shows that the error terms are negligible, with the exception of the integral

R =

∫ n

t

N (2m)(x)
B̃2m(x− bxc)

(2m)!
dx.

Using (3.2), the integral has magnitude at most

|B̃2m|
(2m)!

∫ n

t

|N (2m)(x)| dx =
|B̃2m|σ1/2−m

(2m)!

∫ u(n)

u(t)

∣∣∣∣ d2m

dy2m
e−

1
2
y2
∣∣∣∣ dy,

where we have substituted x = σy + a. The integrand does not depend on n, and since

the derivatives of f are bounded, so is the integral. Hence R = O((αnn)1/2−m). Letting m

increase, we obtain

n∑
x=t

N(x) =

∫ n

t

N(x) dx+O((αnn)−c), c ∈ R.

We may replace the range of integration with (−∞,+∞) with negligible error, as in the

proof of Theorem 3.12. Thus, we are done. �

The main claim of this section is:

Theorem 3.14. For αn bounded away from 1 and (for some ε > 0) αn = ω(n−1+ε),

n∑
j=1

Bn(j)τ(j) = log(αnn) + 2γ +O((αnn)−1/4).
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Proof. By Theorem 3.1 and the estimate τ(x) = o(xη) for any η > 0 ([2], p. 296), we

have
n∑
j=1

Bn(j)τ(j) =
n∑
x=1

N(x)τ(x) + o((α−1/2
n n−1/2+η)).

The restrictions on αn show that the error term is O((αnn)−1/4). Summation by parts yields

n∑
x=1

N(x)τ(x) = N(n)T (n)−
n−1∑
x=1

N(1)(x)T (x).

The term N(n)T (n) is negligible, so we are left to describe the asymptotics of

(3.3) −
n−1∑
x=1

N(1)(x)T (x).

Now we write T (x) as x log x+(2γ−1)x+∆(x). Each of the terms yields a sum to examine.

First, we have

(3.4) −
n−1∑
x=1

N(1)(x)x log x = −N(n)n log n+
n−1∑
x=1

N(x+ 1)(x log x)(1),

Similar to before, −N(n)n log n is negligible. As for the sum on the right, the mean value

theorem implies that log(x) + 1 ≤ (x log x)(1) ≤ log(x+ 1) + 1. Therefore, a lower bound for

this sum is

(3.5)
n∑
x=2

N(x)(log(x− 1) + 1).

Writing log(x− 1) + 1 as (log a+ 1) + (log(x− 1)− log a), the sum breaks up into

n∑
x=2

N(x)(log a+ 1),
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which by Lemma 3.13 is log a+ 1 with negligible error, and

n∑
x=2

N(x)(log(x− 1)− log a).

With negligible error, we contract the range of summation to (a − ac, a + ac), for some c

in (1/2, 3/4). (Proof of negligibility: N(x) is negligibly small on the excluded intervals, the

logarithmic term is O(n), and the range excluded has length less than n. The restrictions

on αn imply that n = o((αnn)1/ε)). By the mean value theorem, | log(x − 1) − log(a)| ≤

|(x− 1)− a|/a. For x in the new range of summation, |(x− 1)− a|/a ≤ ac−1 + 1/a. Hence,

the sum is o((αnn)−1/4). Therefore, (3.5) converges to log a + 1 with error o((αnn)−1/4). A

similar argument shows that the upper bound

n∑
x=2

N(x)(log x+ 1)

also converges to log a+ 1 with the same error bound. Hence (3.4) itself does.

The second sum from (3.3) to examine is

−
n−1∑
x=1

N(1)(x)(2γ − 1)x = (2γ − 1)

(
−N(n)n+

n∑
x=1

N(x)

)
.

The term −N(n)n is negligible and so by Lemma 3.13 we obtain 2γ − 1 in the limit.

So far, we have found the main term log(αnn) + 2γ. In analyzing (3.3) it remains to

examine the sum

(3.6) −
n−1∑
x=1

N(1)(x)∆(x).
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We show that (3.6) is O((αnn)−1/4). To do this, we write it as

−N(1)(n− 1)∆2(n− 1) +
n−2∑
x=1

N(2)(x)∆2(x),

where ∆2(x) =
∑x

y=1 ∆(y). As usual, −N(1)(n − 1)∆2(n − 1) is negligible. For the sum on

the right we use a result from [17]:

∆2(x) =
1

2
x log x+

(
γ − 1

4

)
x+O(x3/4).

Again, after substituting for ∆2(x), we divide into cases. First, letting f(x) = x log x, we

have
n−2∑
x=1

N(2)(x)f(x) = N(1)(n− 1)f(n− 1)−
n−2∑
x=1

N(1)(x+ 1)f(1)(x).

Here N(1)(n− 1)f(n− 1) is negligible, and the expression that remains is

(3.7) −N(n)f(1)(n− 1) +N(2)f(2) +
n−2∑
x=1

N(x+ 1)f(2)(x).

Ignoring the negligible terms, we consider the sum that remains. By the mean value theorem,

f(2)(x) ≤ sup
y∈[x,x+1]

f ′(1)(y) ≤ sup
z∈[x,x+2]

f ′′(z) = 1/x.

(There is no ambiguity, because (f(1))
′ = (f ′)(1).) Hence, by restricting the range of summa-

tion, we can prove that (3.7) is O(1/(αnn)). Next,

n−2∑
x=1

N(2)(x)x
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is negligible, as x(2) = 0. Finally, we must consider

n−2∑
x=1

N(2)(x)O(x3/4).

This is bounded above by a constant times

(3.8)
n−2∑
x=1

|N(2)(x)|x3/4.

Now, the mean value theorem implies that sup |N(1)(x)| ≤ sup |N ′(x)| = O(1/(αnn)). More-

over, N ′′(x) has exactly two zeros. Therefore, if we define S = {x ∈ Z | sgnN(2)(x) 6=

sgnN(2)(x+ 1)}, then the size of S is bounded above by a constant independent of n. Now,

(3.8) is bounded above by the sum of the usual negligible terms, and

2
∑
x∈S

|N(1)(x+ 1)|x3/4 +
n−2∑
x=1

|N(1)(nx+ 1)|(x3/4)(1).

The left sum is O((αnn)−1/4). Since (x3/4)(1) ≤ x−1/4, the sum on the right is, besides

negligible terms, bounded above by

2
∑
x∈U

N(x+ 1)x−1/4 +
n−2∑
x=1

N(x+ 1)(x−1/4)(1),

where U = {x ∈ Z | sgnN(1)(x) 6= sgnN(1)(x + 1)}. Since N ′(x) has a single root at x = a,

the sum on the left is O((αnn)−3/4). By restricting the range of summation, we see that the

sum on the right is O((αnn)−5/4).

This completes the proof. �
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3.5. Integers k-wise relatively prime

In [18], László Tóth determined the probability that a tuple of s integers is pairwise

coprime. Jerry Hu, in [7], generalizes this to the situation in which any k of the chosen

integers are coprime. We here follow Hu, showing that his argument can be made to apply

to a binomial distribution instead of a uniform distribution.

A tuple of s integers is defined to be k-wise relatively prime if any k of them are relatively

prime, and to be k-wise relatively prime to an integer u if any k of them are prime to u. The

probability of s integers being k-wise relatively prime when chosen according to the binomial

distribution is the same as that found by Hu for the uniform distribution:

As,k =
∏
p

(
1−

s∑
m=k

B1/p,n(m)

)
.

We use notation similar to Hu’s. Namely, for a tuple u = (u1, . . . , uk−1), let S
(u)
s,k (n) denote

the set of s-tuples of integers (a1, . . . , as) in [1, n] that are k-wise relatively prime and i-wise

relatively prime to ui for 1 ≤ i ≤ k − 1. Define

Q
(u)
s,k (n) = Bs

n(S
(u)
s,k (n)).

For integers a,b > 0, Hu defines (a, b] to be the product, over primes p dividing a, of the

largest power of p dividing b. Put [b, a) = (a, b]. Define, for any positive integer j,

j ∗ u =

(
u1(j, u2)

(j, u1]
, . . . ,

uk−2(j, uk−1)

(j, uk−1]
,

juk−2

(
∏k−1

i=2 [j, ui))(j, uk−1]

)
.

(Here (x, y) denotes gcd(x, y).) Importantly, if u is a pairwise coprime tuple of positive

integers, then so is j ∗ u.
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Lemma 3.15. For u pairwise coprime,

Q
(u)
s+1,k(n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗u)
s,k (n).

Proof. Hu ([7], p. 1065) observes that

s + 1 positive integers a1, a2, . . . , as+1 are k-wise relatively prime and are
i-wise relatively prime to ui for i = 1, 2, . . . , k − 1 if and only if the first
s positive integers a1, a2, . . . , as are k-wise relatively prime and are i-wise
relatively prime to ui and (as+1, ui+1) for i = 1, 2, . . . , k−2 and are (k−1)-
wise relatively prime to uk−1 and as+1, and (as+1, u1) = 1. . .

This justifies the equalities

Q
(u)
s+1,k(n) =

n∑
as+1=1

(as+1,u1)=1

Bn(as+1)Q
(as+1∗′u)
s,k (n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗′u)
s,k (n),

where

j ∗′ u = (u1(j, u2), . . . , uk−2(j, uk−1), juk−1).

To complete the proof, we need only show that S
(j∗′u)
s,k (n) = S

(j∗u)
s,k (n). The argument is

contained in Hu [7]. (He only claims that the sets have the same cardinality, but his argument

shows that they are the same set.) �

Lemma 3.16. Suppose αn is bounded away from 1. Then, for integers u, m ≥ 1 with

(m,u) = 1, we have
n∑
a=1

(a,u)=1
m|a

Bn(a) =
ϕ(u)

mu
+O((αnn)−1/2θ(u)),

where θ(u) is the number of squarefree divisors of u.
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Proof. The desired sum equals

n∑
a=1
m|a

Bn(a)
∑
d|(a,u)

µ(d) =
n∑
a=1
m|a

Bn(a)
∑
d|a
d|u

µ(d) =
∑
d|u

µ(d)
∑
j≥1
md|j

Bn(j).

Applying Lemma 3.6, this is

∑
d|u

µ(d)

(
1

md
+O((αnn)−1/2)

)
=

1

m

∑
d|u

µ(d)

d
+O((αnn)−1/2θ(u)).

Since
∑

d|u µ(d)/d = ϕ(u)/u, we are done. �

Lemma 3.17. Define

fs,k,i(ui) =
∏
p|ui

(
1−

∑k−1
m=i

(
s
m

)
(p− 1)k−1−m∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)

and

gs,i(d) = di
∏
p|d

i∑
m=0

(
s

m

)(
1− 1

p

)i−m
1

pm
.

Then, we have

fs,k,i(ui)

fs,k,i+1(ui)
=
∑
d|ui

µ(d)
(
s
i

)ω(d)

gs,i(d)
, i = 1, . . . , k − 2

and

fs,k,k−1(uk−1) =
∑
d|uk−1

µ(d)
(

s
k−1

)ω(d)

gs,k−1(d)
,

Proof. This is Lemma 4 of Hu [7]. �

Theorem 3.18. Let δ(s, k) be the maximum value of
(
s−1
i

)
for 1 ≤ i ≤ k − 1. Suppose

αn is bounded away from 1 and αn = ω(n−1+ε). For s ≥ 1 and k ≥ 2, then uniformly in ui
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with the ui coprime, we have

Q
(u)
s,k (n) = As,k

k−1∏
i=1

fs,k,i(ui) +O((αnn)−1/2θ(u1) logδ(s,k) n).

Proof. By induction on s. For s = 1, Lemma 3.16 shows that

Q
(u)
s,k (n) =

ϕ(u1)

u1

+O((αnn)−1/2θ(n)),

from which the result follows since A1,k = 1, f1,k,1(u1) = φ(u1)/u1 and f1,k,i(u1) = 1 for

i > 1.

Next, we will prove the result for s+ 1 assuming it for s. We obtain, using Lemma 3.15,

Q
(u)
s+1,k(n) =

n∑
j=1

(j,u1)=1

Bn(j)Q
(j∗u)
s,k (n)

=
n∑
j=1

(j,u1)=1

Bn(j)As,k

k−2∏
i=1

fs,k,i

(
u1(j, u2)

(j, u1]

)
fs,k,k−1

(
juk−1

(
∏k−1

i=2 [j, ui))(j, uk−1]

)

+O(Bn(j)(αnn)−1/2θ(u1(j, u2)) logδ(s,k) n)

= As,k

k−1∏
i=1

fs,k,i(ui)
n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)
(*)

+O

(
(αnn)−1/2θ(u1) logδ(s,k) n

n∑
j=1

Bn(j)θ(j)

)
.

Using Theorem 3.14, we have
∑n

j=1Bn(j)θ(j) ≤
∑n

j=1Bn(j)τ(j) = O(log n). We also have

n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)
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=
n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

∑
di|(j,ui+1)

µ(di)
(
s
i

)ω(di)

gs,i(di)

∑
dk−1| j∏k−1

i=2
[j,ui)

µ(dk−1)
(

s
k−1

)ω(dk−1)

gs,k−1(dk−1)

=
∑

d1···dk−1e=j≤n
di|(j,ui+1),i=1,...,k−2

dk−1| j
[j,u2)···[j,uk−1)

(j,u1)=1

Bn(j)
k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)

=
∑

d1···dk−1≤n
di|ui+1,i=1,...,k−2

(dk−1,ui),i=1,...,k−1

∑
e≤ n

d1···dk−1

(e,u1)=1

Bn(d1 · · · dk−1e)
k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)
.

Using Lemma 3.16, we have

n∑
j=1

(j,u1)=1

Bn(j)
k−2∏
i=1

fs,k,i((j, ui+1))

fs,k,i+1((j, ui+1))
fs,k,k−1

(
j∏k−1

i=2 [j, ui)

)

=
∑

d1···dk−1≤n
di|ui+1,i=1,...,k−2

(dk−1,ui),i=1,...,k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

gs,i(di)

(
ϕ(u1)

u1d1 · · · dk−1

+O((αnn)−1/2θ(u1))

)

=
ϕ(u1)

u1

∑
d1···dk−1≤n

di|ui+1,i=1,...,k−2
(dk−1,ui),i=1,...,k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

digs,i(di)
+O

(
(αnn)−1/2θ(u1)

∑
d≤n

δ(s+ 1, k)ω(d)

d

)
,

as gs,i(di) ≥ di.

This may be expressed as

ϕ(u1)

u1

∑
di|ui+1,i=1,...,k−2

(dk−1,ui),i=1,...,k−1

k−1∏
i=1

µ(di)
(
s
i

)ω(di)

digs,i(di)

=
ϕ(u1)

u1

k−1∏
i=2

∏
p|ui

(
1−

(
s
i−1

)
p
∑i−1

m=0

(
s
m

)
(p− 1)i−1−m

) ∏
p-u1···uk−1

(
1−

(
s

k−1

)
p
∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)
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=
k−1∏
i=1

∏
p|ui

(
1−

(
s
i−1

)
p
∑i−1

m=0

(
s
m

)
(p− 1)i−1−m

)(
1−

(
s

k−1

)
p
∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)−1

×
∏
p

(
1−

(
s

k−1

)
p
∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)
,

together with the error terms

O

(∑
d>n

δ(s+ 1, k)ω(d)

d2

)
= O

(∑
d>n

τδ(s+1,k)(d)

d2

)
= O(n−1 logδ(s+1,k)−1 n),

by Lemma 3(b) of [18], and

O

(
(αnn)−1/2θ(u1)

∑
d≤n

δ(s+ 1, k)ω(d)

d

)
= O

(
(αnn)−1/2θ(u1)

∑
d≤n

τδ(s+1,k)(d)

d

)

= O((αnn)−1/2θ(u1) logδ(s+1,k) n),

by Lemma 3(a) of [18]. We substitute into (*) to get

Q
(u)
s+1,k(n) = As,k

∏
p

(
1−

(
s

k−1

)
p
∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)

×
k−1∏
i=1

fs,k,i(ui)
∏
p|ui

(
1−

(
s
i−1

)
p
∑i−1

m=0

(
s
m

)
(p− 1)i−1−m

)

×

(
1−

(
s

k−1

)
p
∑k−1

m=0

(
s
m

)
(p− 1)k−1−m

)−1

+O(n−1 logδ(s+1,k)−1 n) +O((αnn)−1/2θ(u1) logδ(s+1,k) n)

+O
(

(αnn)−1/2θ(u1) logδ(s,k)+1 n
)

= As+1,k

k−1∏
i=1

fs+1,k,i(ui) +O((αnn)−1/2θ(u1) logδ(s+1,k) n).

This establishes the claim for s+ 1. �
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Corollary 3.19. If αn is bounded away from 1 and αn = ω(n−1+ε), then the probabil-

ity that s integers chosen according to the binomial distribution are k-wise relatively prime

approaches As,k as n→∞.

3.6. Prime numbers

Let Π be the set of all prime numbers. Here we seek information on the behavior of

Bn(Π) as n→∞. We can show that Bn(Π)→ 0. If we use the prime number theorem, we

can deduce a bit more:

Theorem 3.20. If αn is bounded away from 1 and αn = ω(1/n), then

lim sup
n→∞

Bn(Π) log log(αnn) ≤ 1.

Proof. (The germ of this proof is found in [1], pp. 101–103.) Let x = (αnn)1/2. For

any j denote by j# the primorial, the product of all primes at most j. Let pm denote the

mth prime. For any n, let m be such that pm# is the largest primorial less than x. Let

y = pm+1#. Now, for m� 0, we have pm# > p2
m+1 ([16], p 246). Therefore, for n� 0, we

have pm+1 < x1/2, so y < x3/2. Write

Bn(Π) =
∑

2≤p≤y

Bn(p) +
∑
p>y

Bn(p).

Using Theorem 3.1, we obtain

∑
2≤p≤y

Bn(p) ≤
y∑
j=2

Bn(j) =

y∑
j=2

Nn(j) +O((αnn)−1/2).

The sum on the right is bounded by yNn(y). Since y < a3/4, we see that yNn(y) is negligible.
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Now, for primes p > y, we have (p, y) = 1. Hence, by Lemma 3.16,

∑
p>y

Bn(p) ≤
n∑
j=1

(j,y)=1

Bn(j) =
ϕ(y)

y
+O((αnn)−1/2θ(y)).

We know θ(y) = o(yε), so the error term is O((αnn)−1/2+ε). According to one version of the

prime number theorem ([2], p. 79), pm+1 ∼ log y, so

ϕ(y)

y
=

m+1∏
i=1

(
1− 1

pi

)
≤

(
pm+1∑
j=1

1

j

)−1

∼ 1

log pm+1

∼ 1

log log y
<

1

log log x
∼ 1

log log(αnn)
.

�

3.7. The case αn = 1/n

In our results so far, we have assumed that if αn goes to 0, then it goes to 0 more slowly

than 1/n. Indeed, it is known, and it is not difficult to prove, that if αn = λ/n, and if S is

any set of nonnegative integers, then

lim
n→∞

Bn(S) = e−λ
∑
j∈S

λj

j!
.

(This fact is mentioned on pp. 152–153 of [9].) For example, if we put αn = 1/n and S = Π,

the limiting value is expΠ(1)/e, rather than 0 as in Theorem 3.20. To get an intuitive

understanding of why there is a difference if αn = 1/n, note that the mode of the binomial

distribution is approximately αnn. So, with αn = 1/n, a significant part of the distribution

remains close to 1, whereas if αn goes to 0 more slowly, the mode goes to infinity. In general,

we cannot expect the same behavior in this case.
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3.8. Future directions

Can we describe the behavior of Bn(Π) more precisely? One might think that one could

use a summation by parts, as in Theorem 3.12, to handle this question. Unfortunately, the

error term in the prime number theorem is not small enough for this to work, even if we

assume the Riemann hypothesis. To be more precise, we may define the logarithmic integral

Li(x) =

∫ x

2

1

log t
dt,

and state the prime number theorem as

π(x) = Li(x) +R(x).

If we assume the Riemann hypothesis, then we have R(x) = O(x1/2 log x) ([8], p. 193). If we

proceeded analogously to Theorem 3.12, we would need to estimate the integral

∫ n

2

N ′n(t)π(t) dt.

When we substitute for π(x), the term Li(x) causes no difficulty, but R(x) does. We need

to use the upper bound for |R(x)| to obtain an upper bound for

∫ n

2

N ′n(t)R(t) dt,

but since N ′n(t) changes sign, doing this requires splitting the integral in two, and, similarly

to Theorem 3.12, we would obtain the term 2Nn(a)R(a), which, using the estimate for R(x)

above, cannot even be shown to be o(1), and hence we obtain no information.
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In the rest of this section we describe a different possible method of approaching this

problem, as well as the difficulties involved. If we define bn = Bn(Π), then the exponential

generating function of bn is

F (z) =
∞∑
n=0

bnz
n

n!
= expΠ(αnz) exp(βnz),

where

expΠ(z) =
∑
p

zp

p!
.

Hayman [6] defined a class of “admissible functions”, and gave an asymptotic formula for the

power series coefficients of such functions. Thus, if we show that the exponential generating

function F is admissible, we will obtain an asymptotic formula for bn/n!, and hence for bn

by applying Stirling’s formula. We here give Hayman’s result, as described in [13], pp. 1178–

1179. A function of the form

f(z) =
∞∑
z=0

fnz
n

is admissible if

(i) f(z) is analytic for |z| < R for some 0 < R ≤ ∞,

(ii) f(z) ∈ R if z ∈ R for |z| < R,

(iii) for R0 < r < R,max|z|=r |f(z)| = f(r),

(iv) for

a(r) = r
f ′(r)

f(r)
, b(r) = ra′(r)

there is a function δ(r) defined for R0 < r < R such that 0 < δ(r) < π, and the

following hold:

(a) f(reiθ) ∼ f(r) exp(iθa(r)− θ2b(r)/2) as r → R uniformly for |θ| < δ(r),
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(b) f(reiθ) = o(f(r)b(r)−1/2) as r → R uniformly for δ(r) ≤ |θ| ≤ π,

(c) b(r)→∞ as r → R.

Then, Hayman proved the following.

Theorem 3.21. If f is admissible, then

fn ∼ (2πb(rn))−1/2f(rn)r−nn as n→∞,

where a(rn) = n.

We want to apply this to our function F . Conditions (i), (ii), and (iii) are obvious. In

order to verify condition (iv), we would need good information on the behavior of a(r) and

b(r), which devolves onto information about expΠ. Unfortunately, obtaining such information

seems to be quite difficult. We would like to know how fast expΠ(x) grows as x→∞. If we

try to determine this using summation by parts, we run into essentially the same problem

we discussed above. Based on numerical computation, however, the function appears to

approximate exp(x)/ log(x). Let us suppose we know that expΠ(x) ∼ exp(x)/ log(x). One

conclusion we could make is that all the derivatives of expΠ have the same rate of growth as

expΠ. To prove this, we need the following.

Proposition 3.22. Let

f(x) =
∞∑
n=0

an
xn

n!
,

and set

An =
n∑

m=0

an.

Suppose that, for some M , we have |An| ≤M for all n. Then, f(x) = O(ex/
√
x) as x→∞.
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Proof. Applying summation by parts, we have

f(x) =
∞∑
k=0

Ak

(
xk

k!
− xk+1

(k + 1)!

)
≤

∞∑
k=0

sk

(
xk

k!
− xk+1

(k + 1)!

)
,

where sk = −M for 0 ≤ k ≤ x− 1 and sk = M for k > x− 1. Thus, applying summation by

parts again, f(x) ≤ −M + 2Mxdx−1e/(dx− 1e)!, and the desired bound follows by Stirling’s

formula. The same argument establishes an upper bound for −f(x), so we are done. �

Now we can show our claim. We have

exp′Π(x)

expΠ(x)
− 1 =

exp′Π(x)− expΠ(x)

expΠ(x)
.

By the preceding proposition, exp′Π(x) − expΠ(x) = O(ex/
√
x), and since this grows slower

than exp(x)/ log(x), we have established, on the assumption that expΠ(x) ∼ exp(x)/ log(x),

that expΠ(x) ∼ exp′Π(x). We can, of course, now make an inductive argument to show that

all the derivatives are also asymptotic to each other. Additionally, since

a(r) = r

(
αn exp′Π(αnr)

expΠ(αnr)
+ βn

)
,

we can conclude that a(r) ∼ r. This, however, is where the chain of deductions stops. We

can compute b(r) to be

a(r) + (αnr)
2 exp′Π(αnr)

expΠ(αnr)

(
exp′′Π(αnr)

exp′Π(αnr)
− exp′Π(αnr)

expΠ(αnr)

)
.

Our assumption on the growth of expΠ(x) implies that the expression in parentheses on

the right goes to 0. If we knew further that this expression is o(1/r), it would follow that

b(r) ∼ r. I have not found a way to do this, however.
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In conclusion, this method of attack leads to difficulties similar to that of the more direct

method.
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CHAPTER 4

Statistics on the number of points on complete

intersections

By combining the results in Chapters 2 and 3, we can obtain probabilistic information

about the numbers of points on complete intersections. When doing this, we need to make

restrictions on the behavior of the degrees of the hypersurface sections relative to the order

q of the field, so that the error term goes to 0. Here are two examples.

Theorem 4.1. Fix m ≥ 2 and 1 ≤ j ≤ m − 1. Suppose {qi}i≥1 is a sequence of prime

powers increasing to infinity and suppose the integers di,1 ≤ · · · ≤ di,j go to infinity in such

a way that di,1 > 21+mnqi/(2j+1) and di,j = o((2−nqiq
di,1/max(m+1,p)
i )1/m). For a fixed k ≥ 2,

the probability that a smooth complete intersection (formed by intersecting hypersurfaces of

degrees di,1, . . . , di,j) has the number of points k-free is, in the limit, 1/ζ(k).

Proof. For any n ≥ q1, let the integer r(n) be maximal such that nqr(n) does not exceed

n. Let αn = (q−jr(n)L(qr(n),m, j))/(1 − q−jr(n) + q−jr(n)L(qr(n),m, j)). We have αn = Ω(n−j/m),

and so Theorem 3.12 tells us that as n→∞ the probability of integers chosen according to

the binomial distribution being k-free approaches 1/ζ(k). By Theorem 2.16, this is also true

of the number of points on a smooth complete intersection, since our hypotheses ensure that

the error term in the theorem (multiplied by 2
nqr(i) , the maximum number of choices for R

in the theorem) goes to 0. �

Theorem 4.2. Fix m ≥ 2, s ≥ 2, k ≥ 2 and 1 ≤ j ≤ m − 1. Suppose {qi}i≥1 is a

sequence of prime powers increasing to infinity and suppose the integers di,1 ≤ · · · ≤ di,j go

to infinity in such a way that di,1 > 21+mnqi/(2j+1) and di,j = o((2−nqiq
di,1/max(m+1,p)
i )1/m).
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The probability that s smooth complete intersections H1, . . . , Hs (formed by intersecting hy-

persurfaces of degrees di,1, . . . , di,j) have the numbers of points on H1, . . . , Hs to be k-wise

relatively is, in the limit, As,k.

Proof. Similar to the previous theorem. �

The restrictions on qi, di,1, . . . , di,j in the previous theorems depend heavily on the error

term in Theorem 1.2 of [4]. If a better error term were found, this would correspondingly

imply a relaxation on these restrictions. If j = m, these theorems do not apply. However, in

the case j = m = 1, the parameter in the binomial distribution is 1/(q+ 1), and nq = q+ 1,

so we can take αn = 1/n and apply Section 3.7 instead.
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