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ABSTRACT 

 

 

 

HIV PROPHYLAXIS: AN ESSENTIAL ROLE FOR T CELLS AND ADJUVANTS IN 

RECOMBINANT MUCOSAL LACTOBACILLUS ACIDOPHILUS VACCINES 

 

 

Current HIV vaccines have poor efficacy, with inconsistent levels of protection following 

mucosal HIV exposure. Lactic acid bacteria offer an alternative vaccine vector targeting the 

primary site of HIV infection, the mucosa. In these studies we evaluated the immunogenicity of 

several strains of Lactobacillus acidophilus expressing HIV membrane proximal external region 

(MPER), a portion of HIV envelope that contains broadly neutralizing antibody binding sites. 

We evaluated MPER-only expressing strains along with strains expressing adjuvants 

(interleukin-1β or flagellin) to improve immunogenicity against the HIV MPER. We compared 

the adjuvant strains to the MPER-only strain by oral administration in BALB/c mice to observe 

these improvements, and in CD40L-/- mice to observe if T cell help was necessary. Some 

BALB/c animals were also placed on a modified diet supplemented with prebiotic rice bran to 

observe any influence on vaccine immunogenicity. Resulting antibody responses and interleukin-

17 levels were measured by ELISA, and T and B cell levels were measured by flow cytometry. 

 Here we show that the addition of adjuvants, including dietary rice bran, to L. acidophilus 

vaccine strains improves their immunogenicity against HIV MPER. Our results indicate that 

anti-MPER IgG and IgA levels, as well as the number of anti-MPER antibody secreting cells, are 

improved with adjuvants, and that T cell help is required for an effective immune response. 

These results, combined with the many advantages offered by this lactic acid bacteria vaccine 

system make L. acidophilus an attractive vaccine vector for primate and human trials. 
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Chapter 1: Overview of Literature 

 

1.1 Mucosal Immunity 

Mucosal membranes provide required functions for the host, particularly nutrient 

absorption and as barriers of entry against foreign objects, both living and non-living. The cells 

that comprise these ectodermal membranes provide a barrier of entry against foreign organisms, 

and are thus priority targets for pathogen entry. Numerous pathogens target mucosae directly or 

exploit mucosal membranes to gain access to other host tissues. Co-evolution of pathogens and 

their hosts has resulted in a myriad of immune responses to eliminate pathogens and prevent 

infection. 

1.1a Cell Junctions and Mucus 

All mucosae rely on intercellular junctions between epithelial cells as a basic physical 

barrier against microbial invasion. In the respiratory, intestinal and sexual mucosae, adherens 

and tight junctions provide strong interactions between adjacent cells (1-4). Adherens junctions 

function to maintain cell-to-cell contact and barrier integrity, while tight junctions are typically 

associated with the movement of ions and other material between cells (5). These junctions are 

targeted by several mucosal pathogens, including Listeria monocytogenes, Salmonella species, 

and enteropathogenic E. coli, implying their importance for barrier integrity (4). 

The secretion of mucus by mucosal epithelial cells also provides a strong physical barrier 

and a scaffold for antimicrobial peptides and antibodies. Mucus itself is comprised of multiple 

heavily glycosylated mucin proteins that are either secreted to form outer and inner luminal 

layers, or associated with the epithelial cell surface (4). Mucins can have direct antimicrobial 
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effects against certain pathogens, such as Helicobacter pylori, but typically serve to 

nonspecifically bind and aggregate bacteria, facilitating their removal (6-8). Mucus layers also 

exhibit physical properties that add more barriers for pathogens, including variations in pH (9), 

carbohydrates (10) and oxygen concentration (11), and have been associated with anti-

inflammatory tolerance in the gut (12, 13).  

1.1b Antimicrobial Peptides 

A large number of antimicrobial peptides (AMPs) are secreted by mucosal cells on 

mucosal tissue surfaces and within the matrix of mucus proteins (14, 15). Lysozymes are able to 

cleave the peptidoglycan linkages of gram-positive bacterial cell walls (16).  α- and β-defensins 

are AMPs that embed within bacterial membranes, forming destructive pores when enough 

defensins are present (17). LL-37, a human cathelicidin, is able to destroy both gram positive 

and gram negative bacteria by cell wall destruction (18).  Histones and their fragments can 

function as AMPs (19, 20), as well as Ubiquitin, which has demonstrated antifungal properties 

(21). 

1.1c Innate Lymphoid Cells 

Mucosae rely on various cell types to maintain homeostasis and avoid destructive 

inflammation. Among these cell types are Innate Lymphoid Cells (ILCs), a relatively recent 

classification of innate immune cells. Three groups of ILCs have been established (22): Group 1 

ILCs include natural killer (NK) cells as well as non-cytotoxic cells (Tbet
+
) capable of enhancing 

Th1 responses via IFN-γ and TNF-α secretion, and are associated with defense against 

intracellular bacteria and protozoan parasites. Group 2 ILCs (GATA3
+
) typically secrete Th2 
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cytokines and are thus associated with allergies and helminthic parasites. Group 3 ILCs 

(RORγt
+
) can secrete IL-17, as well as similar cytokine profiles as Group 1 ILCs, and 

predominantly target extracellular bacteria. All ILCs are associated with specific pathogen 

defenses, and groups 2 and 3 have been shown to induce mucosal tissue repair and stimulate 

mucus and AMP secretion by goblet and Paneth cells (23). ILC functions are often similar to T 

helper cells, but ILCs do not require antigen stimulation, instead becoming activated via cytokine 

stimulation from other resident cell, typically APCs (24). 

1.1d Sampling of Mucosal Lumen 

The uptake of antigen for the adaptive immune response can vary based on the mucosa. 

The respiratory tract for example is primarily served by a variety of sentinel dendritic cells 

(CD103+, CD11b+, plasmacytoid, monocyte-derived) and pulmonary macrophages (alveolar, 

bronchial, interstitial) (25, 26). Each subset is capable of different effects that can vary based on 

pathogen or disease context, but all are able to influence the adaptive immune response by 

variations in cytokine secretion and antigen presentation (25-28). These antigen presenting cells 

usually initiate adaptive immune responses at lymphoid cell foci known as bronchus associated 

lymphoid tissue (BALT) (29). 

Antigen uptake within the intestinal tract employs several cell types not found in the 

respiratory tract. These cells are associated with gut associated lymphoid tissue (GALT), the 

intestinal BALT counterpart. The intestinal mucosa and its associated immune cells vary with 

each major anatomical gut segment. Within the small intestine are Peyer’s patches (PP), lymph 

node-like structures that increase in number from the duodenum to the ileum. At the luminal 

surface of PP are microfold (M) cells, epithelial cells that constantly sample lumen contents and 
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transport those contents to underlying immune cells (30, 31). Underlying DCs have been shown 

to sample luminal contents on their own by extending dendrites through the M cell or between 

epithelial cells (32) (33, 34). Goblet cells, which produce mucins, have also been associated with 

DC antigen uptake via goblet cell associated-antigen pathways (GAPs) (35). The colon also 

contains colonic patches, similar to Peyer’s patches, with overlying M cells for lumen sampling 

(36). Smaller lymphoid aggregates called solitary isolated lymphoid tissues (SILT) are found 

throughout the intestinal tract and increase in number as intestinal bacteria numbers increase 

(31). There are associations between the mechanism of antigen uptake (M cell, goblet cell, 

dendrite, paracellular leakage) and the resulting immune response, be it inflammation, tolerance, 

or IgA secretion (37). 

 

Figure 1.1 Differences in antigen uptake and immunity at mucosal sites. M cells are not shown but provide 

luminal sampling for the intestine alongside the pictured DCs (b). IEC-associated microbial sensors include Toll-like 

receptors and other pattern recognition receptors described in the following section. Courtesy Gill et al. (38). 
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1.1e Pattern Recognition Receptors 

The sentinel cells of mucosae express surface pattern recognition receptors (PRR) to 

detect common pathogen structures. There are several types of PRRs. Toll-like receptors 

(TLRs), responsible for recognizing a diverse set of pathogen motifs, are expressed on virtually 

all APCs and mucosal epithelia and upon stimulation initiate cytokine and AMP secretion. Some 

TLRs cause different effects based on their mucosal tissue location. Oral and respiratory mucosa 

tend to drive AMP secretion, while the intestinal mucosa tends to drive inflammation and 

antibody class switching (39, 40). The potential for overstimulation of TLRs in the intestine 

leads to negative-TLR regulation to promote homeostasis and prevent destructive inflammation 

(41). The intestines also have reduced apical expression of TLR4 and TLR5, sequestering these 

receptors to intracellular compartments to prevent over-stimulation by commensal bacteria (42, 

43).  

 Nucleotide-binding oligomerization domain-containing proteins (NOD1, NOD2), detect 

gram-negative and gram-negative/positive bacterial cell wall motifs, respectively (44, 45). 

Similar PRRs called NOD-like receptors (NLR) recognize specific bacteria or toxin motifs, 

such as anthrax or gout crystals. Both NOD and NOD-like receptors activate inflammatory 

pathways in the host cell (44). C-type lectin PRRs detect sugar-based pathogen motifs, resulting 

in Th1 responses, inflammation and antigen presentation (46). N-formyl methionine receptors 

may be responsible for the tolerance of commensal bacteria detected through non-inflammatory 

pathways (47). 
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1.1f B cells, class switching, and IgA 

B cells, responsible for the secretion of antibodies, traffic from the blood and are 

distributed throughout the intestinal tract. Dimeric IgA is a class of antibody secreted by mature 

B cells that passes to the mucosal surface via transcytosis (48). Unlike other antibody classes IgA 

is typically secreted locally, as opposed to systemically, and resists mucosal protease digestion 

(49, 50). In secondary lymphoid organs, Th2-type cytokines combined with B-cell receptor 

(BCR) and CD40L binding induces IgA class switching (51). This process is referred to as T-

dependent IgA class switching since CD40L-CD40 binding requires a T helper cell and results in 

the formation of memory B cells. However, within inductive sites like Peyer’s patches, 

mesenteric lymph nodes, colonic patches and SILT’s, B cells can receive signaling through 

TLRs and cytokines APRIL and BAFF causing class switching independent of T cell help (52). 

IgA induced by this T-independent mechanism do not undergo significant affinity maturation 

and are thus low-affinity, but still prevent bacteria from binding intestinal epithelia. This 

prevents overgrowth of commensal bacteria and avoids damaging inflammation. Recently 

established subsets of B cells (B-1a B-1b) can also become activated without T cell help and may 

contribute to commensal bacteria control (53). 

1.1g T cells 

Progress in identification of cellular markers has led to a dramatic increase in the number 

of T cell subsets. While many T cells can be classified within typical groups (CD4, CD8, Treg), 

new subsets of these cells have complicated the definitions of mucosal T lymphocytes. T helper 

cells still serve as key mediators for strong adaptive immune responses, either inflammatory or 

tolerance. Tolerance typically arises from T regulatory (Treg) cells, which are stimulated by DC 
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and mucosal epithelial cells (via REG3γ or TLR2) to secrete IL-10 and create a more 

homeostatic, tolerogenic mucosa (54). Under the right circumstances γδ T cells may also exert an 

anti-inflammatory response (55). Inflammation arises from APC detection of pathogens and 

drives multiple subsets of T cells, often via IL-23 stimulation (56). These include: γδ T cells, 

which use alternative non-MHC antigen detection via multiple receptors (57). NKT cells, which 

bind glycolipids (rather than proteins) presented via MHC-like receptors like CD1d (58). ILC3 

cells (See section 1.1c), and Th17 cells, a distinct pro-inflammatory lineage (59). Both Th1 and 

Th2 subtypes can drive inflammation, with Th1 cytokines (IFN-γ and TNF-α) associated with 

gut inflammation, and Th2 cytokines (IL-4, IL-13) associated with airway inflammation (60). 

CD8+ T cells also contribute to mucosal immunity, migrating to mucosae following activation 

and establishing resident memory cells for rapid response to viral mucosal infections (61).  

1.2 Human Microbiome 

Bacteria of various genera are associated with all human mucosal surfaces (62). 

Microbial diversity of these local microbiomes can vary drastically based on host hygiene, health 

and diet (62). By mapping out the species within these microflora we can better understand the 

symbiotic relationship humans and other creatures have with the organisms that live on and 

within them. This mapping is typically performed by amplicon sequencing of a highly conserved 

gene segment in prokaryotes, usually a region within the 16S portion of ribosomal ribonucleic 

acid (rRNA), though other portions have been used in the past (63). Ribosomes consist of RNA 

and protein complexed together to form two subunits, the large (LSU) and small (SSU). 

Functionally these subunits catalyze the translation process from RNA to amino acid chain via 

tRNA (64). The SSU in prokaryotes contains the 16S subunit, which is relatively conserved 
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genetically in all bacteria, leading to its common use for phylogenetic analysis, despite some bias 

(65, 66). Both the 16S rRNA, and its counterpart rDNA, can be used for sequencing, with rDNA 

allowing for identification of quiescent cells with lower numbers of active ribosomes (67, 68).  

1.3 Microbiome and Disease 

As analytical techniques have improved specific associations between microbiomes and 

health have been identified (69). Bacteria of the gut can have a huge effect on host metabolism 

and nutrient availability, resulting in correlations between the gut microbiome and obesity, and 

thus diabetes and other diseases associated with obesity (70). Studies of germ-free mice show 

severe losses in gut-associated immunity, such as reduced IgA production, the loss of CD4+ and 

CD8+ T cells, and reduced expression of pattern recognition receptors, resulting in susceptibility 

to pathogen infection (71). Destruction/dysbiosis of the gut microbiome has been associated with 

inflammatory compounds, leading to potential associations with inflammatory bowel diseases 

including cancer (72), Crohn’s disease (73)) and arthritis (74). Psoriasis and acne of the skin 

have been associated with specific bacterial species (75, 76), and peptic ulcers are famously 

associated with Helicobacter pylori colonization (77). Interestingly, the microbes acquired 

during birth have been associated with a number of diseases, usually correlated with vaginal 

versus cesarean birth (78). Clearly the gut microbiome is a key component of the overall health 

of individuals. However, expectations of associations between the microbiome and disease can 

lead to bias, which can only be mitigated by increasing the number of cause-and-effect studies 

(79). 
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1.4 Lactic Acid Bacteria and Probiotics 

Lactic acid bacteria (LAB) are an extremely large and diverse clade of gram-positive 

bacteria. Because of their close associations with human food they have been extensively studied 

for over a century. Subdivisions within the clade are very complex, compounded by periodic 

reclassifications within families and genera, as well as the persistence of ‘classical’ genera from 

work in the early 1900’s by Dutch biochemist Sigurd Orla-Jensen (80). These classical genera 

were established by studying the various attributes of bacteria under different growth conditions, 

but plasticity within LAB regarding their typical abilities has necessitated the use of modern 

genome sequencing to establish sub-genera relationships (81). While large differences exist 

within genera and species, major commonalities exist in LAB. All LAB utilize fermentation to 

generate energy and lactic acid. Some LAB homoferment, converting simple sugars to lactic acid 

or lactate, its conjugate base. Other LAB are heterofermenters, utilizing a more complex 

metabolic pathway to generate lactic acid, acetic acid, ethanol and carbon dioxide. See Fig. 1.2 

(82).  

 

Figure 1.2 Homo- and Heterofermentation pathways. Lactic acid bacteria breakdown glucose through one of 

several potential pathways, resulting in lactate, or a combination of lactate and other byproducts. Courtesy Kandler 

et al. (82). 
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These compounds and their concentrations can be altered by variations in growth 

conditions, leading to the extremely diverse uses LAB provide to humans (83). These include a 

millennial-long association with milk and bread products, from cheese and yogurt in ancient Iraq 

to sourdough bread in ancient Switzerland (84). In addition to enhanced flavor, LAB provide 

excellent natural means of food preservation, preventing spoilage by acidification (lactic and 

acetic acids) and secretion of antibacterial proteins targeting competing bacteria (85). Of 

increasing modern relevance is the characterization of LAB (usually Lactobacillus or 

Bifidobacterium spp.) as probiotics: bacteria that provide specific benefits when administered to 

mucosa. There is evidence of strain-specific probiotic effects on obesity and psychological 

disorders in animal models, and intestinal and psychological disorders in humans (86-88)). More 

stringent clinical studies and strain-specific analysis is required to isolate specific probiotic 

effects (87-89). 

1.5 Lactobacilli 

Over 80 species of the genus Lactobacillus have been classified (80). Some have long 

been associated with human foods, especially cheese, yogurt and a variety of fermented products 

(90). This strong safety record means many lactobacilli are Generally Recognized As Safe 

(GRAS) by the FDA (91). Other lactobacilli are associated with mammalian gastrointestinal, oral 

and vaginal mucosa (90, 92, 93). Lactobacilli are located throughout the human gut, increasing in 

number from stomach to colon (31). The actual diversity Lactobacillus species that colonize the 

gut is likely much smaller than previously thought (90). Lactobacilli are able to survive and 

thrive in the mammalian gut: They are intrinsically bile and acid tolerant due to bile salt pumps 

and proton pumps (94), they thrive in the low oxygen environment of gut mucus, and they 
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possess surface proteins to allow binding to mucus (31, 95). Lactobacilli have been studied for 

their anti-inflammatory and anti-pathogen properties, as well as their ability to adjuvant vaccine 

responses (see section 1.6).  

1.5a Anti-Pathogen Effects 

 There have been multiple experiments showing that Lactobacillus can confer protection 

against pathogens and their symptoms. L. acidophilus reduced cold and flu-like symptoms in 

children and decreased the number of Clostridium difficile bacteria in elderly GI tracts (96, 97). 

L. plantarum increased mouse survival from Pseudomonas aeruginosa and Escherichia coli 

challenge and reduced bacterial translocation in rats (98, 99). L. rhamnosus reduced the duration 

of rotavirus diarrhea in children and increased the number of children with rotavirus-specific IgA 

from ~50% to nearly 100% (100). L casei reduced complications in patients with systemic 

inflammatory response syndrome, and lowered the number of preterm infants with 

gastrointestinal Candida albicans (101, 102). L. reuteri showed in vitro antibiotic effects against 

several enteric bacteria, as well as antiviral activity against Coxsackievirus A 

and Enterovirus 71, the viruses responsible for hand, foot and mouth disease (103, 104). The 

mechanisms behind these effects are not fully known, but suppression of pathogens can involve 

competition with pathogens for nutrients or space, acidification (via lactic acid) that inhibits 

growth, enhancement of the mucosal immune response, or the production of 

bacteriocins/antimicrobials (105). 
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1.5b Anti-Inflammatory Effects 

Many strains of probiotics exhibit anti-inflammatory effects in the host. L. rhamnosus 

lowered TNF-α levels in healthy adults and lowered inflammatory cytokines in an in vitro 

cigarette smoke inflammation assay (106, 107). Inactivated L. crispatus, common in vaginal 

mucosa, caused DC secretion of IL-10 and Treg polarization in vitro (108). L. acidophilus 

counteracted the inflammatory effects of chemotherapy on the intestinal mucosa in mice (109). 

L. casei reduced colitis in mice and inhibited IL-6 production by blocking NF-κB nuclear 

trafficking (110, 111). The body’s downregulation of inflammatory components may simply be a 

mechanism to ensure beneficial bacteria (nutrient digestion help, pathogen protection) are 

allowed to thrive. 

1.5c Adjuvant/Immune Effects 

Many studies have shown that lactobacilli can influence co-administered vaccines. L. 

acidophilus alone was able to reduce tumor growth via Th1 enhancement (112-114), with similar 

results observed using L. casei (115). L acidophilus and L. rhamnosus both improved T cell 

proliferation, IFN-γ secretion, and serum antibody responses to both oral cholera toxin or 

subcutaneous tetanus toxoid in mice, with no changes in T cell % or mucosal antibodies (116). 

These same strains showed increased neutralization, IgG and IgA levels in conjunction with oral 

polio vaccine in humans (117). L. rhamnosus by itself enhanced specific IgA responses in 

humans exposed to rotavirus (100), and coadministration with an influenza vaccine improved 

protection (118). L. fermentum with an inactivated influenza vaccine increased TNF-α and IFN-γ 

and boosted serum anti-influenza IgA and total IgM, though significance was somewhat 

questionable (119). This strain also generated a balanced Th1/Th2 humoral response in mice 
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administered either Salmonella Typhimurium or ovalbumin, with a strong Th1 cellular immune 

response (120). Oral delivery of an inactivated SIV alongside L. rhamnosus or L. plantarum 

induced a protective CD8+ Treg cell response, protecting macaques from SIV challenge by 

preventing CD4+ T cell activation in the mucosa (121). Surgical patients treated with L. 

plantarum did not show the increased total mucosal IgA levels measured in animal studies (122). 

A theme of enhanced Th1 cellular responses emerges from many studies, while a more balanced 

Th1/Th2 humoral immune cytokine profile has also been observed. Recent work has shown that 

this Lactobacillus inflammatory balance is complex and likely a balance between Tregs and 

Th17 cells (123, 124). 

1.6 Lactic Acid Bacteria Vaccines 

The use of a live bacterial vaccine vector was described in 1981, when Formal et al. 

expressed Shigella antigens on the surface of Salmonella Typhi (125). Other bacterial vectors 

have been attempted, often using attenuated, non-pathogenic versions of common pathogens like 

Listeria and Salmonella enterica serotype Typhimurium (126). These vectors pose a serious 

safety risk, and the host will often develop antibodies against the vector and not the antigen of 

interest (127). The idea of using safe commensal bacteria as vectors was fielded in the 1990’s 

and required a number of proof-of-concept experiments to demonstrate that non-pathogens could 

generate an adequate vaccine immune response. Lactic acid bacteria (LAB), with their strong 

safety record, relatively simple genetic manipulation and association with mucosa led to their 

candidacy as vaccine vectors (127). Early attempts with LAB included Streptococcus gordonii, 

Streptococcus lactis, Lactococcus lactis, and various lactobacilli (128).  
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All of these strains are still studied as vector platforms (129), but the majority of research has 

moved towards Lactococcus or Lactobacillus because of inherent strain-specific probiotic and 

antigenic properties (130), particularly for lactobacilli (131, 132). 

1.6a Antigen Expression 

LAB vaccine vectors generally function as delivery vehicles for heterologous antigens 

expressed either intracellularly, embedded within the surface membrane, or secreted. This 

expression is typically controlled by plasmids encoding for fusion domains of the antigen of 

interest with trafficking domains from other bacteria (133). For example, fusion of an antigen 

with a peptidoglycan-binding domain or a surface-embedded enzyme can allow for surface 

expression of antigen motifs (134, 135). Other systems embed the antigen of interest within 

surface layer proteins (136, 137). Intracellular expression requires typical plasmid promoter 

expression (138), while extracellular secretion of antigen can be accomplished by adding 

secretion signals to antigens (139). Other variables can affect the immune response to LAB 

vaccines, including the route of administration (oral, intranasal, vaginal) and the addition of 

adjuvants either as fusion peptides with the antigen (140, 141) or as secreted (136, 142) or 

surface proteins (143).  

1.6b Immune Response 

Immune responses against LAB heterologous antigens can vary based on expression 

system, route of administration, strain, and adjuvants. Vaccination can induce both Th1 and Th2 

cytokines (with a tendency towards Th1) as well as antibodies associated with either T helper 

response (144-147). An interesting push-and-pull between inflammatory (Th17/IL-17) and 
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tolerant (Treg) cell types and cytokines has also been shown (146, 148-150). Overall, LAB 

vaccination is able to induce both systemic and mucosal antibodies and can protect hosts from 

disease morbidities and mortality (See Appendix A). These results indicate that mucosal 

immunity is the result of a complex interaction between powerful arms of the immune system 

that must maintain a delicate homeostasis, preventing autoimmune damage via inflammation 

while also targeting pathogens. 

1.7 Brief History and Epidemiology of HIV 

In 1981 a large number of homosexual patients with opportunistic diseases typically 

associated with immune suppression (Kaposi’s sarcoma, Pneumocystis pneumonia) began 

appearing at California and New York health clinics (151). Over the next five years this severe 

immunosuppression, coined Acquired Immune Deficiency Syndrome (AIDS) by the CDC in 

1982, continued to expand throughout the world (152). Of the many proposed causes for AIDS, 

several retroviruses targeting CD4+ T cells were identified by multiple research groups (153). 

Initially separate viruses (Lymphadenopathy Associated Virus, Human T Lymphotropic Virus-

III), these were shown to be the same virus in 1984 (154), and renamed Human 

Immunodeficiency Virus type 1 (distinct but related to HIV type 2) in 1986 (155). Since its 

identification HIV has become one of the most prevalent and deadly modern infectious diseases, 

estimated to have killed over 35 million people (156). Treatments and prevention tactics have 

drastically reduced mortality and virus acquisition, but the rate of new infections has alarmingly 

stabilized both in the United States (157) and globally (158). 
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1.8 HIV Genome Structure and Encoded Proteins 

The HIV genome follows the typical organization of a retrovirus, possessing three major 

genes (gag, pol, env) that encode the major structural proteins and essential enzymes of the virus. 

These large genes are cleaved by either viral or cellular proteases to yield smaller gene segments 

for translation.  

1.8a Gag proteins 

Short for group-specific antigen, gag encodes four proteins located within the envelope 

of the virus particle. These proteins are generated from the cleavage of a larger polyprotein (Gag 

precursor, pr55) by HIV protease following budding from the host cell (159). They include 

(abbreviation, kilodaltons):  

1. Matrix Antigen (MA, p17): Functions as an assembly scaffold between capsid proteins and the 

inside of the viral envelope (160).  

2. Capsid Antigen (CA, p24): Forms a conical-shaped structural shell to contain the viral genome 

and enzymes (161). 

3. Nucleocapsid (NC, p9): Binds to the unspliced HIV RNA genome and assists reverse 

transcription and integration steps by stabilizing interactions between the genome and HIV 

enzymes (162). 

4. Proline-rich (p6): Recruits cellular factors associated with vesicle transport to allow for viral 

budding (163). 
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These gag proteins often have additional functions as well. Capsid binding of Cyclophilin 

A has been shown to protect against host restriction factors (164). Soluble matrix proteins 

stimulate host inflammatory cytokine release (165), and p6 can initiate recruitment of Vpr into 

the nucleocapsid (166). 

1.8b Pol proteins 

Short for polymerase, the pol gene encodes three enzymes required for productive viral 

replication. These enzymes are generated by the cleavage of a larger polyprotein (Gag-Pol 

precursor, Pr160) by HIV protease (159). They include (abbreviation, kilodaltons): 

1. Protease (PR, p10): Cleaves the Gag and Gag-Pol precursor proteins into smaller 

functional subunits (167). 

2. Reverse Transcriptase (RT, p66, p51): Generates viral double stranded complementary 

DNA (dscDNA) from viral RNA (168). When bound to integrase, Vpr, MA, and certain host 

proteins, dscDNA is more stable and can traffic to the nucleus as the Pre-Integration Complex 

(PIC) (169). 

3. Integrase (IN, p32): Integrates the dscDNA viral genome into the host cell genome, 

resulting in integrated provirus (170). 

As with the gag proteins, pol proteins often have additional functions. Protease has been 

shown to cleave host cell proteins, leading to CD4+ T cell death and depletion (171). Integrase 

may be required for proper capsid core assembly during virion maturation (172), and reverse 

transcriptase may prevent nucleocapsids from aggregating with viral dsDNA, allowing space for 

protein binding and thus PIC assembly (173). 
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1.8c Env glycoproteins 

The env gene, short for envelope, has fewer proteins than gag or pol, encoding a large, 

heavily glycosylated precursor protein (gp160) that is cleaved into two subunits, gp120 and 

gp41. Both proteins remain non-covalently bound to each other in a trimeric form and are 

transported to the host cell surface for expression on what will become the virion envelope (159). 

The gp120-gp41 complex, known as a spike, is responsible for binding host cell surface 

receptors and initiating envelope fusion. Gp41 anchors the spike within the viral envelope and is 

responsible for viral and host membrane fusion, while gp120 is responsible for binding to host 

surface proteins, including CD4 and a variety of chemokine receptors (see section 1.6 for more 

detail on binding and fusion). Both proteins can have effects beyond their typical functions. 

Soluble gp120 has been shown to increase particle production in infected cells (174) and can 

impair B cell function by initiating abortive signaling in naïve B cells, causing secretion of TGF-

β1 (generally suppressive) and increasing surface expression of the inhibitory receptor FcRL4 

(175). Gp41 has been shown to modulate a large number of cytokines associated with the 

immune response (IL-6, IL-10, IL-22) (176). 

1.8d Regulatory and Accessory Proteins  

In addition to the three major HIV genes, several auxiliary proteins are also encoded in 

the HIV genome. These can be organized into regulatory proteins (responsible for interactions 

with viral RNA) and accessory proteins (perform a variety of functions, usually stopping host 

factors) (159). 
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Regulatory proteins:  

1. Transactivator of Transcription (Tat): A transcription factor that binds the Tat 

Responsive Element (TAR) portion of HIV RNA, indirectly phosphorylating RNA 

polymerase II (via host transcription factor P-TEFb) and thus drastically increasing 

the rate of HIV RNA transcription (177). 

2. Regulator for Expression of Viral Proteins (Rev): Binds to the Rev Response Element 

(RRE) portion of unspliced Env and allows for nuclear export (178). 

Accessory proteins: 

1. Viral protein R (Vpr): This protein serves many functions, from cell cycle arrest to 

proper reverse transcriptase function to import of HIV DNA into the nucleus (179). 

2. Viral Infectivity Factor (Vif): Initiates degradation of the host cell innate antiviral 

enzymes APOBEC3G and 3F, cytidine deaminases that converts cytidine to uridine. When 

packaged within HIV virions both APOBECs render HIV RNA indirectly useless by 

hypermutation or directly by blocking reverse transcriptase binding (180). 

3. Viral protein U (Vpu): Degrades CD4, thus preventing T cell activation, infection with 

other HIV virions, and interference with gp120 on newly budding virions (181). Vpu also 

enhances virion budding (182). 

4. Negative Factor (Nef): Downregulates many surface receptors, including CD4 and 

MHCI, and blocks antiviral protein incorporation into virions (183).  

1.8e Other Genome Regions 

The HIV genome possesses several important non-coding regions (159). Each end of the 

genome possesses a long terminal repeat (LTR) region, which primarily acts as a promoter for 
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polymerase binding. Within the LTR is the target sequence for viral transactivation (TAR or Tat 

responsive element). This region allows for polymerase and Tat binding, increasing the rate of 

transcription (177). Unspliced HIV RNA is transported out of the nucleus by the binding of Rev 

to the Rev response element (RRE), located within the env gene (178). Interestingly, the 

secondary structures of HIV RNA elements are complex and required for proper function (184). 

1.9 HIV Transmission 

HIV is typically transmitted from one individual’s infected fluid (blood, semen, pre-

ejaculate, vaginal fluid, rectal fluid, breast milk) to a recipient mucosal surface (80% of 

transmissions), excepting direct injection into the blood via needle (20% of transmissions) (185, 

186). Rates of transmission vary based on activity (sexual or otherwise), number of exposures, 

and the economic status of the subject’s country of residence (187). The risk-per-exposure rate 

can be mitigated by condom use, dropping from 0.82% to 0.18% in receptive men who have sex 

with men (MSM) (188). Antiretroviral therapy to prevent mother-to-child transmission can 

provide a helpful barrier to child seroconversion, especially when multiple drugs are used for the 

mother’s treatment (189). This same trend follows in discordant couples, who have a drastically 

decreased risk of partner transmission when the infected partner takes antiretrovirals (190). 

Blood transfusions posed risks early on for transmitting new infections, and despite monitoring 

of the blood supply recent incidents in India highlight the need for careful surveillance of 

transfusion blood as a potential route of transmission (191). 
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1.10 HIV Life Cycle  

 The life cycle of human immunodeficiency virus type 1 is similar to other retroviruses. It 

is an enveloped virus, possessing a phospholipid bilayer obtained during budding from a 

previous host cell. This envelope contains the viral capsid in which HIV RNA and various 

enzymes are safely stored. The complexities of each step of the HIV life cycle are still being 

elucidated, but most steps have been analyzed enough to offer a relatively detailed breakdown. 

1.10a Attachment and Fusion  

HIV entry begins when the surface trimer of gp120 binds to host cell surface CD4. 

Binding initiates a conformational change, shifting gp120 from a closed, antibody-resistant form 

to an open conformation (192). Shifting exposes new binding sites within the gp120 variable 

region loops (V1-V5) for host cell co-receptors. These host co-receptors are chemokine 

receptors, typically CCR5 or CXCR4, though a number of other co-receptors have been 

identified (193). Different strains of HIV tend to utilize different co-receptors, with 

macrophage/DC/T tropic strains using CCR5 and T cell-only strains typically using CXCR4, 

though exceptions exist (194). Only strains expressing CCR5 or CCR5 and CXCR4 are usually 

transmitted between humans (195). More conformational changes accompany co-receptor 

binding, inserting gp41 into the host cell membrane. Gp41 then folds on a hinge region, pulling 

the viral and cellular membranes together (196). Whether this process occurs within an 

endosome or at the cell surface has been debated, though it is likely endocytic (197, 198).  
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1.10b Uncoating, Reverse Transcription and Nuclear Import 

Once inside the host cell the HIV capsid must breakdown, or uncoat, to release viral 

enzymes and RNA. This uncoating cannot occur too early or late following entry (199). Once 

released from the capsid, HIV reverse transcriptase (RT) begins converting viral RNA to DNA 

(Fig. 1.3). Synthesis of the minus (-) DNA strand is from 5’ to 3’ and is primed by host tRNA 

binding to the primer binding site of viral RNA. This primer binding site is relatively close to the 

5’ end of the viral RNA, thus generating a relatively small strand of DNA. This small portion of 

minus DNA is then transferred to the 3’ end of the viral RNA for completion. As the RT builds 

the minus DNA strand it degrades the complementary RNA via ribonuclease H cleavage, except 

the primer binding site. This leftover primer binding site region is then used as the primer for the 

plus (+) DNA strand synthesis. This final plus strand synthesis is continuous due to circular 

formation of the minus strand (200, 201). The now double-stranded viral DNA is then 

transported into the nucleus with the help of a number of proteins (Vpr, capsid, matrix, host 

cofactors) that are still being identified (202, 203). 
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Figure 1.3 Steps in HIV reverse transcription. RNA is black, minus strand DNA is red, and plus strand DNA is 

blue. tRNA is represented by green drawings. The final completion step uses a circular template strand. Courtesy 

Ilina et al. (201). 

1.10c Integration and Latency 

Once within the nucleus the viral genome is incorporated into the host genome by viral 

integrase. Integrase cleaves host DNA, inserts the viral genome, and ligates the ends in the HIV 

genome (170, 204). When integrated into non-resting cells, active transcription of the HIV 

genome (provirus) can begin following recruitment of RNA polymerase II to the LTR region of 

HIV (205). However, in quiescent or resting T helper cells, the HIV provirus may lie dormant 

(latent) until the cell becomes activated. These latently infected cells are known as the latent 
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reservoir (206). This reservoir is estimated to survive for the lifetime of the host, though attempts 

to target latent provirus are underway (207, 208). 

1.10d Transcription and Nuclear Export 

Once embedded within the host genome, the HIV provirus can begin transcription by 

recruiting cellular RNA polymerase II. Transcription is later enhanced by the viral transcription 

factor Tat binding to the proviral TAR region (177). Early viral RNA exiting the host nucleus is 

fully spliced, allowing normal host exportins to traffic them out of the nucleus (209). Nuclear 

export of unspliced RNA is accomplished by the pol export protein Rev, which binds to the Rev 

Response Element (RRE) region of unspliced viral RNA and facilitates their movement through 

nuclear pore complexes (210). These HIV transcripts are either translated into HIV structural 

proteins and enzymes for virion formation and assembly, or remain as RNA genomes for later 

virion inclusion.  

1.10e Translation, Packaging and Budding 

Translation is controlled by several mechanisms that rely on secondary RNA structure 

(211). HIV is capable of using both typical mRNA cap-dependent (5’ CAP) translation, as well 

as cap-independent internal ribosomal entry sites (IRES) (211, 212). Translated polyproteins are 

cleaved by viral and host proteases, resulting in regulatory proteins (Tat, Rev) that affect further 

transcription, as well as structural proteins and enzymes for virion production. Formation of the 

virion is initiated by the Env, Gag and Gag-Pol polyproteins associating with the host plasma 

membrane, with Gag polyprotein also associating with two viral RNA strands (213, 214). As 

budding of the immature virion begins, the Gag polyprotein forms a lattice structure, associating 
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(from membrane inward) as matrix, capsid, and nucleocapsid. Following successful budding 

these proteins will be cleaved to confer full functionality. Budding is achieved by hijacking the 

host endosomal sorting complexes required for transport (ESCRT), the cell enzymes responsible 

for endosome budding (215). Final virion maturation involves cleavage of the Gag and Gag-Pol 

polyproteins by protease, with subsequent conformational changes altering internal virion 

structure to form a conical capsid that contains the RNA genome, integrase, protease, and reverse 

transcriptase, stabilized with nucleocapsid (213). 

1.11 HIV Vaccine History  

Early optimism and a lack of understanding of HIV led to an under-estimation of how 

long it would take to generate an effective HIV vaccine (216). Many vaccines have been 

designed, but only a select few have been deemed safe and potentially efficacious enough for 

human efficacy trials (217). The first efficacy trial relied on recombinant gp120 with alum, a 

commonly used aluminum salt adjuvant, and failed to elicit any protection (217). New trials 

using adenoviral (STEP, Phambili, HVTN 071) and canarypox (Thai/RV144) vectors were 

attempted. The canarypox trial is the only HIV vaccine trial to show any efficacy, with a slightly 

significant protection of 31% (218). The adenoviral trials were halted early because of a potential 

enhancement of HIV acquisition, likely due to increased numbers of mucosal T cells targeting 

the vector and thus creating a strong founder population for virus infection (219). DNA vaccines 

have also been attempted in combination with adenoviral vectors (HVTN 505), but were stopped 

early due to a lack of efficacy (220). The seventh and most recent efficacy trial (HVTN 702) is 

set to begin in 2016, utilizing a modified canarypox with a recombinant boost of gp120 and 

squalene (a naturally occurring 30-carbon oil) as an adjuvant (221, 222). While many vaccine 
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strategies have been proposed, safety, a lack of translational immune responses from animals to 

humans, and a basic lack of data, have prevented their use in extensive human trials (223, 224). 

1.12 HIV Broadly Neutralizing Antibodies 

Surface expression of gp120 and gp41 make them the most readily available HIV 

proteins for immune system targeting. In response these proteins have extreme sequence 

variability, which combined with glycosylation and structural conformation changes results in 

less than 2% of the Env protein surface available for antibody binding (225). Among these 

protein segments is a relatively conserved region of gp41 known as the membrane proximal 

external region (MPER). This ~22 amino acid region contains several binding sites for broadly 

neutralizing antibodies (bNAbs, see Fig. 1.4) (226, 227).  

 

Figure 1.4 Broadly neutralizing binding sites within HIV MPER. The MPER region contains multiple binding 

sites for neutralizing human anti-HIV antibodies, including the 2F5 and overlapping Z13e1/4E10 regions. Courtesy 

Song et al (228). 

 

These antibody-binding regions have been extensively studied for use as epitopes for 

neutralizing antibodies, resulting in dozens of potential therapeutic targets for vaccine and 

therapeutic antibody development (229-231). However, it is very difficult to generate 

neutralizing antibodies in the context of a vaccination. Most bNAbs require extensive somatic 
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hypermutation and have odd heavy chain structure (232). Interestingly, neutralization of HIV 

may not be required for adequate defense, especially in mucosal tissues. Antibody-dependent 

cellular cytotoxicity (ADCC) against HIV-infected cells only requires non-neutralizing antibody 

binding to viral proteins, and the importance of IgA for HIV neutralization at mucosal surfaces is 

poorly defined (232, 233). Recent experiments have shown serum IgA may interfere with serum 

IgG HIV neutralization, but mucosal IgA may be the key to preventing viral infection (234, 235).  

1.13 HIV Treatment 

Anti-HIV drugs are classified by their functionality. Entry and fusion inhibitors prevent 

receptor binding and membrane fusion, respectively, and target structural components of the 

virus or host cell (236, 237). Reverse transcriptase inhibitors fall into two categories: 

nucleoside/nucleotide RT inhibitors, which compete with viral RNA for binding to RT functional 

sites, and non-nucleoside RT inhibitors, which disable RT via non-competitive inhibition (238).  

Protease inhibitors bind to the active sites of protease and disable the enzyme via competitive 

inhibition with HIV proteins (239). Integrase inhibitors bind HIV integrase active sites and 

prevent HIV DNA strand integration into the host genome (240).  

Most patients receive a combination of drugs, a cocktail referred to as highly active 

antiretroviral therapy (HAART). This requires any HIV escape mutants to develop resistance to 

multiple drugs, which is unlikely (241). The introduction of HAART drastically lowered 

morbidity and mortality rates (242). However, patients must remain on drugs indefinitely due to 

latent infection.  
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Without an efficacious prophylactic HIV vaccine it was proposed that high-risk groups be 

administered anti-HIV drugs before they acquire the virus. This pre-exposure prophylaxis (PrEP) 

can be topical or ingested, and promising results were found in some clinical trials (243, 244). 

1.14 Humanized Mice 

Infectious diseases that only target humans require alternative model systems. Non-

human primates are cost prohibitive and require viral tropism modifications. Mouse models with 

recapitulated human cells are much less expensive and eliminate the need for host tropism 

alterations. These humanized mouse strains rely on immunodeficiencies in the mouse immune 

system to prevent graft rejection. Initial models relied on adoptive transfer of adult human 

peripheral blood, but did not allow for proper immune cell maturation and antigen training and 

would often suffer from graft-vs-host disease (245). In the late 1980’s the implantation of fetal 

thymus (for T cell maturation) and fetal liver (location of fetal hematopoietic cells) resulted in 

the generation of human immune cells for an extended period of time (246, 247). The isolation 

and injection of fetal hematopoietic cells reduced the costly need for surgical implantation and 

resulted in circulating lymphocytes. These animals could recapitulate certain aspects of HIV 

infection, including T cell depletion, and could be infected via mucosal challenge (248). Despite 

these positive results these mice still suffered from poor secondary lymphoid structure formation, 

inconsistent engraftment, and an inconsistent primary B cell infection/vaccination response 

(249). This was primarily caused by a lack of human leukocyte antigen (HLA) molecules in the 

mouse thymus, which was remedied by creating HLA-expressing knock-in mice (250). Other 

models attempted to remedy lymphocyte maturation problems by combining fetal thymus and 

liver transplants with an infusion of hematopoietic cells. This did allow for the generation of 
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human T cells educated in a human thymus, but also suffered from graft-vs-host disease (251). 

Humanized mouse models continue to evolve, with new xenografts, such as hepatocytes or lung, 

allowing for interesting new pathogen research that can be rapidly implemented (252, 253) 

(254). 

1.15 Rice Bran 

When rice undergoes processing for food consumption the inner kernel is separated from 

outer components (hull, bran, germ) to prevent spoilage (255).  The vast majority of nutrients, 

including complex carbohydrates, fatty acids, antioxidants, phytochemicals and proteins, are 

stored within these discarded outer layers (256-258). These layers, colloquially known as rice 

bran (RB), have been shown to have interesting health effects. RB components possess antibiotic 

(Salmonella, Vibrio, Shigella, Escherichia) and antiviral effects (cytomegalovirus, HIV) (255), 

can increase neutrophil phagocytosis (259), and increase IgG secretion (260). RB can also cause 

a down-regulation of inflammatory cytokines (261), the sequestration of IgE (262), and some 

anticancer effects (255). RB also influences probiotic intestinal bacteria, particularly lactobacilli 

(263). 
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Chapter 2: The Influence of Adjuvants on Immunogenicity and Gut Microbiota Following Oral 

Lactobacillus Vaccination 

 

2.1 Overview 

The use of lactobacilli as vaccine vectors has steadily grown in popularity since the 

1990’s. The natural adjuvant effects of certain species of Lactobacillus, particularly L. 

acidophilus and L. rhamnosus, can enhance host immune responses (264-267).  

This enhancement is the result of innate immune recognition of several cell wall 

components, including lipoteichoic acid (LTA) and peptidoglycan (PG) (268). LTA (or live 

lactobacilli stimulation) of Toll-like Receptor (TLR) 2/6 can trigger induction of IL-12, TNF-α, 

IL-1β, and IFN-γ, as well as several chemokine ligands (CCL2, CCL20) (267, 269, 270). 

Bacterial binding of nucleotide-binding oligomerization domain-containing 2 (NOD2), an 

intracellular pattern recognition receptor that binds muramyl dipeptide (a component of 

peptidoglycan), was able to induce IL-12 and TNF-α and boost Th17 responses (270, 271). 

Lactobacilli also possess surface layer proteins (Slp) which interact with dendritic cells via DC-

specific ICAM-3-grabbing nonintegrin (DC-SIGN; a C-type lectin receptor (272)) and can drive 

both inflammatory (IL-12p70, TNF-α, and IL-1β) and anti-inflammatory (IL-10) responses 

depending on the type of Slp (273, 274). This surface diversity is responsible for the variations in 

immune responses to different strains of lactobacilli (268, 275, 276).   

Lactobacillus vaccine systems typically utilize plasmids for heterologous antigen 

expression. Antigens are targeted to specific subcellular locations by fusion with trafficking 

domains from lactobacilli or other bacteria (133). Intracellular expression usually only requires 

an adequate promoter (139), and extracellular secretion can be accomplished by fusion of antigen 
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to an antigen-secretion signal (138). Surface expression can be accomplished by fusion with a 

PG or other cell wall domain, or fusion with a surface-expressed enzyme (134, 135). However, 

plasmids possess inherent problems, including spontaneous loss and the potential for unintended 

antibiotic gene spread (277). By integrating the heterologous antigen into the bacterial genome, 

these plasmid problems can be eliminated. Surface layer proteins are advantageous chromosomal 

integration sites that provide highly expressed platforms for the antigen and, as previously 

mentioned, are responsible for DC interactions (136, 137). 

The human immunodeficiency virus possesses a highly conserved region within its gp41 

envelope protein called the membrane proximal external region (MPER). There have been 

several human broadly neutralizing antibodies (BnAbs) mapped to specific regions of MPER 

(229). Thus the MPER region is an enticing region to exploit with vaccine strategies. We have 

previously shown that embedding a 16 residue peptide portion containing the 2F5 binding site of 

MPER is weakly immunogenic (136). Other HIV vaccines have suffered similar problems, the 

result of clonal deletion of anti-Env B cells due to auto- and polyreactivity with host and 

intestinal bacteria proteins (278-280). 

In an attempt to improve the immunogenicity of MPER several adjuvants were identified 

for co-expression in the Lactobacillus vector. IL-1β, a key inflammasome cytokine (281), has 

been shown as an effective mucosal vaccine adjuvant (282-284) and is required for proper 

cellular immune responses (285). Flagellin subunits, which signal through TLR5, have also been 

shown to be effective mucosal adjuvants, with strong inflammasome-dependent and independent 

responses allowing for redundancy in antigenicity (143, 286, 287). 

We have previously shown that recombinant L. acidophilus expressing both MPER and 

secreted IL-1β showed improved immune responses versus MPER alone (136). Our primary goal 
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was to validate these responses and compare them to MPER+FliC immunogenicity by orally 

dosing BALB/c mice. Previous experiments with MPER+IL-1β vaccination had increased 

IgG2b, an antibody associated with T-independent B cell activation (288), and there is evidence 

that neutralizing anti-MPER antibodies can be elicited via T-independent pathways (278). By 

circumventing T-dependent activation, a large founder population of T helper cells could 

potentially be avoided, thus reducing the likelihood of enhancing HIV infection (289). Our 

secondary goal was thus to measure T cell and B cell responses in mice lacking traditional T-

dependent activation. This was accomplished by orally dosing CD40L-deficient mice (CD40L
-/-

), 

which were incapable of traditional B-cell activation via CD40-CD40L binding (290). 

2.2 Materials and Methods 

2.2a Bacterial Strains and Culture Conditions 

All Lactobacillus acidophilus strains used in this study were grown from cultures 

generated as previously described (291). All strains were grown statically overnight in MRS 

broth supplemented with 5 µg/ml of erythromycin (Ery) in sealed 50mL or 250mL vials at 37˚C. 

The strains used in this study are listed in Table 1. Erythromycin resistance was confirmed by 

growth in Ery supplemented MRS broth and on Ery supplemented MRS agar plate. MPER 

surface expression was confirmed by flow cytometry (Gallios, Beckman Coulter) after staining 

cells first with human-anti-HIV (2F5, NIH AIDS Reagent Program) IgG, followed by mouse-

anti-human IgG Alexa488 (Molecular Probes).  
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FliC surface expression was confirmed by flow cytometry after staining cells first with rabbit-

anti-FLIC IgG (BioLegend), followed by goat-anti-rabbit IgG PE (Invitrogen). Mouse IL-1β 

secretion was confirmed by ELISA (Ready-SET-Go!, eBioscience).  

2.2b Mice and Immunization Schedule 

For study A (Fig. 2.1A), 6-8 week old BALB/c and CD40L-/- mice were obtained from 

The Jackson Laboratory. CD40L knockout was confirmed by PCR on tail snips using CD40L 

primers. Animal gut microbiomes were normalized by cage swap with the other mouse type and 

oral gavage of cecum contents from other mouse type one week prior to first vaccination. 

Bacterial cells were prepared from overnight culture and suspended in dosing buffer containing 

NaHCO3 (8.4 mg/mL) and soybean trypsin inhibitor (20 mg/mL, T9128, SIGMA) in ultrapure 

water. Three daily doses of 2x10
9
 CFU in 200 µl of dosing buffer were administered by oral 

gavage to each group of mice (6 mice/group) at weeks 0, 2, 4, 6, 8, and 10 (6 doses total). 

Colony forming units (CFU) were calculated by optical density measurements correlated with 

plated CFU. Each bacterial strain was administered to matching groups of BALB/c and CD40L
-/-

 

mice at the same time.  

2.2c Sample Collections and Tissue Processing 

Prior to each immunization fluids from each animal were obtained. Blood was collected 

via tail vein bleed prior to dosing, or by cardiac puncture at termination and centrifuged to isolate 

serum. Vaginal lavage was performed prior to dosing by washing the vagina 3-4 times with the 

same 100uL of PBS via pipette. Insoluble debris was removed by centrifugation. Feces were 

collected prior to dosing by placing mice into clean holding cups for 5 minutes and collecting 
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feces in pre-weighed tubes. 2x Protease Inhibitor in PBS was added at 10 µL/mg of feces. 

Contents were then homogenized and centrifuged to isolate supernatant. Two weeks after the 

final dose mice were euthanized (CO2 and cervical dislocation as per protocol). Vaginal lavage 

and feces were collected prior to sacrifice. Blood was collected by cardiac puncture, and cecum 

contents were transferred to pre-weighed tubes and resuspended like fecal pellets. Spleen, 

mesenteric lymph node, Peyer’s patches (PPs), large intestine (LI; without cecum), and female 

reproductive tract (FRT) were collected for preparation of cell suspensions in collection medium 

(RPMI w/o L-glutamine, supplemented with HEPES, pen/strep, and Gentamycin).  

For study A (Fig. 1A) single cell suspensions of spleen and PP cells were prepared by 

mashing tissues in GentleMACS dissociator (Miltenyi Biotec, Auburn, CA) and filtering through 

cell strainers. Isolation of lymphocytes from the colon and FRT were performed as previously 

described with some modifications (292). Briefly, mucus and epithelium were gently removed by 

massaging dissected tissues in PBS supplemented with 1 mM dithiothreitol (DTT) and 5 mM 

ethylenediaminetetraacetic acid (EDTA). The tissues were then cut into small pieces (~1mm
2
), 

suspended in digestion medium (collection medium with Liberase (125 µg/ml) and DNAse I 

(100 µg/ml) (Roche)), and applied to GentleMACS dissociator (Miltenyi Biotech). After 30 

minutes (LI) or 60 minutes (FRT) incubation at 37˚C cell suspensions were transferred to new 

tubes through cell strainers. Lymphocytes were isolated by Percoll gradient and suspended in 

culture medium (RPMI w/o L-glutamine, supplemented with L-glutamine, HEPES, pen/strep, 

fetal bovine serum, sodium hydroxide, sodium pyruvate, β-mercaptoethanol, non-essential and 

essential amino acids).  

For study B (Fig. 1B), 6-8 week old BALB/c mice were immunized as in study A. Mice 

were euthanized 12 hours after their final immunization. Serum, vaginal lavage, and cecum 
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contents were removed and frozen at -80°C. Tissues were removed and processed as previously 

described with modifications (293). Briefly, tissues were cut into small pieces and suspended in 

PBS supplemented with 5mL of DTT and EDTA in GentleMACS dissociator tubes. Tubes were 

sealed and placed sideways on ice and gently rocked for 15 minutes. Tubes were spun at 1500 xg 

for 1 minute, supernatant poured off, and tissues resuspended in another 5 mL of supplemented 

PBS. Rocking and supernatant removal were repeated and tissues were resuspended in 10mL of 

collection medium containing 450 U/mL of Collagenase VIII (Sigma-Aldrich). Vaginal samples 

were incubated at 37˚C for 60 minutes with one GentleMACS spin at 30 minutes and another at 

the end of incubation. Intestinal samples were incubated for 30 minutes at 37˚C and spun as the 

vaginal samples at the end of incubation. Resulting suspensions were washed with culture 

medium and processed as in study A. All single cell suspensions from experiment A were 

enumerated using Countess automated cell counter (Invitrogen) while suspensions from study B 

were enumerated using Cellometer Auto 2000 (Nexcelom).  

The care and use of experimental animals complied with the guidelines of Colorado State 

University (IACUC 14-5332A). 

2.2d MPER and SlpA specific ELISAs 

Maxisorp high-binding 96-well plates (Nunc) were coated overnight at 4˚C with 1 µg/ml 

of synthetic 17-mer MPER peptide (GNEQELLELDKWASLWN, Bio-Synthesis Inc.) or SlpA 

isolated from LaWT as previously described (294), suspended in carbonate coating buffer 

(Na2CO3 15Mm, NaHCO3 35mM in ultrapure water). Wells were blocked with 1% BSA in PBS 

for 1 hour at room temperature. After washing in 0.05%Tween/1% BSA/PBS, serum, vaginal 

lavage, fecal pellets and cecum contents were serially diluted 1:10 in PBS, added to wells, and 
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incubated for 2 hours at room temperature. Following washing, HRP-anti-IgG (serum) or HRP-

anti-IgA (other fluids) were added and incubated for 1 hour at room temperature. Color 

development with 3,3’,5,5’-tetramethylbenzidine (TMB) was terminated with sulfuric acid and 

absorbance (570-450 nm) was measured. To determine endpoint titer, fluids from each 

vaccination group prior to vaccination were included in the assay. The cutoff was calculated as 

the mean value of all negative controls for each vaccination group + 3.365 standard deviations, 

based on the 99% confidence interval standard deviation cutoff multiplier for an n of 6 (295). 

2.2e MPER-specific and total IgA ELISPOTs 

One day before cell isolation two sterile ELISPOT plates (MAIPSWU, EMD Millipore) 

were primed with sterile 70% ethanol, washed with water, coated with anti-IgA coating antibody 

at 10 µg /mL (ELISpot
Plus

 Kit, Mabtech), and sealed and incubated overnight at 4˚C. On the day 

of tissue isolation, two hours before cells were added the coating antibody was discarded and 

wells blocked with 200 µL/well of growth media. After incubation one plate (T) received 10,000 

cells/well in 100 µL of growth media, in duplicate. The other plate (S) received 250,000 

cells/well in 100 µL of growth media, in duplicate if possible. If enough cells could not be 

obtained from tissue then tissues were combined (typically only LI).  Cells were incubated at 

37˚C for 20 hours. After incubation cells were discarded and wells washed with PBS-Tween 

(0.05%). T plates received 100 µL/well of anti-IgA-biotin (1 µg/mL), while S plates received 

100 µL/well of MPER-biotin (1 µg/mL, GNEQELLELDKWASLWN-biotin, Bio-Synthesis Inc.) 

and both were incubated for 2 hours at room temperature. After discard and washing 100 

µL/well of Streptavidin-HRP was added and incubated for 1 hour at room temperature. Wells 

were then washed 3x with PBS-Tween, 3x with PBS, and 100 µL/well of 0.44 µm fresh filtered 
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TMB was added and incubated for 10 minutes (S plates) and 2 minutes (T plates). Reaction was 

stopped by washing 9x with distilled water. Plates were dried and spots counted using an 

Immunospot analyzer (Cellular Technology Limited). The B cell percentage of total cells plated 

was determined by flow cytometry. The number of MPER-specific antibody-secreting cells 

(ASC) per 250,000 B-cells was calvulated according to the following formula: (ASC counted) x 

(250,000/(250,000 x %B cells plated)). 

2.2f Flow Cytometry 

For B cell staining, single cell suspensions were washed and blocked with purified 

CD16/CD32 (BD). All antibodies used were anti-mouse unless stated otherwise. Cell 

suspensions were stained with anti-CD45-FITC, anti-CD38-PeCy7, and anti-CD19 Pacific Blue. 

For Treg staining, single cell suspensions were stained with anti-CD3-FITC, anti-CD4-PECy7, 

and anti-CD25-APC. Cells were then fixed and permeabilized according to the FOXP3 Fix/Perm 

Buffer Set protocol (eBioscience) and stained with anti-FoxP3-PE. All antibodies are from 

BioLegend unless specified. Cell markers were observed using a Gallios flow cytometer 

(Beckman Coulter). 

2.2g Fecal and cecum content DNA extraction, sequencing, and data processing 

Fecal and cecum DNA was extracted using the PowerFecal DNA isolation kit (MoBio). 

The hyper variable region 4 (V4) of 16s ribosomal RNA was amplified by PCR and resulting 

amplicon libraries quantified and normalized. Samples were fragmented and sequenced using 

MiSeq (Illumina) at the Colorado State University Nextgen Sequencing Core, with paired 250-

nucleotide reads (296). Resulting overlapping fragment reads were recombined to form contigs 
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and trimmed to eliminate low quality contig ends. These sequenced reads are filtered and 

duplicates collapsed, resulting in final sequences. These final sequences were matched by 97% 

similarity to matching operational taxonomic units (OTUs). Each OTU represents a taxonomic 

rank, typically down to the bacterial species, with the resulting group of OTUs per sample 

representing the microbiome of that sample. Processing was performed using mothur software 

(Dr. Patrick Schloss (297)) and principle component analysis generated using the vegan plugin 

for R software (R development team). 

2.2i Statistics 

 Groups were compared for significant differences by analysis of variance using the non-

parametric Mann-Whitney-Wilcoxon test using Prism 6.0h software (GraphPad). Significance 

between serum and vaginal antibody levels over time were calculated by comparison of area under 

independent receiver operating characteristic (ROC) curves, also using Prism 6.0h. Differences 

between SlpA ELISA groups were compared by Dunn’s multiple comparisons test following 

Kruskall-Wallace H test. 

 

Table 2.1 Mutant L. acidophilus strains used in this study. All strains were previously derived from 

Lactobacillus acidophilus substrain NCFM. 

Strain Erythromycin 

resistance 

Surface MPER SlpA 

Fusion Protein 

Adjuvant (via plasmid) Reference 

LaWT + − − (298) 

MPER + + − (136) 

MPER+IL-

1β 

+ + + 

(Secreted mouse IL-1β) 

(136) 

MPER+FliC + + + 

(Surface-displayed, ionic-

bound Salmonella 

flagellin protein C) 

(291) 
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Figure 2.1 Study design.  Two study designs were used for these experiments. Both studies have identical 

vaccination schedules. Animals in study B were terminated 60 hours after the first final immunization (12 hours 

after third final immunization). 

A

B
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2.3 Results 

2.3a Oral administration of adjuvanted MPER-expressing L. acidophilus produces significant 

levels of anti-MPER serum IgG 

We have previously shown that oral administration of strains expressing only MPER or 

MPER+IL-1β can induce anti-MPER antibodies (136). Here we used these two strains, along 

with a MPER+FliC strain (See Table 2.1), to determine if the addition of FliC would enhance 

MPER immunogenicity in BALB/c mice. Groups of mice were administered 5 × 10
9
 CFU of 

each strain for three days every two weeks, for a total of 6 administrations. Two weeks after the 

final dose animals were sacrificed and serum, vaginal lavage, fecal pellets, and cecum contents 

were collected. Anti-MPER antibody levels were determined by endpoint dilution in an isotype-

specific ELISA. Our results show that when MPER-expressing L. acidophilus is administered in 

conjunction with constitutively expressed secreted IL-1β or surface FliC, anti-MPER antibody 

levels are significantly higher in serum (Figure 2.2). Anti-MPER serum IgG levels were not 

significantly different between adjuvant groups. In contrast, no significant difference was 

observed for anti-MPER IgA levels in vaginal lavage between adjuvant strains or compared to 

the MPER-only strain. Levels of anti-MPER IgA in fecal pellets and cecum contents were 

typically too low to be detected, thus no statistical differences were observed between treatment 

groups. 
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Figure 2.2 Anti-MPER antibody endpoint titers are significantly higher in adjuvant mice. BALB/c mice were 

treated orally with L. acidophilus strains.  Serum (A) and vaginal lavage (B) were collected and processed as 

described in Methods. Anti-MPER IgG was measured in serum, anti-MPER IgA was measured in vaginal lavage. 

Groups (MPER N=6, MPER+IL-1β and MPER+FliC N=12) were compared by analysis of variance using non-

parametric Mann-Whitney-Wilcoxon test. If significant, exact two-tailed P-value is displayed. 

2.3b Significant antigen-specific serum IgG was induced by L. acidophilus strains expressing 

adjuvant. 

We have previously shown that anti-MPER antibody levels in the serum increase over 

time when mice are vaccinated every two weeks (136). Our goal was to similarly assess 

immunogenicity of MPER+FliC as measured by serum IgG and vaginal IgA. To determine anti-

MPER antibody levels over time, serum and vaginal lavage were collected for each animal prior 

to each vaccine administration. Serum anti-MPER IgG or vaginal anti-MPER IgA titers were 

determined by ELISA. Our results showed that L. acidophilus combined with either secreted IL-

1β or surface FliC induced significantly higher levels of serum IgG over the vaccination course 

(Fig. 2.3A). MPER-specific vaginal IgA was not significantly different between vaccine groups 

(Fig. 2.3B). 
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Figure 2.3 Anti-MPER antibody endpoint titers are elevated in mice over time. BALB/c mice were treated 

orally with L. acidophilus strains.  Serum and vaginal lavage were collected every two weeks prior to each vaccine 

administration as described in Methods. Anti-MPER IgG was measured in serum (A), anti-MPER IgA was 

measured in vaginal lavage (B). The mean (MPER N=6, MPER+IL-1β and MPER+FliC N=12) for each timepoint 

is plotted. Significance between vaccinations was calculated by comparison of areas under independent receiver 

operating characteristic (ROC) curves. Only MPER vs. MPER+IL-1β (IgG; p=0.0225) and MPER vs. MPER+FliC 

(IgG; p=0.0358) were significantly different. 

2.3c Oral L. acidophilus stimulated anti-S-layer IgG and IgA in all vaccine groups. 

We have previously shown immunization with L. acidophilus consistently induces anti-S-layer 

antibodies (136). To determine whether the IL-1β or FliC adjuvants influenced anti-S-layer 

antibody titers, mouse fluids were endpoint diluted and measured by anti-S-layer ELISA. Our 

results show that anti-S-layer antibody titers were not significantly higher in any vaccinated 

group (Figure 2.4).  

 

Figure 2.4 Anti-S-Layer antibody endpoint titers are the same regardless of adjuvant strain. BALB/c mice 

were treated orally with L. acidophilus strains.  Serum, vaginal lavage, fecal pellets, and cecum contents were 

collected as described in Methods. Anti-S-layer IgG was measured in serum, and anti-S-layer IgA was measured in 

other fluids. Groups were compared by Dunn’s multiple comparisons test. MPER and MPER+FliC N=6, MPER+IL-

1β N=12. No significance differences between vaccine group fluids were observed. 

1 2 3 4 5 6
1

10

100

1000

Dose

S
e
ru

m
 I
g

G
(a

n
ti
-M

P
E

R
 e

n
d

p
o

in
t 
ti
te

r)

MPER+IL-1β

MPER Only

MPER+FliC

1 2 3 4 5 6
1

10

100

1000

Dose

V
a
g

in
a
l 
Ig

A
 

(a
n

ti
-M

P
E

R
 e

n
d

p
o

in
t 
ti
te

r)

MPER+IL-1β

MPER

MPER+FliC

A B

Serum Vaginal Fecal Cecal Serum Vaginal Fecal Cecal Serum Vaginal Fecal Cecal
1

10

100

1000

10000

A
n
ti
-S

-l
a
y
e
r 

E
n
d
p
o
in

t 
ti
te

r 
(a

n
ti
lo

g
)

MPER + FliCMPER MPER + IL-1β



  

  

 43 

2.3d MPER-specific IgA-secreting cells are increased following oral vaccination with L. 

acidophilus with adjuvants. 

In order to identify actual numbers of antibody-secreting cells and their tissue locations, 

single-cell suspensions of various tissues were analyzed by anti-MPER ELISPOT. At the time of 

termination, mouse spleen, mesenteric lymph nodes (MLN; 1-2 per mouse), Peyer’s patches (PP; 

5-6 per mouse small intestine), female reproductive tract (FRT; vagina to ovaries), and large 

intestine (LI; from end of cecum to rectum) were removed and digested to single-cell 

suspensions. 250,000 cells were plated in duplicate and the number of spots after 18 hours of 

37C incubation were analyzed by ELISPOT reader. A portion of each cell suspension was 

analyzed by flow cytometry to determine the percentage of CD45+ CD19+ cells. Our results 

indicate that MPER-specific B cells following L. acidophilus vaccination typically reside within 

mucosal tissues. Only L. acidophilus secreting IL-1β showed a significant increase in antibody-

secreting cells within the FRT (Fig. 2.5A). However, when all MPER-specific IgA-secreting 

cells are pooled (total MPER-specific IgA-secreting cells/animal) both IL-1β and FliC 

adjuvanted L. acidophilus showed significantly higher percentages of secreting cells (Fig. 2.5B). 

 

Figure 2.5 Anti-MPER IgA-secreting cells are elevated in adjuvant strain mice. BALB/c mice were treated 

orally with L. acidophilus strains.  Spleen, Peyer’s patches, mesenteric lymph node, female reproductive tract, and 

large intestine (sans cecum) were single-cell digested as described in Methods. 250,000 cells/well were plated and 

resulting spots measured by ELISPOT reader. Number of anti-MPER IgA-secreting cells were extrapolated based on 

flow cytometry % of CD45+ CD19+ cells (A). MPER N=6, MPER+IL-1β and MPER+FliC N=12. FRT were 

pooled in groups of two, LI were typically pooled in groups of two or more. For graph (B) all tissues were pooled, 

comparing the frequency of cells within each vaccine group. Groups were compared by analysis of variance using 

non-parametric Mann-Whitney-Wilcoxon test. Significant exact two-tailed p-values are displayed. ASC = antibody 

secreting cells. 
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2.3e Vaccine strain did not affect total number of IgA-secreting cells. 

 In order to identify the total number of IgA-secreting cells in each tissue compartment, 

single-cell suspensions of various tissues were measured by anti-IgA ELISPOT. Our results 

show that there was no difference between vaccine groups regarding total IgA-producing cells, 

and that large intestines possessed the most IgA-secreting cells of the isolated tissues (Fig. 2.6). 

  

 

Figure 2.6 BALB/c IgA-secreting cells are elevated in large intestines. BALB/c mice were treated orally with L. 

acidophilus strains.  Spleen, Peyer’s patches, mesenteric lymph node, female reproductive tract, and large intestine 

(sans cecum) were single-cell digested as described in Methods. 10,000 cells were plated and resulting spots 

measured by ELISPOT reader. MPER N=6, MPER+IL-1β and MPER+FliC N=12. FRT were pooled in groups of 

two, LI were typically pooled in groups of two or more. Groups were compared by analysis of variance using non-

parametric Mann-Whitney-Wilcoxon test. Significant exact two-tailed p-values are displayed. ASC = antibody 

secreting cells. 
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We have previously shown that oral administration of L. acidophilus expressing 

MPER+IL-1β resulted in IgG3b antibody secretion (136). Because this antibody subtype is 
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S
ple

en PP
M

LN
FR

T LI

S
ple

en PP
M

LN
FR

T LI

S
ple

en PP
M

LN
FR

T LI
1

10

100

1000

10000

A
S

C
/1

0
,0

0
0
 c

e
lls

MPER + FliCMPER MPER + IL1β



  

  

 45 

acidophilus vaccine strains to identify if the vaccine immune response requires CD40L binding 

to CD40 (classical T-dependent activation). Our results indicate that anti-MPER antibody levels 

were significantly lower in CD40L
-/-

 mice versus BALB/c wild type mice, except serum IgG in 

the MPER only vaccination groups (Fig. 2.7A). Anti-S-Layer antibody levels were significantly 

higher in all BALB/c groups versus CD40L
-/-

 (Fig. 2.7B). 

 

Figure 2.7 Anti-MPER and anti-S-layer antibody endpoint titers are much lower in CD40LKO mice than 

BALB/c. BALB/c and CD40L
-/-

 mice were treated orally with L. acidophilus strains.  Serum and vaginal lavage 

were collected as described in Methods. Anti-MPER serum IgG and vaginal IgA (A), and anti-S-Layer serum IgG 

and vaginal IgA (B), were measured by endpoint titer of terminal fluids. BALB/c and CD40L
-/-

 had the same 

number of mice, MPER N=6, MPER+IL-1β and MPER+FliC N=12. The non-parametric Mann-Whitney-Wilcoxon 

test was used to tesy for significant differences between mouse strain/fluid/vaccination (ex. BALB/c Serum MPER 

vs. CD40L
-/-

 Serum MPER). *p<0.05, **p<0.01. 
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2.3g CD40L MPER and Total IgA ELISPOT levels 

MPER-specific responses in CD40L
-/-

 mice would indicate the potential for a T-

independent B cell activation pathway. Cell suspensions from all CD40L-/- tissues were 

subjected to MPER-specific IgA ELISPOT and total IgA ELISPOT, as with BALB/c mice. No 

MPER-specific IgA secreting cells were detected in any vaccination group (Fig 2.8A). Total IgA 

secreting cells were detected in most tissues (Fig. 2.8B), but had ~2-4 fold less cells than their 

wild-type counterparts (Table 2.2).  

 

Figure 2.8 No MPER-specific antibody secreting cells were detected in CD40LKO tissues. CD40L
-/-

 mice were 

treated orally with L. acidophilus strains.  Spleen, Peyer’s patches, mesenteric lymph node, female reproductive 

tract, and large intestine (sans cecum) were single-cell digested as described in Methods. 10,000 cells were plated 

and resulting spots measured by ELISPOT reader. MPER N=6, MPER+IL-1β and MPER+FliC N=12. FRT were 

pooled in groups of two, LI were typically pooled in groups of two animals or more. Groups were compared by 

analysis of variance using non-parametric Mann-Whitney-Wilcoxon test. Significant exact two-tailed p-values are 

displayed. ASC = antibody secreting cells. 

 

Table 2.2 Total IgA is elevated in BALB/c mice versus CD40LKO. Total numbers of spots for each tissue and 

vaccination were averaged for BALB/c mice. These averages were then divided by the corresponding 

organ/vaccination in CD40L
-/-

 mice. A ratio greater than 1 indicates a higher number of ASC in BALB/c mice. 

BALBc/CD40L
-/-

 MPER MPER+ IL-1β MPER+FliC Average 

Spleen 6.2 4.5 3.6 4.8 

Peyer’s Patch 1.9 1.1 0.7 1.2 

Mesenteric Lymph Node 2.5 1.7 2.1 2.1 

Female Reproductive Tract 4.9 0.9 0.9 2.2 

Large Intestine 1.8 4.1 1.3 2.4 
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2.3h Foxp3 and CD25 expression by T helper cells is stable regardless of vaccination.  

The lack of specific immune responses in CD40L
-/-

 mice implies that L. acidophilus 

vaccination requires T cell help. To better characterize the T cell responses, a second set of 

experiments using only BALB/c mice was initiated (Fig. 2.1C). Mice received the same L. 

acidophilus and dosing conditions as in the initial study but were sacrificed 12 hours after the 

final dose (60 hours after the first of the final three doses). The resulting single cell suspensions 

were stained for CD3, CD4, CD25, and FoxP3 and analyzed via flow cytometry. CD3+CD4+ 

cells typically fall under the category of T helper cells. CD25 is one of several markers of 

activation, and FoxP3 (required for T regulatory function) expression in the presence of CD25 

expression generally marks T regulatory cells. Initially, the CD25-FoxP3+ T helper cell thought 

to be a minor population of inactive but potential Tregs (299). Recently, these cells have been 

shown to be the primary subset of functional Tregs within mucosa (300). In this study activated 

T helper cells (FoxP3-CD25+) in the spleen remained stable regardless of vaccination. The 

percentage of traditional Tregs was reduced in MPER+IL-1β mice and trended towards an 

increase in MPER+FliC mice, while the percentage of non-traditional Tregs was increased in the 

MPER+FliC mice (Fig. 2.9A). Peyer’s patches from MPER+FliC immunized mice also 

exhibited an increase in both subsets of Tregs (Fig. 2.9B). In the mesenteric lymph node this 

trend continued in MPER+FliC versus MPER+IL-1β animals regarding non-traditional Tregs, 

but LaWT animals had significantly higher levels of traditional Tregs and activated T helper 

cells (Fig. 2.9C).  
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Figure 2.9 Treg marker expression is elevated in CD3+CD4+ T cells of Peyer’s patches. Single cell suspensions 

of each organ were stained with antibodies against CD3, CD4, CD25 and intracellular FoxP3. Significance was 

calculated by Tukey’s multiple comparisons test following two-way ANOVA. 

2.3i IL-17 ELISA in 72 hour supernatants are slightly elevated in Peyer’s patches. 

In order to measure IL-17 production single cell suspensions of 1 million cells in 200 L 

of growth medium were incubated for 72 hours. Supernatants were removed and run in duplicate 

on IL-17 ELISA. IL-17 expression was low or undetectable in spleen and MLN regardless of 

vaccination. However, cells from Peyer’s patches in MPER-only and MPER+FliC vaccinated 

mice had significantly higher levels of IL-17 than either control vaccination (Fig. 2.10). IL-17 

levels after MPER+IL-1β vaccination was significantly lower versus both MPER-alone and 
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MPER+FliC, and MPER+FliC was significantly lower than MPER-alone (Fig. 2.10, bottom two 

significance lines). These results indicate that vaccination does induce elevated levels of IL-17 

that might raise safety concerns for inflammation in the mucosa. 

 

Figure 2.10 IL-17 is elevated in MPER and MPER+FliC incubated cell supernatant. 1x10
6
 cells were isolated 

from Peyer’s patches and incubated for 72 hours in 200uL of growth media. Values below limit of detection are not 

displayed. Groups were compared by analysis of variance using Holm-Sidak's multiple comparisons test following a 

normal one-way ANOVA (**p<0.01, *p<0.05). 

2.3j L. acidophilus vaccine strains induce changes in intestinal microbial community structure. 

The gut microbiome is a powerful organ, protecting against invading pathogens and 

helping maintain a homeostatic mucosal environment (71, 301). The influence of the microbiome 

and probiotics on vaccine efficacy has been tested in a number of studies, with some showing 

improved vaccine efficacy and others showing no difference or even negative effects (302, 303). 

However, the effects of mucosal vaccine vectors on the gut microbiome are relatively unexplored 

(304).  
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Research on mucosal bacterial influence is often hampered by expensive sequencing 

assays, daunting data analysis and confounding variables such as diet, genetics and the number 

of study participants. Of the few studies conducted all utilized live attenuated versions of 

pathogens, with two studies showing no effect on the microbiome (305, 306), and one showing 

variations in diversity that correlated with non-vaccine variables such as animal handling and 

host geographic origin (307). These results point to mucosal vaccination as a relatively minor 

perturbation for the host microbiome, often with no evident consequences. This has not been 

tested with non-pathogenic mucosal vaccines, such as lactobacilli vectors. These vectors provide 

an interesting window into the potential influence dual-function bacteria (probiotic and vaccine) 

may serve in the host. Any potential alterations could impact, for better or worse, the delicate 

symbiosis between host mucosal immune system and commensal bacteria. To this end the fecal 

microbiome of BALB/c mice was analyzed to determine if any changes in microbiome species 

structure occurred in conjunction with vaccination.  

The fecal microbiome of three mice per group at three timepoints for each immunization 

group were analyzed by sequencing of bacterial 16s rRNA to detect changes in microbial 

community structure. Differences between timepoints within each treatment group were 

measured by principle components analysis (PCA). Untreated animal microbiome clustering had 

little variation over time, resulting in overlapping of PCA ovals (Fig. 2.11A). When vaccine 

strains were introduced significant microbial community structure changes were observed. 

MPER-only vaccination caused considerable changes after 2 weeks, with a slight restoration 

towards pre-vaccine species at 6 weeks (Fig. 2.11B). MPER+IL-1β vaccination revealed changes 

as well, with the microbiome shifting further over time (Fig. 2.11C).  
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MPER+FliC vaccination caused an initial shift, which changed slightly over time but still 

possessed similarities versus timepoint 0 (Fig. 2.11D). 

 

Figure 2.11 Variations in microbial community structure over time following vaccination. Following 

sequencing and contig cleanup OTUs for each vaccination and timepoint were compared via nonmetric 

multidimensional scaling principle components analysis (NMDS). Timepoints 0 (pre-vaccination), 2 (2 weeks after 

first vaccination), and 6 (6 weeks after first vaccination) are shown for untreated (A), MPER-only (B), MPER+IL-

1β (C) and MPER+FliC (D). 

2.4 Discussion 

An effective HIV vaccine is desperately needed. Even the most promising vaccination 

strategies have had limited success (217). Alternative HIV vaccination strategies offer 

advantages over traditional parenteral (non-mucosal) vaccination. One of these alternative 

strategies is the lactic acid bacteria (LAB) vector. The past two decades have seen a drastic 

increase in the number of studies utilizing LAB as vector systems, particularly of the genus 

Lactobacillus (130, 133).  
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Lactobacilli offer a number of advantages over other vaccine methods, including safety, 

straightforward non-parenteral administration, and relatively simple mass production (127). Most 

importantly lactobacilli readily accept heterologous antigens and possess intrinsic adjuvanticity 

that can be augmented with heterologous adjuvants. However, before lactobacilli can be used 

clinically their ability to target notoriously non-immunogenic HIV antigens must be better 

understood (308). 

 To that end we constructed several Lactobacillus acidophilus strains expressing the 

highly conserved MPER portion of HIV Env gp41 (136).  Previous vaccines have encountered 

problems with immunogenicity of this region (136, 278-280). The addition of adjuvants could 

enhance the anti-MPER immune response, with evidence pointing to toll-like receptor signaling 

as a key mechanism for this enhancement (136, 278, 309). To take advantage of TLR signaling 

an adjuvant L. acidophilus strain targeting TLR5 was constructed (291). Our primary goal was to 

determine if these adjuvant-expressing lactobacilli could improve immunogenicity against HIV 

MPER. Our secondary goal was to better elucidate the mechanisms behind enhanced 

immunogenicity.  

Our primary conclusion is that adjuvants significantly improved lactobacilli 

immunogenicity as measured by both systemic and mucosal antibody immune responses. Our 

secondary conclusions show T cell help is required for antibody induction, that Lactobacillus 

vaccination modulates IL-17 and Treg responses, and vaccination induces significant changes to 

the gut microbiome. 

A variety of adjuvants to improve lactobacilli vaccine responses have been attempted, 

with promising results for improved antibody and cell-mediated immunity (143, 144, 310, 311). 

In this study MPER-lactobacilli expressing either surface FliC or secreted IL-1β significantly 
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improved systemic IgG versus non-adjuvant MPER-L. acidophilus. Levels of vaginal anti-MPER 

IgA were not significantly increased with adjuvant strains, but the presence of anti-HIV 

antibodies in the vaginal mucosa is likely key for protection against HIV challenge (312, 313).  

The number of anti-MPER IgA secreting cells was significantly higher with adjuvant 

lactobacilli, indicating that these adjuvants may circumvent clonal deletion of MPER-specific B 

cells (278). 

Previous experiments by our lab and others indicated the potential for a T independent B 

cell response, which would be advantageous against HIV (39, 136, 278). We addressed this 

question by vaccinating CD40L knockout mice, a strain incapable of traditional CD40-CD40L 

T-cell dependent B cell activation. Anti-MPER ELISA and ELISPOT had virtually no anti-

MPER antibody or anti-MPER antibody secreting cells. This indicates that T cell help through 

traditional CD40-CD40L binding is required for proper anti-MPER antibody production in this 

model system. 

The oral route of delivery, as opposed to parenteral routes, is a key factor in 

understanding resulting immune responses. The intestinal immune environment is complex, 

having to strike a delicate homeostatic balance between tolerance of commensal bacteria and 

inflammation against potential pathogens (314). This has been demonstrated by lactobacilli 

vaccine studies that have variations in Th17 (inflammatory) and Treg (tolerance) cytokines and 

cell levels (146, 148-150, 315, 316). In this study we made similar observations of this push-and-

pull between inflammation and tolerance. Proinflammatory IL-17 levels were elevated in the 

Peyer’s patches of vaccinated animals, while mucosal Treg levels were also elevated.  
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These variations were not consistent across all vaccinations and more data are needed, but 

evidence in our study and others points to lactobacilli vaccines as potent influencers of intestinal 

homeostasis. 

The homeostatic balance of the gut is influenced not only by the host but the commensal 

bacteria within. Dysbiosis of the gut microbiome can have severe consequences (317). Therefore 

the effects  of oral vaccines on the microbiome should be considered. Only a few studies have 

attempted to identify any changes in the gut microbiome following mucosal vaccination, with 

most evidence pointing to vaccines having little effect (305-307). In order to observe the effects 

of our lactobacilli strains on the gut microbiome we measured fecal 16s rRNA for each vaccine 

group over time. To our surprise there were significant differences in microbiome composition 

within each vaccination group over time. These data suggest that mucosal vaccination with 

probiotic bacteria can alter the gut microbiome. Such alterations may be beneficial, detrimental 

or inconsequential to the host, but regardless future vaccine studies must take these changes into 

account. 

 Although the results and implications of these experiments are exciting and intriguing, 

there are several weaknesses. By conducting these studies in mice we were limited by immune 

differences between mice and humans, particularly in the mucosa (318, 319). There is also no 

standardized measure of anti-MPER antibodies, thus comparisons between endpoint titrations 

must be used. Other assays suffer from low cell numbers from mucosal tissues, as well as the 

small volumes of sera and vaginal fluid, limiting the number of experiments that can be 

performed. Ultimately, challenge studies in non-human primates will be required to determine 

the efficacy of the Lactobacillus vaccine platform. 
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Despite some limitations in assays and the model system, results from these experiments 

allow us to make several important conclusions. The adjuvants used to augment MPER-L. 

acidophilus significantly improved anti-MPER antibody responses. These responses required 

traditional T cell help for antibody production, and vaccination caused variations in markers of 

inflammation and tolerance, as well as variations in the gut microbiome over time. In conclusion 

L. acidophilus vaccine vectors targeting HIV offer a promising system that demands further 

research. 
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Chapter 3: Effects of Rice Bran on L. acidophilus Vaccine Strains In Vitro and In Vivo 

 

3.1 Overview 

Prebiotics are dietary fibers and starches that are indigestible by the host but may be used 

as substrates for bacterial fermentation. Prebiotics have been shown to influence the mucosal 

immune system by altering the intestinal flora, typically by providing nutrients to selected 

bacteria (typically probiotics like lactic acid bacteria) (320, 321). This boost of beneficial 

commensals usually results in a reduction of inflammation and an increase in Tregs and anti-

inflammatory cytokines (321). It was proposed that prebiotic supplementation could improve 

vaccine immune responses, especially in undernourished youth (322). However, studies 

conducted had mixed results, with animal studies showing some successful use against 

Salmonella and influenza (323, 324), while human trials generally showed no change in vaccine 

efficacy (325, 326), though interestingly allergic responses tended to be reduced (302, 327). 

When rice undergoes processing for food consumption the inner kernel is separated from 

outer components like the hull, bran and germ preventing spoilage (255).  The vast majority of 

nutrients, including several classified as potential prebiotics, are stored within these discarded 

outer layers (256-258). These layers, colloquially known as rice bran (RB), have been shown to 

have interesting health effects outside of improved nutrition. RB components have been shown 

to possess antibiotic (Salmonella, Vibrio, Shigella, Escherichia) and antiviral effects 

(cytomegalovirus, HIV) (255), and to modulate immune cell activity (neutrophil phagocytosis 

(259), increased IgG secretion (260)). Down-regulation of inflammatory cytokines (261) and 

sequestration of IgE (262) can reduce allergy symptoms, and a number of studies both in vitro 

and in vivo have demonstrated RB anticancer effects (255). Rice bran has also been shown to 
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influence probiotic intestinal bacteria (prebiotic effects). Mice on a 10% rice bran diet showed 

increased total mucosal IgA levels, likely by increasing Lactobacillus concentration in the gut 

(263), and the addition of rice bran to Lactobacillus-treated pigs greatly improved pathologies 

associated with rotavirus infection (328). These results prompted us to test the influence, if any, 

that rice bran and its extracted nutrients can have on vaccine-strains of L. acidophilus. We first 

measured any variations in growth and antigen expression in vaccine strains grown in rice bran 

extract supplemented media. We then observed if a diet supplemented with rice bran altered 

bacterial gut survival and immunogenicity of the MPER-only vaccine strain. 

3.2 Materials and Methods 

3.2a Rice bran nutrient extraction 

4 g of crushed rice bran (Neptune variety) was combined with 42.6 mL of 80% Methanol, 

vortexed, and incubated overnight at -80°C. The solution was then centrifuged at 1500 xg for 5 

minutes. Supernatant was removed and transferred to pre-weighed 1.5 mL tubes and incubated at 

-80°C. Samples were then dried using a SpeedVac (conditions: 45°C, 5 minute heat time, 8 hour 

run time, vacuum 7.5). Samples were weighed after each session until liquid loss was 

undetectable by scale. Samples were then stored at -20°C until used. 

3.2b MRS broth with rice bran extract supplement 

De Man, Rogosa Sharp (MRS) broth w/o dextrose (US Biological) was supplemented 

with dextrose (DEX, 20 g/L) and/or rice bran extract (RBE, 100 mL/L) to yield four separate 

media types (–DEX–RBE, +DEX–RBE, –DEX+RBE, and +DEX+RBE). All broths were 
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supplemented with 5 µg/ml of erythromycin. All in vitro figures use the following color scheme 

= –DEX–RBE, +DEX–RBE, –DEX+RBE, +DEX+RBE. Green lines denote the – control 

LaWT for FliC and IL-1β expression experiments. 

3.2c Measuring growth over time 

Each strain was grown in 2 mL/well of the specified media in a 24-well plate. Inoculum 

of 1x10
6
 bacteria/well was measured by optical density and applied to each well and mixed. 24-

well plate was then sealed with Parafilm (Bemis NA) and placed in the sealed EnSpire 

Multimode Plate Reader chamber (Perkin Elmer). Sample chamber was maintained at 37°C.  

Samples were mechanically shaken by the plate reader and optical density measured at 600nm 

every 20 minutes for 20 hours. 

3.2d Surface antigen and secreted IL-1β detection  

All strains were grown statically in separate tubes in each MRS media. At the designated 

timepoint post inoculation (0, 4, 8, 15, 19, and 25 hours) bacteria were pelleted, washed twice in 

PBS, and stained with either human-anti-HIV IgG (2F5, NIH AIDS Reagent Program), followed 

by mouse-anti-human IgG Alexa488 (Molecular Probes), or for FliC surface expression first 

with rabbit-anti-FLIC IgG (BioLegend), followed by goat-anti-rabbit IgG PE (Invitrogen). For 

mouse IL-1β secretion, MPER+IL-1β and LaWT strains were grown in 2 mL/well of a 24-well 

plate as in the growth study. Bacteria were pelleted and supernatant was removed and frozen at -

20°C until all samples were collected. Mouse IL-1β secretion was measured by ELISA (Ready-

SET-Go!, eBioscience). 
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3.2e Fecal collections and plate growth 

Feces (at least one pellet) were collected (Fig. 2B) by direct excretion into screw-cap 

tubes containing 1 mL of sterile PBS held close to the mouse anus. Feces were then 

homogenized using a Fast Prep-24 (MP). The resulting homogenate was then diluted 1:1000 in 

sterile PBS. The resulting solution was the plated on Rogosa agar + Erythromycin (where from 

and concentrations) using an Eddy Jet Spiral Plater (Neutec Group Inc). Plates were placed in 

sealed anaerobic chambers and incubated at 37°C for 48 hours. CFU/mL was calculated based on 

fecal weight, pre-plating dilutions, and spiral plating dilution calculations using Flash & Go 

Analysis software (IUL). 

3.2f Mouse treatments, sample collection and sample analysis 

BALB/c mice (Jackson Labs) were immunized and samples collected following the 

previously established regimen (Fig. 2A) with modifications. Mice receiving a 10% rice bran 

diet (Harlan custom feed) had samples removed for analysis prior to being placed on their 

custom diet. Animals were on the diet for 1 week prior to the administration of MPER-only L. 

acidophilus strain, and the diet maintained until termination. All sample collections, termination, 

and single cell suspensions were the same as previously described, and MPER-specific ELISA 

and MPER-specific IgA ELISPOTS were also as previously described.  

3.2g Statistics 

ELISA and ELISPOT data were compared among treatment groups for significant differences by 

analysis of variance using the non-parametric Mann-Whitney-Wilcoxon test using Prism 6.0h 

software (GraphPad). In order to eliminate any individual timepoint bias, significance between entire 
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in vitro curves was calculated by comparison of areas under independent receiver operating 

characteristic (ROC) curves.  

3.3 Results 

3.3a In vitro growth is stable regardless of supplementation 

Several strains of lactobacilli have been cultured with nutrients from rice bran (263, 329, 

330). However, the effects of rice bran extract on L. acidophilus vaccine strain growth has been 

unexplored. In order to measure any influence of rice bran supplementation on modified L. 

acidophilus strain growth, each of the four strains (WT, MPER, MPER+ IL-1β, and 

MPER+FliC) were grown in MRS medium with or without dextrose (DEX), and with or without 

rice bran extract (RBE). Optical density over time indicates that L. acidophilus fails to grow in 

the absence of a carbohydrate source like glucose or RBE (Fig. 4.1, black lines). The growth of 

L. acidophilus with supplemented broth (either DEX, RBE, or both) was statistically different 

from the non-supplemented media, but not different from one another in the LaWT and MPER-

only strains. MPER+ IL-1β and MPER+FliC exhibited a significant preference for RBE alone 

(Fig. 4.1C and D, red lines). 
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Figure 3.1 L. acidophilus growth varies over time under different nutrient conditions. All strains were grown in 

triplicate under identical conditions (sealed, 37°C) in MRS medium with different supplements (–DEX–RBE, 

+DEX–RBE, –DEX+RBE, +DEX+RBE). Growth at each timepoint was measured by optical density following 

machine stirring. Growth differences between media conditions was calculated by comparison of areas under 

independent receiver operating characteristic (ROC) curves. All supplemented media were significantly different 

(p<0.05) versus non-supplemented medium. –DEX+RBE was significantly different from +DEX–RBE and 

+DEX+RBE for MPER+IL-1β (p=0.0044, 0.0022) and MPER+FliC (p=0.005, 0.0009) strains. 

3.3b Surface MPER expression remained unchanged in different growth media. 

To ensure that the presence of rice bran does not alter the expression of surface MPER, 

each strain’s MPER expression was measured over time under different media conditions for 

each strain. LaWT does not possess surface MPER, and thus serves as a negative control (Fig. 

4.2A). All three vaccine strains showed high levels of MPER expression under all media 

conditions, with the exception of MPER alone when grown in non-supplemented MRS broth, 

likely indicating a nutrient-limiting effect of glucose-free medium (Fig. 3.2B). 
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Figure 3.2 Effect of media conditions on MPER surface expression. All strains were grown under identical 

conditions (sealed, 37°C) in MRS medium with different supplements (–DEX–RBE, +DEX–RBE, –DEX+RBE, 

+DEX+RBE). MPER expression at each timepoint was measured by indirect flow cytometry after direct staining of 

MPER. No significant difference in MPER expression was observed between media conditions as calculated by 

comparison of areas under independent receiver operating characteristic (ROC) curves. 

3.3c IL-1 β secretion remains the same regardless of media. 

We next measured IL-1β secretion over time in MPER+ IL-1β and LaWT strains. IL-1β 

secretion requires time to accumulate to measurable levels, thus initial timepoints (0, 2, 4, and 6) 

are relatively low. By 10 hours and beyond IL-1β levels in the supernatant were significantly 

higher versus LaWT, regardless of media (Fig. 3.3).  
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Figure 3.3 Supernatant IL-1β is elevated under all growth conditions. All strains were grown under identical 

conditions (sealed, 37°C) in MRS medium with different supplements (–DEX–RBE, +DEX–RBE, –DEX+RBE, 

+DEX+RBE, LaWT+DEX+RBE). Each timepoint is a separate tube to prevent oxygen exposure to future samples. 

Supernatant from each strain, in duplicate, was analyzed by mouse IL-1β ELISA. Significance between media was 

calculated by comparison of areas under independent receiver operating characteristic (ROC) curves. When 

timepoints 0, 2, 4 and 6 are excluded from analysis all strains (except –DEX–RBE) are significantly different from 

LaWT (p<0.05) and not different from each other. 

3.3d FliC expression remains the same regardless of media. 

To ensure that the presence of rice bran extract does not alter the expression of surface 

FliC, MPER+FliC and LaWT FliC expression was measured over time under different media 

conditions. LaWT, which does not possess surface FliC, and thus served as a negative control 

(Fig. 3.4, green line). All media of MPER+FliC showed significantly higher levels of FliC versus 

LaWT, and were not significantly different from each other. 
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Figure 3.3 Surface FliC is elevated in all growth conditions. All strains were grown under identical conditions 

(sealed, 37°C) in MRS medium with different supplements (–DEX–RBE, +DEX–RBE, –DEX+RBE, +DEX+RBE, 

LaWT+DEX+RBE). Each timepoint is a separate tube to prevent oxygen exposure to future samples. FliC 

expression at each timepoint was measured by indirect flow cytometry staining of FliC. Significance between media 

was calculated by comparison of areas under independent receiver operating characteristic (ROC) curves.  All 

strains were significantly different from LaWT (p<0.01) and not different from one another. 

3.3e No difference in L. acidophilus vaccine strain survival over time in mice supplemented with 

rice bran. 

Lactobacilli have been shown to utilize rice bran nutrients and are present in higher 

numbers in feces of animals fed a rice bran diet (263, 329, 331). We hypothesized that higher 

numbers of vaccine L. acidophilus might similarly be increased in mouse feces of animals 

receiving a rice bran diet. Vaccine strains were followed over the course of a typical dosing 

regimen (three days of consecutive dosing) and for four days after. No significant differences 

were observed in the frequency of any strains at any timepoint, with the exception of MPER-only 
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following the 3rd dose (Fig. 3.4). By 72 hours after the third dose all animals had 10
2
 

bacteria/fecal pellet or less, and no vaccine-strain lactobacilli were detectible by 96 hours. 

 

Figure 3.4 Modified L. acidophilus is undetectable after 96 hours post dose. Fecal pellets were collected 24 

hours prior to the first vaccine dose, then every subsequent 24 hours for 6 days. Fecal pellets were weighed, 

homogenated in 1mL of PBS, and the resulting suspension diluted 1:1000 in PBS. The diluted suspension was 

plated using a spiral plater on erythromycin-infused Rogosa agar plates and allowed to grow under oxygen-deprived 

conditions for 48 hours. MPER N=6, MPER+ IL-1β N=6, MPER+FliC N=6, MPER+RB N=5. Colonies were 

counted and spiral plate dilution calculations used to extrapolate the number of colonies per milligram of feces. 

Mean and standard deviation are shown. Statistical significance was calculated by Tukey multiple comparison test 

(*p<0.05, **p<0.01). 

3.3f Rice bran supplemented mice show some increased immunogenicity when vaccinated with 

MPER-only lactobacilli. 

We next observed antibody levels and antibody secreting cell frequency in mice fed diet 

supplemented with 10% rice bran. No significant differences in antibody levels in fluids (Fig. 

3.5A) or antibody secreting cells, MPER-specific or nonspecific, were observed versus non-rice 

bran vaccinations (Fig. 3.5C and D).  
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When antibody-secreting cells were pooled from multiple tissues (Peyer’s patches, female 

reproductive tract, spleen, mesenteric lymph node, large intestine), rice bran supplemented mice 

show a significant increase in anti-MPER-secreting cells (Fig. 3.5B). 

 

 

Figure 3.5 Mice supplemented with rice bran have elevated serum IgG and antibody-secreting cells. ELISAs 

(A) and MPER-specific ELISPOTs (B, C) and total IgA (D) were performed as previously described. MPER N=6, 

MPER+ IL-1β N=12, MPER+FliC N=12, MPER+RB N=5. Groups in panels A, B and C were compared by analysis 

of variance using non-parametric Mann-Whitney-Wilcoxon test. Significance for panel D was performed using 

Dunn’s multiple comparisons test after Kruskal-Wallace H. 

3.4 Discussion 

Probiotic bacteria can be influenced by prebiotic supplementation (320, 321). Previously, 

this influence was hypothesized to improve probiotic vaccination, but results were inconclusive 

(302, 322). However, new data revealed effects of prebiotic rice bran on intestinal lactobacilli 

(263, 328). Rice bran diet augmentation of mucosal vaccines could offer an alternative strategy 
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for improved immunogenicity that also provides intriguing prebiotic benefits to the host (255, 

259-261). However, the effects of rice bran on vaccine strain lactobacilli have not been studied.  

To that end we performed in vitro and in vivo experiments to determine whether rice bran 

influences growth and immunogenicity of Lactobacillus. Our goal was to measure the effects 

rice bran nutrients on vaccine strain growth and heterologous antigen presentation in vitro. We 

also sought to measure the effects of a rice bran supplemented diet on MPER immunogenicity in 

mice. We concluded that rice bran nutrients allow for growth and antigen expression of MPER-

vaccine bacteria, and improve anti-MPER immunogenicity in vivo. 

Rice bran and its nutrient extracts are known to support Lactobacillus growth and 

survival (263, 330). In order to observe the effect of rice bran on L. acidophilus vaccine strains 

we measured the growth and heterologous antigen presentation of bacteria grown with or without 

rice bran extract. Results show that rice bran supplementation supported growth and exogenous 

protein expression similar to optimized medium, indicating rice bran may be a useful prebiotic in 

vivo. 

As previously mentioned, in vivo adjuvant effects of prebiotics on vaccination have been 

inconclusive (302, 322). However, rice bran has shown promise as a potential adjuvant by 

influencing lactobacilli growth (263). In order to measure any adjuvant effects of a rice bran diet, 

mice were fed a diet with 10% rice bran and orally dosed with MPER-L. acidophilus. Anti-

MPER serum IgG levels were significantly increased versus non-supplemented mice. As with 

other adjuvants, the number of MPER-IgA antibody secreting cells was significantly higher with 

rice bran supplementation. These results indicate that a prebiotic rice bran diet can effectively 

adjuvant L. acidophilus vaccination, and provides support for rice bran as a potential adjuvant for 

mucosal vaccines. Hundreds of compounds have been identified within rice bran, including 
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squalene, a natural adjuvant used in other vaccine studies. Squalene, and/or other compounds, 

may be responsible for the observed enhanced immunogenicity. However, the mechanism behind 

this enhancement requires more experiments. 

While promising, these experiments suffered from several weaknesses. A low number of 

mice were used (N=5), limiting statistical power. This also limited the number of assays that 

could be carried out. As with most model systems, mice do not identically recapitulate higher 

mammalian immune systems, and the influence of rice bran in the mouse diet may be different in 

humans or non-human primates. 

Overall our purpose was to identify if rice bran could improve the immunogenicity of our 

L. acidophilus vaccine. We were able to conclude that not only was rice bran not detrimental to 

the growth or antigen expression of vaccine strains, but a mouse diet supplemented with rice 

bran improved the immunogenicity of anti-MPER responses versus a non-supplemented diet. 

Future work will help elucidate the mechanisms behind this improvement.  
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Chapter 4: Summary and Future Considerations 

 

4.1 Summary 

HIV vaccines have a history of poor efficacy, with inconsistent levels of protection 

against mucosal HIV exposure (217). Lactic acid bacteria offer an alternative vaccine platform 

for delivery of antigen to the primary site of HIV infection, the mucosa. Current understanding 

of the immunogenicity of this vaccine system is incomplete. In this regard here we present 

several adjuvant strategies to improve immunogenicity.  

We evaluated the mucosal and systemic immune responses of several strains of 

Lactobacillus acidophilus expressing the HIV membrane proximal external region (MPER). The 

addition of interleukin-1β or flagellin increased systemic MPER-IgG and showed high levels of 

vaginal IgA, with increased MPER-specific B-cell numbers in mucosal tissues. Importantly, we 

have demonstrated that L. acidophilus oral vaccination, when combined with adjuvants, is 

effective at generating mucosal and systemic antibodies. This is significant for future vaccine 

studies by providing a method to target antigens regardless of their immunogenicity, in the 

context of a safe and simple to use vector. 

Understanding of T cell functionality in lactic acid bacteria vaccines is incomplete. Our 

results indicate T cell help, in the form of CD40L-CD40 binding, is required for efficient B cell 

responses against L. acidophilus expressed antigens. Importantly, we observed similar results to 

other experiments regarding T cell tolerance and inflammation markers. Many experiments have 

noted both regulatory and inflammatory cells and cytokines following Lactobacillus vaccination, 

and we observed both elevated Tregs and IL-17 levels. This is unsurprising since the gut immune 

environment is a delicate balance between immune recognition and tolerance. This balance poses 
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an interesting conundrum for probiotic vaccination: immunogenicity typically requires an 

adequate inflammatory response for proper function, however, inflammation of the gut can be 

damaging, as observed in Crohn’s disease and other autoimmune conditions. Striking a balance 

between these two arms of immune function is key.  

The effects of vaccination on the gut microbiome is understudied (304). We present 

preliminary data showing differences in microbiome community structure over time following 

vaccination. These results were unexpected and raise the question of interactions between the 

commensal vaccine vector, mucosal immune system, and intestinal microbiome. A more detailed 

study of bacterial community shifts at the taxon, genus, and species level is required before 

conclusions can be made. 

We have also shown that an alteration of diet can improve the immunogenicity against 

MPER. Rice bran has been shown to be a powerful dietary tool in the past, and its influence on 

lactobacilli in particular prompted us to examine its effects both in vitro and in vivo. In chapter 3 

we have shown that mice consuming a 10% rice bran diet had increased antibody and antibody 

secreting cell levels. The mechanism behind this increase is not clear but may involve increased 

bacteria uptake, a nutrient effect on the mucosa itself, or the presence of adjuvant compounds in 

rice bran.  

Collectively our experiments demonstrate that mutant L. acidophilus can be an effective 

vaccine vector. Direct targeting of mucosa is a logical step towards prophylaxis against mucosal 

pathogens, and our results have identified new aspects of adjuvants, T cells, and microbiota that 

will aid in future studies. The ease of modifications, inexpensive growth, and excellent safety 

profile all point to L. acidophilus as an important vector for future vaccine studies. 
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4.2 Future Considerations 

Future studies using this vaccine system must expand into new antigenic HIV epitopes, 

and new antigens in general. There have been many studies of other pathogen antigens, and the 

inclusion of other HIV epitopes could allow for multiple broadly neutralizing antibodies to be 

generated from a single vaccine. The use of other adjuvants is also a logical step. The adjuvants 

in our experiments have proven effective both here and in other studies, but new adjuvants could 

allow for more tailored immune responses, or may provide a synergistic effect when combined. 

More detailed microbiome analysis must be performed to identify species alterations and 

strain-specific effects on the microbiome, and to that end more data is currently being generated. 

Deeper understanding of the T cell response is also needed, including a more expansive look at 

the subsets involved, particularly Th17 and CD8s. Antibody subtypes would be a valuable 

addition to the adjuvant strain responses, as would other diets for comparison to rice bran and 

typical mouse feed. The complexity and infancy of the mucosal vaccine field indicates no 

shortage of future studies. 
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Appendix A: Review of Lactobacillus Vaccines And Their Immune Responses 

 

Introduction 

Lactic acid bacteria (LAB), alongside other food-based platforms, have been utilized 

since the 1990’s for therapeutic heterologous gene expression, (332). The ability of LAB to elicit 

an immune response against expressed foreign antigens has led to their use as potential 

candidates as mucosal vaccine vectors. As vaccine vectors they offer a number of attractive 

advantages: simple, non-invasive administration (usually oral or intranasal), the acceptance and 

maintenance of genetic modifications, relatively low cost, and the highest level of safety 

possible. LAB tend to elicit minimal immune responses against themselves, instead inducing 

high levels of systemic and mucosal antibodies against the expressed foreign antigen following 

uptake via the mucosal immune system (333). 

LAB as vaccine vectors are generally derived from Streptococcus gordonii, Lactococcus 

lactis, or multiple Lactobacillus species. S. gordonii has fallen out of use, with a few exceptions 

(129). L. lactis and Lactobacillus spp. have continued to grow in use, with the number of 

publications continuing to increase (See Fig. A1.1). Several excellent reviews of L. lactis 

vaccines have been published (130, 334, 335), as well as how to generate these recombinant 

bacteria (133). Because of the large number of recent articles detailing lactobacilli as vaccine 

vectors, this appendix will focus on those publications and their resulting immune responses 

generated in vivo. 
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Figure A1.1 Number of primary articles published per year that utilize lactobacilli for heterologous gene 

expression.  

 

Briefly, this appendix is divided by pathogen/disease of interest (virus, bacteria). 

Pathogen species or families that have multiple studies (i.e. HIV, Escherichia coli) are then 

highlighted, focusing on the immune responses resulting from Lactobacillus vaccination. This 

appendix only covers research involving Lactobacillus strains with heterologous gene 

expression. Studies conducted with unmodified Lactobacillus used either as an adjuvant or for 

intrinsic antibacterial or antiviral properties are excluded (336, 337). The text of this appendix 

also only focuses on in vivo work and their resulting immune responses, or in vitro studies with a 

significant immune component. When possible the specific animal model will be addressed. 

Recent evidence has shown that the mucosal responses in C57BL/6 mice can have dramatic 

problems compared with BALB/c mice (338). Thus results from mucosal vaccine studies in 

C57BL/6 mice must be taken within this context. 
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Viruses 

Human Immunodeficiency Virus 

HIV-positive people are living longer lives, yet infection rates have stabilized (157). An 

effective HIV vaccine is still elusive via traditional methods, with statistical significance 

plaguing the only moderately successful clinical trial (218). Utilizing lactobacilli as mucosal 

vaccine vectors can provide an enhanced immune response at the typical mucosal sites of 

infection. Several studies have looked at lactobacilli expressing HIV antigens, thus targeting the 

virus at the most common site of infection, namely the mucosa.  Our lab has shown that 

adjuvanting the bacteria with additional secreted molecules (IL-1β, Salmonella Flagellin C) can 

drastically improve the mucosal (IgA) and systemic (IgG) immune responses against HIV 

proteins (MPER, gag) in orally dosed mice (136, 143). We have also shown that these immune 

responses are T cell-dependent. Kuczkowska et al. have shown in vitro evidence of T cell 

recruitment using a L. plantarum expressing a fusion protein of CCL3/HIVgag (339).  

An alternative preventative measure against HIV is prophylactic topical microbicides, 

which have been shown to be effective in high-risk groups (340). By incorporating microbicidal 

expression into lactobacilli, target mucosal sites can be colonized and continuously protected, 

reducing cost and required compliance. In two separate studies Lagenauer et al. utilized a 

vaginal-associated L. jensenii secreting cyanovirin-N, a promising microbicide with high affinity 

for HIV envelope glycoproteins. In Rhesus macaques this application was safe and afforded 

protection against SHIV challenge (341-343). This group also used lactobacilli to secrete broadly 

neutralizing antibody fragments to protect the vaginal mucosa, though the work is still in vitro 

(344).  
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Human Papilloma Virus 

The association between human papilloma virus (HPV) and various cancers, particularly 

cervical cancer, is well known (345). Cervical cancer cells tend to express HPV proteins on their 

surfaces. This allows for an immune response that not only targets potentially infectious virus, 

but can also destroy infected, cancerous cells. There are currently two FDA approved vaccines 

against the most common strains of HPV (Gardasil and Cervarix). Both generate protective 

immune responses via spontaneous virus-like particle formation of the HPV L1 capsid protein 

(346). While these vaccines provide excellent protection and potential cancer therapy, they 

remain prohibitively expensive, particularly in the U.S. (347). Only one research group has 

utilized Lactobacillus to generate VLPs using the L1 protein, resulting in serum IgG following 

subcutaneuous injection in BALB/c (138). All other research groups utilize surface expression of 

HPV proteins, either minor capsid protein L2 or the early oncogenes E6 or E7, which are directly 

responsible for unregulated cellular replication (348). In an extensive set of early experiments, 

Poo et al. utilized an E7-expressing L. casei, observing serum IgG along with intestinal and 

vaginal IgA in orally immunized C57BL/6 mice. They also observed E7-specific IFN-γ-secreting 

cells in the vagina and spleen, as well as a therapeutic reduction in tumor size and increased 

animal survival following TC-1 tumor cell challenge (349). A similar study using E6 had similar 

results (350). Poo et al. later targeted the L2 protein in BALB/c mice, observing serum IgG, 

mucosal IgG and IgA, and cross-neutralization with related viruses (351). Using L. casei 

administered to C57BL/6, Adachi et al. observed increased levels of E7-specific T cells in the 

gut, as well as granzyme-B production. Mucosal lymphocytes were capable of TC-1 cell lysis, 

which was also repeated by another research group (352, 353). Interestingly, oral administration 

improved the response versus subcutaneous or intramuscular administration (352). Another 
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research group utilized L. plantarum expressing E7, with similar antibody and anti-tumor results, 

though they only checked for antibodies in the serum, not the mucosa (142). Because of the 

observed therapeutic effect of several studies, a human trial using cervical cancer (CIN3) patients 

was conducted and showed increased numbers of E7-specific cervical lymphocytes, though not 

PBMC’s, with the majority of patient tumor pathologies being downgraded (354). This shows 

great promise and potential for anti-HPV lactobacilli vaccines to provide a large public health 

benefit. 

Influenza 

The unpredictability of future influenza strains, and supply problems stemming from 

slow growth methods (egg and cell-based), means that anti-influenza Lactobacillus vaccines 

could provide a needed service, particularly for highly pathogenic strains like H5N1. Shi et al. 

showed that oral administration of a L. plantarum expressing H9N2 HA was able to induce fecal 

IgA, bronchiolar IgA, and serum IgG. B cell levels in secondary lymphoid organs were 

increased, and CD8+ T cell proliferation and IFN-γ secretion were greatly improved relative to a 

typical influenza vaccine. Most importantly vaccinated mice survived lethal challenge (355). 

These results were repeated using the dendritic cell-targeting peptide (DCpep) adjuvant, and 

included improved immune responses and challenge survival in chickens (356). Similar antibody 

and T cell results were observed when targeting H5N1 hemagglutanin (HA1) in BALB/c mice 

(357) and chickens (358). Other influenza proteins have also been targeted. Chowdhury et al. 

were able to grant BALB/c mice protection (via oral or intranasal administration) from multiple 

lethal challenge strains, and showed that inclusion of the cholera toxin subunit 1 (CTA1) 

significantly improved antibody levels and protection (359). A follow-up study showed that 
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antibody levels, IFN-γ secretion and proliferation, as well as protection against lethal challenge, 

lasted 7 months post-vaccination (360). 

Coronavirus 

Until the recent outbreaks of Severe Acute Respiratory Syndrome (SARS, 2003) and 

Middle East Respiratory Syndrome (MERS, 2014/2015) coronavirus morbidity and mortality 

were generally worse for domesticated animals, particularly porcine and poultry farms, rather 

than humans. Corona viruses usually infect via the gastrointestinal tract in livestock and the 

respiratory tract in birds and humans, causing drastic economic losses and high morbidities in the 

young, old and immunocompromised (361). The first corona virus addressed using lactobacilli 

was Transmissible Gastroenteritis Coronavirus (TGEV), which affects swine, particularly 

piglets. Several spike protein epitopes have been targeted (S, 6D), resulting in serum IgG and 

mucosal IgA in mice (362, 363). More recently the muramyl dipeptide (MDP) protein was 

targeted, utilizing tuftsin, an Fc antibody fragment, as an adjuvant, which showed improved 

antibody and T cell responses in BALB/c (271). The only human coronavirus addressed was 

SARS-CoV, with serum IgG and mucosal IgA observed against the spike protein (SA, SB) in 

C57BL/6 mice (364). Porcine Epidemic Diarrhea Virus (PEDV) is another coronavirus that 

primarily affects piglets, resulting in large economic losses (365).  In a thorough set of 

experiments Di-qiu et al. showed that by targeting both the spike protein (S1) and nucleocapsid 

(N) via surface expression (as opposed to secretion), anti-S1 and anti-N antibodies were 

significantly increased, even in atypically-studied secretions such as ophthalmic and nasal (366). 

Interestingly they observed a synergy against the spike protein, but not the nucleocapsid, in mice 

vaccinated against both proteins. To improve the immune response against TGEV’s core 
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neutralizing epitope (COE), Ge et al. fused the COE with E. coli enterotoxin B (LTB), which 

showed some statistical significance, particularly in splenocyte IFN-γ and IL-4 secretion (367). 

In perhaps the most directly useful study, Hou et al. observed the increased presence of anti-

nucleocapsid antibodies in the milk and colostrum of nursing sows, correlating with increased 

anti-N serum IgG in suckling piglets (368). A recent set of experiments by Jiang et al. delved 

deeper into the immune response generated by L. casei, highlighted by a strong mucosal-

dependent protection from infection, a stimulation of the IL-17 pathway, and an imbalance 

between Th1 and Th2 responses, as indicated by variations in numbers of CD4+ T cells 

containing either intracellular IFN-γ or IL-4 (369). Interestingly, some Lactobacillus species 

have been shown to downregulate IL-17 responses (148), but this simply points to the delicate 

balance Th17 cells must strike between pathogen-stimulated inflammation and the damage errant 

autoimmune inflammation can cause (149). It is clear that the homeostasis between 

inflammation, immunity, lactobacilli, and Th17 cells is complex and dependent on a number of 

factors, including host genetics, pathogen, lactobacilli strain and adjuvants. 

Rotavirus 

Rotaviruses, from the Reoviridae family, are commonly associated with severe 

gastroenteritis in children, though not typically mortality outside sub-saharan Africa (370). There 

are a number of approved oral rotavirus vaccines for humans and animals with excellent mucosal 

immune responses (371), however, availability and cost in developing countries, especially when 

competing with other healthcare priorities, can leave many unvaccinated (372). Two main 

avenues of lactobacilli-based rotavirus protection have been attempted in mice. The first is a 

typical vaccination style, with oral L. casei inducing mucosal IgA and neutralizing serum IgG 
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against porcine rotavirus major protective antigen VP4 in mice (140). The second avenue uses 

antibody fragments to confer protection. Alvarez et al. expressed a protective anti-rotavirus llama 

antibody fragment on the surface of L. rhamnosus, protecting against diarrhea in a mouse pup 

model (373). Another group adapted the use of anti-rotavirus hyperimmune bovine colostrum 

(HBC) in the same model system, expressing an anti-HBC protein from Streptococcus, which 

would then bind HBC antibodies, thus conferring protection when orally dosed (374).  

Fish-Related 

Aquaculture is a serious food supply paradigm, and with it comes the typical pathogen 

problems that large-scale animal farms encounter. Vaccination against fish pathogens can be 

performed either IP (which can be cost prohibitive), by immersion or orally via feed, with the 

latter two options suffering from a lack of vaccine persistence in water and the particularly 

strong mucosal tolerance observed in fish. For a comprehensive summary of vaccination 

attempts in fish see Embregts and Forlenza’s excellent review (375). Lactobacillus vaccine 

vectors can provide an effective and easily administered system for pisciculture. The first set of 

experiments targeting a fish-related virus focused on Infectious pancreatic necrosis virus (IPNV), 

a Birnavirus that afflicts rainbow trout. Direct oral administration of L. casei expressing portions 

of viral capsid generated significant serum IgM and afforded challenge protection in two studies 

by the same group (376, 377). Two viruses that primarily affect carp, Koi herpesvirus (KHV) 

and Spring viremia carp virus (SVCV, a Rhabdovirus), have also been studied. Both antigens, 

KHV ORF81 and SCVC glycoprotein, were expressed together in L. plantarum and dosed orally 

in carp and koi. The resulting serum IgM and challenge survival were promising, particularly for 

a vaccine that offers dual protection (378). Further lactobacillus studies must be conducted, 
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particularly looking at cellular mucosal immunity in fish, as well as the potential for multiple 

pathogens to be addressed with a single modified lactobacillus.  

Other Viruses 

Outside of the categories already addressed, a large and diverse number of viruses have 

been targeted using lactobacillus vector systems. Classical Swine Fever Virus (CSFV), a 

Flavivirus affecting pigs, has been tested in rabbits, mice and pigs, all resulting in serum and 

mucosal antibodies (379, 380). Importantly, the addition of Thymosin α-1, a T cell-stimulating 

peptide, was able to increase IgG, IgA, IFN-γ, IL-2 and TNF-α in pigs (144). Porcine parvovirus 

has been studied in BALB/c mice and pigs, with excellent IgG and IgA responses, as well as 

challenge protection and virus neutralization (379, 381, 382). A recent study observed strong 

protective immune responses in chickens against Newcastle disease virus, a Paramyxovirus 

primarily afflicting poultry, which were improved by the addition of DCpep, which not only 

boosted mucosal and serum antibody levels but increased Th cells in the spleen and peripheral 

blood versus bacteria without DCpep (383). Foot-and-mouth disease virus, a Picornavirus 

afflicting cloven-hooved animals, had a comprehensive dosing study performed looking at 

immune responses of anti-capsid L. acidophilus administered via intramuscular, intraperitoneal, 

intranasal, or oral routes. Of note however is the authors’ use of the vaccine system as a delivery 

vehicle for an anti-capsid DNA vaccine plasmid, as opposed to expression of heterologous 

proteins on the bacterial surface. The resulting antibody responses were thus much higher via IM 

and IP administration rather than mucosal delivery (384).  
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As the ease of use and awareness of lactobacillus expression systems and their abilities to induce 

excellent mucosal and systemic immune responses increases, the number and variety of 

pathogens addressed will likely increase in the future. 

Bacteria 

Bacillus anthracis 

Though infections are relatively rare, the prevalence of natural Bacillus anthracis in soil 

and its potential as a bioterrorist agent gives anti-Anthrax vaccines some priority. The antigen is 

also fairly immunogenic and well studied, thus making it useful for model development. All 

lactobacillus vaccination experiments utilize the B. anthracis protective antigen (PA), a highly 

immunogenic binding protein of Anthrax toxin, which has been tested in other vaccine systems 

with varying degrees of success (385). One of the earliest proof-of-concept lactobacillus 

experiments involved dosing BALB/c mice with L. casei either orally or intranasally, 

importantly showing that antibody responses against heterologous protein exceeded antibody 

responses against just the bacteria (386). Ten years later Mohamadzadeh et al. combined an L. 

acidophilus or L. gasseri with DCpep, resulting in neutralizing antibodies and challenge survival 

in A/J mice (387, 388). This same group later observed colonic DC activation, both Th17 and 

Treg up-regulation, and up-regulation of a number of pattern recognition receptor genes, though 

the vaccine regimen did not consist of any boosts (316).  
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Escherichia coli  

Enteric Escherichia coli are a major cause of diarrheal morbidity and mortality, 

particularly for children in developing countries. The most common antigens targeted for E. coli 

vaccination are fimbrial proteins, bacterial adhesins that aid in host cell binding. Most 

experiments mentioned here, except one, target Enterotoxigenic E. coli (ETEC). A prolific group 

from China utilized several fimbrial protein antigens (F41, K99, K88) over several years and in 

several models (BALB/c, C57BL/6, BALB/c pups), all in L. casei. Of their many findings, an 

increase in several subclasses of serum IgG (IgG1, IgG2a, IgG2b) followed oral dosing, along 

with increased IL-4 and slightly less increased IFN-γ by CD4+ T cell ELISPOT. Intestinal and 

bronchiolar IgA levels were increased, and challenge with standard ETEC (389). These results 

were repeated using intranasal dosing, which resulted in decreased intestinal IgA with increased 

bronchiolar IgA versus oral (390). Dosing in C57BL/6 mice induced similar IgG and IgA 

responses, as well as T cell proliferation and challenge protection (391).   Challenge protection 

was conferred to orally dosed mouse pups (make sure it was direct for pups and not indirect), 

indicating that this vaccination strategy can be administered early in immune development (392). 

Wu et al. targeted two enterotoxins (ST and LT-B), rather than fimbrial proteins, with a secreted 

GFP/enterotoxin fusion protein. Similar increased IgG and IgA were observed as well as 

challenge protection in a patent mouse gut assay (393). Ferreira et al. were the only group to 

target Enteropathogenic E. coli (EPEC), and attempted the only sublingual dosing regimen. L. 

casei expressing a portion of bacterial β-intimin (a cell surface protein that aids in attachment to 

the host cell) resulted in serum IgG and fecal IgA, though interestingly oral dosing did not 

generate an IgG response. Splenocytes also secreted elevated levels of IL-6 and IFN-γ, though 

only their results from the sublingual vaccination were reported (394). While the authors 
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performed these studies in C57BL/6 mice, they used C3H/HePas mice as their challenge model, 

due to this strain’s susceptibility to Citrobacter rodentium, a commonly used strain that shares 

some pathology with EPEC (395). They observed at least an increase in survival time, though 

animals eventually succumbed to disease. 

Streptococcus pneumonia 

One research group, led by Dr. Maria Oliviera of Brazil, has performed most 

lactobacillus experiments involving Streptococcus pneumonia, focused on either pneumococcal 

surface proteins PspA or PspC, with immunity studies conducted in C57BL/6 mice. Early work 

noted significant increases in bronchiolar IgA but not IgG following intranasal administration, 

with some variations due to strain differences (396). Improvements in antigen expression led to 

increased IgG (IgA was not measured), with a variety of IgG subsets being enhanced (1, 2a, 2b, 

3). This study culminated in enhanced challenge survival versus saline alone, though not versus 

bacteria expressing the empty vector plasmid (147). Further experiments identified a propensity 

for IgG1 versus IgG2a, which along with increased IFN-γ and low levels of IL-5, indicated a Th1 

polarization. IL-17 secretion and neutrophil recruitment in the lungs varied by route of 

administration, adding to the importance of how vaccines are administered and not just how they 

express antigen (146). A final set of experiments failed to induce significant levels of IgA prior 

to challenge, but noted that challenge with S. pneumoniae did induce significant IgA, which 

correlated with reduced bacterial loads (397).  
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Other bacteria 

As with lactobacilli vaccination targeting viruses, a number of pathogenic bacteria have 

only been targeted in a few research publications. A few will be highlighted here, with the rest 

addressed in Table 1.  Borrelia burgdorferi, the causative agent of Lyme disease, was targeted 

with an L. plantarum system. The authors identified what has become an interesting theme with 

lactobacilli vaccinations, that of a broken Th1/Th2 balance. In vitro work with human cells 

indicates both Th1 and Th2 cytokines, and oral administration in C3H-HeJ mice resulted in both 

IgG1 (Th2) and IgG2a (Th1) (145). These same authors also targeted Yersinia pestis with L. 

plantarum, observing once again both inflammatory (TNF-α, IL-12, IFN-γ and IL-6) and anti-

inflammatory (IL-10) cytokines, indicating stimulation of both Th1 and Th2 responses (150). 

Importantly however, as with the previous experiment, these are human ex vivo cytokine studies 

not conducted in the study’s animal model. A vaccine targeting Helicobacter pylori, a common 

cause of stomach ulcers, would be extremely beneficial. By targeting the H. pylori adhesin 

Hp0410 with an L. acidophilus, Hongying et al. generated anti-adhesin serum IgG and intestinal 

IgA and observed reduced bacterial loads and gastric inflammation following challenge (315). 

Antibodies against the ε-toxoid of Clostridium perfringens were identified in BALB/c mice 

following oral L. casei, and though statistical significance of antibody levels was unclear, 

animals survived challenge (398).  
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Other Antigens 

Parasite/Fungus 

Only a few parasites and fungi have been addressed using lactobacilli expression 

systems. Malaria was the first, with oral and intranasal dosing of L. reuteri and L. salivarius 

strains expressing merozoite surface antigen 2 (MSA2). The authors were only able to observe 

an increase in mucosal IgA, not serum IgG, though this may have been due to variations in the 

mouse strain (399). Cryptosporidium parvum, another parasite which can infect epithelial cells of 

the intestines and cause diarrhea, had elevated serum IgG and mucosal IgA, and interestingly 

elevated mRNA levels of IFN-γ and IL-6, but not IL-4 (400). The only fungus to be addressed 

was Candida albicans, the typical cause of yeast infections. Dosing in C57BL/6 mice induced 

serum IgG (IgA was not tested) and granted some lethal challenge protection, though not 

complete (401). 

Allergens 

A large number of lactobacillus studies have attempted to reduce the severity of allergic 

pathologies against mostly plant-based allergens, though dust mites have also been addressed. 

These experiments attempt to either target IgE antibodies, thus preventing subsequent IgE-, or 

target the allergen itself. Scheppler et al. equipped L. johnsonii with either an IgE single chain 

fragment or an IgE mimotope, both resulting in anti-IgE serum IgG, though intranasal favored 

the mimotope and subcutaneous favored the IgE fragment (402). In an interesting proof-of-

concept, Charng et al. showed that by orally vaccinating the mice with L. acidophilus expressing 

the mite allergen (Der p 5) in BALB/c mice that were sensitized to and then subsequently 
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challenged with Der p 5, they could reduce the severity of the subsequent allergic reaction, 

marked by reduced anti-Derp5-IgE and granulocyte infiltration into the airway (403). A similar 

experiment involving intranasal L. plantarum targeting a birch pollen allergen showed that pre-

treatment with the bacteria could skew the allergic response towards a typical Th1 response, with 

reduced airway inflammation, reduced IgE and increased levels of anti-allergen bronchiolar IgA 

(404). Other oral vaccinations targeting plant allergens observed similar reductions in IgE (405), 

or increases in anti-allergen IgA (406). 

Self-Antigens 

Lactobacilli vaccinations targeting self-antigens have been used in several contexts. Two 

research groups have targeted cancer-associated antigens, observing serum IgG against oncofetal 

antigen (a common tumor immunogen) (407), and serum IgG (IgG1/Th2 and IgG2a/Th1) and 

intestinal IgA against cancer testis antigen (408). This latter experiment identified an interesting 

in vitro human dendritic cell response, with only immature DC’s, rather than mature DC’s, 

responding to lactobacillus stimulation. They also noted that lactobacillus-stimulated DC’s had 

higher levels of PD-L1 and IDO, both associated with T cell inhibition/regulation, though this is 

likely just a case of DC’s exerting a balanced control of T cell stimulation, be it negative or 

positive. One research group has attempted to target human chorionic gonadotrophin (hCG-β), a 

candidate for contraceptive vaccination. In a very thorough set of experiments, Yao et al. 

compared the serum IgG and vaginal IgA of both BALB/c and C57BL/6 mice, along with route 

of administration (oral, vaginal, nasal) and number of bacteria dosed (409). In line with other 

mouse strain research (338) they observed a lower antibody response in the C57BL/6 mice. The 
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same group observed a significant increase in serum and vaginal antibodies when the adjuvant 

C3d3 (complement) was included in the inoculated L. casei (310). 

Conclusions 

The number of studies involving lactobacilli has only increased in the last few decades. 

As more information is available interesting concepts regarding the immune responses elicited 

are beginning to emerge. There is clearly an interesting balance in the Th1/Th2 paradigm, likely 

pointing to the plasticity and oversimplicity of driving either one side or the other. The evidence 

of Th17 involvement as well as the regulation Tregs provide points to a complex T cell response 

as well. Adding to the mix is the elicitation of multiple IgG subtypes. Clearly more work must be 

done to identify the players at hand in the mucosa, especially the cells charged with initiating the 

initial bacterial uptake (M cells, DC’s).  

As research moves forward, there are several major takeaways when designing new 

experiments. Boosting is a key component of high antibody levels, as is true with all vaccine 

strategies. The route of administration, usually oral, can have an effect on the type of response 

elicited, likely derived from differences in the mucosal tissue where uptake occurs. The actual 

strain of lactobacilli, with their intrinsic differences (410), as well as the location of antigen 

expression (surface display, intracellular, secreted), can alter the resulting immune response and 

therefore must be exploited for specific antigens. As always, the model system used must be 

taken into consideration. Because of mucosal immune problems the C57BL/6 mouse model 

should be avoided in favor of BALB/c. Further work in non-human primates should be 

undertaken to better understand the mucosal immune responses generated by these types of 

vaccines. Based on animal model safety and efficacy, human trials should be undertaken. 
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Appendix B: Previous Work For The Akkina Laboratory 

 

 

 

B1: HIV Infected Humanized Mice Have Improved T Cell Responses And Lower Viral Loads 

Following Anti-PD-L1 Antibody Treatment 

 

Palmer BE, Neff CP, LeCureux J, Ehler A, Dsouza M, Remling-Mulder L, Korman AJ, Fontenot 

AP, Akkina R. (2013) In vivo blockade of the PD-1 receptor suppresses HIV-1 viral loads and 

improves CD4+ T cell levels in humanized mice. J Immunol. Jan 1;190(1):211-9. doi: 

10.4049/jimmunol.1201108. 

B1.1 Overview 

Immune responses are extremely resource heavy for the host (411, 412).  The benefits of 

this energy expenditure outweigh its loss by eliminating the dangers posed by a pathogen. At the 

same time it is in the host’s best interest to downregulate the immune response as soon as the 

threat has been neutralized, thus freeing up those resources. To this end the host has several 

mechanisms for slowing and stopping immune responses, typically by stopping the effector T 

cell response. T regulatory cells can secrete suppressing cytokines and stimulate apoptosis of 

APCs, thus blocking APC-T cell stimulation (413).  Interleukin-2 (IL-2), a powerful T cell 

proliferation and survival cytokine, under the right conditions can also drive T cells towards 

activation-induced cell death, thus causing a contraction in the immune response (414).  

Of particular interest is the use of negative surface co-receptors to downregulate the 

immune response. During a normal adaptive immune response antigen is presented via MHC to 

the T cell receptor (TCR) by an APC. If secondary signals are received from positive co-

receptors (CD40L, CD28), as well as cytokines (IL-2, many others (415) ), T cells become 
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activated, proliferating and carrying out effector functions. As this immune response progresses 

negative co-receptors on T cells begin to gradually increase and compete with positive co-

receptors for control of the T cell response. By the time a pathogen is cleared this negative 

response typically outweighs the positive, influencing anergy and apoptosis of the cells. This 

process, along with others previously mentioned, frees up resources for the host. 

 However, during a chronic infection the pathogen and its antigens are not cleared. T cells 

continue to receive positive stimulation to carry out effector functions and proliferation, while 

co-inhibitory receptors begin to wrest control from positive co-receptors. Thus cells are receiving 

both positive and negative stimulation signals (416). Over time these cells become exhausted, 

displaying a large number of co-inhibitory receptors (CTLA-4, Tim-3, LAG-3, and PD-1), and 

possess phenotypes characterized by a loss of proliferative capacity, loss of effector function, 

and loss of multiple cytokine secretion (a hallmark of healthy effector cells) (416-418).  A 

number of strategies have been proposed to reverse this T cell exhaustion (419). One technique is 

blocking negative co-receptors with anti-receptor antibodies, thus reinvigorating the exhausted 

cells by eliminating the co-inhibitory signals (420). Success against certain cancers led to the use 

of anti-PD-1 antibody for clinical use (421). Blocking the PD-1/PD-L1 pathway was proposed as 

a treatment for other chronic conditions with exhaustion pathologies, particularly HIV (422-425). 

To this end anti-PDL-1 antibody blockade was used in a humanized mouse model of HIV 

infection to better simulate potential human clinical responses. 
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B1.2 Materials and Methods 

B1.2a Generation of humanized Rag
-/- 

CD132
-/-

 mice and measurement of HIV-1 viral load. 

Humanized BALB/c Rag2
-/-

 or Rag1
-/-

 CD132
-/-

  (Rag-hu) mice were prepared as 

previously described (426). Briefly, newborn mice were irradiated with 350 rad and then injected 

intrahepatically with 0.5–13 million human CD34+ cells isolated from human fetal liver by 

magnetic bead separation. Mice were screened for human cell engraftment at 10–12 weeks post-

reconstitution. Peripheral blood was collected by tail bleed every week, and RBCs were lysed 

using the Whole Blood Erythrocyte Lysing Kit (R&D Systems) to isolate white blood cells 

(WBC).  The WBC fraction was stained with anti-human CD45 (Caltag) and analyzed by flow 

cytometry to determine the levels of human cell engraftment as previously described (426). Only 

mice with engraftment above 70% were used in the study. Mice were infected by intraperitoneal 

(i.p.) injection of HIV-1 (strain BaL, 1x10
6
 IU) 12 weeks after engraftment. HIV-1 plasma viral 

RNA was quantified by qRT-PCR following RNA extraction of plasma using QIAamp Viral 

RNA kit (QIAGEN).  qRT-PCR was performed using LTR-primers and an LTR-specific probe 

as previously described (426). 

B1.2b PD-L1 monoclonal antibody treatment schedule  

HIV-1 Bal-1–infected mice were monitored weekly to determine plasma viremia. 

Consistent viremia was established in all infected mice by week 4 post infection. Seven viremic 

Rag-hu mice were injected i.p. with 200 mg Bristol-Myers Squibb (BMS) human anti–PD-L1 

mAb reconstituted in PBS once every 3 days for 4 weeks (10 total treatments).  
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Viral loads and CD4+ T cell percentages were determined during the 28-d treatment period, and 

several weeks after. Six untreated HIV infected mice and four Rag-hu mice that were not 

infected with HIV-1 were also followed.  

B1.2c Flow cytometry  

Whole blood was collected, and RBCs were lysed, as reported previously (426, 427). 

WBCs were stained with anti-human CD45-APC, CD3-PE, CD4-PECy5.5, CD8–Alexa Fluor 

405, and PD-1–FITC. Cells were stained with the labeled Abs and analyzed using a Coulter 

EPICS XL-MCL FACS analyzer (Beckman Coulter,) or BD LSR II (Becton Dickenson). CD4+ 

T cell levels were calculated as a ratio of the entire human CD45 population (i.e., CD45+ CD4+ 

CD3+). To establish the baseline CD4+ T cell levels, cells from all mice were analyzed prior to 

infection. PD-1 expression was analyzed on CD45+ CD3+ CD4+ and CD45+ CD3+ CD8+ T 

cells and displayed as median fluorescence intensity (MFI) using FlowJo software (TreeStar). 

Maturation state and PD-1 expression levels were examined before and after treatment with anti–

PD-L1. To obtain enough cells,blood from two groups  of HLA-matched, HIV-1–infected Rag-

hu mice was pooled and stained with anti-human CD45-PE, CD3-BV 605, CD4-V500, CD8–

Alexa Fluor 405, CD27–APC–H7, CD45RA-PECy7, and PD-1-FITC and analyzed using a BD 

LSR II. Fluorescence-minus-one controls were used in all experiments.  

B1.2d Cytokine analysis  

Plasma samples from Rag-hu mice preinfection, before and after anti– PD-L1 treatment 

were tested for cytokines using the Human Th1/Th2 Ultra-sensitive Cytokine kit (Meso Scale 

Development,). TNF-α, IFN-γ, IL-13, IL-10, IL-5, and IL-12 P70 levels in the plasma were 
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assayed. Plasma samples were stored immediately after collection at -80˚C for this assay. Assays 

were performed as per manufacturer’s instructions and analyzed using a Sector Imager 2400 

(Meso Scale Discovery).  

B1.2e Statistical analysis 

Statistical significances in viral load and CD4+ T cell percentage between mice that were 

treated or not with PD-L1 mAb were calculated by the Mann–Whitney-Wilcoxen test. 

Correlations between HIV-1 plasma viral load and the percentage of T cells were assessed by the 

Spearman test using Prism 3.0 software (GraphPad). 

B1.3 Results 

B1.3a PD-1 levels are elevated in infected humanized mice 

The effect of HIV infection on T cell expression of PD-1 in humanized mice was 

unknown. In order to measure any differences between control and HIV-infected animals, PD-1 

expression was measured by flow cytometry as a percentage of PD-1+CD4+ cells or PD-1+ 

CD8+ cells. After several months of HIV infection, PD-1 expression was significantly elevated 

on both CD4+ and CD8+ T cells in HIV infected hu-mice compared with uninfected animals 

(Fig. B1.1A and B1.1B). 
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Figure B1.1. PD-1 surface expression on T cells. T cells from peripheral blood via tail vein bleeds of HIV+ and 

HIV- mice was stained with anti-human CD45, CD3, CD4, CD8, and PD-1 antibodies and assessed by flow 

cytometry. Groups were compared by analysis of variance using non-parametric Mann-Whitney-Wilcoxon test. If 

significant, two-tailed P-value is displayed. 

B1.3b PD-L1 treatment reduces plasma viral load versus untreated HIV infected mice 

We next tested the effects of anti-PD-L1 treatment on HIV-infected humanized mice viral 

loads. HIV+ animals that were untreated maintained relatively stable levels of plasma RNA, 

averaging approximately 1x10
5
 copies/mL over the 5 weeks they were measured (Fig. B1.2B). 

Fold-changes for these animals versus day 0 remained relatively small (Fig. B1.2A). HIV+ 

animals that were treated with anti-PD-L1 showed significant viral load reductions during the 

first three timepoints after treatment (Fig. B1.2B). Fold-change reductions in these animals at 

these timepoints were drastically higher than untreated animals (Fig. B2A). Because of reduced 

viral loads treated animals were followed for an additional four weeks post-treatment, with a 

progressive restoration of viral loads returning to untreated animal levels (Fig. B1.2B). 
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Figure B1.2. Plasma viral loads in HIV+ hu-mice. Animals were HIV positive for one month before undergoing 

anti-PD-L1 treatment. 200 µg of antibody PD-L1 were administered for 10 treatments over 4 weeks.  Timepoints for 

plasma viral load were compared by analysis of variance using non-parametric Mann-Whitney-Wilcoxon test. *p < 

0.05 (Mann-Whitney-Wilcoxen). 

B1.3c PD-L1 treatment increased IFN-γ and IL-12 levels 

In order to better understand the mechanism behind anti-PD-L1 treatment down-

regulation of HIV viral load, plasma levels of cytokines were measured before, during, and after 

treatment.  Th2 cytokines showed no significant differences between treated and untreated HIV+ 

animals (Fig. B1.3, bottom panels). However, Th1-related cytokines (IFN-γ and IL-12) were 

significantly elevated in treated animals, with a trend for significance of elevated TNF-α (Fig. 

B1.3, top panels). 

A B
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Figure B1.3. Plasma cytokine levels in HIV+ mice before and after infection and treatment.  Human plasma 

cytokines were measured by MESO multiplex cytokine kit. Animals were bled before infection (− −), prior to 

treatment (+ −), and 7 days after treatment (+ +). Groups were compared by analysis of variance using non-

parametric Mann-Whitney-Wilcoxon test. *p=0.0002 (Mann-Whitney-Wilcoxen). 

B1.3d CD4+ and CD8+ T cell levels were increased in PD-L1 treated mice 

In order to address the effect of PD-L1 treatment on T cells, the percentage of CD4+ and 

CD8+ lymphocytes was measured in treated, untreated, and uninfected animals.  Beginning one 

week after the initiation of treatment (2 treatments in) CD4+ T cell levels were significantly 

higher than infected, untreated animals, exhibiting a typical CD4 suppression (Fig B1.4A). When 

these levels continued to rise, the number of sample days was extended for the treated animals, 

showing that elevated CD4+ T cell levels continued for weeks past the last treatment. CD8 

numbers were also significantly increased versus untreated animals, pointing to a possible 

mechanism of viral suppression (Fig. B1.4B). 
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Figure B1.4. CD4+ and CD8+ T cell levels in treated and untreated hu-mice. Beginning at day 0 prior to 

treatment animals were monitored weekly for CD4+ and CD8+ T cells within the CD45+ lymphocyte population by 

flow cytometry. CD4 levels were measured beyond the set experimental timepoints in treated animals by 8 weeks. 

Timepoint comparisons between treated and untreated animals were compared by analysis of variance using non-

parametric Mann-Whitney-Wilcoxon test. *p < 0.05 (Mann-Whitney-Wilcoxen). 

 

B1.4 Discussion 

T cell exhaustion as an HIV-related pathology has only recently been identified as. This 

exhaustion has been shown to be directly related to inhibitory receptors. Whether the 

upregulation of these receptors is the cause or symptom of exhaustion is unclear, but their 

relevance as an avenue for treatment is obvious. We have demonstrated that blocking the 

interactions between programmed death ligand 1 (PD-L1) on APCs and programmed death 1 

(PD-1) on T cells we could restore CD4+ T cells to non-HIV infected levels. The mechanism 

behind this restoration likely lies in the reduced signaling T cells receive from the PD-1/PD-L1 

co-inhibitory pathway, removing the resulting anti-proliferation signals. We have also shown 

that serum HIV levels are significantly suppressed following PD-L1 treatment. The mechanism 

behind this reduction is likely due to a combination of CD4 effector and CD8 effector responses 

against HIV, as demonstrated by improved CD8+ T cell levels and the secretion of IFN-γ and IL-

12. 

 It is important to note that while promising, the HIV levels in treated mice did not remain 

suppressed. This is despite boosted CD4+ T cell numbers that continued even after the cessation 

of treatment. It would be expected that after the end of treatment this newly boosted reservoir of 
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T cells would make an excellent founder population for the virus still present. Further timepoints 

past those measured may show an eventual CD4 reduction, but if T cell levels continued to 

maintain perhaps the reinvigoration of T cells by PD-L1 blockade rendered the leftover virus 

reservoir population weakened. Future work on the effects of PD-L1 blockade on latency, as well 

as the direct cytoxic improvements of CD8+ T cells, would help elucidate possible mechanisms 

of control. 

Perhaps most important is the demonstration of the hu-mouse as a model system for 

observing HIV-induced T cell exhaustion. Further studies can improve upon our understanding 

of the nuances of exhaustion in hu-mice, but the increased levels of PD-1 in infected animals 

implies an exhausted phenotype. Future studies on other diseases that have associated exhaustion 

(lymphocytic choriomeningitis virus, cytomegalovirus, hepatitis B, hepatitis C, cancer) could 

identify if exhaustion is a readily observable phenotype in hu-mice . 

 

B2: Pharmacokinetics And Pharmacodynamics Of Anti-Hiv Drugs In Humanized Mouse Tissues 

 

Veselinovic M, Yang KH, LeCureux J, Sykes C, Remling-Mulder L, Kashuba AD, Akkina R. 

(2014) HIV pre-exposure prophylaxis: mucosal tissue drug distribution of RT inhibitor 

Tenofovir and entry inhibitor Maraviroc in a humanized mouse model. Virology. Sep;464-

465:253-63. doi: 10.1016/j.virol.2014.07.008.  

Veselinovic M, Yang KH, Sykes C, Remling-Mulder L, Kashuba AD, Akkina R. (2016) 

Mucosal tissue pharmacokinetics of the integrase inhibitor raltegravir in a humanized mouse 

model: Implications for HIV pre-exposure prophylaxis. Virology. Feb;489:173-8. doi: 

10.1016/j.virol.2015.12.014. 
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B2.1 Overview 

The number of deaths from HIV has steadily declined in recent years (156). However the 

number of new infections has plateaued, tending to affect high-risk groups like minority men 

who have sex with men (MSM) (157, 158). Once infection is established full eradication 

becomes impossible by current treatments, thus preventing new infections is key (207). HIV 

vaccines are still not efficacious enough to afford adequate prophylaxis, thus alternative 

prevention strategies must be attempted (217). Pre-exposure prophylaxis (PrEP) is one promising 

strategy that places high-risk patients on anti-HIV drugs before infection (243). Several studies 

have shown significant levels of protection, while others have had mixed results likely due to 

problems with adherence (244, 340). In order to properly dose patients with anti-HIV drugs the 

pharmacokinetics and pharmacodynamics (PK/PD) of said drugs must be understood. Human 

and non-human primate PK/PD studies are expensive. Mouse models, particularly humanized 

mice, provide a more cost effective system for PK/PD studies, but drug levels must be measured 

in various tissue compartments to ensure that future human work can be correlated. To this end 

we measured the PK/PD of three anti-HIV drugs: raltegravir, an integrase strand transfer 

inhibitor (428); maraviroc, a CCR5 antagonist fusion inhibitor (429); and tenofovir, a nucleotide 

analogue reverse transcriptase inhibitor (430). 

B2.2 Materials and Methods 

B2.2a Generation of humanized mice 

Humanized female BALB/c Rag2
-/-

 or Rag1
-/-

 CD132
-/-

  (Rag-hu) mice were prepared as 

previously described (426). Briefly, newborn mice were irradiated with 350 rad and then injected 
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intrahepatically with 0.5–13 million human CD34+ cells isolated from human fetal liver by 

magnetic bead separation. Mice were screened for human cell engraftment at 10–12 weeks post-

reconstitution. Peripheral blood was collected by tail bleed every week, and RBCs were lysed 

using the Whole Blood Erythrocyte Lysing Kit (R&D Systems) to isolate white blood cells 

(WBC).  The WBC fraction was stained with anti-human CD45-PE (Invitrogen) and analyzed by 

flow cytometry to determine the levels of human cell engraftment as previously described (426). 

Only mice with engraftment above 50% were used in the study.  

B2.2b Administration of antiretroviral drugs and sample collection 

Mice were administered tenofovir disoproxil fumarate (TFV, 6.15x10
-2

 mg/g, Gilead 

Sciences), maraviroc (MVC, 6.2x10
-2

 mg/g, Selzentry) or raltegravir (RAL, 1.64x10
-1

 mg/g, 

Merck & Co.) by oral gavage for 5 days. Drugs were freshly dissolved in sterile PBS prior to 

administration. Mouse equivalent drug doses were calculated using an interspecies allometric 

scaling factor of 12.3 (431, 432). 3-5 mice per timepoint were sacrificed at 2, 8, and 24 hours 

following the last gavage of tenofovir. 3-5 mice per timepoint were sacrificed at 4, 12, and 24 

hours following the last gavage of maraviroc. 2-3 mice per timepoint were sacrificed at 2, 8 and 

24 hours following the last gavage of raltegravir. 48-hour plasma samples were also collected for 

each drug. Plasma samples were obtained by cardiac puncture at termination, except 48 hour tail 

vein bleeds. At termination each vaginal, rectal and intestinal tissue sample was removed, placed 

in screw-cap tubes and immediately snap frozen in liquid nitrogen. Untreated animal tissues and 

plasma were used as negative controls. All samples were stored at −80°C until drug analysis. 
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B2.2c Plasma and tissue drug concentration measurements 

Tissue and plasma TFV and TFV-DP were extracted from tissue homogenate and plasma 

by protein precipitation with isotopically-labeled internal standards (
13

C TFV and 
13

C TFV-DP). 

TFV was eluted from a Waters Atlantis T3 (100 × 2.1mm, 3µm particle size) analytical column, 

and TFV-DP was eluted from a Thermo Biobasic AX (50 × 2.1mm, 5µm particle size) analytical 

column. An API-5000 triple quadrupole mass spectrometer was used to detect all analytes. Data 

were collected using AB Sciex Analyst Chromatography Software (Analyst version 1.6.1).  

Plasma MVC was extracted using solid phase extraction with Varian BondElut C-18, 100 

mg, 1CC cartridges. Plasma samples were quantified against the internal standard alprazolam on 

an Agilent 1200 series HPLC system using a Zorbax Eclipse XDB (50 × 4.6mm, 1.8µm particle 

size) analytical column. An Agilent 1100 MSD was used to detect the analyte and internal 

standard.  

Tissue MVC was extracted from tissue homogenates using protein precipitation with the 

internal standard alprazolam. Resulting extract was analyzed on an Agilent 1200 series HPLC 

system using a Zorbax Eclipse XDB (50 × 4.6mm, 1.8µm particle size) analytical column. An 

Agilent 1100 MSD was used to detect the analyte and internal standard. 

Plasma and tissue RAL was extracted with methanol containing the isotopically-labeled 

internal standards (
2
H RAL). RAL was eluted from a Phenomenex Synergi Polar-RP 

(50×4.6 mm
2
, 4 µm particle size) analytical column. An API-5000 triple quadrupole mass 

spectrometer (AB Sciex, Foster City, CA) was used to detect the analytes. Data were collected 

using AB Sciex Analyst Chromatography Software (Analyst version 1.6.1).  
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B2.2d Statistical analysis 

Pharmacokinetic data for all drugs were compared using Mann-Whitney two-tailed test 

using Prism 5 (Graphpad). P<0.05 were considered significant. Measures of central tendency 

were expressed as median and inter-quartile range (IQR 25
th

, 75
th

percentile). 

B2.3 Results 

B2.3a Raltegravir levels in tissue are undetectable by 48 hours. 

Levels of raltergravir in vaginal, rectal and intestinal tissue compartments progressively 

dropped over the course of the experiment. By 24 hours most tissue RAL was barely above the 

limit of detection, and by 48 hours no RAL was detected in tissue (Fig. B2.1A). Plasma followed 

a similar trend, though several animals were below the limit of detection by 24 hours (Fig. 

B2.1A, red line). The ratio of tissue to plasma RAL indicate ~10-fold higher levels of RAL in 

tissues versus plasma (Fig B2.1B). 

 

Fig. B2.1 Pharmacokinetic analysis of raltegravir in humanized mouse tissue and plasma. Mice were 

administered RAL by oral gavage (1.64x10
-1

 mg/g) for 5 days. Plasma and tissue samples were collected at different 

time points following the last dose and drug concentrations were determined (ng/ml or ng/g). Composite medians 

and interquartile ranges (IQR) for plasma, vaginal, rectal and intestinal tissue (A). Each tissue to plasma ratio was 

calculated for the area under the curve (AUC) at 24 hours post dose (B). 
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B2.3b Maraviroc levels in vaginal tissue are lower than rectal at 24 hours. 

Levels of maraviroc in vaginal, rectal and intestinal tissue compartments progressively 

dropped over the course of the experiment. By 24 hours tissue MVC was around 10ng/g, and by 

48 hours no RAL was detected in tissue (Fig. B2.2A). Plasma was basically undetectible by 12 

hours (Fig. B2.2A, red line). The ratio of tissue to plasma RAL indicate ~10 to 100-fold higher 

levels of RAL in rectal and intestinal tissue versus plasma, with about 5-fold higher levels in 

vaginal tissue (Fig B2.2B). 

 

 

Fig. B2.2 Pharmacokinetic analysis of maraviroc in humanized mouse tissue and plasma. Mice were 

administered MVC by oral gavage (6.2x10
-2

 mg/g) for 5 days. Plasma and tissue samples were collected at different 

time points following the last dose and drug concentrations were determined (ng/ml or ng/g). Composite medians 

and interquartile ranges (IQR) for plasma, vaginal, rectal and intestinal tissue (A). Each tissue to plasma ratio was 

calculated for the area under the curve (AUC) at 24 hours post dose (B). 

B2.3c Tenofovir and Tenofovir-diphosphate are much higher in intestinal tissue than 

vaginal. 

Levels of tenofovir (TFV) in vaginal, rectal and intestinal tissue compartments, and 

tenfovir-diphosphate (TFV-DP, metabolized active form) dropped more slowly than other drugs, 

remaining detectible at relatively high levels 24 hours after dose, though becoming undetectable 
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by 48 hours (Fig. B2.3A, C). Plasma was detectible out to 48 hours (Fig. B2.3A, red line). The 

ratio of tissue to plasma TFV indicate ~100-fold higher levels of TFV in rectal and intestinal 

tissue versus plasma, essentially no change in vaginal tissue (Fig B2.3B). 

 
 

Fig. B2.3 Pharmacokinetic analysis of tenfovir and tenofovir-diphosphate in humanized mouse tissue and 

plasma. Mice were administered TFV by oral gavage (6.15x10
-2

 mg/g) for 5 days. Plasma and tissue samples were 

collected at different time points following the last dose and drug concentrations were determined (ng/ml or ng/g). 

Composite medians and interquartile ranges (IQR) for plasma, vaginal, rectal and intestinal tissue (A, C). Each TFV 

tissue to plasma ratio was calculated for the area under the curve (AUC) at 24 hours post dose (B). 

B2.4 Discussion 

All drugs were detectible in humanized mouse tissues for at least the first 24 hours 

following the end of dosing. Levels of RAL and MVC were much lower at 24 hours, indicating a 

shorter tissue half-life than TFV. TFV appeared to have a relatively weaker ability to enter 

vaginal tissue than intestinal tissue. These vaginal levels correlated with plasma TFV levels, 
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implying a close relationship between blood and vaginal levels. As expected, drug levels in 

plasma were more rapidly cleared, implying a larger number of variables to remove drugs from 

circulating plasma (filtering, movement into tissues). All three drugs were detectible for at least a 

day following dosing, making them excellent candidates for PreP. However, this turnover, 

especially in MVC and RAL, is relatively quick and may be a difficult hurdle to overcome in 

populations with poor adherence. Other strategies to extend the release of drugs and thus 

maintain tissue levels over an extended period of time would be helpful. Future work will 

observe the ability of varying drug concentrations to protect against HIV challenge (433), as well 

as the presence of drugs secreted into the vaginal or intestinal lumens. Humanized mice provide 

an excellent model system for observing PK/PD levels and are now a platform for new anti-HIV 

drugs to be tested, such as Vorinistat, an anti-latency histone deacetylase inhibitor (434), or 

Truvada, a combined TFV and emtricitibine cocktail (435). 

 

B3: CD34 Infections In Vitro and In Vivo 

B3.1 Overview 

The hope that HIV-1 infections could be cured with long term highly active antiretroviral 

therapy (HAART) was shattered by the discovery of latently infected resting memory CD4+ T 

cells (436).  While HAART can substantially reduce the numbers of cells actively producing 

virus, these same drugs have little efficacy against latently infected cells which may later become 

reactivated (437), potentially initiating new rounds of viral replication should the patient stop 

taking HAART (438).  This latent viral reservoir is a massive barrier to a cure for HIV-1, and 

new drugs are being investigated for their ability to activate latent provirus (439).  While resting 
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memory CD4+ T cells are likely the primary latent reservoir, evidence has been mounting that 

other cell subsets may also harbor latent provirus (440). 

One such subset may be bone marrow hematopoietic stem cells (HSCs) (441).  These 

cells are CD34+, and serve as precursors to multiple cells types involved in innate and adaptive 

immunity, such as T cells, B cells, monocytes, dendritic cells, macrophages, neutrophils, and NK 

cells (442).  In vitro work has previously demonstrated that CD34+ HSCs isolated from fetal 

cord blood are capable of becoming latently infected with HIV-1 (443, 444).  Other studies, 

however, have failed to demonstrate HIV-1 infection of these cells, and the topic remains 

controversial (445, 446).   

Our study addresses this issue of in vivo reactivation of HIV-1 infected CD34+ HSCs 

through the use of a humanized mouse model.  Rag
-/-

 CD132
-/-

 newborn mice, when engrafted 

with human fetal liver derived CD34+ HSCs, develop an intact immune system with multiple 

lineages of human immune cells present, including human CD4+ T cells, rendering these mice 

susceptible to HIV-1 infection (427).  We examined whether HIV-1 infection of CD34+ HSCs, 

followed by their engraftment into these mice, could provide the spark necessary to initiate 

sustained viremia following development of a human immune system in these mice.  As the 

isolated fetal liver derived CD34+ HSCs are unlikely to contain CD4+ T cells, the initiation of 

infection in these mice would be due to CD34+ HSCs which serve as an in vivo source of new 

virus.  We also wished to examine previous findings that CD34+ HSCs can be infected with 

CXCR4 tropic, but not CCR5 tropic, strains of HIV-1 (447). 

Our study demonstrates that CD34+ HSCs can be infected with both CCR5 and CXCR4 

tropic strains of HIV-1, and shows for the first time that these cells are capable of serving as a 

viral reservoir in vivo to establish infection.  By showing the capacity of these cells to serve as 
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reservoirs for new viral infection in vivo, a strong argument is made that all potential latent viral 

reservoirs, not simply latently infected CD4 T cells, must be targeted in order to fully eliminate 

the virus and potentiate a cure for HIV through the use of ART. 

B3.2 Materials and Methods 

B3.2a Fetal CD34+ stem cell extraction, growth and infection.  

Human fetal liver-derived CD34+ cells were prepared as previously described (426). Briefly, 

fetal liver was enzymatically digested with DNase, hyaluronidase and collagenase to obtain a 

single cell suspension, then incubated with anti-human CD34 magnetic bead antibodies and 

concentrated through two Miltenyi magnetic columns.  Isolated CD34+ cells were grown in 

cytokine-supplemented medium (SCF, 50ng/ml TPO, 100ng/ml IGFBP-2, and 50ng/ml Flt3-L 

(447)). Once large colonies were grown, approximately 0.5-1*10
6
 cells were infected with HIV-

1 strains BaL or NL4-3 at an approximate MOI of 5. The CD34s were incubated for 4 hours then 

washed and plated in stem cell media. Supernatant was collected by spinning down CD34+ cells, 

collecting supernatant, and resuspending CD34s in fresh media. 

B3.2b Generation of HIV-1 engraftment-infected Rag-hu mice.  

Humanized BALB/c Rag2
−/−

CD136
−/−

 mice were prepared as previously described using 

infected or uninfected human fetal liver-derived CD34+ cells (448). Briefly, neonatal mice were 

conditioned by irradiating at 350 rad then injected intrahepatically with 0.5–1x10
6
 human 

CD34+ cells (either uninfected or infected). 8 weeks after reconstitution mice were screened for 

human lymphocyte engraftment. Blood was collected by tail bleed and red blood cells were lysed 
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using the Whole Blood Erythrocyte Lysing Kit (R&D Systems). The white blood cell fraction 

was stained with anti-CD45-PE (Invitrogen) and analyzed using an Accuri C6 flow cytometer 

(BD) (426). 

B3.3c Real time PCR to measure HIV viral load.  

Plasma HIV-1 was detected by qRT-PCR. RNA was extracted from 25–50 ul of EDTA-

treated plasma using the QIAamp Viral RNA kit (Qiagen). QRT-PCR was performed using a 

primer set specific for the HIV-1 LTR sequence and One-Step SYBR Green qPCR kit (Bio-Rad) 

(426). 

B3.3a Infected CD34s release higher levels of BaL HIV than NL4-3 

To assess the ability of two common laboratory strains of HIV-1 to infect fetal liver 

derived CD34+ stem cells, extracted CD34+ cells were subjected to HIV-1 Bal or NL4-3 

infection in vitro. Supernatants were collected over the course of 3 weeks and viral RNA was 

quantified by RT-qPCR. Both viral infections had initial viral RNA levels around 10
4.5 

copies/mL (Fig. B3.1). Bal-infected CD34s began to release progressively higher levels of viral 

RNA, exceeding 10
6
 copies/mL at 23 days post infection. NL4-3-infected CD34+ cells showed a 

progressive but still detectable decline over the same time period. 
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Figure B3.1 Viral supernatant RNA over time following in vitro CD34+ HSC infection:  After infection (MOI 

5), cells were pelleted and supernatant removed by pelleting cells and pulling off supernatant. Cells were then 

washed twice in PBS and resuspended in fresh media. Each time point represents only the virus accumulated after 

the previous collection. 

B3.3b Viral RNA in vivo 

For in vivo experiments, isolated CD34+ cells were infected with either BaL or NL4-3 

strains of HIV-1 and engrafted into neonatal RAG
-/-

 CD136
-/-

 mice 24 hours later. Serum viral 

RNA levels were measured over time, with multiple sets of animals being observed following 

engraftment (Figure B3.2). 3 weeks after engraftment most animals were HIV positive, with the 

exception of 3 NL4-3 and 1 BaL. By 8 and 9 weeks post engraftment all animals had detectible 

viral loads between 10
3
 and 10

4
 copies/mL. As time progressed some BaL and NL4-3 animals 

had undetectable viral loads (BaL after 25 weeks and NL4-3 after 30).  
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Figure B3.2 In vivo viral loads of HIV infected mice.  Humanized mice were engrafted with CD34 HSCs that had 

been infected at an MOI of 5 with either BaL or NL4-3 strains of HIV-1.  Viral RNA loads in engrafted mice were 

followed for a period of 40-50 weeks. Two sets of mice for each HIV strain were initiated at different timepoints 

based on availability of pups. 16 BaL mice, 20 NL4-3 mice, and 11 uninfected controls were observed. 

B3.3c Control and BaL engrafted animals showed typical CD4 loss but not NL4-3 animals 

Next, we assessed the ratio of CD4/CD3 in HIV-1 infected mice.  In BaL engrafted mice, there 

was a typical reduction in the number of CD4 T cells (Fig. B3.3, red line). This was confounded 

by very low human cell numbers at later timepoints. Control animals did not exhibit this CD4 

loss (Fig. B3.3, black and blue lines). Interestingly, NL4-3 engrafted animals did not show the 

typical loss of CD4 cells (Fig. B3.3, green line). 
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Figure B3.3 percentage of CD4 to CD3 cells in infected and uninfected mice. Frequencies of CD3+ and CD4+ T 

cells in mouse peripheral blood (tail bleed) were assessed by flow cytometry every one or two weeks following 

engraftment.   

 

B3.3d Human cell engraftment loss in humanized mice over time. 

We next assessed levels of engraftment in mice initially engrafted with HIV-1 infected 

CD34 HSCs (Fig. B3.4). Through week 13 levels of engraftment between control mice and HIV 

infected mice were similar.  By week 17 BaL infected mice had extremely low engraftment, 

while other groups showed more progressive engraftment loss. 
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Figure B3.4 Levels of engraftment in mice engrafted with HIV infected or uninfected CD34 HSCs:  Overall 

levels of engraftment are assessed by the frequency of human CD45+ cells present in peripheral blood (tail bleed) of 

engrafted mice taken at various time points.  Cells were gated on lymphocyte subpopulations based on forward 

scatter and side scatter profile. 

B3.4 Discussion 

Whether CD34+ HSCs are capable of being infected by HIV and become latently 

infected is a matter of debate.  Previous studies have shown that CD34+ CD133+ cells isolated 

from bone marrow, and CD34+ HSCs from fetal cord blood are capable of being infected by 

HIV in vitro (443, 444).  However conflicting studies have failed to infect HSCs (445, 446).  In 

this study, we demonstrate for the first time that in a humanized mouse model that CD34+ HSC 

derived from human fetal liver are capable of being infected with both CCR5 and CXCR4 tropic 

strains of HIV, and that upon engraftment of these infected cells into Rag
-/-

 CD136
-/-

 mice, a 

productive infection is established. 
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Our in vitro data show that CD34+ HSCs are capable of becoming infected with a CCR5 

tropic strain of HIV-1 (BaL). This is at odds with previous published reports showing HSCs 

being infected with only CXCR4 tropic HIV-1 (447).  This may be explained by differences in 

isolation techniques and markers used to identify HSCs in this study compared to others, as well 

as potentially the source of HSCs.  Previous studies examining this issue used either bone 

marrow derived CD34+ CD133+ cells, or fetal cord blood derived CD34 HSCs.  In our study, we 

examined bulk CD34+ HSCs derived from human fetal liver. As CD34+ HSCs are not a 

homogenous population it is possible that certain cell types present in our study were excluded 

from other studies examining this issue (449). We observed that among our CD34+ HSC from 

human fetal liver that a significant proportion were CCR5 positive, which may help explain the 

CCR5 tropism (data not shown). Of the few CD4+ cells among the isolated CD34+ cells, most 

were CCR5 positive (data not shown).   

While CD4 levels did appear to decline for BaL infected mice, the lack of significant 

CD4 decline in NL4-3 infected mice is puzzling.  Viral replication of NL4-3 was possibly 

deficient in these mice, as seen in Fig. B3.2, where NL4-3 viral loads became undetectable for 

several mice by week 15.  It is important to note that for BaL infected mice, frequencies of CD4 

T cells of total CD3+ T cells are difficult to assess accurately, as overall levels of engraftment for 

BaL infected mice are significantly lower than controls after week 17.  This dramatic loss of 

engraftment in the BaL infected mice is possibly due to HIV-1 mediated killing of CD34+ HSCs 

in the mouse bone marrow, and is an issue which warrants further investigation.  It is possible 

that some of the decline in immunity as a result of HIV-1 infection may be due to loss of this 

reservoir of progenitor cells due to their susceptibility to HIV-1 infection. 



  

  

 142 

One potential limitation of this study is that CD34 HSCs isolated from human fetal liver, 

rather than HSCs from adult human bone marrow.  There may be important differences between 

CD34s isolated from human fetal liver versus CD34s isolated from human bone marrow.  

However, contamination with CD4+ T cells in adult bone marrow would make such a study 

difficult. We conclude that CD34+ fetal liver cells can be infected with both BaL and NL4-3 

virus in vitro and these cells can be engrafted and maintained in mice for an extended period. 

Infected CD34+ cells are enough to establish an infection in humanized mice and indicate the 

potential for HSC as a reservoir for HIV. Future work will include looking for latently infected 

CD34’s in the mice and testing anti-latency drugs for their effect on the HSC reservoir. 

 

 

 

 

In the words of a great scientist, wubba lubba dub dub. 
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Abbreviations 
 

 

 

ADCC: antibody-dependent cell-mediated cytotoxicity 

AMP: antimicrobial peptides 

APC: antigen-presenting cell 

APRIL: a proliferation inducing ligand 

ART: antiretroviral therapy 

BAFF: B-cell activating factor 

BaL: HIV-1 isolate 

BALB/c: inbred mouse strain 

BALT: bronchus-associated lymphoid tissue 

bNAbs: broadly-neutralizing antibodies 

C57BL/6: inbred mouse strain 

CD40L-/-: inbred mouse strain without CD40L 

CTLA-4: cytotoxic T-lymphocyte-associated protein 4 

DC: dendritic cell 

DEX: dextrose 

ELISA: enzyme-linked immunosorbent assay 

ELISPOT: enzyme-linked immunospot 

ESCRT: endosomal sorting complexes required for transport 

FliC: Salmonella flagellin subunit C 

FRT: female reproductive tract 

GALT: gut-associated lymphoid tissue 

GAPs: goblet cell associated-antigen pathways  

GRAS: Generally Regarded As Safe 

HAART: highly active antiretroviral therapy 

HIV: human immunodeficiency virus 

HLA: human leukocyte antigen 

HSC: hematopoietic stem cell 

hu-Mice: humanized mice 

IFN-γ: interferon-gamma 

IgA: immunoglobulin class A 

IgG: immunoglobulin class G 

IgM: immunoglobulin class M 

IL-X: interleukin-X 

ILC: innate lymphoid cell 

LAB: lactic acid bacteria 

LAG-3: lymphocyte-activation gene 3 

LPS: lipopolysaccharide 

LTA: lipoteichoic acid 

MAIT: mucosal-associated invariant T cell 
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MALT: mucosa-associated lymphoid tissue 

MHC: major histocompatibility complex 

MLN: mesenteric lymph node 

MPER: membrane-proximal external region 

MRS: deMann-Rogosa-Sharpe medium 

MVC: maraviroc 

NK: natural killer cell 

NL4-3: HIV-1 isolate 

NLR: NOD-like receptor 

NOD: nucleotide-binding oligomerization domain-containing protein 

PCA: principle components analysis 

PD-1: programmed death-1 

PK/PD: pharmacokinetics/pharmacodynamics 

PP: Peyer's patch 

PrEP: pre-exposure prophylaxis 

PRR: pattern recognition receptor 

qRT-PCR: quantitative reverse transcriptase polymerase chain reaction 

RAG: recombination-activating gene 

RAL: raltegravir 

RB: rice bran 

RBE: rice bran extract 

ROC: receiver operating characteristic 

SILT: solitary isolated lymphoid tissues  

SPL: spleen 

TED: transepithelial dendrites 

TFV: tenofovir 

Th1: T helper type 1 

Th17: T helper 17 cell 

Th2: T helper type 2 

Tim-3: T-cell immunoglobulin and mucin-domain containing-3 

TLR: toll-like receptor 

TNF-α: tumor necrosis factor-alpha 

Treg: T regulatory cell 
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