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Abstract. Let X be a Markov process taking values in E with continuous paths and
transition function (Ps,t). Given a measure µ on (E,E ), a Markov bridge starting at (s, εx)
and ending at (T ∗, µ) for T ∗ < ∞ has the law of the original process starting at x at time
s and conditioned to have law µ at time T ∗. We will consider two types of conditioning: a)
weak conditioning when µ is absolutely continuous with respect to Ps,t(x, ·) and b) strong
conditioning when µ = εz for some z ∈ E. The main result of this paper is the representation
of a Markov bridge as a solution to a stochastic differential equation (SDE) driven by a
Brownian motion in a diffusion setting. Under mild conditions on the transition density
of the underlying diffusion process we establish the existence and uniqueness of weak and
strong solutions of this SDE.

1. Introduction

The main purpose of this paper is to study path-wise construction of a Markov process on
[0, T ∗) , where T ∗ ∈ (0,∞], starting at x and arriving at z at T ∗. A canonical example of
such a process is the Brownian bridge on [0, 1):

Xt = x+Bt − tB1 + (z − x)t, t ∈ [0, 1). (1.1)

If one defines (βt)t∈[0,1) by

dβt = dBt −
B1 −Bt

1− t
dt,

then β becomes a Brownian motion in the natural filtration of B initially enlarged with B1.
Moreover, X solves the following SDE:

Xt = x+ βt +

∫ t

0

z −Xs

1− s
ds, t ∈ [0, 1). (1.2)

Conversely, if one starts with an arbitrary Brownian motion, β, the solution to the above
SDE has the same law as the Brownian bridge defined by (1.1). In particular, limt→1Xt = z,
a.s.. Both (1.1) and (1.2) provide a path-wise construction of a Brownian bridge from a
given Brownian motion. The crucial difference is that while the former construction is not
adapted to the filtration of the given Brownian motion, the latter is.

In this paper we will study analogous conditionings for a class of continuous Markov
processes taking values in Rd. It is known that this problem has a solution in the case
of Brownian and Bessel bridges, which have been studied extensively in the literature and
found numerous applications (see, e.g., [21], [22], [1], [11], [26], and [27]). For a general
right continuous strong Markov process [7] constructs a measure on the canonical space such
that the coordinate process have the prescribed conditioning under a duality hypothesis.
More recently, [4] performed the same construction without the duality hypothesis under the
assumption that the semigroup (Pt) of the given process has continuous transition densities
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and ‖Pt−I‖ → 0 as t→ 0, where ‖·‖ corresponds to the operator norm. Moreover, they have
proven that if the original process is, in addition, self-similar, then a path-wise construction
of the Markov bridge can be performed. However, this construction is not adapted.

In what follows we will show that given an Rd-valued diffusion, Y , and a Brownian motion,
B, one can construct a Markov bridge which is adapted to the natural filtration of B as a
strong solution of the following SDE:

Xt = x+

∫ t

s

{
b(Xu) + a(Xu)

(∇hz(u,Xu))
∗

hz(u,Xu)

}
du+

∫ t

s

σ(Xu) dBu, (1.3)

where hz(t, x) = p(T ∗− t, x, z), and p is the transition density of Y . In the above representa-
tion σ and b are the diffusion and drift coefficients of Y and a = σσ∗. Although this SDE can
be obtained via a formal application of an h-transform, the proof of existence and uniqueness
of a strong solution is problematic due to the explosive behaviour of its coefficients.

The SDE (1.3) resembles the Doob-Meyer decomposition of the process Y defined on some
probability space (Ω,F ,P) with respect to its natural filtration enlarged with the value of
YT ∗ . Indeed, it is well-known (see [13], [12], [16]) that in this enlarged filtration Y satisfies

Yt = y +

∫ t

0

{
b(Yu) + a(Yu)

(∇hYT∗ (u, Yu))∗

hYT∗ (u, Yu)

}
du+

∫ t

s

σ(Yu) dβu,

where β is a Brownian motion under the enlarged filtration independent of YT ∗ provided∫ t

0

∣∣∣∣b(Yu) + a(Yu)
(∇hYT∗ (u, Yu))∗

hYT∗ (u, Yu)

∣∣∣∣ du <∞, P− a.s. for each t < T ∗.

If Ω is a complete and separable metric space and F is the collection of its Borel sets, e.g.
if (Ω,F , P ) is the Wiener space, then there exists a family of regular conditional probabilities
Qy(z; ·) on F given σ(YT ∗) such that for µy-a.e. z one has Qy(z;E) = P(E|YT ∗ = z) and
Qy(z; [YT ∗ = z]) = 1, where µy is the law of YT ∗ (see Theorem 5.3.19 in [15]). Since YT ∗ and
β are independent under P, they will remain so under Qy(z; ·). This implies that for a given
x there exists a weak solution to (1.3) for µx-a.e. z. One can extend this existence result to
all z if, e.g, both Qy(z; ·) and P(·|YT ∗ = z) are continuous in z, which is difficult to verify in
general.

Note that the set, Ex, of z for which there exists a weak solution to (1.3) depends on x.
Thus, for a given uncountable Borel set S, the set of z for which there exists a weak solution
to (1.3) for all x ∈ S, i.e. ∩x∈SEx, might be a null set. Indeed, suppose that µx ∼ m for
all x ∈ E, where m is a measure on the Borel subsets of Rd without point mass. Then,
m(∩x∈SEx) might be less than m(Rd) and, in particular, could be equal to 0.

The existence of z such that there exists a solution to (1.3) for all x is important if one
wants to establish the strong Markov property of the solutions of (1.3) or, equivalently, the
well-posedness of the associated local martingale problem. In view of the discussion above
an approach based on enlargement of filtrations cannot deliver the strong Markov property
of the solutions. This shortcoming is remedied by the techniques developed in this paper
that lead to the existence and uniqueness of strong solutions of this SDE for all pairs (x, z).
In particular, we demonstrate the strong Markov property of the solutions of the SDE.

The standard approach to establish a unique strong solution, which we follow in this paper,
is via the result due to Yamada-Watanabe which requires the existence of a weak solution and
the path-wise uniqueness. As h is not bounded from below, the standard results on pathwise
uniqueness are not applicable but this issue can be circumvented by localisation arguments.
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The existence of a weak solution, however, is a much more delicate problem to handle. One
can relatively easily construct a weak solution on [0, T ] for any T < T ∗, thus obtaining a
sequence of consistent measures, QT . At this point one is tempted to use Kolmogorov’s
extension theorem to find a measure P which solves the corresponding martingale problem
on [0, T ] for any T < T ∗. The issue with this argument is that the resulting measure is not
necessarily concentrated on the paths with left limits.

This issue can be resolved if one is willing to assume the existence of a right continuous and
strong Markov dual process. The idea, as observed in [7], is to construct a dual process that
starts at z and is conditioned to arrive at y at T ∗. The law of this process is the image of the
solution to (1.3) under time reversal, which gives the desired property of the measure obtained
via Kolmogorov’s extension, as well as the bridge property, i.e. P (limt→T ∗ Xt = z) = 1. We,
on the other hand, use weak convergence techniques to establish the existence of such a
measure. This construction does not rely on neither duality assumptions nor self-similarity
of Y .

The strong solutions of (1.3) are also related to the question of time reversal of diffusion
processes. In particular, if σ ≡ 1 it is known that the time reversed process, (XT ∗−t) satisfies
the above SDE weakly on [0, T ∗) under some mild conditions. The SDE representation for
the reversed process was obtained by Föllmer in [8] using entropy methods in both Markovian
and non-Markovian case, and by Hausmann and Pardoux [10] via weak solutions of backward
and forward Kolmogorov equations. Later Millet et al. [19] extended the results of Hausmann
and Pardoux by means of Malliavin calculus to obtain the necessary and sufficient conditions
for the reversibility of diffusion property. This problem was also tackled with the enlargement
of filtration techniques by Pardoux [20].

We will refer the type of conditioning represented by (1.3) as a strong conditioning. In
this paper we will also consider weak conditioning when the original process is conditioned
to have a given distribution at T ∗, which is absolutely continuous with respect to its original
distribution at time T ∗. In contrast with strong conditioning this construction is based
on a careful implementation of Kolmogorov’s extension argument. One can also give an
interpretation of weak conditioning when T ∗ = ∞ in the context of penalisations on the
canonical space (see [24] and [25] for a review of the topic).

The rest of the paper is organised as follows. Section 2 contains the main results together
with their discussion and examples. The proofs are postponed until Section 3.
Acknowledgement: The authors would like to thank the anonymous referee whose remarks
and comments have significantly improved the paper.

2. Main results and examples

Let T ∗ ∈ (0,∞]. If T ∗ <∞, we suppose Ω = C([0, T ∗],E) where E =
Śd

i=1[li,∞) with the
convention that if li = −∞ then [li,∞) = R. In case T ∗ =∞, Ω = C([0,∞),E). We equip
E with the metric ρ defined by ρ(x, y) = ‖x − y‖, where ‖ · ‖ corresponds to the Euclidean
norm on Rd, and E will stand for the set of all Borel subsets of E. We denote by T the index
set of time, i.e. T = [0, T ∗] (resp. T = [0,∞)) when T ∗ < ∞ (resp. T ∗ = ∞). Similarly,
Ts = [s,∞) ∩ T. We endow Ω with the local uniform topology so that it is a Polish space
and denote by X the coordinate process. The canonical filtration (Bt)t∈[0,T ∗) is defined via
Bt = σ(Xs; s ≤ t) for t < T ∗, and BT ∗ = ∨t<T ∗Bt.
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Let A be the generator defined by

At =
1

2

d∑
i,j=1

aij(t, ·)
∂2

∂xi∂xj
+

d∑
i=1

bi(t, ·)
∂

∂xi
, (2.4)

where a is a matrix field and b is a vector field. We suppose the following.

Assumption 2.1. (1) For all i, j = 1, . . . , d, the maps (t, x) 7→ aij(t, x) and (t, x) 7→
bi(t, x) are real-valued and Borel measurable, and aij is locally bounded. Moreover,
either bi is locally bounded from above for all i or locally bounded from below for all i.

(2) For each (t, x) the matrix a(t, x) is symmetric and non-negative, i.e. for every λ ∈ Rd∑
i,j

aij(t, x)λiλj ≥ 0.

(3) The local martingale problem for A where solutions have sample paths in Ω is well-
posed, i.e. for any (s, x) ∈ [0, T ∗)×E, there exists a unique probability measure P s,x

on (Ω,B∗T ) such that P s,x(Xr = x, r ≤ s) = 1 and
(

(M f
t )t∈Ts , (Bt)t∈Ts

)
is a local

martingale, where

M f
t = f(Xt)− f(Xs)−

∫ t

s

Arf(Xr) dr,

for any f ∈ C∞(E).

Well-posedness of the local martingale problem described in Part 3 of Assumption 2.1
implies that X is strong Markov under P s,x (Theorem 4.4.2 in [6]) and we will denote its
transition function with (Pr,t). Moreover, we show in Appendix A that well-posedness of
the local martingale problem is equivalent to the existence and uniqueness in law of a weak
solution for an associated stochastic differential equation.

This relationship between the local martingale problem and the weak solutions of SDEs
provides a generic approach to the well-posedness of the local martingale via a study of the
associated SDE. In particular, the local martingale problem is well-posed if (see Remark
5.4.30 and Corollary 5.4.29 in [15]) E = Rd, the coefficients aij and bi are Hölder continuous
and bounded, and the matrix a is uniformly positive definite, i.e.∑

i,j

aij(t, x)λiλj ≥ c‖λ‖2, ∀x, λ ∈ Rd for some c > 0.

Given a measure µ on (E,E ), a Markov bridge starting at (s, εx) and ending at (T ∗, µ)
for T ∗ < ∞ has the law of the original process, X, given that XT ∗ has the law µ. We will
consider two types of conditioning: a) weak conditioning when µ is absolutely continuous
with respect to Ps,T ∗(x, ·) and b) strong conditioning when µ = εz for some z ∈ E.

The weak conditioning can be obtained via an h-function. Indeed, since µ is absolutely
continuous with respect to Ps,T ∗(x, ·), there exists a Radon-Nikodym derivative, H, so that

µ(E) =

∫
E

H(y)Ps,T ∗(x, dy),∀E ∈ E .

If we define the function h : [0, T ∗]× E 7→ R+ by

h(t, y) :=

∫
H(z)Pt,T ∗(y, dz),
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then ((h(t,Xt)t∈Ts , (Bt)t∈Ts) is a martingale under P s,x. The weak conditioning can be
obtained via Theorem 2.1 under some technical conditions listed in the definition below.

Definition 2.1. For T ∗ < ∞ (resp. T ∗ = ∞), we call a function h : [0, T ∗] × E 7→ [0,∞)
(resp. h : [0, T ∗) × E 7→ (0,∞)), strictly positive on [0, T ∗) × E, an h-function if h ∈
C1,2([0, T ∗)× E) and ((h(t,Xt)t∈T, (Bt)t∈T) is a martingale under every P 0,x.

Theorem 2.1. Let σ be a matrix field such that a = σσ∗. Suppose that the conditions of
Assumption 2.1 hold and let h be an h-function. Then, there exits a unique weak solution on
Ts to the following SDE:

Xt = x+

∫ t

s

{
b(u,Xu) + a(u,Xu)

(∇h(u,Xu))
∗

h(u,Xu)

}
du+

∫ t

s

σ(u,Xu) dBu.

X is a strong Markov process and the associated transition function, (P h
r,t) is related to (Pr,t)

via

P h
r,t(x,E) =

1

h(r, x)

∫
E

h(t, y)Pr,t(x, dy), x ∈ E, E ∈ E , s ≤ r < t, t ∈ Ts.

In particular, if T ∗ <∞,

P (XT ∗ ∈ E) =

∫
E

h(T ∗, y)

h(s, x)
Ps,T ∗(x, dy). (2.5)

Observe that the definition of an h-function as well as Theorem 2.1 does not require
T ∗ < ∞. A way to interpret the weak conditioning with T ∗ = ∞ is via penalisations (see,
e.g., [24] and [25] for the theory and examples). Indeed, in this case the law of the bridge
process in Theorem 2.1 can be viewed as the penalised probability measure on (Ω,B∞)
induced by the weight process (h(t,Xt))t∈T. Thus, weak conditioning with T ∗ = ∞ is an
example of penalisation when the weight process is an adapted martingale.

Example 2.1. Let T ∗ < ∞ and suppose that E ∈ E is a set such that (t, x) 7→ Pt,T ∗(x,E)
belongs to C1,2([0, T ∗) × E) and Pt,T ∗(x,E) > 0 for all t < T ∗ and x ∈ E. Define h
by h(T ∗, x) = 1E and h(t, x) = Pt,T ∗(x,E). Clearly, ((h(t,Xt)t∈T, (Bt)t∈T) is a bounded
martingale under every P 0,x. Moreover, h ∈ C1,2([0, T ∗) × E) by assumption. Thus, h is
an h-function. If we apply the above theorem to this h-function, we end up with a weak
conditioning of the coordinate process that ensures that P h;s,x(XT ∗ ∈ A) = 1.

Strong conditioning, intuitively, can be done via “h(t, x) = P t,x(XT ∗ = z)”. As [XT ∗ = z]
is most likely a null set, the above theorem is not applicable since the h-function vanishes. We
will obtain the stochastic differential equation for the bridge process under two different sets
of conditions. The first set of conditions will be handy when one can obtain bounds on the
transition density of the process associated with the solution of the local martingale problem
over the interval [0, T ∗], e.g. via Gaussian type estimates on the fundamental solution of
the parabolic pde ut = Au. Although this assumption is stated for a generator with time-
independent coefficients, its generalisation to the time-dependent case is straightforward and
the proof will hold verbatim with the obvious modifications. We demonstrate the proof for
the time-independent case for the sake of brevity of exposition.

The second set of assumptions can be seen as a relaxation of the first one in the case of a
time-homogeneous local martingale problem whose solution has sample paths in C((0,∞),E).
The proof in the latter case relies on a certain bounded property of the potential density of
X, which is generally satisfied in the one-dimensional case (see Proposition 4.1).
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Assumption 2.2. Suppose that a and b do not depend on time, T = [0, T ∗], Assumption
2.1 is satisfied, and the family of solutions of the local martingale problem, P x, is weakly
continuous. Moreover, (Pt) is a semi-group admitting a regular transition density p(t, x, y)
with respect to a σ-finite measure m on (E,E ) such that

lim
t→0

∫
Bcr(z)

p(t, y, z)p(u− t, x, y)m(dy) = 0, ∀u > 0, r > 0, (2.6)

where Br(z) := {y : ‖y − z‖ < r}, the Chapman-Kolmogorov equations,

p(t, x, y) =

∫
E

p(t− s, x, u)p(s, u, y)m(du), 0 < s < t ≤ T ∗, (2.7)

hold, and for every z ∈ E and r > 0

sup
x/∈Br(z)
t≤T ∗

p(t, x, z) <∞. (2.8)

The condition (2.6) is satisfied when p(s, x, y) is continuous on (0, T ∗)×E×E and there
exists a right-continuous process, X̃ such that X and X̃ are in duality with respect to m.
This would be the case if X were a strongly symmetric Borel right process (see Remark 3.3.5
in [17]) with continuous transition densities, in particular a one-dimensional regular diffusion
without an absorbing boundary. Moreover, if X is a Feller process the laws (P x) will be
weakly continuous, too.

The boundedness assumption on the transition density as given in (2.8) is satisfied in
many practical applications. In particular, if the coefficients bi and aij are bounded, Hölder
continuous, and the matrix a is uniformly positive definite, then m becomes the Lebesgue
measure and p(t, x, y) becomes the fundamental solution of the parabolic PDE, ut = Au,
and satisfies for some k > 0

p(t, x, y) ≤ t−
d
2 exp

(
−k‖x− y‖

2

t

)
, t ≤ T ∗, (2.9)

yielding the desired boundedness (see Theorem 11 in Chap. 1 of [9]). Also observe that
this estimate implies (2.6), too. Moreover, Ptf is a continuous function vanishing at infinity
whenever f is continuous and vanishes at infinity, i.e., X is Feller.

Assumption 2.3. Suppose that a and b do not depend on time, T = [0,∞), Assumption
2.1 is satisfied, and the family of solutions of the local martingale problem, P x, is weakly
continuous. Moreover, (Pt) is a semi-group admitting a regular transition density p(t, x, y)
with respect to a σ-finite measure m on (E,E ) such that

lim
t→0

∫
Bcr(z)

p(t, y, z)p(u− t, x, y)m(dy) = 0, ∀u > 0, r > 0, (2.10)

and the Chapman-Kolmogorov equations,

p(t, x, y) =

∫
E

p(t− s, x, u)p(s, u, y)m(du), 0 < s < t, (2.11)

hold.
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Furthermore, the α-potential density1, uα, defined by

uα(x, y) :=

∫ ∞
0

e−αtp(t, x, y)dt, (x, y) ∈ E× E,

satisfies
sup

α>0,x∈K
αuα(x, y) <∞ (2.12)

for any y ∈ E and a compact set K ⊂ E such that y /∈ K.

Theorem 2.2. Let σ be a matrix field such that σσ∗ = a. Suppose that Assumption 2.2 or
2.3 is in force, T ∗ <∞. Fix x ∈ E and z ∈ E such that the following conditions hold:

(1) m({z}) = 0 and p(T ∗, x, z) > 0.
(2) For h(t, y) = p(T ∗ − t, y, z) either h ∈ C1,2([0, T ∗),E) or h ∈ C1,2([0, T ∗), int(E)),

x ∈ int(E), and Pt(x, int(E)) = 1 for all t ≤ T ∗.
(3) If Assumption 2.3 is enforced, then

i) uα(x, z) <∞ for α > 0,
ii) either the map t 7→ p(t, x, y) is continuous on (0,∞) for every y ∈ E, or for all

t > 0 p(t, x, y) > 0, m-a.e. y.

Then there exists a weak solution on [0, T ∗] to

Xt = x+

∫ t

0

{
b(Xu) + a(Xu)

(∇h(u,Xu))
∗

h(u,Xu)

}
du+

∫ t

0

σ(Xu) dBu, (2.13)

the law of which, P x→z
0→T ∗, satisfies P x→z

0→T ∗(infu∈[0,T ] h(u,Xu) = 0) = 0 for any T < T ∗, and
P x→z
0→T ∗(XT ∗ = z) = 1.
In addition, if h(t, ·) > 0 for all t < T ∗, weak uniqueness holds for the above SDE.

Moreover, X is a Markov process with transition function (P h
s,t) defined by

P h
s,t(x,E) =

∫
E

p(t− s, x, y)p(T ∗ − t, y, z)

p(T ∗ − s, x, z)
m(dy), s < t < T ∗, x ∈ E, E ∈ E .

Remark 2.1. Condition m({z}) = 0 is in fact not necessary. Indeed, if m({z}) > 0, then
P x(XT ∗ = z) > 0 due to p(T ∗, x, z) > 0. This implies that we are in the setting of Example
2.1 and, therefore, Theorem 2.1 is applicable. If one, however, still wants to use the weak
convergence techniques employed in the proof of the above theorem, one can do so without
the convergence result of Lemma B.1 since M of the lemma is bounded by 1/m({z}) and
(4.30) follows from (4.29) by the Dominated Convergence Theorem. Also note that whenever
m({z}) > 0, we do not need (2.6) or (2.10) to complete the proof either. Moreover, both
(2.8) and (2.12) are automatically satisfied.

One can in fact obtain a unique strong solution to (2.13) under slightly stronger conditions
on the coefficients and the transition density (see Theorem 4.1). Moreover, if the conditions
of Theorem 2.2 are satisfied by all x ∈ E and h(t, ·) > 0 for all t < T ∗, then X is strong
Markov (see Corollary 4.1).

We end the discussion of main results with the following examples of strong conditioning
of one-dimensional diffusions and Gaussian processes.

1The α-potential density defines the kernel of the α-potential operator. That is, for any f ∈ Cb(E)

Uαf(x) :=

∫ ∞
0

e−αtPtf(x)dt =

∫
E

uα(x, y)f(y)m(dy).
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Example 2.2. Consider the case E = [l,∞) and a and b do not depend on time. Moreover,
suppose that a and b are continuous on (l,∞), a is strictly positive on (l,∞), and

∀x ∈ (l,∞),∃ε > 0 s.t.

∫ x+ε

x−ε

|b(y)|
a(y)

dy <∞.

Let c ∈ (l,∞) be an arbitrary point and define the scale function

s(x) :=

∫ x

c

exp

(
−2

∫ y

c

b(z)

a(z)
dz

)
dy.

Note that under the above assumptions s is twice continuously differentiable on (l,∞) and
the first derivative is strictly positive.

The associated speed measure, m, on (l,∞) is characterised by

m(dx) =
2

a(x)s′(x)
dx.

We further assume that the endpoints of E are inaccessible, that is,∫ ∞
c

m((c, x))s′(x)dx =

∫ c

l

m((x, c))s′(x)dx =∞. (2.14)

This yields in view of Theorem 5.5.15 in [15] that there exists a unique weak solution to

dXt = σ(Xt)dBt + b(Xt)dt,

and consequently the local martingale problem for A is well-posed by Theorem A.1.
We will in fact require more and assume that the infinite boundaries are natural. This

ensures that (P x) is Feller (see Theorem 8.1.1 in [6]), and, therefore weakly continuous.
Since the end-points are inaccessible McKean [18] has shown that the transition semi-group

admits a density, p(t, x, y), with respect to m with the following properties:

(1) For each t > 0 and (x, y) ∈ (l,∞)2, p(t, x, y) = p(t, y, x) > 0.
(2) For each t > 0 and y ∈ (l,∞), the maps x 7→ p(t, x, y) and x 7→ Ap(t, x, y) are

continuous and bounded on (l,∞).
(3) ∂

∂t
p(t, x, y) = Ap(t, x, y) for each t > 0 and (x, y) ∈ (l,∞)2.

The boundedness of Ap(t, x, y) for fixed t and y ∈ (l,∞) together with the fact that m has no
atom implies via Theorem VII.3.12 in [23] that for each y ∈ (l,∞) the s-derivative d

ds
p(t, x, y)

exists. Since s is differentiable, we have d
dx
p(t, x, y) exists.

Note that if b ≡ 0, s(x) = x, and the continuity of σ and Ap imply, once again by Theorem
VII.3.12 in [23], that p(t, x, y) is twice continuously differentiable with respect to x.

When b is not identically 0, consider the transformation Yt = s(Xt), which yields a
one-dimensional diffusion on s(E) with no drift and inaccessible boundaries. Note that
natural boundaries remain so after this transformation. Then, Y possesses a transition
density q with respect to its speed measure m̃. Moreover, it can be directly verified that
q(t, x, y) = p(t, s−1(x), s−1(y)). By the previous discussion q is twice continuously differ-
entiable with respect to x. Since p(t, x, y) = q(t, s(x), s(y) and s is twice continuously dif-
ferentiable, we deduce that p is twice continuously differentiable, as well. This shows that
p(·, ·, y) ∈ C1,2((0,∞)× (l,∞)) for y ∈ (l,∞).
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If l is finite but an entrance boundary, then p(·, ·, l) ∈ C1,2((0,∞)×(l,∞)) as well. Indeed,
Chapman-Kolmogorov identity implies for s < t

p(t, y, l) =

∫ ∞
l

p(t− s, y, z)p(s, z, l)m(dz).

Since p(s, ·, ·) is symmetric
∫∞
l
p(s, z, l)m(dz) = 1. Thus, the assertion follows from differ-

entiating under the integral sign and the analogous properties for p(t− s, y, z).
Thus, for x ∈ (l,∞) and z ∈ (l,∞) (resp. z ∈ [l,∞)) if l is natural (resp. entrance)

boundary, letting h(t, y) = p(T ∗−t, y, z), we see that in view of Proposition 4.1 the conditions
of Theorem 2.2 are satisfied, and the Markov bridge from x to z is the unique weak solution
of

Xt = x+

∫ t

0

{
b(Xu) + a(Xu)

px(T
∗ − u,Xu, z)

p(T ∗ − u,Xu, z)

}
du+

∫ t

0

σ(Xu)dBu. (2.15)

If b and σ are in addition locally Lipschitz, Theorem 4.1 ensures the existence and uniqueness
of a strong solution of the above SDE.

Remark 2.2. In the case of one-dimensional time-homogeneous diffusions on R (2.14) is
satisfied under the standard assumption on the drift coefficient having at most a linear growth.
To see this, suppose l = −∞, a is strictly positive and continuous on R, and b satisfies

|b(x)| < K(1 + |x|),
for some K <∞.

Indeed, first observe that for any x < y,
∫ y
x
|b(z)|
a(z)

dz <∞. Thus, s is well-defined. Moreover,

for x > 1,

m(0, x)s′(x) =

∫ x
0

2
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

exp
(

2
∫ x
0

b(z)
a(z)

dz
)

=

∫ x
0

2
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

1 +
∫ x
0

2b(y)
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

≥

∫ x
0

2
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

1 +
∫ x
0

2|b(y)|
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

≥

∫ x
0

2
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

1 +K(1 + x)
∫ x
0

2
a(y)

exp
(

2
∫ y
0
b(z)
a(z)

dz
)
dy

≥ 1

K0 +Kx
,

where

K0 = K +
1∫ 1

0
2

a(y)
exp

(
2
∫ y
0
b(z)
a(z)

dz
)
dy
.

Since
∫∞
1

1
K0+Kx

dx =∞, we deduce that ∞ is an inaccessible boundary. The case of −∞ is
handled similarly.
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Example 2.3. Consider the following multi-dimensional linear SDE:

dXt = σ(t)dBt + {b(t) + γ(t)Xt} dt,
where σ(t) and γ(t) are d×d-matrices, and b(t) is d-dimensional vector. Assume that for all
i, j = 1, . . . , d, σij, γij and bi are continuous on [0, T ∗], and the following uniform ellipticity
holds: ∑

i,j

aij(t)λiλj ≥ c‖λ‖2, ∀x, λ ∈ Rd for some c > 0.

Then, the above SDE has a unique strong solution, which is a Gaussian semimartingale.
Moreover, (see Section 10.2 in [14])

m(s, t, x) := E[Xt|Xs = x] = F (t)F−1(s)x+ F (t)

∫ t

s

F−1(u)b(u)du

Σ(s, t) := E(Xt −m(s, t,Xs))
2|Xs = x] = F (t)

∫ t

s

(
F−1(u)σ(u)

) (
F−1(u)σ(u)

)∗
duF ∗(t),

where F−1 is the solution of the equation

dF−1(t)

dt
= −F−1(t)γ(t), F−1(0) = I.

When γ ≡ 0, the smoothness of the transition density of X follows from smoothness of the
fundamental solution of ut = Atu by Theorem 10 of Chap. 1 of [9]. Moreover, Assumption
2.2 is satisfied due to the estimates of the fundamental solution given by Theorem 11 of Chap.
1 of [9] that have the form (2.9). Strict positivity of the fundamental solution follows from
Theorem 11 of Chap. 2 of [9]. Thus, Theorems 2.2 and 4.1 apply to give the existence and
uniqueness of a strong solution to the SDE

Xt = x+

∫ t

0

σ(s)dBs +

∫ t

0

{
b(s)− a(s)Σ−1(s, T ∗)

(
z −Xs −

∫ T ∗

s

b(u)du

)}
ds.

The general case follows from the transformation Yt = F−1(t)Xt:

Xt = x+

∫ t

0

σ(s)dBs +

∫ t

0

{b(s) + γ(s)Xs} ds

−
∫ t

0

a(s)(F (T ∗)F−1(s))∗Σ−1(s, T ∗)

(
z − F (T ∗)F−1(s)Xs − F (T ∗)

∫ T ∗

s

F−1(u)b(u)du

)
ds.

3. Weak conditioning

As mentioned in Section 2 h-functions can be employed to obtain weak conditioning.
Since h-functions lead to positive martingales, one can use them to change the measure. The
advantage of such measure changes is that it preserves the Markov property. The proof of
this fact will be based on Lemma 3.1, which is a minor modification of Theorem 4.2.1 (ii) in
[28].

Lemma 3.1. Let f ∈ C1,2([0, T ∗] × E) if T ∗ < ∞; or f ∈ C1,2([0, T ∗) × E) if T ∗ = ∞.

Then,
(

(M f
t )t∈Ts , (Bt)t∈Ts

)
is a local martingale for any solution P s,x of the local martingale

problem for A, where

M f
t = f(t,Xt)− f(s,Xs)−

∫ t

s

{
∂

∂u
f(u,Xu) + Auf(u,Xu)

}
du.



MARKOV BRIDGES: SDE REPRESENTATION 11

Theorem 3.1. Suppose that the conditions of Assumption 2.1 hold and T ∗ < ∞. Let h be
an h-function such that h(T ∗, ·) > 0 and h ∈ C1,2([0, T ∗]× E). Define P h;s,x on (Ω,BT ∗) by
dPh;s,x

dP s,x
= h(T ∗,XT∗ )

h(s,x)
. Then, P h;s,x is the unique solution of the local martingale problem for Ah

starting from x at s, where

Aht = At +
d∑

i.j=1

aij(t, x)

∂h
∂xj

(t, x)

h(t, x)

∂

∂xi
.

Consequently, X is a strong Markov process under every P h;s,x for s < T ∗, x ∈ E and the
associated transition function, (P h

s,t) is related to (Ps,t) via

P h
s,t(x,E) =

1

h(s, x)

∫
E

h(t, y)Ps,t(x, dy), x ∈ E, E ∈ E , t ∈ Ts. (3.16)

Proof. Consider an f ∈ C∞(E) and let

M f
t (h) = f(Xt)− f(Xs)−

∫ t

s

Ahrf(Xr) dr.

Observe that

M f
t (h)−M f

t = −
d∑

i,j=1

∫ t

s

aij(v,Xv)

∂h
∂xj

(v,Xv)

h(v,Xv)

∂f

∂xi
(Xv) dv. (3.17)

Thus, if we let τn = T ∗ ∧ inf{t ≥ s : |M f
t (h)| ≥ n} ∧ inf{t ≥ s : ‖Xt‖ ≥ n}, then tann is

a stopping time and τn → T ∗, P h;s,x-a.s. as n → ∞ since M f and X are continuous under
P s,x, and P s,x ∼ P h;s,x. In particular, (3.17) also entails (M f

t∧τn) is a bounded martingale

under P s,x. We will now see that (M f
t∧τn(h)) is a martingale under P h;s,x. Indeed, for any

u ∈ [s, t] and E ∈ Bu,

h(s, x)Eh;s,x
[(
M f

t∧τn(h)−M f
u (h)

)
1[τn>u]1E

]
= Es,x

[
h(t,Xt)

(
M f

t∧τn(h)−M f
u (h)

)
1[τn>u]1E

]
= Es,x

[
h(t,Xt)

(
M f

t∧τn −M
f
u

)
1[τn>u]1E

]
−Es,x

[
1[τn>u]1E

d∑
i,j=1

∫ t∧τn

u

h(t,Xt)aij(v,Xv)

∂h
∂xj

(v,Xv)

h(v,Xv)

∂f

∂xi
(Xv) dv

]
= Es,x

[
h(t,Xt) (f(Xt∧τn)− f(u,Xu)) 1[τ>u]1E

]
−Es,x

[
1[τn>u]1Eh(t,Xt)

∫ t∧τn

u

Avf(Xv) dv

]
−Es,x

[
1[τn>u]1E

d∑
i.j=1

∫ t∧τn

u

aij(v,Xv)
∂h

∂xj
(v,Xv)

∂f

∂xi
(Xv) dv

]
,

where the last equality follows from the martingale property of h(t,Xt) under P s,x. Letting
g = hf , observing

Es,x
[
h(t,Xt) (f(Xt∧τn)− f(u,Xu)) 1[τn>u]1E

]
= Es,x

[
(g(t ∧ τn, Xt∧τn)− g(u,Xu)) 1[τn>u]1E

]
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by the same martingale argument, and utilising Lemma 3.1, we have

h(s, x)Eh;s,x
[(
M f

t∧τn(h)−M f
u (h)

)
1[τn>u]1E

]
= Es,x

[(
M g

t∧τn −M
g
u +

∫ t∧τn

u

{
f(Xv)

∂h

∂u
(v,Xv) + Avg(v,Xv)

}
dv

)
1[τn>u]1E

]
−Es,x

[∫ t∧τn

u

h(t,Xt)Avf(Xv) dv1[τn>u]1E

]
−Es,x

[
1[τn>u]1E

d∑
i,j=1

∫ t∧τn

u

aij(u,Xu)
∂h

∂xj
(v,Xv)

∂f

∂xi
(Xv) dv

]

= Es,x

[
1[τn>u]1E

∫ t∧τn

u

{
f(Xv)

∂h

∂u
(v,Xv) + Avg(v,Xv)

}
dv

]
−Es,x

[
1[τn>u]1E

∫ t∧τn

u

h(v,Xv)Avf(Xv) dv

]
−Es,x

[
1[τn>u]1E

d∑
i,j=1

∫ t∧τn

u

aij(u,Xu)
∂h

∂xj
(v,Xv)

∂f

∂xi
(Xv) dv

]
= 0,

where the second equality holds since (M g
t∧τn) is a bounded martingale due to the boundedness

of (M f
t∧τn) and the smoothness of h, and the last equality follows from the identity ∂h

∂u
(v, x)+

Avh(v, x) = 0. As τn → T ∗, P h;s,x-a.s., we conclude that P h;s,x solves the local martingale
problem. The uniqueness follows easily due to the one-to-one relationship between P h;s,x and
P s,x since the local martingale problem for A is well-posed.

The strong Markov property is a direct consequence of the well-posedness of the local
martingale problem for Ah via Theorem 4.4.2 in [6]. The form of the transition function
follows directly from the explicit absolute continuity relationship between the measures P h;s,x

and P s,x. �

The last theorem gives us a conditioning on the path space when T ∗ <∞ and h satisfies
the conditions of the theorem. The coordinate process after this conditioning is often referred
to as the h-path process in the literature. Note that the h-function of Example 2.1 does not
satisfy the conditions of the above theorem as h(T ∗, ·) is not strictly positive. This implies
that we cannot use this theorem to condition the coordinate process to end up in a given set.
However, h(t, ·) is strictly positive and smooth for any t < T ∗, which allows us to extend the
results of the previous theorem to the case when h(T ∗, ·) does not satisfy the conditions as
well as when T ∗ =∞. For making this extension possible we first introduce a new canonical
space C([0, T ∗),E) and B−t = σ(Xs; s ≤ t), B−T ∗ = ∨t<T ∗B−t , where X is the coordinate
process on C([0, T ∗),E). Note that there is no difference between the σ-algebras B−t and Bt
when T ∗ = ∞. The main difference in the case T ∗ < ∞ is the measurable space on which
each σ-algebra is defined. While the former is defined on the space of functions that are
continuous on [0, T ∗), the latter is defined on the paths that are continuous on [0, T ∗]. In
particular, the functions that are divergent as t→ T ∗ belong to the former but not the latter,
which in turn implies B−T ∗ has more elements than BT ∗ . On the other hand, one can easily
verify that there is a one-to-one correspondence between the members of B−t and those of Bt
for t < T ∗. In view of these observations the following fact can be established as a special
case of Theorem 1.3.5 in [28].
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Theorem 3.2. Let (tn) be an increasing sequence of deterministic times with tn < T ∗ for each
n and suppose that for each n there exists a probability measure P n on (C([0, T ∗),E),B−tn).
If P n+1 agrees with P n on B−tn and limn→∞ tn = T ∗, then there exists a unique probability
measure, P , on (C([0, T ∗),E),B−T ∗) that agrees with P n on B−tn for all n ≥ 0.

Corollary 3.1. Suppose that the conditions of Assumption 2.1 hold and let h be an h-
function. For any s < T ∗ and x ∈ E, there exists a unique probability measure P h;s,x on2

(Ω,BT ∗) which solves the local martingale problem for Ah, where

Aht = At +
d∑

i.j=1

aij(t, x)

∂h
∂xj

(t, x)

h(t, x)

∂

∂xi

on [0, T ] × E starting from x at s for any T < T ∗. Consequently, X is a strong Markov
process under every P h;s,x for s < T ∗, x ∈ E and the associated transition function, (P h

s,t) is
related to (Ps,t) via

P h
s,t(x,E) =

1

h(s, x)

∫
E

h(t, y)Ps,t(x, dy), x ∈ E, E ∈ E , t ∈ Ts. (3.18)

Proof. Suppose T ∗ = ∞ and let T < ∞. Define a probability measure, QT , on (Ω,BT ∗) via
dQT

dP s,x
= h(T,XT )

h(s,x)
. Then, by Theorem 3.1, restriction of QT to BT is the unique solution to the

local martingale problem for Ah starting from x at time s on [0, T ]× E. Moreover, QT and
Qt+T agree on BT for all t > 0. Indeed, for any E ∈ BT ,

h(s, x)Qt+T (E) = Es,x[h(t+ T,Xt+T )1E] = Es,x[h(T,XT )1E] = h(s, x)QT (E),

implying Qt+T (E) = QT (E) since h is strictly positive. Thus, by Theorem 3.2, there exists
a unique measure Q on (C([0,∞),E),B∞), solving the local martingale problem for Ah on
[0, T ]× E for all T <∞. Consequently, the local martingale problem is well-posed and the
strong Markov property follows.

The case T ∗ <∞ requires more care. Let P̂ s,x be the law of (Xt)t∈[s,T ∗) under P s,x, whereX

is the coordinate process of C([0, T ∗],E). P̂ s,x is a probability measure on (C([0, T ∗),E),B−T ∗)
such that the corresponding coordinate process admits limits as t ↑ T ∗ with probability 1.

Using the function h as a measure change we can again obtain a sequence of measures
(QT )T<T ∗ with the property that QT and Qt+T agree on B−T for all 0 ≤ t < T ∗−T . Theorem
3.2 now yields a probability measure, Q, on (C([0, T ∗),E),B−T ∗) that agrees with QT on B−T
for T < T ∗.

We will use this Q to construct the P h;s,x on (C([0, T ∗],E),BT ∗). However, in order to do
so, we need to establish that under Q the coordinate process, X, of C([0, T ∗),E) admits a
limit as t ↑ T ∗. We will achieve this by showing that Q is absolutely continuous with respect
to P̂ s,x on B−T ∗ . Indeed, for any E ∈ B−t for some t < T ∗, we have

Q(E) = Ês,x

[
h(t,Xt)

h(s, x)
1E

]
= Ês,x [LT ∗1E] , (3.19)

where 0 ≤ LT ∗ = limt→T ∗
h(t,Xt)
h(s,x)

=
h(T ∗,XT∗−)

h(s,x)
. The existence of this limit and the exchange

of expectation and limit are justified since (h(t,Xt))t∈[0,T ∗) is a positive uniformly integrable

P̂ s,x-martingale. Also note that Ês,x[LT ∗ ] = 1.

2Recall that Ω = C([0, T ∗],E) (resp. Ω = C([0,∞),E)) when T ∗ <∞ (resp. T ∗ =∞).
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Define

λ =
{
E ∈ B−T ∗ : Q(E) = Ês,x [LT ∗1E]

}
.

Clearly, λ satisfies the conditions of Dynkin’s π − λ Theorem (see, e.g., Theorem 1.3.2 in
[2]). Moreover,

π = {E : E ∈ B−t for some t < T ∗} ⊂ λ

is closed under intersection. Thus, by Dynkin’s π − λ Theorem the equality (3.19) holds for
all E ∈ B−T ∗ implying the claimed absolute continuity.

We now claim that the sequence (Xtn) with tn ↑ T ∗ is Q-a.s. Cauchy. Observe that on the
set

E = ∩m≥1 ∪n≥1 ∩k≥n
{
ω : ‖Xtk(ω)−Xtk−1

(ω)‖ < 1

m

}
∈ B−T ∗ ,

the sequence is Cauchy. Moreover, P̂ s,x(E) = 1 which together with (3.19) implies Q(E) = 1.
Thus, limt→T ∗ Xt exists, Q-a.s..

Next, define Xh by Xh
t = Xt for t < T ∗, and Xh

T ∗ = limt→T ∗ Xt. If we denote by P h;s,x

the law of Xh, then it is easily seen that it is a probability measure on (C([0, T ∗],E),BT ∗).
Thus, we have shown in view of (3.19) that for any E ∈ Bt

P h;s,x(E) = Es,x

[
h(t,Xt)

h(s, x)
1E

]
(3.20)

for all s ≤ t ≤ T ∗.
To show the uniqueness assume that there exists another measure P̃ h;s,x on (C([0, T ∗],E),BT ∗)

which solves the local martingale problem for Ah. Then, the restriction of this measure to
BT for T < T ∗ solves the local martingale problem for Ah when solutions have sample paths
in C([0, T ],E). However, this local martingale problem is well-posed due to the one-to-one
correspondence with the martingale problem for A when solutions have sample paths in
C([0, T ],E) via Girsanov transform since h(T, ·) > 0. Thus, by Theorem 3.2 P̃ h;s,x and P h;s,x

agree on (C([0, T ∗],E),BT ∗). This proves the well-posedness of the local martingale problem
for Ah and, therefore, via Theorem 4.4.2 in [6], the strong Markov property holds for X
under P h;s,x.

Finally, the representation for the transition function when T ∗ < ∞ follows from (3.20).
When T ∗ = ∞ the required representation can be obtained from the one associated with
QT , which is given by Theorem 3.1, for any T satisfying s < t < T since Q agrees with QT

on BT . �

In view of the relationship between the solutions of the local martingale problem and the
weak solutions of SDEs (Theorem A.1) yields Theorem 2.1.

4. Strong conditioning

Now we consider the problem of strong conditioning of a Markov process. Intuitively, one
can see that such conditioning can be done via “h(t, x) = P t,x(X∗T = z)”. As [X∗T = z] is
most likely a null set, the definition in the quotation marks shouldn’t be taken too literally.
However, it guides us how to proceed. Suppose that Ps,t admits a density ps,t belonging to
C1,2([0, T ∗)×E). Thus, if it is strictly positive it can be used as an h-function. The problem
is that this function explodes at t = T ∗, which is in fact the very reason why this condi-
tioning works, so we cannot directly use Corollary 3.1. However, it can be applied locally,
i.e. until times away from T ∗, to produce a family of measures on the canonical space. If,
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additionally, the family of solutions to the local martingale problem is weakly continuous,
it is possible to demonstrate that this family converges weakly to a probability measure on
the canonical space yielding the bridge condition. In addition we will obtain a stochastic
differential equation associated with the bridge process.

Proof of Theorem 2.2. Let h(t, x) = p(T ∗−t, x, z) and defineQT , on (C([0, T ∗],E),BT ∗)
by dQT

dPx
= h(T,XT )

h(0,x)
. First, we will show that (QT ) converge weakly, as T → T ∗, to a proba-

bility measure, P x→z
0→T ∗ , on (C([0, T ∗],E),BT ∗) such that P x→z

0→T ∗(X
∗
T = z) = 1. Usually this

is achieved in two steps: 1) Verifying that the family of measures is tight. 2) Demonstrat-
ing that the finite-dimensional distributions of the coordinate process under QT converge to
those under P x→z

0→T ∗ .
In view of Theorem 2.7.2 in [3] since QT (X0 = x) = 1 for all T ∈ [0, T ∗), the tightness will

follow once we show that for any c > 0

lim
δ→0

lim sup
T→T ∗

QT (w(X, δ, [0, T ∗]) > 8c) = 0, (4.21)

where
w(X, δ, [S, T ]) = sup

|s−t|≤δ
s,t∈[S,T ]

‖Xs −Xt‖.

We will first obtain some estimates on the modulus of continuity in a neighbourhood of T ∗.
To this end let Zδ = w(X, δ, [0, δ]) and observe that

[Zδ ◦ θT ∗−δ > 4c] ⊂ [ZT ∗−T ◦ θT > 2c] ∪ [ZT−T ∗+δ ◦ θT ∗−δ > 2c], ∀T > T ∗ − δ. (4.22)

To get an estimate on the probability of the left hand side of the above, we will first consider
the first set of the right hand side.

QT (ZT ∗−T ◦ θT > 2c) = Ex

[
1[ZT∗−T ◦θT>2c]

p(T ∗ − T,XT , z)

p(T ∗, x, z)

]
= Ex

[
PXT (ZT ∗−T > 2c)

p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT∈B1(z)]

]
+Ex

[
PXT (ZT ∗−T > 2c)

p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT /∈B1(z)]

]
,(4.23)

where the first equality is due to the definition of QT and the second is the Markov property.
Since (p(T ∗ − t,Xt, z))t∈[0,T ] is a martingale, we have

Ex

[
PXT (ZT ∗−T > 2c)

p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT∈B1(z)]

]
≤ sup

y∈B1(z)

P y(ZT ∗−T > 2c). (4.24)

Observe that limh→0 P
y(Zh > 2c) = 0. To see this note that the sets [Zh > 2c] are decreasing

to a set in F̃0 and therefore by Blumenthal’s zero-one law, probability of the limiting set is
either 0 or 1. If the limiting probability is 1, this implies that P y(Zh > 2c) = 1 for all h,
which in turn means that in every neighbourhood of 0 there exist a time at which the value
of the process is c away from its value at the origin. This contradicts the continuity of X,
therefore limh→0 P

y(Zh > 2c) = 0.
This observation allows us to conclude that for any compact subset, K, of E

lim
h→0

sup
y∈K

P y(Zh > 2c) = 0. (4.25)
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Indeed, if the above fails, there exists a sequence of (yn) and (hn) such that hn → 0, yn →
y ∈ K with

0 < lim inf
n→∞

P yn(Zhn > 2c) ≤ lim
m→∞

lim inf
n→∞

P yn(Zhm > 2c) = lim
m→∞

P y(Zhm > 2c) = 0

by the weak continuity of the laws P x, which is a contradiction. This, together with (4.24),
implies that

lim
T→T ∗

Ex

[
PXT (ZT ∗−T > 2c)

p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT∈B1(z)]

]
= 0. (4.26)

The same limit holds for the second term of (4.23). Indeed,

Ex

[
PXT (ZT ∗−T > 2c)

p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT /∈B1(z)]

]
≤ Ex

[
p(T ∗ − T,XT , z)

p(T ∗, x, z)
1[XT /∈B1(z)]

]
=

1

p(T ∗, x, z)

∫
Bc1(z)

p(T ∗ − T, y, z)p(T, x, y)m(dy),

which converges to 0 as T → T ∗ by (2.6) or (2.10).
Combining the above with (4.26) and (4.23) yields

lim
T→T ∗

QT (ZT ∗−T ◦ θT > 2c) = 0. (4.27)

Next, we will show that limδ→0 lim supT→T ∗ Q
T (ZT−T ∗+δ ◦ θT ∗−δ > 2c) = 0. Let

τ δ := inf{t ≥ 0 : sup
0≤s≤t

Xs − inf
0≤s≤t

Xs > 2c} ∧ δ ∧ T ∗,

τc = inf{t ≥ 0 : Xt /∈ B c
2
(X0)} ∧ δ ∧ T ∗,

where inf ∅ =∞.
Observe that

[ZT−T ∗+δ ◦ θT ∗−δ > 2c] = [T ∗ − δ + τ δ ◦ θT ∗−δ < T ] ⊂ [T ∗ − δ + τc ◦ θT ∗−δ < T ]. (4.28)

Thus,

lim
T→T ∗

QT (ZT−T ∗+δ ◦ θT ∗−δ > 2c) = lim
T→T ∗

Ex[1[T ∗−δ+τδ◦θT∗−δ<T ]p(T
∗ − T,XT , z)]

p(T ∗, x, z)

= lim
T→T ∗

Ex[1[T ∗−δ+τδ◦θT∗−δ<T ]p(δ − τ
δ ◦ θT ∗−δ, XT ∗−δ+τδ◦θT∗−δ , z)]

p(T ∗, x, z)

=
Ex[1[τδ◦θT∗−δ<δ]p(δ − τ

δ ◦ θT ∗−δ, XT ∗−δ+τδ◦θT∗−δ , z)]

p(T ∗, x, z)
, (4.29)

where the second equality follows from the Optional Stopping Theorem applied to the mar-
tingale M := (p(T ∗ − t,Xt, z))t∈[0,T ∗), and the last is due to the Monotone Convergence
Theorem.
Case 1: Suppose Assumption 2.2 holds. Note that the numerator in (4.29) can be rewritten
as

Ex[1[XT∗−δ∈B c
4
(z)]1[τδ◦θT∗−δ<δ]MT ∗−δ+τδ◦θT∗−δ ] + Ex[1[XT∗−δ /∈B c

4
(z)]1[τδ◦θT∗−δ<δ]MT ∗−δ+τδ◦θT∗−δ ]

≤ Ex[1[XT∗−δ∈B c
4
(z)]1[τc◦θT∗−δ<δ]MT ∗−δ+τc◦θT∗−δ ] + Ex[1[XT∗−δ /∈B c

4
(z)]MT ∗−δ]
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Observe that under (2.8) we have 1[XT∗−δ∈B c
4
(z)]1[τc◦θT∗−δ<δ]MT ∗−δ+τc◦θT∗−δ and 1[XT∗−δ /∈B c

4
(z)]MT ∗−δ

uniformly bounded in δ. Thus, dominated convergence theorem yields

lim
δ→0

lim
T→T ∗

QT (ZT−T ∗+δ ◦ θT ∗−δ > 2c) = 0

in view of P x(limt→T ∗Mt = 0) = 1. Combining the above with (4.22) and (4.27) yields

lim
δ→0

lim
T→T ∗

QT (Zδ ◦ θT ∗−δ > 4c) = 0. (4.30)

Case 2: Suppose Assumption 2.3 holds. For all t > 0 and δ ≤ t define

ϕ(t, δ, x) = Ex[1[τδ◦θt−δ<δ]p(δ − τ
δ ◦ θt−δ, Xt−δ+τδ◦θt−δ , z)].

Observe that for every t > 0 the map δ 7→ ϕ(t, δ, x) is increasing. Indeed, consider M t
s =

p(t− s,Xs, z) and note that in view of Lemma B.1

ϕ(t, δ, x) = Ex[M t
t−δ+τδ◦θt−δ ].

The claim follows since the stopping times t− δ + τ δ ◦ θt−δ are decreasing in δ and M t is a
supermartingale on [0, t].

Due to (4.29) we have

lim
T→T ∗

QT (ZT−T ∗+δ ◦ θT ∗−δ > 2c) =
ϕ(T ∗, δ, x)

p(T ∗, x, z)
. (4.31)

Our next goal is to show that limδ→0 ϕ(T ∗, δ, x) = 0. The first step towards this goal is to
obtain that ϕ(t, 0, x) := limδ→0 ϕ(t, δ, x) = 0 for almost every t. Since ϕ(t, ·, x) is increasing
for every t > 0, in view of Lemma B.2 it is enough to show that

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αs−βtϕ(t, s, x)dsdt = 0, ∀β > 0.

We will find an upper bound to this Laplace transform by considering the following decom-
position.

ϕ(t, δ, x) =

∫
y∈B c

4
(z)

Ey[1[τδ<δ]p(δ − τ δ, Xτδ , z)]p(t− δ, x, y)m(dy)

+

∫
y∈Bcc

4
(z)

Ey[1[τδ<δ]p(δ − τ δ, Xτδ , z)]p(t− δ, x, y)m(dy)

≤
∫
y∈B c

4
(z)

Ey[1[τc<δ]p(δ − τc, Xτc , z)]p(t− δ, x, y)m(dy) (4.32)

+

∫
y∈Bcc

4
(z)

p(δ, y, z)p(t− δ, x, y)m(dy), (4.33)

where the inequality is due to Lemma B.1.
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Note that ∫ ∞
0

∫ t

0

e−αδ−βtEy[1[τc<δ]p(δ − τc, Xτc , z)]p(t− δ, x, y)dδdt

= Ey

∫ ∞
τc

∫ t

τc

e−αδ−βtp(δ − τc, Xτc , z)p(t− δ, x, y)dδdt

= Ey

{
e−(α+β)τc

∫ ∞
0

∫ t

0

e−αδ−βtp(δ,Xτc , z)p(t− δ, x, y)dδdt

}
= Ey

{
e−(α+β)τc

∫ ∞
0

∫ ∞
δ

e−αδ−βtp(δ,Xτc , z)p(t− δ, x, y)dtdδ

}
= Ey

{
e−(α+β)τc

∫ ∞
0

e−(α+β)δp(δ,Xτc , z)dδ

}∫ ∞
0

e−βtp(t, x, y)dt

= Ey
[
e−(α+β)τcuα+β(Xτc , z)

]
uβ(x, y).

Due to (2.12) supα>0,w∈∂B c
2 (z)

αuα+β(w, z) <∞. Moreover,∫
B c

4
(z)

uβ(x, y)m(dy) =

∫ ∞
0

e−βtP x(Xt ∈ B c
4
(z))dt <∞.

Thus, the Dominated Convergence Theorem yields

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αδ−βt
∫
y∈B c

4 (z)

Ey[1[τc<δ]p(δ − τc, Xτc , z)]p(t− δ, x, y)m(dy)dδdt

=

∫
y∈B c

4 (z)

Ey
[

lim
α→∞

αe−(α+β)τcuα+β(Xτc , z)
]
uβ(x, y)m(dy) = 0, (4.34)

since P y(τc = 0) = 0 by the continuity of X.
Next we turn to (4.33). Note that∫ t

0

αe−αδ
∫
y∈Bcc

4
(z)

p(δ, y, z)p(t− δ, x, y)m(dy)dδ ≤ p(t, x, z)

∫ t

0

αe−αδdδ ≤ p(t, x, z).

Since ∫ ∞
0

e−βtp(t, x, z)dt = uβ(x, z) <∞,

the Dominated Convergence Theorem yields

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αδ−βt
∫
y∈Bcc

4
(z)

p(δ, y, z)p(t− δ, x, y)m(dy)dδdt

=

∫ ∞
0

e−βt lim
α→∞

α

∫ t

0

e−αδ
∫
y∈Bcc

4
(z)

p(δ, y, z)p(t− δ, x, y)m(dy)dδdt.

Since
∫
y∈Bcc

4
(z)
p(δ, y, z)p(t− δ, x, y)m(dy) ≤ p(t, x, z) and converges to 0 as δ → 0 in view of

(2.10), Lemma B.2 yields

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αδ−βt
∫
y∈Bcc

4
(z)

p(δ, y, z)p(t− δ, x, y)m(dy)dδdt = 0.
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Combining the above with (4.34), (4.33), and (4.32) gives

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αs−βtϕ(t, s, x)dsdt = 0, ∀β > 0.

Thus, ϕ(t, 0, x) = 0 for almost every t > 0.
Define D := {t > 0 : ϕ(t, 0, x) = 0}, let S ∈ D and consider s < S. Then, by Chapman-

Kolmogorov identity we have

0 = ϕ(S, 0, x) = lim
δ→0

ϕ(S, δ, x)

= lim
δ→0

∫
ϕ(s, δ, y)p(S − s, x, y)m(dy)

=

∫
ϕ(s, 0, y)p(S − s, x, y)m(dy),

where the last equality is due to the Dominated Convergence Theorem since ϕ(s, δ, y) ≤
p(s, y, z). Thus, ϕ(s, 0, y)p(S − s, x, y) = 0 for m-a.e. y, which implies ϕ(s, 0, y) = 0, m-a.e.
if p(t, x, y) > 0 for all t > 0 and m-a.e. y. On the other hand, if t 7→ p(t, x, y) is continuous on
(0,∞), the fact that D is dense in (0,∞) yields that for any t > s, ϕ(s, 0, y)p(t− s, x, y) = 0
for m-a.e. y. Therefore, under either assumption, we have

ϕ(T ∗, 0, x) = lim
δ→0

∫
ϕ(s, δ, y)p(T ∗ − s, x, y)m(dy)

=

∫
ϕ(s, 0, y)p(T ∗ − s, x, y)m(dy) = 0.

Combining the above with (4.22) and (4.27) yields

lim
δ→0

lim
T→T ∗

QT (Zδ ◦ θT ∗−δ > 4c) = 0 (4.35)

in view of (4.31).

The above as well as (4.30) implies that for any ε > 0 there exist δ̂ and T̂ > T ∗ − δ̂ such

that for all T > T̂ we have

QT (w(X, δ̂, [T ∗ − δ̂, T ∗]) > 4c) <
ε

2
.

As w(X, δ, [u, v]) is increasing in δ, we can conclude

QT (w(X, δ, [T ∗ − δ̂, T ∗]) > 4c) <
ε

2
, ∀δ < δ̂, T > T̂ .

Since

QT (w(X, δ, [0, T ∗]) > 8c) ≤ QT (w(X, δ, [0, T ∗ − δ̂]) > 4c) +QT (w(X, δ, [T ∗ − δ̂, T ∗]) > 4c),

it remains to show that

lim
δ→0

lim sup
T→T ∗

QT (w(X, δ, [0, T ∗ − δ̂]) > 4c) = 0.

However, for T > T̂ , one has T ∗ − δ̂ < T , thus for such T

QT (w(X, δ, [0, T ∗ − δ̂]) > 4c) = Ex

[
1[w(X,δ,[0,T ∗−δ̂])>4c]

p(T ∗ − T̂ , XT̂ , z)

p(T ∗, x, z)

]
.
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Then, by the Dominated Convergence Theorem,

lim
δ→0

lim sup
T→T ∗

QT (w(X, δ, [0, T ∗ − δ̂]) > 4c) = Ex

[
lim
δ→0

1[w(X,δ,[0,T ∗−δ̂])>4c]

p(T ∗ − T̂ , XT̂ , z)

p(T ∗, x, z)

]
= 0.

To show the convergence of the finite dimensional distributions consider [0, T ∗) as a dense
subset of [0, T ∗] and note that for any finite set t1, . . . , tk ⊂ [0, T ∗) and a bounded continuous
function f : Ek 7→ R

lim
T→T ∗

EQT [f(Xt1 , . . . , Xtk)] = EQtk [(Xt1 , . . . , Xtk)],

which establishes the desired convergence.
Thus, the sequence of measures, (QT ), has a unique limit point P x→z

0→T ∗ on (C([0, T ∗],E),BT ∗).
Moreover, its restriction, QT , to (C([0, T ],E),BT ) for any T < T ∗ is a solution to the
local martingale problem for Ap on [0, T ] × E. In particular, for any E ∈ BT , we have

P x→z
0→T ∗(E) = Ex

[
h(T,XT )
h(0,x)

1E

]
.

Next, we show the bridge condition. To this end pick f ∈ C∞K (E), ε > 0 and consider
r > 0 such that supy∈Br(z) |f(y)− f(z)| < ε. Thus,

Ex→z
0→T ∗ [f(XT ∗)] = lim

T→T ∗
Ex→z

0→T ∗ [f(XT )] = lim
T→T ∗

Ex

[
h(T,XT )

h(0, x)
f(XT )

]
= f(z) + lim

T→T ∗
Ex [p(T ∗ − T,XT , z)(f(XT )− f(z))]

p(T ∗, x, z)

= f(z) + lim
T→T ∗

∫
Br(z)

p(T ∗ − T, y, z)p(T, x, y)

p(T ∗, x, z)
(f(y)− f(z))m(dy)

+ lim
T→T ∗

∫
Bcr(z)

p(T ∗ − T, y, z)p(T, x, y)

p(T ∗, x, z)
(f(y)− f(z))m(dy).

Since f is bounded the second integral above converges to 0 in view of (2.6) or (2.10).
Moreover, ∣∣∣∣∫

Br(z)

p(T ∗ − T, y, z)p(T, x, y)

p(T ∗, x, z)
(f(y)− f(z))m(dy)

∣∣∣∣ ≤ ε,

which implies the bridge condition by the arbitrariness of ε.
Existence of a weak solution to (2.13) follows from Girsanov’s Theorem. Indeed, since the

martingale problem for A is well-posed there exists a unique weak solution to

Xt = x+

∫ t

0

b(Xu)du+

∫ t

0

σ(Xu) dBu,

by Theorem A.1. With an abuse of notation, we denote the associated probability measure
with P x. The above considerations show that there exists a probability measure, P x→z

0→T ∗ ,
which is locally absolutely continuous with respect P x in the sense that for any t < T ∗ and

E ∈ Ft P x→z
0→T ∗(E) = Ex

[
1E

h(t,Xt)
h(0,x)

]
. Thus, an application of Girsanov’s Theorem yields the

conclusion.
To show that inft∈[0,T ] h(t,Xt) > 0, P x→z

0→T ∗-a.s. for any T < T ∗ consider Tn = inf{t ≥ 0 :

h(t,Xt) ≤ 1
n
} and observe that P x→z

0→T ∗(Tn < t) = Ex
[
1[Tn<t]

h(t,Xt)
h(0,x)

]
≤ 1

nh(0,x)
→ 0 as n→∞.
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To show the Markov property let s < t < T ∗, f be bounded and measurable, and E ∈ Bs.
Then,

Ex→z
0→T ∗ [f(Xt)1E] = Ex[f(Xt)h(t,Xt)1E] = Ex→z

0→T ∗

[
Ex[f(Xt)h(t,Xt)|Xs]

h(s,Xs)
1E

]
,

where we used the positivity of h(t,Xt) under P x for the second equality.
Similarly, if g is also bounded and measurable, we have in addition

Ex→z
0→T ∗ [f(Xt)g(Xs)] = Ex→z

0→T ∗

[
Ex[f(Xt)h(t,Xt)|Xs]

h(s,Xs)
g(Xs)

]
.

This shows the Markov property and yields the representation of the transition function.
Finally, the weak uniqueness can be proved following the same steps as in the proof of

Corollary 3.1. �

Clearly, if the conditions of Theorem 2.2 are satisfied by all x ∈ E and h(t, ·) > 0 for
t < T ∗, there exists a unique weak solution to (4.36) for any s < T ∗ and x ∈ E. Thus,
Theorem A.1 implies well-posedness of the local martingale problem which in turn yields the
strong Markov property of its solutions. More precisely, the following holds.

Corollary 4.1. Let σ be a matrix field such that σσ∗ = a. Suppose that Assumption 2.2 or
2.3 is in force, T ∗ <∞. Fix z ∈ E satisfying m({z}) = 0 and define h(t, y) := p(T ∗− t, y, z)
such that the following conditions hold for all x ∈ E:

(1) h(t, x) > 0 for all t ∈ [0, T ∗).
(2) h ∈ C1,2([0, T ∗),E).
(3) If Assumption 2.3 is enforced, then

i) uα(x, z) <∞ for α > 0,
ii) either the map t 7→ p(t, x, y) is continuous on (0,∞) for every y ∈ E, or for all

t > 0 p(t, x, y) > 0, m-a.e. y.

Then there exists a unique weak solution on [s, T ∗] to

Xt = x+

∫ t

s

{
b(Xu) + a(Xu)

(∇h(u,Xu))
∗

h(u,Xu)

}
du+

∫ t

s

σ(Xu) dBu, (4.36)

the law of which, P x→z
s→T ∗, satisfies P x→z

s→T ∗(infu∈[s,T ] h(u,Xu) = 0) = 0 for any T < T ∗, and
P x→z
s→T ∗(XT ∗ = z) = 1. Moreover, the solution has the strong Markov property.

To obtain strong solutions to (2.13) we need to impose stronger conditions on the transition
density p and the coefficients a and b. These conditions will imply the pathwise uniqueness
which in turn will lead to the existence of a strong solution to (2.13) in view of Yamada-
Watanabe Theorem. The strict positivity of p in int(E), which we will require, is not too
restrictive and it is always satisfied in the case of one-dimensional diffusions (see [18]). On
the other hand, the condition p(t, y, y′) > 0 for all t > 0, y ∈ int(E) and y′ ∈ ∂(E) is more
delicate and its fulfilment depends on the classification of the boundaries of the underlying
diffusion.

Theorem 4.1. Let σ be a matrix field such that σσ∗ = a and fix x ∈ int(E) and z ∈ E
such that the hypotheses of Theorem 2.2 hold. Suppose, in addition, that for any closed set
C ⊂ int(E)

‖b(y)− b(y′)‖+ ‖σ(y)− σ(y′)‖ ≤ KC‖y − y′‖, y, y′ ∈ C,
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as well as p(t, y, z) > 0 for all t ∈ (0, T ∗] and y ∈ int(E). If P x(inf{t > 0 : X̃t /∈ int(E)} <
T ∗) = 0 when X̃ satisfies

X̃t = x+

∫ t

0

b(X̃u)du+

∫ t

0

σ(X̃u) dBu,

then there exists a unique strong solution, X, to (2.13). Moreover, XT ∗ = z.

Proof. Let X be a strong solution to (2.13) on (Ω,F , (Ft)t∈[0,T ∗], P ) and T < T ∗. Due to the
form of E there exists an increasing sequence of open sets with compact closure, Un, such
that cl(Un) ⊂ int(E) and int(E) = ∪∞n=1Un. It is a simple matter to check that the coefficients
of (2.13) satisfy the conditions of Theorem 5.3.7 of [6] on [0, T ]×Un for all n ≥ 1. Thus, the
conclusion of the theorem yields uniqueness upto τn := T ∧ inf{t > 0 : Xt /∈ Un}. By taking
limits first as n→∞ we obtain uniqueness until T ∧ τ , where τ = inf{t > 0 : Xt /∈ int(E)}.

Let νm = inf{t ≥ 0 : h(t,Xt) ≤ 1
m
} and consider a measure Qn,m defined by

Qn,m(E) = E

[
h(0, x)

h (T ∧ νm ∧ τn, XT∧νm∧τn)
1E

]
, E ∈ FT .

Due to the choice of stopping times Qn,m ∼ P . Moreover,

Wt = Bt +

∫ t∧τnνm

0

σ∗(Xu)
(∇h(u,Xu))

∗

h(u,Xu)
du

is a Qn,m-Brownian motion. Let X̃ be the unique strong solution of

X̃t = x+

∫ t

0

b(X̃u)du+

∫ t

0

σ(X̃u) dWu. (4.37)

Observe that X solves (4.37) under Qn,m until T ∧ νm ∧ τn, and thus Qn,m(Xt∧νm∧τn =
X̃t∧ν̃m∧τ̃n , t ∈ [0, T ]) = 1 by Theorem 5.3.7 of [6], where τ̃n := T ∧ inf{t > 0 : X̃t /∈ Un},
ν̃m = inf{t ≥ 0 : h(t, X̃t) ≤ 1

m
}. Hence,

P (τn ∧ νm < T ) = EQn,m
[
h(T ∧ τn ∧ νm, XT∧νm∧τn)

h(0, x)
1[τn∧νm<T ]

]
= EQn,m

[
h(T ∧ τ̃n ∧ ν̃m, X̃T∧ν̃m∧τ̃n)

h(0, x)
1[τ̃n∧ν̃m<T ]

]

= Ex

[
h(T ∧ τ̃n ∧ ν̃m, X̃T∧ν̃m∧τ̃n)

h(0, x)
1[τ̃n∧ν̃m<T ]

]

= Ex

[
h(T, X̃T )

h(0, x)
1[τ̃n∧ν̃m<T ]

]

≤ Ex

[
h(T, X̃T )

h(0, x)

(
1[τ̃n<T ] + 1[ν̃m<T ]

)]
,

where P x is the law of X̃. Note that the fourth equality is due to the fact that (h(t, X̃t))t∈[0,T ]
is a martingale under P x as a consequence of Chapman-Kolmogorov equation.

Next, observe that limm→∞ νm ≥ τ, P -a.s. due to the strict positivity of h on int(E).
Similarly, limm→∞ ν̃m ≥ limn→∞ τ̃n, P

x-a.s.. Furthermore, limn→∞ τ̃n > T, P x-a.s. as X̃
stays in the interior under P x. Hence, taking the limits in the above yields P (τ < T ) = 0
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and, thus establishes the pathwise uniqueness upto T . This together with the existence of
a weak solution due to Theorem 2.2 implies the existence of a unique strong solution via
Corollary 5.3.23 in [15] on [0, T ∗) as T was arbitrary.

Finally, since pathwise uniqueness implies uniqueness in law we conclude that the law of
(Xt)t∈[0,T∗) is given by P x→z

0→T ∗ obtained in Theorem 2.2 because of the continuity of the weak
solution. Thus, we can uniquely define XT ∗ = limt→T ∗ Xt = z. �

Remark 4.1. Using the arguments above we can also establish the the existence and unique-
ness of a strong solution of the SDE in Theorem 2.1 under the assumption that b and σ are
locally Lipschitz.

We end this section with a result that shows that in the one-dimensional case the hypothe-
ses of Assumption 2.3 are not too restrictive.

Proposition 4.1. Suppose that Assumption 2.1 and the conditions of Example 2.2 are sat-
isfied. Then, the conditions (2.10)-(2.12) hold.

Proof. As the endpoints of E are inaccessible, the semi-group Pt possesses a density p(t, x, y)
satisfying (2.11) with respect to the speed measure, m, of the diffusion. Moreover, p(t, x, y) =
p(t, y, x) for all t > 0 and (x, y) ∈ (l,∞)2 and is continuous on (0,∞)× (l,∞)× (l,∞) (see
[18]). This, together with the continuity of X yields (2.10).

Moreover, uα(x, y) is symmetric for each α > 0 and is continuous on (l,∞)×E due to its
construction and boundary behaviour (see (2.3) and Table 1 in [18]).

It remains to show (2.12). If y ∈ E is a natural boundary, uα(x, y) = 0 for all α > 0 and
x ∈ E\{y}. So, assume y is not a natural boundary.

First, note that for any continuous and bounded f ,

α

∫
E

uα(x, z)f(z)m(dz) = α

∫ ∞
0

e−αtExf(Xt)dt→ f(x), (4.38)

as α→∞ by the continuity of X.
Next, let K1 and K2 be two disjoint closed and bounded intervals contained in (l,∞).

It follows (see, e.g., Theorem 3.6.5 in [17]) from the strong Markov property of X that for
x ∈ K1 and z ∈ K2 that

uα(x, z) = Ex
[
e−ατ2

]
uα(Xτ2 , z),

where τ2 = inf{t > 0 : Xt ∈ K2} and Xτ2 is deterministic and equals either the left or the
right endpoint of K2 depending on whether x < z or not. Note that Xτ2 has the same value
for all x ∈ K1, and consequently

uα(x, z) ≤ uα(Xτ2 , z),∀x ∈ K1.

Let K3 be an arbitrary closed interval strictly contained in K2. For any f with a support in
K3, we have

sup
x∈K1

∫ ∞
0

αuα(x, z)f(z)m(dz) ≤
∫ ∞
0

αuα(Xτ2 , z)f(z)m(dz).

This implies in view of Fatou’s lemma and (4.38) that whenever xn → x ∈ K1 and αn →∞,
we have

lim inf
n→∞

αnu
αn(xn, z) = 0, (4.39)

for m-a.a. z in K2. Since m is equivalent to the Lebesgue measure in (l,∞), we have that
the above holds for a.a. z in K2.
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Now, suppose K is a compact set that does not contain y and there exists a convergent
sequence (xn) in K and a sequence of positive real numbers (αn) such that limn→∞ αn =∞
as well as

lim
n→∞

αnu
αn(xn, y) =∞. (4.40)

In view of (4.39), there exists a z /∈ K ∪{y} such that P y(Tz < Tx) = 1 for all x ∈ K, and

lim inf
n→∞

αnu
αn(xn, z) = 0. (4.41)

On the other hand, using Theorem 3.6.5 in [17] once more and the fact that uα is symmetric,
we may write

lim sup
n→∞

Ey
[
e−αnTxn

]
Ez [e−αnTxn ]

= lim sup
n→∞

uαn(xn, y)

uαn(xn, z)
=∞,

where the value of the limit follows from (4.40) and (4.41). However,

Ey
[
e−αnTxn

]
Ez [e−αnTxn ]

= Ey
[
e−αnTz

]
< 1

by the strong Markov property of X since P y(Tz < Txn) = 1. �
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Séminaire de Probabilités, XII (Univ. Strasbourg, Strasbourg, 1976/1977), vol. 649 of Lecture Notes in
Math., Springer, Berlin, 1978, pp. 78–97.

[14] G. Kallianpur, Stochastic filtering theory, vol. 13 of Applications of Mathematics, Springer-Verlag,
New York-Berlin, 1980.



MARKOV BRIDGES: SDE REPRESENTATION 25

[15] I. Karatzas and S. E. Shreve, Brownian motion and stochastic calculus, vol. 113 of Graduate Texts
in Mathematics, Springer-Verlag, New York, second ed., 1991.

[16] R. Mansuy and M. Yor, Random times and enlargements of filtrations in a Brownian setting, vol. 1873
of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 2006.

[17] M. B. Marcus and J. Rosen, Markov processes, Gaussian processes, and local times, vol. 100 of
Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 2006.

[18] H. P. McKean, Jr., Elementary solutions for certain parabolic partial differential equations, Trans.
Amer. Math. Soc., 82 (1956), pp. 519–548.

[19] A. Millet, D. Nualart, and M. Sanz, Integration by parts and time reversal for diffusion processes,
Ann. Probab., 17 (1989), pp. 208–238.
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Appendix A. Weak solutions and the local martingale problem

We will demonstrate in this section that under our standing assumptions the solution to
the local martingale problem for A defined in (2.4) is equivalent to the weak solution of the
following SDE:

dXt = b(t,Xt) dt+ σ(t,Xt)dWt (A.42)

where W is an d-dimensional Brownian motion and σ is a d× d dispersion matrix such that

aij(t, x) =
r∑

k=1

σik(t, x)σkj(t, x).

We will work under our standing assumption that a and b satisfy the conditions (1) and (2)
of Assumption 2.1. The connection between the weak solutions of SDEs and the associated
local martingale problems is well-known. Although it is usually observed under the slightly
stronger condition that b is locally bounded, the proofs remain valid under our assumptions.
Thus, we only give the statement of the theorem and the references for its proof.

Definition A.1. A weak solution starting from s of (A.42) is a triple (X,W ), (Ω,F , P ), (Ft)t≥0,
where
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i) (Ω,F , P ) is a probability space, (Ft) is a filtration of sub-σ-fields of F , and X is a
process on (Ω,F , P ) with sample paths in C([0,∞),E) such that P (Xr = Xs, r ≤
s) = 1;

ii) W is d-dimensional (Ft)-Brownian motion and X = (Xt) is adapted to (F̄t) where
F̄t is the completion of Ft with P -null sets;

iii) X and W are such that

Xt = Xs +

∫ t

s

b(u,Xu) du+

∫ t

s

σ(u,Xu) dWu, P -a.s.,∀t ≥ s.

The probability measure µ on E defined by µ(Λ) = P (Xs ∈ Λ) is called the initial
distribution of the solution.

Observe that for any continuous process Y , the integrals
∫ t
s
b(u, Yu) du and

∫ t
s
a(u, Yu) du

are well-defined until τn = inf{t ≥ s : |Yt| ≥ n} for any n ≥ 1. Due to the continuity of Y ,
τn →∞ implying

P

(∫ t

s

a(u, Yu) du <∞
)

= 1. (A.43)

Therefore,
(∫ t

s
σ(u, Yu) dWu

)
t≥s

is a well-defined continuous local martingale. If, addition-

ally, Y is a weak solution of (A.42), it follows that

P

(∣∣∣∣∫ t

s

b(u, Yu) du

∣∣∣∣ <∞) = 1.

Using the fact that b is locally bounded from above or below, one can show that the above
implies

P

(∫ t

s

|b(u, Yu)| du <∞
)

= 1, t ≥ s,

following the reasoning that led to (A.43). Thus, any weak solution is a semimartingale.
Equivalence of local martingale problem and weak solutions is summarised in the following

theorem. Its proof follows the lines that led to Corollary 5.3.4 in [6]. Note that although
Corollary 5.3.4 in [6] assumes a and b are locally bounded, the proof therein applies under
our assumptions as well.

Theorem A.1. For any fixed s ≥ 0 the existence of a solution P s,µ to the local martin-
gale problem for (A, µ) starting from s is equivalent to the existence of a weak solution

(X,W ), (Ω̂, F̂ , P̂ ), (F̂t) to (A.42) starting from s such that P̂ (Xs ∈ Λ) = µ(Λ) for any

Λ ∈ E . The two solutions are related by P s,µ = P̂X−1; i.e. X induces the measure P s,µ on
(C(R+,E),B).

Moreover, P s,µ is unique if and only if the uniqueness in the sense of probability law holds
for the solutions of (A.42) starting from s with the initial distribution µ.

Appendix B. Some technical results

Lemma B.1. Fix x, z ∈ E and t > 0 such that p(t, x, z) > 0. Define Ms = p(t − s,Xs, z)
for s < t. Then, (Ms)s∈[0,t) is a P x-martingale. Moreover, if (Ms)s∈[0,t) is càdlàg , P x-
a.s.3, and if (2.6) is satisfied, then Mt := lims→tMs = 0, P x-a.s. and (Ms)s∈[0,t] is a P x-
supermartingale.
3Note that we can in fact always choose a càdlàg version as soon as we augment the natural filtration of
X with the universal null sets since X is strong Markov. For a proof of this result see Theorem 4 and its
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Proof. Observe that for any 0 ≤ s ≤ u < t we have

Ex[Mu|Bs] =

∫
E

p(t− u, y, z)p(u− s,Xs, y)m(dy) = p(t− s,Xs, z) = Ms,

and therefore M is a martingale on [0, t) and Theorem 1.3.15 in [15] yields that Mt exists,
non-negative, and Ex[Mt] ≤ Ex[M0]. Moreover, by Fatou’s lemma we have

Ex

[
Mt1Bc1

n
(z)(Xt)

]
≤ Ex

[
lim inf
u→t

Mu1Bc 1
n+1

(z)(Xu)

]
≤ lim inf

u→t
Ex

[
Mu1Bc 1

n+1

(z)(Xu)

]
= lim inf

u→t

∫
Bc 1
n+1

(z)

p(t− u, y, z)p(u, x, y)m(dy) = 0,

where the first inequality is due to the continuity of X, and the last equality is due to (2.6).
In view on non-negativity of Mt1Bc1

n
(z)(Xt), we have

Ex

[
Mt1Bc1

n
(z)(Xt)

]
= 0.

Monotone convergence theorem implies

Ex [Mt] = Ex
[
Mt1[Xt 6=z]

]
= Ex

[
Mt lim

n→∞
1Bc1

n
(z)(Xt)

]
= lim

n→∞
Ex

[
Mt1Bc1

n
(z)(Xt)

]
= 0,

and since Mt is non-negative, Mt = 0, P x-a.s.. �

Lemma B.2. Consider ϕ : (0,∞)× (0,∞) 7→ [0,∞). Then

a. If ϕ(t, ·) is increasing and either
(i)

lim
α→∞

α

∫ t

0

e−αsϕ(t, s)ds = 0, ∀t > 0

or
(ii)

lim
α→∞

α

∫ ∞
0

∫ t

0

e−αs−βtϕ(t, s)dsdt = 0, ∀β > 0,

then ϕ(t, 0) := limδ→0 ϕ(t, δ) = 0 for almost every t > 0.
b. If there exists a constant K such that ϕ(t, δ) < k for all ≤ δ ≤ t, and limδ→0 ϕ(t, δ) =

0, then

lim
α→∞

α

∫ t

0

e−αsϕ(t, s)ds = 0,

Proof. a. First, observe that, since ϕ(t, ·) is increasing and non-negative, we have

0 ≤ ϕ(t, 0) ≤ ϕ(t, δ), ∀δ ≥ 0

and therefore
(i)

ϕ(t, 0) = lim
α→∞

α

∫ t

0

e−αsϕ(t, 0)ds ≤ lim
α→∞

α

∫ t

0

e−αsϕ(t, s)ds = 0.

Corollary in Section 2.3 of [5] and observe that although the result therein is proved for Feller processes its
proof only uses the strong Markov property of a Feller process.
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(ii) Due to Fatou’s Lemma and the fact that 1− e−αt is increasing in α

0 ≤
∫ ∞
0

e−βtϕ(t, 0)dt =

∫ ∞
0

lim inf
α→∞

(
1− e−αt

)
e−βtϕ(t, 0)dt

≤ lim
α→∞

∫ ∞
0

(
1− e−αt

)
e−βtϕ(t, 0)dt

= lim
α→∞

α

∫ ∞
0

∫ t

0

e−αs−βtϕ(t, 0)dsdt

≤ lim
α→∞

α

∫ ∞
0

∫ t

0

e−αs−βtϕ(t, s)dsdt = 0.

Therefore, we have ∫ ∞
0

e−βtϕ(t, 0)dt = 0,

which implies that ϕ(t, 0) = 0 for almost every t > 0.
b. On the other hand, consider ε > 0. As limδ→0 ϕ(t, δ) = 0, there exists δ > 0 such

that ϕ(t, s) < ε for all s ≤ δ. Then we will have

0 ≤ lim
α→∞

α

∫ t

0

e−αsϕ(t, s)ds ≤ lim
α→∞

α

[∫ t

δ

e−αsϕ(t, s)ds+ ε

∫ δ

0

e−αsds

]
≤ lim

α→∞

[
K
(
e−αδ − e−αt

)
+ ε

(
1− e−αδ

)]
= ε.

The conclusion follows due to arbitrariness of ε.
�
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