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Philosophy of Climate Science Part I: Observing Climate
Change
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1London School of Economics
2University of Salzburg

Abstract
This is the first of three parts of an introduction to the philosophy of climate science. In this first part about
observing climate change, the topics of definitions of climate and climate change, data sets and data
models, detection of climate change, and attribution of climate change will be discussed.

1. Introduction

In his speech to the 2014 Climate Summit, Secretary-General of the United Nations Ban
Ki-Moon called climate change the ‘defining issue of our time’. This is the first part of a
three-piece article in which we review epistemological and decision-theoretic issues arising in
connection with climate change. In Part I, we discuss the empirical observation of climate
change; in Part II, we investigate climate modelling; Part III examines what principles guide
decision-making in climate policy.
In this first part, we start by reviewing different definitions of climate and climate change

(Section 2). We then turn to the nature of climate data sets (Section 3) and discuss how these
data sets are used to detect climate change (Section 4). This leads to discussion of attribution,
the question of what the causes of climate change are (Section 5). We end with some brief
conclusions (Section 6).

2. Definitions of Climate and Climate Change

Intuitively speaking, the weather is the state of the atmosphere at a certain point of time. The
climate, by contrast, is the distribution of certain variables (called the climate variables) arising for a certain
configuration (i.e. certain gas greenhouse concentrations and certain aerosol emissions) of the climate system.
The climate variables include those that describe the state of the atmosphere and the ocean and
sometimes also other variables such as those describing the state of glaciers and ice sheets (IPCC
2013). So the climate is not about the exact values of the surface air temperature, ocean
temperature etc. at a certain point of time, but about the surface air temperature, ocean
temperature etc. that one can expect when the climate system is in a certain configuration.
How can this intuitive idea be made more precise? It turns out that there are several compet-

ing ways to do this. In particular, there are two very different kinds of definitions of climate.
Climate as distribution over time roughly corresponds to what one learns about climate in geogra-
phy education at school. Here, climate is about the distribution of the climate variables that
arises when the climate system evolves over a certain time period. Climate as ensemble distribution
is popular with scientists who are concerned with predicting the climate. It is about the distri-
bution quantifying how likely it is that certain values of the climate variables are expected at a
certain point of time in the future given our current uncertainty about the climate variables.
Let us first consider the IPCC’s definition:
This is an open access article under the terms of the Creative Commons Attribution License,which permits use, distribution and reproduction in anymedium, provided
the original work is properly cited.
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954 Observing Climate Change
Climate in a narrow sense is usually defined as the average weather, or more rigorously, as the statistical
description in terms of the mean and variability of relevant quantities over a time period ranging from
months to thousands or millions of years. The classical period for averaging these variables is 30 years, as
defined by theWorldMeteorological Organization. […] Climate in a wider sense is the state, including
a statistical description, of the climate system. (IPCC 2013, 126)

The problem with these definitions is that they are vague. ‘Climate in a narrow sense’ seems
to refer to a distribution over time, but, as we will see, there are several definitions of climate as
distributions over time. ‘Climate in a wider sense’ is even vaguer and seems to be compatible
with any definition of climate (since any definition corresponds to a distribution and hence
offers, in some sense, a statistical description). To see how climate can be definedmore precisely,
we will now review five popular definitions of climate (three of them are distributions over
time and two of them are ensemble distributions). It will become clear that how to define
climate and climate change is both nontrivial and contentious.
Let us start with distributions over time. The climate is inf luenced by the external conditions of

the climate system (such as volcanic activity and the amount of solar energy reaching the Earth).
Suppose that the external conditions are small f luctuations around a mean value c over a certain
time period, where the climate variables are in a certain initial state at the beginning of the time
period. According to Definition 1, the climate over this time period is the finite distribution over
time of the climate variables given the initial states, which arises when the climate system is subject to constant
external conditions c (e.g. Dymnikov and Gritsoun 2001; Lorenz 1995). (The value assigned to a
certain set A by a finite distribution over time, assuming, say, that time is measured in days, is
given by the number of days where the values are in A divided by the total number of days
in the time period). Climate change then amounts to different distributions over two successive
time periods. However, in reality, the external conditions are not constant, and even when
there are just small f luctuations in external conditions around a mean value, this can lead to al-
together different distributions (Werndl 2015). Hence, there is the problem that this definition
might not have anything to do with the distributions of the actual climate system. Thus, the
varying external conditions need to be taken into account.
The most direct way to do this is to adoptDefinition 2 – that the climate is the finite distribution

over time of the actual evolution of the climate variables given the initial states (i.e. when the external
conditions vary as in reality). Again, climate change amounts to different distributions for
successive time periods. If good observations are available, climate, thus defined, can be readily
estimated from the observations and hence this definition is very popular. For instance, this is
the definition endorsed by the World Meteorological Association (2015), when they write:

climate, sometimes understood as the “average weather”, is defined as the measurement of the mean
and variability of relevant quantities of certain variables (such as temperature, precipitation or wind)
over a period of time (cf. Hulme et al. 2009).

However, this definition suffers from a serious problem which is best illustrated with an
example. Suppose that the time period from R0 to R1 is marked by two different regimes
because at RM=R0+(R1�R0)/2, the Earth was hit by a meteorite and thus became much
colder. Clearly, the climate before and after RM differ. Yet Definition 2 does not imply this:
there is nothing that forbids one to say that the climate is the distribution over time from R0
to R1 because, according to this definition, the climate is just a distribution over a certain
time period.
To avoid this problem,Werndl (2015) proposes a slight modification of the second definition

by introducing the idea of regimes of varying external conditions. According to Definition 3,
© 2015 The Authors.
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Observing Climate Change 955
the climate is the finite distribution over time of the climate variables arising under a certain regime of vary-
ing external conditions ( given the initial states). Spelling out in detail what a regime of varying ex-
ternal conditions amounts to is not easy, but a reasonable requirement is that the mean of the
external conditions is approximately constant over different sub-periods within the period. This
implies that there are different regimes and hence different climates before and after the hit of
the meteorite. Thus, Definition 3 avoids the problems of Definition 2. Again, there is climate
change when there are different climates for two successive time periods. As for all other
definitions of climate as distributions over time, for Definition 3 the question arises over which
finite time period the distributions should be taken. A pragmatic approach as adopted by Lorenz
(1995) seems most promising: the choice of the time interval should be inf luenced by the
purpose of research and should be short enough to ensure that changes which are conceived
as climatic are classified as different climates but long enough so that no specific predictions
can be made.
Let us now turn to the very different second class of definitions where climate is an ensemble

distribution (an ensemble consists of a collection of simulations; in what follows, these are
predictive simulations arising from different initial conditions). Suppose one wants to make
predictions at t1 in the future and that from the present to t1 the external conditions take the
form of small f luctuations around a mean value c. Let the present measurement of the climate
variables be represented by an initial conditions ensemble (describing all the possible initial states
of the system given our measurement accuracy). According to Definition 4, the climate at time
t1 is the distribution of the possible values of the climate variables at t1 assuming that the external conditions
were constant. That is, the climate is the distribution of the climate variables that arises when the
initial conditions ensemble is evolved forward under the climate model until t1 under constant
external conditions c (e.g. Lorenz 1995; Stone and Knutti 2010).1

Many philosophers have expressed their concerns that this definition is rather peculiar and has
little, if anything, to do with our intuitive idea of climate.2Wewill come back to these concerns
when discussing Definition 5. Right now it is important to point out that the requirement of
constant external conditions again causes problems. In reality, the external conditions are not
constant, and even when there are just small f luctuations around a mean value this can lead
to altogether different distributions (Werndl 2015). Therefore, Definition 4 may not tell us
anything about the actual future possible values of the climate variables. So this again shows that
the varying external conditions need to be taken into account.
The most direct way to achieve this is to define climate as the actual ensemble distribution. That

is, suppose again that one wants to make predictions at t1 in the future, and let the present
measurement of the climate variables be represented by an initial conditions ensemble. Accord-
ing to widely endorsed Definition 5, the climate at time t1 is the distribution of the possible states of
the climate variables at t1. That is, the climate is the distribution of the climate variables that arises
when the initial conditions ensemble is evolved forward under the climate model until t1 for the
actual path taken by the external conditions. This is what Daron and Stainforth (2013, 2) have in
mind when they write: ‘For the purposes of climate prediction, therefore, it is most useful
to view climate as a distribution conditioned on our knowledge of the system’s state at some
point in time’.
While this definition is predictively very useful (because when making predictions, one is

often interested in the expected value of the climate variables, e.g. the temperature, at a certain
point of time), there are several problems, which also arise for Definition 4. First, one usually
thinks of climate as something objective that is independent of our knowledge. Yet, Definition
5 depends on our present knowledge about the climate variables! Second, Definition 5 defines
the future climate, but it is difficult to see how the present and past climate should be defined.
Yet without a notion of the present and past climate, we cannot define climate change. Also, we
© 2015 The Authors.
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956 Observing Climate Change
talk about the present climate and past climates, and hence, a definition of climate that cannot
make sense of this is unsatisfactory. Third, it should be possible to estimate the climate from
high-quality observational records. Yet it can be shown that the ensemble distribution of
Definition 5 does not relate to records of observations in any way (Werndl 2015).
It should be noted that there are also infinite versions of Definitions 1–3 (which arise when

the time period goes to infinity) and Definitions 4–5 (which arises when the predictive lead
time goes to infinity). However, they seem to be inferior to the finite versions because they suf-
fer from the additional problems that the relevant limits may not exist and that the infinite dis-
tributions may not be empirically relevant because they may not approximate the finite
distributions for time periods or prediction-lead times of interest (Lorenz 1995, Werndl 2015).
To sum up, defining climate is nontrivial and there is no definition of climate that is

uncontroversial or does not raise many questions. Overall, we prefer Definition 3 (climate as
a distribution over time for a certain regime of varying conditions) as it suffers from fewest of
the problems mentioned above.
3. Data Sets and Data Models

There are various ways data are obtained in climate science. Meteorological ground stations
measure the temperature of the air near the surface of the Earth using thermometers. A network
of free-f loating buoys, which sink down to a depth of about 2000m, then come back to
transmit their data, and then sink back down again, and so on, provide measurements of the
temperature of the ocean. Satellites record concentrations of greenhouse gases, aerosols, cloud
coverage, etc.
Often raw data, the unprocessed data received directly from the measurement instruments,

contain errors, are irregularly spaced and are incomplete in various ways. For example, records
of surface temperatures further in the past are available only for certain locations (and the further
one goes into the past, the fewer the records are). A standard technique is to use either climate or
weather models to interpolate and fill in missing data. In particular, so-called reanalyses are
estimates of the historical atmospheric temperature and other quantities, which are usually
created by algorithms combining information from models and observations (IPCC 2013).
Furthermore, particularly in the field of paleoclimate, often no direct measurements are
available.
These various ways of obtaining data raise a host of philosophical problems. First of all, the use

of instruments to obtain data, e.g., of thermometers tomeasure the temperature, raises the ques-
tion of theory-ladenness of observation. This is a classical topic that has been extensively discussed in
philosophy (e.g. Kitcher 1995). One way of taming the problem is to require that the working
of the instruments has been independently tested and confirmed. Parker (2014) argues that this
is indeed the case for many relevant observations.
The controversy about satellite measurements of global mean temperature trends illus-

trates the problems with theory-ladenness of observations (Lloyd 2012). Models predicted
that the tropical troposphere will warm faster than the surface of the Earth as the enhanced
greenhouse effect takes hold. However, data from satellite measurements indicated no
tropospheric warming. This discrepancy triggered a controversy over the reality of global
warming and even led to an investigation by a National Academy of Sciences panel. Satel-
lites collected microwave raw data, which were converted into temperatures by complicated
algorithms. Radiosonde data were used to validate the satellite-derived temperature trends.
The radiosonde measurements, however, were then found to be unsuited to produce
long-term trends and hence provided an unsuitable source to validate satellite data. In the
end, Lloyd concludes,
© 2015 The Authors.
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it now appears that the models were mostly right and the early data weremostly wrong, and therein lies
an interesting story about data and their relations to scientists, models, and reality (ibid., 391).

This episode illustrates the level of complexity which the problem of theory-ladenness reaches
in the climate case.
Second, as mentioned above, raw data in climate science often contain errors or are incom-

plete. Hence, models are applied to filter and to correct the raw data and to extend the raw data
to global data sets. Edwards (1999; 2010) speaks in this context about model-filtered data and a
symbiotic relationship between data and models. It may be that the use of models to correct
and extend data in climate science is more widespread than in other sciences. Yet, as Edwards
(1999) and Norton and Suppe (2001) acknowledge, model-filtered data are not specific to cli-
mate science and they equally occur in other fields such as biology and physics. In effect, model-
filtering is a special case of theory-ladenness and can be dealt with by applying the same maxim:
model-filtered data can be trusted as long as the models used to correct and extend the data have
been independently tested and are confirmed. The important clause here is ‘independently’: the
models that are used to filter and correct the data have to be confirmed by other data. In other
words, if the models were just tested by the data that they are supposed to be correcting and fil-
tering, there would be a confirmatory circle, and whether such model-filtered data could be
trusted is doubtful.
Third, often no direct measurements, say of surface temperature changes several thousand

years ago, are available. For this reasons, scientists gather proxy data of surface temperature
changes which are derived from natural recorders such as ocean sediments and tree rings. The
quality of proxy data depends on two factors. First, the availability of the proxy itself – for ex-
ample, ancient tree rings, mud cores and ice cores can be collected only in a small number of
locations. Second, the reliability of statistical methods used to process raw data and turn them
into the data one is interested in (e.g. to turn a tree ring growth pattern into a
temperature record) must also be assessed, and in some cases, there is little data available for
the calibration of these relationships.
Both factors have given raise to heated debate, for instance in the so-called hockey stick

controversy. From the 1990s onwards, proxy indicators were used to arrive at a quantitative esti-
mate of the Northern Hemisphere temperature record of the past 1000–1400 years. These
graphs took the shape of a hockey stick and indicated that recent warming is exceptional: they
were relatively f lat until 1900 as for a hockey stick’s shaft and followed by a sharp increase in the
20th century as for a hockey stick’s blade. The methods used to arrive at these temperature re-
constructions were disputed by politicians, policy makers and some scientists. Referring to the
hockey stick graph and casting doubt on the methods used to create it, Republican Jim Inhofe
in a Senate speech claimed: ‘could it be that man-made global warming is the greatest hoax ever
perpetrated on the American people? It sure sounds like it.’ (Inhofe 2003) Nowadays there are
more than two dozen reconstructions of the temperature record using various statistical methods
and proxy records. They lead to the broad consensus that temperatures during the late 20th cen-
tury are likely to have been the warmest in the past 1400years (Frank et al. 2010).3

It is nevertheless interesting to have a closer look at the arguments used in the debate. First,
there is still considerable uncertainty about some details of the temperature record, due to the
lack of direct measurement and the uncertainty in calibrating proxy data. ‘Sceptics’4 use these
uncertainties to argue that the overall shape of the graph cannot be trusted. However, research
is ongoing on the temperature reconstruction methods, directly incorporating uncertainty as-
sessments into the calculations. Consequently, the hockey stick itself is now presented as a range
rather than a single time series, showing the results of multiple studies using different lines of ev-
idence (Frank et al. 2010, IPCC 2013). Although there is a small probability that warmer
© 2015 The Authors.
Philosophy Compass Published by John Wiley & Sons Ltd

Philosophy Compass 10/12 (2015): 953–964, 10.1111/phc3.12294



958 Observing Climate Change
periods have occurred, the balance of available evidenceweighs against this. A second tactic used
by the ‘sceptics’ is to argue that the statistical methods used in the reconstruction would produce
the hockey stick shape from almost any data (e.g. McIntyre and McKitrick 2003). This argu-
ment, however, did not stand up to statistical scrutiny (cf. Frank et al. 2010). Furthermore, re-
cent studies have added to the range of evidence about temperature reconstructions using other
statistical methods.
Finally, it should also be mentioned that data in climate science are extensively used in the

construction of models: models in climate science contain many observationally derived approxi-
mations and heuristics. In particular, parameterizations in climate models represent processes
that cannot be explicitly resolved at the spatial or temporal resolution of the model and are thus
replaced by simplified processes which are data-driven and usually in part also physically
motivated. Edwards (1999) speaks in this context about data-laden models. A concrete example
is the aerosol forcing (the parameter that describes the cooling of the Earth arising from a certain
concentration of aerosols). In many climate models, the aerosol forcing is an unknown free
parameter, and hence data about the past temperature changes have been used to constrain
and estimate it. This data-ladenness is widely acknowledged (Edwards 1999; Norton and Suppe
2001). The interesting question with data-ladenness is whether data that are used in the
construction of models can also confirm the very same model or whether this is ruled out
because it would amount to a confirmatory circle. We return to this question in Section 3 of
Part II.

4. Detection of Climate Change

Do rising temperatures indicate that there is climate change, and if so, can the change be attrib-
uted to human action? These two problems are known as the problems of detection and
attribution. Intuitively, detection of climate change is the process of determining that some signif-
icant change has occurred in the observed variables of the climate systemwithout providing a reason
for that change. A typical detection statement can be found in Working Group 1 Summary for
Policymakers: ‘The globally averaged combined land and ocean surface temperature data as
calculated by a linear trend, show a warming of 0.85°C, over the period 1880 to 2012’ (IPCC
2013, 5).
Turning an intuitive characterisation of detection into a workable definition turns out to be a

task saddledwith difficulties, many of which are closely related to the discussion above regarding
the definition of what we mean by climate. The Intergovernmental Panel on Climate Change
(IPCC) defines these as follows:
“Detection of change is defined as the process of demonstrating that climate or a system affected by
climate has changed in some defined statistical sense without providing a reason for that change. An
identified change is detected in observations if its likelihood of occurrence by chance due to internal
variability alone is determined to be small” […]. Attribution is defined as “the process of evaluating
the relative contributions of multiple causal factors to a change or event with an assignment of statistical
confidence”. (IPCC 2013, 872)

These definitions raise a host of issues. The root cause of the difficulties is the clause that
climate change has been detected only if an observed change in the climate is unlikely to be
due to internal variability. Internal variability is the phenomenon that climate variables such as
temperature and precipitation would change over time due to the internal dynamics of the
climate system even in the absence of climate change: there have been (and will) be hotter
and colder years irrespective of human action; indeed irrespective of the existence of humans.
© 2015 The Authors.
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Taken at face value, this definition of detection has the consequence that there is no internal
climate change. The ice ages, for instance, would not count as climate change if they occurred
because of internal variability. This is at odds with basic intuitions about climate and with the
most common definitions of climate as a finite distribution over a relatively short time period
(where internal climate change is possible). Furthermore, it seems to blur the boundary between
detection and attribution: if detected, climate change is ipso facto change not due to internal
variability, all factors pertaining to the internal climate dynamics are a priori excluded from being
drivers of climate change. Not only does this seem counterintuitive, it also seems to prejudge
answers in a less than helpful way.
A solution to this problem points to the distinction between internal variability and natural

variability. The onset of ice ages, for instance, is commonly attributed to orbital changes of the
earth. These changes, however, are not internal variations; they are natural variations. This move
solves the above issues, but it does so at the cost of incurring a new problem: where should one
draw the line between natural and internal factors? In fact, there does not seem to be a generally
accepted way to draw a line, and the same factor is sometimes classified as internal and sometimes
as external. Glaciation processes, for instance, are sometimes treated as internal factors and some-
times as prescribed external factors. Likewise, sometimes the biosphere is treated as an external
factor, but sometimes it is considered as part of the internal dynamics of the system. One could
even go so far as to ask whether human activity is an external forcing on the climate system or an
internally generated earth system process. Research studies usually treat human activity as an
external forcing, but it could consistently be argued that human activities are an internal dynam-
ical process. The appropriate definition simply depends on the question of interest.
Even if definitional questions are resolved, estimating the effect of internal variability is a dif-

ficult problem. The effects of internal variability are present on all time scales, from the sub-daily
f luctuations experienced as weather to the long-term changes due to cycles of glaciation. Since
internal variability results from the dynamics of a highly complex nonlinear system, it is unlikely
that the statistical properties of internal variability are constant over time. So ideally, a study of
internal variability would be based on thousands of years of detailed observations. Unfortunately
such observations are not available, and so scientists turn to climate models to estimate the
magnitude of the variability ( for discussion of climate models see Part II).
Before we can understand the role of climate models in detection studies, a comment about

the nature of these studies is in order. Detection studies rely on statistical tests, and the results of
such studies are often phrased in terms of the likelihood of a certain event or sequence of events
happening in the absence of climate change. In practice, the challenge is to define an appropri-
ate null hypothesis (the expected behaviour of the system in the absence of changing
external inf luences), against which the observed outcomes can be tested. Because the climate
system is a dynamical system with processes and feedbacks operating on all scales, this is a
nontrivial exercise. An indication of the importance of the null hypothesis is given by the results
of Cohn and Lins (2005), who compare the same data against alternate null hypotheses, with
results differing by 25 orders of magnitude of significance! This does not in itself show that a
particular null hypothesis is more appropriate than the others nor does it show that they are
all on par; but it demonstrates the sensitivity of the result to the null hypothesis chosen.
In practice, the best available null hypothesis is often formulated on the basis of the best

available model of the behaviour of the climate system, including internal variability, which for
most climate variables usually means a state-of-the-art global climate model (GCM). This model
is then used to perform long control runs with constant forcings in order to quantify the internal
variability of the model. Climate change is then said to have been detected if the measured values
fall outside a predefined range of the internal variability of the model. Hence, estimates of internal
variability in the climate system are produced from climatemodels themselves (Hegerl et al. 2010).
© 2015 The Authors.
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The difficulty with this method is that there is no single ‘best’ model to choose: many such
models exist, and state-of-the-art climate models run with constant forcing show significant
disagreements both on the magnitude of internal variability and the time scale of variations.5 This
underscores the difficulties in making detection statements based on the above definition, which
recognises an observed change as climate change only if it is unlikely to be due to internal variability.
This raises the question of how important this choice is. The differences between different

models are relatively unimportant for the clearest detection results such as recent increases in
global mean temperature. As stressed by Parker (2010), detection is robust across different
models ( for a discussion of robustness, see Section 6 of Part II). Moreover, there is a variety
of different pieces of evidence all pointing to the conclusion that the global mean temperature
has increased. However, the issues of which null hypothesis to use and how to quantify internal
variability are usually much more important for the detection of subtler local climate change.
Common counter-arguments by ‘sceptics’ tend to reject the use of computational models as a

null hypothesis and return to approaches based on trend-fitting and statistical analysis of resid-
uals, focusing on the hiatus rather than on the acknowledged upward trend of the 20th century
(e.g. McKitrick 2014). Even taking this extreme view about the relative capabilities of statistical
models, it has been shown that detection of climate change is also robust to changes in trend-fit
model specifications (e.g. Rybski et al. 2006; Imbers et al. 2014).6

5. Attribution of Climate Change

Once climate change has been detected, the question of attribution arises. This might be an
attribution of any particular change (either a direct climatic change such as increased global mean
temperature or an impact such as the area burnt by forest fires) to any identified cause or multiple
causal factors (such as increased CO2 in the atmosphere, volcanic eruptions or human
population density), with an assignment of statistical confidence.Where an indirect impact is con-
sidered, a two-step (or even multi-step) approach may be appropriate, first attributing an interme-
diate change to some forcing agent and then an indirect impact to the intermediate change. An
example of this, taken from the IPCC Good Practice Guidance paper (Hegerl et al. 2010), is
the attribution of coral reef calcification impacts to rising CO2 levels, in which an intermediate
stage is used by first attributing changes in the carbonate ion concentration to rising CO2 levels,
then attributing calcification processes to changes in the carbonate ion concentration. This also
illustrates the need for a clear understanding of the physical mechanisms involved, in order to
perform a reliable multi-step attribution in the presence of many potential confounding factors.
Statistical analysis quantifies the strength of relationships, given the simplifying assumptions of

the attribution framework, but the level of confidence in the simplifying assumptions must be
assessed outside that framework. This level of confidence is standardised by the IPCC into
discrete (though subjective) categories: ‘virtually certain’ (>99%), ‘extremely likely’ (>95%),
‘very likely’ (>90%), ‘likely’ (>66%), etc., which aim to take account of the process knowledge,
data limitations, adequacy of models used and the presence of potential confounding factors (see
Section 5 of Part 2 for short discussion of the IPCC’s uncertainty framework). The conclusion
that is reached will then have a form similar to the IPCC’s headline attribution statement:

It is extremely likely [>95% probability] that more than half of the observed increase in global average
surface temperature from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas
concentrations and other anthropogenic forcings together. (IPCC 2013, 17).

One method to reach such results is optimal fingerprinting. The method seeks to define a
spatio-temporal pattern of change ( fingerprint) associated with each potential driver (such as
the effect of greenhouse gases or of changes in solar radiation), normalised relative to the internal
© 2015 The Authors.
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variability, and then perform a statistical regression of observed data with respect to linear com-
binations of these patterns. The residual variability after observations have been attributed to
each factor should then be consistent with the internal variability; if not, this suggests that an im-
portant source of variability remains unaccounted for. Parker (2010) argues that climate change
fingerprint studies are similar to Steel’s (2008) streamlined comparative process tracing. That is,
in fingerprint studies computer simulation models are used to quantify and characterise the
expected effects of mechanisms ( for instance, the greenhouse gas effect or the cooling of aero-
sols when they scatter radiation). These effects serve then as fingerprints that are used to test
claims about the causes of climate change.
As emphasised by Parker (2010), fingerprint studies rely on several assumptions. The first one is

linearity, i.e., that the response of the climate system when several forcing factors are present is
equal to a linear combination of the factors. Because the climate system is nonlinear, this is clearly
a source of methodological difficulty, although for global-scale responses (in contrast to regional-
scale responses) additivity has been shown to be a good approximation. Another assumption is that
climate models simulate the causal processes that are at work in Earth’s climate system accurately
enough. As Parker argues, the very success of fingerprint studies (which is nontrivial) can help put-
ting aside worries about this assumption. A further problem is, once more, the need to define in-
ternal variability characteristics (see also discussions in IPCC (2013, §10.2.3)).
Levels of confidence in these attribution statements are primarily dependent on physical

understanding of the processes involved. Where there is a clear, simple, well-understood
mechanism, there should be greater confidence in the statistical result; where the mechanisms
are loose, multi-factored or multi-step, or where a complex model is used as an intermediary,
confidence is correspondingly lower. The Guidance Paper cautions that,

Where models are used in attribution, a model’s ability to properly represent the relevant causal link
should be assessed. This should include an assessment of model biases and the model’s ability to capture
the relevant processes and scales of interest. (Hegerl et al. 2010, 5)

As Parker (2010) argues, there is also higher confidence in attribution results when the results
are robust and there is a variety of evidence. For instance, the finding that late 20th century
temperature increase was mainly caused by greenhouse gas forcing is found to be robust given
a wide range of different models, different analysis techniques and different forcings, and there is
a variety of evidence all supporting this claim. Thus, our confidence that greenhouse gases
explain global warming is high. (For further useful extended discussion of detection and attribu-
tion methods in climate science, see pages 872–878 of IPCC (2013), and in the Good Practice
Guidance paper by Hegerl et al. (2010).)
In the interpretation of attribution results, in particular those framed as a question of whether

human activity has inf luenced a particular climatic change or event, there is a tendency to focus
on whether the confidence interval of the estimated anthropogenic effect crosses zero rather
than looking at the best estimate. The absence of such a crossing indicates that change is unlikely
to be due to non-human factors. This results in conservative attribution statements, but it re-
f lects the focus of the present debate where, in the eyes of the public and media, ‘attribution’
is often understood as confidence in ruling out non-human factors, rather than as giving a best
estimate or relative contributions of different factors. This contrasts with interest in the scientific
community, where researchers do attempt to quantify the anthropogenic contribution. In sec-
tion D3 of the summary for policy makers of IPCC (2013), for instance, it is stated that

it is extremely likely that more than half of the observed increase in global average surface temperature
from 1951 to 2010 was caused by the anthropogenic increase in greenhouse gas concentrations and
other anthropogenic forcings together.
© 2015 The Authors.
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So it is primarily themedia and sceptics whowant to focus on ruling out other causes rather than
coming to a best estimate.
There is an interesting question concerning the status of attribution methodologies like

fingerprinting. The greenhouse effect is well-documented and indeed easily observable in
laboratory experiments. This, some argue, provides a good qualitative physical understanding
of the climate system, which is enough to say with confidence that global warming is real
and that anthropogenic CO2 has been identified as a cause of the increase in global mean tem-
perature (e.g. Betz 2013). This would render statistical debates about attribution methodologies
second-order in terms of the key finding that anthropogenic CO2 emissions cause global
warming. However, this line of argument is not universally accepted, and many would insist
that fingerprinting is crucial in attributing an increase in global mean temperature to anthropo-
genic CO2 emissions. In IPCC (2013) fingerprinting methods provide important support for
attribution of an increase in global mean temperature to anthropogenic CO2 emission (see
the extended discussion in Chapter 10).

6. Conclusion

This paper reviewed issues and question relating to observation in climate science. In particular,
the topics of different definitions of climate and climate change, the nature of climate data sets
and detection and attribution of climate change were discussed. The discussion was from a phi-
losophy of science perspective.Muchmore could be said from other viewpoints, e.g. from those
of history, science studies, or sociology of science. For want of space, we have not been able to
review contributions from these perspectives. For an interesting historical perspective, the reader
might consult Edwards (2010).
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Notes

* Correspondence: Department of Philosophy, University of Salzburg, Austria, and Department of Logic and Philosophy
Logic and Scientific Method, London School of Economics, UK. Email: charlotte.werndl@sbg.ac.at
1 For a discussion of climate models we refer the reader to Part II.
2 Werndl (2015) as well as Wendy Parker and Katie Steele (in conversations) have voiced these concerns.
3 According to the IPCC: ‘In the Northern Hemisphere, 1983–2012 was likely the warmest 30-year period of the last
1400 years (medium confidence)’ (IPCC 2013, Summary for Policymakers, 3).
4 We use inverted commas to indicate that we are referring to a self-defining group of people with certain views and not
simply to people who adopt a certain epistemic attitude. ‘Sceptics’ are a heterogeneous group of people who do not
accept the results of ‘mainstream’ climate science, encompassing a broad spectrum from those who flat out deny the basic
physics of the greenhouse effect (and the influence of human activities on the world’s climate) to a small minority who
actively engage in scientific research and debate and reach the conclusion that the impact of human activities on the
world’s climate is minimal at best.
5 On http://www.climate-lab-book.ac.uk/2013/variable-variability/#more-1321 the reader finds a plot showing the
internal variability of all CMIP5 models. The plot indicates that models exhibit significantly different internal variability,
leaving considerable uncertainty.
6 A recent issue in detection is the so-called ‘warming hiatus’. We refer the reader to (Schmidt et al. 2014) and (Huber and
Knutti 2014) for a discussion.
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