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Data Adaptive Rank-Shaping Methods
for Solving Least Squares Problems

Anthony J. Thorpe and Louis L. Scharf, Fellow, IEEE

Abstract- There are two types of problems in the theory
of least squares signal processing: parameter estimation and
signal extraction. Parameter estimation is called ''inversion'' and
signal extraction is called ''filtering.'' In this paper, we present
a unified theory of rank shaping for solving overdetermined
and underdetermined versions of these problems. We develop
several data-dependent rank-shaping methods and evaluate their
performance. Our key result is a data-adaptive Wiener filter that
automatically adjusts its gains to accommodate realizations that
are a priori unlikely. The adaptive filter dramatically outperforms
the Wiener filter on atypical realizations and just slightly under
performs it on typical realizations. This is the most one can hope
for in a data-adaptive filter.

[1], Marquardt [2], and Stein [3]; however, our data adaptive
shrinkage takes place mode-by-mode.

Our philosophy in this paper is that with clairvoyant side
information (which we do not have), we could improve on
least squares for estimating signals and parameters. A natural
inclination is then to try to steal this clairvoyant information
from the data. We show that this is extremely risky, that naive
methods cannot work, and that only sophisticated, conservative
deviations from Wiener filtering can work. The result is a non
linear filter that uses mode-dependent, nonlinear companders
to estimate something akin to Wiener gain.

where y is a noisy N x 1 observation of the signal x. The
matrix H is the N x p model matrix, and fl is the p x 1
parameter vector. Geometrically, the signal x lies in the rank
p subspace (H), illustrated in Fig. 1. The signal x can be
thought of as a linear combination of columns of H

A. The Linear Statistical Model

The linear statistical model is a signal-plus-noise model:
the observations consist of a model or signal component and
an error or noise component. Moreover, the signal component
satisfies a set of linear equations. This leads to the model

Each hi might be a mode in a system. We wish to determine
the weights ()i. Alternatively, the observation y could be a
noisy version of some modulated information fl that we are
trying to estimate. The linear model also arises in curve-fitting
problems such as polynomial interpolation.

We will make extensive use of the singular value decom
position of H, namely H = U~VT, where ~ is the diagonal
matrix of singular values ai. In the overdetermined case, where
N > p, U is N x p, ~ is p x p, and V T is p x p. In the
underdetermined case, where p > N, U is N x N, ~ is N x N,
and V T is N x p. Note that, in the overdetermined case, we
have UTU = VTV = VVT = I, but in the underdetermined
case we have UTU = UUT = VTV = I. These matrix
decompositions are illustrated below

(Ll)

(1.2)

x= Hfl

[H] = [U] [~][VT]

[H ] = [U][~][VT ]. (1.3)

y = x+n;

x= LhiBi;

i) overdetermined

ii) underdetermined

Manuscript received August 17, 1993; revised December 19, 1994. Sup
ported by the Office of Naval Research, Mathematics Division, under contract
No. NOOOI4-89-J-1070 and by Bonneville Power Administration under Con
tract HDEBI7990BP07346. The associate editor coordinating the review of
this paper and approving it for publication was Dr. Barry Sullivan.

A. Thorpe is with Analytical Surveys, Inc., Colorado Springs, CO 80901
USA.

L. Scharf is with the Department of Electrical and Computer Engineering,
University of Colorado, Boulder, CO 80309 USA.

IEEE Log Number 9412007.

I. INTRODUCTION

THE principle of least squares is to fit a model to a set of
observations in such a way as to minimize the squares

of the errors between the observations and the model-hence
the term least squares. Rank shaping is a general method
for reducing the variance of an estimator at the expense of
introducing model bias. In doing this, we hope to reduce the
mean-squared error (MSE), which is the sum of variance and
squared bias.

We will examine rank shaping in overdetermined and un
derdetermined least squares problems. In the overdetermined
problem, we fit a simple model to a large, complex data
set, while in the underdetermined problem we fit a complex
model to a small, simple data set. We develop several data
dependent procedures for shaping the rank of least squares
estimators. Our most promising solution is a mix between
rank-shaped least squares and data-adaptive Wiener filtering.
In this solution, a prior distribution is assigned to the parameter
of interest, and this distribution is used to assign a prior
distribution to the rank-shaping gain one would use in a least
squares solution. Then, the measured data is used to compute
the conditional mean of this gain. This conditional mean is,
in fact, the data-adaptive gain of the adaptive Wiener filter.
The filter has very high performance on unlikely data and
nearly Wiener performance on likely data. Our methods are
similar in spirit to the shrinkage methods of James and Stein
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which is distributed as N[H;!""x, a2H;!""H;!""T]. We must ask
ourselves how good this estimator is, for it is no longer
unbiased. We shall define the error in ~r as

(2.5)

(2.4)

(2.3)

(2.2)

c, = (H+H - H;H)fl

= V(r. - I)~-IUTX.

t: =8-0'
~r - -T'

where c, is the unknown bias

The MSE is

c2 =E(t:Tt: ) = cTC + a2trH+H+T
~r ~r ~r r r r r

= c~c, + a2tr(r~-1)2

= f -; [[(')'i - 1)ufX]2 +a 2 (1'i.) 2] . (2.6)
i=1 a, a,

regularizing H+. Other techniques have been proposed that
regularize the pseudoinverse so that the solution is smooth
[1], [7].

Before proceeding with our study of suitable approximations
H;!"", let us establish our conventions:

H+ = V~-IUT is the pseudoinverse of H;
H, = U~rV T is the "rank-shaped" version of H;
~r = r.-I~ is a diagonal matrix of weighted singular
values;
r. = diag{1'1, ... ,1'm} is a diagonal matrix of non-negative
weights, 0 < 1'i ~ 1.
H;!"" = V~;IUT = vr~-luT is the "rank-shaped"
pseudoinverse of H;
N[m, R] is a normal distribution with mean vector m and
covariance matrix R.

The last line consists of two terms, both quadratic in 1'i.
The first term is a bias-squared term that is minimized when
r. = 1 or 1'i = 1 Vi. The second term is a variance term
that is minimized when r. = 0 or 1'i = 0 Vi. Thus, the
minimization of e with respect to the weights 1'i already
presents us with a classic tradeoff between squared bias and
variance. Since the sum of two convex upward parabolas must
have a global minimum that lies between the global minima of
the individually summed parabolas, we see that 1'iS outside the
range [0, 1] will never minimize the MSE between ~ and ~r'

A. Rank-Shaped Inversion

We begin with the rank-reduced estimate of the parameter
vector fl

Note that i is just fl in the overdetermined case since H+H =
I. In other words, t is just fl- t: In the underdetermined case,

H+H :/; I. In fact, i is a projection of fl, which is the minimum
norm solution for the underdetermined problem when there is
no noise. For both cases, the error { is distributed as

-r

• y : measurement

, "
x : least squares

< Ie> =range(H )

where U and V consist of columns u, and Vi, respectively.
We see that the solution may be noise sensitive because of
small singular values a, in the SVD decomposition of H
[4]. Small singular values imply that H is ill-conditioned, a
common phenomenon in inverse problems such as numerical
deconvolution [5].

What if we replace H+ by a "rank-shaped" version of
H+, which we denote H;!""? What effect will this have on the
parameter and signal estimates? In particular, can we reduce
some measure of the error between ~ and fl by appropriately
choosing H;!""? Reducing the rank of H is sometimes referred
to as truncating the SVD and shaping the rank is called

II. RANK-SHAPED FILTERING AND INvERSION

We consider two problems: filtering and inversion. For the
inversion problem, the least squares estimate ~ of the param
eter vector fl is ~ = H'ty, where H+ is the pseudoinverse of
H. In the overdetermined case, the estimate ~ is an unbiased
estimate of fl. However, in the underdetermined case, ~ is
an unbiased estimate of a rank-N projection of fl onto the
subspace spanned by the N columns ofV. This projection also
happens to be the minimum norm solution to the equations
y = Hfl.

When we compute the least squares estimate of x, we are
solving the signal extraction or filtering problem. The estimate
x of the signal x is x = H~. In the underdetermined case,
x= y. That is, the observation is reproduced exactly. For the
overdetermined case, x is the rank-p projection of y onto the
subspace (H). This solution minimizes (y-X)T(y-X). In this
paper, we explore ways of replacing ~ and xwith rank-shaped
approximations. See Fig. I for a pictorial interpretation.

If we scrutinize the solution to the inversion problem
by writing H+ in its SVD form V Il..-I U T , we get the
decomposition

~ = H+y =V~-IUTy =LVi~ufY (2.1)
i ai

Fig. l. Pictorial interpretation of the overdetermined least squares filtering
problem.

B. Distributions

Throughout our analysis, we assume that the model matrix
H is known and that the noise n is distributed as N[O,a 21]
with a 2 also known. When the vectors fl and x are determin
istic, then y is distributed as N[x, a 21]. When fl and x are
random, then y is conditionally distributed as N[x, a 21].
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(3.3)

Consequently, any procedure designed to minimize e with
respect to Ii should constrain estimates of Ii to be in the
range [0, 1].

B. Rank-Shaped Filtering

We should ask ourselves another question: if we use a rank
shaped parameter estimate s; how well do we reproduce the
signal component x of the observation vector y? In other
words, with x, = H~r' what can we say about the error
er = x - x, and its mean-squared value e; = E(e;er )? The
error e; is distributed normally as

er = x - x, = H(fl- ~r): N[br , a 2HH;:H;:THTj (2.7)

where the unknown bias b, is

b; = (I - HH;:)x = (I - U1'.UT)x. (2.8)

The MSE is

e; = E(e;er )

= b;br + a 2trH H ;: H ;:TH T = b;br + a 2t r1'.2

These coefficients take on values in the range [0, 1]. What
is more important, however, is the fact that each clairvoyant
Ii is just the ratio of the power in the ith mode of the signal x
to the power in the ith mode of the observation y. In fact, Ii
can also be written as the ratio

{32
o::; Ii = {3;~ 1 ::; 1

where the {3; are SNR's in the respective modes:

{3; = (u;x)2ja2 = (ai vTfl)2ja2 = -1"· (3.4)-,i
B. The Wiener Weighting Coefficients

Consider the Wiener solution to the inversion and filtering
problems. Assuming means of zero, the Wiener solutions to
these problems are

(3.5)

For both the underdeterrnined and the overdetermined prob
lems, the solution for fl may be written

With this assumption, we compute the Wiener solution by
solving for R yy, Roy, and R xy:

From these results we estimate fl and x as follows:

~ = ReeHT(HReeHT + Rnn)-ly

= (R;l + HTR~~H)-lHTR~,;y

x = H~. (3.8)

(3.6)

(3.7)

R yy = HReeH T + R nn;

R xy = HReoHT.

where R u v = Esxv'", The Wiener solution requires knowledge
of the cross-covariance structure that relates y to fl or y to x,
but we have made no assumption thus far about the statistical
nature of fl and x. Let's assume that fl has covariance a§1

Reo = a§1
EBJ}j = a§t5i j .

III. CLAIRVOYANT ESTIMATES OF

THE WEIGHTING COEFFICIENTS

The results of the previous section bring insight into the
dependence of MSE on the weighting coefficients Ii. The
solutions for coefficients that minimize MSE are only idealized
results because they depend on clairvoyant knowledge of x or
fl, which of course we do not have. Nonetheless, by studying
these idealized solutions we gain insight into suitable data
adaptive solutions.

The last line consists of two terms, both quadratic in 1'.. The
first term is a squared bias term that is minimized when 1'.= 1
or Ii = 1 Vi. The second term is a variance term that is
minimized when T = 0 or Ii = 0 Vi. Again. we have a
classic bias-squared versus variance trade where liS outside
the range [0, 1] will never minimize the MSE between x and
xr. Consequently, when we minimize e; with respect to Ii, we
should constrain our estimates of Ii to be in the range [0, 1].

= L [(x; - 2,i(u; X)2 + (riU; x)2) + (a2,l)]. (2.9)
i=l

(3.11)

The Wiener solutions for ~ and x are of the same form as
the rank-shaped least squares solutions of (2.2)! The diagonal
weighting matrix rw smoothly shapes the rank of H+ in order
to get the minimum MSE estimates of fl and x. Moreover, the
hihv coefficients have values in the range [0, I] and are of

where r w is the diagonal matrix

rw = a§~2(a§~2 + a 21)- 1

= diag[[ri]w]; [ri]W = a§a; j(a§a; +a2). (3.10)

That is

(3.1)

i = 1" ··,m.

i = 1"" ,m.

A. Least Squares

In the inversion problem, the dependence of MSE ~; on
x is given in (2.6). Differentiating e with respect to Ii and
equating the result to °yields the clairvoyant solution

8~; 2 T 2 2
-8. = 0 = 2[(ri -1)(ui x) +Iia]

" ai

(uTx?,. - , .
'-(UTX)2+ a2'

Likewise, for the filtering problem, minimizing e; in (2.9)
leaves us with the identical solution for the clairvoyant liS

8e 2

-8r = 0 = 2 [ - (uT xf + li(uTx)2 + lia2] (3.2)
Ii

(uTx)2
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This expression may be expanded as follows:

The variance of the estimator br is

(4.7)

(4.6)

i = 1,···,m.

A [f3l]UB
"Ii = A

[,8llUB + 1

where [f3l]UB = 131 - 1 is an unbiased estimate of ,81- This
shows that the minimization of the estimated MSE produces
the same answer we would get if we just replaced the per
mode SNR's in the clairvoyant solution for "Ii with unbiased
estimates of the per-mode SNR's. This seems plausible, but,
as we shall show, it is not reasonable for it produces poor
performance.

We may follow these arguments for the minimization of
the estimated MSE e; as well. Recall that the MSE e; of
(2.8) is decomposed into squared bias plus variance, with bias
unknown.

An unbiased estimator of b, is

E(b r - br)T(br - b;) = Eb;br - b;br

= a2tr(I - HH;)(I - HH;)T
= a 2tr(I - UrUT)(I - UrUT)T.

(4.9)

'2

aa~r = 0 = -;'[(1'i - 1)(u;y)2 + a 2 ]
"Ii v;

f3~ - 1 '2 T 2 2
1'i = 'f3?; ,8i = (Ui y) [o ;

Let's compare the estimated 1'i of (4.6) with the clairvoyant
solution, "Ii = ,81/(,81 + 1). Is the comparison plausible?
The estimator 131 is a biased estimator of the SNR ,81, as
the following argument shows. f3i = u;y / a is distributed as
N[,8i' 1], meaning that EN = ,81 + 1. Therefore, 1'i may be
written as

With this result, we can form the following unbiased esti
mate of the MSE ~;:

€; = c;Cr - a2tr~-2(r - 1)2+ a2tr(r:E-1)2

= c;Cr + a2tr(2r - I)~-2. (4.4)

Let's follow the philosophy of the clairvoyant estimator to
minimize estimated MSE with respect to the weighting coef
ficients "Ii under the constraint that 0 ::::; "Ii ::::; 1.

The constrained minimization of ~; is obtained by comput
ing partial derivatives and equating them to zero. Since t; is
quadratic in each "Ii and there are no cross terms between the
"liS, the constraint can be applied after using an unconstrained
minimization of €;. The unconstrained minimum is obtained
as follows:

The variance of the estimator cr is

E(c r - crf(cr - cr ) = Ec;cr - c;cr

=a 2tr(H+ - H;)(H+ - H;f
= a2tr~-2(r - 1)2. (4.2)

A. Unbiased, Constrained, and Abrupt Estimates

Recall that the MSE e of (2.6) is decomposed into bias
squared plus variance, with bias unknown. An unbiased esti
mate of the bias C r that is valid for both underdetermined and
overdetermined cases is

cr = (H+ - H;)y: N[cr , a2(H+ - H;)(H+ - H;f].
(4.1)

This produces the fundamental identity

Ec;cr =c;c, + a2tr~-2(r - 1)2. (4.3)

This identity shows that c;cr is a biased estimator of the
squared bias c;c, even though cr is an unbiased estimate of
the bias c r !

the same form as the clairvoyant least squares "u coefficients
computed in (3.3)

a§a1 [,8llw
bi]W = a§a1 +a2 = [,8?lw + 1 (3.12)

with the following definition of SNR:

[,8lJw = a;al/a2 = E[(U;X)2/a2]

= E[(aiv;~)2/a2] = 1 b[]]. (3.13)
- "Ii W

There is no essential difference between the clairvoyant least
squares solution of (3.3) and (3.4) and the Wiener solution
of (3.12) and (3.13): they both use rank shaping with shape
parameter 0 ::::; "Ii ::::; 1.

The least squares coefficients "Ii are a clairvoyant solution
to the least squares problem. For a fixed ~ and multiple noise
realizations, this solution will provide, on average, the smallest
MSE estimates of ~ and x. The Wiener coefficients bi]W
are computed when the covariance matrix for ~ is known but
~ itself is not. The Wiener solution gives us the minimum
MSE estimates of the signal or parameter vector for multiple
signal-plus-noise realizations. Equation (3.13) shows that the
realizable Wiener solution uses the average power in the ith
mode of the parameter, whereas the unrealizable clairvoyant
least squares solution of (3.3) uses the exact power in the ith
mode of the parameter. This observation is insightful but not
yet useful.

IV. NANE ESTIMATES OF THE WEIGHTING COEFFICIENTS

The clairvoyant solutions for minimizing weighting coef
ficients depend upon exact knowledge of the mean-squared
errors e and e;, which in turn depend on exact knowledge
of the signal x. Any practical, data-dependent solution for
weighting coefficients must rely on estimates of what is
unknown, not on exact knowledge. The primitive estimates we
study in this section use data-dependent estimates of the mean
squared errors e and e; to derive data-dependent estimates of
the weighting coefficients.
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(4.10)

The corresponding rank-shaped estimators for U. and x are

• • -1 T '" 1'i Tu.r = vrn U y = z: Vi-Ui y;
. ai,

This computation shows that b;br is a biased estimate of
b;br , even though br is an unbiased estimate of b.:

Eb;b r = b;br + a 2tr(1 - UrUT
) 2

= b;br + a 2tr(1 - Z.t + .t2
) . . urU T '" - Tx, = Y = ~ Ui/i Ui y. (4.17)

where I is the index set for which 1'i > I/Z. These are purely
rank-reduced pseudoinverses and projections. Note that even
in the case of abrupt rank reduction, the solutions are highly
nonlinear in the data by virtue of the nonlinear dependence of
1'i on the data y.

For abrupt rank reduction, these estimators are
Now, we can form the following unbiased estimate of the
MSE e;:

e; = b;b r - a 2tr(1 - Z.t + .t2) + a 2trr2

= b;br + a 2tr(Z.t - I). (4.11)

Expanding this expression gives

e; = 11(1 - HH;:)Y112 + a 2tr(Z.t - I)

= L[Y; - Z/'i(U;y)2 + (ri U ; y)2 + a 2(Z/'i - 1)].
i=1

. LITu.r = Vi-UiY;
a'

iEI '

- '" Tx; = ~UiUi Y
iEI

(4.18)

(4.12)

Using the same procedure as before, we minimize e; by
computing partial derivatives and equating them to zero.
Since e; is quadratic in each /'i and there are no cross
terms between the /'is, the constraint can be applied after
using an unconstrained minimization of e;. The unconstrained
minimum is achieved as follows:

(4.20)

(4.21)

(4.19)
-2 Zi
;3=-.

, 1 - Zi

t 2

Zi == -.-'-;
;3f + 1

1'i = CO(Zi) = max [0, Z- ~]

[ - ] = C (z,) = {I, if z; ~ Z;:3
/', AI, 0, otherwise.

Notice that z, has values in the finite ran~e [0, I] and that the
function that defines z; is invertible for ;3f. Consequently, all
the estimates of /'i can be written as functions of Zi instead
of as functions of tl. These functions can be thought of as
companders that operate on the interval [0, 1], the range of
zi, That is

Of course, we must compute the density function for z; for
fixed /'i, because the data-dependent Zi is just a coarse estimate
of the unknown clairvoyant gain. This density function is
identical to the conditional density function of z, given /'i,

which is computed as part of the appendix, the result being
(6) of the appendix. With this result, the mean and MSE of
each estimator 1'i of /'i can be computed numerically as a
function of /'i' The conditional mean for each of the estimators
is plotted in Fig. 3 versus /'i. If there existed a conditionally

The companders Co and C 1 are plotted for comparison in Fig.
2 and compared with the maximum likelihood compander to
be derived in Section 5-A.

The conditional mean and MSE of each of these estimators
are

E[Cj(Zi)] = 11

Cj(t)fzi (t) dt; j = 0,1 (4.22)

E[(Cj(Zi) -/'i)2] = l\Cj(t) -/'i)2 fz.(t) dt; j = 0,1.

(4.23)

B. Companders and Performance

Each of the estimators 1'i and [1'i]A is a function of the
estimated SNR tf, which has values in the range [0, (0). This
infinite range of values is inconvenient for fixed-point com
putations, and therefore we consider the variable z; defined
as

(4.16)

(4.13)

(4.15)

(4.14)

i = 1," ·,m.

. [ N-l]/'i = max 0, IJf .

T(x) = {I, if x ~ .1/Z
0, otherwise.

where

Thresholding the 1'iS yields the point on a corner of the m
dimensional hypercube where the error estimates are smallest.
This result improves on a procedure for abrupt rank reduction
proposed in [8]-[10].

We complete our derivation of naive estimators of
the weighting coefficients by enforcing the nonnegative
constraints

This solution is identical to the solution to minimize the
estimator error in the parameter estimate ~r' This analysis tells
us to use exactly the same rank-shaping principles when we
minimize the MSE of our solution regardless of whether we
are solving the inversion or filtering problem.

These results extend in the following way to the more
common approach of abrupt rank reduction, wherein the
weighting coefficients /'i have values of either zero or one.
Each of the estimated error expressions €; and e; define a
multidimensional surface that is quadratic in the /'is. There
fore, the best abrupt rank reduction is obtained by thresholding
the 1'iS
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Fig. 2. Constrained unbiased, abrupt, and maximum likelihood estimators
of Ii.

Fig. 4. Mean..squared error of the constrained unbiased, abrupt, and maxi..
mum likelihood estimators as a function of Ii.
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Fig. 3. Mean of the constrained unbiased, abrupt, and maximum likelihood
estimators as a function of Ii.

unbiased estimator, it would show up on the graph as a straight
line connecting (0, 0) and (1, 1). We see that both estimators
have a bad positive bias when "Yi is small. This means that a
mode with a small singular value is likely to be used in the
solution with more weight than deserved, degrading the result.
All estimators do, however, have relatively small biases for "Yi
close to one.

Plotted in Fig. 4 is the MSE for the estimators ii and [idA
as a function of "Yi. When little rank shaping is required in a
mode-i.e., when the true "Yi is close to one-the estimators
perform well. However, the estimators of "Yi are poor for
most of the range of "Yi. This poor performance leads to
poor performance of the rank-reduced estimators ~r and x,;
as reported in [5]. Indeed, the quality of the solution in the
inversion problem depends on the lowest per-mode SNR iJf.
The simulations in [11] and [12] indicate that the overall SNR
has to be large enough so that the SNR in anyone mode is at
least 20 dB. Otherwise, the estimates of "Yi in modes with low
SNR are very poor, and the noise in those modes degrades the
solution. In summary, neither of the realizable rank-shaping
methods that use ii or [idA is satisfactory when the model

x has low SNR in its subdominant modes. This is a sobering
result.

Perhaps we can improve our estimates of "Yi by using the a
priori information that is available to a Wiener filter. This of
course constitutes a fundamental change in direction, for we
are proposing to bootstrap ourselves to a useful data adaptive
filter by pretending to have a prior distribution on fl. Once
we are bootstrapped, we will use our results on data that is
mismatched to the bootstrapping assumptions. As we shall see,
the improvements are remarkable.

V. SOPHISTICATED ESTIMATES
OF THE WEIGHTING COEFFICIENTS

We now derive two more estimates of the clairvoyant
weighting coefficients "Yi. The first is a maximum likelihood
estimate of "Yi, and the second is the conditional mean esti
mate of "Yi given the measurement y. In order to derive the
conditional mean estimator, we assign a prior distribution to
the parameter fl as is done in Wiener filtering, determine the
resulting prior distribution on "Yi = O'ivTfllO', and use this
prior distribution to find the posterior distribution on "Yi given
the measurement y. This is not the Wiener solution, for it uses
the conditional mean of "Yi in a rank-shaped estimator, not the
conditional mean of (J or x.

The conditional d~tribution of O'-IuTy = (/31' /32,''''
/3p)T is I1N(l3i,1), with the l3i = uTxlO' the voltage
SNR in mode i and /3i = uTy 1a the estimated voltage
SNR. This makes /3i sufficient for l3i and iJl sufficient for
13;' But /3f = z;j(1 - Zi), so Zi is sufficient for 13; and,
as "Yi = 131:1(1 + 13'f), z, is sufficient for "Yi when "Yi is
the deterministic but unknown clairvoyant gain. This means
that the maximum likelihood estimate of "Yi is a function
of the estimated SNR iJl or of the companding variable zi.
By a result in [9, pp. 290-291], /3f and Zi are also Bayes
sufficient for "Yi when "Yi is the random parameter induced
from "Yi = 131:1(1 +13'f), 131: = (O'i vTflIO')2, and fl: N[O,0';1].
These results mean that ML and conditional mean estimates
of the clairvoyant gain "Yi are companding functions of the
bounded variable 0 ~ Zi = /31:1(1 + /3f) ~ 1. Think of the
companding variablez, as a coarse estimator of the clairvoyant
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Fig. 5. Conditional mean companders for per-mode SNR's of -10, 0, and
10 dB.

0.2 .

likelihood compander, illustrated in Fig. 2, is very similar to
the naive companders for ii and hilA. The mean and MSE of
[i]ML are plotted in Figs. 3 and 4. It suffers the same defects
as the naive companders.

Recall that Nis X2 distributed. That is, N: X2 [(3; , 1], where
(3; is the noncentrality parameter. Our goal is to find a
maximum likelihood estimate of the noncentrality parameter
of a v? distribution with one degree of freedom.

First, we will compute the distribution for ~; for Z 2: °
Fi3f ((32) = P[~; :::; (32]

= P [- (3 :::; u~y :::; (3] .

gain Ii = (3;1 (1 +(3;), which is to be refined by the principles
of maximum likelihood and conditional mean.

A. Maximum Likelihood Estimators of
the Weighting Coefficients

The function Ii = (3[1 (1 + (3[) satisfies the maximum
likelihood invariance requirements [9]. This allows us to
compute the maximum likelihood estimate of Ii using a
maximum likelihood estimate of (3; as follows

[A] [~nML
Ii ML = [(3'2] .

i ML + 1

However, u[ y1a is distributed as N[(3i' 1], so this distribution
may be written as

2 {a, if Z < °
Fi3f ((3 ) = «I>((3 - (3i) - «I> (-(3 - (3i), otherwise (5.3)

«I> (x) = lX
oo
~ exp ( -t) dt : normal integral.

The density function for ~l is the derivative of the distribution
function, as shown in (5.4) at the bottom of the page.

Given a non-negative sample (32 of ~;, the maximum
likelihood estimate of the noncentrality parameter is

'2 1
[(3d ML = arg rna.x M::752

3f 2y 21r(32

x [exp(-~((3 - (3i)2) + exp(-~((3+ (3i)2) J.
(5.5)

This maximization problem is equivalent to finding the zeros
of the derivative of the density function, or

Equation (5.6) can be solved numerically with a zero finding
routine for nonlinear functions. Then, once the maximum
likelihood estimate for f3l is found, we can compute the
maximum likelihood estimate of Ii via (5.1). The maximum

B. Conditional Mean Estimators of the Weighting Coefficients

The conditional mean estimator for Ii, given the measure
ment y, is

[ii]cM = Ebi Iy] = Ebi I ~lJ = Ebi I Zi] (5.7)

where the subscript eM denotes conditional mean. In order to
find such an estimator, we need to know the distribution for
Ii conditioned on ~l or Zi. This conditional mean estimator
is also the minimum MSE estimator of Ii and the Bayes
estimator of Ii under quadratic loss.

In the appendix, we derive the conditional density for Ii
given Zi. The density is completely parameterized by the
Wiener coefficient bi]W. The conditional mean estimator is
a function of z; and can be viewed as a compander that
maps z; to an estimate of the clairvoyant gain Ii. We must
approximate these companders numerically, and we must build
a different compander for each mode because each mode has
a different SNR. It is interesting to compare these conditional
mean companders to the companders that map z; into ii, [ii]A,
and [i;]ML. In Fig. 5, we have plotted the conditional mean
companders corresponding to per-mode SNR's of -to, 0, and
to dB. These SNR's reflect a range of singular values of only
one order of magnitude or a condition number of only 101.
The maximum likelihood compander is also plotted in Fig. 5.
The conditional mean compander is very different from the
previous companders, as the following discussion shows.

Each of the conditional mean companders produces an
output Ii close to one for an input z; close to one. This
is plausible because a large value of Zi is obtained from an
observation that has a lot of power in the ith mode. Since the

if (32 < °
otherwise. (5.4)
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Fig. 8. Conditional MSE for the Bayes estimates Of'i for per-mode SNR's
of -10, 0, and 10 dB.
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Fig. 7. Conditional mean for the Bayes estimates of ,i for per-mode SNR's
of -10, 0, and 10 dB.

0, and 10 dB. Notice how the probability mass is concentrated
near ri = 0 for the -10 dB curve and near ri = 1 for the 10
dB curve. There is a radical shift in the probability mass for a
change in per-mode SNR of only 20 dB. It is not uncommon
for least-squares problems to have per-mode SNR's that range
over 60 to 80 dB. Some of the ri densities for these SNR's
would show extreme probability mass concentrations near
ri = 0 or ri = 1. In other words, true ri coefficients away
from zero are very unlikely for modes with low SNR's, yet
the constrained unbiased estimator is quite likely to produce
estimates of 'Yi spread over the range [0, 1] unless the per
mode SNR is quite large. When ri should be close to zero,
the constrained unbiased estimator is likely to return a value
far different from zero. Consequently, the solution can be
very inaccurate because a small singular value does not get
sufficiently damped.

average noise power in a mode is just a 2 , most of the power in
the mode must be signal power. Hence, the compander delivers
an estimate of ri close to one.

Notice also how the -10 dB compander will produce values
of [idcM close to bdw = .09 for most values of Zi.
Only if there is strong evidence to the contrary-i.e., z; >
.9-will the compander produce a much different estimate
of ri. In general, conditional mean companders for low per
mode SNR's exhibit this characteristic. That is, an output
value close to the Wiener bdw is favored unless the input
Zi strongly indicates otherwise. This allows some adaptability
to observations y that are produced by atypical realizations of
fl. For example, if by chance the realization of fl correlates
well with v[, then the signal power will be concentrated in
the ith mode and the conditional mean estimator will adjust
accordingly.

In (14) of the appendix, we have computed the density
for ri when fl is distributed as N[O, a§I]. By plotting this
density, we can gain additional insight as to why the previously
derived constrained unbiased estimators, abrupt estimators,
and maximum likelihood estimators fared so poorly. The
density is plotted in Fig. 6 for three per-mode SNR's of -10,

C. Companders and Performance

Using the results of the appendix, we can analyze the
perfonnance o,fthe conditional mean estimator, which defines
a compander from Zi to [i']cM. The conditional mean and
conditional MSE are ..

E[[ii]CM Iri] = E[Ef'Yi IZi] I 'Yi] (5.8)

E[([ii]cM - ri)2 I ri] =E[(Ebi IZil - ri)2 I ,;].
These functions have been computed numerically and plotted
in Figs. 7 and 8. As before, the three curves in each figure
correspond to per-mode SNR's of -10, 0, and 10 dB. Fig.
7 shows that, for small per-mode SNR's, the estimators are
strongly biased toward the bi]W value which parameterizes
each of the curves. Shown in Fig. 8 is the conditional MSE
for each of the chosen estimators.

VI. SIMULATIONS

In order to test the practicality of our results, we have
applied them to several synthetic inversion and filtering prob
lems, both overdetermined and underdetermined. After picking
a suitable model matrix H, we picked the parameter vector
fl using a random number generator and then computed the
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Fig. 10. Comparison of the MSE for fl for atypical realizations of fl in the
overdetermined case.

signal x = Hfl.Different observations y were formed from the
signal x by adding multiple noise realizations n, also picked
with a random number generator. The rank-shaped estimates
~r and x, were computed and then compared to the true fl
and x. Finally, the mean-squared errors in the solutions were
averaged and plotted.

H was chosen to be 16 x 8 for the overdetermined case and
8 x 16 for the underdetermined case. We chose the columns
of H to be discrete cosines with closely spaced frequencies so
that H would be moderately ill-conditioned. The frequency of
the ith column was picked to be 7r [i + 2. These columns are
plotted in Fig. 9 for the overdetermined case.

To explore the merits of the adaptability of the [ii]cM,
we ran an overdetermined inversion simulation in which an
atypical fl was picked. The power in the fourth mode of the
signal was decreased by a factor of ten and that in the sixth
and eighth modes increased by a factor of ten. The MSE for
the simulation is plotted in Fig. 10. The data-adaptive [1'i]cM
method outperforms the Wiener solution at several SNR's.
Consequently, the nonlinear, data-dependent [1'i]cM method
is a good alternative to the Wiener solution when atypical
realizations of f!.. can produce atypical data.
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To further illustrate the adaptability of the [1'i]CM for
rank shaping, we ran a simulation to test the sensitivity of
each estimator to the assumed signal power al We studied
the overdetermined inversion problem using the previously
described model matrix H, and the nominal SNR was chosen
to be 30 dB. Multiple signal realizations were generated at
different signal powers to yield SNR's from 5 dB to 55 dB,
and the estimates of fl and x were computed. Three estimators
were considered. The first estimator was a Wiener filter
whose parameters changed to match the actual SNR for each
realization of the observation y. The second estimator was a
fixed Wiener filter designed for the nominal SNR of 30 dB.
The third and final estimator used conditional mean estimates
of Ii in its inversion solution and was also designed for a
SNR of 30 dB. The MSE for fl is shown in Fig. 11. The figure
shows that the variable Wiener filter, which is the minimum
MSE estimator for each SNR, bounds the error for the other
estimators. The fixed Wiener filter performs identically to the
variable Wiener filter at the designed SNR of 30 dB, but its
relative performance degrades at other SNR's, as might be
expected. The [1'i]cM rank-shaped method, however, is data
adaptive. It performs only marginally worse than the Wiener
filter at 30 dB and performs a few dB better than does the fixed
Wiener filter at SNR's more than 5 dB lower than the nominal
SNR. These results indicate that the nonlinear rank-shaped
estimator, because it is data dependent, has a performance
advantage over the fixed Wiener filter in situations where the
signal power is not precisely known or where the signal power
varies between realizations.

VII. CONCLUSION

We have developed procedures for computing rank-shaped
solutions to inversion and filtering problems. The rank-shaped
estimators use weighting coefficients that depend on the data
and a prior model. That is, the rank-shaping weights do not
depend exclusively on the prior model as in other SVD-based
methods. We have shown that rank shaping for the problems
described is equivalent to estimating SNR's in modes of the
signal. We have developed four data-dependent estimates of
the clairvoyant weighting coefficients "Ii: ii, [ii]A, [i;]ML, and
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[1'i]CM. The [1'i]CM method, which assumes some prior infor
mation in order to bootstrap a solution, performs only slightly
worse than the Wiener solution when data is typical and does
much better when the data is atypical. The Wiener solution
gets its minimum MSE property by performing well on typical
realizations and poorly on atypical ones. The conditional-mean
rank-shaping solution only slightly underperforms the Wiener
solution for typical realizations and dramatically improves on
it for atypical realizations.

The form of the [1'i]cM solution can be summarized as
follows:

reduced to

Fzd'Yi (t I"Ii)

=P[-JL(t) - JL("Ii) ~ /3i - JL("(;) ~ JL(t) - JL("Ii) I"Ii]
= CP(JL(t) - JL("(i)) - CP(-JL(t) - JL("Ii)) (5)

where CP(x) is the integral of the normal density function. The
density is computed by differentiating the distribution

/(Zi I"Ii) = p(Zi)(exp { - ~} + exp{-~ }] (6)

x =UE[£ Iy]UTy. (7.1)

APPENDIX

THE CONDmONAL DENSITY OF "Ii GIVEN Zi

From Bayes rule, we have

(9)

(7)

(8)

(14)

(13)

(12)

(10)

_ (JL("Ii)) 2C2- --
a

Co = (JL(Zi) - JL("(i))2

Cl = (JL(z;) + JL("(i))2.

/( ) _ 2P("(i) {C2 }"Ii - --exp -
a 2

F'Yi(t) = Phi ~ t]
= P[-JL(t) ~ f3i ~ JL(t)]

where C2 is defined to be

where Co and Cl are defined to be

We compute the density of Ziby integrating the joint density
for Zi and "Ii over all "Ii. Using the results of (6) and (13), we
get

/(Zi) =1: /(Zi I"I;)/("(i) d"li

=11

p(Zi)(exp { _ C;} + exp{ _ c; }]

X 2P~"Ii) [exp{ - ~}] d"li.

Define the variables

b = v(a)

Now, let us compute the unconditional density for "Ii using
the above technique

where f3i is distributed as N[O, (a- 1(18(1i)2]. Define the vari
able a to be the square root of the SNR

The density function for "Ii is then the derivative of F'Yi (t)
evaluated at "Ii

and substitute into (19) to get

F'Yi (t) = P [_ JL(t) ~ f3i ~ JL(t)]
a a a

=cp(JL~)) _ cp(_JL~t))

= 2cp (JL~t)) - 1. (11)

(3)

(1)

(2)

/( . I .) - /(Zi I"Ii)/("Ii)
"I. z. - /(Zi) .

In this simplified notation, we use / ("Ii IZi) as the conditional
density for "Ii, given z., rather than !-Yilzi(t I s). We must
compute each of the three densities on the right-hand side of
(1). Let us define a few functions to make this task easier.

In order to avoid needless bookkeeping in the following
derivations, the variables "Ii and z; will be assumed to have
values only in the range [0, 1]. Then JL(t) and v(t) will be
inverses of each other.

We will first compute the density of Zi given "Ii. We can
write the distribution function as.

The matrix i: = E[r I y] is determined from the scalar
companding curves of Fig. 5, which use the sufficient statistics
z; = /3l!(1 + fm, where /3; = (uTy /a)2 is a coarse estimate
of SNR in mode i. These solutions are of a similar form
to the Wiener solutions but use nonlinear functions of the
data to determine the mode weights 1'i in the data-dependent
matrix t = diag(1'i)' Our results are a logical extension
of linear estimators to nonlinear estimators. They show that
naive replacement of clairvoyant or Wiener coefficients with
plausible estimates of them does not work. Something more
sophisticated like conditional mean estimates of weighted
coefficients, which leads to very conservative rank shaping,
is required.

FZii'Yi(t, I, "Ii) = P[Zi ~ t I"Ii]

= p[N ~ 1 ~ tl"ll (4)

We know that /3i I f3i is distributed as N[f3i, 1]. This means
that the random variable /3; I f3i is invariant to the sign of
f3i. Consequently, we can write f3i = ±JL("(i), and (4) can be
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(21)

where

The parameter b, which is the Wiener gain bdw, completely
parameterizes this conditional density.

C3 = ~[(P,(Ti) - bp,(Zi))2] + (1 - b)J1(Ti)2

1
C4 = b[(J1(Ti) + bp,(zd)Z] + (1- b)p,(Ti)2

p,(Zi)
C5 = a2 + 1;
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By simplifying the integral, we get the desired density for z;

{ C5} 2Vb J= 1 {d2}!(Zi) = p(zi)exp -- - --exp -- d'Yi
2 a _= V'iiJJ 2b

{ C5} 2Vb= p(zi)exp -2" --;;:-
2p(Zi) { P,(Zi)2}

= R+1exp - 2(a2 + 1) . (20)

Substitute the results of (6), (12), and (20) into (1) and
simplify to get the final desired result

t = p,(Ti);
p,(Ti)3 "fi;

(17) [9]dt = --2- d'Yi = 21rP(Ti) d'Yi,
2'Yi

[10]

so that (16) becomes

{ C5} 2Vb
[11]

j(zd = p(Ti)exp -2" --;;:- [12]

x i=~ [exp{- ~~} +exp{ - ~~} ]d'Yi (18)

where d2 and d3 are

dz = (t - bp,(Zi))2; d3 = (t + bp,(Zi))2. (19)

Now, define t to be

and then the square in each exponent is completed. Equation
(14) reduces to

j(Zi) = p(zdexp{-~}

x i1 2P~'Yi) [exp{ - ~ } + exp{ - ~1 }] d'Yi. (16)


