
PHD DISSERTATION

A MULTI-LEVEL CODE COMPREHENSION MODEL FOR LARGE SCALE

SOFTWARE

Submitted by

A. Marie Vans

Department of Computer Science

In partial fulfillment of the requirements

for the degree of Doctor Of Philosophy

Colorado State University

Fort Collins, Colorado

Fall1996

1111111111111111
U18402 0346866

COLORADO STATE UNIVERSITY

November 12, 1996

WE HEREBY RECOMMEND THAT THE PHD Dissertation PREPARED UNDER

OUR SUPERVISION BY A. Marie Vans ENTITLED A Multi-level Code Comprehension

Model For Large Scale Software BE ACCEPTED AS FULFILLING IN PART REQUIRE-

MENTS FOR THE DEGREE OF Doctor Of Philosophy.

Committee on Graduate Work

. 4~ ~]? ... -----

)'

Kurt Olender

~)\?~)~R,cAt-J

Anneliese von Mayrhauser

~(i~
Department Head

11

,._j;

ABSTRACT OF PHD DISSERTATION

A MULTI-LEVEL CODE COMPREHENSION MODEL FOR LARGE SCALE

SOFTWARE

For the past 20 years researchers have studied how programmers understand code they did

not write. Most of this research has concentrated on small-scale code understanding. We

consider it necessary to design studies that observe programmers working on large-scale

code in production environments. We describe the design and implementation of such a

study which included 11 maintenance engineers working on various maintenance tasks.

The objective is to build a theory based on observations of programmers working on real

tasks. Results show that programmers understand code at different levels of abstraction.

Expertise in the application domain, amount of prior experience with the code, and task

can determine the types of actions taken during maintenance, the level of abstraction at

which the programmer works, and the information needed to complete a maintenance task.

A better grasp of how programmers understand large scale code and what is most efficient

and effective can lead to better tools, better maintenance guidelines, and documentation.

lll

A. Marie Vans
Department of Computer Science
Colorado State University
Fort Collins , Colorado 80523
Fall 1996

./"

ACKNOWLEDGEMENTS

I wish to extend my thanks first and foremost to my adviser, Dr. Anneliese von

Mayrhauser. Without her knowledge, experience, guidance, and support none of this

work would have been possible. I also thank Dr. James Bieman for his contributions and

for guidance in the area of experimental design. I am grateful to Dr. Kurt Olender and

Dr. Vicki Volbrecht for their contributions. I would also like to thank Nancy Pennington

for her guidance on the model specification and validation. Last but certainly not least, I

thank Dr. V. Scott Gordon for his endless encouragement, support , and friendship.

lV

DEDICATION

This dissertation is dedicated to the strong women in my life who, through persev-

erence, encouragement, wisdom, and example, made it possible for me to complete this

work. The women without whom I would never have succeeded: my grandmother: Agnes

Jackson, my mother: Mariann Jackson, my sister: Lisa Vans Kreskey, and of course my

advisor: Anneliese von Mayrhauser.

v

l~
l
I
I

CONTENTS

1 Introduction

2 The Problem
2.1 Rationale
2.2 The Problem Statement .
2.3 Elements of the Problem .
2.4 Scope of the Study

3 Background
3.1 Overview
3.2 Common Elements of Cognition Models
3.2.1 Knowledge ..
3.2.2 Mental Model .
3.2.3 Hypotheses ..
3.2.4 Strategies ...
3.2.5 Facilitating Knowledge Acquisition .
3.2.6 Expert Characteristics .
3.3 Models
3.3.1 Letovsky Model ..
3.3.2 Shneiderman Model
3.3.3 Brooks Model
3.3.4 Top-Down - Soloway & Ehrlich .
3.3.5 Pennington's Model - Bottom-Up Comprehension
3.3.6 Evaluation of Models
3.4 Integrated Model
3.5 Levels of the Integrated Model
3.6 Research Grid

4 Research Design
4.1 Experimental Design
4.2 Program Comprehension Study Objectives
4.3 Protocol Analysis
4.4 Enumeration and Segmentation of Action Types - Level 3 .
4.5 Process Discovery - Level 2 & Level 1
4.6 Action Type Analysis: Hypotheses & Switching Between Models
4.6.1 Hypotheses - Level 1
4.6.2 Switching between Model Components - Model Level
4. 7 Strategy Identification - Level 1
4.8 Information Needs
4.9 Summary

VI

1

4
4

13
13
14

15
15
15
15
16
18
19
20
21
23

. . 23
25
27
30
33
37
38
39
41

44
44
47
48
51
52
53
54
55
55
56
57

5 Results 58
5.1 Actions - Level 3 . 58
5.1.1 Action Frequencies Across All Tasks . 59
5.1.2 Actions - Model Frequencies by Task, Expertise, & Accumulated Knowledge 62

69 5.2 Processes - Levels 2 & 1
5.2.1 Systematic Processes
5.2.2 Opportunistic Processes - Level 1
5.2.3 Combined Systematic & Opportunistic Processes .
5.2.4 Interpretation and Conclusions on Comprehension Processes
5.3 Hypotheses - Level 1 .
5.3.1 Hypothesis Type: Overall Frequencies & Model Frequencies by Task, Exper-

tise, & Accumulated Knowledge
5.3.2 Hypothesis Generated Switching Behavior
5.3.3 HK-Ratio - Using Hypotheses and Knowledge to Indicate Expertise
5.4 The Role of Model Components in the Integrated Model - Level 1
5.4.1 Switches Between Models
5.4.2 The Role of Code Size on Model Building
5.5 Information Needs
5.5.1 Frequencies for All Subjects
5.5.2 Information Needs- By Task .. .
5.5.3 Information Needs - By Expertise
5.5.4 Information Needs - By Accumulated Knowledge.
5.6 Tool Capabilities . .
5.7 Core Competencies .
5.8 Conclusions
5.8.1 Actions ..

Processes .
Hypotheses

5.8.2
5.8.3
5.8.4
5.8.5
5.8.6

Switching Between Models - Action Generated
Role of Code Size
Information Needs and Tool Capabilities

6 Future Directions
6.1 Integrated Model Construction
6.2 Hypothesis Generation
6.3 Switching Behavior
6.4 Information Needs & Tool Capabilities .
6.5 Conclusions

7 REFERENCES

A Classification of Model Components - Task Codes
A.1 Top-Down Component Identification
A.2 Program Model Component Identification .
A.3 Situation Model Component Identification .

,,,,

69
76
86
87
88

89
98

. 103

. 107

. 108

. 114

. 114

. 115

. 120

. 121

. 122

. 122

. 126

. 129

. 129

. 129

. 130

. 131

. 132

. 132

134
. 134
. 136
. 137
. 137
. 139

142

148
. 148
. 152
. 156

B Supplemental Data for Results
B.1 Actions
B.l.1 Action Percentages By Task .. .
B.l.2 Action Percentages By Expertise
B.l.3 Action Percentages By Accumulated Knowledge
B.2 Hypotheses - Level 1
B.2.1 Model Frequencies by Task, Expertise, & Accumulated Knowledge
B.2.2 Hypothesis Generated Switching Behavior
B.2.3 HK-Ratio - Using Hypotheses and Knowledge to Indicate Expertise
B.3 The Role of Model Components in the Integrated Model - Level 1
B.3.1 Switches Between Models ..
B.4 Information Needs
B.4.1 Information Needs - By Task . . .
B.4.2 Information Needs - By Expertise
B.4.3 Information Needs - By Accumulated Knowledge .

C Programming Sessions - Individual Subject Results
C.1 General Understanding
C.l.1 G1: Domain/Language Expert - General Understanding ..
C.l.2 G2: Domain/Language Expert - Understand One Module .
C.2 Corrective Maintenance
C.2.1 C1: Domain Novice/Language Expert - Fix Reported Bug
C.2.2 C2: Domain Expert/Language Novice - Understand Bug .
C.2.3 C3: Domain Expert/Language Novice - Fix Reported Bug
C.2.4 C4: Domain Expert/Language Novice - Track Down Bug
C.3 Enhancement
C.3.1 EN1: Domain/Language Expert - Add Functionality
C.3.2 EN2: Language/Domain Expert Add Function
C.4 Adaptation .
C.4.1 AD1: Language/Domain Expert Port Program
C.4.2 AD2: Language Novice/Domain Expert Add Function .
C.5 Code Leverage
C.5.1 L1: Language Expert/Domain Novice - Leverage Program

Vlll

159
. 159
. 159
. 163
. 165
. 168
. 169
. 194
. 203
. 206
. 206
. 212
. 213
. 216
. 219

223
. 224
. 225
. 229
. 257
. 257
. 262
. 268
. 273
. 278
. 278
. 283
. 288
. 289
. 307
. 313
. 313

.-

LIST OF FIGURES

3.1 Letovsky - Comprehension Model ..
3.2 Shneiderman - Comprehension Model
3.3 Brooks - Comprehension Model
3.4 Soloway & Ehrlich - Comprehension Model
3.5 Pennington - Comprehension Model . .
3.6 Integrated Code Comprehension Model

4.1 Verbalization Task

5.1 Systematic Processes: Episodic Process - Read Block
5.2 Systematic Processes: Process PC - Aggregate-Level
5.3 Process ABC - Session Level
5.4 Opportunistic Processes: Goals 1 and 2
5.5 Opportunistic Processes: Goal 4
5.6 Opportunistic Processes: Goal 7
5. 7 Opportunistic Processes: Goal Completion

24
26
29
32
36
40

50

70
73
75
79
80
82
85

B.1 Adaptive Maintenance Actions By Model (% of total actions, 2 Subjects) . 160
B.2 Corrective Maintenance Actions By Model (% of total actions, 4 Subjects) . . 161
B.3 Enhancement Maintenance Actions By Model (% of total actions, 2 Subjects) . 161
B.4 General Understanding Actions By Model (% of total actions, 3 Subjects) . 162
B.5 Language Only Expertise By Model (% of total actions, 2 Subjects) 163
B.6 Domain Only Expertise By Model (% of total actions, 4 Subjects) 164
B.7 Domain & Language Expertise By Model(% of total actions, 5 Subjects) . 165
B.8 Little Accumulated Knowledge By Model (% of total actions, 4 Subjects) . 166
B.9 Some Accumulated Knowledge By Model(% of total actions, 4 Subjects) . 166
B.10 Significant Accumulated Knowledge By Model (% of total actions, 3 Subjects) 167

C.1 G1: General Understanding - Action Sequence .
C.2 G1: Hypotheses Sequence
C.3 G2: Understand One Module - Action Sequence
C.4 G2: Understand One Module- Hypotheses Sequence .
C.5 G2: Process 1 - Read Block
C.6 G2: Process 2 - Integrate Partially Understood . .
C.7 G2: Process 3 - Determine Var Definition
C.8 G2: Process 4 - Incorporate Acquired Knowledge .
C.9 G2: Process 5 - Identify Block Boundaries ..
C.10 G2: Process 6 - Resolve Deferred Questions .
C.ll G2: Process 7 - Understand Procedure Call .
C.12 G2: Process A - Aggregate-Level

. 225

. 227

. 231

. 231

. 235

. 237

. 239

. 240

. 243

. 245

. 247

. 250

' _,-1 -

C.13 G2: Process B - Aggregate-Level .
C.14 G2: Process C - Aggregate-Level .
C.15 G2: Process ABC - Session Level .
C.16 C1: Fix Reported Bug- Action Sequence
C.17 Cl: Fix Reported Bug - Hypotheses Sequence
C.18 C2: Understand Bug - Action Sequence
C.19 C2: Fix Reported Bug- Hypotheses Sequence
C.20 C3: Fix Reported Bug - Action Sequence ...
C.21 C3: Fix Reported Bug - Hypotheses Sequence
C.22 C4: Track Down Bug - Action Sequence .. .
C.23 C4: Track Down Bug- Hypotheses Sequence
C.24 EN1: Enhancement - Action Sequence ...
C.25 EN1: Enhancement - Hypotheses Sequence
C.26 EN2: Enhancement - Action Sequence .
C.27 EN2: Hypotheses Sequence
C.28 AD1: Port Programs - Action Sequence . .
C.29 ADl:Port Programs - Hypotheses Sequence
C.30 AD1: Goals 1 and 2
C.31 AD1: Goal 4
C.32 AD1: Goal 7
C.33 AD1: Goals 9 & 11 .
C.34 AD1: Goals 13 & 14
C.35 AD1: Goal 20
C.36 AD1: Goal Completion
C.37 AD2: Port· Program/ Add Fu.l tion - Action Sequence
C.38 AD2: Hypotheses Sequence . :
C.39 L1: Leverage Program- Action Sequence ...
C.40 L1: Leverage Program- Hypotheses Sequence

X

. 251

. 253

. 256

. 258

. 258

. 262

. 266

. 268

. 271

. 274

. 277

. 280

. 282

. 284

. 285

. 289

. 292

. 294

. 295

. 298

. 300

. 302

. 304

. 306

. 307

. 311

. 314

. 314

.-

LIST OF TABLES

2.1 Maintenance Life-cycle Subtasks . . .
2.2 Comprehension Experiments
2.3 Experimental Purposes & References
2.4 Experimental Purposes & References (continued)

3.1 Code Comprehension Model - Levels of Detail
3.2 Research Grid

4.1 Programming Sessions - All Maintenance Tasks .
4.2 Protocol Analysis Steps
4.3 Example Protocol Analysis - Action Types . . .
4.4 Example Protocol Analysis - Hypotheses
4.5 Example Protocol Analysis - Information Needs

5.1 Action Counts Across Tasks - Top-Down Model
5.2 Action Counts Across Tasks - Program Model .
5.3 Action Counts Across Tasks - Situation Model .

5
9

10
11

39
42

46
51
52
54
57

59
61
62

5.4 Action-Types by Model - Frequencies & Percentages 64
5.5 Expertise: Top-Down & Program/Situation Model Relative Frequencies 67
5.6 Accumulated Knowledge: Top-Down & Program/Situation Model Relative

Frequencies . 68
5.7 Episodic Process Frequency Count (Subject: G2) 71
5.8 Understanding One Module - Information Needs for Process Pl 72
5.9 Aggregate Processes - Episodic Composition . . . 73
5.10 Aggregate Process Frequency Count (Subject: G2) 74
5.11 Process Trigger Frequencies (Subject: G2) 74
5.12 Hypothesis-Type Frequencies - All Tasks n
5.13 Task Hypotheses by Model- Total & Per Subject Counts with Total Frequencies 93
5.14 Expert Hypotheses by Model- Total & Per Subject Counts with Total Frequencies 95
5.15 Accumulated Knowledge: Hypotheses by Model- Total & Per Subject Counts

with Total Frequencies . 97
5.16 Hypotheses Switching Behavior - By Model Component for all Subjects (11) 99
5.17 Hypotheses Switching Behavior - By Task 100
5.18 Hypotheses Switching Behavior - Expertise 101
5.19 Hypotheses Switching Behavior - Accumulated Knowledge . 103
5.20 HK-Ratio by Subject . 105
5.21 OveraU HK-Ratio Rankings 106
5.22 Action Switches - Absolute & Percent of Total Switches by Task & Expertise . 109
5.23 Action Switches - Absolute & Percent of Total Switches by Task 110
5.24 Action Switches - Absolute & Percent of Total Switches by Expertise 111

Xl

5.25 Action Switches - Absolute & Percent of Total Switches by Accumulated-
Knowledge. 113

5.26 Frequencies of References to Model Components (All Subjects) . 115
5.27 Information Needs Frequencies: All Subjects 117
5.28 Information Needs Frequencies: All Subjects (continued) . . 118
5.29 Information Needs Frequencies: All Subjects (continued) . . 119
5.30 Tool Capabilities Table 125
5.31 Core Competencies by Model Component . . 128

B.1 Labels for Figure - Domain Only Expertise
B.2 Hypotheses by Model - Frequencies & Percentages
B.3 Hypothesis-Type Frequencies/Percentages - Top-Down Model, All Tasks .
B.4 Hypothesis-Type Frequencies/Percentages - Program Model, All Tasks ..
B.5 Hypothesis-Type Frequencies/Percentages - Situation Model, All Tasks .
B.6 Hypothesis-Type Frequencies/Percentages - Top-Down Model, Expertise
B.7 Hypothesis-Type Frequencies/Percentages - Program Model, Expertise .
B.8 Hypothesis-Type Frequencies/Percentages - Situation Model, Expertise .
B.9 Hypothesis-Type Frequencies/Percentages - Top-Down Model, Accumulated

. 164

. 168

. 170

. 173

. 176

. 178

. 182

. 183

Knowledge 188
B.10 Hypothesis-Type Frequencies/Percentages - Program Model, Accumulated

Knowledge 191
B.11 Hypothesis-Type Frequencies/Percentages - Situation Model, Accumulated

Knowledge
B.12 Hypotheses Switching Behavior - Adaptation Task (AD1, AD2)
B.13 Hypotheses Switching Behavior - Corrective Task (C1 ,C2,C3,C4) .
B.14 Hypotheses Switching Behavior - Enhancement Task (EN1,EN2) .
B.15 Hypotheses Switching Behavior - General Understanding Task (G1 ,G2,L1)

. 192

. 194

. 195

. 196

. 197
B.16 Hypotheses Switching Behavior - Language Expertise (C1,L1) 198
B.17 Hypotheses Switching Behavior- Domain Expertise (AD2,C2,C3,C4) 199
B.18 Hypotheses Switching Behavior Language & Domain Expertise

(AD1,EN1 ,EN2,G1,G2) 199
B.19 Hypotheses Switching Behavior Little Accumulated Knowledge

(C2,C3,EN2,G1) 200
B.20 Hypotheses Switching Behavior - Some Accumulated Knowledge (C1,C4,G2,L1)201
B.21 Hypotheses Switching Behavior - Some Accum. Knowledge (3 Subjects wjout

G2) 201
B.22 Hypotheses Switching Behavior - Significant Accumulated Knowledge

(AD1,AD2,EN1) 202
B.23 Program Model: HK-Ratio Rankings . . . 203
B.24 Situation Model: HK-Ratio Rankings . . 204
B.25 Top-Down Model: HK-Ratio Rankings . . 204
B.26 Combined Program & Situation Model: HK-Ratio Rankings . . 205
B.27 Overall HK-Ratio Rankings . 205
B.28 Action Switches - Absolute & Percent of Total Switches by Task . 207
B.29 Action Switches - Absolute & Percent of Total Switches by Expertise . 209
B.30 Action Switches - Absolute & Percent of Total Switches by Accumulated

Knowledge. 211
B.31 Information Needs Frequency By Task 215

Xll

, -

B.32 Information Needs Frequency By Task (continued) 216
B.33 Information Needs Frequency By Expertise 218
B.34 Information Needs Frequency By Expertise (continued) . 219
B.35 Information Needs Frequency By Accumulated Knowledge . . 221
B.36 Information Needs Frequency By Accumulated Knowledge (continued) . 222

C.1 G 1: References and Action Switches Between Models . . . 225
C.2 G1: Action-Type Frequencies - General Understanding . 226
C.3 G1: Hypothesis Generated Switches Between Models . . . 226
C.4 G 1: Hypothesis-Type Frequencies - General Understanding . 227
C.5 G 1: General Understanding- Information Needs 228
C.6 G1: General Understanding - Information Needs (continued) . 229
C.7 G2: Action-Type Frequencies - General Understanding 230
C.8 G2: References and Action Switches Between Models. 230
C.9 G2: Hypothesis-Type Frequencies - Understand One Module . 232
C.10 G2: Hypothesis Generated Switches Between Models . . 232
C.ll G2: Understand One Module- Information Needs 233
C.12 G2: Process Frequency Count 234
C.13 G2: Understanding One Module - Information Needs for Processes P1 - P7 .. 248
C.14 G2: Processes A,B,C, and Aggregate Trigger Frequencies . 254
C.15 Cl: References and Action Switches Between Models . . 257
C.16 C1: Action-Type Frequencies - Fix Reported Bug . . . 259
C.l7 C1: Hypothesis Generated Switches Between Models . . 259
C.18 C1: Hypothesis-Type Frequencies - Fix Reported Bug . 260
C.19 C1: Fix Reported Bug- Information Needs 261
C.20 C2: References and Action Switches Between Models . . 263
C.21 C2: Action-Type Frequencies - Understand Bug . . . 264
C.22 C2: Hypothesis-Type Frequencies - Understand Bug . 265
C.23 C2: Hypothesis Generated Switches Between Models . 265
C.24 C2: Fix Reported Bug - Information Needs 267
C.25 C3: Action-Type Frequencies - Fix Reported Bug . . 269
C.26 C3: References and Action Switches Between Models . . 269
C.27 C3: Hypothesis-Type Frequencies - Fix Reported Bug . 270
C.28 C3: Hypothesis Generated Switches Between Models . . 270
C.29 C3: Fix Reported Bug- Information Needs 272
C.30 C4: References and Action Switches Between Models . . 274
C.31 C4: Action-Type Frequencies - Track Down Bug 275
C.32 C4: Hypothesis-Type Frequencies - Track Down Bug . . 276
C.33 C4: Hypothesis Generated Switches Between Models . 277
C.34 C4: Track Down Bug - Information Needs 278
C.35 EN1: Action-Type Frequencies - Enhancement 279
C.36 EN1: References and Action Switches Between Models . . 280
C.37 EN1: Hypothesis-Type Frequencies - Enhancement . . . 281
C.38 EN1: Hypothesis Generated Switches Between Models . . 281
C.39 EN1: Enhancement- Information Needs 282
C.40 EN2: References and Action Switches Between Models . . 285
C.41 EN2: Action-Typ e Frequencies - Enhancement . . . 286
C.42 EN2: Hypothesis-Type Frequencies Enhancement 287

C.43 EN2: Hypothesis Generated Switches Between Models
C.44 EN2: Enhancement- Information Needs
C.45 ADl: Action-Type Frequencies - Port Programs .. .
C.46 ADl: References and Action Switches Between Models .
C.47 AD1: Hypothesis-Type Frequencies - Port Programs ..
C.48 AD1: Hypothesis Generated Switches Between Models .
C.49 ADl: Port Programs- Information Needs
C.50 AD2: Action-Type Frequencies - Port Program/ Add Function
C.51 AD2: References and Action Switches Between Models
C.52 AD2: Hypothesis-Type Frequencies - Port Program/ Add Function
C.53 AD2: Hypothesis Generated Switches Between Models .
C.54 AD2: Port Program/ Add Function - Information Needs
C.55 L1: Action-Type Frequencies - Leverage Program . .
C.56 L1: References and Action Switches Between Models .
C.57 Ll: Hypothesis-Type Frequencies - Leverage Program
C.58 L1: Hypothesis Generated Switches Between Models
C.59 L1 : Leverage Program- Information Needs

. 287

. 288

. 290

. 290

. 291

. 291

. 292

. 308

. 309

. 310

. 310

. 312

. 315

. 315

. 316

. 316

. 317

Chapter 1

INTRODUCTION

For the past 20 years researchers have studied how programmers understand code

they did not write. Code understanding is common, especially for maintenance engineers.

Maintenance engineers assume responsibility for enhancing, fixing defects, and adapting

very large systems which they may never completely understand. Often, maintenance pro-

grammers must make changes to the code they do not understand. Other times no changes

can be made until the code is reasonably understood. In either case, the cost of main-

taining large-scale code can be high. Realizing how programmers actually comprehend

programs helps . to define better tools, guidelines, and documentation.

Unfortunately, much of the research focuses on very small aspects of the program

comprehension process and its contribution to large-scale code understanding is not clear.

Many of these small-scale, controlled experiments make assumptions about how compre-

hension proceeds. Frequently, these assumptions are not based on a well defined theory.

In contrast, we observed programmers working on large-scale software during actual main-

tenance tasks. Such an effort contributes to building a theory of program comprehension.

Once a theory of large-scale program comprehension has been developed , further con-

trolled experiments will be appropriate for validating it. There is a tradeoff between the

experimental control associated with experiments that make use of small-scale code and

the generality gained with studies that use large-scale code from realistic environments.

Large scale code studies cannot be easily controlled in a lab environment like their small

scale code counterparts. Conversely, results from experiments that include small "toy"

programs may not scale up. This problem is discussed in more detail in the Problem

chapter.

This work builds theory through a field study with maintenance engineers under-

standing large-scale code in a production environment. The resulting model of program

comprehension includes dynamic cognition behavior and information requirements. The

field study involves programmers working on various maintenance tasks. Analysis of the

observations extract cognition models and cognition processes for software maintenance.

Chapter Two contains a discussion of the problems addressed in this research. An

overview of the literature demonstrates where this research fits into program comprehen-

sion research. Several deficiencies of existing research are addressed. A problem statement

includes the major problem elements addressed and the scope of the problem.

Chapter Three provides background. It begins with definitions that will be used

throughout the thesis. Common elements of typical code cognition models are presented

including knowledge components, mental models, strategies, and characteristics of expert

programmers. An integrated code comprehension model is described that incorporates two

existing models found in the literature. This model is the basis for the research reported

here. The final section deals with closely related research found in the literature.

Chapter Four covers the research design used for the study. The experimental design

description includes a discussion of the subjects and the tasks they performed. An ob-

jectives section delineates a number of specific questions to be addressed in the analysis

portion of the research. The chapter also covers a detailed description of the analysis

methods used for the collected data.

Chapter Five describes the results and advances several hypotheses about the nature

of program understanding for large scale, production code. We describe specific program-

mer actions taken during code understanding and dynamic comprehension processes which

incorporate these actions. Generating hypotheses is an important aspect of understanding

and we characterize hypothesis generation through the identification of hypothesis types

and their resolution. We define an expertise indicator, the HK-Ratio, as the proportion

of hypotheses generated and use of previously acquired knowledge. We show that mainte-

nance engineers build mental representations of code at several levels of abstraction. We

also illustrate that this process occurs by switching between all possible levels of abstrac-

tion at various times during program comprehension. Since programmers need specific

2

types of information when they understand code, we also analyzed for information needs

and identified the tool capabilities required to meet those needs. We describe the minimum

amount of information and expertise necessary to efficiently complete most maintenance

tasks. Finally, we conclude with the most significant results. Chapter Five contains the

aggregate results from our analysis. These results are based on subsets of subjects classi-

fied by type of task, level of expertise, and amount of prior experience with the software.

Three appendices supply additional detail for the results section. Raw results from the

analysis of individual subject data are presented in Appendix C. Detailed results from the

analysis of aggregated individual subject results are presented in Appendix B.

Chapter Six proposes several follow-on experiments for validating our main conclu-

sions. Our results appear to differ when based on task, expertise, and accumulated knowl-

edge, however, our sample size was small and the differences we found may be due to

individual differences. Therefore, in designing validation experiments, we suggest control-

ling task, expertise, and amount of accumulated experience with the code.

Chapter 2

THE PROBLEM

2.1 Rationale

Program Understanding or Code Cognition is a central activity during software main-

tenance, evolution, and reuse. There are estimates that up to 50% [39] of the maintenance

effort is spent in trying to understand code. A better grasp of how programmers under-

stand code and what is most efficient and effective should lead to a variety of improve-

ments: better tools, better maintenance guidelines and processes, and documentation that

supports the cognitive process.

Maintenance encompasses many different tasks. Table 2.1, loosely based on Chapin's

Software Maintenance Life-cycle [11], lists the most common. Adaptive maintenance occurs

as a result of a change in the use or environment of an existing system and typically includes

adding new code. Perfective maintenance involves adding functionality or enhancements

to an existing system. Corrective maintenance consists of correcting errors in the product.

Corrective maintenance usually occurs after program code is released for production and

comprises the smallest portion of maintenance done on existing systems. Reuse involves

using previously written code during development of new software. Code Leverage reuses

code that is modified in some way to fit the problem at hand. We distinguish reuse from

code leverage by restricting the term reuse to refer only to code modules that are reused

as-zs.

Each major maintenance task listed in column one of Table 2.1 consists of a variety

of activities. Associated with these maintenance activities are specific objectives and each

task may involve different methods of understanding code.

Experiments reported in the literature range from identifying the types of knowledge

used during comprehension to the development of models of programming strategies that

Table 2.1: Maintenance Life-cycle Subtasks

Maintenance Activities Comments
Task
Adaptive Understand system Understand existing system

Define adaptation requirements Requirements are extended from original
requirements

Develop prelim & detailed adaptation design More design constraints due to existing system
Code Changes Merge adaptation code into existing code
Debug Focus on correct behavior of recently added

code
Regression tests Develop tests for new code, run old tests to

ensure other code not affected
Perfective Understand system Understand existing system

Diagnosis & requirements definition Identify exact nature of need for improvement
for improvements e.g. performance improvements
Develop prelim & detailed perfective design Requirements are extended from original

requirements
Code changesjadditions Merge perfective code into existing code
Debug Focus on correct behavior of recently

perfected code
Regression tests Develop tests for perfected code, run old

tests to ensure other code not affected
Corrective Understand system Understand existing system

Generate/Evaluate hypotheses Hypotheses about nature of problem
concerning problem generated using symbolic code execution,

watching system behavior
Repair code Rewrite defective code or add omitted code
Regression tests Test for system stability after change

Reuse Understand the problem , find solution based Reuse code AS IS, Design is open-ended ,
on close fit with predefined not initially constrained but defined by
components plugging some configuration of reusable

components
Obtain predefined components Find reusable components
Integrate predefined components Similar to integrating new code developed

by several engineers
Code Understand problem, find solution based Design fixed or constrained by problem,
Leverage on predefined components design exists & close to desired solution,

components may use new code
Reconfigure solution to increase likelihood Find all possible solutions, use solution
of using predefined components with highest leverageable code
Obtain & modify predefined components Find leverageable components
Integrate modified components Similar to integrating new code developed

by several engineers

draw on this knowledge. Table 2.2 summarizes a representative sample of these exper-

iments by type of maintenance task. Comparing this table to Table 2.1 demonstrates

that not all maintenance tasks have been investigated for their cognitive processes. For

example, no experiments have investigated reuse or code leveraging and with the excep-

tion of the last (number 18) row entry in Table 2.2 , adaptive maintenance has not been

investigated.

5

l
I
I
I
I
I

Tables 2.3 and 2.4 contain goals for each experiment listed in Table 2.2 (what was

measured) and a bibliographic reference. In general, existing empirical studies of pro-

gramming behavior fall into three broad areas:

• Expert versus novice behavior

• Cognitive elements of program development

• Cognitive elements of program maintenance

Whereas understanding is an important component for all three areas, this research

concentrates on the last category: Cognitive elements of program maintenance. While

Table 2.2 does not contain an exhaustive list , it is intended to show the variety of experi-

mental procedures, tasks, participants , and programming languages that have been used

to develop the current body of program understanding research.

In Table 2.2 , the Purpose column lists the task focus for each experiment. Under-

standing is a maintenance task in and of itself when responsibility for maintaining code is

first assigned. The person assuming the responsibility will want to understand (at least at

a high level) the code before performing any maintenance. Other purposes are corrective,

perfective, enhancements, and adaptations.

The Code Size column describes the code used in the understanding task in terms of

size and structure. Most experiments have been done with code size less than 950 lines of

code (LOC). 950 LOC is not representative of typical large-scale production code. This

raises the issue of whether the results from these experiments using small-scale code will

apply to large scale systems. For example, if the code is small enough, it is reasonable

to expect an approach to understanding using a systematic strategy (code is read line by

line). Koenemann & Robertson [27] (number 16 in Table 2.2) found that the programmers

who used this systematic strategy were more successful at understanding code than those

that used another approach. However, for systems of 50,000 LOC or more, the systematic

approach is simply not feasible. The above experiment may not scale up because the

program upon which it is based was only 636 lines of code. Similar questions can be asked

about the results of any of the experiments using very small programs, i.e. will their

results hold as the size of code increases?

The Subjects/Expertise column reports the level of expertise and the size of the par-

ticipant sample. Novice participants are typically first year programming students. In-

I -~
I termediate subjects are also usually students who have had slightly more experience than

novices, i.e. second or third year computer science students. Experts come from either a

professional or computer science graduate student population. For large-scale production

code, studying novice behavior is not appropriate, since presumably no company would

hire a first year programming student to maintain a large system. A similar argument

applies to intermediates . Professional programmers are the most highly desirable and if

we are interested in knowing what experts do to make cognition more efficient, it makes

the most sense to study them. We can use this understanding to infer guidelines for

programmers with less expertise.

The Language column provides insight into the types of programming languages used

for the experiments. The two most commonly used languages in these experiments are

Pascal and Fortran, with Cobol the next most frequently used. It makes sense to include

these languages in program comprehension studies. There are many very large legacy

systems written in Fortran and Cobol that still need to be maintained. However, systems

have been developed in languages such as C/C++ and their system and support environ-

ments, for example Make, lint, shell programs, Motif, lexfyacc etc. Thus, more studies

are needed using more of these languages and support tools to see whether they affect

program understanding.

The Experimental Analysis f3 /or Design column provides a brief description of the

type of experiment used in each study. It describes the type of measurement used to cap~

ture the relationship between a specific (or set of) circumstance(s) and observed behavior.

(A definition of the experimental design is given if the statement of the measurement

procedure does not provide a suitable description.) For example, protocol analysis refers

to the analysis of audio- and/or video-taped sessions of programmers working on a task.

The last column is a pointer to the reference which can be found in Tables 2.3 and 2.4.

Tables 2.3 and 2.4 are continuations of Table 2.2 with the No . column of the first table

corresponding to the number found in column one of the second set of tables.

Tables 2.3 and 2.4 describe the objective of each experiment and the associated liter-

ature reference. The objectives demonstrate that many experiments are focused on small

aspects of maintenance activities. For example, experiments number 7 and 12 examine

knowledge structure but not the application of that knowledge. Experiment number 3 is

concerned only with the effect of mnemonic variable and procedure names on comprehen-

7

swn. Experiment number 18 defines an integrated model which describes how most of

the components in the small-scale experiments might fit together for large-scale cognition

needs.

8

Table 2.2: Comprehension Experiments
Subjects/ Experimental No.

Purpose Code Size Expertise Language Analysis&/ or Design
Understand 30 LOC

(Modular) 24 Novice BASIC Verbatim Recall (1)
Cloze Test

12-42 LOC 22 Intermed. Pascal (Fill-in-blank) (2)
(Modular) Students Protocol Analysis

10 Novice
Measure response time

913 LOC 8 Professional c to hypothesis & location (3)
(Modular) questions re: code
12-42 LOC 7 Grad Pascal Cluster Analysis (4)
(Module) Students

Frequency of segmented
28-77 LOC 30 Experts Pascal & code fragments (major
(Modular) (Grad Students) Fortran components) . Match to (5)

.predetermined plans
Recored reading time &

136 LOC 15 Experts Pascal search patterns (6)
(Modular) Grad Students Protocol Analysis

52 Novice
20 LOC 18 Intermed.
(Module) 9 Grad Fortran Verbatim Recall (7)

Students
94 Novice

15 LOC 45 Grad Pascal Cloze Test (8)
(Modular) Students (Fill- in-blank)
250 LOC 20+ Protocol
(Modular) Professional Fortran Analysis (9)
25 LOC 40 Novice Program Recall
(Module) 40 Intermed. Pascal Function Description (10)

Corrective 400 LOC 8 Experts Protocol
(Modular) 8 Novices Cobol Analysis (11)
67 LOC 38 Professional
(Modular) 42Novice Cobol Program Recall (12)

Perfective 250 LOC 4 Experts Protocol
(Enhancement) (Several Modules) 2 Intermed. Fortran Analysis (13)

250 LOC Protocol
(Modular) 10 Professional Fortran Analysis (14)

Modifications 123-373 LOC
(0 b ject-oriented, 18 Intermed .
Modular & (Students) Pascal Free Recall (15)
All one function) 18 Professional

Time to complete
636 LOC 12 Experts Pascal Modification& (16)
(Modular) Protocol Analysis

Free-recall &
15 LOC 80 Experts 50% Cobol Response time to
(Module) Professional 50% Fortran Com prehension (17)

Questions
Comprehension

200 LOC 40 Experts 50% Cobol Questions & (17)
(Modular) Professional 50% Fortran Protocol Analysis

Understand, Procedural
Corrective, 50-80,000+ LOC 11 Experts (e.g C, C- Protocol Analysis (18)
Adaptation, (Module-Sys) Professional shell,etc)
& Perfective

9

Table 2.3: Experimental Purposes & References

No II Experiment Designed to Measure · I Reference II
(1) If plans are closely tied Simon P. Davies,

to the nature of design The nature and development of programming plans,
experience In : International Journal of Man-Machine Studies, 32(1990),

pp. 461 - 481.
(2) To Identify understanding Francoise Detienne & Elliot Soloway,

process strategies in plan An empirically-derived control structure
vs. unpl an-like situations for the process of program understanding,

In : International Journal of Man-Machine Studies,
33(1990), pp. 323-342.

(3) Do beacons help experts Edward M. Gellenbeck & Curtis R. Cook ,
read & understand large Does Signaling Help Professional Programmers
programs Read and Understand Computer Programs?,

Empirical Studies of Programmers: 4th Workshop , 12/91,
New Brunswick, NJ, pp. 82-98.

(4) If programmers have and Robert S. Rist,
use plans Plans in Programming: Definition, Demonstration,

and Development, In : Empirical Studies of Programmers:
1st Workshop, 1986, Washington , D.C., pp. 28-47.

(5) Examine content of Scott P. Robertson & Chiung-Chen Yu,
plan-based Common cognitive representations of program code
representations across tasks and languages, In : International Journal

of Man-Machine Studies, 33(1990), pp.343-360 .
(6) If code comprehension is S. P. Robertson, E. F. Davis, K. 0 .,

a problem solving & D. Fitz-Randolf, Program Comprehension Beyond,
task . the Line In : INTERACT '90, D. Diaper et a!. (Eds.), Elsevier

Science Publishers B.V. (North-Holland), 1990, pp. 959- 970.
pp. 959 - 970.

(7) If experts encode programs Ben Shneiderman,
as chunks ·of information Exploratory Experiments in Programmer Behavior,

In: International Journal of Computer and Information Sciences,
Vol 5,No. 2, 1976, pp. 123 - 143.

(8) If programmers encode Elliot Soloway & Kate Ehrlich ,
programs in chunks of Empirical Studies of Programming Knowledge,
information In : IEEE Transactions on Software Engineering, September 1984,

Vol. SE-lO,No. 5, pp. 595-609.
(9) To find the types of Elliot Soloway, Jeannine Pinto, Stan Letovsky,

representations that help David Littman & Robin Lampert,
programmers when Designing Documentation To Compensate For Delocalized Plans,
making changes to In : Communications of The ACM, Vol. 31, No. 11,
programs. November 1988, pp . 1259-1267.

(10) If beacons help make Susan Wiedenbeck, The initial stage of
program comprehen- program comprehension, In: International Journal
sion easier. of Man-Machine Studies, 35(1991), pp. 519-540.

(11) Characterize expert Iris Vessey, Expertise in debugging
debugging computer programs:A process analysis , In : International
strategies Journal of Man-Machine Studies, (1985)23, pp.459-494.

(12) If performance of Iris Vessey, On matching programmers '
programmers increase when chunks with program stru.ctures:An empirical
knowledge structures match investigation, In: International Journal
program structure plans of Man-Machine Studies, (1987)27, pp.65-89 .

(13) If programmers understand Stanley Letovsky,
code in Bottom-up and Cognitive Processes in Program Comprehension,
Top-down fashion In : Empirical Studies of Programmers, Eds. Soloway and Iyengar,

@1986, Ablex Publishing Corporation, pp. 58- 79 .
(14) To find a relationship between David C. Littman, Jeannine Pinto, Stanley Letovsky,

understanding strategies & Elliot Soloway, Mental Models and Software Maintenance,
(syst-ematic & opportunistic) In : Empirical Studies of Programmers, Eds. Soloway
& modifying a program & Iyengar, @1986, Ablex Publishing Corporation , pp. 80 - 98.
successfully.

10

.,

Table 2.4: Experimental Purposes & References (continued)

II No II Experiment Designed to Measure · I Reference
(15) Measure the effects of program Robert W . Holt , Deborah A. Boehm-Davis,

structure, content , and & Alan C . Schultz,
ease of modification Mental Representations of Programs for Student
on menta l models and Professional Programmers,

In : Empirical Studies of Programmers:Second Workshop,
Eds. Olson , Sheppard, and Soloway, @1987,
Ablex Publishing Corporation, pp. 33 - 46 .

(16) If programmers use systematic Jurgen Koenemann & Scott P. Robertson,
& opportunistic st rategies in Expert Problem Solving Strategies for Program Comprehension,
program understanding In : Proceedings of CHI'91, March 1991 , pp. 125-130.

(17) If program control-flow Nancy Pennington ,
(Program Model) is understood Stimulus Structures and Mental
before funct ional view Representations in Expert Comprehension of Computer Programs ,
(Situation Model) In : Cognitive Psychology, 19(1987) , pp .295-341.

(18) If programmers understand A. von Mayrhauser & A. Vans,
code according to the From Code Understanding Needs to Reverse Engineering
integrated model Tool Capabilities,

In : Proceedings of the 6th International Workshop on Computer-Aided
Software Engineering (CASE93), Singapore, July 1993, pp . 230 - 239.

When looked at collectively, several opportunities for investigation emerge.

1. Maintenance Tasks

First , these experiments fail to provide a clear picture of comprehension processes

based on specialized maintenance tasks. Several experiments described in the lit-

erature characterize general understanding. However, the objectives in these are

typically focused on cognitive aspects such as differences between novice and ex-

pert programmers or whether the naming conventions and program structure aid

in comprehension. Less than 50% of these experiments are designed to investigate

particular maintenance tasks like debugging or program modification. While mod-

els of the general understanding process play a very important part in furthering

insight into complete understanding of an entire piece of code, they may not be en-

tirely correct for all maintenance tasks. For example, existing literature on general

understanding reports that the most complete understanding occurs when code is

systematically understood [27] . Any systematic approach to understanding requires

that all code is understood in detail. For specific maintenance tasks like "find the

interface error in X", this does not seem feasible for large-size software. Instead,

it would be preferable to identify specialized cognition processes that, because they

have more focus , are more efficient.

11

II

2. Static versus Dynamic Behavior

The literature is also mainly focused on the static properties of programming skills

[15]. For example, stable knowledge consisting of common program components such

as searching and sorting algorithms has been studied, but experiments do not inves-

tigate the actual use and application of this knowledge. Studies of static knowledge

are much more prevalent in the literature than studies of dynamic strategies which

include the use and application of static knowledge.

3. Scalability of experiments

Another major issue is that the results of these experiments may not scale up for

production code. For example, Vessey's study of expert programmers' knowledge

[52] and Pennington's study of mental representations of code [36] used programs

of lengths varying between 67 LOC and 200 LOC. These studies are appropriate

for answering questions about understanding small program segments or very small

programs. However, nothing can be concluded about the interactions of these types

of isolated components for understanding nor whether these activities will play an

important. role in understanding large programs.

4. Theory Building

At the root of the previous three issues lies a common problem: many experiments

are designed to measure specific conditions (i.e. do programmers use plans 1) but

the experimental conjectures (programmers use plans when understanding code they

have never seen before) are not based on a well-defined theory of program compre-

hension. Sheil [43] concludes that "Our primary need at the moment is for a theory of

programming skill that can provide both general guidance for system designers and

specific guidance to psychologists selecting topics for detailed studies. The experi-

mental investigation of such factors as the style of conditional notation is premature

without some theory which gives some account of why they might be significant

factors in programmer behavior." Although this paper was written in 1981, in the

1Plans are elements of knowledge that are stereotypic structures of common programming concepts ,

e.g. bubble sort

12

past 15 years very few theories concerning program comprehension have been ad-

vanced. No theories regarding large scale program comprehension for specialized

maintenance tasks have been developed.

2.2 The Problem Statement

The purpose of this research is to construct a theory of large scale program under-

standing by developing a model of comprehension during maintenance. To accomplish

this, the research focuses on the four areas already discussed:

• Concentration on the understanding needs and processes of specific maintenance

tasks

• Investigation of both Static and Dynamic comprehension behavior

• Providing a comprehension theory for large-scale, production code

• Building a consistent, comprehensive theory

The theory is developed through a study of programmers performing various main-

tenance tasks on production code. The main focus is on building a model of large-scale

program comprehension that incorporates both static and dynamic elements. The starting

point is the Integrated Comprehension Model (described in [62, 63 , 65]) which is composed

of three other models [36, 49]. Both static and dynamic comprehension behaviors are

investigated under the assumptions of the Integrated Comprehension Model. Analysis of

comprehension behaviors lead to the identification of strategies associated with specific

maintenance tasks. Thus, the issues of scalability, static and dynamic behavior, together

with models of program comprehension based on actual maintenance tasks are considered.

2.3 Elements of the Problem

Several aspects of the problem statement are examined in this research. This section

presents them as questions to focus our study:

13

~
.•

• What happens when an engineer assumes responsibility for a piece of code that is

completely new to her/him and tries to understand it? What questions do they

ask and what information is most helpful during understanding? What types of hy-

potheses do they generate and under what conditions are these hypotheses confirmed

or rejected?

• What effect does expertise and amount of prior experience with the code have on

the types of actions taken, hypotheses generation, and how mental representations

are constructed?

• Can we identify a common understanding process? Are there different understanding

processes based on maintenance task, expertise, or amount of prior experience with

the code?

• Can we classify information needs by type of maintenance task? Since programmers

understand code for a specific reason, usually related to maintenance task, the types

of information used may differ between tasks.

2.4 Scope of the Study

The scope of our research is to contribute to a theory of large-scale program un-

derstanding. The starting point was the Integrated Code Comprehension Model we con-

structed, based on existing research. The main contribution of this research is to develop a

theory of program comprehension based on this model. The theory includes several levels

of detail encompassing static and dynamic aspects of code understanding including pro-

cesses, programmer actions, and information needs. Think-aloud reports from 11 subjects

constitute the data set. Although this data set is small, the subjects represent a diverse

population of maintenance tasks and other variables such as expertise and accumulated

knowledge about the specific task. Since it is impossible to control all variables in a study

such as ours, we emphasize its purpose as building a theory through a careful analysis and

evaluation of the data. Further controlled experimentation will be required to properly

validate the theory built based on these observations.

14

Chapter 3

BACKGROUND

3.1 Overview

This chapter describes the major components of code comprehension and presents a

review and evaluation of related code comprehension models. The chapter concludes by

demonstrating how this research adds to the body of knowledge in code comprehension.

3.2 Common Elements of Cognition Models

Program comprehension is a series of processes that use existing knowledge to acquire

new knowledge that ultimately meets the objectives of the code cognition task at hand.

During program comprehension programmers reference both existing and newly acquired

knowledge to build a mental model of how the software works. A mental model is defined

as a programmer's internal representation of the code. How programmers go about under-

standing depends on strategies. A strategy guides the sequence of actions while following

a plan of action. For example, if the goal is to understand a block of code, the strategy

may be to use a systematic approach by reading and understanding each line of code.

While cognition strategies vary, they share the process of formulating hypotheses and then

resolving, revising, or abandoning them. An hypothesis is a theory or assumption about

some aspect of the code.

3.2.1 Knowledge

Programmers must have two types of knowledge, general knowledge that is inde-

pendent of the specific software application they are trying to understand, and software

specific knowledge that represents their current level of understanding of the software

application. During the understanding process they acquire additional software specific

knowledge, but may also need more general knowledge (e. g. how a round-robin algorithm

works). Existing knowledge includes knowledge of programming languages and computing

environments, programming principles, choices specific to the application domain archi-

tecture, algorithms, and possible solution approaches. In cases where the programmer has

worked with the code before and knows something about it, existing knowledge includes

any (partial) mental model of the software.

New knowledge is primarily knowledge about the software product. It is acquired

throughout the code understanding process as the mental model is built . This knowl-

edge relates to functionality, software architecture, how algorithms and objects are imple-

mented, control, and data fiow,etc . New knowledge spans a variety of levels of abstraction

from "this is an operating system" to "variable q is incremented in this loop".

The understanding process matches existing knowledge with newly acquired knowl-

edge about the software until there are enough matches to satisfy the programmer that

she understands the code. The set of matches is the mental model. It can be complete or

incomplete.

3.2.2 Mental Model

The mental model is the programmer's current internal (working) representation of

the software under consideration. It is constructed using a hierarchy of various knowledge

structures including text structures, chunks, and plans. Top level plans specialize into

other plans or chunks. Each chunk in turn, represents a higher level abstraction of other

chunks or text structures.

3.2.2.1 Text Structure

Text structure knowledge includes the program text and its structure. Text-structure

knowledge [26] is acquired through experience and is subsequently stored in long-term

memory. Pennington [36] uses text-structure knowledge to explain control-flow knowledge

for program understanding. Structured programming units form text structure and are

the general organizing structure in her comprehension modeL

Examples of text structure knowledge units are: Control-Primes - Iteration (loop

constructs), sequence, and conditional constructs (eg. if-then-else); Variable definitions;

16

J
Module calling hierarchy; and Module parameter definitions. This Micro-structure of the

program text consists of the actual program statements and their relationships. For ex-

ample, the statement BEGIN signifies the start of a block of code, while a subsequent

IF indicates a conditional control structure for some purpose. The relationship between

these two propositions is that the IF is part of the block initiated by the BEGIN.

3.2.2.2 Chunks

Chunks are knowledge structures consisting of various levels of abstractions of text

structures. Chunks of text-structure, designated as Macro-structures, are identified by a

label and correspond to control-flow organization of the program text [36]. For example,

the micro-structure for a sort consists of all its statements. :The macro-structure is an

abstraction of the block of code and consists only of the label sort. Lower level chunks can

form higher level chunks. Higher level chunks consist of several labels and the control-flow

relationships between them.

3.2.2.3 Plans

Plans are elements of knowledge that support the development and validation of

expectations, interpretations, inferencing, and help programmers stay focused during the

program understanding task. These plans also include causal knowledge which is the actual

flow of information and relationships between parts of programs. Plans are schemas or

fram es which are knowledge structures with two parts: slot-types (or templates) and slot

fillers. Slot-types describe generic objects while slot fillers are customizations that fit

a particular feature. Data structures like lists or trees are examples of slot-types and

specific program fragments are examples of slot-fillers. These structures are linked by

either a Kind-of or an Is-A relationship.

Programming plans can be low level, intermediate level, or high level programming

concepts. Iteration and conditional code segments are low level concepts that can be

plans .or components of plans that exist as a chunk of text structure. Searching, sorting,

and summing algorithms as well as data-structure knowledge including arrays, linked-lists,

trees, and stacks are intermediate level. Intermediate level plans can be aggregated into

17

functional units comprising high level plans. Programming plan knowledge includes roles

for data objects, operations, tests , other plans, and constraints on what can fill the roles.

Domain plans incorporate all knowledge about the problem area except for code and

low-level algorithms. Domain plans apply to objects in the real world. For example, useful

plans when developing a software tool for designing automobiles include schemas related

to the function and appearance of a generic car. Slots for problem domain objects such

as steering wheels, engines, doors, and tires are necessary components of an appropriate

plan. For program understanding, these plans are crucial for understanding program

functionality. Control-flow plans alone are not enough to understand aspects such as causal

relationships among variables and functions. Domain plans are also concerned with the

environment surrounding the software application, the domain specific architecture and

solution alternatives.

In short, the mental model is one plan composed of several sub-plans representing dif-

ferent levels of abstraction. Each plan represents software specific or software independent

information with slots and fillers for other plans or chunks of text structure.

3.2.3 Hypotheses

Letovsky [29] refers to hypotheses as conjectures and defines them as comprehen-

sion activities (actions) that take on the order of seconds or minutes to occur. Letovsky

identified three major types of hypotheses: Why conjectures which hypothesize the pur-

pose of some function or design choice, How conjectures hypothesize about the method

for accomplishing a program goal, and What conjectures which hypothesize about what

something is, for example a variable or function. Additionally, there are degrees of cer-

tainty associated with a conjecture and these vary from uncertain guesses to almost certain

conclusions.

Brooks [9] theorizes that hypotheses are the only drivers of cognition. This theory

states that understanding is complete when the mental model consists entirely of a com-

plete hierarchy of hypotheses. At the top of this hierarchy is the primary hypothesis which

is a high-level description of the program structure. It is necessarily global and non-

specific. Once the primary hypothesis is generated, subsidiary hypotheses that support

the primary hypothesis are generated. This process is continued until the mental model

18

is built. Brooks also considers three reasons hypotheses sometimes fail: code to verify an

hypothesis cannot be found; confusion due to a single piece of code that satisfies different

hypotheses; and code that cannot be explained.

3.2.4 Strategies

A strategy guides the sequence of actions while following a plan to reach a particular

goal. For example, if the goal is to understand a block of code, the strategy may be

to approach the comprehension task systematically by reading and understanding every

single line of code while building a mental representation at higher and higher levels

of abstraction. Programmers who use an opportunistic strategy study code in a more

haphazard fashion. Littman et al [30] found that people who -used a systematic approach

to comprehension were more successful at modifying code (once they understood it) than

programmers who took the opportunistic approach. On the other hand, for large programs

systematic understanding may not be possible.

Strategies also differ in matching programming plans to code. Shallow reasonmg

[48, 49] does so without in-depth analysis. Many experts do this when they recognize

familiar plans. Deep reasoning [48 , 49]looks for causal relationships among procedures or

objects and performs detailed analyses.

Strategies guide understanding mechanisms that produce information. Two such

mechanisms are chunking and cross-referencing [37]. Chunking creates new higher level

abstractions from chunks of lower level structures. As groups of structures are recognized,

labels replace the detail of the lower-level chunks. In this way, lower level structures can

be chunked into larger structures at higher levels of abstraction. For example, a piece of

code may represent a linked-list definition as pointers and data. In an operating system

definition this may be abstracted as a "ready-queue". The section of code that takes a job

from the ready queue, puts it into the running state, monitors elapsed time, and removes

the job after the time quantum has expired may be abstracted with the label "round-

robin scheduler" . The fragments of code for the queue, the timer, and the scheduling are

micro-structures. Continued abstraction of round-robin scheduler, dead-lock resolution,

interprocess communication, process creation/deletion, and process synchronization even-

19

tually leads to the higher level structure definition: "process management of the operating

system".

Cross-referencing relates different levels of abstraction, e. g. a control-flow view and

a functional view by mapping program parts to functional descriptions. For instance , I

can make a statement about functionality once I know that a segment of code performs

process management and know why the code exists. Cross-referencing is thus an integral

part of building a complete mental representation across all levels of abstraction.

If we look at code cognition as a process that formulates hypotheses and then checks

whether they are supported or refuted and revises them where necessary, then hypotheses

can be seen as programmer-defined goals. Programmers are trying to match these goals.

Goals exist at all levels of abstraction, like plans and schemas. The essence of an effective

and efficient strategy is to keep number of goals manageable while increasing understanding

incrementally.

3.2.5 Facilitating Knowledge Acquisition

3.2.5.1 Beacons

Beacons are cues that index into knowledge. Making them visible facilitates code

understanding. Beacons can be text or a component of other knowledge. For exam-

ple, a swap statement inside a loop or a procedure called Sort can act as a beacon for

a sorting function. Wiedenbeck [67] used short Pascal programs in a recall experiment

(i.e. programmers had to recall code they had previously seen, verbatim) designed to

study whether programmers actually use beacons during program comprehension activi-

ties. Experienced programmers were able to recall beacon lines much better than novices.

Beacons are useful for gaining a high level understanding in processes such as top-down

comprehension.

Gellenbeck & Cook [22] investigated the role of mnemonic procedure and variable

names as beacons in understanding code. While the study confirmed the usefulness of

beacons in general, no useful conclusions regarding the strength of variable names and

procedure names could be shown.

20

The Book Paradigm developed by Oman and Curtis [33, 34] is a tool that highlights

beacons by using typographic arrangements of source code. Experimental results indicate

that programmers can benefit substantially using source code that is reformatted with the

book paradigm technique.

3.2.5.2 Rules of discourse

Rules of discourse are conventions in programming, similar to dialogue rules in con-

versation. Examples are coding standards, common forms of algorithm implementations,

expected use of data structures, mnemonic naming, etc. Rules of discourse set expecta-

tions of programmers. Programmers retrieve programming plans from long term memory

using these expectations. Soloway and Ehrlich [48] showed by a recall experiment that

rules of discourse had a significant effect on the ability of expert programmers to compre-

hend code. The experiment required programmers to understand one program that was

written using plan-like code and a second program that used unplan-like code. Plan-like

code is defined as code fragments that match expert programming plans. They were able

to show that the programmers performed significantly better on the plan-like code than

on the unplan-like code. The performance of these experts dropped to that of novices

when attempting to understand the unplan-like code since they were unable to match this

code to any programming plans stored in long-term memory. In practice this means that

unconventional algorithms and programming styles are much harder to understand, even

for experts.

3.2.6 Expert Characteristics

The level of expertise in a given domain greatly affects the efficiency and the success

of a programmer during program understanding. Experts tend to show the following

characteristics:

• Experts organize knowledge structures by functional characteristics of the domain

in which they are experts. Knowledge possessed by novices is typically organized by

surface features of the problem. For instance, novices may have knowledge about

a particular program organized according to the program syntax. An example of a

functional category is algorithms. Experts may organize knowledge about programs

21

in terms of the algorithms applied rather than the syntax used to implement the

program, [25].

• Experts have efficiently organized specialized schemas developed through experi-

ence. A high-level design study conducted by Guindon, [25] , indicated that experts

not only used general problem solving strategies such as divide-and-conquer, but

also more specialized design schemas. These schemas differed in granularity and

seemed to be abstracted from previously designed software systems. The schemas

had comparable structures, but different problem domains.

• Specialized schemas contribute to efficient problem decomposition and comprehen-

sion, [25] . For problems that match specialized schemas, top-down comprehension

becomes feasible.

• Vessey [53], conducted several debugging experiments and found that experts are

flexible in approaches to problem comprehension. In addition, experts are not con-

strained by generated hypotheses. They are able to let go of questionable hypotheses

and assumptions more easily. Experts tend to generate a breadth-first view of the

program a:nd then refine hypotheses as more information becomes available.

22

3.3 Models

This section contains a description of five models of program comprehension that are

directly related to the research proposed. A discussion of the similarities between these

five lead into an introduction of the Integrated Code Comprehension Model.

3.3.1 Letovsky Model

Letovsky's comprehension model, [29], has three main components - a knowledge

base, a mental model (internal representation) , and an assimilation process . This model

is a very high level cognitive model of program understanding. The knowledge base consists

of programming expertise, problem domain knowledge, rules of discourse, plans (similar

to Pennington's text-structure knowledge and plan knowledge}, and goals.

The mental model consists of three layers - a specification, an implementation, and

an annotation layer. The specification layer contains a complete characterization of the

program goals. This is also the highest level of abstraction of the program. The imple-

mentation layer contains the lowest level abstraction with data structures and functions

as entities. The annotation layer ties each goal in the specification layer to it 's realization

in the implementation layer.

The assimilation process can occur in either a top-down or bottom-up fashion. It is

opportunistic in that the programmer proceeds in a way she feels yields the highest return

in the form of knowledge gain. Understanding proceeds by matching code, documents,

etc. to elements from the knowledge base. The sole purpose of this matching process is to

contribute to one of the three layers constructed in the mental representation. During the

understanding process there may be problems connecting specification and implementation

layers when it is not immediately known how to implement some function. The dangling

purpose unit models these unresolved links between the specification and implementation

layers. Figure 3.1 graphically represents Letovsky's model.

23

Model of Comprehension - Letovsky

Programming Expertise

plans
Rules of Discourse

···························-··············· • • • • •
I

Internal Representation - Mental Representation
Layers

1. Specification (Goals)
2. Implementation
3. Annotation (lndlcallon of how each goal in Speclflcallon layer Is

Accomplished and by which parts of the Implementation layer.)

• • • • I • • • I
•••

External
Representations

Documentation
Code
Manuals

a)
"0
0

:::E
l=l
0
rJl
l=l
Q)

..0
Q)
~

0.. s
0

C) -.::!'
I N

>.
...!<:
rJl > 0 ...,
Q)

.._:)

.......
M

Q) ...
;::l
bO

if:

3.3.2 Shneiderman Model

The Shneiderman comprehension model is shown in Figure 3.2 [45]. Program com-

prehension involves recoding the program in short-term memory via a chunking process

into an internal semantic representation using working memory. These internal semantics

consist of different levels of abstraction of the program. At the top are high-level concepts

like program goals. At the lowest levels are details such as the algorithms used to achieve

program goals.

Long-term memory helps during internal semantics construction. Long-term mem-

ory is a knowledge base with semantic and syntactic knowledge. Syntactic knowledge

is programming language dependent while semantic knowledge consists of general pro-

gramming knowledge independent of any specific programming language. Like working

memory, semantic knowledge in long-term memory is multi-leveled and incorporates high-

level concepts and low-level details. Design works forward from the problem statement

to the program while program understanding starts with the program and works to the

problem statement.

25

Model of Comprehension - Shneiderman

External
Represen-

tations
Code

Problem
Statement

His:!h-Level Concepts
Documents

Low-Level Details
Semantic Knowledge

Long-tenn Memory

r------------- ------------------ ------------,
I k . I 1 Wor tng Memory High-Level Concepts 1
I I
I I
I I
I I
I I
I I
I I
I Low-Level Details I
I I t ___ j

-Q)
"d
0 ::;s
l=l
0
tr.l
l=l
Q)

...c::
Q) ,...
0. s
0

C)
I ~

l=l C"l
ell s ,...
Q)

"d
·~
l=l

...c:: en
c..i
cv-:i
Q) ,...
;:::l
bO

~

3.3.3 Brooks Model

Brooks, [9] , defines program comprehension as the reconstruction of the domain

knowledge used by the initial developer. Domain knowledge is knowledge about specific

domains such as compilers or operating systems. In this theory, understanding proceeds

by recreating the mappings from the problem domain through several intermediate do-

mains into the programming domain. The problem domain or application domain consists

of problems in the real world.

An example of a problem in the application domain might be the maintaining of ap-

propriate levels of inventory in order to keep back-orders to a minimum and at the same

time minimizing exposure to loss due to obsolete inventory. The objects are inventories

whose levels must be closely monitored to meet the constraints of the problem. These are

physical entities that have properties such as size, cost, and quantity. In order to construct

a program to solve this problem, these objects and their properties must be encoded for

use by a computer. Once the physical objects are characterized, intermediate knowledge

domains are required. The inventory can be assigned part numbers. Perhaps cost is de-

termined not only by actual cost but also overhead like storage. We need knowledge of

accounting practices to recognize the appropriate overhead calculations. Once the equa-

tions are identified, we need knowledge of program syntax to implement the equations in

a programming language. This example used at least four different knowledge domains to

reach the programming domain: inventories, accounting, mathematics, and programming

languages.

Knowledge within each domain consists of details about the objects in the domain,

the set of operations allowed on the objects, and the order in which the operations are

allowed. There is also inter-domain knowledge that describes the relationships between

objects in different, but closely related domains such as operating systems in general and

UNIX in particular.

The mental model is built through a top-down process that successively refines hy-

potheses and auxiliary hypotheses. Hypotheses pertain to specific domains or connections

between knowledge domains. For instance, an hypothesis may state that a particular

equation (math domain) expresses cost (accounting domain). Hypotheses can be gen-

erated through the recognition of beacons. For example, a procedure name FCFS may

27

generate the hypothesis that a first-come-first-serve algorithm is used for process schedul-

ing. Hypothesis generation drives domain knowledge retrieval. Hypotheses are iteratively

refined, passing through several knowledge domains, until they can be matched to specific

code in the program or some related document.

Figure 3.3 depicts this model. Knowledge, shown as triangles, can be used directly

for hypothesis generation in the mental model or it can be matched (mapped) from one

domain into another. Another cognitive process verifies that internal representations re-

flect knowledge contained in external representations such as code, design documents, or

requirements specifications. Beacons are the main vehicle for this verification and can be

used to look at either the internal or external representations for expected information.

Verification is also hypothesis driven in that once an hypothesis is generated the external

(internal) representations can be searched to support the hypothesis.

28

• . ,

, ...
I
I
I
I
I
I
I

Model of Comprehension - Brooks

External Representation
Requirements Documentatlo

Miscellaneous Documents
in Problem Domain

External Representation
Program Code
User's Manuals

Maintenance Manuals

External Representation

Preliminary & Detailed
Design Documents

····················-~·-···

Internal Representation - Mental Model

Hypothesis & Subgoals

......
I
I
I
I
I
I
I

~--···

-Q)
"0
0 ::;s
$:::1
0
Cf.l
>=l
Q)

...c=
Q)
1-4
0. s
0

0') u C"'
I

Cf.l
~
0
0
1-4

p:)

~
M

Q)
1-4
::l
b.O

if:

3.3.4 Top-Down - Soloway & Ehrlich

Top Down program understanding [48, 49] typically happens when the code or type

of code is familiar. Suppose an expert whose specialty is operating systems, is asked to

maintain an operating system she has never before seen. As an expert , she can immediately

decompose the new system into elements she knows must be implemented in the code:

a process manager, a file manager, an I/0 manager, and a memory manager. Each of

these can be decomposed e.g, process management includes interprocess communication

and process scheduling. Process scheduling can be implemented through one of several

scheduling algorithms: e.g. round robin, shortest job first , or priority scheduling. The

programmer may continue in this top down fashion until she recognizes a block of code,

in this case, the precise process scheduling algorithm. Notice. that it is not necessary to

re-learn this algorithm line by line. Instead, the engineer need only recognize that the

appropriate code exists. Theoretically, new code could be understood entirely in a top

down manner if the programmer had already mastered similar code and the new code was

structured in exactly the same way.

This model -uses three types of plans: Strategic, Tactical, and Implementation plans.

Strategic Plans specify a global plan used in a program or an algorithm and specify ac-

tions that are language independent. These are the highest-level plans available during

comprehension. An example of a strategic plan is the process state model for operating

systems. These plans say nothing about the actual constructs used for implementation

and contain no lower level detail. Strategic plans can be further decomposed into language

independent tactical plans.

Tactical plans are local plans for solving a problem. These plans contain language

independent specifications of algorithms. For an operating system, tactical plans might

include cpu scheduling algorithms for the process state model, such as FCFS (First-Come

First-Served) , Shortest-Job-First , Priority scheduling, or Round-Robin. These knowledge

structures may include abstract data-structures, such as queues to keep track of which

process to schedule next. The tactical plans composed of these algorithm descriptions are

linked to the process state model strategic plan. Tactical plans cannot be used directly

for understanding specific code since they are not tied to particular languages. Tactical

30

plans can include the abstract data types or objects. For instance, a queue may be used

in the FCFS algorithm.

Implementation plans are language dependent and are used to implement tactical

plans. These plans contain actual code fragments acquired through experience. A First-

Come First-Served function written in C is an example of an implementation plan. A

queue for FCFS can be implemented as a linked list or array structure. These represent

two different implementation plans for the same tactical plan.

A mental model is constructed during top down comprehension and consists of a

hierarchy of goals and plans. Rules of discourse and beacons facilitate decomposition of

goals into plans and plans into lower-level plans. Typically, a shallow reasoning strategy

is used to build the connections between the hierarchical components.

Figure 3.4 shows the model's three major components: 1) The triangles represent

knowledge (programming plans or rules of discourse). 2) The diamond represents the un-

derstanding process which is defined as a matching of documents to programming plans.

3) The rectangles illustrate internal or external representations of the program. Under-

standing matches external representations to programming plans using rules of discourse

for help in selecting plans (by setting expectations). Once a match is complete, the in-

ternal representation is updated to reflect the newly acquired knowledge. These updated

mental representations are subsequently stored as new plans.

Comprehension begins with a high-level goal and proceeds with the generation of

detailed sub-goals necessary to achieve the higher level goals. The programmer draws on

previously stored knowledge (plans) and programming rules of discourse in an attempt

to satisfy the goals. Program documentation and code serve as the tools for invocation

of implementation, strategic, or tactical plans, depending on the focus of the current

mental representation. In addition to building the current mental representation, top

down comprehension also facilitates the building of new programming plans which are in

turn stored in long term memory for future use.

31

Model of Comprehension - Soloway & Ehrlich

External
Representations

Documents
Requlremens Doc.
Design Document
Code
User Manuals
Reference Manuals
Maintenance

Manuals
Misc. Related documents

B: Rules of Discourse: (subset)
- Vars updated same way as

Initialized
-No dead code
-A test for a condition means

the condition must be
potentially true

- Don"t do double duty with •••••••• -~·
code In a non-obvious way :

- An IF Is used when a 1
Internal Representation • • •

Programming
Plans

(Schemas)

[UCbUDk~

A. Plans:

- Strategic: Global Strategies

-Tactical: Local Strategies

-Implementation: Language
Dependent statement body Is guaranteed 1

to execute only once: a 1
while Is used when the
statement may need to be
executed repeatedly.

Current Mental Representation •
~----------------~ • • • •

of Program
(Plans I Schemas)

• • • • •••••••••••••••••••••••••

.......
Q)

'"0
0

::;8
~ .s en
~
Q)

...s::
Q)
1-<
0.
8
0 u
I

...s::

.~ C"'
ll

M

l=il
~

~
~
0
0
U)

~
1:"'"5

Q)
1-<
;:::l
bD

iZ

I
t .· .-

3.3.5 Pennington's Model- Bottom-Up Comprehension

Pennington's [36 , 37] Bottom-Up Comprehension Model consists of two models: a

Program Model which builds a mental representation of the actual code and a Situation

Model which is an abstraction of the Program Model.

3.3.5.1 The Program Model

When code to be understood is completely new to the programmer Pennington

[36 , 37], found that the first mental representation programmers build is a control flow

abstraction of the program called the program model. This representation is built from

the bottom up using beacons to identify elementary blocks of code (control primes) in the

program. Pennington uses text structure and programming plan knowledge to explain the

development of a program model. For people trying to understand programs, this text-

structure knowledge is comprised of the control primes used to build the program model.

Programming plan knowledge, consisting of more involved programming concepts, is used

to exploit existing knowledge during the understanding task and to infer new plans for

storage in long-term memory. Examples of plan knowledge structures from the Operating

Systems domain are memory management page replacement algorithms including LRU

(Least Recently Used) and NRU (Not Recently Used). Data structure knowledge may

contain the implementation of a FIFO queue.

The mental representation is a current internal (working) description of program

text and represents understanding. Two different representations are developed during

comprehension - a Program Model and a Situation Model. The program model may be

developed before the situation model. Text-structure and programming plan knowledge

play a critical role in the development of the program model.

The program model is created by chunking micro-structures into macro-structures

and by cross-referencing. Cross referencing allows modifications to the program model

using connections into (from the situation model) and out of (to the situation model) the

program model representation.

Figure 3.5 is a graphical representation of Pennington's model. The right half illus-

trates the process of program model building while the left half describes situation model

construction. Text-structure knowledge and any external representations (code, design

33

documents, etc.) are inputs to the comprehension process. Beacons can influence invoca-

tion of a particular schema (e.g. a swap operation causes the programmer to recall sorting

functions). Code statements and the interrelationships among them are organized into a

micro-structure. Micro-structures are chunked into macro-structures. These chunks are

stored in long-term memory and subsequently used in the comprehension process to build

even larger chunks. Once a control-flow mental representation exists, the program model

is established.

3.3.5.2 The Situation Model

Once the program model representation exists, Pennington, [36], showed that a sit-

uation model is developed. This representation, also built from the bottom up, uses the

program model to create a data-flow /functional abstraction. Knowledge of real-world do-

mains is required. For the operating systems example, this knowledge includes facts about

generic operating system structure and functionality. Construction of the situation model

is complete once the program goal is reached.

Domain Plan Know ledge is used to derive a mental representation of the code in terms

of real-world objects and organized as a functional hierarchy in the problem domain lan-

guage. For example, the situation model describes the actual code "pcboards = pcboards

- sold;" as "reducing the inventory by the number of pc boards sold. This is done to keep

an accurate count of inventory". In the same way that the program model consists of

a hierarchy of chunked components, the situation model represents chunked plan knowl-

edge. Lower-order plan knowledge can be chunked into higher-order plan knowledge. "The

memory manager, the process manager, the secondary storage manager, the I/0 system,

the file manager, the protection system, networking, and the shell together define the op-

erating system" . This is the highest-order plan and it is comprised of lower-order plans

containing knowledge about each component.

The mechanisms used for situation model building are the same as those used for

program model building: cross-referencing and chunking. The only difference is that the

knowledge involved is domain plan knowledge, as opposed to program model text-structure

and plan knowledge.

34

Again, beacons can play an important part in determining which plans are used.

The matching process takes information from the program model and builds hypothesized

higher-order plans. These new plans are stored in long-term memory and are also chun-

ked into higher-order plans. The situation model as a mental representation contains a

functional and data-flow abstraction of the program.

Pennington's model is quite flexible . Information flows between the program and situ-

ation models illustrate the program model is modifiable after situation model construction

begins. A cross reference map allows a direct mapping from procedural, statement level

representations to a functional , abstract view of the program. Higher-order plans can

cause a switch to program model building, either directly modifying the text-base or as

input to the program model comprehension process.

35

Model of Comprehension - Pennington

External Representations I / '= '\. I External Representation
Program Code I Z . -· . '\. Documents Code

Other Documents

Beacons

Evoked
Schema

Beacons

··········• r·······~ 1 ••••••••••• r·······~ : Mental I 1 TEXT-BASE I : Mental I I Situation I
. I I (Final Mental I I 1 Model I

I RepresentatiOn 1 Representation) 1 I Representation 1 1
I I I I I I I (Final Mental 1
I 1 Program Model 1 ~ I 1 Representation) 1 f7:\ I I I

\!Y 1 I Procedural/ 1 1 Higher-Order plans 1 1 Functional & 1
I 1 Control-Flow I I 1 Data- Flow VIew I

Macro--Structure 1 .. • • • • • • • I ~ 1 • • • • • • 1
I
I - . @I
I

Micro-Structure 1
I
I ••••••••••

A. Macre>-Structure : Chunked lines of
text organized by Control Primes

B. Micro-structure: Propositions & Interrelations among propositions.

C. Text-structure Knowledge: Control Primes . program structure. syntax.
programming conventionsControl Sequence knowledge (sequence. Iteration. con

Hypothesis/
Subgoals

• ••••••••

D. Plan Knowledge

- Design Component..

- Problem Domain
Knowledge

-Q)

"0
0
~
l=l
.9
VJ
l=l
Q)

,..q
Q)
1-<
0. s
0

C)
((.0

l=l
M

0,
b.O
l=l ·a
l=l
Q) p..

1.1?
C"'5
Q)
1-<
;::l
b.O
iZ

3.3.6 Evaluation of Models

The five models have several commonalities. At the highest level of generality, all five

accommodate 1). a mental representation of the code, 2). a body of knowledge (knowledge

base) stored in long-term memory, and 3). a process for incorporating the knowledge in

long-term memory with external information (such as code) into a mental representation.

Each differs in the amount of detail for each of these three main components.

Letovsky's model is the most general code comprehension model. This model focuses

mainly on the form of the mental representation. There are no details on how the as-

similation process works or how knowledge is incorporated into the mental representation

beyond the statement that it occurs. However, knowledge types are more detailed and

coincide with Soloway & Ehrlich's model. Shneiderman's model is more detailed because

it includes a hierarchical organization of knowledge and a separation between semantic

and syntactic knowledge. Similar to Letovsky, the focus is on the form of the mental

representation, but few details are provided on how construction is done.

Brooks' model is different from the other models in that all changes to the current

mental representation occur as the result of an hypothesis. The mental model (for pro-

gram understanding) is constructed in one direction only, from the problem domain to

the program domain. The knowledge structures used are not well defined. Although hy-

potheses are important drivers of cognition, there are other ways of updating the current

mental representations, for example strategy-driven (e.g. cross-referencing or system-

atic/opportunistic). Also, if understanding occurred in the direction indicated, it would

not be possible to switch from one level of abstraction to another going in an opposite

direction. For example, suppose an engineer was currently trying to understand a piece

of code someone else wrote. This implies she will start building her mental representation

from the right-hand side of Figure 3.3. If at some point she makes a connection to the

domain, there is no way to jump back to the right-hand side of the figure. The Brooks'

model is similar to the Soloway and Ehrlich model in that the mental representation is

constructed top-down through finer levels of details.

Pennington's model is more detailed and includes specific descriptions of the processes

and knowledge necessary to build two thirds of the entire mental model. It accounts for

the types and composition of knowledge needed to construct most of the mental repre-

37

sentation as well as the form of the mental representation. It also contains mechanisms

for abstraction. The major drawback of this model is the lack of higher level knowledge

structures such as design or application domain knowledge.

Soloway and Ehrlich's model (also known as the domain model) emphasizes the high-

est level abstractions in the mental model. One aspect that sets this model apart from

the others is the top-down development of the mental model with the assumption that the

knowledge it uses has been previously acquired. By itself, this model does not take into

account situations when code is novel and the programmer has no experience to use as a

foundation for program comprehension.

Each of these models represent important aspects of code comprehension and many

overlap in characteristics. For example, Brooks, Letovsky, and Shneiderman all focus

on hierarchical layers in the mental representations. Brooks, Letovsky, and Soloway &

Ehrlich use a form of top-down program comprehension while Pennington & Letovsky

use a bottom-up approach to code understanding. Shneiderman's model uses both top-

down and bottom-up understanding depending on whether the programmer understands

the code or develops it. All five models use a matching process between what is already

known (knowledge structures) and the artifact under study. No one model accounts for

all the behavior we see when programmers understand unfamiliar code. However, we can

take the best of these models and combine them into an Integrated comprehension model

that not only represents relevant portions of the individual models but also behaviors not

found in them, e.g. when a programmer switches between top-down and bottom-up code

comprehension.

3.4 Integrated Model

von Mayrhauser's and Vans' integrated code comprehension model [62 , 63] consists

of four major components, (1.) Top-Down model, (2.) Situation model, (3.) Program

model, and (4.) Knowledge base. The first three reflect comprehension processes. The

fourth is necessary for successfully building the other three. Each component represents

both the internal representation of the program being understood (or short-term memory)

as well as a strategy used to build this internal representation. The knowledge base either

38

Table 3.1: Code Comprehension Model - Levels of Detail
Maintenance Models Level 1 Level 2 Level 3
Task
Adapti ve Top-Down Processes Plans Beacons
Perfective Program Model Hypotheses Rules of Discourse Text Structure
Corrective Situat ion Model Strategies Chunks Action Types
Reuse Episodes
Code Leverage

furnishes the process with information related to the comprehension task or stores any

new and inferred knowledge.

The integrated model combines the top-down understanding of [49] with the bottom-

up understanding of [36] , recognizing that for large systems a combination of approaches

to understanding becomes necessary. Our observations showed that programmers switch

between all three comprehension models [62 , 63].

Any of the three sub-models may become active at any time during the comprehension

process. For example, during program model construction a programmer may recognize

a beacon indicating a common task such as sorting. This leads to the hypothesis that

the code sorts ·something, causing a jump to the top down model. The programmer

then generates sub-goals (e.g. I need to find out whether the sort is in ascending or

descending order) and searches the code for clues to support these sub-goals. If, during

the search, he finds a section of unrecognized code, he may jump back to program model

building. Structures built by any of the three model components are accessible by any

other, however, each model component has its own preferred types of knowledge.

3.5 Levels of the Integrated Model

The Integrated Code Comprehension Model has many levels that are not apparent in

Figure 3.6 because the figure only represents connections between the component models

and the knowledge they use. There are several levels of detail supporting each component

in the integrated model as shown in Table 3.1.

Table 3.1 contains three levels of detail in order of decreasing abstraction. Each

level contains elements of code comprehension which may be composed of sequences or

39

Short-
Term

Memory

Micro-
Structure

Program
Model

Top-Down

Schema (Plan)
Current Mental
Representation

of Program

A. Strategic Plans

B. Tactical Plans

A. Text--Structure
Knowledge

1. Control Primes

B. Plan Knowledge
1. Algorithms
2. Control Sequence
3. Data-Structures
4. Data- Flow (slices)
5. Syntax

Problem Domain

Knowledge

Functional Knowledge

Figure 3.6: Integrated Code Comprehension Model

40

Short-
Term

Memory

Low-Leve
Mappings

High

Situation
Model

frequencies of elements in the next lower level. Components within a level may also be

related.

At level 3 we find the lowest level of detail which includes action types, beacons, and

text structure. Action types classify programmer activities, both implicit and explicit

during a specific maintenance task. Examples of action types include "asking a question"

and "generating an hypothesis" . Action types are important because they define episodes

which are found at the next higher level (level 2) in the table . Episodes are composed of

sequences of action types. At level 2, chunks are composed of sequences of level 3 text

structure. Beacons evoke higher level plans and rules of discourse.

At level 2, sequences of episodes aggregate to form higher-level Processes at level 1.

Plans, rules of discourse, and chunks govern strategies at level 1. Plans are related to

rules of discourse since a plan may be evoked as a consequence of some rule. Plans are

also related chunks because plans can include chunks in the definition of plans. Rules of

discourse and previously evoked plans may trigger level 1 hypotheses.

At the highest level are the integrated model components. Processes, hypotheses, and

strategies are the highest level dynamic elements found during top-down, situation, and

program model construction.

3.6 Research Grid

Several levels of detail comprising a code comprehension model have been identified

above. The experiments shown in Table 2.2 can be reorganized according to these lev-

els. Table 3.2 shows the elements that have been studied, those that do not have much

empirical research, or those that have been ignored.

Table 3.2 classifies experiments related to code comprehension according to these

levels of detail. The columns indicate several characteristics of the experiments. For

code size, small applies to programs of less than 900 lines of code (LOC). Medium size

code refers to code between 900 and 40,000 LOC. Large scale code consists of more than

40,000 LOC. The language columns correspond to legacy languages such as Cobol, Fortran,

Basic, and Pascal. The UNIX/C/C++ language column applies to the C/C++ languages

and environment programs and libraries like Make, lint, Motif, lexjyacc, awk, perl, etc.

Subjects are categorized as novice, graduate students, or professional programmers. The

41

Table 3 2· Research Grid ..
Level Size: Size: Size: Language: Language: Subject : Subject: Subject:

Small Medium Large Legacy UNIX/C Novice Grad Profes-
/C++ Student sional

Models
Top-Down (3]
Situation [36] [36J [36]
Program [36] [36J [36J
Other [53],[29] [53),[8], [53] [53),[8],

(29] [29]
Level 1
Processes
Hypotheses [29],[53] [29J,[53J [53] [29J,[53J
Strategies [18J.l27j, [18J.l27j, l47J [18J,[47J [27).l30j,

(30],(37], (30],(37], [37],(47],
(47] ,[50] (47],(50] (50]

Level 2
Plans [16],[17], (16] ,[17], (16],[42], [16],[1 7] , [16],[19]

(42],(46], (42],(46], (46],(48] [42],(48]
(48] [48]

Rules of [48J [48] [48] [48J
Discourse
Chunks [2J,_l7J, \~~FJ, l2J [2J,_l7],

[52] [52] [52]
Episodes [53] [53] [53] [53]
Level 3
Beacons (22],[67] (23],(33], [22],(33], (23],(33], (67] [22],(33], [23]

(34] (34],(67] (34] [34],[67]
Text [36] [36J [36]
Structures
Actions [29] [29J [29]

rows reflect the components and levels of understanding from Table 3.1. Each cell in

the table represents the experiments that have investigated the row component with the

column attribute.

Table 3.2 illustrates where research is clearly lacking. No experiments for any of the

components have been investigated for large-scale code. Just two experiments have even

used medium-sized code. The C language has been used in only two experiments while

none used C/ C++ programming environments or tools. The majority of the studies in-

vestigate strategies, beacons, or plans. There are no studies of processes, and only one

study of rules of discourse, actions, and program comprehension episodes. Similarly, one

study of each major comprehension model has been done. Thus, it is easy to see that a

great deal of research is still needed. The current research focuses on professional pro-

grammers working on large-scale code using contemporary languages and environments.

The two columns with the largest number of empty fields are (Size: Large) and (Language:

UNIX/C/ C++).

42

Experimental results of small scale code have not been shown to scale up for produc-

tion code. Results of experiments on large-scale code comprehension will provide better

support for tools, maintenance guidelines and processes, and documentation for more

efficient and effective software maintenance.

This chapter explained what code comprehension is and that studies of production

code have been ignored. To address this, we have designed a study of large-scale code

comprehension that includes the use of UNIX, C, and C++. The next chapter, Research

Design, contains a description of how we accomplished this research.

43

Chapter 4

RESEARCH DESIGN

This chapter discusses the design of the our study including a description of the sub-

jects who participated, a detailed list of each of the study objectives, and an explanation

of the data analysis used in determining the results.

4.1 Experimental Design

The purpose of this study is to derive a theory for large-scale code comprehension

using the Integrated Comprehension Model. Several observations of professional mainte-

nance engineers doing various maintenance tasks have been collected. Each observation

involved a progr.amming session whereby the participants were asked to think aloud while

working on understanding code. We audio- and video-taped each observation as a thinking

aloud report. Sessions were typically two hours long. As this is not enough to understand

a large scale software product, we found participants who had varying degrees of prior

experience with the code. This allows the widest degree of coverage over the code com-

prehension process.

Eleven subjects have been video- and/or audio-taped. The tapes were then tran-

scribed for analysis. The following list gives an identification code for each subject, a brief

description of the task, and the subject 's expertise. These codes are used in the rest of

this document to identify individual subjects.

• ADl : Port Program Across Platforms - Domain/Language Expert

• AD2 : Add Functionality, Prototype Assessment - Domain Expert, Language Novice

• Cl : Fix Reported Bug - Domain Novice, Language Expert

• C2 : Understand Bug - Domain Expert , Language Novice

• C3 : Fix Reported Bug - Domain Expert , Language Novice

• C4 : Track Down Bug - Domain Expert, Language Novice

• EN1 : Add Functionality - Domain/Language Expert

• EN2 : Track Down Bugs and Finish Adding Functionality - Domain/Language

Expert

• G 1: Program General Understanding - Domain/Language Expert

• G2: General Understanding, One Module- Domain/Language Expert

• Ll: Understand Program for Leverage - Domain Novice, Language Expert

Table 4.1 defines three major variables for our study. The columns represent expertise,

the rows represent the amount of accumulated knowledge subjects had acquired prior to

the start of each observation. Although there are six rows containing descriptions of

varying degrees of accumulated knowledge , these categories have been collapsed into three

general groups: .Little, Some, and Significant, and are indicated by italics in the table.

The type of maintenance task is listed as an entry in the matrix. Each square represents

specific observations that are characterized by the row, column, and maintenance task.

As the matrix shows (Table 4.1) these eleven subjects represent good (albeit not per-

fect) coverage in terms of expertise and varying degrees of knowledge about the software.

Similar to [24], we face three issues in determining the validity of generalizing results

from our data to other maintenance situations. These issues deal with maintenance task,

sampling of participants, and external validity of the experimental situation.

1. Task. The code the participants tried to understand and the specific assignment per-

formed were representative of the maintenance tasks encountered in industry. These tasks

include debugging, enhancements, code adaptations, code leveraging, and general under-

standing. The average size of the maintainable code is between 50,000 and 80,000 LOC

with a few examples much larger than 80,000 LOC. While the participants were not all

doing identical tasks, they were all trying to understand production code to maintain it.

45

Table 4.1: Programming Sessions - All Maintenance Tasks
Expertise=* Language
Accumulated Language Domain & Domain
Know ledge,U. Expert Expert Expert
Never Seen C2:
Before Understand
(Little) Bug
File C3:Fix Gl :Program:
Structure Reported General
Call Graph Bug Understand
(Little) EN2:Add

Function
Requirement Cl:Fix G2:Under-
& Design Reported stand one
Documents Bug Module
(Some)
Worked some Ll:Leverage C4:Track
with code, Small Down Bug
style familiar Program
(Som e)
Prior code AD2:Add ADl:Port
enhancement, Function, Program
debugging, Prototype across
adaptations Assess Platforms
(Significant)
Worked with ENl:Add
code several Function-
years ality
(Significant)

As we begin to understand whether and how cognition differs, we can move to more spe-

cialized tasks to explore each situation further.

2. Sampling of participants. How representative are our participants of the larger popula-

tion of software engineers who work with existing code? There is no reliable answer given

the current maturity of the field. We attempted to sample a broad range of maintenance

tasks, prior work with the code, and programmer experience in domain and language. We

make no claim that these protocols represent the full range of cognition behavior of the

population of software maintenance engineers. It is more likely that the description of this

population will need to be assembled from many (future) studies similar to ours.

46

3. External validity. This concerns the degree to which the conditions used for collecting

observational data are applicable to actual maintenance tasks. Code cognition for mainte-

nance purposes takes more than two hours. We compensated for lack of task completeness

by including different amounts of prior preparation in our study. This allows us to observe

similar tasks at various stages of completion. All tasks represented actual work assign-

ments. Together, actual tasks observed at different phases strengthen the generalizability

of our findings.

4.2 Program Comprehension Study Objectives

1. Action Types - Level 3

What are the typical programmer actions executed during maintenance? Do com-

mon actions differ depending on the particular maintenance task? What are the most

necessary actions for building the top-down, situation, or program mental model?

2. Episodes - Level 2

Are there repeated action sequences (episodes). How often do they occur? How

similar are they? Which types of episodes occur most frequently? What information

does the engineer need to complete an episode? Do episodes represent understanding

at only one level of abstraction (i.e. top-down, situation, program model levels) or

do they span all levels?

3. Processes - Level 1

Aggregate Processes - If we successfully find episodes, how will they be used in higher

level understanding? Are there repeated episode sequences (aggregate processes)?

How similar are they? What triggers the end of one episode and the beginning of

another in a sequence? Are some of these triggers more common than others?

Session-Level Processes - Once we find the aggregate processes, how will they help

in defining the overall maintenance task process (session-level)? Are there repeated

sequences of aggregate processes? What distinguishes a switch from one aggregate

process and another in the sequence? If we find one process for each type of main-

tenance task, what are their similarities?

47

4. Hypotheses - Level 1

How are hypotheses used in the understanding process? Are there common types of

hypotheses? How do they facilitate model construction?

5. The role of Model Components in the Integrated Model - Level 1

Do expert maintenance engineers frequently switch between all model components

(i.e. understanding is built at all levels of abstraction simultaneously)? Is there

a difference in working at levels of abstraction based on the size of the code un-

der consideration? Is there a difference between abstraction level focus based on

maintenance task?

6. Information Needs and Core Competencies. Once we find answers to the above

questions concerning actions, processes, and hypotheses, can we organize the infor-

mation engineers need during understanding to support cognition? Can we define

tool capabilities that help support the way programmers actually understand code?

Can we define core competencies that reflect the minimum knowledge necessary to

maintain large scale code?

4.3 Protocol Analysis

Protocol analysis is a technique used for analyzing observation data. Think-aloud

reports of subjects working on tasks are transcribed and classified using categories decided

on prior to the actual analysis [20] . For example, we expect to find maintenance engineers

generating hypotheses and reading code during maintenance. Thus, protocol analysis

includes searching for these two activities. Specifically, each statement in the transcript

is encoded as one of the a priori categories. Thinking aloud must occur concurrently with

the task for the data to be accurate. If the data collected is introspective {i.e. after the

task is complete) it is probable it will contain faulty details. Introspection may be useful

for the discovery of psychological processes but it is worthless for verification [21] .

For example, we ran an initial pilot study using an interview method in which we

used a questionnaire to interview an expert maintenance engineer. The questions were

categorized by integrated model components. For example, questions about syntax were

48

asked to gain insight into program model building. For example, "How and at what point

do you use sequence or iteration constructs to understand code?" Questions about the

situation model included questions like "At what time during the code comprehension task

do you draw on your knowledge of the objects and their interactions in the real world ?"

We made an attempt to design the questionnaire in such a way as to draw answers from

the interviewee without suggesting the answer. This attempt proved unsatisfactory and

many times the engineer would give academic text-book answers. His responses were an

indication that he was answering not from experience but from what he had been taught

as the correct method.

The questionnaire used an introspective technique that is limited in the amount of

detail and experimental control. However, this technique is a reasonable method for de-

termining whether the integrated model is complete enough to proceed with more detailed

think-aloud sessions and protocol analysis.

Protocol analysis is a method used to discover cognitive processes while the subject

is performing some task. There are three general ways in which verbalizing information

is related to task-directed processes. In the first, the task to be performed is not related

to the informat"ion the subject is asked to verbalize. Second, verbalization is generated

by the task. Finally, verbalization changes the task. This occurs when the verbalization

requirements call for information that is not normally attended to during the task. The

task can be affected when a subject is asked to verbalize motives and reasoning in situations

where they do not typically pay conscious attention to this type of information. Figure 4.1 ,

taken from [21] , illustrates the second verbalization task.

The second type of verbalization task elicits the information needed for this research.

Since the task determines the type of information concentrated on and what is verbalized,

this is the process we wanted the 11 subjects to use during the think aloud sessions.

Subjects were instructed to verbalize what came into their heads as they worked on their

maintenance task. The interviewer intervened only to remind subjects to keep talking.

According to Ericsson and Simon [21] , these think aloud reports are considered real data

and protocol analysis is an appropriate analysis technique for them.

49

Task-directed
cognitive

processes

Heeded Information

Verbalization

Figure 4.1: Verbalization Task

Two major types of analysis are possible for the coded think aloud reports. A fre-

quency analysis determines how often each type of code (e.g. X) appears in the protocol

and a sequence analysis determines if there are common sequences of codes (e.g. X fol-

lowed by Y). Frequencies indicate the existence of X (a static property) and sequences

demonstrate the dynamic aspects (i.e. how is X used).

The two major problems with protocol analysis are that the encoding may not be

objective and that thinking aloud might alter the activity itself. One way of making

sure the encoding is objective is to apply a reliability analysis wherein (a portion of) the

protocols are analyzed by at least two unbiased judges and the results are then compared.

If the two judges agree a high percentage of the time, then the encoding is considered

reliable. The typical "percentage agreed" is around 90%. Several studies [20] have shown

that thinking aloud while performing a task slows down the task but does not significantly

alter it unless the subject is required to verbalize information not normally needed.

Protocol analysis proceeded in five steps (see Table 4.2). The following subsections

describe in more detail the criteria to categorize statements, identify information needs,

and analyze protocols for discovery of processes, strategies, and hypotheses.

50

Table 4.2: Protocol Analysis Steps
Enumeration Segmentation Process Strategy Action Type

Discovery Identification Analysis
Utterance 1. Abstraction 1. Episode Processes 1. Hypothesis Generation
1 level level processes 1 2. Switching Behavior
Action Types 2. Action types 2. Aggregate Strategies

3. Information level processes
Needs & Tool 3. Session
Capabi lities level processes

4.4 Enumeration and Segmentation of Action Types - Level 3

The first analysis on the protocols involve enumeration of action types as they relate to

the top-down, situation, and program models. Transcripts of the protocols were analyzed

using a list of expected actions developed by Vessey [53]. New action types were discovered

during this process and subsequent protocols were analyzed for the new actions as well.

Appendix A contains a list of action types. A description of the types of statements

that comprise the actions along with key words and phrases are included. The next step

in the analysis segments the protocols. Segmentation classifies action types into those

involving domai~ (top-down), situation, or program model and can be thought of in terms

of different levels of abstraction in the mental model.

Protocol analysis is an iterative process. A first pass analysis results in a high-

level classification of programmer actions as either top-down, situation, or program model

components of the Integrated Model. This is necessary because similar actions appear

in different component processes. For example, hypotheses may be generated while con-

structing any of the three models. Once actions are associated with a particular model

component , the next pass identifies action types of a specific maintenance task. Once the

action types are identified, the transcripts are re-analyzed and encoded using these types

as tags on the programmer utterances. 1 Table 4.3 contains example protocols to show

action type classification. Column two provides the tag used in action type classification.

1Utterances are verbalizations of programmers during programming sessions and captured in the

transcripts.

51

Table 4.3: Example Protocol Analysis - Action Types
II Analysis Type Tag I Action Type I Example Protocol II

Action· Type SYS8 Generate Hypothesis " .. and my assumption is that nil with a little n
Classification (Program Model) and nil with a big N are equivalent at

the moment."
SYS7 Chunk & Store

knowledge "So clearly what this does is just flip a logical fl ag"
(Program Model)

Frequency analyses can be done to answer the first set of questions {number 1) in

section 4.2. Counts of actions from individual protocols can be aggregated by maintenance

task, then for all maintenance tasks together, and finally by model component (i.e Top-

down, situation, and program model).

4.5 Process Discovery- Level 2 & Level 1

We can discover dynamic code understanding processes by classifying and analyzing

episodes [53]. Episodes are single instances of a sequence of action types. An episode starts

with a goal and embodies the actions to accomplish that goal. For example, determining

the function of a specific procedure or routine may entail a sequence of steps that include

reading comments, following control flow, and generating questions when a concept is

not understood. Similar to Vessey [53], processes are defined at three different levels;

episodic, aggregate, and session levels. Episodes containing common action types with

similar goals are defined as a single episodic process. Likewise, common sequences of

episodic processes are defined as a single aggregate level process. Finally, the session level

process is established by a sequence of similar aggregate level processes.

A process is a sequence of action types, episodes, or aggregates whose purpose is to

satisfy a specific goal. We can think of them as three levels of strategies to achieve goals.

Specifically, each episode is determined by discovering the goal (or sub-goal) and cata-

loging all subsequent action types until reaching closure on the goal (due to being satisfied

or abandoned). If specific information is needed during the episode, this is noted as an

information need. Once episodes are identified, we analyze each, abstract out commonali-

ties, and designate the resulting sequence an episodic process. An aggregate level process

emerges from similar episodic processes. Similarly, sequences of aggregate processes are an-

52

alyzed for commonalities and abstracted into higher-level processes. Once again, common

sequences of aggregate level processes produce a single session level process representing

a wo hour programming session.

Frequency counts and analyzing for sequences helps to answer the episode questions

in study objective number 2. To determine if there are repeated action sequences and

how often they occur, we look for common sequences of action types and then count the

number of occurrences of each episode. Information needs associated with a particular

type of episode can also be counted. By examining sequences of action types and their

related model components, we will be able to determine if individual episodes occur at

only one level of abstraction or span all three levels.

The third study objective question concerns aggregate level processes. Again, we

can use frequency counts and sequence analysis. Sequence analysis on episodes defines

aggregate processes. A count of these sequences determines the most common aggregate

processes. If one aggregate process contains many of the same episodes as another aggre-

gate process, we consider them to be similar. The action types and information needs that

occur at the beginning or the end of an episode sequence are process boundaries called

triggers. We can count these triggers to discover the common types. Once aggregate

processes are defined, we can analyze them for common sequences to distinguish session-

level processes. Counting triggers between aggregate processes will distinguish common

actions and information needed to switch from one process to another. Finally, comparing

session-level processes will indicate the degree of similarity between processes for different

maintenance tasks. Processes that contain many of the same aggregate level processes are

considered comparable.

4.6 Action Type Analysis: Hypotheses & Switching Between Models

Two types of actions are important enough to motivate a more detailed analysis, these

are hypotheses and switching between integrated model components. Making hypotheses

serves a special role because hypotheses help to guide investigation during code cognition.

Switches are significant because they indicate a change of focus from one of the three in-

tegrated model components to another. Additionally, hypotheses and switches are related

in that hypotheses may be one of the causes for switching between model components.

53

Table 4.4: Example Protocol Analysis - Hypotheses
II Analysis Type I Tag I Hypoth eses Type I Example Protocol II

Hypotheses- SYSHl Variable Function " .. .looks to me like TMODE (...) is
Classification (Program Model) used essentially to determine whether or

not (..) we 're echoing back to the screen"
OPH3 Rules of Discourse "I would be surprised if that's not called

Expectations "somewhere else"
(Program Model)

4.6.1 Hypotheses - Level 1

Hypotheses are associated with model components. They are initially identified dur-

ing action type analysis. During action type analysis, we tag generation, confirmation, or

failure of each hypothesis. Similar to action-type analysis, each hypothesis is then classi-

fied using a set of apriori categories in the protocol. For example, the utterance "warnings

are related, we believe, to the resources either not being installed properly or not being

compatible with this system," is classified as a hypothesis about the cause of the buggy

behavior. Table 4.4 contains example protocols to illustrate hypothesis type classification.

A separate analysis follows each hypothesis through the protocol until it is resolved

through confirmation, failure, or abandonment . A hypothesis is verbally confirmed or

rejected (i.e. it fails) . Hypothesis abandonment can either be explicit or implicit. Explicit

abandonment occurs when the programmer decides it is not relevant or will be too much

trouble to verify. Implicit abandonment occurs when the hypothesis is stated but the

programmer never returns to it. We can only conjecture that the hypothesis was either

forgotten or dismissed without verbal confirmation.

Each major hypothesis is generated as a result of some goal. The goal itself is resolved

when the underlying hypotheses are confirmed, abandoned, or fail. An analysis similar to

that for hypothesis resolution was performed. We also analyzed the dynamic behavior of

goal statement to goal completion over time. This results in a hierarchical representation

of each goal, with its supporting hypotheses and actions. It can also provide a transition

diagram illustrating temporal relationships of goals.

To answer the questions in study objective 4, analysis can proceed by examining each

hypothesis, determining its type within the integrated model, obtaining a frequency for

each type , and comparing them to the hypotheses found during other maintenance tasks.

54

4.6.2 Switching between M odel C omponents - M odel Level

A switch occurs when any action in the top-down, situation, or program model is

followed by another action in a different model. For example, an hypothesis generated after

reading a block of code (program model) may be followed by concluding the functionality

of that block (situation model) . Switching behavior helps to verify that the integrated

model is valid when there is a high frequency of switches between model components. The

first question in study objective 5 can be answered by counting the number of switches

between each integrated model component. To determine if there is a difference in working

at levels of abstraction based on code size we compare the total number of integrated

model switches between subjects that worked on code of various sizes. We can compare

the number of switches for each maintenance task to learn if task changes the frequency

of switches between model components.

An hypothesis is an action that can generate a switch from one model component to

another. We looked specifically at switching caused by hypotheses. An hypothesis gener-

ated switch is identified by examining the action immediately following each hypothesis.

If the action occurs at a different level of abstraction than the generating hypothesis, then

a switch is recorded. Examining switching behavior based only on hypotheses will give an

indication of the relative importance of hypotheses in building mental representations at

all levels of abstraction.

4. 7 Str a tegy Identification - Level 1

Strategies guide the sequence of actions during goal satisfaction. Our analysis involves

looking for two different types of strategies. The first type is the overall strategy used

for understanding tasks. This is usually based on the programmers preference or style

of understanding. An example is a systematic versus an opportunistic style. A second

type of strategy is associated with mental model building. Pennington [37] found that

expert programmers used a cross referencing strategy between the program model and

the situation model while understanding a small program. This cross referencing strategy

can be thought of as chunking program model information and using a situation model

tag to abstract the newly acquired information.

55

It is possible that more than one strategy may be in effect concurrently. For example,

an overall systematic strategy can occur at the same time as cross-referencing since one is

independent of the other. One is a method for the task of reading code while the other is

a method for building an understanding of the code.

Switches may also be related to strategies, for example the cross referencing strategy

involves switches between the program and situation models. Switches need to be studied

to determine if other cross-referencing strategies (e.g. between program and top-down or

between situation and top-down model) are common during program comprehension.

Examination of the overall session-level process will indicate if the programmer used a

systematic or opportunistic approach to understanding. An opportunistic strategy will be

apparent if only very relevant sections of code were investigated. If code was studied line

by line, then the systematic strategy was applied. It is also possible that a combination

of opportunistic and systematic strategies will be used. To determine which type of cross-

referencing strategies are used, frequency counts for switches between integrated model

components provide the answer. If the majority of switches occur between program and

situation model, then the strategy is a program-situation model cross-referencing strategy.

4.8 Information Needs

Information Needs are determined from protocols directly from the transcribed tapes

(see Table 4.5) or through inference. These needs may be explicit or implicit. An implicit

information need is not directly stated but the programmer could obviously profit from it

if he knew it existed. For example, in Table 4.5 the protocol segment associated with the

Code Block Boundaries information need indirectly demonstrates that the related domain

information would help this programmer understand the code better. Indeed, he spent

a great deal of time examining several documents for this very information. Table 4.5

contains example protocols to show information needs identification.

Common information needs can be tallied and translated into tool capabilities which

describe the functions that should be available for tools to address the information need.

Information needs can be based on maintenance task by determining how often the in-

formation is needed during the particular task type. Finally, the most common types

56

Table 4.5: Example Protocol Analysis - Information Needs
Analysis Type Information N eed Example Protocol

Classified A s
Ident ifying Code Block "Okay well , assuming that the ... urn indentation is accurate .. .! would
Information Boundaries guess that this is really for , urn , there must be a FOR
Needs statement that this is the end of but I don 't know where that FOR

statement might come from . I don't see ... "
Data structure
tied to concepts "And this looks like some X.25 structure"
in the domain

of information required can be translated into guidelines that prescribe the minimum

knowledge necessary to maintain large-scale code.

4.9 Summary

The objective of this study is to construct a theory of large-scale code comprehension

using the Integrated Model. To do this, action types, processes, hypotheses, switching

behavior, strategies, and information needs were investigated for maintenance engineers

working on production code.

Think aloud reports of 11 engineers working on various maintenance tasks have been

collected for the types of analysis described in this chapter. This analysis reveals common

types of behaviors and information necessary for successful completion of specific tasks

and maintenance in general. These results can be used to abstract and describe the min-

imum knowledge necessary to perform maintenance tasks. This knowledge, which we call

core competencies, can be used for maintenance guidelines and processes, documentation

standards, and tools.

57

I
I
l

Chapter 5

RESULTS

This chapter summarizes and interprets individual results from analysis of data from

eleven programming sessions. The purpose of this chapter is to present hypotheses derived

from aggregate results.

Section 5.1 contains an analysis of action types by task, e)!:pertise, and accumulated

knowledge. Comprehension processes are presented in section 5.2. Section 5.3 specifies

hypotheses results , including common hypothesis types,switching behavior generated by

hypotheses, and the HK-Ratio, which is a indicator of expertise based on hypothesis gen-

eration and use of previously acquired knowledge. Section 5.4 reports on overall switching

behavior and the influence of code size on integrated model development. Information

Needs , Tool Capabilities , and Core Competencies are presented next. We conclude with

the most important hypotheses identified during this research.

Appendix B contains additional detail on results. Sections in the appendix parallel

the outline of this chapter. Chapter Five aggregates data from individual subjects while

more detailed analysis on subject groups is reported in Appendix B . Tables and graphs

summarizing the results include task counts and sequences, model references and switches

between models, hypotheses types and sequences, information needs, and tool capabilities.

5.1 Actions - Level 3

This section presents results of the action-type analysis for all subjects. Action-types

are found at the 3rd level of detail below model components. (See Table 3.1.) Results

include the total number of references and normalized percentage for actions identified

within each model. Normalized percentages for each model by task-type, expertise, and

accumulated knowledge can be found in Appendix B. In this section we present the con-

jectures derived from data in Appendix B. The purpose of this analysis is to determine

the most common types of actions engineers perform during specific maintenance tasks.

We are also interested in the influence of expertise and amount of accumulated knowledge

on the types of actions commonly seen.

5.1.1 Action Frequencies Across All Tasks

Tables 5.1 , 5.2, and 5.3 show counts for each of the top-down, situation, and program

model action types for all subjects combined. The tables are organized according to total

number of references, with the most frequently referenced action appearing at the top.

The Percent of TTL indicates the percent of total action counts for the top-down model.

Table 5.1: Action Counts Across Tasks - Top-Down Model
Total Percent

Code Action Type References of TTL
OPKNOW Use of Top-down knowledge 311 22%
OP3 Generate or revise hypothesis about functionality 242 17%
OP20 Generate task 213 15%
OP6 Determine understanding strategy 97 7%
OP13 Study /Initiate program Execution 92 6%
OP2 Determine next program segment to examine 87 6%
OP17 Chunk & store knowledge 83 6%
OPl Gain High-Level Overview of Program 69 5%
OP15 Generate questions 55 4%
OP4 Determine relevance of program segment 49 4%
OP11 High-level change plan/ Alternatives 37 3%
OP12 Observe buggy behavior 18 1%
OP22 Examine results of execution 15 1%
OP16 Answer questions 14 1%
OP14 Compare program segments 11 1%
OP18 Change directions 10 1%
OP9 Mental Simulation 7 0%
OP7 Investigate Oversight 6 0%
OP5 Determine if this program segment needs detailed understanding 2 0%
OPABAND Abandoned hypothesis 113 47%
OPCONF Confirmed Hypothesis 97 40%
OP8 Failed Hypothesis 32 13%

The most commonly found action during top-down model construction is use of top-

down knowledge. Top-down knowledge is previously acquired knowledge that is elicited

from long-term memory. Frequent use of top-down knowledge is support for the conjecture

that top-down model development is the main focus when the programmer is familiar with

the application domain [9, 49]. It is much easier to decompose the program into functional

units if the programmer is well acquainted with the domain. Hypothesis generation (OP3)

59

(the second most common action found in the protocols) drives the decomposition process.

Generating tasks (OP20) is the third most frequent action-type found in the protocols.

The percent of total top-down references for these three types are 22%, 17%, and 15%,

respectively. After these, there is a significant gap: the next most frequent type of top-

down action is OP6 (Determine understanding strategy), with 7% of all actions. This

indicates that the first three are more important than the remaining action-types.

In an analysis of comprehension processes we found a common pattern in opportunis-

tic understanding for goal resolution consisting of a sequence of goal-hypothesis-action [55]

(also see section 5.2.2.2) . This means that a goal is resolved by making an hypothesis and

then taking some action that results in the confirmation, failure, or abandonment of the

hypothesis. Many of the actions involve applying knowledge and generating a new task

(OP20). Thus, one theory for why the first three top-down action types were using top-

down knowledge, OP3, and OP20, is that they are important for goal resolution and that

goal resolution is critical for top-down understanding.

The last three rows of the table show how the hypotheses reported as OP3 were

resolved. The majority were either confirmed or abandoned. Very few actually failed.

The majority of the top-down hypotheses were generated by domain experts. Vessey [53]

found that experts tend to pursue hypotheses that are easy to confirm and abandon those

that are time consuming. More will be said about hypotheses in section 5.3.

Program model building typically involves generating an hypothesis (SYS8), exam-

ining code (SYS3) , chunkingjstoring knowledge (SYS7), and use of previously acquired

program knowledge. These represent the top four activities found for program model con-

struction. (See Table 5.2.) There were many sequences involving these actions and several

are embodied in episode-level processes (see section 5.2.1.1). Use of program model knowl-

edge in the current mental model representation is important because knowledge that is

stored becomes knowledge used in subsequent understanding activities. The top four pro-

gram model action-types represent the most frequent cluster. They total 55% of all actions

types at the program model level. The frequencies of the remaining ones are at most half

of these four.

60

Table 5.2: Action Counts Across Tasks - Program Model
Total Percent

Code Action Type References of TTL
SYS7 Chunk & store knowledge 263 17%
SYS3 Examine next module in sequence 243 15%
SYSKNOW Use of Program model knowledge 185 12%
SYS8 Generate Hypothesis 175 11%
SYSll Generate new task 102 6%
SYS1 Read introductory code comments any related documents 93 6%
SYS10 Determine understanding strategy 89 6%
SYS2 Determine next program segment to examine 69 4%
SYS15 Generate/consider alternative code changes 50 3%
SYS12 Generate Question 48 3%
SYS4 Examine next module in control-flow 46 3%
SYS17 Add/ Alter Code 43 3%
SYS21 Mental Simulation 43 3%
SYS5 Examine Data structures and definitions 29 2%
SYS20 Determine error/omitted code to be added 27 2%
SYS18 Determine location to set breakpoint 17 1%
SYS24 Search for begin/end of block 16 1%
SYS13 Determine if looking at correct code 14 1%
SYS23 Search for var definitions/use 12 1%
SYS16 Answer question 9 0%
SYS9 Construct Call Tree 3 0%
SYS14 Change direction 3 0%
SYS22 Compare code between versions 2 0%
SYS6 Slice on Data 0 0%
SYSCONF Confirmed Hypothesis 75 43%
SYSABAND Abandoned Hypothesis 69 39%
SYS19 ·Failed Hypothesis 31 18%

The last three rows in the table (SYSCONF, SYSABAND, SYS19) report on the

resolution of program model hypotheses. Similar to top-down hypotheses, the majority of

the hypotheses were either abandoned or confirmed.

The most frequent action in the situation model is use of situation model knowledge

(cf. Table 5.3). Previously obtained situation knowledge, assimilation of new knowledge

(SIT4), and hypothesis generation (SIT7) together drive the acquisition of new knowledge

and help to organize it as chunks of information. The top three action-types embody

72% of the total number of situation model actions. These three actions and three of

the four top action-types found for the program model are similar. This is important

because Pennington [36] claims that programmers build a situation model after program

model construction. Regardless of timing, it appears that the same types of frequent

actions found in the program model occur at the situation model level. Whether mental

model construction is uni-directional (i.e. first the program model is constructed, then the

61

Table 5 3· Action Counts Across Tasks - Situation Model
Total Percent

Code Action Type References of TTL
SITK NOW Use of Situa tion model knowledge 219 28%
SIT4 Chunk & Store 208 26%
SIT7 Generate Hypothesis 144 18%
SIT! Gain Situation Model knowledge 78 10%
SIT2 Develop Questions 38 5%
SIT6 Determine next info to be gained 25 3%
SIT8 Determine understanding strategy 25 3%
SITS Determine relevance of situation knowledge 21 3%
SITll Mental Simulation 21 3%
SIT3 Determine answers to questions 12 1%
SIT9 Determine if error exists (missing functionality) 3 0%
SIT1 2 Compare functionality between two versions 2 0%
SITCONF Confirmed Hypothesis 65 45%
SIT A BAN D Abandoned Hypothesis 64 44%
SITlO Failed Hypothesis 15 11%

situation model, as Pennington's results show for very small programs) or bi-directional,

as our model indicates, will be discussed later when we analyze Switching Between Models.

The last three rows in the table (SITCONF, SITABAND, SIT19) report on the res-

olution of the situation model hypotheses. Similar to top-down and program model hy-

potheses, the majority of the hypotheses were either abandoned or confirmed.

The main types of actions across maintenance tasks for all three models include use

of previously acquired knowledge, generating hypotheses, and chunkingfstoring of newly

acquired knowledge into the mental representation. For all models, the spread between

the top three or four action-types and the remaining actions is significant , which adds

support to the hypothesis that these top action-types are important regardless of task.

While specific action types clearly predominate overall, it is also important to consider

patterns by task type, expertise, and accumulated knowledge to identify whether actions

are fundamentally different for various types of expertise and accumulated knowledge. We

discuss this in the next section.

5.1.2 Actions - Model Frequencies by Task, Expertise, & Accumulated

Knowledge

This section contains results based on action frequencies for each model. The re-

sults are organized by the task subjects were concerned with, the level of expertise , and

62

the amount of knowledge subjects accumulated prior to the programming session. (See

Table 4.1 to determine the categories for each subject.) Table 5.4 shows a breakdown

by model of total action frequencies and a normalized percentage for each subject . Per-

centages are calculated for each subject by dividing that subject's total actions across

models by the number of actions in each model. Note that these numbers do not reflect

abandoned or confirmed hypotheses numbers reported in the previous section. This is

because during analysis of hypothesis resolution, whether an hypothesis was abandoned

or confirmed could encompass many actions or no actions (i.e. in the case of forgetting the

hypothesis was ever made). Thus, both abandoned and confirmed hypotheses do not fall

nicely into an action category. Appendix B contains more detailed information on results,

including bar charts which are provided to graphically depict the data reported in the

table. These charts are organized according to task, expertise, & accumulated knowledge

categories and represent the percentage of actions for each subject (in the set) by model.

For example, Figure B.l shows the percentage of top-down, situation, and program model

actions for the subjects who were working on adaptive maintenance tasks, in this case,

subjects ADl and AD2.

5.1.2.1 Action Percentages By Task

Table 5.4 contains a column for combined Program and Situation model references,

roughly corresponding to Pennington's [36] comprehension model. We wanted to identify

patterns based on differences between Pennington's bottom up model and the top-down

model. Analysis of this data revealed several classes of subjects distinguished by percent of

total top-down actions and combined program and situation model actions. These classes

are:

• 1. {AD1,AD2}

Both subjects in the first class had the highest percent of top-down model references

(67%) with a significantly lower percent of program and situation model references

(33%). Obviously what makes these subjects similar was that they were both work-

ing on adaptation tasks and more specifically porting tasks. They were both domain

63

Table 5.4: Action-Types by Model - Frequencies & Percentages
Progrom &

Subject Top-Down Situation Situation Progrom Total
Code Model Model Model Model Actions
ADl 226 111 43 68 337
Adaptation 67% 33% 13% 20%
AD2 220 108 47 61 328
Adaptation 67% 33% 14% 19%
Total 446 219 90 129 665
Adaptation 67% 33% 14% 19%
Cl 46 303 160 143 349
Corrective 13% 87% 46% 41 %
C2 119 240 91 149 359
Corrective 33% 67% 25% 42%
C3 119 202 42 160 321
Corrective 37% 63% 12% 51%
C4 171 186 101 85 357
Corrective 48% 52% 28% 24%
Total 455 931 394 537 1386
Corrective 33% 67% 28% 39%
ENl 32 251 58 193 283
Enhancement 12% 88% 20% 68%
EN2 154 276 53 223 430
Enhancement 36% 64% 12% 52%
Total 186 527 111 416 713
Enhancement 26% 74% 16% 58%
Gl 222 190 78 112 412
Understand 54% 46% 19% 27%
G2 59 276 33 243 335
Un'derstand 17% 83% 10% 73%
Ll 50 234 90 144 284
Understand 18% 82% 32% 50%
Total 331 700 201 499 1031
Understand 32% 68% 20% 48%

experts and therefore had the knowledge necessary to work at the top-down model

level. They also had similar levels of prior experience with the code.

• 2. {C4,Gl}

The second class of subjects have roughly equal numbers of top-down and combined

program and situation model references . What makes these two subjects similar is

that both were domain experts and they took a similar approach to understanding

the code they were working on. G 1 's task was to look at a system for which he was

recently given responsibility, while C4 was trying to track down a networking bug

in a system in which he had some (but not significant) experience. Both looked at

code with which they were unfamiliar (C4 spent significant time looking at system

64

library code he had not seen before) and they both examined actual code on a "need

to know" basis .

• 3. {C2,C3,EN2}

All three subjects in the third class were either working on a debugging task or trying

to track down bugs in recently enhanced code. These engineers had significantly

more program and situation model references (between 63% and 67%) than top-

down references (between 33% and 37%). The main influence here is probably task as

finding bugs requires one to spend significant time looking at actual code. This group

had exactly the opposite number of references to top-down and program/situation

model actions than the first class of subjects.

• 4. {Cl,EN1,G2,Ll} The last class of subjects had considerably more program

and situation model references (between 82% and 88%) than top-down references

(between 12% and 18%). Two of the subjects, Cl and Ll were language only

experts. It is difficult to build a top-down model when there is a lack of domain

knowledge. Subject G2 used a systematic understanding strategy where he read the

code line by line . ENl also spent a great deal of time in the program model because

he was interested in very specific parts of the code he had recently enhanced. Since

he was a domain and language expert and had significant experience with the code,

we surmise that his task did not require building a top-down mental model. He

had worked with this code for several years and we assume already had a working

top-down representation of the code. The task he was working on did not require

much adjustment to the top-down mental representation.

Appendix B contains charts and more detailed explanations of the results presented

here. As the four graphs in the appendix show, we can not make definite conclusions about

the influence of task on the frequency of the actions associated with Top-Down, Situation,

or Program Model building. Only Adaptive maintenance had significant similarities in

percentages within each model. While we can not say much about percentages, we have

seen that task may affect the trend between models. Except for one subject (Gl) General

Understanding, Adaptive, and Enhancement tasks all seemed to have the same spread

across models in terms of relative frequencies of references to program, situation, and

65

top-down models. Corrective maintenance showed the same trend for 3 of the 4 subjects

in that classification.

The situation model seems the least important for mental model construction. This

is most likely related to the types of systems our subjects worked with. The majority of

the software they worked with was system-level, e.g. operating system, network protocols,

etc. The situation model is best described as the connection to the "real world" and

system-level software has very few concrete connections outside the computer box.

Other factors such as expertise, accumulated knowledge, and overall strategy may

mask task as an influence. Obviously, to make definite conclusions regarding the effect of

task on model actions requires a larger sample size and control for expertise, accumulated

knowledge, and strategies.

To summarize, we propose the following hypotheses as a result of this analysis:

• Adaptation has notable domain model action needs.

• Corrective maintenance has more top-down and program model than situation model

action needs .

• Enhancement requires working closely with the code (program model).

• General Understanding behavior is varied, determined by strategy and prior knowl-

edge.

Several of our observations point to expertise as having an effect on programmer

actions. Grouping the data by level of expertise rather than task might provide hypotheses

on preferred action-types.

5.1.2.2 Action Percentages By Expertise

Three levels of expertise were identified among the subjects: Language Only { Cl,Ll },

Domain Only {C2,C3,C4,AD2,}, and Language & Domain {Gl,G2,ENl,EN2,ADl}.

Table 5.5 organizes the relative frequency data by these groups. Additional detail can be

found in Appendix B, including charts that depict graphically the percentage numbers

reported in the table.

66

Table 5.5 :

Domain C2 33% 67%
Only C3 37% 63%

C4 48% 52%
AD2 67% 33%

Language Gl 54% 46%
& Domain G2 17% 83%

ENl 12% 88%
EN2 36% 64%
ADl 67% 33%

The subjects with no domain expertise limited their mental representation construc-

tion to program and situation models. They spent less than 20% of their actions in the

domain model. Task seems to have less of an impact since the subjects were working on

very different things . As domain knowledge is acquired, task seems to be more important

in terms of the relative amount of time spent in specific models. There is indication of

a trend toward more top-down references when domain knowledge exists. Domain only

experts show at least twice the top-down references as the language only experts. Domain

and language experts show more mixed behavior. Three of the five Domain and Language

experts (EN2, Gl, and ADl) show behavior similar to Domain Only experts while two

(G2,EN1) show behavior closer to the Language Only experts. The similarity of refer-

ences for ADl and AD2 and C2, C3, and C4 suggests that task may have an influence.

To validate these conclusions requires an experiment in which language and domain ex-

pertise is varied while task and prior exposure to the code is held constant. If similar

patterns emerge, the effect is clear. If not, task may have a more profound influence than

domain and language and an experiment should be designed where task is varied and the

other two variables are held constant.

67

5.1.2.3 Action Percentages By Accumulated Knowledge

Table 5.6: Accumulated Knowledge: Top-Down & Program/Situation Model Relative
Frequencies

Accumulated Subjec t Top-Down Program &
Knowledge Identifier Model % Situation %

Little C2 33% 67%
C3 37% 63%
Gl 54% 46%

EN2 36% 64%
Some Cl 13% 87%

Ll 18% 82'7o
G2 17% 83'7o
C4 48% 52%

Significant ADl 67% 33%
AD2 67'7o 33%
ENl 12% 88'7o

Three levels of accumulated knowledge were identified among the subjects: Little,

Some, and Significant . Table 5.6 organizes the relative frequency data by these groups .

Additional detail can be found in Appendix B, including charts that depict graphically

the percentage numbers reported in the table.

Three of the four subjects with little accumulated knowledge spent two thirds of their

actions in the program and situation models. Three of the four subjects with some prior

experience spent over 80% of their actions in the program and situation models . Two of

the three programmers with significant accumulated knowledge spent one third of their

actions in the program and situation models.

We did not see a trend of decreasing program and situation model references as

accumulated knowledge increased. There appear to be trends within each category related

to task or strategy. For example, the three subjects who had little prior experience with

the software and who had two-thirds of their actions in the program and situation models

were either working on debugging tasks or an enhancement that included an element of

debugging. The other subject G 1 in that category used an opportunistic strategy during

code understanding that necessarily kept his focus at a high level of abstraction rather

than at the program model level.

We suspect that accumulated knowledge is important, but that task and expertise

may be more important. One way to see how accumulated knowledge changes the un-

68

derstanding process is through a controlled experiment in which both task and expertise

are held constant and accumulated knowledge is varied among a richer and more precisely

defined set of accumulated knowledge classificat ions.

5.2 Processes - Levels 2 & 1

Comprehension processes are the dynamic aspects of code understanding. Recall

that processes support construction of top-down, situation, and program models and are

a single level of abstraction below that of the model components. (See Table 3.1.) In this

section we report on three types of processes: systematic, opportunistic, and combined

systematic/opportunistic. These processes are based on process analysis of three subjects,

G2 , ADl , and EN2. Systematic understanding consists of straightforward sequences of

actions that are repeated during the programming session. These sequences are driven by

flow of control in program code. In opportunistic understanding we find triads of goals,

hypotheses, and actions based on "a need to know" approach rather than flow of control.

The combined systematic/opportunistic process falls somewhere b etween the first two,

sometimes following control flow and sometimes opportunistically generating hypotheses

and taking actions to resolve them.

5.2.1 Systematic Processes

Systematic processes are dynamic code understanding activities consisting of episodes,

aggregate processes, and session level processes. As discussed in subsection 3.5. these ac-

tivities are found at different levels of detail and support the Integrated model. Here we

illustrate the types of processes discovered in a single subject 's (G2) program understand-

ing protocol.

5.2.1.1 Episodes - Level 2

Episodes are sequences of actions of various types carried out to accomplish a goal.

They exist at level two (See Table 3.1) since they support the systematic comprehension

process. Episodes containing common actions with similar goals emerge as the lowest level

processes. Each episode is specified by its action sequences. To illustrate, episodic process

Pl - R ead Block in Sequence starts with the overall goal of understanding a specific block

69

I
I
I

of code, e.g. "I'm going to read the description and see if it gives me some good clues

as to what's going on." Some of the observed actions that support the original goal are:

generating hypotheses while reading comments, chunking information, making note of

interesting aspects, but postponing their investigation.

Figure 5.1 presents this process in graph form as a state machine to illustrate the basic

form of episodes. Arcs indicate action types while states represent level of understanding.

Pl (Read Block)

Figure 5.1: Systematic Processes: Episodic Process - Read Block

Two different action sequences characterized as a P1 episodic process illustrate dif-

ferent traces through the P1 state diagram of Figure 5.1.

1. Examine next module in sequence(Read Code) --+ Chunk & Store knowledge --+

Examine next module in sequence (Read Code) --+ Generate hypothesis --+ Chunk

& Store.

2. Read Code Comments--+ Generate Hypothesis--+ Chunk & Store--+ Note Interesting

Identifiers & Determine Key aspects --+ Chunk & Store --+ Read next module in

sequence--+ Note Interesting Identifiers & Determine Key aspects--+ Chunk & Store

70

Table 5. 7 lists seven episodic processes and how often they occurred in the transcript

(subject G2 (see Table 4.1)). It shows that the subject spent the majority of his time

reading the code, determining the behavior of a variable, and incorporating this knowledge

into his mental model of the program module. The engineer applied a systematic strategy

of reading each line of code in approximate sequence.

Table 5.7: Episodic Process Frequency Count (Subject: G2)
II Episodic Process Name I Code I Number II

Read Block in Sequence Pl 7
Integrate Not Understood P2 4
Determine Variable Def/Use P3 7
Incorporate Acquired P4 5
Program Knowledge
Identify Block Boundaries P 5 . 2
Resolve Deferred Questions P6 2
Understand a Procedure Call P7 1

Table 5.7 also shows that preferred episodic processes exist . Processes Pl and P3

were the most frequent. These two processes are preferred during detailed understanding

of one module. In section 5.4.2 (The Role of Code Size on Model Building) we report on an

investigation of how the size of code to be understood might cause differences in the way

programmers approach their task. Our results showed that as code size increases, the level

of abstraction at which programmers tend to work also increases. In this situation, one

would expect to see more episodes of type P2 (Integrate Not Understood) in understanding

of larger software systems.

During our analysis we were able to associate information needs (and their frequen-

cies) with action types and thus with episodic processes. Table 5.8 shows information

needs for process Pl for subject G2. The three most frequently needed information types

for Pl directly relate to the activities shown in the state diagram. E.g. determining the

end-of-block condition requires code block boundary information.

Interestingly, we could not find episodic processes that occurred on a single level of

abstraction and therefore classified as purely top-down, situation, or program model pro-

cesses. Many episodes contained actions that were associated with all three integrated

model components. This supports the idea that programmers constantly switch between

model components (levels of abstraction) . In this, episodic processes are similar to the

71

Table 5.8: Understanding One Module - Information Needs for Process Pl
Episodic Information Needs Number
Process

Code Block Boundaries 4
P1 : Data Type definitions & 3
Read location of identifiers
Block Call Graph Display 2

History of past modifications 1
Data structure definitions 1
tied to domain concepts
Location of called procedures 1
History of browsed locations 1
Beacons tied to situation 1
model or program model
Descript ion of system calls 1
Location of documents for 1
program & domain 1

design process reported in [24] , which is not too surprising since cognition can be consid-

ered a recreation of the design task. These results also show that for cognition aids to be

effective, tools or documentation must support work at all levels of abstraction and the

frequent switches between them.

Individual episodes can vary greatly, because their goals are very different. An episode

may use the same action types as another but occur in a different order. As we combine

and abstract commonalities at different process levels, the processes themselves become

similar. This corresponds to similar higher level goals which the aggregate and session level

processes support. However, they use different episodes as their low level tactics. This is

anticipated because Ericsson ([20], page 196) had a similar result in a study of subjects

solving an Eight Block Puzzle. The solutions of individual subjects varied significantly

when analyzed at the lowest level of detail. However, when the same solutions were

analyzed at a more abstract level, the subjects followed more predictable sequences of

actions.

5.2.1.2 Aggregate Processes - Level 1

Similar to the role of action types in episodic processes, episodic processes are the

components of aggregate processes around a common goal. Different aggregate processes

use different sets of component episodic processes. Table 5.9 shows the composition of

aggregate processes.

72

Three aggregate processes were discovered in G2 's protocol and we illustrate one

below in Figure 5.2 as a state diagram.
Process PC- Read,Understand,Investigate

Variables, Resolve Deferred
Questions

Figure 5.2: Systematic Processes: Process PC - Aggregate-Level

Table 5.9: Aggregate Processes - Episodic Composition
II Episodic Process II PA I PB I PC II

Pl :Read Block in Sequence X X X
P2:Integrate Not Understood X
P3:Determine Variable Def/Use X X X
P4:Incorporate Acquired Program X
Knowledge
P5:Identify Block Boundaries X
P6:Resolve Deferred Questions X
P7:Understand a Procedure Call X

Table 5.10 shows frequencies of aggregate level processes. At the aggregate level,

processes PA, PB , and PC begin to look very similar. Each aggregate process contains

a R ead component and a Investigate variables component. End-of-Block and Beacons

typically trigger the end of one episodic process and the beginning of another or the end

of the aggregate process itself. (Figures C.l2 , C.l3, and C.l4 in Appendix C. show the

state diagram for these aggregate processes.)

73

Table 5.10: Aggregate Process Frequency Count (Subject: G2)
II Aggregate Process Nam e I Code I Number II

Read , Integrate, Investigate variables PA 4
Read, Incorporate acquired program
knowledge, Investigate variables, PB 3
Identify Block Boundaries
Read , Understand, Investigate
variables , Resolve deferred questions PC 3

Table 5.11: Process Trigger Frequencies (Subject: G2)
Frequencies

Process Trigger PC All Aggregate Procs
Beacon 7 14
Chunk & Store Knowledge 2 8
End-of-Block 7 20
End-of-Stack 0 2
Understanding strategy 2 7
determined (SyslO)

Triggers cause state changes between processes. They can be code induced (e.g.

end of code block) or an action type (e.g chunk and store knowledge) . Table 5.11 lists

the triggers found in the example protocol and their frequencies for Process PC and the

total for all the aggregate processes. Beacons and end-of-block triggers were the most

frequent triggers. Again, this could be a by-product of the systematic strategy used by

this subject. E.g., a jump out of episodic process Pl (Read Block in Sequence) into process

P7 (Understand Procedure Call) occurs when G2 encounters an unrecognized procedure

call (a beacon). He decides to understand what the procedure does. After investigating

it he reaches its end (End-of-block) which triggers the end of P7 and resumption of Pl

where he last left off.

5.2.1.3 Session Level Processes - Level 1

Session level processes are at the highest level. The state diagram in Figure 5.3 was

derived in the same way as the aggregate-level processes by tracking the sequences of

aggregate-level processes. This diagram represents a general understanding maintenance

task. At the highest level, only "End-of-block" and "Chunk & Store" cause switches from

one aggregate-level process to the next.

74

The session-level process (for Understanding a single module) shows that for this

subject all the aggregate-level processes represent investigation towards building chunks

[36, 45]. Chunking is an important abstraction mechanism in code understanding. Thus,

at the session-level the purpose of each aggregate process is to understand a block of code

(using different detail steps and information) and then to chunk and store the learned

information.

Process ABC
Understand One Module

Figure 5.3: Systematic Processes: Process ABC - Session Level

5.2.1.4 Interpretation of Systematic Processes

As we aggregate, the processes become similar but their contents at the episode-

level are not. Below the episode level we find different sequences of activities which are

themselves abstracted encodings of similar steps in the protocols.

Processes PA, PB, and PC begin to look very similar at the aggregate level. One

conjecture is that these aggregate processes represent instances of a similar higher level

75

strategy. Subject G2, whom we used as an example to illustrate the process analysis,

demonstrated a systematic approach [27] to understanding. Another common strategy

used for code comprehension is opportunistic, one in which the programmer follows in-

dividually determined, relevant threads through code and documentation. For this type

of strategy we did not see the nicely organized processes we saw with systematic under-

standing. We investigate this behavior next .

5.2.2 Opportunistic Processes - Level 1

Opportunistic understanding is very different from systematic understanding. Instead

of following control-flow sequences dictated by the code, opportunistic processes involve

understanding only those elements perceived as relevant to the current task. The main

components we find during this type of process are goals, hypotheses, and actions directed

at resolving these hypotheses. This triad of opportunistic understanding components are

related. For example making a goal such as "determining what is wrong with a program"

leads to generation of hypotheses such as " the cause of the buggy behavior" . Hypothesis

generation leads to actions which help to confirm or refute the hypothesis.

We use this triad of goal, hypothesis, action as a way of explaining the opportunistic

processes we saw in the protocol analysis of subject ADl who worked on an adaptation

task. While the systematic processes discussed in the previous section were represented

as state diagrams, the opportunistic processes are better represented as trees of triads.

5.2.2.1 Hypothesis Resolution

Hypotheses are important drivers of cognition. They help to define the direction of

further investigation. Generating hypotheses about code and investigating whether they

hold or must be rejected is an important facet of code understanding.

There are three ways in which an individual hypothesis can be resolved. It can be

abandoned, confirmed, or it can fail. ADl generated a total of 40 hypotheses during the

programming session. Of 40 hypotheses, 17 were confirmed, 15 were abandoned, and 8

failed. This high number of abandoned hypotheses is surprising in light of Brooks [9] who

found that programmers rarely abandon hypotheses. Rather, they backtrack to find a

different way to confirm hypotheses. In our study, the subject did not backtrack when

76

abandoning an hypothesis. Additionally, there were a significant number of abandoned

hypotheses. While this appears to contradict Brooks [9], there may be another explanation

having to do with the expertise of the subject. Vessey [53] found that experts an! flexible

in their approaches to problem comprehension. They are able to let go of qlll~st.ionable

hypotheses and assumptions more easily than novices. ADl was an expert and thus

expected to easily and quickly abandon questionable hypotheses. One could argue that

the large number of (later abandoned) hypotheses speaks to the flexibility in which the

subject approaches the comprehension problem. This appears to confirm Vessey 's findings.

We distinguish between conscious abandonment and forgetting of hypotheses. For-

gotten hypotheses are those to which the subject never returns. Half of the abandoned

hypotheses were forgotten and half were consciously abandoned. Consciously abandoned

hypotheses were explicitly rejected for three reasons: they were complex and the dfort it

would take to confirm was not worth the return; they became irrelevant ; a mon! diicient

approach to meet the goal was available. Sometimes the hypotheses were forgotten be-

cause another task proved more fruitful. In other cases, it was not possible to dr!l.r!rmine

why the hypothesis was forgotten.

Only 20% of the hypotheses failed. Six out of eight hypotheses failed ril!;ht away

(within seconds) while the remaining two took on the order of several minutes to fail. One

of the latter two involved a simple hypothesis. The problem was that the subject. needed

a tool. This tool took a great deal of time to report an answer that would support or

reject the hypothesis. Because the majority of the hypotheses that failed took so little

time to fail, we suspect that hypotheses that are easy to resolve are pursued morr! often

than those that are time consuming or may not be worth the effort. This may explain the

relatively few number of time consuming failures and relatively large number of abandoned

hypotheses.

Thus, the (expert) judgment of effort and pay back related to an hypotiH:sis may

explain why experts abandon hypotheses and novices do not. Novices cannot makr! that

judgment.

77

5.2.2.2 Dynamic Resolution Process

Next , we analyzed relationships between hypotheses, how sequences of goals and

hypotheses affect achieving the overall goal of the task, and tried to identify an overall

process of hypothesis generation and resolution.

The protocol contained 20 major goals. For each goal, the analysis excerpted asso-

ciated hypotheses, supporting comprehension actions, and any subsidiary goals, hypothe-

ses, and actions. The result of the analysis is represented graphically. Each figure shows

analysis results for an individual top-level goal. Ellipses represent goals, rectangles are

hypotheses , and actions are triangles. Arrows show the flow of goal/hypothesis resolu-

tion. The flow of goals , hypotheses, and actions over time is determined by a left to right

depth-first traversal of the tree. Each figure is accompanied by descriptions of each goal

and supporting subgoals, hypotheses, and actions.

Figures 5.4(Goals 1 & 2), 5.5(Goal 4), and 5.6(Goal 7) show a representative subset

of the 20 goals. They range from simple (Figure 5.4) to complex (Figure 5.6). Goal 1

represents a simple goal with an associated hypothesis which is immediately abandoned.

Goal 2 leads to an hypothesis which is evaluated progressively, first by memory, then with

a tool; a subsidiary hypothesis is abandoned leading to the failure of the hypothesis.

The following text represents a shortened version of the protocol to illustrate the thought

process for Goals 1 and 2.

GoAL 1 (Figure 5.4)

What he was doing: Invoked the program to watch it run incorrectly.

Goal 1: Determine what was wrong by watching program behavior.

Hypothesis 1: Cause of the buggy behavior and generation of alternative hypotheses. This hy-

pothesis was never returned to and is considered abandoned.

GoAL 2 (Figure 5.4)

What he was doing: Looked at an !make file.

Goal 2: To determine what libraries are needed by the program.

Hypothesis 2: He guessed at how many; then listed them by name from memory. He tried to

confirm this by using a tool that listed the libraries, including libraries used by other libraries.

Sub-Hypothesis 2.1 : Result of tool output led to acknowledging his original hypothesis (#2) was incorrect; there

78

Goall

Goal2

Hypothesis
2. 1
How

Many

~
Abandon ed

Figure 5.4: Opportunistic Processes: Goals 1 and 2

were more than his 01:iginal estimate. He hypothesized that there were at least 4 libraries involved , but immediately

abandoned this hypothesis because of the amount of work it would take to confirm it . He judged the answer to be

irrelevant to the overall goal of porting the program.

79

AD 1 --G-oa.l 4

Directory

A.ban.don.ed

Figure 5.5: Opportunistic Processes: Goal 4

The following text represents a shortened version of the protocol to illustrate the thought

process for Goal 4.

GOAL 4 (Figure 5.5)

What he was doing: See if the program runs on a particular system. He had never seen it

on that platform.

Goal 4: Get it to run on his system if it was there.

Hypothesis 4: Doesn 't exist on that system. In order to determine if it was there or not he

generated two sub-goals.

Sub-Goal 4 .1: Determine if the program is where he expected.

Sub-Hypothesis 4.1: He guessed at the location . It failed after a search of the directory he expected it to be in .

This led directly to the next sub-hypothesis.

Sub-Hypothesis 4.2: Hypothesis about the existence of another directory. Hypothesis was abandoned in favor

of alternat ive goal/hypothesis sequence #4.2 instead of searching for the directory itself. The alternative directory

was never mentioned again .

Sub-Goal 4 .2: Determine if the program was ever installed as part of the operating system.

Sub-Hypothesis 4.3: Program doesn 't exist on his system (space limitations) . He invoked a system-wide find

80

command from a particular place within the file system and then went off to other things while the find was

executing. Eventually, the find returned with nothing found. Thus, his hypothesis was confirmed; the program did

not exist on that part of his system.

Sub-Hypothesis 4.4: He then decided that he did not use the find command from the correct place. He reasoned

that if he went to the root directory on his system and issued a find from there, he would be able to tell if the

program had ever been installed . Again , he issued the find command and went on with other things. The find

command returned with nothing found, confirming his hypothesis that the program was never installed .

Sub-Hypothesis 4.5: At this point he knew the program was never installed but suspects the program is in the

release of the operating system somewhere. He hypothesized it was somewhere in the OS release bits. This lead to

another sub-hypothesis about the correct find command to issue.

Sub-Hypothesis .{5.1: He thinks there are options to tell the find command program to search case insensitive. He

looks for the option by reading man pages on the computer. This hypothesis is confirmed when he finds the correct

option.

He then uses the find command with the appropriate options from within the 0 /S directory. The

tool finds the files. His top-level hypothesis (#4) that the program does not exist, fails.

Goal 4 is obviously more complicated. Its supporting hypothesis leads to two sub-

sidiary goals, representing a progression of knowledge. Each of these subsidiary goals in

turn leads to second level hypotheses. They also reflect a progression of analysis and

acquired knowledge. Actions support the necessary fact-finding. Goal 4 is an example of

an arsenal of skills (hypotheses and actions) to be applied to a problem (in this case to

determine whether the program runs on the system).

81

AD1-Goal7

Confinned

Con 1rmed

Figure 5.6: Opportunistic Processes: Goal 7

The following text represents a shortened version of the protocol to illustrate the thought

process for Goal 7.

GOAL 7 (Figure 5.6)

What he was doing: Try to port another client.

Goal 7: Determine if the program runs.

Hyp othesis 7: He hypothesized that the program runs because it had successfully compiled at

some point prior to the programming session. He reasoned that he could re-build the program

by executing a Make command and then invoke the newly built client to watch it run. Several

subgoals, hypotheses, and actions followed that confirmed the program was running as expected.

Goal 7.1 : Determine the program's functionality.

Hypothesis 7.1: He hypothesized that this program was a ping-pong game. He brought up the associated man

pages and determined that instead it was a physical simulation of an ideal gas in a heated box.

Goal 7.2: He noticed the program was not behaving as explained in the man pages. He decided

to determine the cause.

82

Hypothesis 7.2: Hypothesized the cause as related to warnings about missing files . He used top-down knowledge

about client architecture to confirm this hypothesis.

Hypothesis 7.3: He looked at the Make file and hypothesized that the missing files would be over-

written during the build process. This hypothesis was never returned to and considered abandoned .

Action: He installed the program and then invoked it so he could watch it run. During the install

process, he returned to Goal 4 before coming back to this one.

Goal 7.3: After installing the program he wanted to confirm that it could find the missing files by

executing the program.

Hypothesis 7.4: Hypothesized that the program will run t his time, that the missing files wi ll be found . This

hypothesis was immediately confirmed (no warning messages).

Action: The program was run, new warning messages were examined.

Goal 7.4 : To understand the new warning messages he decided to determine how to use the appli-

cation.

Hypothesis 7.5: Hypothesized about how the application works. He was convinced he had to use a trick to get

the program to function correctly. He tried to duplicate the warnings by re-running the application but t his time

did not get the warnings. This hypothesis failed when he realized he was missing some required input.

Hypothesis 7.6: Based on the results of the previous hypothesis, he hypothesized that the program worked dif-

ferently. He tested his t heory and this time the program behaved as expected .

As with Goal 4, the programmer applied an arsenal of skills to his goal. This accounts for

the relatively shallow tree.

5.2.2.3 Interpretation of Opportunistic Processes

Goal 1 (Figure 5.4) is representative of simple goals. A goal is stated and leads to an

hypothesis which is immediately abandoned. Goal 2 (Figure 5.4) is more complicated, but

still relatively simple: a goal is stated, an hypothesis is generated. It is supported by 2

actions and a sub-hypothesis. Goal 4 (Figure 5.5) includes 2 sub-goal trees supported by

additional hypotheses and actions. Finally, Goal 7 (Figure 5.6) is the most complicated of

the four . The major hypothesis generates a wide, shallow tree consisting of single actions

and sub-goal trees.

A majority of the goals were sequential in that once stated they were pursued until

closure was reached. Goal 4 and Goal 7 are the exception. Goal 4 was interleaved between

83

three other goals during the session. Goal 7 was briefly interrupted to concentrate on Goal

4. Goal 4 represents a tree structure with symmetric subtrees. This , we believe, is because

each sub-goal and hypothesis were similar, i.e. the subject was trying to find the location

of the program and if it was originally installed on his system. The actions supporting

the hypothesis involve an arsenal of search mechanisms, typically a software tool. Each

of the hypotheses and actions were simple enough to interrupt (for example, during the

time required for the search tool to return a result) and go on to another goal. Using this

arsenal of techniques for resolving hypotheses, our subject was able to easily return after

finishing another goal and go on with the next step in completing goal 4.

In contrast , goal 7 is much more complicated. This, we conjecture, results in the

fairly wide and shallow tree structure of Figure 5.6. Each ofthe sub-goals, hypotheses,

and actions are complex enough that interruption could cause the goal or hypothesis to

be forgotten. Goal 7 was interrupted during installation of the client program. In this

case, cognitive load was not overwhelming, the engineer was able to return to goal 4.

A fairly obvious process falls out of the analysis of these goals. In the simple cases we

see goals resolved using a common pattern: goal-hypothesis-action. Goal 2 (Figure 5.4)

contains two of these triads. In more complex cases, we see the triad as part of subgoals and

hypotheses. Goal 4 (Figure 5.5) has three, while goal 7 includes five. If we were to consider

abandonment, failure , and confirmation of hypotheses as actions, there would be many

more such triads. The overall dynamic process consists mainly of these triads applied over

time. This straight forward process is interesting because, although our subject took an

opportunistic approach to understanding, he proceeded in a straightforward, methodical

manner consisting of sequences of these triads with a small amount of interleaving.

5.2.2.4 Overall Comprehension Process

Figure 5. 7 shows the sequence of all 20 goals. Circles represent the goals and arrows

indicate sequence. A solid arrow between two goals means the goal was complete before

the next goal was begun. A dashed arrow represents interleaving between goals. The

figure shows an obvious understanding process. Goals are resolved sequentially unless

interleaving of a fairly simple goal can be accomplished efficiently. The subject had expe-

rience with the domain and the task. He applied an arsenal of techniques to resolving the

84

Interle aved
processes

Process
Complete

ADl- Goal Seque nce

Figure 5. 7: Opportunistic Processes: Goal Completion

goals he generated. If he perceived an hypothesis or goal to be too difficult to resolve, he

usually abandoned it in favor of a more efficient alternative. If the return on investment

of resolving a hypothesis was low, the hypothesis or goal was abandoned. If the goal

or hypothesis seemed relatively easy to resolve, he usually pursued it as long as it was

efficient and as long as it seemed the results would be worth the effort .

Goals and hypotheses are important facets of program understanding. Understanding

concentrated on system level aspects (file structures, libraries, Makefiles, etc.). The subject

was an expert in the domain and had prior experience with the code and the porting task,

as he had ported similar programs before.

While our results are based on the analysis of a single subject's protocol, several

interesting results can be used as the basis of more controlled experiments:

1. Goal/hypotheses resolution is a dynamic process consisting of sequences of goal-

hypothesis-action triads. Interleaving of goals is rare and occurs when the cognitive load

of doing so is not overwhelming.

2. Experts pursue hypotheses and goals that are easy to resolve and tend to abandon

those that are time consuming with little return on investment , confirming Vessey's ear-

85

lier research results [53] .

3. Experts have an arsenal of possible hypotheses and supporting actions they employ

to understand code. This represents itself in the series of slightly modified hypotheses

associated with goals (e.g. Goal 4)

5.2.3 Combined Systematic & Opportunistic Processes

A third comprehension process was discovered during the analysis of subject EN2 's

protocol which falls somewhere between the opportunistic and systematic processes.

EN2's task was to add an enhancement which consisted of providing safety check func-

tionality. (Previously the code did not check for "disk full" under certain conditions when

a new file needed to be saved to disk. EN2 added the safety check as an enhancement.)

Because EN2 's process was sometimes systematic and sometimes opportunistic, it

was difficult to pictorially represent his processes using either of the graphical methods

used in the previous processes subsections. Instead, we present a hierarchical list of high-

level episodes and related sub-episodes.

5.2.3.1 Systematic/Opportunistic Process Episodes

The following hierarchical list of episodes illustrates the combination of systematic
and opportunistic understanding.

• El: Set up environment, determine task approach.

• E2: Step through program as it executes until reaching a point where enhancement
should go. Determine code to be examined more carefully.

• E3: Determine where to put error message for safety check.

- E3.1 - E3.3: Step through code, generate hypothesis, determine message does
not go there.
E3.4: Hypothesize location to put message.
E3.5: Determine where to put code and what to implement.

* E3.5.1: Read block of code, determine where to put message.
* E3.5.2: Determine if other procedures call routine to be changed.

E3.5.2.1: Propose solution
E3.5.2.2- E3.5.2.4: Examine procedure to determine if proposed change
will affect it . (Includes generating hypotheses about whether each ex-
amined location will or will not be affected.)
E3.5.2.5: Determine if rest of modules are similar and do not need
detailed understanding.

86

* E3.5.3: Investigate specific solution.
E3.5.3.1: Determine strategy for finding information, eliminate alter-
natives.
E3.5.3.2: Determine if change to module code at this level will produce
desired behavior.
E3.5.3.2.1: Examine Data structure and associated code,

understand functionality.
E3.5.3.2.2: Determine which code modifies data

structure.
E3.5.3.2.3: Examine procedure, understand.
E3.5.3.2.4: Chunk and store what has been learned up to

this point.
E3.5.3.2.5: Determine calling structure.
E3.5.3.2.6: Eliminate/refine possible solution.
E3.5.3.2.7: Study code, including eliminating possible

solutions, searching for similar, existing
code.

E3.5.3.2.8: Eliminate/Refine possible solution
E3.5.3.2.9: Determine solution, i.e. code change to

specific module.

• E4: Make changes to code

E4.1: Set up environment
E4.2: .Add Code
E4.3: Determine next task
E4.4: Add Code

EN2 has several systematic/opportunistic episodes including E3.1 through E3.3 in

which he single steps through the code (using a debugger tool) while he generates hypothe-

ses and eliminates possible locations for the enhancement. Episodes E3.5.2.1 through

E3.5.2.4 also include both systematic examining code and making hypotheses about

whether the proposed change will impact code at each location he considered. EN2

is never completely systematic, nor completely opportunistic.

5.2.4 Interpretation and Conclusions on Comprehension Processes

We identified three comprehension processes: systematic, opportunistic, and sys-

tematic/opportunistic. In systematic processes we see well-defined sequences of actions

repeated during understanding. These sequences can be aggregated until an overall pro-

cess of code comprehension for specific maintenance tasks is identified. Opportunistic

87

processes consist of triad sequences of goals-hypotheses-actions. They are opportunistic

in that hypotheses are resolved based on perceived relevance. Systematic/opportunistic

processes include a combination of systematic and opportunistic understanding.

While we expect to see elements of each of these processes during program understand-

ing, we did not see enough similarities across subjects to warrant further investigation. It

appears that processes are dependent on individual strategies and preferences.

5.3 Hypotheses- Level 1

In section 5.2.2, we investigated the role of hypotheses in opportunistic understanding.

Here we consider the types of hypotheses programmers generate, the role they play in

switching between levels of abstraction, and whether task, expertise, or the amount of

prior experience with the code impacts the number and types of hypotheses generated.

Switching between models can occur as the result of an hypotheses. For example,

an hypothesis such as "I bet they use a bubble sort?" (a situation model hypothesis)

may be followed by reading code comments (a program model action) to find the code

implementing the sort. The hypothesis generated in the situation model was followed by

a switch to a different model. We were not only interested in whether task, expertise, or

accumulated knowledge influenced how often hypotheses generated a switch to a different

model but also which models were most frequently the source or target of a switch in

connection with an hypothesis.

We also wanted to investigate whether or how often comprehension according to

Brooks' model occurred among the subjects. This model of successively refining hypothesis

from higher levels of abstraction to lower levels until actual code is reached for hypothesis

verification occurs in only one direction: top-down.

When comparing the number of hypotheses to the number of knowledge references, it

appeared that individuals with more expertise tended to make more knowledge references

per hypothesis than less expert subjects. We developed a potential indicator of exper-

tise, the HK-Ratio, which looks at the relationship between hypotheses and references to

knowledge.

This section presents the results of the hypothesis analysis for all subjects. First,

totals for types of hypothesis within each model for all subjects is given. The major results

88

on hypothesis types for each model grouped according to task, expertise, and accumulated

knowledge follow. Hypothesis generated switching results are then presented. Finally, we

present the HK-Ratio analysis and results.

5.3.1 Hypothesis Type: Overall Frequencies & Model Frequencies by Task,

Expertise, & Accumulated Knowledge

5.3.1.1 Hypothesis Type: Overall Frequencies

What are the types of hypotheses programmers make? Do they occur at all levels

of the integrated model? Are there any hypotheses that are made more frequently than

others? To answer these questions consider Table 5.12. It contains a description of each

hypothesis type occurring in the eleven protocols. The tag column gives each hypothesis

type a unique identifier. Hypotheses are classified as Top-Down, Situation, and Program

model actions. Table 5.12 provides frequencies and relative frequencies for each hypothesis

type (most frequent first).

For the top-down model, the most frequent type of hypothesis is about functionality

(OPH1). This is consistent with results on action-types (section 5.1.1) and information

needs (see section 5.6 below). The second most frequent type of action associated with

the top-down model was generation of hypotheses about functionality. The most frequent

type of information need concerned the need for domain concepts embodied in the pro-

gram. Location/Status/Description/cause of error (OPH18) is the second most frequently

found type of hypothesis for top-down model construction because of the preponderance

of subjects working on debugging tasks (4 out of 11). This supports a conjecture that

corrective maintenance requires a high number of hypotheses as a strategy for tracking

down defects. Generating hypotheses regarding level and structure of the code (OPH16)

is the third most frequent type of hypothesis. This is consistent with the results on ac-

tion type analysis because "Determining next program segment to examine" is the sixth

(out of 21) most frequent action found in the top-down model. During the programming

sessions, trying to decide what was important to understand was a common goal. Fre-

quently, this was associated with generating hypotheses about code structure in order to

focus attention.

89

For program model hypotheses, the most frequent type concerned code correctness

and causes and locations of errors (SYS16). Again, we believe this is due to the number of

corrective maintenance tasks. The second most frequent type of hypothesis, statement ex-

ecution order/state (SYSH6), compares well to the program model action references where

the second most common action is to examine the next module in sequence. Hypotheses

about program state are natural when one is traversing the code sequentially. Hypotheses

about variable values and structure (third and fourth most frequent hypothesis type) rep-

resents the need to understand data and data flow. This fits well with Pennington's [36]

explanation of the Program Model.

For situation model hypotheses, functionality hypotheses have the highest frequency.

The connection between hypotheses and other action types is not obvious here. However,

this parallels hypotheses about function at the top-down Model level. We can conclude

that the reason situation model hypotheses about functionality are so frequent is because

making connections between top-down and situation model were the focus of these hy-

potheses. This conclusion will be further supported when looking at hypotheses switching

behavior (Table 5.16). Since the most common type of top-down hypothesis concerns

functionality, it follows that situation model hypotheses should be about functionality if

the main purpose is to draw the connection between the top-down and situation models.

90

Table 5.12: Hypothesis-Type Frequencies- All Tasks
Total Percent

Model Tag Hypothesis- Type Refers of Ttl
Top-Down OPHl Domain Procedure functionality /Concepts 65 27%
(Domain) OPH18 LocationfStatusfdescriptionjcause of error 34 14%
Model OPH16 Level & structure of codefscope 28 12%

OPH9 Permissions/Environment set correctly/
Tool functionality 16 6%

OPH8 Program functions correctly 14 6%
OPH14 Available functionality 14 6%
OPH13 Numberjtypejlocation ot hie 10 4%
OPH5 Existence of installed (running) program 8 3%
OPH2 Variable functionality ;domain concepts 7 3%
OPH3 Rules of discourse; Expectations 7 3'7o
OPH6 Existence of specific functionality 7 3'7o
OPH7 Numberjtypejexistencejlocation of libraries 7 3%
OPH12 How to duplicate warnings/errors; relative ·

difficulty to set-up/test errors 6 2%
OPH4 1/0 behavior 5 2%
OPHlO Location to add functionality 4 2%
OPHll Comparison of functionality at high level 4 2%
OPHl7 Design Decisions/Modifications 4 2%
OPH15 Approaches/relative difficulty in making

change 1 0%
OPH19 Current location 1 0%

Program SYSH16 Code correctness, cause/location of error 29 17%
Model SYSH6 Statement execution order ;state 25 14'7o

SYSH7 Variable valuefdefaults 22 13%
SYSH4 Variable structure 17 10'7o
SYSH2 Function/procedure function 15 8'7o
SYSH1 Variable function 14 8'7o
SYSH10 Syntax meaning 9 5'7o
SYSH18 Location to add code/alternatives 7 4%
SYSH5 Locationjtypejexistence of function call 5 3'7o
SYSH14 Code block function 5 3'7o
SYSH8 (Non-)Existence of construct (var;codeJ 4 2%
SYSH13 Code block/procedure comparison 4 2'7o
SYSH19 Code block boundary location 4 2'7o
SYSH20 Paramsjtype definitions in procedure call 4 2'7o
SYSHll Design decisions 3 2%
SYSH9 Variablefconstruct equivalency 2 1%
SYSH12 Variable definition & it 's location 2 1%
SYSH17 Changes made correctly 2 1%
SYSH3 Procedure/function call behavior 1 1%
SYSH15 Relevance of error in Makefile 1 1%

Situation SITH3 Function/procedure function, call function 44 31%
Model SITH7 Existence of functionality 1 algorithm/

variable 24 17%
SITHl Variable function 23 16'7o
SITH2 Functionfcode block execution orderjstate 18 13%
SITH5 Cause of buggy behavior 12 8'7o
SITH8 Program function 12 8%
SITH4 Effect of running program 6 4'7o
SITH6 Comparison of termsjacronyms

/functionality 5 3%
SITH9 Design Decisions 0 0%

91

5.3.1.2 Hypotheses Types - By Task

One of the questions we are interested in answering is whether the types of hypothesis

we see within each model are different for different tasks. The tasks are adaptive main-

tenance, corrective maintenance, enhancement, and general understanding. Appendix B

(section B.2.1) contains a separate table for top-down (Table B.3), program (Table B.4),

and situation model (Table B.5) hypotheses organized by task. These tables contain the

absolute and relative frequencies of each type of hypothesis for each group of subjects

working on a particular task. Additional analysis is also provided in the appendix. The

main results are summarized in this section.

For corrective maintenance, hypothesis generation may be predictable in that at all

levels (top-down, program, and situation models), hypotheses about code correctness dom-

inate the type we see (OPH18 -location/status/description/cause of error; SYSH16, code

correctness, cause/location of error;). The same appears to be true about adaptive main-

tenance, but here the influence may be more related to their specific task and where these

subjects were focused at the time of the programming session. Not much can be said

about enhancement because of the low number of hypotheses generated at each level. Fi-

nally, for general understanding, strategy (systematic vs. opportunistic) seems to be the

dominant factor . Most hypotheses generated in the program model were made by G 2

(systematic understanding), while most of the top-down hypotheses were generated by

G 1 (opportunistic understanding).

We were not able to conclude much about the types of hypotheses programmers

make while working on a particular maintenance task. However, we may be able to

discern patterns in the number of hypotheses generated within each model. Questions here

concern how the number of hypotheses in the program, situation, and top-down models

vary depending on the task and whether the variations are particular to each maintenance

task. Table 5.13 contains the total count and relative frequencies of hypotheses for each

task type. It also has total counts on a per subject basis within task groups for each

model.

Table 5.13 shows that adaptive maintenance has very few program model hypothe-

ses and the majority of the hypotheses were at the top-down level. This is very close

to the behavior we saw for these subjects for action types (see Table 5.4): the adaptive

92

Table 5.13: Task Hypotheses by Model- Total & Per Subject Counts with Total Frequencies
Model Counts Adaptive Correct ive Enhancem ent General
& Frequencies Maint. Maint . Understanding

Model 2 Subjec ts 4 Subjects 2 Subjects 3 Subjects
Top-Down Total 65 77 18 82

Frequency 71 % 37% 28% 41%
Situation Total 20 64 5 55

Frequency 22% 31 % 8% 27%
Program Total 6 65 41 63

Frequency 7% 32% 64% 32%
All Ttl Hypotheses 91 206 64 200
Top-Down Ttl Per Subject 32 19 9 27
Situation Ttl Per Subject 10 16 2.5 18
Program Ttl Per Subject 3 16 20.5 21
Total Per Subject Hypoth. 45 51 32.0 67

maintenance subjects had 67% of their actions in the top-down model, 14% in the sit-

uation model, and 19% in the program model. Hypotheses generated by the corrective

maintenance subjects were fairly evenly distributed across all three models. Again, this

is very similar to the behavior we saw for this group's action types (Top-Down Actions

= 33%; Situation Model Actions= 28%; Program Model Actions = 39%). Enhancement

hypotheses occurred mainly at the program model level, which also matches the action-

type frequencies . However , General Understanding hypothesis generation does not follow

the same pattern. General Understanding hypotheses occur slightly more often at the

top-down level while actions occur slightly more often at the program model level. For

understanding, strategy (systematic vs. opportunistic) seems to be the dominant factor.

The subject who took the systematic approach generated significantly more hypotheses

at the program model level while the opportunistic subject generated mostly top-down

hypotheses. Not much has been said about the third subject, Ll, in the General Under-

standing group. This is because he had roughly the same number of program, situation,

and top-down model hypotheses, with a slight preference for program model. The types

of hypotheses within each model were very similar to the subject who applied systematic

understanding. We believe that (Ll 's) lack of domain knowledge would tend to tie him

to hypotheses about program construct functionality and statement execution order.

Looking at the P er Subject data in Table 5.13 we can see that overall, general under-

standing needs the most hypotheses and enhancement needs the least.

93

5.3.1.3 Hypotheses Types By Expertise

The next question to ask is whether expertise affects the types and frequencies of

making hypotheses. We distinguish between three types of expertise: Language Only, Do-

main Only, and Language-and-Domain. Appendix B, section B.2.1.2 contains a separate

table for top-down (Table B.6) , program (Table B. 7) , and situation model (Table B.8)

hypotheses organized by expertise level. These tables contain the absolute and relative

frequencies of each type of hypothesis for each group of experts. Additional analysis is

also provided in the appendix. This section summarizes the main results.

Conclusions about the role of expertise in making hypotheses are spotty. For top-down

hypotheses, very few were made by language-only experts (24 hypotheses) , the domain-

only experts had hypotheses related to debugging tasks (OPH8,0PH12,0PH18) 40% of

the time, indicating that these hypotheses were task rather than expertise related. The

top-down hypotheses generated by language-and-domain experts were generated 84% of

the time by a single subject.

In the program model, language-only experts generate hypotheses about program

control-flow (SYSH6) and syntax meaning (SYSHlO) reflecting Pennington's [36] conclu-

sion that when code is unfamiliar, programmers tend to build control-flow views of the

program first. Domain-only experts had mostly program model hypotheses about code

correctness since three of four subjects were working on debugging tasks. No conclu-

sions can be drawn for the language-and-domain experts since task seems to be the major

influence for this group of subjects.

Language-only experts tend to make hypotheses that are useful for understanding

control-flow (SITHl, variable function; SITH3, function/procedure function call function).

These hypotheses support building a mental representation bottom-up by abstracting in-

formation at the program model level into the situation model level. Nothing could be

concluded about hypothesis generation in the situation model for domain-only experts be-

cause they were mostly working on corrective maintenance tasks. Similarly, no conclusions

could be made about domain-and-language experts as they used very dissimilar types of

hypotheses for their tasks.

Next we would like to look at the total number of hypotheses within each model

based on expertise. Questions here concern how the number of hypotheses in the program,

94

situation, and top-down models vary depending on expertise and whether the variations

are particular to each type of expertise. Table 5.14 contains the total count and relative

frequencies of hypotheses for each group of experts. It also has total counts on a per

subject basis within the groups for each model.

Table 5.14: Expert Hypotheses by Model- Total & Per Subject Counts with Total Fre-
quencies

Model Counts Language Domain Language fj
& Frequencies Only Only Domain

Model 2 Subjects 4 Subjects 5 Subjects
Top-Down Total 24 llO 108

Frequency 24% 53% 42%
Situation Total 35 53 56

Frequency 35% 26% 22%
Program Total 40 44 91

Frequency 41% 21% 36%
All Ttl Hypotheses 99 207 255
Top-Down Ttl Per Subject 12.0 28.0 21.6
Situation Ttl Per Subject 17.5 13.0 11.2
Program Ttl Per Subject 20.0 ll.O 18.2
Total Per Subject Hypoth. 49.5 52.0 51.0

From the table, we can say that the language only experts tend to generate mostly

program and situation model hypotheses, domain experts generate more top-down model

hypotheses than program and situation model hypotheses. Domain and language experts

generate slightly more top-down references than program model references and the least

amount of situation model hypotheses, not only among themselves but across all three

groups. Thus, it appears that expertise influences which model experts tend to generate

hypotheses in, but not necessarily which types of hypotheses they make.

The last row in Table 5.15 shows that there was very little difference in the total

number of hypotheses generated by each group.

5.3.1.4 Hypotheses Types By Amount Of Accumulated Knowledge

This section summarizes the main results about whether the amount of accumulated

knowledge influences the making of hypotheses. Appendix B, section B.2.1.3 contains

a separate table for top-down (Table B.9) , program (Table B.10) , and situation model

(Table B.ll) hypotheses organized by amount of accumulated knowledge. These tables

contain the absolute and relative frequencies of each type of hypothesis for each group of

95

subjects with different amounts of prior knowledge of the software. Additional analysis is

also provided in the appendix.

For top-down hypothesis generation, subjects with little prior accumulated knowledge

about the code they maintain tended to generate a high percent of hypotheses about

domain concept (OPHl) connections to known program functionality. Those with some

accumulated knowledge tend to generate more of these types but at a lower rate than the

first group. Those who have been working with the code the longest, not only generated

this type of hypothesis at a lower rate than the previous two, it was also not the most

common type. This trend appears to be related to amount of accumulated knowledge.

Questions about connections of domain concepts to known program functionality are much

more appropriate for people who are new to the code. If one has worked with the code

for several years, these type of questions would have been answered long ago.

The subjects with little accumulated knowledge who generated the majority of the

program model hypotheses were C2, C3, and EN2. All three subjects were working

on finding and fixing defects, which may be why the second most frequent hypothe-

sis (SYSH16) was about code correctness and location of defect (the most frequent was

SYSH2, purpose of function). Because all were working on similar tasks and there were

a small number of program model hypotheses generated by this group, it is difficult to

draw conclusions about the effect of having little accumulated knowledge on generating

program model hypotheses.

Hypotheses about the order of statement execution (SYSH6) was the most common

type of hypothesis generated by those with some accumulated knowledge. However, the

majority of these were generated by a single subject. Other common types of hypotheses

generated by this group in the program model were about variable structure (SYSH4)

and function (SYSHl). These subjects had seen only requirements and perhaps design

documents or had done some work on the code already. Their control-flow view of the

code was necessarily incomplete. The types of hypotheses they generated reflected their

need to build the control flow view.

Accumulated knowledge can affect the types of situation model hypotheses generated.

The most common type of hypotheses generated by those with little or some accumulated

knowledge were about the purpose of a function or function call (SITH3) . The goal of

96

Table 5.15: Accumulated Knowledge: Hypotheses by Model-Total & Per Subject Counts
with Total Frequencies

Model Counts Little Some Significant &
& Frequencies Ace. Knowledge Ace. Knowledge Ace. Knowledge

Model 4 Subjects 4 Subjects 3 Subjects
Top-Down Total 114 61 67 .

Frequency 52% 28% 53%
Situation Total 56 64 24

Frequency 26% 30% 19%
Program Total 48 91 36

Frequency 22% 42% 28%
All Ttl Hypotheses 218 216 127
Top-Down Ttl Per Subject 28.5 15.3 22 .3
Situation Ttl Per Subject 14.0 16.0 8.0
Program Ttl Per Subject 12.0 22.7 12.0
Total Per Subject Hypoth . 54.5 54.0 42.3

forming connections between the program and domain models can be satisfied by using

the situation model as a bridge between top-down and program model representations.

Situation model hypotheses generated by those with significant accumulated knowledge

were mainly about cause of buggy behavior (SITH5) and the effect of running the program

(SITH4). This, we believe, is related to task since all but one of these hypotheses were

generated by the. adaptive maintenance subjects.

Obviously, these conjectures must be validated since our sample size is small. We need

further experiments in which task and expertise is varied and accumulated knowledge is

strictly controlled.

We are also interested in looking at the total number of hypotheses within each model

based on amount of accumulated knowledge. Questions here concern how the number of

hypotheses in the program, situation, and top-down models vary depending on the amount

of prior experience with the code and whether the variations are particular to each group

of programmers with little, some, and significant amounts of accumulated knowledge.

Table 5.15 contains the total count and relative frequencies of hypotheses for each group

of subjects. It also has total counts on a per subject basis within the groups for each

model.

There are no discernible patterns within each model across the groups of subjects with

differing amounts of accumulated knowledge. As discussed above, much of the behavior

we saw could have been influenced by task. Overall, the table shows that there is a drop in

97

the number of hypotheses generated as the amount of accumulated knowledge increases.

The difference between those with little accumulated knowledge and those with some is

slight. The difference between those with some accumulated knowledge and those with

significant prior experience is greater. We expect those with more experience to make

more use of the knowledge they have acquired about the software.

5.3.2 Hypothesis Generated Switching Behavior

The integrated model of program comprehension assumes that programmers build

mental representations of software at different levels of abstraction. A key part of this

model encompasses the idea that these different levels are built essentially in parallel with

each other. A method to determine this is to analyze how often focus on a particular

model is changed to another. One way to change models is as the consequence of posing

an hypothesis which requires actions at a different model level. We investigate this next .

5.3.2.1 Hypotheses Generated Switching- All Subjects

Table 5.16 reports the number of switches caused by an hypothesis (for all subjects)

related to a different comprehension model component. The row indicates the starting

model and the column represents the ending model.

The table provides the total number of hypotheses in each model (column labeled

Number of Hypoth eses) to highlight the difference between the total number of hypotheses

generated in each model and those that actually caused a switch. For example, there were

242 total top-down model hypotheses, but only 88 of these were associated with a switch

to a different model (49 + 39). The total number of switches from a particular model to

each of the other models is 266. This represents 46% of all hypotheses generated. That is,

almost half the hypotheses result in model switches. We include the proportion of the 266

hypotheses for each type of switch to illustrate the distribution of hypothesis generated

switches across models.

Table 5.16 shows that switching caused by hypotheses is pretty evenly distributed

among the three models. This supports the theory that, in general, programmers switch

between models and that hypotheses are important for building mental representations at

different levels of abstraction. As we will shortly see, tendencies to focus at one or more

98

Table 5.16: Hypotheses Switching Behavior - By Model Component for all Subjects (11)
Number of To Model
Hypotheses From Top-Down Situation Program
All Subject Model Model Model Model

242 Top-Down N/A 49 39
18% 15%

144 Situation 56 N/A 41
21% 15%

175 Program 36 45 N/A
14% 17%

levels may be affected by task, expertise, amount of prior experience with the code, and

strategy. We can say that hypotheses are related to model switching and when looked at

collectively, switching occurs at a fairly even rate across models.

5.3.2.2 Hypotheses Switching- By Task

One of the questions we are interested in answering is whether the type of task

affects hypothesis generated model switching behavior. Table 5.17 contains the number of

switches caused by an hypothesis for each group of subjects working on a particular task.

Appendix B, section B.2.2.1, provides more details on the results.

One important result from the analysis is that for two of the tasks (corrective mainte-

nance, and general understanding) we can clearly see a strategy of employing hypotheses

to generate a program and top-down model using the situation model as a bridge. This is

important because this confirms Brooks' [9] theory of program comprehension. It states

that programmers construct a mental representation by recreating mappings from the

problem domain through several intermediate domains into the programming domain.

This mapping process is driven by hypothesis generation. Our results confirm this general

process for corrective maintenance and general understanding since these subjects often

went from the top-down model (problem domain) to the program (programming domain)

using the situation model as the intermediate domain.

Another question concerns whether task affects how often an hypothesis generated a

switch. 40% of the adaptive maintenance hypotheses caused switches; corrective mainte-

nance had 52% hypothesis generated switches; 39% of the enhancement hypotheses caused

switches; and 49% of the general understanding hypotheses caused switches. These num-

99

Table 5.17: Hypotheses Switching Behavior- By Task
TTl No . of To Model
Hypothes es: From Top-Down Situation Program
Adaptation Model Model Model Model

65 Top-Down N/A 12 3
33% 8%

20 Situation 13 NfA 2
37% 6%

6 Program 3 3 N/A
8% 8%

Ttl. No . of To Model
Hypotheses : From Top-Down Situation Program
Corrective Model Model Model Model

77 Top-Down N/A 19 16
18% 15%

64 Situation 23 N/A 17
21% 16%

65 Program 12 21 N/A
11% 19%

Ttl. No . of To Model
Hypotheses : From Top-Down Situation Program

Enhancement Model Model Model Model
18 Top-Down N/A 0 8

0% 32%
5 Situation 1 NfA 4

4% 16%
41 Program 8 4 N/A

32% 16%
Ttl. No . of To Model
Hypotheses: From Top-Down Situation Program
Understand Model Model Model Model

82 Top-Down N/A 18 12
18% 12%

55 Situation 19 N/A 18
19% 18%

63 Program 13 18 N/A
13% 18%

bers are too close to conclude that task affects the frequency of hypothesis generated

switches.

5.3.2.3 Hypotheses Switching - By Expertise

The next two questions are concerned with whether expertise affects how often hy-

potheses generate switches and whether hypothesis generated switching is influenced by

expertise. Table 5.18 contains the number of switches caused by an hypothesis for each

level of expertise. Appendix B, section B.2.2.2, provides more details on the results.

For subjects with language only expertise, 68% of all hypotheses involved a model

switch. This is high compared to "domain only" and "language and domain" experts whose

100

Table 5 18· Hypotheses Switching Behavior - Expertise
Ttl. No. of To Model
Hypotheses : From Top-Down Situation Progmm

Language Model Model Model Model
24 Top-Down N/A 9 7

16% 12%
35 Situation 12 N/A 11

21% 19%
40 Program 5 23 N/A

9% 13%
Ttl. No . of To Model
Hypotheses: From Top-Down Situation Progmm

Domain Model Model Model Model
110 Top-Down N/A 16 16

17% 17%
53 Situation 19 N/A 14

20% 15%
44 Program 13 17 N/A

14% 17%
Ttl. No. of To Model
Hypotheses: From Top-Down Situation 1 Progmm

Language/ Domain Model Model Model Model
108 Top-Down N/A 24 16

21% 14%
56 Situation 25 N/A 16

22% 14%
91 Program 18 15 N/A

16% 13%

hypotheses generated switches at a much lower rate (46% and 45%, respectively). It might

be that as expertise increases, strategies other than forming and resolving hypotheses may

be used. For example, use of domain knowledge to make connections to the program and

situation models is one such strategy. If the domain is familiar , the number of times

a switch occurs (as a result of an hypothesis) goes down because they "just know" the

answer without having to confirm it by looking at specific code. Thus, while experts

make just as many hypotheses as non-experts, experts can make hypotheses in one model

and not necessarily have to switch models to confirm. (Compare Figure C.38 of AD2, a

domain only expert to Figure C.40 of Ll, a language only expert. These figures of their

hypotheses sequences show that AD2 made approximately 16 hypotheses in the top-down

model before switching to the program model, while Ll had switched 8 times over the

course of 16 hypotheses.) Domain novices may have to do much more switching as a

result of an hypothesis. They do not have the experience necessary to be confident about

answers without actually finding all evidence to resolve them.

101

Language only experts tend to switch more often from the program and top-down

models into the situation model and from the situation model into the program and top-

down models. Hypothesis sequence figures in Appendix C show this behavior was common

for language only experts.

Domain only experts switched pretty evenly across all models. This may be because

they have enough domain knowledge to make hypotheses at the domain level which they

want to verify at the program model level. In order to do this, they can approach hy-

pothesis resolution by decomposing the domain into lower-level expected functionality and

using the situation model as an intermediate step into the program model.

Domain and language experts tend to switch more often between top-down and situa-

tion models or top-down and program models than between program and situation models.

Again, this probably has to do with the ability to make direct connections between the

top-down and program models.

5.3.2.4 Hypotheses Switching - By Accumulated Knowledge

The last question for hypothesis switching behavior is whether hypothesis caused

switching behavior is influenced by amount of accumulated knowledge. Table 5.19 contains

the number of switches caused by an hypothesis for each level of expertise. Appendix B,

section B.2.2.3, provides more details on the results.

Subjects with little accumulated knowledge about the system they were working on

switched models after generating an hypothesis more than those with significant accu-

mulated knowledge. 48% of all hypotheses generated by subjects with little experience

were followed by a switch to a different model. For those with some experience, 51% of

hypotheses resulted in a switch. In contrast, those with significant knowledge had only

40% of all their hypotheses involved in a switch.

It is probable that those with some knowledge use hypotheses more efficiently than

those with little knowledge because they already have partial models from previous expe-

rience. While our sample for subjects with significant knowledge did not give us sufficient

information to draw conclusions, we would expect that they would have fewer overall hy-

potheses generated switches. We also expect they would be able to switch directly to and

from the program model to the top-down model. This is, we believe, because by the time

102

Table 5.19: Hypotheses Switching Behavior -Accumulated Knowledge
Ttl. No . of To Model
Hypotheses : From Top-Down Situation Progrom

Little Mode l Model Mode l Model
114 Top-Down N/A 21 18

20% 17%
56 Situation 24 N/A 12

23% 12%
48 Program 15 15 N/A

14% 14%
Ttl . No . of To Model
Hypotheses: From Top-Down Situation Progrom

Some Model Model Mode l Mode l
61 Top-Down N/A 16 14

14% 13%
64 Situation 19 N/A 23

17% 21%
91 Program 13 25 N/A

12% 23%
Ttl. No. of To Model
Hypotheses : From Top-Down Situation Progrom
Significant Mode l Model Model Model

67 Top-Down N/A 12 7
23% 14%

24 Situation 13 N/A 6
25% 12%

36 Program 8 5 N/A
16% 10%

an engineer accumulates significant knowledge of the program, his mental model will be

close to complete, therefore eliminating the need to generate many hypotheses that need

to be resolved at a different level of abstraction. Also, familiarity with the code will allow

direct jumping from top-down to program models without needing the situation model as

a bridge.

5.3 .3 HK-Ratio - Using Hypotheses and Knowledge to Indicate Ex pertise

As we have seen with action-types, expertise can affect understanding. However, in

this study it was difficult to separate out the influence of prior experience with the code

and prior experience in the domain. T hus, we were interested in discovering a method for

gauging expertise based on the actions we saw. In par ticular , we were interested in the

relationship between use of prior knowledge and making hypotheses.

This relationship can be expressed as the number of hypotheses per number of knowl-

edge references: H K = numb:~;;Jte~~£7'1Jg:~:;::ences. If indeed t he assumption holds that

more experienced programmers make fewer hypotheses and instead use prior knowledge

103

during understanding tasks, taking the number of hypotheses and dividing it by the num-

ber of references to knowledge could serve as an indicator of expertise.

A low HK-ratio means fewer hypotheses than use of knowledge. Table 5.20 contains

HK-ratios for each subject . It shows the total number of hypotheses and references to

knowledge for each model. The HK-ratio is calculated and then a "Rank" is assigned by

HK-ratio value. The lowest HK-ratio receives rank 1, the highest, rank 11. The table

shows HK-ratios for each model level, situation/program model level together, and all

model levels combined. This makes it possible to evaluate whether HK-ratios change by

individual model level as well as across all model levels.

104

Table 5.20: HK-Ratio by Subject
Program &

Subject Program Situation Top-Down Situation Overall
Code Model Model Model Model
AD l Hypo 3 14 23 17 40

Know 19 18 51 37 88
HK .16 .78 .45 .46 .45

Rank 1 7 2 2 2
AD2 Hypo 3 6 42 9 51

Know 8 19 52 27 79
HK .37 .32 .81 .33 .65

Rank 2 3 7 1 4
Cl Hypo 24 17 9 41 50

Know 24 29 6 53 59
HK 1.00 .59 1.50 .77 .85

Rank 6 5 9 6 7
C2 Hypo 12 18 18 30 48

Know 5 17 24 22 46
HK 2.40 1.06 .75 1.36 1.04

Rank 11 10 6 11 9
C3 Hypo 18 7 26 25 51

Know 21 18 38 39 77
HK .86 .39 .68 .64 .66

Rank 4 4 5 4 5
C4 Hypo 11 22 24 33 57

Know 11 28 39 39 78
HK 1.00 .79 .62 .85 .73

Rank 6 8 4 7 6
ENl Hypo 30 4 2 34 36

Know 32 35 19 67 86
HK .94 .11 .11 .51 .42

Rank 5 1 1 3 1
EN2 Hypo 11 1 16 12 28

Know 10 7 31 17 48
HK 1.10 .14 .52 .71 .58

Rank 8 2 3 5 3
Gl Hypo 7 30 54 37 91

Know 14 15 28 29 57
HK .50 2.00 1.93 1.28 1.60

Rank 3 11 11 9 11
G2 Hypo 40 7 13 47 60

Know 28 7 8 35 43
HK 1.43 1.00 1.62 1.34 1.40

Rank 10 9 10 10 10
Ll Hypo 16 18 15 34 49

Know 13 26 15 39 54
HK 1.23 .69 1.00 .87 .91

Rank 9 6 8 8 8

105

Analysis of Overall HK-ratio in Table 5.20 produced interesting results. Three distinct

groups are apparent:

• ENl (HK-ratio = .41), ADl (HK-ratio = .43), EN2 (HK-ratio = .52) , and AD2

(HK-ratio = .63). All subjects were either domain or domain and language experts.

Three of the four subjects (ADl , AD2, and ENl) had significant accumulated

knowledge about the code they were working on.

• C3 (HK-ratio = .65), C4 (HK-ratio = .73), Cl (HK-ratio = .85), Ll (HK-ratio =
.91), C2 (HK-ratio = 1.04)

This group contains all the corrective maintenance subjects and one General Un-

derstanding subject. Also, both language only experts (Cl and Ll) were in this

group.

• Gl (HK-ratio = 1.40) and G2 (HK-ratio = 1.74)

Both subjects worked on General Understanding tasks and both had domain and

language expertise. Additionally, one subject had little prior experience with the

code while the other had some experience.

Since the amount of accumulated knowledge seems to play an important part in code

understanding, we wanted to determine if any patterns exist related to both the amount

of accumulated knowledge and type of expertise. Tables B.23, B.24, B.25, and B.26 in

Appendix B contain matrices for program, situation, top-down, and combined program

and situation HK-Ratios grouped by accumulated knowledge and expertise. The overall

HK-ratios (Table 5.21) for accumulated knowledge and expertise table are presented below.

Additional analysis regarding the HK-Ratio can also be found in the appendix.

T bl 5 21 0 a e vera 11 HK R . R nk" - atw a mgs
Accumulated Language Domain Language & Domain
Knowledge Expertise Expertise Expertise
Little 5:C3 ll:Gl

9:C2 3:EN2
Some 7:Cl 6:C4 10:G2

8:11
Significant 4:AD2 2:AD1

l:ENl

106

Those with the most accumulated knowledge and highest level of expertise

(ENl,ADl,AD2) have the lowest HK-ratio. They generate fewer hypotheses and make

greater use of the knowledge they already have. Those with little or some accumulated

knowledge and language only expertise (Cl,Ll) have higher rankings . They make minor

use of prior knowledge because they do not possess enough of this prior knowledge.

While we are able to see some patterns based on accumulated knowledge and exper-

tise, we also found some patterns based on task. The highest HK-ratios were seen with the

two General Understanding subjects and is probably more influenced by task rather than

expertise. It is interesting to note, however, that both subjects had either little or some

accumulated knowledge, which could also be raising the HK-ratio. Making hypotheses

while understanding new code may be a key strategy when the amount of accumulated

knowledge is slight.

The corrective maintenance subjects were clustered around the middle ranks (between

5-9) . Three of the four subjects were domain experts, but all had either little or some

amount of accumulated knowledge. We conjecture that corrective maintenance requires a

high number of hypotheses as a strategy for tracking down and fixing defects.

We also wanted to see how the HK-ratio corresponds to our original classification

of expertise. Overall, subjects with low HK-ratios were originally classified as either

domain only or domain and language experts and the majority of these had significant

prior experience with the code. Subjects with little or some accumulated knowledge had

much higher HK-ratios, except for one subject (EN2) who spent the majority of his time

debugging a recent enhancement.

5.4 The Role of Model Components in the Integrated Model- Level 1

One of the core tenets of the Integrated Model is that programmers build their mental

model of the application at all three levels simultaneously. If this is true, we should find

switches to and from all models. (Top-down understanding would preclude switches from

program and situation models up to the domain model, while bottom-up understanding

would not show switches from the domain model down to the situation and program

models.)

107

Although the integrated model predicts switching between all levels of abstraction,

we would also expect to see preferences for specific models based on the size of the software

to be understood. (For example, the nature of the program model is to look at code line

by line, which is not feasible for software hundreds of thousands of lines long.)

Table 5.22 (itself a refinement of Table B.28 in Appendix B) shows that we do indeed

find multi-directional switching to and from all models. As before, there are other obvious

questions related to the role of switching and code size:

• Does model switching show specific patterns depending on expertise, accumulated

knowledge, or type of task?

• Does the amount of time spent in each model component depend on the size of

software with which the programmer is working?

5.4.1 Switches Between Models

Switches are defined as a change in focus from one level of abstraction to another. A

switch occurs from any one of the three models into any other model except the source. (It

makes no sense to switch into the model if you are already there.) Previously we presented

results on switches caused by hypotheses. Hypotheses are a specific type of action. In

this section we report on switches caused by any action. We do not distinguish between

types of actions . A switch occurs when the subject is performing an action in one model

and the subsequent action occurs in a different model. Table 5.22 shows model switches

by task and expertise.

108

Table 5.22: Action Switches - Absolute & Percent of Total Switches by Task & Expertise
Model Switches - All Subjects

Top-Down Situation Progmm
Task Expertise Model Model Model Model

Adaptive Domain Top-Down N/A 14 15
(1 subject) Only 16% 17%

(Total Situation 15 NjA 15
switches 17% 17%

= 89) Program 14 16 N/A
16% 17%

Adaptive Domain & Top-Down N/A 28 33
(1 subject) Language 21% 25%

(Total Situation 28 NfA 5
switches 21% 4%
= 132) Program 34 4 NjA

26% 3%
Corrective Language Top-Down N/A 14 14
(1 subject) Only 12% 12%

(Total Situation 18 NjA 29
switches 15% 25%
= 118) Program 11 32 NfA

9% 27%
Corrective Domain Top-Down N/A 53 79

(3 subjects) Only 12% 18%
(Total Situation 68 NjA 83

switches 15% 19%
= 444) Program 64 97 NfA

14% 22%
Enhancement Domain & Top-Down N/A 15 77
(2 subjects) Language 5% 26%

(Total Situation 28 NfA 51
switches 10% 17%
= 299) Program 64 64 N/A

21% 21%
General Language Top-Down N/A 9 17

Understanding Only 6% 13%
(1 subject) (Total Situation 13 N/A 39

switches 10% 29%
= 134) Program 13 43 NjA

10% 32%
General Domain & Top-Down N/A 21 62

Understanding Language 7% 22%
(2 subjects) (Total Situation 34 NjA 53

switches 12% 19%
= 286) Program 49 67 NjA

17% 23%

109

5.4.1.1 Switches Between Models- Totals By Tasks

The first question we are interested in answering is how task influences switching

behavior. Table 5.23 shows model switching data based on task.

Table 5.23: Action Switches - Absolute & Percent of Total Switches by Task
Model Switches - All Subjects

Top-Down Situation Program
Task Model Model Model Model

Adaptive Top-Down N/A 42 48
(2 subjects) 19% 22%

(Total Situation 43 NfA 20
switches 19% 9%
= 221) Program 48 20 NjA

22% 9%
Corrective Top-Down N/A 67 93

(4 subjects) 12% . 17%
(Total Situation 86 NfA 112

switches 15% 20%
= 562) Program 75 129 NfA

13% 23%
Enhancement Top-Down N/A 15 77
(2 subjects) 5% 26%

(Total Situation 28 NjA 51
switches 10% 17%
= 299) Program 64 64 NjA

21% 21%
General Top-Down NfA 30 79

Understanding 7% 19%
(3 subjects) Situation 47 N/A 92

(Total 11% 22%
switches Program 62 110 NfA
= 420) 15% 26%

Switching between models to build a multi-tiered mental model of a program is im-

portant for all the tasks we studied. Switching during adaptation occurred predominately

between program and top-down models and top-down and situation models (in both direc-

tions), rather than between program and situation models. We can hypothesize that for

adaptive tasks like porting, high level information tied directly to code is more important

than having a thorough low-level understanding as embodied in a complete program and

situation model.

Switches during corrective maintenance occur slightly more often between program

and situation models. For corrective maintenance, having that low level information is

important. It helps to more effectively track down defects and understand them. En-

hancement trends were difficult to define, however, they had much in common with the

llO

corrective tasks. Finally, General Understanding tasks are most likely to be affected by

overall strategy. A line-by-line understanding strategy results in a lot of switching between

program and situation models only. A more opportunistic strategy can result in a lot of

program to top-down or program to situation model switches. What our subjects had in

common was a significant lack of top-down to situation model switches.

One other conjecture can be postulated. Programmers, regardless of the task, switch

between all three levels. In only four cases did the subjects switch between a particular

pair of models under 10% of the (switching) time. Two of these cases involved switches

between program and situation models and the other two were switches from the top-down

model into the situation model. This leaves 20 cases where they switched at a rate of 10%

or higher between pairs of models. (See Table B.28.) Of course, expertise must play a

part and we will examine this influence in the next section.

5.4.1.2 Switches Between Models - Totals By Expertise

The next question we are interested in answering is whether expertise affects switching

behavior. Table 5.24 presents model switching data by level of expertise.

Table 5.24: Action Switches - Absolute & Percent of Total Switches by Expertise
Model Switches - All Subjects

Top-Down Situation Program
Expertise Model Model Model Model
Language Top-Down N/A 23 31

(2 subjects) 9% 12%
(Total Situation 31 NfA 68

switches 12% 27%
= 252) Program 24 75 NfA

10% 30%
Domain Top-Down N/A 67 94

(4 subjects) 13% 18%
(Total Situation 83 NfA 98

switches 15% 18%
= 533) Program 78 113 NfA

15% 21%
Language & Top-Down N/A 64 172

Domain 9% 24%
(5 subjects) Situation 90 N/A 109

(Total 13% 15%
switches Program 147 135 NfA
= 717) 20% 19%

Several hypotheses can be postulated from the analysis of switching behavior based

on expertise. For engineers with language only expertise, most switches were between

111

program and situation models (in both directions.) Lack of domain knowledge means

programmers do not have the tools necessary to easily make connections from the domain

to the code or vice versa. They predominantly build their mental models at the program

and situation model levels until they acquire enough expertise in the domain to be able to

construct a complete top-down model. Domain experts switch between all three models

in all directions. One explanation for this is that domain experts have the knowledge

necessary to build a high-level representation but need the situation model as an inter-

mediate domain in which to decompose known components in the top-down model into

smaller components that are closer to the code. Finally, domain and language experts

switch more often between the program and top-down models in both directions. Domain

and language experts have both the domain and language knowledge that allows them to

make direct connections between program and top-down models without the help of an

intermediate situation model.

5.4.1.3 Switches Between Models - Totals By Accumulated Knowledge

Accumulated knowledge might make a difference in how programmers switch between

models (i.e. make connections between models) during a maintenance task. For example,

if the design of a system is completely understood, the programmer may be switching

predominantly between the top-down model and the program model. To investigate how

accumulated knowledge affects switching behavior, we grouped the switching data by levels

of accumulated knowledge (Little, Some, and Significant) .

Table 5.25 contains model switching data for accumulated knowledge.

The average number of switches per programmer is:

• Little = 175.25

• Some = 122.0

• Significant = 104.3

Thus, there appears to be a declining trend as accumulated knowledge increases and

this may be due to a lesser need for establishing cross references between models. Looking

in more detail, at the models between which programmers switch, switching between

program and situation models (in both directions) occur at different rates depending on

112

Table 5.25: Action Switches - Absolute & Percent of Total Switches by Accumulated-
Knowledge

Model Switches - All Subjects
Accumulated Top-Down Situation Program
Knowledge Mode l Model Model Model

Little Top-Down ~/A 51 161
(4 subjects) 7% 23%

(Total Situation 83 N/A 123
switches 12% 18%
= 701) Program 128 155 N/A

18% 22%
Some Top-Down N/A 54 69

(4 subjects) 11% 14%
(Total Situation 67 N/A 114

switches 14% 23%
= 488) Program 58 126 N/A

12% 26%
Significant Top-Down N/A 49 67

16% 21 %
(3 subjects) Situation 54 N/A 38

(Total 17% 12%
switches Program 63 42 N/A
= 313) 20% 14%

the amount of accumulated knowledge. For those with little accumulated knowledge these

switches occur at a rate of 40%; those with some accumulated knowledge switch between

program and situation model 49% of the time; and those with significant accumulated

knowledge switch only 26% between program and situation models.

Switches between program and situation models indicate cross references between

these two models and building of an implementation understanding of the code. In this

regard, subjects with little accumulated knowledge and those with some accumulated

knowledge behave similarly, although those with some accumulated knowledge show a

more even distribution among all possible switches. As knowledge increases, the imple-

mentation may be more fully understood, explaining the drop in switches between program

and situation models.

Subjects with signifi cant accumulated knowledge switched most often either between

program and top-down models or between top-down and situation models. Someone who

has significant experience with a particular piece of code will have reasonably complete

mental representations at all levels. Therefore , switching will be goal-based and focused

on areas of change. This is why, for example, when adding new functionality, connections

113

between the new functionality at the top-down level and actual code location at the

program model level will be predominant.

5.4.2 The Role of Code Size on Model Building

We are now at a point where we can investigate quantitatively whether the size of the

code to be understood makes a difference in how programmers approach their task and

what this difference might be. The first analysis would identify the number of actions at

each model (comprehension level) organized by the code size as in Table 5.26.

The table is organized according to code size, ranging from One module to an entire

System. Within each size level, columns are arranged by expertise and report on specific

subjects. The first sub-column contains the subject identifier followed by the component

model code (Cl-Prg means subject Cl, program model; Sit for situation model; TD

for top-down model). The second sub-column contains the number of references to the

component model for that subject. At the far left of the table, the first two columns

(Model and % of Ttl. Num) show the total number of references to the model component

and frequencies over all levels of expertise for a given code size. For example, the total

number of program model references for a code size of One Module is 482 which is the

sum of Cl 's, Ll 's, and G2's program model references. Below the total reference count

we also give a relative frequency (percentage).

Table 5.26 contains some very interesting results. If the size of the component is small

enough to understand at a low level of detail, it makes sense to spend most of the time in

the program model. On the other hand, if the code size is large (ADl worked with a system

of about 90,000 lines of code) then understanding occurs preferably at a higher level of

abstraction. At the highest level is domain knowledge and ideally programmers should

proceed with understanding at this level if the code is large. Obviously then, sufficient

knowledge at the domain level is very important for large systems, since programmers

refer to this level more during understanding.

5.5 Information Needs

So far we have identified types and frequencies of actions as elementary components

of what programmers do. Many of these actions reflect a search for information to include

in the mental model of the application. We now analyze what these information needs

114

Table 5.26: Frequencies of References to Model Components (All Subjects)
Expertise~ Language Domain Language
Component Size Expert Expert & Domain

Model % of Ttl. Num to Understand .JJ. ' Expert
Program 530 One C1-Prg 143 G2-Prg 243

55% Module Ll-Prg 144
Situation 283 Cl-Sit 160 G2-Sit 33

29% Ll-Sit 90
Top-Down 155 Cl-TD 46 G2-TD 59

16% 11-TD 50
Program 576 Several C3-Prg 160 ENl-Prg 193

56% Modules EN2-Prg 223
Situation 153 (;3=s-it 42 EN1-Sit 58

15% EN2-SIT 53
Top-Down 305 C3-TD 119 EN l-TD 32

29% EN2-TD 154
Program 322 Whole AD2-Prg 61 Gl-Prg 112

29% Program C2-Prg 149
Situation 216 AD2~Sit 47 G1-Sit 78

20% {;2-Sit 91
Top-Down 561 AD2-TD 220 G1-TD 222

51% C2-TD 119
Program 153 System C4-Prg 85 AD1-Prg 68

22%
Situation 144 C4-Sit 101 ADl-Sit 43

21 %
Top-Down 397 C4-TD 171 ADl-TD 226

57%

are. Our motivation is that if tools or documentation could provide this information, this

could benefit the comprehension process.

Naturally, we would also like to know what the most frequently encountered infor-

mation needs are. Meeting those provides the biggest benefit. It would also be useful to

know whether specific types of tasks have preferred information needs. A third question

relates to whether or not there are differences in information needs based on experience

level or accumulated knowledge with a piece of software.

Information Needs are data necessary during a comprehension task. They can be de-

termined directly from statements about needed information or indirectly through actions

(such as looking for specific information) or when the programmer could obviously benefit

if she had the data. Appendix B, section B.4 contains more details on the results.

5.5.1 Frequencies for All Subjects

To show overall trends for all subjects, Tables 5.27, 5.28, and 5.29 contain informa-

tion needs (ordered by frequency). The information needs table contains four columns.

115

The first holds the code used in analyzing the protocols for information needs. The sec-

ond describes the information need. The third lists the action codes (associated with a

specific model) for which the information is needed. The last column lists how often the

information need occurred in all 11 protocols.

116

Table 5.27: Information Needs Frequencies: All Subjects
Info Need

Code Information Need Action Codes Frequencies
17 Domain concept descriptions OPl 85
161 Connected domain-program-situation SYS7 70

model knowledge
14 Location and Uses of identifiers OP2, SYS2, SYS3, 47

SYS7, SYSlO, SYSll
19 List of browsed locations OP2, OP4, SYS2 34

OP4
15 Format of data structure plus description SYS5, SYS8, SYSll,

of what field is used for in program and SYS12, SIT! 23
application domain, expected field values
and definitions .

143 A general classification of routines
and functions so that if one is OP2 23
understood the rest in the group
will be understood

12 List of routines that call a OPl , OP2, OP4
specific routine SYS3, SYS7, SYS9 21

SYS12
Il Variable definitions including why SYS5, SYS8, SYSlO

necessary and how used, default SYS12, SYS17, 17
values and expected values SYS23

I3 Highlighted begin/ends SYS3, SYS7, SYS8, 17
of control blocks SYSlO, SYS24

122 History of past modifications SYS3 17
I73 Bug behavior isolated S1Tl 17
114 Call Graph Display OPl, OP2, SYS3 16
168 List of issues/decisions considered SYS12 16

during design
124 List of executed statements and SYS8 14

procedure calls, variable values
I42 Utility functions definitions and

comments explaining why it was OP2 14
rewritten

127 Directory layout/organization: include OPl, OP2
files , main file , support files, 12
library files . File structure

!17 Location of desired code segment SYSl, SYS2 10
I6 Location and description of library OPl, OP2, OP20, 9

routines and system calls SYSll
132 If common objects are not used SYS5, SYS8 9

in traditional way, e.g. nil or null
158 High-level description of how OP3 9

code is laid out
167 Location of where to put changes SYSll 9
120 Documentation list and location OPl 8
I44 List of routines that do most OP3 8

of the domain-type work
172 Good direction to follow given what

is already known, possible program segments SYSlO 8
to examine

116 Naming conventions separated by system OP3, SYS3, SYS8
or library objects that use them SIT7 7
Rules used for new naming new procedures

136 Sequence of locations where 1D is used OP2 7
I 53 IFDEF'd behavior, conditions under SIT2 7

which the branch is taken or not
166 Expected program state, e.g. expected SYSll 7

variable values when procedure is called
174 Good description of the bug and why SIT! 7

and how other fixes were done

117

Table 5.28: Information Needs Frequencies: All Subjects (continued)
Info Need

Code Information Need Action Codes Frequencies
179 Ripple Effect - Procedure affected by

change, include port affects, dependencies in 7
in Make file

Ill Language conventions that are SYSl, SYS3, SYSlO
different from standard conventions 6
Language enhancements

112 Environment, global , local scope SYS3 6
118 1/0 parameters, definitions, examples of SYS3, SYS5, SYS8 6

calls with explanation , what it is used for
162 Predefined (constant) variables and SYS8 6

values
170 State of system when crashed SYS18 6
!13 Conditions under which a branch is SYS3 5

taken or not . Include variable values
129 Naming conventions for program SYSl , SYS3 5
130 Where variable is toggled, when SYS2, SYS12 5

and why, where passed to and why
138 Nesting level of a particular procedure SYS2, SYS7 5
139 Main program location OPl 5
141 Call graph with extraneous OP2 5

information not relevant elided
148 Code formatted in expected way SYS3 5
178 Dynamic function return values 5
!19 Acronym definitions SITl, S1T7 4
125 Exact location to set breakpoint SYS18 4
137 Language definitions,e.g reserved

words, instruction defs, for C, SYS8, SYS18 4
Pascal , etc.

145 List of internal support routines OP3 4
147 List of identifiers and domain OP4 4

concepts that are important
149 File name of current file SYS3 4
!55 Domain Simulation SIT2 4
171 Concise error description SYS20 4
176 Available tools to aid in understanding 4
no Function call count OPl, SYS2 3
121 Organized functions into categories OP2 3

in which functions are related
126 All include file definitions and uses OPl, SYS5 3
128 List of all routines with OP2, SYS2 3

initialization code
152 User defined code block identification SYS7 3
163 All definitions and uses of a variable

prioritized .. so more important uses show SYSlO 3
up first

164 System configuration for rebooting OP6 3
165 Assembly Language Code Segment SYS2 3

number (Machine Code)
18 List of system calls based on OPl 2

specific naming convention
140 List of capabilities that may OPl 2

need to be provided
146 What kind of architecture dependent

code currently exists and is functional OP3 2
what architecture hooks exist so code
can be easily added.

151 What happens to read in data SYS5 2
154 List of experts SYSlO 2
!59 How a variable is passed into a SYSl 2

procedure, e.g. by value, address, etc.

118

Table 5.29: Information Needs Frequencies: All Subjects (continued)
Info Need

Code Information Need Action Codes Frequencies
177 Data-flow t race 2
135 Any d ifference between variable SYS8 1

name and use
156 The include file a part icular OP2 1

st ructure is defin ed in
169 Possible errors and severities, case SYS17 1

t hat always need safety checks
180 Program execution sequence , how to use (e.g. man 1

page)

Overall, I7 (Domain concept descriptions) and 161 (Connected domain-program-

situation model knowledge) were the most frequent information needs. Domain concept

descriptions include high-level information, for example, operating system concepts. Con-

nected model knowledge is information that allows cross-referencing from one model to

another. For example, if a chunk of code is labeled "sort" , the label can be viewed as

the connection between program and situation models. It is not surprising that these two

types of information are needed significantly more often than other types of information.

This strengthens the hypothesis that programmers try to build different levels of abstract

views of the program. The reason we saw the need for domain concepts and connected

model information so frequently could be because it is the type of information that is not

easy to get from existing tools and technology. The usual scenario is that any information

above the program model level has to be searched for and connections made manually.

Another important information need, 143 (General classification of routines) is also

related to understanding domain concepts and cross-referencing between models. Under-

standing that a group of procedures are related helps not only to build connections between

models, but also to direct focus during the comprehension task. When a programmer re-

alizes that a group of functions are related, she can either ignore it if the functions are

not relevant to the task or, she can focus on them if they are important.

Recalling recently browsed information (19) is also important. The ability to scroll

back and forth between data reduces cognitive overload. A common example occurs when a

programmer skims data she does not fully understand. She needs to revisit the information

when other data triggers a recall and subsequent comprehension of the previously skimmed

data.

119

The majority of the remaining significant information needs are also not surprising.

Things like definition and uses of identifiers (14 and 11), data structure format (15) and

function calling structure (12 and 114) are all related to major characteristics of most

programs. Access to this type of information is essential to understanding how the program

works.

5.5.2 Information Needs - By Task

Next , we consider whether there are any information needs that predominate for a

specific task. Appendix B, section B.4.1 contains Tables B.31 and B.32 which report on

information needs grouped by task type.

The most frequent types of information needed by the adaptive maintenance sub-

jects were 11 (Domain concepts), 122 (History of past modifications), and 119 (impact

of changes). Nothing can be concluded about information needs for the adaptive main-

tenance subjects, except that these two subjects had the fewest number of information

needs than any of the other tasks. This is probably a function of both expertise and accu-

mulated knowledge, since both were domain experts and both had significant knowledge

about their software.

For corrective maintenance, the three most frequent information needs are 17 (Domain

Concepts), 161 (model connected information), and 14 (location and uses of identifiers).

Other important information needs are 19 (List of browsed locations), 12 (Function called

by), 14 (call graph display) and 113 (bug behavior isolated). Understanding such code

level information is crucial to understanding a defect.

The enhancement subjects' most common information needs are 19 (List of browsed

locations), 14 (Location and uses of identifiers) , and 167 (code location to put changes).

Both subjects needed to get back to a place in the code where they had recently been and

wanted to know the location more often than any other type of information. Similar to the

adaptive maintenance subjects, it is difficult to draw further conclusions for enhancement

since there were a low number of total information needs.

General Understanding requires domain knowledge (11) and connected model infor-

mation (161) more frequently than other information. When there is no specific goal other

120

than to understand the program (for future maintenance), both types of information helps

to build mental representations at the domain level as well as at other levels.

Tasks like corrective maintenance and general understanding seem to have more need

of information than tasks like adaptive maintenance or enhancement. While our sample

size was small, each group had a similar number of information needs with exceptions due

to programming session time. The average number of references per subject for corrective

maintenance was 73.5 and for general understanding is was 81.67. The average number

of references for adaptive maintenance was 34 and for enhancement it was 48. We could

hypothesize that this difference lies in the requirements of the tasks. Debugging and

general understanding are investigative tasks and need information to solve problems and

misunderstandings. Adaptive maintenance and enhancements tasks are less investigative

and more action-oriented. When performing some action, the information is presumably

already available rather than sought after.

5.5.3 Information Needs- By Expertise

The next question to consider is whether expertise makes a difference in the types of

information needs most frequently encountered. Tables B.33 and B.34, in section B.4.2,

report on information needs grouped by expertise.

The top two information needs are the same regardless of expertise: 17 (domain

concepts) and 161 (connected model information). Language only experts also need code

level information (12 is the third most frequent information need). On the other hand,

Domain only and Domain and Language experts' third most frequent information needs

are 14 (Location and uses of identifiers) tied with 19 (list of browsed locations) for Domain

and Language experts. Three of four subjects with only Domain expertise were working

on debugging tasks, which could explain the high need for information about identifiers

at the code level. For Domain and Language experts, two subjects (G2 and ENl) had

70% of the references to the 14 needs. Both subjects spent the majority of their time

at the program model level. At all levels of expertise, information is needed for both the

domain and program models. In essence, there is very little difference in information needs

between levels of expertise.

121

5.5.4 Information Needs- By Accumulated Knowledge

Finally, we would like to investigate whether information needs change significantly

depending on amount of accumulated knowledge. Tables B.35 and B.36 (section B.4.3)

report on information needs clustered by amount of accumulated knowledge. First, do

subjects with less accumulated knowledge have as many information needs as those with

more accumulated knowledge? Engineers with little accumulated knowledge need more in-

formation than those with some or significant experience with the code. Each subject with

little accumulated knowledge had an average of 80 information needs. Those with some

prior experience had an average of 67.5, and those with significant accumulated knowledge

had an average of 37.67. The types of information range from one time understanding

needs (i.e. call graphs and general classifications of functions) to on-going development

of models and the connections between them. People with some accumulated knowledge

may have similar needs to those with little experience, depending on how much more expe-

rience they have. In this regard, our classification of subjects into the some category may

have been too broad. Also, because three of the four subjects in this group worked mainly

at the program model level, information needs tended to be at that level, i.e. they had

more total program model related information needs (such as 11, 12, 13, 14, 15, 124, and

166) than total domain level information needs. However, they did have a lower average

number of information needs per subject than the little accumulated knowledge group and

a higher average number than those with significant experience. Finally, those with sig-

nificant accumulated knowledge already have a near complete mental representation at all

levels with the appropriate connections between. Their information needs are more likely

to be related mostly to the task they are working on and less on building connections

between models. They are also likely to have less information needs in general.

5.6 Tool Capabilities

Our motivation in developing Tool Capabilities is to help maintainers by providing

useful tools that meet their needs. Tool Capabilities describe functionality that needs to

be provided by software development and maintenance tools if these tools are to provide

support for building top-down, situation, and program model mental representations of

programs. Tool capabilities were derived from the most important information needs found

122

in the protocols of 11 subjects. Each information need was analyzed and capabilities were

derived for meeting that need. In most cases, a single capability description addresses

multiple information needs. Table 5.30 summarizes the tool capabilities that would meet

programmers' information needs. It contains four columns. The first column contains a

code for designating a specific tool capability. The second describes the tool capability.

The third contains the information needs that were used to derive the particular capability.

The last column contains the total number of instances where this tool would have helped

during all programming sessions. This was calculated by summing the total number of

associated information needs in column three for all subjects.

Tl is the most important tool capability. Definition of program and system com-

ponents are very common types of information needed during program understanding.

Components can be defined, both within a program or outside the program in the sur-

rounding environment. While there are plenty of software development tools that can

provide the basic definition of an object1 , building mental representations at different

levels of abstraction is usually not supported.

The second most important capability, T2, is related to Tl . Not only are definitions

of objects important, but also their locations and uses. Most software development tools

include this capability together with a method for getting to the specific instance of an

object. Scoping and filtering capabilities, however, can vary. By scoping we mean the

ability to indicate where to look for objects, i.e. within a particular file, function, directory,

set of directories, libraries, etc. Filtering takes a set of results after scoping is applied and

allows the user to utilize a method for culling them down to a usable list. This is especially

important in cases where there are hundreds of references to a single object.

The next important tool capability is T9, "On-line text books" and "documentation

for domain and situation model concepts". This is because knowledge about the domain

was the most important information need we saw for the 11 subjects. This is also probably

one of the most difficult functionality to build into a tool because it necessarily has to be

domain specific. One way would be to provide links into textbooks based on keywords. The

1 By object , we mean a.ny a.rtifa.ct in a. program, software system, or environment . This is not necessarily

a.n object-oriented definition of a.n "object".

123

availability of project documents on-line (T1) is also an essential tool capability. Ideally,

these documents would be linked together based on requirements and also perhaps domain

model components. The ability to search on domain-based keywords would help to build

the mental representation at different levels of abstraction.

124

Table 5.30: Tool Capabilities Table
Tool Information Frequency

II Code Capabilities Need All Tasks
Tl Pop-up object definitions with hypertext 234

capabilities following domain , situation, a nd 11 , 15,
program model links. Objects are program 17, Il2 ,
elements (classes,variables, instances, macros , 143, 145,
constants,etc.), fi les, build support, 161 ,162
directories, user defined groups of objects,
resources, and environment variables

T2 Cross reference objects with keyword search 14, 16, 86
capabi li t ies for list of all definitions/uses. 117, 126
Click on to auto-jump to specific instance in 130, 139,
code. Include scoping capabilities and regular 149,163
expressions to fil ter.

T3 Call graph with user definable elision . Pruning 38
and filtering based on user definable 114, 126,
parameters. Ability to annotate with domain con- 138, 141,
cept labels. !58

T4 History of browsed locations, action sequences 42
Mult i-level undo. Backward/forward scrolling 19, 172
t hrough actions, book-mark capabili ties

T5 Grouping capabilities for objects. On-line 41
code with grouping capabilit ies for finding and 18,
formatt ing lists of objects. Ability to assign 116, 121 ,
group attribute to any set of objects, include 128, 142,
group of groups. Ability to perform same 144, 145
queries avai lable on objects.

T6 Directory st ructure graph , project st ructure 126, 127, 19
graph, fi le graph with query capabil ities and 149
regular expression filtering/scoping.

T7 On-line project documents, including list 70
of available documents . Keyword and regular
expression search capabili t ies. Naming conven- 116, 119,
tions tied to domain concepts . Hyper-text link 120, 122
from source code to project documents. Document 129, 147
includes requirements/specifications, design, 167, 168
test plans and cases, design decisions, defect
reports, man pages , past modjfication history.

T8 On-line language manuals wi t h query capability 19
for language constructs. Emphasize conventions Ill, 132,
for uses. Provide extensive examples of use. 137
Query capabilities.

T9 On-line text books or documentation for domain
and situation model concepts. Provide query capabi li t ies 17 85

TlO Data-flow and Def/Use graphs with query capabilities 124,130,136,153 33
Tll On-line error reporting with bug behavior 164, 170, 37

isolated . Include any prior fixes, and system 171 ' 173,
configurat ion to recreate the bug 174

T12 Smart debugger with breakpoint assistant 124, 125, 37
- Auto set according to code changes 136, 166,
- Query capabilities on breakpoints 178
- Trace capabilities by object/group name
- Profile of executed statements/variable value

Tl3 Impact analyzer, support for "what iP' changes 166, 179 14
before actual changes are made.

Tl4 Editor functionality: 13, 148, 25
- Click-on automatic Begin/End code blocks !52
- Annotation/notepad capabi li ties for all docs
- User definable code re-formatter

Tl5 Chunker : ability to label chunks of code with 70
meaningful identifier a nd elide from view, 161
showing only the label.

Tl6 Object calls/called by graphs 12 21
Tl7 Branch 1\ow analysis, IFDEF analysis 113, 153 12

125

The fifth most frequent tool capability (T15) is the ability to chunk code, label each

chunk with a meaningful identifier, and hide the details of the code from view, keeping

only the label visible. This is especially important during program model building for

abstraction into the situation model.

The ability to browse recently acquired information or to repeat actions (T4) is the

sixth most important tool capability. A common situation for software engineers arises

when they have performed a sequence of steps (perhaps following the data flow of a single

variable) and want to get back to a previous state because something they saw suddenly

makes sense. T4 is also useful when a series of actions needs to be repeated several times ,

or a series of actions needs to be undone because the results were unexpected. Tools that

provide multi-level undo for actions, browsing and book-mark capabilities to see where you

have been, and an action capture (perhaps similar to shell-scripts, yet more user-friendly)

are valuable. This is especially true in light of the popularity of browsers like Netscape.

Another very important tool capability, and one that is not commonly found in most

software development tools, is the ability to group (chunk) program and system compo-

nents. This is basic for developing higher levels of abstraction for program code. Functions,

classes, and files are examples of program components that can have relationships among

components of the same kind as well as between different types. For instance, a set of

functions may be the implementation of specific functionality in the program. The capa-

bility to group {chunk) related components together supports development of higher level

abstractions and can help in making understanding more efficient. This is the case when

a component group is identified as not relevant to the task at hand. The engineer will

know not to waste time in understanding that group of components. It is also important

to be able to perform queries and searches based on these groups as well as provide the

user with a method for defining component groups.

5. 7 Core Competencies

Information Needs relate to expertise and knowledge in the sense that "if I know

it, I don't have to look for it". How then would one provide the programmer (who is

new to an application and possibly the application domain) with useful material that

126

would "jumpstart" her to develop the necessary core competency to maintain a particular

software product successfully?

Our analysis found a variety of information needs and useful tool capabilities. We can

abstract and describe the evidence as part of the minimum knowledge necessary to perform

maintenance tasks. We can also partition the knowledge into groups of program, situation,

and top-down related structures. Such knowledge could be defined as core competencies.

These core competencies are determined by looking at the most frequent information

needs and answering a couple of questions. First, how useful , in general, would this

information be to people new to the code? How useful to those more experienced with

the code? Second, how difficult is it to extract the information and present it in a form

that someone new to the code can quickly assimilate? Table 5.31 presents an attempt

to describe core competencies associated with the most frequent information needs. It

is organized by model level (top-down, situation, and program). Table 5.31 contains

core competencies like Product Specific Knowledge and Variable f3 Component Names.

Static analyzers in existence today can extract important program identifiers quite easily.

Man pages are a simple way to extract usage information for command line functions and

programs. Extracting appropriate groups of related program components (see Information

Needs 116, !21, 128, 142, 144, and !45) is a harder task and must be done by experts who

are very familiar with the code. Other information needs, such as 166 (Expected program

state) are not worth the effort to include in a set of core competencies. Someone new to

the code can simply watch the program run using a debugger. The Comments columns

not only describe in more detail what the competency is but also how it can be acquired.

While our results are incomplete, we have an indication of the types of information

that will be useful for maintenance engineers based on the results from eleven protocols.

127

Table 5.31: Core Competencies by Model Component

Competency Comments
Domain Related Competencies

Product Specific Knowledge Commands and Use (e.g. HPUX vs.UNIX operating system commands)
System Configuration (e.g. How to configure the system for test or bug
reproduction.)

Area Knowledge Standard, product independent information (e.g.Operating systems
princi pies.)
Prior Experience
Formal instruction

Architecture Structure (e.g. An operating system as components: Process,
I/0, memory,and file management. Include directory
structure)
Interconnections (e.g. How are they related functionally.)

Cross references Within the domain including where to find the information we need(e.g the
expert or specific text book. Design issues &
resolution)

Links to other models connect fun ctionality to algorithms
and code

Domain Groups what are the functionally related groups
of program/system components?

Key terms VERY IMPORTANT This guides understanding and ties the domain
model to the situation and program models. (e.g. PROCESS
MANAGER using ROUND ROBIN scheduling algorithm.)

Situation Related Competencies
Algorithms and data Language independent, detail design level (e.g. functional sequence
structures of steps in the round robin algorithm or a graphical

representation of a process queue.)
Detailed design Close to code, but language independent. Specific product information

in functional terms.
Links to Program & Find design rational. Connect algorithm to purpose of application.
domain information
Conventions Use the same terms across comprehension & models.

THESE ARE THE KEY TERMS!
Cross reference levels
of information with Also within the same situation model level
connections to other
models
Situation Model Groups What algorithms and objects are related?

How do they map into Domain and program model groups?
Program Model Related Competencies

Variable & component KEY TERMS : meaningful mnemonic and acronyms for symbols.
names
Links to situation Capability to follow beacon to design and domain information.
and domain
Critical sections Focus attention ; improve efficiency
of code identified
Formalized beacons Focus attention; improve efficiency
Cross references &
Connections Back to the situation and domain levels.
Program Model Chunks These are chunks. How do these chunks

map into the sit uation model groups?

128

5.8 Conclusions

Several hypotheses were stated throughout Chapter 5. We present the most important

conclusions for actions, processes, hypotheses, switching, and information needs.

5.8.1 Actions

• Use of previously acquired knowledge and generating hypotheses are within the

top four action types for all models, making them highly important actions for

understanding at any level.

• Once a significant amount of domain knowledge is acquired, it can be used or not

used depending on task and focus. For example, ENl was both a language and

domain expert with significant experience with the code. However, he did not have

many references to the top-down model because his focus was on code he had re-

cently written rather than building a domain representation. At the time of the

programming session, he had already constructed the top-down model of the new

code and did not need to refer to it very often.

• When domain knowledge does not exist, mental representations are concentrated

toward program and situation models. When domain knowledge exists, mental rep-

resentations can exist at all levels of abs traction.

5.8.2 Processes

• At least three comprehension processes exist for understanding code: systematic,

opportunistic, and systematic/ opportunistic.

• In systematic processes we see well-defined sequences of actions repeated during

understanding. These sequences can be aggregated until an overall process of code

comprehension for specific maintenance tasks are identified.

• Opportunistic processes consist of triad sequences of goals-hypotheses-actions. They

are opportunistic in that hypotheses are resolved based on perceived relevance. Ex-

perts who use opportunistic processes have an arsenal of possible hypotheses and

supporting actions they employ to understand code.

129

• Systematic/opportunistic processes include a combination of systematic and oppor-

tunistic understanding.

5.8.3 Hypotheses

• HK-Ratios

Programmers with the highest amount of accumulated knowledge and expertise

have the lowest HK-ratio. They generate fewer hypotheses and make greater

use of the knowledge they already have.

Programmers with little or some accumulated knowledge generate more hy-

pothesis and make minor use of prior knowledge because they do not have the

knowledge to exploit.

- Corrective maintenance requires a high number of hypotheses as a strategy for

tracking down and fixing bugs.

- The relationship between hypothesis and use of prior knowledge is a good in-

dication of expertise. Overall, subjects with low HK-ratios were originally

classified as either domain only or domain and language experts and the ma-

jority of these had significant prior experience with the code. Subjects with

little or some accumulated knowledge had much higher HK-ratios, except for

one subject (EN2).

• Hypothesis Types

- Corrective maintenance hypothesis generation may be predictable in that at all

levels, hypotheses about correctness dominate the type we see.

- The lack of expertise appears to affect the number of hypotheses generated

within a particular model. Language only experts tend to generate mostly pro-

gram model hypotheses, domain experts make the most top-down hypotheses,

and domain and language experts generate a number of program and top-down

model hypotheses that fall somewhere between the other two groups.

Amount of accumulated knowledge affects the types of hypotheses generated.

Domain model connections become increasingly more important with less ac-

cumulated knowledge. Program model hypotheses drop off with increases in

130

accumulated knowledge. The majority of the situation model hypotheses are

made by engineers with some accumulated knowledge. They tend to use the

situation model as a bridge from the code to the domain.

• Hypothesis Generated Switching Behavior

Programmers use hypotheses to switch between all levels of abstraction. We

found that use of the situation model as a bridge between the program and

top-down model was common for all tasks.

As expertise increases, the number of hypotheses related switches decreases,

indicating use of other strategies for comprehension. Experts also switch more

often directly between the program and top-down models.

Engineers with little or some prior experience with the code switch most often

between models after making an hypothesis.

5.8.4 Switching B etween M odels - A ction Generated

• Programmers switch between all three levels of abstraction regardless of task.

• Lack of expertise means programmers do not have the tools necessary to easily make

connections from the domain to the code and vice versa. They must necessarily

build their mental models at levels close to the code, switching mostly between the

program and situation models in both directions. This confirms Pennington's [36]

results.

• Domain only experts have the knowledge necessary to build a high-level represen-

tation but need the situation model as an intermediate domain in which to break

known components in the top-down model into smaller components that are closer to

code. They are also able to utilize the situation model as a bridge from the program

model into the top-down model.

• Domain and language experts have both the domain and language expertise that

allows them to make direct connections between program and top-down models

without the help of an intermediate situation model.

131

• Subjects with little or no experience with the code spend their time building models

at levels close to the code and by cross-referencing between program and situation

models.

• Subjects with some accumulated knowledge are more likely to switch between all

three models at a fairly even rate.

• Significant experience with a particular piece of code means programmers have rea-

sonably complete mental representations at all levels. Therefore, switching will be

goal-based and focused on areas of change. This is why, for example, when adding

new functionality, connections between the new functionality at the top-down level

and actual code location at the program model level will be predominant.

5.8.5 Role of Code Size

• The level of abstraction must necessarily increase with the size of code to be under-

stood. This is why, for example, the subject who was porting several clients from one

operating system to another worked mainly at the top-down model level while the

subject who looked at only the main procedure of his system worked predominantly

at the program model level.

5.8.6 Information Needs and Tool Capabilities

• Corrective maintenance and General understanding need more detailed information

than other maintenance tasks.

• Domain concepts and connected model information are key information needs.

• Language only experts appear to need more program model information than domain

experts due to their tendency to work mostly at the program model level. Language

and domain experts have the knowledge that allows them to articulate the type of

information they need. They also look for a variety of information at all levels of

abstraction.

• Engineers with little and some accumulated knowledge need more information in

general than those who have more experience with the code. Those with significant

132

accumulated knowledge already have nearly complete mental representations at all

levels with the appropriate connections between. The information they require is

directly related to task. They also have fewer information requirements.

133

Chapter 6

FUTURE DIRECTIONS

This chapter contains several suggestions for further work based on the most impor-

tant results. Since the objective of this observation was theory building, all suggestions

for further work revolve around experiments to validate this theory.

6.1 Integrated Model Construction

Our experiments used subjects covering a wide set of tasks. There were several

debugging tasks and a few enhancement, adaptive maintenance, and general understanding

tasks. Each subject was working on different code with different goals in mind. While

commonalities among this diverse group of subjects emerged, statements about differences

due to tasks must remain hypothetical until further single task experiments can confirm

them. Experiments using the same task and identical code during equivalent time periods

will provide insight and either increase our confidence in our conjectures or refute them.

The analysis techniques we used are valid, including applying our classification of actions,

hypotheses, switching conditions, and processes to the resultant protocols.

We hypothesize that accumulated knowledge can affect the amount of effort put into

building mental representations at specific levels. For example, someone who has worked

with the code for a significant period of time will have a good representation at all levels

of knowledge. Mental model construction is driven mostly by task. If the task involves

tracking down and fixing defects, the program model may be the focus. On the other

hand, porting entire programs from one operating system to another may require use of

higher-level domain information which makes completing the task much more efficient .

The effect of accumulated knowledge on mental model building can be tested in a

couple of ways. Controlled experiments need to be designed in which expertise (domain

and language) and task is held constant while amount of experience with the code is

varied from "never before seen" to "highly skilled". Another experiment holds expertise

and amount of accumulated knowledge constant while the task is allowed to vary. These

experiments would be difficult to run because it is not easy to find subjects with the same

expertise. A pre-test will need to be developed to accurately measure amount of expertise.

It might also require a significant amount of pre-work to bring some subjects up to the rank

of "significant" accumulated knowledge and others to "some" accumulated knowledge.

Accumulated knowledge classifications need to be much more rigorously defined in such

an experiment.

Expertise also affects mental model construction. We found that when domain knowl-

edge is lacking, programmers spent the majority of their time building program and situa-

tion models. When sufficient domain knowledge exists, programmers worked at all levels,

with focus apparently determined by task. Again, experiments can be designed similar to

those for testing the effect of accumulated knowledge, except that here expertise is allowed

to vary while task and accumulated knowledge is held constant. Similar to experiments

on accumulated knowledge, the difficulties will occur with classification of experts.

Our investigation was an observational field study designed for building theory and

generating hypotheses rather than testing hypotheses. Therefore we could not determine

how task, expertise, and accumulated knowledge interact with each other. Since there is

good indication from our results that significant interactions exist, a controlled factorial

experiment should be designed to discover them. Such an experiment would contain

groups of subjects with all possible combinations of expertise and accumulated knowledge

working on each task. For an experiment using 3 levels of expertise, 3 levels of accumulated

knowledge, and 4 task levels, this would require 36 (4x3x3) groups of subjects. Interaction

can then be determined through an analysis of variance applied to the results. This

experiment is probably not realistic for large-scale software tasks similar to the tasks used

in our study.

In general we saw less use of the situation model than the top-down or program

models. One reason for this is the definition of the situation model itself which includes

both information at the algorithmic level and real-world knowledge. We did not see many

references to algorithmic information during the programming sessions. Another reason

for this could be related to a different aspect of this study. A majority of our subjects

135

were working on systems level programs, e.g. networking or operating systems. These

have very little connections to physical objects in the real world.

An observational study similar to ours on programmers trying to understand object-

oriented programs could help to develop more theories about the situation model. Classes

can model real-world objects and their behaviors more completely than straight procedural

programming with algorithms. Since objects should be defined so they model objects in

the real world, we expect to see greater use of the situation model for object oriented

program understanding. The situation model is the level at which these objects live.

These theories could then be tested with more controlled correlational experiments. To

date, all object-oriented comprehension experiments reported in the literature concentrate

on program development rather than maintenance. We suspect that for object-oriented

comprehension, the situation model will be utilized more. Pennington et all. [35] and

Lee and Pennington [28] found that object-oriented experts used a systematic, top-down

design strategy, breaking the problem space down into objects and the methods used by

those objects. By contrast, procedure experts used a more opportunistic approach m

which design occurred by switching between different levels of abstraction.

6.2 Hypothesis Generation

This section suggests further work on the HK-Ratio and hypothesis types.

HK-Ratio and Expertise

Whether or not the HK-Ratio is a good measure of expertise can be tested by design-

ing a longitudinal study with a sufficient number of novice subjects. An initial HK-Ratio

can be taken by giving each subject a task involving a large program and measuring the

number of hypotheses and references to knowledge. Periodic measurements can be taken

during the course of several sessions while they attempt to complete the task. If the HK-

ratios consistently drop as expertise and accumulated knowledge increase, we can conclude

the HK-ratio is a good indicator of expertise. An additional experiment would need to

designed, perhaps using the same subjects, in which a debugging task is assigned. If the

HK-ratio suddenly rises due to an increase in the number of hypotheses generated, then

our theory that corrective maintenance can increase the HK-ratio will be confirmed. The

136

major difficulty with this experimental design is that longitudinal studies take significant

time to complete and it can be challenging to find subjects who do not have past related

experience that may significantly affect the outcome.

Hypothesis Types

Further work is required to verify the most important types of hypotheses. We

found that hypotheses about domain concepts, functionality, and low-level information

like control-flow and data structures were very important for our group of subjects. Addi-

tional studies should be designed and analyzed for these specific types. Since hypothesis

type may be determined by expertise, accumulated knowledge, and task, several experi-

ments need to be designed to understand the effect of each variable. A factorial experiment

using groups of subjects at all levels of expertise, accumulated knowledge, and task will

help to determine the interactions of each of the three factors. A specific experiment using

a corrective maintenance task will provide insight into the specific needs during debugging.

The major difficulties in designing an experiment that tests for specific types of hy-

potheses will be identification of subjects with the appropriate levels of expertise and

accumulated knowledge and the development of tasks that are complex enough to elicit a

rich set of hypotheses that can be analyzed.

6.3 Switching Behavior

To confirm our conjectures on switching behavior, controlled exp eriments in which

two of the three factors (task, expertise, accumulated knowledge) are held constant and

the third allowed to vary should be designed. Number of switches between models can be

measured using a method similar to ours for identifying actions and sequences of actions

using protocol analysis. To test interaction between factors, a factorial experiment with

larger groups of subjects at all levels for each factor can be designed.

6.4 Information Needs & Tool Capabilities

We found a variety of information needs based on task, expertise and accumulated

knowledge. Further work can be done to verify our hypotheses by designing experiments

137

similar to those described above for hypotheses, switching behavior, and the integrated

modeL

Tool capabilities alone provide a large area of further work. Evaluating prototype tools

that address the issue of connecting domain, situation, and program model information is

probably the most important, since this seemed to be the most frequent type of information

our subjects looked for during comprehension activities. For example, a browser that

utilizes an intelligent search mechanism for finding information specific to the task and

the current level of abstraction at which a subject is working would address this need.

One can imagine the ability to highlight a variable in the program and be able to browse

related text-book domain descriptions or design decisions via hyperlinks.

Another important capability is the ability to look at information that was previously

browsed regardless of how far back it was originally seen. This could be supported through

a history mechanism and bookmarks (the capability to designate a location that can be

returned to directly with a minimum number of keystrokes). This helps the resolution

of hypotheses. For example, partially understood information (in the form of a deferred

hypothesis) is integrated into the mental model, later something triggers the recollection

of the hypothesis. With bookmarking and/or history of browsed locations, resolution of

the hypothesis can be assisted by being able to return to the information that triggered

the hypothesis in the first place. Bookmarks and a history of browsed data can also help

with remembering hypotheses. Of course, one must have been conscious of having made

and deferred an hypothesis.

Our study was an observational field study designed to construct a theory of pro-

gram comprehension. Many of the suggested experiments proposed are correlational

studies in which causal inferences can be made by statistically analyzing data from

more controlled observational studies. The distinction is made between correlational and

hypothesis-testing experiments. Hypothesis testing implies strictly controlled experiments

with planned manipulation for eliminating extraneous influences . Our theories are not yet

to a point where such hypothesis-testing experiments can be designed. Instead, they should

be refined through correlational experiments with more subjects, stricter time control and

tracking, and tasks common to groups of subjects .

138

This is a challenge. First, because the subjects, by and large, have to to be professional

programmers. It has not been easy to find volunteers. Second, our observations utilized

large-scale production code. More controlled experiments would require giving the same

large-scale production code to larger groups of professionals. This will be difficult . Thus,

we expect that some elements of our theory will either take a long time to validate or will

never be validated through controlled experiments.

6.5 Conclusions

Program understanding is a key factor in software maintenance and evolution. This

thesis reported on an experiment with industrial programmers to discover comprehension

activities, processes, hypothesis behavior, and supporting information that programmers

need when trying to understand production code.

While our conclusions need further experimental validations through future experi-

ments (our sample is small) we hope that our results stimulate further such experiments

to increase knowledge of large scale code cognition.

Our subjects worked on production software using modern procedural languages. Fu-

ture experiments could investigate whether the results hold for cognition with program-

ming paradigms like visual programming and object-oriented programming. Petre [38]

found that graphical representations can have the same pitfalls as textual representations

of programs, i.e. graphical programs are not necessarily more comprehensible and can

potentially be more problematic. Moher et al. [32] confirmed these results using Petri

Nets as the graphical components.

In an experiment designed to find differences between object-oriented design experts

and procedural design experts, Pennington et al. [35] and Lee and Pennington [28] found

that the object-oriented experts used a systematic, top-down design strategy. In contrast,

the procedural experts used a more opportunistic approach in which design occurred at

different levels of abstraction, often jumping between levels. For maintenance activities,

the obvious question is whether the shift to the object-oriented paradigm causes under-

standing to occur in a more systematic, top-down fashion as well.

Future experiments need to focus on understanding how programmers understand

large-scale code written in object-oriented languages such as C++ and Smalltalk as well

139

as visual programming languages like Visual C++ and Visual Basic. Understanding hy-

pertext (or hypermedia) is another important aspect of software comprehension as this

technology is important for providing needed information during code understanding. The

potential to create cognitive overload is especially significant in this paradigm. Thiiring

et al. [51] provide a set of design principles for hypermedia which focus on increasing the

coherence between information and decreasing cognitive overload.

Obviously, tools that help cognition for large-scale code will help engineers to be more

efficient and effective during maintenance. The integrated model and its corresponding

comprehension processes have identified the importance of the availability of information

about the program at different levels of abstraction. RIG/by Wong et al. [68] is a Reverse-

Engineering tool that provides multiple views of software at various levels of abstraction.

It is built for large-scale software.

Some tools and methods support Top-Down understanding. For example, hypothesis

generation is supported by Rajlich, Doran, & Gudla's [40] tool, TLES. Mapping program

structure to system architecture is also an important top-down comprehension activity.

Canfora et al.'s [10] method derives program structure charts from system architecture.

Abstract data type (ADT) identification is possible using Cimitile, Tortorella, & Monro's

[12] method. It identifies Abstract Data Types by isolating the modules that implement

the ADT.

A variety of tools and methods can be found that promote construction of more

than one model. For example, Bennett & Ward's [5] middle-out programming method

supports both top-down and situation model development during software design through

the use of a high-level domain-specific language. The most ambitious tool for program

and situation model support is Rich & Waters' [41] Programmer's Apprentice. This tool

supports the program model level by recognizing common programming plans in small

programs and builds the situation model using these cliches. Another tool that develops

both a program and situation model is the Centre for Software Maintenance at Durham

University's Maintainer's Assistant [4, 66]. This system uses a formal transformation

method in taking program code and transforming it into non-executable specifications.

Sometimes comprehension support is coupled with help for re-engineering support: an

example is Achee and Carver 's tool [1]. It identifies and extracts objects from legacy code.

140

Many more tools exist for development of program models. Common tools include

static code browsers, call graphs, file graphs, and data-flow analyzers. An unusual program

model tool is Blazy & Facon's [6] SFAC. Program behavior is simplified by freezing input

values of parameters.

While these tools are important developments in supporting software comprehension,

we also need further experiments on large-scale code in a variety of paradigms to increase

our knowledge of how maintenance engineers understand code. This should drive further

development of maintenance environments.

141

REFERENCES

[1] B. L. Achee and D. L. Carver, Identification and Extraction of Objects from
Legacy Code, In: IEEE Aerospace Applications Conference 1995, February 1995,
Snowmass, CO, vol. 2, p. 181-190.

[2] Beth Adelson, Problem Solving and the Development of Abstract Categories in
Programming Languages, In: Memory and Cognition, 1981,Vol. 9(4), pp. 422-
433.

[3] Beth Adelson and Elliot Soloway, A Model of Software Design, In: The Nature
of Expertise, M.Chi, R. Glaser, and M.Farr (Eds), @1988, Lawrence Erlbaum
Associates, Publishers, pp. 185-208.

[4] K.H. Bennett, Understanding the Process of Software Maintenance, In: 2nd
Workshop on Program Comprehension, WPC'93, July, 1993, Capri, Italy, p. 2-5.

[5] K.H. Bennett and M.P. Ward, Theory and Practice of Middle-Out Programming
to Support Program Understanding, In: 3rd Workshop on Program Comprehen-
sion, WPC'93, November, 1994, Washington, D.C., p. 168-175.

[6] Sandrine Blazy and Philippe Facon, SFAC, a Tool for Program Comprehen-
sion by Specialization, In: 3rd Workshop on Program Comprehension, WPC'93,
November, 1994, Washington, D.C., p. 162-167.

[7] Deborah A. Boehm-Davis, Robert W. Holt, and Alan C. Schultz, The Role of
Program Structure in Software Maintenance, In: International Journal of Man-
Machine Studies, 36(1992) , pp. 21-63.

[8] Ruven Brooks, Towards a Theory of the Cognitive Processes in Computer Pro-
gramming, In: International Journal of Man-Machine Studies, 9(1977), pp. 737-
751.

[9] Ruven Brooks, Towards a Theory of the Comprehension of Computer Programs,
In: International Journal of Man-Machine Studies, 18(1983) , pp. 543-554.

[10] G. Canfora, A. De Lucia, G.A. Di Lucca, and A.R. Fasolino, Recovering the
Archit.ectural Design for Software Comprehension, In: 3rd Workshop on Program
Comprehension, WPC'93, November, 1994, Washington, D.C., p. 30-38.

[11] Ned Chapin, Software Maintenance Life Cycle, In: Conference on Software Main-
tenance, 1988, pp. 6-13.

[12] A. Cimitile, M. Tortorella, and M. Munro, Program Comprehension Through
the Identification of Abstract Data Types, In: 3rd Workshop on Program Com-
prehension, WPC'93, November , 1994, Washington, D.C., p. 12-19.

[13] Program Comprehension Workshop - CSM-92, Workshop notes, IEEE Com-
puter Society, Conference on Software Maintenance, November 9, 1992, Orlando,
Florida.

[14] B. Curtis, I. Forman, and R. Brooks, and E. Soloway and K. Ehrlich, Psychologi-
cal Perspectives for Software Science, In: Information Processing f3 Management,
Vol. 20, No. 12, pp. 81-96.

[15] Simon P. Davies, Models and Theories of Programming Strategy, In: Interna-
tional Journal of Man-Machin e Studies, 39(1993), pp. 237 - 267.

[16] Simon P. Davies, The Role of Notation and Knowledge Representation in the
Determination of Programming Strategy: A Framework for Integrating Models of
Programming Behavior, In: Cognitive Science, Vol.15 No.4, October- December,
1991, pp. 547- 572.

[17] Simon P. Davies, The Nature and Development of Programming Plans, In: In-
ternational Journal of Man-Machine Studies, 32(1990), pp. 461 - 481.

[18] Francoise Detienne and Elliot Soloway, An Empirically-Derived Control Struc-
ture for the Process of Program Understanding, In: International Journal of
Man-Machine Studies, 33(1990), pp. 323-342.

[19] Francoise Detienne, Program Understanding and Knowledge Organization: The
Influence of Acquired Schemata, In: Cognitive Ergonomics: Understanding,
Learning, and Designing Human- Computer Interaction, @1990, Academic Press,
pp. 245-256.

[20] K. Anders Ericsson and Herbert A. Simon, Protocol Analysis: Verbal Reports as
Data, Second Edition, @1993, MIT Press , Cambridge, MA.

[21] K. Anders Ericsson and Herbert A. Simon, Verbal Reports as Data, In: Psycho-
logical Review, Vol.87, No. 3, 1980, pp. 215-251.

[22] Edward M. Gellenbeck and Curtis R. Cook, An Investigation of Procedure and
Variable Names as Beacons during Program Comprehension, In: Empirical Stud-
ies of Programmers:Fourth Workshop, December, 1991,New Brunswick, NJ, pp.
65-81.

[23] Edward M. Gellenbeck and Curtis R. Cook, Does Signaling Help Professional
Programmers Read and Understand Computer Programs?, In: Empirical Studies
of Programmers:Fourth Workshop, December, 1991,New Brunswick, NJ, pp. 82-
98.

[24] Raymonde Guindon, Herb Krasner, and Bill Curtis, Breakdowns and Processes
During the Early Activities of Software Design by Professionals, In: Empirical
Studies of Programmers:Second Workshop, Eds. Olson, Sheppard, and Soloway,
@1987, Ablex Publishing Corporation, pp. 65 - 82.

143

[25] Raymonde Guindon, Knowledge Exploited by Experts during Software Systems
Design, In: International Journal of Man-Machine Studies , 33(1990), pp. 279-
182.

[26] Walter Kintsch and Teun A. van Dijk, Toward a Model of Text Comprehension
and Production, In: Psychological Review, 85(5), 1978, pp. 363 - 394.

[27] Jurgen Koenemann and Scott P. Robertson, Expert Problem Solving Strategies
for Program Comprehension, In: Proceedings of the Human Factors in Comput-
ing Systems, CH1'91, New Orleans, May 1991, pp. 125-130.

[28] Adrienne Lee and Nancy Pennington, The Effects of Paradigm on Cognitive
Activities in Design, In: International Journal of Man-Machine Studies, Vol. 40,
1994, pp.577-601.

[29] Stanley Letovsky, Cognitive Processes in Program Comprehension, In: Empirical
Studies of Programmers, Eds. Soloway and Iyengar, @1986, Ablex Publishing
Corporation, pp. 58 - 79.

[30] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway, Mental
Models and Software Maintenance, In: Empirical Studies of Programmers, Eds.
Soloway and Iyengar, @1986, Ablex Publishing Corporation, pp. 80- 98.

[31] Katherine B. McKeithen and Judith S. Reitman, Knowledge Organization and
Skill Differences in Computer Programmers, In: Cognitive Psychology, 13(1981),
pp.307-325.

[32] Thomas G. Moher, David C. Mak, Brad Blumenthal, and Laura M. Leven-
thal, Comparing the Comprehensibility of Textual and Graphical Programs: The
Case of Petri Nets, In: Empirical Studies of Programmers:Fifth Workshop, Eds.
C.Cook, J. Scholtz, and J. Spohrer, @1993, Ablex Publishing Corporation, pp.
137 - 161.

[33] Paul W. Oman and Curtis R. Cook, The Book Paradigm for Improved Mainte-
nance, In: IEEE Software, January 1990, pp. 39-45.

[34] Paul W. Oman and Curtis R. Cook, Typographic Style is More than Cosmetic",
CACM 33, May 1990, pp. 506-520.

[35] Nancy Pennington, Adrienne Y. Lee, and Bob Rehder, Cognitive Activities and
Levels of Abstraction in Procedural and Object-Oriented Design, In: Human-
Computer Interaction, Vol. 10, 1995, pp.171-226.

[36] Nancy Pennington, Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs, In: Cognitive Psychology, 19(1987),
pp.295-341.

[37] Nancy Pennington, Comprehension Strategies in Programming, In: Empirical
Studies of Programmers:Second Workshop, Eds. Olson, Sheppard, and Soloway,
@1987, Ablex Publishing Corporation, pp. 100 - 112.

144

[38] Marian Petre, Why Looking Isn ' t Always Seeing: Readership Skills and Graph-
ical Programming, In: Communications of the ACM, Vol.38, No.6, June 1995,
pp. 33- 44.

[39] Roger S. Pressman, Software Engineering, A Practitioners Approach, 2nd Edi-
tion, @1987, McGraw-Hill Publishing Co. ,Inc.

[40] Vaclav Rajlich, James Doran, and Reddi T.S. Gudla, Layered Explanations of
Software: A Methodology for Program Comprehension, In: 3rd Workshop on
Program Comprehension, WPC'93, November, 1994, Washington, D.C., p. 46-
52.

[41] Charles Rich and Richard C. Waters, The Programmer's Apprentice Project:
A Research Overview, In: Artificial Intelligence & Software Engineering, Derek
Partridge,(Ed), @1991, Ablex Publishing Corp., pp. 535 - 550. Reprint of IEEE
Computer, 21(11) , pp. 10-25. (AI)

[42] Robert S. Rist , Plans in Programming: Definition, Demonstration, and Develop-
ment , In: Empirical Studies of Programmers: 1st Workshop, 1986, Washington,
D.C., pp. 28-47.

[43] B.A. Sheil, The Psychological Study of Programming, In: ACM Computing Sur-
veys, March 1981, Vol. 13, pp. 101 - 120.

[44] Ben Shneiderman, Exploratory Experiments in Programmer Behavior, In: In-
ternational Journal of Computer and Information Sciences, Vol. 5, No. 2, 1976,
pp. 123 - 143.

[45] Ben Shneiderman and Richard Mayer, Syntactic/Semantic Interactions in Pro-
grammer Behavior: A Model and Experimental Results, In: International Jour-
nal of Computer and Information Sciences, Vo1.8, No.3 , 1979, pg. 219-238.

[46] Elliot Soloway, Kate Ehrlich, Jeffrey Bonar, and Judith Greenspan, What do
Novices know about Programming?, In:Directions in Human/Computer Inter-
action, Albert Badre and Ben Shneiderman (Eds) , @1982, ALBEX Publishing
Corp. , pp. 27-54.

[47] Elliot Soloway, Jeffrey Bonar, and Kate Ehrlich, Cognitive Strategies and Loop-
ing Constructs: An Empirical Study, In: Communications of the ACM, Novem-
ber 1983, 26(11) , pp. 853-860.

[48] Elliot Soloway and Kate Ehrlich, Empirical Studies of Programming Knowledge,
In: IEEE Transactions on Software Engineering, September 1984, Vol. SE-10,
No. 5, pp. 595-609.

[49] Elliot Soloway, Beth Adelson, and Kate Ehrlich, Knowledge and Processes in the
Comprehension of Computer Programs, In: The Nature of Expertise , Eds. M.
Chi, R. Glaser, and M.Farr, @1988, A Lawrence Erlbaum Associates, Publishers,
pp. 129-152.

145

[50] Elliot Soloway, Jeannine Pinto, Stan Letovsky, David Littman, and Robin Lam-
pert, Designing Documentation to Compensate for Delocalized Plans, In: Com-
munications of the ACM, Vol. 31, No. 11, November 1988, pp. 1259-1267.

[51] Manfred Thiiring, Jorg Hannemann, and Jorg M. Haake, Hypermedia and Cog-
nition:Designing for Comprehension, In: Communications of the A CM, Vol.38,
No.8, August 1995, pp. 57 - 66.

[52] Iris Vessey, On Matching Programmers' Chunks with Program Structures:
An Empirical Investigation, ln:International Journal of Man-Machine Studies,
(1987)27, pp.65-89.

[53] Iris Vessey, Expertise in Debugging Computer Programs:A Process Analysis, In:
International Journal of Man-Machine Studies, (1985)23 , pp.459-494.

[54] A. von Mayrhauser and A. Vans, Identification of Dynamic Comprehension Pro-
cesses During Large Scale Maintenance, In: IEEE Transactions on Software
Engineering, Vol. 22, Number 6, 1996, pp. 424 - 437.

[55] A. von Mayrhauser and A. Vans , On the Role of Hypotheses During Oppor-
tunistic Understanding While Porting Large Scale Code, In:Proceedings of the
4th Workshop on Program Comprehension, Berlin, Germany, March 29-31, 1996,
pp. 68- 77.

[56] A. von Mayrhauser and A. Vans, On the Role of Program Understanding in
Re-engineering Tasks, In: Proceedings of the IEEE Aerospace Applications Con-
f erence, Vol.2, Snowmass, Colorado, February 3-10, 1996, pp. 253 - 267.

[57] A. von Mayrhauser and A. Vans, Program Understanding: Models and Exper-
iments, In: Advances in Computers, Vol. 40, M.C. Yovits and M.V. Zelkowitz
(Eds), @1995, Academic Press, Inc., pp. 1 - 38.

[58] A. von Mayrhauser and A. Vans, Program Comprehension During Software
Maintenance and Evolution, In: IEEE Computer, Vol. 28, No. 8, August 1995,
pp.44- 55

[59] A. von Mayrhauser and A. Vans, Industrial Experience with an Integrated Code
Comprehension Model, In: lEE Software Engineering Journal, September 1995,
pp. 171-182.

[60] A. von Mayrhauser and A. Vans, Comprehension Processes During Large Scale
Maintenance, In: Proceedings of the 16th International Conference on Software
Engineering, Sorrento, Italy, May 1994, pp.39-48.

[61] A. von Mayrhauser and A. Vans, Dynamic Code Cognition Behaviors for Large
Scale Code, In: Proceedings of the 3rd Workshop on Program Comprehension,
Washington D.C., November 14-15, 1994, pp. 74- 81.

[62] A. von Mayrhauser and A. Vans, From Program Comprehension to Tool Re-
quirements for an Industrial Environment, In: Proceedings of the 2nd Workshop
on Program Comprehension, Capri, Italy, pp. 78 -86, July 1993.

146

[63] A. von Mayrhauser and A. Vans, From Code Understanding Needs to Reverse
Engineering Tool Capabilities , In: Proceedings of the 6th International Workshop
on Computer-Aided Software Engineering (CASE93}, Singapore, July 1993, pp.
230- 239.

[64] A. von Mayrhauser and A. Vans, From Code Understanding Comprehension
Model to Tool Capabilities, In: Proceedings of the 5th International Conference
on Computing and Information {ICCI'93}, Sudbury, Canada, May 27-29, 1993,
pp. 469 - 473.

[65] A. Marie Vans, Code Comprehension Model, Masters Project , Colorado State
University, 1992.

[66] M. P. Ward, F.W. Calliss, & M. Munro , The Maintainer 's Assistant In: Pro-
ceedings of the Conference on Software Maintenance, Miami, Florida, October
16-19,1989, pp. 307- 315.

[67] Susan Wiedenbeck, Processes in Computer Program Comprehension, In: Empiri-
cal Studies of Programmers, Eds. Soloway and Iyengar, @1986, Ablex Publishing
Corporation, pp. 48 - 57.

[68] K. Wong, S.R. Tilley, H.A. Mi.iller, and M.D. Storey, Structural Redocumenta-
tion: A Case Study, In: IEEE Software, Vol.12 , No.1, J anuary 1995, pp. 46 -
54.

147

Appendix A

CLASSIFICATION OF MODEL COMPONENTS - TASK CODES

A.l Top-Down Component Identification

OPl - Gain high-level overview of program

Specific intentions to get a high level understanding. Comments indicating that only a

high level understanding is sought. For example, studying the file structure of a program.

Also includes comments about obtaining a high level understanding, for example, " I see

how this program segment fits into the whole."

OP2- Examine/search for program information

Comments indicating that particular documents, pieces of documents related to the pro-

gram, or information within specific documents are sought and read. Documents associ-

ated with the program such as maintenance manuals, design documents, user manuals are

included. However, search in code is considered part of the bottom up model.

OP3 - Generate or revise hypothesis about functionality

Anytime a comment about the program in high-level terms is unsure, assumed, or not ver-

ified the comment is classified as an hypothesis. For example, " there is an initialization

routine which I assume is called from " Key words and phrases include: "Probably", "I

guess", "I assume", "It could be", "I wonder", "I think," "I believe", "It seems" .

OP4- Determine relevance of program segment

Comments indicating the programmer is trying to decide if the segment being looked at

is relevant to the current understanding task. Also included are comments that indicate

that this decision has already been made. For example, "I'm not going to worry about

that now" , or " we don't care about that" .

OP5- Determine if this program segment needs detailed understanding

Similar to OP4. May be no difference since no protocol segments have been classified as

such.

OP6- Determine understanding strategy

Comments regarding how the programmer will or would have approached understanding

at a high level. For example "First I will read the Requirements Documents, then ".

OP7- Investigate Oversight

Comments about overlooking some aspect of the code, for example forgetting to add some

functionality or a whole routine.

OPB - Failed Hypothesis

Comments indicating that something that was thought to be the case has been disproved

or abandoned. These comments are about the high level structure of the program. For

example, "I was wrong, there are not just two libraries there 's a whole multitude of li-

braries." See Top-Down knowledge below.

OP9 - Mental Simulation

Comments that indicate the programmer is simulating (control-flow or data flow) at a

high-level, for example at the procedure level, not at the procedure statement level.

OP11 - High-level change plan/ Alternatives

Descriptions of changes to code or alternatives being considered at a high level. For ex-

ample, "I will add the changes to the make file and then delete the print function." Or,

"I could copy some files and then remove the directory containing the print function, or

just leave things as they stand now."

OP12 - Observe Buggy Behavior

Comments indicating that program execution behavior is being observed and that it is

149

not correct or expected. For example, "I got an error , normally this would not take this

long if it had been doing shared library versions."

OP13 - Study /Initiate Program Behavior

Descriptions of steps being taken to initiate program execution or that indicate that pro-

gram execution is being observed. Comments describing the intention of executing com-

mands on the command line or comments describing actual evidence that the program is

executing.

OP14 - Compare Program Segments

Comments describing some kind of comparison at the program/application level in terms

of functionality. This does not include direct comparisons of code, for example, results

of the cliff command. Comments that indicate that some similar program should be/is

being examined for reuse at any level, eg. design, specification, etc. is a candidate for

this category. Also included are comments that include the series of steps necessary to

compare program segments.

OP15 - Generate Questions

Verbalized high level questions that are either immediately pursued or noted for later

investigation. These questions exist at the specification, design, application level. For

example, "Did the program install the correct application defaults?"

OP16 - Answer Question

Verbalized answers to stated questions, either immediately preceding the verbalization of

the question, or if it directly answers a question that can be found in the protocol at an

earlier time. Following the example question under OP15 above, the statement "YUP! IT

DID" would qualify as an OP16 statement.

OP17 - Chunk & Store knowledge

Very high level statements indicating that some result has been realized. These typically

involve statements about the program or document being studied AS A WHOLE. For

150

example, "So, this program seems to work."

OP18 - Change Directions

Comments that indicate that a different direction is going to be/is being followed. For

example, "I am going to try something completely different, I am going to copy these files

over here instead."

OP20 - Generate task

Any comments describing additional tasks that are discovered and need to be done some

time in the future. These tasks involve high level tasks for instance, reading a particular

document. Most tasks referred will occur sometime beyond the current programming ses-

sion, unless a discovery is made and the task needs immediate attention.

OP22 - Examine Results of Execution

Comments describing the results of a program execution. These statements typically follow

closely after a "watching execution" episode (OP12/13). These statements are concerned

with high-level aspects such as files and directories. In addition, descriptions of actions

taken in order to examine the results are included as are comments verifying the program

behaved as expected. For example, " and it did install the program in that directory."

Top-Down Knowledge

Any comments indicating that knowledge acquired sometime in the past either before

or during the programming session is being used in reasoning. Include comments about

previous sessions, for example, reading documentation or examining file structure. Also

included are statements using knowledge already acquired in the on-going program ses-

sion, for example, knowledge that is chunked and stored. Top-down knowledge includes

call-graph information, or an overall understanding how the program or a program seg-

ment works. The key is that knowledge comes from out of thin air to be used in program

comprehension. This knowledge must be of the Top-Down type. Keys: References to

code at a high level, e.g. style in which code was written, high-level language features like

"modularity" .

151

A.2 Program Model Component Identification

SYSl- Read introductory code comments

Statements that are word-for-word reading aloud of comments in the code. This usually

takes the form of a preceding statement such as "the comments say " or "I'm reading

the comments and it says ... "

SYS2 - Determine next program segment to examine

Any comment suggesting that a particular piece of code is sought after or comments in-

dicating the programmer is looking for something to analyze. Key words and phrases

include: " I have to go find ... ", "I'm looking for ... "

SYS3- Examine next module in sequence

Comments reflecting code that is being read, word for word or in micro/macro-structure

form or a description of what is being read using program model language. For example,

the actual declaration of a variable.

SYS4 - Examine next module in control-flow

Comments reflecting code that is being read, word for word or in micro/macro-structure

form or a description of what is being read using program model language. The difference

between this task and examining a module in sequence is that control-flow is followed .

For example, " ... then within PS-RECEIVE this .. ", or "SET-SCREEN-MODIFIED is a

sub-procedure .. "

SYS5 - Examine Data structures and definitions

Comments suggesting that a data structure is being examined. For example, "Because

STACK is a fairly generic name ok here's the definition of the variable, so it 's structure

STATE. So let me see if I can find a definition for structure STATE. And here it is."

SYS6 - Slice on Data

Comments that indicate that a data structure behavior is being examined over time. For

example, " STACK is initialized with the number 0 then procedure X pushes the value

152

5 .. . ".

SYS7 - Chunk & Store

Summarizing comments about code structure and the programming language. For

example, "So, DO-ERASE-ALL-UNPROTECTED is called based upon ERASE-ALL-

UNPROTECTED command." Keywords include So , OK, Thus.

SYSB - Generate or revise Hypothesis

Anytime a comment about program code is unsure, assumed, or not verified the comment

is classified as an hypothesis. Key words and phrases include: "Probably ", "I guess ", "I

assume", "It could be", "I wonder", "I think, " "I believe", "It seems" .

SYS9 - Construct Call Tree

Comments about construction of where a particular procedure or variable is called from.

For example, "I'm making a note of where SET-SCREEN-MODIFIED is referenced at.

Or actually where it's called from."

SYSlO- Determine understanding strategy

Comments regarding how the programmer will or would have approached understanding.

For example, "by the way as odd as it may seem that actually is a determining factor as to

how I would have approached this problem. When I originally looked at SET-SCREEN-

MODIFIED I found out that it is only called from six locations. So I can manually do

this for a relatively short period of time. . . . If there were 50 calls here I would not be

doing this for the 50 calls."

SYSll- Generate New Task

Comments indicating additional tasks have been generated or discovered as a result of

comprehension activities. For example, "Oh, I'm going to have to go back in later and

add some code to " Most tasks referred will occur sometime beyond the current pro-

gramming session, unless a discovery is made and the task needs immediate attention.

153

SYS12 - Generate Question

Verbalized questions about the code that are either immediately pursued or noted for

later investigation. Specific questions as well as questions expressed as specific informa-

tion needed. For example, "Let's see whether it runs over here on my HPUX workstation."

SYS13 - Determine if looking at correct code

Explicit comments about finding the correct code or not. For example, " I am not looking

at the correct code here."

SYS14- Change Direction

Comments indicating the programmer is taking a different direction. For example, a dif-

ferent section of code will be examined because the current code is not supplying the

information sought after.

SYS15- Generate/Consider alternative code changes

Specific comments indicating that code will be physically changed or the consideration of

the effects of different code changes. For example, "Did the variable DATA get set?"

SYS16 - Answer Question

Comments that answer a specific question that was asked earlier about the code, either

immediately preceding the verbalization of the question, or if it directly answers a ques-

tion that can be found in the protocol at an earlier time. Following the example question

under SYS15 above, the statement "YUP! IT DID" would qualify as an SYS16 statement.

Also includes a simple Yes or No right after the question was asked.

SYS17 - Add/ Alter Code

Comments describing the code change as it is happening, or code added in the immediate

past.

SYS18 - Determine location to set breakpoint

Specific statements indicating the programmer knows exactly where to place a breakpoint

154

in the code or is searching for the exact location to put a breakpoint.

SYS19- Failed Hypothesis

Comments indicating that something that was thought to be the case has been disproved

or abandoned. These comments are specifically about statements in the code. See Pro-

gram Model Knowledge below.

SYS20 - Determine error/ omitted code to be added

Comments indicating that the programmer realizes an error has occurred or some aspect

of the code is missing.

SYS21 - Mental Simulation

Comments in program model language indicating the programmer is mentally simulating

program behavior. For example, "But, since we're only processing the first two argu-

ments, then we leave this procedure somewhere while exiting, SET-SCREEN-MODIFIED

gets reset."

SYS22 - Compare Code between versions

Comments describing some kind of comparison at the code level. This does include direct

comparisons of code, for example, results of the diff command or RCS . Comments that

indicate that some similar program should be/is being examined for reuse at the code

level is a candidate for this category. Also included are comments that include the series

of steps necessary to compare code segments.

SYS23 - Search for var definitions/use

Comments indicating that a specific data structure is being sought for examination. For

example, "I'm looking for an Xvar since it thinks that I went from 1 to len." This category

does not include the actual data structure examination itself, this is covered by SYS5.

SYS24 - Search for Begin/End of block

Statements indicating that the beginning and/or end of a physical block is being sought

155

after. For example, "This BEGIN goes with this END" or "I need to find the end of this

while loop."

Program Model Knowledge

Statements expressing information in the program model, for instance program language

syntax. References to specific language constructs or variables, statements, and param-

eters. Any comments indicating that knowledge acquired sometime in the past either

before or during the programming session is being used in reasoning. Include comments

about previous sessions, for example, reading related sections of code. Also included are

statements using knowledge already acquired in the on-going program session, for exam-

ple, knowledge that is chunked and stored. " 'WITH OBJECT'. This is PASCAL here

that I am dealing with. It is not a standard WITH statement", is a good example.

A.3 Situation Model Component Identification

SITl - Gain Situation Model knowledge

Specific intentions to get a situation/ application level understanding. Comments indicat-

ing that background information is sought. For example, studying a text book on the

subject of the application area. These comments are usually in the form of reading aloud

some documentation.

SIT2 - Develop questions

Questions or inquiries about the application area or situation. These questions are either

immediately pursued or noted for later investigation. For example, "I wonder if they used

the ISIS protocol for switcher communication?"

SIT3 - Determine answers to questions

Verbalized answers to stated questions, either immediately preceding the verbalization of

the question, or if it directly answers a question that can be found in the protocol at an

earlier time. Following the example question under SIT2 above, the statement "YUP! IT

DID" would qualify as an SIT3 statement.

156

SIT4 - Chunk & Store

Comments summarizing actions in the situation model. These typically involve statements

about related real-world concepts, for example, the concept the program is attempting to

simulate. Key words and phrases include "So, thus, OK" .

SIT5 - Determine relevance of situation knowledge

Statements indicating a decision to understand/not understand a specific concept in more

depth.

SIT6 - Determine next info to be gained

Comments indicating the programmer is looking for a clue to help determine what infor-

mation to gain next that might help in the comprehension process.

SIT7 - Generate or revise Hypothesis

Any time a comment about the situation or functionality using situation model language

is unsure, assumed, or not verified the comment is classified as an hypothesis. Key words

and phrases include: "Probably", "I guess", "I assume", "It could be", "I wonder", "I

think," "I believe", "It seems" .

SITS - Determine understanding strategy

Comments regarding how the programmer will or would have approached understanding.

This is similar to SYSlO and OP6, except statements address understanding in the situa-

tion model. For example, "First I need to understand the change in inventory calculations,

then ... "

SIT9 - Determine if error exists (missing functionality)

Comments indicating an error has been found using situation model language. For exam-

ple, " The inventory reduction calculation is missing and the calculation for adding new

inventory is incorrect."

SITlO - Failed Hypothesis

157

Comments indicating that something that was thought to be the case has been disproved

or abandoned. These comments are about the real world/situation level related to the

program. For example, "I was wrong, there are not just two protocol strategies there's a

whole multitude of them." See Situation Knowledge below.

SITll - Mental Simulation

Comments in situation model language indicating the programmer is mentally simulat-

ing program behavior. For example, "But, since we're only adding the new part inven-

tory, then we need to create a new part number, then add the part number to the order

database ... "

SIT12- Compare functionality between two versions

Comments describing some kind of comparison of functionality at the situation level.

This does not include direct comparisons of code, for example, results of the diff com-

mand. Comments that indicate that some concept should be/is being examined for use is

a candidate for this category.

Situation Model Knowledge

Statements expressing information in the real world. For example, statements about oper-

ating system functionality or application area. This knowledge is typically associated with

what is accomplished not HOW it is accomplished. (This is program model knowledge.)

158

Appendix B

SUPPLEMENTAL DATA FOR RESULTS

The sections in this appendix parallel the outline of Chapter 5, i.e. Action analysis,

hypotheses, switches, and information needs.

B.l Actions

This section compliments information reported on the percentage of actions subjects

spend in each level of the integrated model. The information is organized as a series of

bar charts. Each chart represents a particular configuration of subjects for task, expertise,

and accumulated knowledge. Subjects are identified on the x-axis labels together with the

model-level. For example, OPADl denotes subject ADl 's top-down actions. Model

levels designated as OP are Top-Down actions, SIT are Situation model actions, and

SYS are Program model actions.

B.l.l Action Percentages By Task

Four task types were identified among the subjects: Adaptive, Corrective, Enhance-

ment, and General Understanding. The General Understanding group contains one subject

who was working on leveraging knowledge from an existing program written in Pascal for

implementation in C. Since the majority of his actions were concerned mainly with un-

derstanding the Pascal program, we grouped him with the other General Understanding

subjects.

Figure B.l shows a surprising similarity between the two subjects working on adaptive

maintenance and, more specifically, porting tasks. Both subjects had references to the top-

down model 67% of the time. For program and situation models they were within 1% of

each other. They also were domain experts and had significant experience with the code.

We conjecture that adaptation for large-scale code requires domain knowledge due to the

100
Adaptive Maintenance Model Percentages

"ad.data" -
90

80

70

60

50

40

30

<1> 20
CJ)

.l!! c:
<1> 10 ~
<1> a...

0
OPAD1 OPAD2 SITAD1 SITAD2 SYSAD1 SYSAD2

Model/Subject

Figure B.l: Adaptive Maintenance Actions By Model (% of total actions, 2 Subjects)

size of the systems affected. For example, both subjects were porting code from one

operating system to a very different system and if they had not had specific OS domain

knowledge, they would have been unable to accomplish the amount of work in the two

hour observation period. They kept referring to Top-Down knowledge as they looked at

information associated with both systems and this knowledge helped them to focus on

important aspects of the porting task.

The effect of debugging on the frequency of model references is not clear in Figure B.2.

There are differences in expertise among the subjects and this may be interacting with

the influence of the task. Subjects C 2 and C 3 have similar expertise (both are domain

experts) and close to the same amount of accumulated knowledge. The percent of model

references for these two subjects are closer to each other than between any of the other

debugging subjects. Another hint that expertise may be interacting with the influence of

task on model references is that subjects Cl and C4 have very different model reference

behaviors. Subject Cl is a language only expert while subject C4 was a domain only

expert . The frequency of top-down references for domain experts (who presumably have

the knowledge necessary to break down the program into functional units) is high while

the frequency of program model references is high for non-domain experts.

160

Q)
0>
.l!! c::
Q) e
Q) a...

100

90

80

70

60

50

40

30

20

10

0 I

Corrective Maintenance Model Percentages

"debug.data" --

OPC1 OPC2 OPC3 OPC4 SITC1 SITC2 SITC3 SITC4 SYSC1 SYSC2SYSC3SYSC4
Model/Subject

Figure B.2: Corrective Maintenance Actions By Model (% of total actions, 4 Subjects)

One trend is visible from the chart : for all the subjects working on debugging tasks,

the number of references to the situation model is lower than that to either the top-down

or program models. This appears to indicate that during debugging, connections are made

between what the program is supposed to do and how it does it [52].

Enhancement Maintenance Model Percentages
100

"en .data"-

90

80

70

60

50

40

30

20
~ e 10 Q) a..

0 I.
OPEN1 OPEN2 SITEN1 SITEN2 SYSEN1 SYSEN2

Model/Subject

Figure B.3: Enhancement Maintenance Actions By Model (%of total actions, 2 Subjects)

161

-

-

-

General Understanding Maintenance Model Percentages
100

"understand.data" -
90

60

70

60

50

40

30

20
~
~ 10 "' 0....

0
OPG1 OPG2 OPL 1 SITG1 SITG2 SITL 1 SYSG1 SYSG2 SYSL 1

Model/Subject

Figure B.4: General Understanding Actions By Model (% of total actions, 3 Subjects)

Similar to the debugging task, Figure B.3 does not clearly indicate a pattern com-

mon to enhancement tasks. This could be partially related to differing amounts of prior

accumulated knowledge (ENl = significant; EN2 =little) and contribute to the variance

between them. There is a trend, however, of low top-down references and many more

program model references. We might expect more top-down references and less program

model references because both subjects were domain and language experts. ENl and

EN2 were working on adding specific functionality to the code. They were interested in

locating and adding code to specific areas within the code, rather than spend time looking

at unrelated pieces. Their task sequence was to find the appropriate location and concen-

trate on understanding the immediately surrounding code. Thus, it makes sense that they

would spend more time building a program model than the domain model representation.

Figure B.4 is the last of the maintenance task graphs. This graph includes 3 subjects,

one of whom had a goal of leveraging code (Ll). Again, we see major differences between

subjects. While Gland G2 had similar amount of prior knowledge and expertise, we be-

lieve the differences between them is attributable to the overall strategies they employed

during the understanding task. G 1 took an opportunistic approach in that he looked at

Call Graphs and decided to examine modules based on what sounded interesting to him.

G2, on the other hand, started with the main program of the system he was trying to

162

understand and looked at it line by line, systematically looking up variable definitions and

function calls. The difference in Ll 's behavior may be attributable to the lack of both ex-

pertise and accumulated prior knowledge about the program he was trying to understand.

B.1.2 Action Percentages By Expertise

The following bar charts · depict graphically the clustering of relative frequencies by

level of expertise. Three levels of expertise were identified among the subjects: Language

Only, Domain Only, and Language & Domain.

Language Expertise Only Model Percentages
100

"lang.data• -

90

80

70

6 0

50

40

30

20
c
Q)

~ 10 Q) a..

0 I
OPC1 OPL1 SITC1 SITL1 SYSC1 SYSL1

Model/Subject

Figure B.5: Language Only Expertise By Model (% of total actions, 2 Subjects)

Results depicted in Figure B.5 (Language Only Expertise) support current theory [36]

that people with little domain knowledge approach understanding primarily by building

program and situation model m'ental representations. Between the two subjects, the max-

imum difference among same model references is only 14%, with 2 out of 3 under 10%.

Figure B.6 represents the distribution of actions for the domain only experts. Two

subjeCts, C4 and AD2, show the effect of domain only knowledge. Both had considerably

more top-down references than situation and program model references. The other two

subjects, C2 and C3, showed the opposite pattern with more references to program model

than top-down model. C2 and C3 were also close in percentage of references for each

163

c
Q)

~
Q) a..

100

90

80

7 0

60

50

40

30

20

10

0

Domain Expertise Model Percentages

"'domain.data• -

.----

-
-

r----

r----
1--

-

OPC2 OPC3 OPC4 OPAD2 SITC2 SITC3 S ITC4 SITAD2SYSC2SYSC3SYSC<SYSAD2
Model/Subject

Figure B.6: Domain Only Expertise By Model (% of total actions, 4 Subjects)

model. We suspect this is because they were working on debugging tasks which are

necessarily tied to program model representations. For example, if the goal is to fix a bug

the expectation is that once the fault location is narrowed down, understanding what the

code is actually doing is the most important goal. Both C2 and C3 were not only working

on a debugging task, they also had very little knowledge about the code with which they

were working.

Figure B. 7 graphs the distribution of actions by model level for the domain and

language experts. The following legend cross-references the code shown on the X-axis to

model and subject:

Table B.l: Labels for Figure - Domain Only Expertise
Top-Down Model Situation Mode l Program Model
Label Label Label
OAl -+ Top-Down Model, ADl STAl -+ Situation Model, ADl SSAl -+ Program Model, ADl
OEl -+ Top-Down Model, ENl STEl -+ Situation Model, ENl SSEl -+ Program Model, ENl
OE2 -+ Top-Down Model, EN2 STE2 -+ Situation Model, EN2 SSE2 -+ Program Model, EN2
OGl -+ Top-Down Model , Gl STGl -+Situation Model, Gl SSGl -+ Program Model, Gl
OG2 -+ Top-Down Model, G2 STG2 -+ Situation Model, G2 SSG2 -+ Program Model, G2

164

"E
Q)
~
Q) a..

100

90

80

70

60

50

40

30

20

10

0

Domain & Language Expertise Model Percentages

"lang_ domain. data" -

,---

--

,--- -

-
-

,--- - .--
f---- ,_____ ,_____ ,_____

OA1 OE1 OE2 OG1 OP2 STA1 STE1 STE2STG1 STG2SSA1 SSE1 SSE2SSG1SSG2
Model/Subject

Figure B.7: Domain & Language Expertise By Model(% of total actions, 5 Subjects)

Figures B.7 shows no obvious trends for domain and language experts. Subjects ADl

and G 1 are more similar to each other than to the rest of the subjects. This similarity is

probably due to ADl 's porting task and Gl 's opportunistic understanding strategy.

B.1.3 Action Percentages By Accumulated Knowledge

Figures B.8, B.9, and B.lO cluster action distributions by level of accumulated knowl-

edge. Three levels of accumulated knowledge were identified among the subjects: Little,

Some, and Significant.

Figure B.8 represents this distribution of actions for subjects with very little prior

experience with the software. Percentages among three of the subjects are very close. The

last subject is different (within 25%). The only trend between models is that references

to the situation model are lower than those to program and top-down models.

Similarly, Figure B.9 shows distribution of actions for subjects with some prior expe-

rience with the software. No obvious trends are visible from the graph.

Figure B.lO graphs relative frequencies of actions at all three model levels for subjects

with significant prior experience with the software. Again, no obvious trends are visible

from the graph. Accumulated knowledge may not be visible because expertise and task

could be obscuring the effect.

165

100

90

80

70

60

50

40

30

20
~
~ 10 "' a..

0

Little Accumlated Knowledge by Model

" lit11e.data" - -

r-

,--

1---- 1---

r-

l
OPC2 OPC3 OPEN2 OPG1 SITC2 SITC3 SITEN2 SITG1 SYSC2SYSC:BYSEN:<BYSG1

Model/Subject

Figure B.8: Little Accumulated Knowledge By Model (% of total actions, 4 Subjects)

~
~

"' a..

100

90

80

7 0

60

50

40

30

20

10

0

Some Accumlated Knowledge by Model

"some.data" - -

~

r---- ,--
r----

r----

~ r---

OPC1 OPC4 OPG2 OPL 1 SITC1 SITC4 SITG2 SITL 1 SYSC1 SYSC4SYSG2 SYSL 1
Model/Subject

Figure B.9: Some Accumulated Knowledge By Model (% of total actions, 4 Subjects)

166

100

9 0

80

70

60

50

40

30

20
"E
Q)
u a; 10 a...

0

Sign ificant Accumlated Knowledge by Model

"sig .data" --

I
OPAD1 OPAD2 OPEN1 SITAD1 SITAD2 SITEN1 SYSAD1 SYSAD2 SYSEN1

Model/Subject

Figure B.lO: Significant Accumulated Knowledge By Model (% of total actions, 3 Sub-

jects)

167

B .2 Hypotheses- Level 1

This section presents the detailed results of the hypothesis analysis for all subjects. It

complements section 5.3. Result details are provided for the hypotheses types, hypothesis

generated switches, and HK-Ratios. Table B.2 contains data on total top-down, situa-

tion, program, and combined situation and program model hypotheses for each individual

subject. This table is helpful for determining overall counts and frequencies of hypotheses

within each model.

Table B 2· Hypotheses by Model - Frequencies & Percentages

Subject
Code
ADl
Adaptation
AD2
Adaptation
Total
Adaptation
Cl
Corrective
C2
Corrective
C3
Corrective
C4
Corrective
Total
Corrective
ENl
Enhancement
EN2
Enhancement

II
Total
Enhancement
Gl
Understand
G2
Understand
Ll
Understand
Total
Understand

Top-Down
Model

23
57%

42
82%

65
71 %

9
18%

18
37%

26
51%

24
42%

77
37%

2
6%
16

57%
18

28%
54

59%
13

22%
15

31%
82

41%

Situation
Model

14
35%

6
12%

20
22%

17
34%

18
37%

7
14%

22
39%

64
31%

4
11%

1
4%

5
8%
30

33%
7

12%
18

37%
55

27%

168

Program Total
Model Hypotheses

3 40
8%

3 51
6%

6 91
7%
24 50

48%
12 48

26%
18 51

35%
11 57

19%
65 206

32%
30 36

83%
11 28

39%

64~ II
7 91

8%
40 60

66%
16 49

32%
63 200

32%

B.2.1 Model Frequencies by Task, Expertise, & Accumulated Knowledge

This section contains detailed results for hypothesis type analysis based on task ,

expertise, and accumulated knowledge. These are summarized and further interpreted in

Chapter Five, section 5.3 .1.

B.2.1.1 Hypotheses Types By Task

A separate table for information on top-down (see Table B.3), program (see Ta-

ble B.4) , and situation model (see Table B.5) hypotheses for tasks is presented. The Adapt

(Adaptive Maintenance) column contains data for two subjects, the Corrective (Corrective

Maintenance)column reports on four subjects, the Enhance (Enhancement task) column

shows data on two subjects, and the Understand (General Understanding) column repre-

sents data from three subjects.

Top-Down Hypotheses

Table B.3 contains the absolute and relative frequencies of top-down hypotheses for each

type of task. These hypotheses are at a high level. For example, OPH8 (making hy-

potheses regarding whether the program runs correctly) is different than SYSH16 (code

correctness/ cause/location of error) . In the first example, focus is on the entire program,

while in the second, focus is on the specific piece of code. At the top-down level, the pro-

gram may be run and behavior observed, whereas at the program model level a debugger

may be used to step through specific code sections.

169

Table B.3: Hypothesis-Type Frequencies/Percentages - Top-Down Model, All Tasks

II Tag

Absolute & Absolute & Absolute & Absolute & II
Percent of Percent of Percent of Percent of II

Hypoth esis- Type Adapt Corrective Enhance Understand
OPH1 Domain Procedure 12 11 9 33

function /Concepts 18% 14% 47% 40%
OPH2 Variable function/ 0 2 0 5

domain concepts 0% 3% 0% 6%
OPH3 Rules of discourse 1 1 0 5

/Expectations 1% 1% 0% 6%
OPH4 I/ 0 behavior 1 0 0 4

1% 0% 0% 5%
OPH5 Existence of installed 5 0 2 1

(running) program 8% 0% 11% 1%
OPH6 Existence of specific 4 3 0 0

functiona.lity 6% 4% 0% 0%
OPH7 Number/type/existence/ 2 5 0 0

location of libraries 3% 7% 0% 0%
OPH8 Program functions 9 1 0 4

correctly 14% 1% 0% 5%
OPH9 Permissions/Environment 4 11 1 0

set correctly /Tool 6% 14% 5% 0%
functionality

OPH10 Location to a.dd 0 0 3 1
function ality 0% 0% 21% 1%

OPH11 Comparison of function- 0 2 2 0
ality at high level 0% 3% 11% 0%

OPH12 How to duplicate 6 0 0 0
warnings/errors; 9% 0% 0% 0%
relative difficulty
to set-up/ test errors

OPH13 Number/type/ 3 5 0 2
location of file 5% 6% 0% 3%

OPH14 Available functionality 2 2 0 10
3% 3% 0% 12%

OPH15 Approaches/relative 1 0 0 0
difficulty in making 2% 0% 0% 0%
change

OPH16 Level & structure of 1 11 1 15
code/scope 2% 14% 5% 18%

OPH17 Design Deci~ions/ 0 2 0 2
Modifications 0% 3% 0% 3%

. OPH18 Location/Status/ 14 20 0 0
description/cause of 22% 26% 0% 0%
error

OPH19 Current location 0 1 0 0
0% 1% 0% 0%

170

During the adaptive maintenance programming sessions, both subjects (ADl and

AD2) were adding code and trying to see if it ran correctly. It makes sense that many

hypotheses would be generated around the question of why the newly added code wasn't

functioning properly. The most common type of hypothesis observed during the sessions

was in trying to determine location/status/description/ cause of errors (OPH18,22%).

The second most common type of hypothesis was domain function/concepts (OPH1,18%).

This may be due to the expertise (both were at least domain experts) and the amount

of prior experience with the code (both had significant amounts of prior knowledge about

the system they were trying to adapt). Because the systems were large, the only way to

understand the impact of the changes was to approach understanding in an opportunistic

manner. Making domain connections to program functions and procedures is one way to

narrow the fo cus (and opportunistically determine which program components make sense

to look at) when dealing with large systems. The third most frequent type of hypothesis

is about whether the program functions correctly (OPH8,14%) (as opposed to figuring out

what the error is) .

Of all task types, adaptive maintenance contains the highest frequency of the OPH8

hypothesis type. This is reasonable since once a change is made, it is important to make

sure the program functions correctly. However, we would also expect to see this behavior

for both corrective and enhancement tasks. Yet, corrective maintenance contains only

1% and enhancement has no hypotheses of this type at all. In the case of the corrective

maintenance sessions, none of the subjects reached a point in the task where they were

able to identify exactly where the error was occurring and fix it. Given more than the

two hours of the session, we would likely see more of these types of hypotheses. It is a

similar case for the enhancement tasks. Both subjects had time only to find where to add

the enhancement and add the needed code. Neither had much time to determine if the

program functioned correctly after finishing the first two tasks.

For corrective maintenance, the majority of hypotheses concerned location/status/

description/cause of error (OPH18,26%). This makes sense in light of their goal to fix a

known defect. The other three most frequent types of hypotheses are evenly divided be-

tween domain procedure/function concepts (OPH1,14%), understanding the environment

surrounding the system and understanding the tools they were using (e.g. the debugger)

171

(OPH9,14%) , and level & structure of code (OPH16,14%). Code structure hypotheses are

expected considering it is necessary to understand code structure when trying to pin-point

bug location. We hypothesize that the reason domain concept hypotheses are frequent is

because three of the four subjects were domain experts and used their grasp of the domain

to direct their understanding of the bug.

For enhancing code, we find that the highest number of references are hypotheses

about the connection of the domain to functionality in the program (OPH1,47%). It is

difficult to determine whether this is related to the task or to the fact that both subjects

were domain experts. It makes sense that because the focus of the task was to add func-

tionality, a good grasp of the functionality already provided is necessary, but necessary

at a high level rather than understanding each function at the code level. It also makes

sense that because each subject was familiar with the domain, hypotheses could easily be

generated about expected functionality. The second most frequent hypothesis type con-

cerned the appropriate location to add the functionality (OPH10,21 %). This is reasonable

because the majority of both programming sessions was spent in locating the right place

to add the new functionality. The other three tasks contained either none or very few of

these types of hypotheses.

The highest percent of top-down hypotheses for General Understanding were hypothe-

ses concerned with understanding the domain connections to functionality (OPH1,40%).

Here is it difficult to tell if expertise or overall strategy is the major contributor. Two of

the subjects in this category were domain experts. One of these two took a systematic

approach by reading the code line by line while the other took an opportunistic approach

by looking at code he thought might be interesting. The majority of the references to

OPH1 came from the subject who approached understanding opportunistically (20 of the

33) . Thus, it appears that strategy is the major influence in the number of references to

domain-function related hypotheses. The second most common type of hypotheses are

about level and structure of code (OPH16,18%) . These hypotheses are concerned with

structure at a high level, for example function-call structure. This is in contrast to program

model level where statement execution order can be found. All 15 references to OPH16

were made by the domain expert who took an opportuni3tic approach to understanding.

Again, strategy seems to play the dominant role, as this subject was mainly interested in

172

high level information about the system.

Program Model Hypotheses

Table B.4: Hypothesis-Type Frequencies/Percentages - Program Model, All Tasks
Absolute fJ Absolute fj Absolute fJ Absolute fJ
Percent of Percent of Percent of Percent of

Tag Hypothesis- Type Adapt Corrective Enhance Understand
SYSH1 Variable function 1 1 0 12

17% 2% 0% 19%
SYSH2 Function/procedure 0 6 4 5

function 0% 9% 10% 8%
SYSH3 Procedure/function 0 0 0 1

call behavior 0% 0% 0% 2%
SYSH4 Variable structure 0 7 0 10

0% 11 % 0% 16%
SYSH5 Location/type/ 0 1 3 1

existence of func- 0% 2% 7% 2%
tion call

SYSH6 Statement execut- 0 15 3 7
ion order /state 0% 23% 7% 11%

SYSH7 Variable value/ 1 8 8 5
defaults 17% 12% 20% 8%

SYSH8 (Non-)Existence of 0 3 1 0
construct (var / 0% 5% 2% 0%
code)

SYSH9 Variable/construct 0 1 0 1
equivalency 0% 2% 0% 2%

SYSH10 Syntax meaning 0 7 0 2
0% 10% 0% 3%

SYSH11 Design decisions 0 0 0 3
0% 0% 0% 5%

SYSH12 Variable defini- 0 0 0 2
tion & it's 0% 0% 0% 3%
location

SYSH13 Code block/ 0 2 1 1
procedure compari- 0% 3% 2% 2%
son

SYSH14 Code block func- 0 0 0 5
tion 0% 0% 0% 8%

SYSH15 Relevance of error 1 0 0 0
in Makefi le 17% 0% 0% 0%

SYSH16 Code correctness, 2 10 16 1
cause/location of 32% 15% 40% 1%
error

SYSH17 Changes made cor- 1 0 0 1
rectly 17% 0% 0% 1%

SYSH18 Location to add 0 2 5 0
code/alternatives 0% 3% 12% 0%

SYSH19 Code block 0 0 0 4
boundary location 0% 0% 0% 6%

SYSH20 Paramsftype defs 0 2 0 2
in procedure call 0% 3% 0% 3%

173

Table B.4 contains the absolute and relative frequencies of program model hypotheses

for each task type. These hypotheses are very low-level and tied closely to code.

Relative frequencies in the case of adaptive maintenance are somewhat misleading

as both adaptive maintenance subjects made very few program model hypotheses overall.

Therefore, we report results for this task by count, rather than relative frequency.

There were two hypotheses about code correctness or cause/location of error

(SYSH16). This ties to the high number of hypotheses of the top-down hypothesis type,

OPH18, location/status/ description/cause of error. Once a high level hypothesis about

the error is made, hypotheses regarding the actual code can help direct focus to specific

code segments. The other hypotheses types are variable function (SYSH1) and value

(SYSH7), whether changes were made correctly (SYSH17), and hypotheses about make

files (SYSH15).

The highest percentage of program model hypotheses for corrective maintenance sub-

jects concerned statement execution order (SYSH6,23%). This appears to be related to

task, because, when trying to locate a defect, understanding the order in which statements

are executed (or could be executed, in the case of a branch) is important. The second

most frequent type is code correctness (SYSH16,15%). Obviously, understanding whether

the code is correct or not is an integral aspect of debugging. The third and fourth most

important hypothesis types are variable value/defaults (SYSH7,12%) and variable struc-

ture (SYSH4,11 %). Understanding variables and their values is essential when debugging

code.

Interestingly enough, the highest percentage of hypotheses in the program model for

enhancement activities is code correctness and location of error (SYSH16,40%). This is a

very different result from that seen with the top-down model hypotheses. There were no

references at all for top-down hypothesis type OPH18 (location/status/ description/cause

of error). The reason may be due to the type of enhancement task subject ENl performed.

15 of the 16 references of this type were attributable to him. While he did not spend a

lot of time compiling and running the program, he frequently recognized a potential or

obvious error just by looking at code. When he saw a potential problem he proceeded

to make hypotheses regarding the location of the source of the problem. The second

most frequent types of hypotheses dealt with variable values (SYSH7,20%) . Again, ENl

174

generated the majority of these hypotheses (7 out of 8). By contrast, EN2 had very few

references to the program model level , so it is no surprise that there is a lack of hypotheses

at this level. (ENl had 37 program model hypotheses and EN2 had 12). Some of ENl 's

hypotheses about variable values were concerned with the same possible defects discussed

above. Thus, it is reasonable to expect hypotheses about variables would follow from

hypotheses concerning code correctness.

The majority of references for the understanding task concerns variable function

(SYSH1,19%). Most of these references (5 out of 7) are attributable to subject G2 , the

subject who took the systematic approach to understanding code. The second and third

most frequent types of hypotheses concern variable structure (SYSH4,16%) and statement

execution order (SYSH6,11 %), respectively. Again, one subject (G2) was responsible for

the majority of the references. These top three types, taken together, constitute the major

types of information at the program model level, with the exception of procedure structure

and function. Thus, it is no surprise that the subject who took a systematic approach to

understanding focused mostly on these three attributes of the program model.

Situation Model Hypotheses

Table B.5 contains the absolute and relative frequencies of situation model hypotheses for

each task type.

The highest percent of hypotheses for adaptive maintenance concerns program func-

tion (SITH8,40%). This appears to be related to the porting task on which one of the

subjects (ADl) was working. 7 of the 8 references were attributable to him. The other

adaptive maintenance subject (AD2) had the majority of the hypotheses references to

functionality in the top-down model and only one hypothesis reference to functionality in

the situation model. In contrast, ADl had the most hypothesis references to program

function at the situation model level and no references to functionality at the top-down

level. The porting task for ADl involved porting a series of X-clients to a different operat-

ing system. ADl needed to know how these clients were supposed to behave, independent

of the OS. Thus, most of his hypotheses regarding functionality had to do with guesses

about connections to real world behavior of each client. For example, one of the clients

175

Table B.5: Hypothesis-Type Frequencies/Percentages - Situation Model, All Tasks
Absolute fj Absolute fj Absolute f3 Absolute fj
Percent of Percent of Percent of Percent of

Tag Hypothesis- Type Adapt Corrective Enhance Understand
SITH1 Variable function 0 7 0 16

0% 11% 0% 29%
SITH2 F\mctionjcode 1 9 1 7

block execution 5% 14% 20% 13%
order /state

SITH3 Function/procedure 0 25 2 17
function, call 0% 39% 40% 31%
function

SITH4 Effect of running 4 1 1 0
program 20% 2% 20% 0%

SITH5 Cause of buggy 6 6 0 0
behavior 30% 9% 0% 0%

SITH6 Comparison of terms 0 4 0 1
/acronyms/function- 0% 6% 0% 2%
ality

SITH7 Existence of 1 10 1 12
function/algorithm / 5% 16% 20% 22%
variable

SITH8 Program function 8 2 0 2
40% 3% 0% 3%

SITH9 Design Decisions 0 0 0 0
0% 0% 0% 0%

simulated a gas molecule in a heated box. At first, because he cued off the name of the

program, X-gas , he thought perhaps it had something to do with gas stations.

The second most frequently referenced were to causes of buggy behavior (SITH5,30%).

The majority of these were made by AD2 (4 out of 6). AD2 's task was to test a port of

a particular type of functionality using a prototype he had written. A lot of his time was

devoted to setting up the new environment to test whether the new functionality would

work. He ran into some problems with the environment and spent considerable effort

trying to fix them. The third most frequent, effect of running program (SITH4,20%),

were generated by ADl. He ran into very few problems during the task and usually

successfully ran the client program on the OS he was porting to.

Hypotheses about functionality at the procedure level is most important for debugging

(SITH3,39%) . Our subjects seemed more concerned with functionality at the situation

model level than at the program model level. Perhaps this is due to spending more time

looking at statement execution order and variable values at the program model and ab-

stracting functionality to the situation model. Hypotheses about variable and procedure

functionality at the program model level is tied to language meaning; for example, "vari-

176

able 'i' is used as a looping mechanism" . All corrective maintenance subjects were at

least language experts, so the need to understand variable and procedure function is less

important at the program level than understanding functionality at the algorithmic (or

situation model) level. Using the same reasoning, the second most frequent hypothesis

type, existence of function/algorithm/ variable (SITH7,16%), makes sense. During the

understanding of a defect, it is important to determine whether some program construct

that is critical to code correctness exists, for its absence may be a strong contributor to

the defect.

It is difficult to draw conclusions about situation model hypotheses for the enhance-

ment task because there were only five. Because of the low number of hypotheses, we

report them by count rather than relative frequency. Two hypotheses were made relating

to the function of a procedure (SITH3) , one each to order or state of execution (SITH2),

effect of running the program (SITH4), and existence of a function, algorithm or vari-

able (SITH7). It is not clear whether these are typical situation model hypotheses for

enhancement tasks. The data is too scarce.

The most frequent type of hypothesis for general understanding concern procedure

function (SITH3,31%). Most of these were generated by Gl, the subject who proceeded

opportunistically. G 1 also had the majority of hypotheses about functionality at the

domain level. For those functions he wanted to understand more thoroughly, he took time

to understand them at the algorithmic level. We see the same behavior for the second and

third most frequent hypothesis types - variable function (SITH1,29%) and the existence

of expected functionality (SITH7,22%). In both cases, Gl generated the majority of these

references (11 out of 17, 8 out of 12, respectively).

B.2.1.2 Hypotheses Types By Expertise

This section contains a separate table for information on top-down (Table B.6), pro-

gram (Table B.7) , and situation model (Table B.8) hypotheses clustered by expertise level.

In each table, the Language expertise column contains data for 2 subjects, the Domain

expertise column reports on 4 subjects, and the Domain f3 Language expertise column

represents data from 5 subjects.

177

Top-Down Hypotheses

Table B.6: Hypothesis-Type Frequencies/Percentages - Top-Down Model, Expertise
Absolute fj Percent Absolute fj Percent Absolute fj Percent

of Language of Domain of Domain fj Lang
Tag Hypothesis- Type Expertise Expertise Expertise
OPH1 Domain Proced ure 7 22 36

function/Concepts 29% 20% 33%
OPH2 Variable function/ 1 1 5

domain concepts 4% 1% 5%
OPH3 Rules of discourse 1 2 4

/Expectations 4% 2% 4%
OPH4 1/0 behavior 3 0 2

13% 0% 2%
OPH5 Existence of installed 0 0 8

(running) program 0% 0% 7%
OPH6 Existence of specific 0 3 4

functionality 0% 2% 4%
OPH7 Number /type/existence/ 0 5 2

location of libraries 0% 5% 2%
OPH8 Program fu nctions 4 6 4

correctly 17% 5% 4%
OPH9 Permissions/Environment 0 13 3

set correctly /Tool 0% 12% 3%
functionality

OPH10 Location to add 1 0 3
functionality 4% 0% 3%

OPHll Comparison of function- 0 2 2
ality at high level 0% 2% 2%

OPH12 How to duplicate 0 5 1
warnings/errors; 0% 5% 0%
relative difficulty
to set-up/ test errors

OPH13 Number/type/ 1 5 4
location of file 4% 5% 4%

OPH14 A vail able functionality 0 3 11
0% 2% 10%

OPH15 Approaches/ relative 0 0 1
difficulty in making 0% 0% 0%
change

OPH16 Level & structure of 5 7 16
code/scope 21 % 6% 15%

OPH17 Design Decisions/ 0 2 2
Modifications 0% 2% 2%

OPH18 Location/Status/ 1 33 0
description/cause of 4% 30% 0%
error

OPH19 Current location 0 1 0
0% 1% 0%

178

It is difficult to draw conclusions about the effect of language expertise on top-down

model hypothesis generation. There were too few subjects and too few total top-down

hypotheses. These subjects had far more program model than top-down hypotheses (46

vs. 24). As reported in the action-type analysis section, the lack of top-down hypothe-

ses in general may be due to a lack of domain expertise. The most frequent type of

hypothesis, domain concepts tied to functionality (OPH1,29%) , is not surprising as this

was the most common top-down hypothesis type for all subjects. The second most fre-

quent is more interesting because, although at the top-down level, level and structure of

code (OPH16,21%) is more related to the program model than other top-down hypothesis

types. If an engineer is not familiar with the domain, it seems reasonable that construct-

ing the high-level structure of the program would be simpler given an understanding of

the program model level. As previous research has shown [36], when experience in the

domain is lacking, the program model tends to be built before connections to higher-level

information can occur. Again, only two subjects made up this category and we expect

that further experiments would show OPH16 to be a predominant type of hypothesis for

language only experts.

For the domain experts, there are a considerable number of hypotheses in the top-

down model. Percentages are spread among most of the hypothesis types (almost 80%

of all types). The most important is OPH18 (30%, location/status/ description/cause of

error). The most likely reason for this is that three of the four subjects were working on

debugging tasks. The theory is that because they were all domain experts, hypotheses

at the domain level could easily be formed. Looking at the table for program model

hypotheses references, B.7, we see substantially fewer hypotheses in general. The total

number of hypotheses in the top-down model are twice that of the program model (110

vs 51, respectively).

Domain and language experts have more domain concept hypotheses (OPH1,33%)

than any other type of hypothesis. The subjects in this group include two general un-

derstanding, two enhancement, and an adaptive maintenance subject. It is tempting to

say that because they were domain and language experts, they could easily generate hy-

potheses at the top-down level regarding high level functionality. However, two subjects,

G 2 and ENl did not have nearly as many hypotheses in the top-down model as the

179

other three subjects. While G2 had more OPH1 (Domain procedure/function concepts)

hypotheses than any of the other top-down hypothesis types, ENl had none. For G 2 and

ENl the lack of top-down hypotheses could be task related. Both of these subjects con-

centrated on understanding at levels close to program code. The theory is that expertise

plays a role. However, it is not clear from this study that this is the case for language

and domain experts. 15 of the 16 OPH16 (Level & structure code) hypotheses are at-

tributable to G 1. This is probably related to the opportunistic strategy he applied while

understanding a large software system. His expertise allowed him to generate hypotheses

on how he expected the program to be structured. Because he has the majority of the

top-down hypotheses (84% of all generated), nothing can be concluded about effect of

domain and language expertise on generating top-down hypotheses.

Program Model Hypotheses

Table B. 7 contains the absolute and relative frequencies of program model hypotheses

clustered by level of expertise.

The highest percent of program model hypotheses for language only experts concern

statement execution (SYSH6,32%). Pennington [36] found that when code is unfamiliar,

programmers first build a mental representation that consists of an abstraction of the

control-flow. When the domain is not familiar, connections to the top-down model can be

difficult. Therefore, the easiest method for language only experts to understand code in an

unfamiliar domain is to first build a control-flow abstraction before attempting connections

to the domain. Syntax meaning (SYSH10,15%) is another logical hypothesis type for this

group. Language only experts can use their expertise to form intelligent hypotheses about
I

syntax during the program model building process. One of the third most important

hypothesis types, code correctness (SYSH16,12%) , is probably more influenced by task.

Four of the five hypotheses about code correctness was generated by subject Cl who was

working on a debugging task.

For domain experts, program model hypothesis generation appears highly task influ-

enced. Three of the four subjects worked on debugging tasks. In the case of hypotheses

about code correctness (SYSH16,16%), this seems logical. The clue that program model

hypotheses are task-related in this situation is that the one subject, ADl , who was not

180

explicitly working on a debugging task contributes only three program model hypotheses

to this group of domain experts. As was the case with domain experts for top-down model

hypotheses, we can theorize that the substantially fewer number of hypotheses in the pro-

gram model may be attributable to domain expertise. We can't make any conclusions as

to the types of hypotheses we expect to find within the program model since it appears

that task is the driving factor for this group of experts.

The story for domain and language experts is different than that of domain only ex-

perts. The number of hypotheses domain-only-experts generated in the program model

was small compared to the number generated in the top-down model. Domain and lan-

guage experts made close to the same number of hypotheses in the program model as they

did in the top-down model.

Looking more closely at the subjects in this group, G2 contributes 63% of the total

program model hypotheses and 48% of the total number of program model hypotheses

(see Table 5.4). G2 showed an unexpected pattern. This may be due to his use of

a systematic strategy to understand code. If we disregard his contribution, since he is

somewhat of an anomaly, the number of program model hypotheses is closer to what we

would expect for language and domain experts, which is roughly half the number of top-

down model hypotheses. Of course, we would have to disregard G2 's contribution to the

top-down model as well, but this does not change the picture significantly as only 16% of

the top-down model hypotheses were attributable to G2.

Again, disregarding G2, the top two most frequent types of hypotheses do not change.

Code correctness (SYSH16) is still first, variable value/defaults (SYSH7) is second. The

third most frequent type without G2 is SYSH18 (location to add code). This is the

same ranking as found in the enhancement task. With G2, the third most frequent

task is SYSHl (variable function). Subject ADl contributed only three program model

hypotheses and Gl contributed only 7 (out of 51 total without G2). The remaining two

subjects, ENl and EN2, were responsible for the remaining 41 hypotheses. Thus, it

appears that for program model hypotheses, these results are the same as those reported

for hypothesis generation for program model building during enhancement. This is to say

that we cannot draw conclusions about the effect of expertise for language and domain

181

experts (in the program model) because task seems to be the major influence for this

group of subjects.

Table B. 7: Hypothesis-Type Frequencies/Percentages - Program Model, Expertise
Absolute & Percent A bsolute & Percent Absolute & Percent

of Language of Domain of Domain & Lang
Tag Hypothesis· Type Expertise Expertise Expertise
SYSH1 Variable function 2 2 10

5% 5% 11%
SYSH2 Function/procedure 1 6 8

function 3% 14% 9%
SYSH3 Procedure/function 0 0 1

call behavior 0% 0% 1%
SYSH4 Variable structure 3 7 7

7% 16% 8%
SYSH5 Location/type/ 0 1 4

existence of func- 0% 2% 5%
tion call

SYSH6 Statement execut- 13 4 8
ion order /state 32% 9% 8%

SYSH7 Variable value/ 2 8 12
defaults 5% 18% 13%

SYSH8 (Non-)Existence of 0 3 1
construct (var / 0% 7% 1%
code)

SYSH9 Variable/ construct 0 1 1
equivalency 0% 2% 1%

SYSH10 Syntax meaning 6 2 1
15% 5% 1%

SYSHll Design decisions 1 0 2
3% 0% 2%

SYSH12 Variable defini- 0 0 2
tion & it's 0% 0% 2%
location

SYSH13 Code block/ 3 0 1
procedure compari- 7% 0% 1%
son

SYSH14 Code block func- 2 0 3
tion 4% 0% 3%

SYSH15 Relevance of error 0 0 1
in Makefile 0% 0% 1%

SYSH16 Code correctness, 5 7 17
cause/location of 12% 16% 19%
error

SYSH17 Changes made cor- 1 0 1
rectly 3% 0% 1%

SYSH18 Location to add 1 1 5
code/alternatives 3% 2% 6%

SYSH19 Code block 0 0 4
boundary location 0% 0% 5%

SYSH20 Paramsftype clefs 0 2 2
in procedure call 0% 4% 2%

182

Situation Model Hypotheses

Table B.8 contains the absolute and relative frequencies of situation model hypotheses

clustered by level of expertise.

Table B.8: Hypothesis-Type Frequencies/Percentages- Situation Model, Expertise
Absolute & Percent Absolute & Percent Absolute & Percent

of Language of Domain of Domain & Lang
Tag Hypothesis- Type Expertise Expertise Expertise
SITH1 Variable function 7 5 11

20% 9% 20%
SITH2 Function/code 5 9 4

block execution 14% 17% 7%
order /state

SITH3 Function/procedure 13 17 14
function, call 37% 32% 25%
function

SITH4 Effect of running 0 1 5
program 0% 2% 9%

SITH5 Cause of buggy 1 9 2
behavior 3% 17% 3%

SITH6 Comparison of terms 4 1 0
/acronyms/ function- 12% 2% 0%
ality

SITH7 Existence of 5 8 11
function/algorithm/ 14% 15% 20%
variable

SITH8 Program function 0 3 9
0% 6% 16%

SITH9 Design Decisions 0 0 0
0% 0% 0%

The types of situation model hypotheses that are generated by language only experts

concern abstractions of program code that are useful for understanding control-flow. We

saw that statement execution order was the most frequent type of hypothesis for this group

in the program model. It is logical that we should find this same group abstracting chunks

of code into mental labels for use at the situation model level. These labels represent

specific procedure/function and variable functionality. These two hypothesis types, SITH3

(37%) and SITHl (20%), are the most frequent types of hypotheses generated by language

only experts. A distant third are hypotheses concerning the existence of algorithms,

functions, and variables {SITH7,14%). Tracking down expected program components is

an activity that also helps to build a control-flow view of the program. This happens

when some item is referenced by a specific code block and the engineer feels it necessary

to understand it.

183

Generating hypotheses about procedure functionality at the situation model level

(SITH3,32%) is the most frequent type of hypothesis for Domain only experts. As was

the case with the top-down and situation models for this group, it is difficult to determine

if this is an effect of expertise or task since all SITH3 hypotheses were generated by the

three corrective maintenance subjects. The same holds for SITH2 (function state, 17%).

For SITH5 (Cause of buggy behavior, 17%), five of the nine hypotheses were attributable

to debugging tasks and four are attributable to AD2, the subject working on adding

functionality to an existing program. In his case, he spent time testing a prototype he had

written, and this part of his task is related to debugging. AD2 spent a great deal of time

trying to set up the environment in which to run the prototype. He had difficulty setting

it up so the program would run correctly, so he therefore concentrated on determining

the cause of the unexpected behavior he observed in the environment. The third most

frequent hypothesis type, existence of functions, algorithms, and variables (SITH7,15%)

is attributable only to the debugging subjects. To reiterate, it is not possible to determine

the effect of expertise on situation model hypothesis generation because of the apparent

influence of task. Obviously, what is required is another study in which domain experts

work on a greater variety of tasks.

The greatest hypothesis frequency for domain and language experts concerns function-

procedure functionality (SITH3,25%) . 11 of the 14 hypotheses are attributable to G1, the

subject who used an opportunistic strategy for the task. G1 is also responsible for the

majority of the second most frequent hypotheses types, variable function (SITH1,20%)

and existence of function/algorithm/variable (SITH7,20%) (7 out of 11 , and 8 out of 11,

respectively). Interestingly, G 1 had 54 top-down model hypotheses and only 7 program

model hypotheses. It appears that G 1 spent most of his time in the top-down model and

used the situation model to make the majority of his connections to the program model.

He rarely felt the need to go all the way to the program model level and was able to

gather the information he needed at the algorithmic level (situation model). It is difficult

to determine whether expertise or strategy is the dominant variable. One could argue that

his expertise allowed him to make hypotheses that directed his progress through the task.

On the other hand, his goal was to get a high-level view of the program. This could also

be a major driver with expertise playing a secondary role.

184

For the remaining subjects, the frequencies change. The highest frequency for situ-

ation model hypotheses becomes SITH8 (program function, 26%) , the second is SITH4

(effect ofrunning program, 19%), and third is SITH1 (variable function, 15%). For SITH8,

all remaining hypotheses were made by ADl; for SITH4, all hypotheses were generated by

ENl and ADl ; for SITH4, all hypotheses were made by G2. So again, we can conclude

very little about effect of expertise the because the experts working on different tasks used

dissimilar types of hypotheses. {EN2 generated only 1 situation model hypothesis during

his programming session.)

B.2.1.3 Hypotheses Types By Amount Of Accumulated Knowledge

This section reports results of hypothesis type analysis based on accumulated knowl-

edge. The section contains a separate table for information on top-down (Table B.9),

program (Table B.10), and situation model (Table B.ll) hypotheses for accumulated

knowledge groups. In each table, the column Little Accum. Knowledge contains data

for four subjects. These subjects had either never seen the code prior to the session, they

were familiar with the file structure, or had seen a call graph. Four subjects constitute

the group with Some accumulated knowledge. This group had seen requirements and/or

design documents and/or worked a little with the code prior to the programming session.

The last group of subjects (Significant Accum. Knowledge) consists of three engineers

who had previously completed maintenance tasks and/or worked with the code for several

years.

Top-Down Hypotheses

Table B.9 contains the number of top-down hypotheses and the percent of top-down

model hypotheses by amount of accumulated knowledge.

Subjects with little knowledge about the code spend the majority of their top-down

hypotheses generation time on hypotheses about functionality (OPH1, 32%). A possible

influence here is that all these subjects were at least domain experts. One strategy for

understanding unfamiliar code is by generating high level hypotheses based on expecta-

tions and then investigating whether they hold. The second most frequent type (OPH16,

18%) is level and structure of code at a high level. This also makes sense for engineers

185

who have little experience with the program. Gaining an understanding of the structure

is important for all tasks when the ultimate goal is to be able to maintain the code. It

is not as easy to determine if the third most frequent (10%) hypothesis type (OPH14,

hypotheses about available functionality) is related to lack of accumulated knowledge or

domain expertise. On one hand, domain experts have the knowledge that allows them to

generate hypotheses about domain concept connections to program functionality. On the

other hand, none of the other accumulated knowledge groups found this type of hypotheses

useful for their tasks. So it appears generating hypotheses about available functionality

is unique to this group. It might be that there is an interaction between lack of accumu-

lated knowledge and making hypotheses about functionality of the software. The domain

expertise permits the generation of hypotheses about functionality they expect to find in

programs within the domain. It is logical that, until more knowledge of the specific code

exists, more hypotheses about expected functionality may occur.

The group with some experience working on the code generated more hypotheses

about domain concepts (OPH1, 26%) than any other hypothesis type. This group consists

of two corrective maintenance tasks and two general understanding tasks. Two subjects

are language only experts, one is a domain only expert, and the other is a language and

domain expert. The majority of the OPH1 hypotheses were generated by Ll and G2, a

language only expert and a language and domain expert, respectively. It appears that ex-

pertise does not play a significant role, but task may, since most of the OPH1 hypotheses

were generated by subjects working on general understanding tasks. The two corrective

maintenance subjects generated only three OPH1 hypotheses. However, it is possible that

having some experience with the code affects the number and types of hypotheses gener-

ated. Understanding connections between domain and program functionality is important

for building a top-down representation of the program. The frequency of OPH1 hypothe-

ses for the group with little accumulated knowledge is higher than that for those with some

accumulated knowledge. The frequency for the group with significant accumulated knowl-

edge is lower than the other two. This trend can be explained by realizing that those with

significant experience have already made most of the domain-functionality connections,

the subjects with some accumulated knowledge have made some of the connections, and

186

the subjects with very little or no experience need to generate most of the connections.

Thus, it is possible that the percentages reflect the effect of accumulated prior knowledge.

The second most commonly generated hypotheses for the group with Some accumu-

lated knowledge, (OPH18, 20%), location/status/ description/cause of error was generated

by the corrective maintenance subjects Cl and C4. Most were generated by C 4 (11 out

of 12). Task is probably the dominant influence but expertise also plays a part since

C 4 is a domain only expert and C l is a language only expert. The third most common

hypothesis, (OPH9, 15%) was generated entirely by C4.

It is not possible to make conclusions about effect of significant accumulated knowl-

edge for top-down model hypothesis generation. The domain-functionality connection is

important for the reasons stated above. Only two top-down model hypotheses were gen-

erated by subject ENl and the rest were generated by the two adaptive maintenance

subjects, A D l and A D2. Thus, it is most likely that the results reported here are influ-

enced mainly by task.

187

Table B.9: Hypothesis-Type Frequencies/Percentages - Top-Down Model, Accumulated
Knowledge

Absolute & Percent Absolute & Percent Absolute & Percent
of Little Accum. of Some Accum. of Significant Accum.

Tag Hypothesis- Type Knowledge Knowledge Knowledge
OPH1 Domain Procedure 37 16 12

function/Concepts 32% 26% 18%
OPH2 Variable function/ 4 3 0

domain concepts 4% 5% 0%
OPH3 Rules of discourse 2 4 1

/Expectations 2% 7% 2%
OPH4 1/0 behavior 0 4 1

0% 6% 2%
OPH5 Existence of installed 3 0 5

(running) program 3% 0% 7%
OPH6 Existence of specific 3 0 4

functionality 3% 0% 6%
OPH7 Number /type/ existence/ 5 0 2

location of libraries 4% 0% 3%
OPH8 Program functions 0 5 9

correctly 0% 8% 13%
OPH9 Permissions/Environment 2 9 5

set correct ly /Tool 2% 15% 7%
functionality

OPH10 Location to add 3 1 0
functionality 3% 2% 0%

OPHll Comparison of function- 4 0 0
ality at high level 4% 0% 0%

OPH12 How to duplicate 0 0 6
warnings/errors; 0% 0% 9%
relative difficulty
to set-up/test errors

OPH13 Number/type/ 5 2 3
location of file 4% 3% 4%

OPH14 Available functionality 12 0 2
10% 0% 3%

OPH15 Approaches/relative 0 0 1
difficulty in making 0% 0% 2%
change

OPH16 Level & structure of 21 5 2
code/scope 18% 8% 3%

OPH17 Design Decisionsj 4 0 0
Modifications 3% 0% 0%

OPH18 Location/Status/ 8 12 14
description/cause of 7% 20% 21%
error

OPH19 Current location 1 0 0
1% 0% 0%

188

Program Model Hypotheses

Table B.10 contains the absolute and relative frequencies of program model hypothe-

ses clustered by level of accumulated knowledge.

Subjects with little accumulated knowledge tend to generate hypotheses at the pro-

gram model about procedure functionality (SYSH2, 17%). This ties into previously re-

ported results on the top-down model hypothesis generation behavior for this group. All

the subjects (C2, C3, Gl, EN2) were at least domain experts and the hypothesis about

procedure/function (SYSH2) at the program model level represent an attempt to make

the connection between domain and program code. Also note that this group made fewer

program model hypotheses per subject than the group with some accumulated knowledge

(12.0 vs. 22.75 for some). The limited number of total program hypotheses makes it

difficult to draw conclusions in this case. The high percent of hypotheses were generated

mainly by C2, C3, and EN2 with C3 being responsible for the majority of the hypothe-

ses (6 out of 7) to SYSH16 (Code correctness, 15%). As we said earlier when discussing

the results for hypotheses generation by specific types of experts, we expect to see fewer

program model hypotheses from domain experts. This is the case here.

Four subjects (Cl , C4, G2, and Ll) constitute the group with some accumulated

knowledge. The most common program model hypothesis type relates to statement execu-

tion order/state (SYS6, 21 %). The frequency may be related to accumulated knowledge,

but it is difficult to confidently conclude this since the majority of this type were generated

by one subject , Cl (11 out of 19) . However , it makes sense that generating hypotheses

about program execution order (to develop a control-flow abstraction of the program)

would be typical of engineers with some prior experience with the code. If the assumption

is that this group had seen only requirements and design documents or had done some

work with the code already, the control-flow abstraction would necessarily be incomplete.

Thus, we would expect to see hypotheses that help to build the control-flow view. The

same reasoning holds for understanding variable structure (SYSH4, 13%) and variable

function (SYSH1, 10%). This group basically had at least one hypothesis for every type

and they also had the highest average number of hypotheses per subject for the program

model (22.75 per person). We conjecture that this group had enough prior experience to

make lots of hypotheses about the actual code.

189

The last group contains three subjects, ADl , AD2, and ENL It is not possible to

make conjectures about effect of accumulated knowledge as it is likely that task masks

all other influences. In the top-down hypotheses section, we reported that the adaptive

maintenance subjects generated most of the top-down hypotheses. Here, adaptive main-

tenance subjects generated only six program model hypotheses. All remaining hypotheses

were generated by ENl.

190

Table B.10: Hypothesis-Type Frequencies/Percentages - Program Model, Accumulated
Knowledge

Absolute & Percent Abso lute & Percent 1 Absolute & Percent
of Little Accum. of Some Accum. of Significant Accum.

Ta.g Hypothesis- Type Knowledge Knowledge Knowledge
SYSH1 Variable function 4 9 1

8% 10% 3%
SYSH2 Function/procedure 8 6 1

function 17% 7% 3%
SYSH3 Procedure/function 0 1 0

call behavior 0% 1% 0%
SYSH4 Variable structure 5 12 0

11% 13% 0%
SYSH5 Location/type/ 2 1 2

existence of func- 4% 1% 5%
tion call

SYSH6 Statement execut- 3 19 3
ion order /state 6% 21% 8%

SYSH7 Variable value/ 4 10 8
defaults 8% 11% 22%

SYSH8 (Non-)Existence of 2 1 1
construct (var / 4% 1% 3%
code)

SYSH9 Variable/ construct 1 1 0
equivalency 2% 1% 0%

SYSH10 Syntax meaning 2 7 0
4% 8% 0%

SYSH11 Design decisions 0 3 0
0% 3% 0%

SYSH12 Variable defini- 1 1 0
tion & it's 2% 1% 0%
location

SYSH13 Code block/ 1 3 0
procedure compari- 2% 3% 0%
son

SYSH14 Code block fun c- 1 4 0
tion 2% 5% 0%

SYSH15 Relevance of error 0 0 1
in Makefi le 0% 0% 3%

SYSH16 Code correctness, 7 5 17
cause/location of 15% 5% 47%
error

SYSH17 Changes made cor- 0 1 1
rectly 0% 1% 3%

SYSH18 Location to add 5 1 1
code/alternatives 11% 1% 3%

SYSH19 Code block 0 4 0
boundary location 0% 5% 0%

SYSH20 Paramsjtype defs 2 2 0
in procedure call 4% 2% 0%

191

Situation Model Hypotheses

Table B.ll contains the absolute and relative frequencies of situation model hypothe-

ses clustered by level of accumulated knowledge.

Table B.ll: Hypothesis-Type Frequencies/Percentages - Situation Model, Accumulated
Knowledge

Absolute f3 Percent Absolute f3 Percent Absolute f3 Percent
of Little Accum. of Some Accum. of Significant Accum.

Tag Hypothesis- Type Knowledge Knowledge Knowledge
SITHl Variable function 7 16 0

12% 25% 0%
SITH2 Function/code 9 7 2

block execution 16% 11% 8%
order/state

SITH3 Function/procedure 22 21 1
function , call 39% 33% 4%
function

SITH4 Effect of running 0 1 5
program 0% 2% 22%

SITH5 Cause of buggy 2 4 6
behavior 4% 6% 25%

SITH6 Comparison of terms 1 4 0
/acronyms/function- 2% 6% 0%
ality

SITH7 Existence of 13 9 2
function/algorithm/ 23% 14% 8%
variable

SITH8 Program function 2 2 8
4% 3% 33%

SITH9 Design Decisions 0 0 0
0% 0% 0%

For subjects with little accumulated knowledge, SITH3 (function/procedure func-

tionality, 39%) is the most frequent type of hypotheses at the situation model level. This

supports the theory that programmers who have little experience with the code focus on

building connections between domain concepts and code. The situation model can be

used as a bridge between the top-down and program models. Pennington [36, 37] found

that when new code is encountered, programmers tend to build a control-flow view of the

program by first building a program model and then abstracting to the situation model

via a cross-referencing strategy, i.e. between program and situation model. Programmers

often switch between all three models, including switches between situation and top-down

models. This group of subjects with little accumulated knowledge switched between the

top-down and situation models more frequently than between the program and situation

models or between the top-down and program models. (See table B.l9.)

192

Of course, expertise could be a factor. The subjects were at least domain experts.

Their domain knowledge could be influencing a strategy that builds a mental representa-

tion, starting with domain expertise and proceeding by making connections to the code

through the situation model. SITH7 (Existence of function/algorithm, 23%) was the

second most common situation model hypothesis. Both expertise and amount of prior

experience with the code could be playing a major role. Expertise helps to focus direction

by generating hypotheses about the existence of program components and algorithms.

Lack of experience drives the need to understand system composition.

Like subjects with little accumulated knowledge, subjects with some accumu-

lated knowledge generated mostly hypotheses regarding procedure/function functionality

(SITH3, 33%). The same reasoning used for subjects with little accumulated knowledge

applies here. The percentage is slightly lower for those with some experience than those

with little prior experience. This is logical since these subjects may have already an-

swered questions those with little experience grapple with. However, their need to create

a more complete mental representation means they must continue to make the connections

between program and domain level. The same rationalization about function/algorithm

existence (SITH7, 14%) holds for this group as did for the group of subjects with little

experience. They are not at a point where they are familiar with most of the program

components.

The second most frequent type for those with Some accumulated knowledge, variable

function (SITH1, 25%), is interesting and could also be explained by the amount of prior

experience. This group had the highest average number of situation model hypotheses

(16.0 vs 14.0 for little, 8.0 for significant). If we look at the switching behavior for these

subjects (Table B.20) , we see that they switched between program and situation models

more frequently than between situation and top-down models or program and top-down

models. We surmise that because they had some experience with the code, they could

generate intelligent hypotheses about the code. This group also had a higher average

number of program model hypotheses than top-down model hypotheses.

Because the group with significant accumulated knowledge did not provide a spectrum

of tasks, conclusions about accumulated knowledge are not possible as they may be more

influenced by task rather than accumulated knowledge.

193

B.2.2 Hypothesis Generated Switching Behavior

This section describes the results of an analysis on the effect of generating hypotheses

on model switching. We report on hypotheses switching behavior for all subjects, by task,

by expertise, and by accumulated knowledge. Section 5.3.2 contains a summary of the

results presented in this section. In each hypothesis-generated switching table the row

indicates the starting model and the column represents the ending model. Each table con-

tains the total number of hypotheses (column labeled Number of Hypotheses) to highlight

the difference between the total number of hypotheses-generated in each model and those

that actually caused a switch. We also include the proportion of the switches for each

type of model switch to illustrate the distribution of hypothesis generated switches across

models.

B.2.2.1 Hypotheses Switching - By Task

Tables B.12, B.13, B.14 and B.15 contain the number of switches caused by an hypoth-

esis for each group of subjects working on a particular task type (adaptation, corrective

maintenance, enhancement, and general understanding).

Adaptive Maintenance

Subjects working on adaptive maintenance generated a total of 91 hypotheses. 36 of

them caused switches between model components. This represents 40% of all hypotheses

generated.

Table B.12: Hypotheses Switching Behavior - Adaptation Task (AD1 , AD2)
TTl No . of To Model
Hypoth eses: From Top-Down Situation Program
Adaptation Model Model Model Model

65 Top-Down N/A 12 3
33% 8%

20 Situation 13 N/A 2
37% 6%

6 Program 3 3 N/A
8% 8%

194

The majority of the switches caused by hypotheses occurred between top-down and

situation models. By contrast, if we look at Table B.28 (which reports all switches, not just

those caused by hypotheses) we see a different behavior. This table shows that these sub-

jects actually switched more often between program and top-down models than between

top-down and situation models. For hypothesis generated switches, one explanation for

the tendency toward top-down/situation model switching could be that task is the dom-

inant influence. If we look back at Tables B.3 and B.5, we see that the majority of the

top-down and situation model hypotheses were concerned with getting information about

errors and whether the program they were trying to adapt ran correctly. In addition, since

both subjects were domain experts, they could easily generate hypotheses at the top-down

level and resolve them in the situation model or vice versa. This strategy allowed them

to determine where things were going wrong with limited analysis at the program model

level. Thus, the theory here is that generating and resolving hypotheses at levels higher

than code can be a time saving strategy and efficient for tasks like porting code where

code volume can be very high.

Corrective Maintenance

Corrective maintenance subjects generated a total of 206 hypotheses. One hundred

and eight of them were switches between model components. This represents 52% of the

total hypotheses generated.

Table B.l3: Hypotheses Switching Behavior - Corrective Task (Cl,C2,C3,C4)
Ttl. No. of To Model
Hypotheses: From Top-Down Situation Program
Corrective Model Model Model Model

77 Top-Down N/A 19 16
18% 15%

64 Situation 23 N/A 17
21% 16%

65 Program 12 21 N/A
11% 19%

Table B.l3 shows that hypotheses cause switches between models fairly evenly and

often. Switches from the situation to the top-down model and from the program to the sit-

uation model happen at the highest frequency. This supports the theory that the situation

model is used as a bridge from the program model to the top-down model, especially since

195

switching between the top-down and program models directly happen at the lowest rate.

It is difficult to determine whether this is actually task related. However, we can say that

because switching between all models occurs at a fairly even rate, corrective maintenance

is a task for which making hypotheses at one level and using another level to help resolve

them is important.

Enhancement

Subjects doing an enhancement task generated 64 hypotheses. Only 25 of these

hypotheses caused switches between model components. This represents 39% of the total

hypotheses generated.

Table B.l4: Hypotheses Switching Behavior - Enhancement Task (EN1 ,EN2)
Ttl. No. of To Model
Hypotheses : From Top-Down Situation Program

Enhancement Model Model Model Model
18 Top-Down N/A 0 8

0% 32%
5 Situation 1 N/A 4

4% 16%
41 Program 8 4 N/A

32% 16%

The switching behavior observed during enhancement is very different than for the

rest of the tasks. Not only is the percent of hypotheses involved lower than the rest (39%

vs. 40%, 49%, 52%), most of the switching occurs between the top-down and program

models. Very few switches occurred between the situation and top-down model and there

were substantially fewer switches between the program and situation models. This could

be task related, but it is difficult to draw confident conclusions due to the limited number

of switches. It is possible that because both subjects were working on enhancements, it

makes more sense to jump between the program and top-down models. The table con-

taining all switches for this task (Table B.28) shows that switches between top-down and

program models take place at the highest rate. It could be that for enhancement tasks,

it is less important to involve the situation model when generating hypotheses about do-

main/program functionality. Due to our small sample size, we can only theorize that we

might see a greater degree of switching between program and top-down models.

196

General Understanding

The general understanding subjects generated 200 hypotheses. Of these, 98 caused

switches between model components. This represents 49% of the hypotheses generated by

this group.

Table B.l5: Hypotheses Switching Behavior - General Understanding Task (Gl,G2,Ll)
Ttl. No . of To Model
Hypotheses: From Top-Down Situation Program
Understand Model Model Model Model

82 Top-Down N/A 18 12
18% 12%

55 Situation 19 N/A 18
19% 18%

63 Program 13 18 N/A
13% 18%

The frequency of hypothesis caused switching for General Understanding is evenly

distributed between top-down and situation models and between situation and program

models. This is similar to the hypothesis switching behavior for corrective maintenance

subjects. As for the corrective maintenance tasks, the situation model may be used as a

bridge between top-down and program models. We can deduce this from the relatively

few number of switches between the top-down and program models.

B.2.2.2 Hypotheses Switching - By Expertise

Tables B.l6, B.17, and B.l8 contain the number of switches caused by an hypothesis

(one for each level of expertise).

Language Only Expertise

The two language experts (Cl and Ll) generated a total of 99 hypotheses. 67 of these

generated switches between model components. This represents 68% of the hypotheses

generated.

The highest percent of switching for language only experts occurred from the situation

to the top-down models and from the situation to the program models. Also notewor-

thy was the number of switches from the top-down model to the situation model. We

197

Table B.l6: Hypotheses Switching Behavior - Language Expertise (Cl,Ll)
Ttl. No. of To Model
Hypotheses : From Top-Down Situation Program

Language Model Model Mod el Model
24 Top-Down N/A 9 7

16% 12%
35 Situation 12 N/A ll

21% 19%
40 Program 5 23 N/A

9% 13%

conjecture that these subjects were using a cross-referencing strategy to build a program

and top-down model using the situation model as a bridge. This is evident because the

majority of switches occurred starting from the situation model. Lack of domain expertise

is seen by the low frequencies of program to top-down model (and vice versa) switches.

These subjects did not have the domain knowledge necessary to make direct connections

between program and top-down mental representations based on expectations in the do-

main. As we will see below, the other two groups of subjects had domain knowledge and

had a higher frequency of switches between program and top-down models. Another in-

teresting result is that use of this strategy of making hypotheses at one level and switching

to another model to help resolve them is important for language only experts. This group

of subjects used 68% of their hypotheses in a switch to a different model. The other two

groups used only 45% and 46% of their hypotheses in the same way.

Domain Only Expertise

The four domain experts AD2, C2, C3, and C4 generated a total of 207 hypothe-

ses. 95 caused switches between model components. This represents 46% of the total

hypotheses generated.

Domain experts have fairly evenly distributed switches between all models, switching

from the situation model to the top-down model slightly more often. Switching between

top-down and program models occurred more often for this group than for the group of

language experts. This is probably due their ability to make direct connections to the

program model based on expectations at the top-down model. Also, the situation model

can be used as a bridge between top-down and program models, which is analogous to de-

composing the problem domain into components (intermediate domains) that are closer to

198

Table B.l7: Hypotheses Switching Behavior - Domain Expertise (AD2,C2,C3,C4)
Ttl. No . of To Model
Hypoth eses: From Top-Down Situation Program

Domain Model Model Model Model
110 Top-Down N/A 16 16

17% 17%
53 Situation 19 N/A 14

20% 15%
44 Program 13 17 N/A

14% 17%

the program. The opposite behavior can be seen through abstraction of program chunks.

Domain and Language Expertise

Five domain and language experts, ADl, ENl, EN2, Gl , and G2 generated a total

of 255 hypotheses. 114 of these hypotheses generated switches between model components.

This represents 45% of the hypotheses generated.

Table B.l8: Hypotheses Switching Behavior - Language & Domain Expertise
(ADl,ENl,EN2,Gl ,G2)

Ttl. No. of To Model II
Hypothes es: From Top-Down Situation Program

Language/ Domain Model Model Model Model
108 Top-Down N/A 24 16

21% 14%
56 Situation 25 N/A 16

22% 14%
91 Program 18 15 N/A

16% 13%

Domain and language experts also have fairly evenly distributed switches among mod-

els. Again there are enough switches between program and top-down models to demon-

strate this group's ability to make hypotheses based on expectations and resolving them

at another level.

B.2.2.3 Hypotheses Switching - By Accumulated Knowledge

Tables B.19, B.20, and B.22 report the number of switches caused by an hypothesis

for each group of subjects who have different amounts of accumulated prior experience

with the code.

199

Little Accumulated Knowledge

The four subjects who had little accumulated knowledge, C2, C3, EN2, and Gl

generated a total of 218 hypotheses, of which 105 hypotheses generated switches between

model components. This represents 48% of the hypotheses generated.

Table B.19: Hypotheses Switching Behavior - Little Accumulated Knowledge
(C2,C3,EN2,G1)

Ttl. No. of To Model
Hypotheses: From Top -Down Situation Progrom

Little Model Model Model Model
114 Top-Down N/A 21 18

20% 17%
56 Situation 24 N/A 12

23% 12%
48 Program 15 15 N/A

14% 14%

Subjects with little accumulated knowledge had more hypothesis generated switches

between top-down and situation models than between any other models. The dominant

effect, however, is probably domain expertise since all subjects were at least domain ex-

perts. Additionally, most of the hypothesis generated references between the top-down

and situation models were generated by Gl , who spent most of his time in the top-down

and situation models. One theory is that since domain experts have the knowledge that

allows them to generate hypotheses based on expectations, we would expect to see cross-

referencing to and from the top-down model quite often. Also, task plays an important

part. The one subject who generated most of the top-down to situation model switches

was interested in understanding the system at a high level. Making hypotheses at the

top-down model level and resolving them at the situation model level (and vice versa)

seems a logical way to gain such an understanding.

Switching from the top-down model to the program model is also relatively frequent,

however, the majority of these (12 out of 18) were generated by the two corrective main-

tenance subjects. The high frequency of top-down to program switches is probably due to

the task since the goal here is to understand a defect and make direct ties to code. Thus,

we cannot conclude much about the effect of little accumulated knowledge on hypothesis

generated switching.

200

Some Accumulated Knowledge

The four subjects with some accumulated knowledge, Cl, C4, G2, and Ll, generated

a total of 216 hypotheses of which 110 hypothesis generated switches between model

components. This represents 51% of the hypotheses generated.

Table B.20: Hypotheses Switching Behavior - Some Accumulated Knowledge
(Cl,C4,G2,Ll)

Ttl. No. of To Model II
Hypotheses : From Top-Down Situation Program II

Some Model Model Model Model
61 Top-Down N/A 16 14

14% 13%
64 Situation 19 N/A 23

17% 21%
91 Program 13 25 N/A

12% 23%

For subjects with some accumulated knowledge, switches generated by hypotheses

involved the program and situation models at the highest frequency. As was the case

with subjects with little experience, it is difficult to determine what is really affecting

these numbers. G2 was the subject who used the systematic strategy and therefore had

no switches (caused by hypotheses) between the top-down and situation models. Thus,

strategy can affect hypothesis switching behavior. By contrast, Cl, C4, and Ll employed

an understanding strategy different from G2 but similar to each other.

Table B.21: Hypotheses Switching Behavior - Some Accum. Knowledge (3 Subjects w /out
G2)

To Model
From Top-Down Situation Program
Model Model Model Model

Top-Down N/A 16 9
19% 11%

Situation 19 N/A 16
22% 19%

Program 7 18 N/A
8% 21%

Table B.21 looks more like the subjects who had domain only expertise. Switching

between top-down and situation models or between situation and program models are

201

more frequent than switching between top-down and program models. Having some expe-

rience with the code allows them to make hypotheses about the code and use the situation

model as a bridge to the top-down model. Rarely do they make hypotheses at the top-

down level and switch to the program model or vice versa. (Refer to Figures C.17, C.23,

and C.40 to show the actual sequence of hypothesis generated switches for each of these

subjects.) In all cases, the situation model plays a central part in the journey from pro-

gram to top-down models or from top-down to program models. We surmise that, with

some experience, the subject has enough knowledge to use the cross-referencing strategy

effectively. In fact , this group as a whole used 51% of all generated hypotheses for such a

cross-referencing strategy. This is slightly higher than the percentage seen with subjects

who had little accumulated knowledge (48%) and somewhat higher than subjects with

significant accumulated know ledge (40%).

Significant Accumulated Knowledge

The three subjects who had significant accumulated knowledge, ADl , AD2, and

ENl generated a total of 127 hypotheses of which 51 generated switches between model

components. This represents 40% of the hypotheses generated.

Table B.22: Hypotheses Switching Behavior - Significant Accumulated Knowledge
(AD1,AD2,EN1)

Ttl. No. of To Model
Hypothes es: From Top-Down Situation Progmm
Significant Model Model Model Model

67 Top-Down N/A 12 7
23% 14%

24 Situation 13 N/A 6
25% 12%

36 Program 8 5 N/A
16% 10%

It is not possible to draw conclusions about the effect of significant accumulated

knowledge on hypothesis generated switches. The majority of the switches were seen with

one subject (ADl) who had 11 out of 13 switches from situation to top-down models and

10 out of 12 switches from the top-down to the situation model. ENl had no switches of

this kind at all and AD2 had only two each.

202

B.2.3 HK-Ratio- Using Hypotheses and Knowledge to Indicate Expertise

Since the amount of accumulated knowledge seems to play an important part in code

understanding, we wanted to determine if any patterns exist based on both the amount

of accumulated knowledge and type of expertise. We also wanted to see how the HK-

ratio corresponds to our classification of expertise. Tables B.23- B.27 contain matrices to

illustrate HK-Ratios for program, situation, top-down, combined program and situation,

and overall HK-ratios for accumulated knowledge and expertise. Each cell consists of the

rank taken from Table 5.20 followed by the identifier for the subject who attained that

rank.

Table B.23: Program Model: HK-Ratio Rankings
Accumulated Language Domain Language & Domain
Knowledge Expertise Expertise Expertise
Little 4:C3 3:Gl

ll :C2 8:EN2
Some 6:Cl 6:C4 10:G2

9:11
Significant 2:AD2 l:ADl

5:EN1

In Table B.23 the subjects with the two lowest HK-ratios (ranks 1 & 2) in the program

model possess either significant accumulated knowledge, domain only expertise, or domain

and language expertise. The third lowest HK-ratio falls into the domain and language

expertise column. The jump in HK-ratios is higher between the third and fourth ranked

subject than between any two consecutive measures for the first three positions. Relatively

speaking, subjects with the most domain and prior knowledge about the system have the

lowest HK-ratio for program model construction.

On the other side of the scale, subjects with the highest HK-ratio fall into either

the some or little accumulated knowledge categories, regardless of language or domain

expertise. It seems reasonable that making program model hypotheses would be more

frequent than use of prior knowledge if one is not familiar with the code.

Table B.24 shows the HK-ratio matrix for situation model building. HK-ratio ranks

for situation model are very different than for the program model. The first two are both

language and domain experts, however, they have very different amounts of accumulated

203

Table B.24: Situation Model: HK-Ratio Rankings
Accumulated Language Domain Language & Domain
Know ledge Expertise Expertise Expertise
Little 4:C3 ll:Gl

10:C2 2:EN2
Some 5:Cl 8:C4 9:G2

6:11
Significant 3:AD2 7:AD1

l :ENl

knowledge. For situation model HK-ratios, ranking appears to be more related to task

than expertise.

Table B.25: Top-Down Model· HK-Ratio Rankings
Accumulated Language Domain Language & Domain
Knowledge Expertise Expertise Expertise
Little 5:C3 ll:Gl

6:C2 3:EN2
Some 9:Cl 4:C4 10:G2

8:11
Significant 7:AD2 2:AD1

l :ENl

Table B.25 contains the rankings for top-down model HK-ratios. Similar to the pro-

gram model matrix, the first two (ENl and A Dl) have significant accumulated knowledge

and they are domain and language experts. The third lowest rank (EN2) is also a language

and domain expert. It makes sense to say that the first two have the lowest HK-ratios

because they both had significant accumulated knowledge and they were language and

domain experts. However, because the first and third ranked subjects were working on

enhancement tasks, the HK-ratios may also be influenced by task.

Ranks 4, 5, and 6 are all domain only experts and have either little or some accumu-

lated knowledge. They were also all working on corrective tasks . Thus, these HK-ratios

may be affected by task. The 8th and 9th ranked subjects are both language only experts

and had some accumulated knowledge. It is reasonable to assume that both lack of domain

knowledge and only some accumulated knowledge would result in a low level of expertise

in the top-down model. HK-ratios for Ll and Cl were 1.0 and 1.5, respectively. This is

high compared to .05 for ENl, the expert with the lowest HK-ratio. Finally, ranks 10

and 11 are both language and domain experts and have either little or some accumulated

204

knowledge. Since they were both General Understanding subjects, we conjecture that

their HK-ratios were mostly influenced by task.

Table B.26: Combined Program & Situation Model: HK-Ratio Rankings
Accumulated Language Domain Language & Domain
Knowledge Expertise Expertise Expertise
Little 4:C3 9:G1

ll :C2 5:EN2
Some 6:Cl 7:C4 10:G2

8:11
Significn.nt 1:AD2 2:AD1

3:EN1

We were interested in determining if rankings changed when we combined program

and situation model HK-ratios, since their combination approximates Pennington's bottom

up program comprehension model. Table B.26 has the rankings for the combined program

and situation model HK-ratios. This matrix contains definite clusters of subjects whose

HK-ratios seem related to expertise and accumulated knowledge. The first three ranked

subjects all have significant accumulated knowledge and have either domain only or domain

and language expertise. Ranks 6, 7, and 8 all have some accumulated knowledge and

either language or domain only expertise. Subjects ranked 9, 10, and 11 had minimal

accumulated knowledge and were either domain or domain and language experts. This

last group contains both General Understanding subjects and as before, we believe this to

be mostly related to that task.

Table B.27: Overall HK-Ratio Rankings
Accumulated Language Domain Language & Domain
Knowledge Expertise Expertise Expertise
Little 5:C3 ll :G1

9:C2 3:EN2
Some 7:C1 6:C4 10:G2

8:11
Significant 4:AD2 2:AD1

1:EN1

Table B.27 shows the overall rankings for combined top-down, situation, and program

models. We see clusters similar to the combined program and situation model and the top-

down model HK-ratios. Those with the most accumulated knowledge and highest level of

expertise have the lowest HK-ratio, while those with little or some accumulated knowledge

205

and language only expertise have higher rankings. Again, the highest HK-ratios were seen

with the two General Understanding subjects and is probably more influenced by this task

rather than expertise. It is interesting to note, however, that both subjects had either

little or some accumulated knowledge, which could also be raising the HK-ratio.

B.3 The Role of Model Components in the Integrated Model - Level 1

This section reports on detailed analysis of results on switching (whether due to

hypotheses or other actions) between integrated model components. Chapter Five, section

5.4 contains a summary of these results.

B.3.1 Switches Between Models

Switches are defined as a change in focus from one level of abstraction to another.

Switching can occur between the top-down, program, or situation models. Previously, we

described switches caused only by hypotheses. However, any action can trigger a switch

to another level of abstraction.

This section contains model switching information organized in three different ways:

task, expertise, and accumulated knowledge. Each table contains the number of switches

for each group of subjects. The row indicates the starting model and the column represents

the ending model. We also include the proportion of the switches for each type to illustrate

the distribution of switches across models.

B.3.1.1 Switches Between Models - Totals By Tasks

Table B.28 reports model switching behavior clustered by type of task.

Adaptive Maintenance

Switching between top-down and program models occurs (in either direction) most

frequently for adaptive maintenance subjects. Switching between top-down and situa-

tion models occurs at a slightly lower rate. Switching between program and situation

models happens at a much lower rate. Both subjects were working on a porting task.

One subject, ADl had even higher percentages (see Table 5.22) for top-down- program

model and top-down - situation model switches as well as lower program - situation model

switches. In general, adaptive maintenance tasks like porting can involve large amounts

206

Table B.28: Action Switches - Absolute & Percent of Total Switches by Task
Model Switches - All Subjects

Top-Down Situation Program
Task Model Model Model Model

Adaptive Top-Down N/A 42 48
(2 subjects) 19% 22%

(Total Situation 43 N/A 20
switches 19% 9%
= 221) Program 48 20 NjA

22% 9%
Corrective Top-Down N/A 67 93

(4 subjects) 12% 17%
(Total Situation 86 NjA 112

switches 15% 20%
= 562) Program 75 129 NjA

13% 23%
Enhancement Top-Down N/A 15 77
(2 subjects) 5% 26%

(Total Situation 28 NjA 51
switches 10% 17%
= 299) Program 64 64 NjA

21% 21%
General Top-Down N/A 30 79

Understanding 7% 19%
(3 subjects) Situation 47 N/A 92

(Total 11% 22%
switches Program 62 110 NfA
= 420) 15% 26%

of code and understanding at the level of program and situation models is not efficient.

Instead, generating a model top-down and switching to the program or situation mod-

els in instances where a more detailed understanding is necessary seems a more effective

strategy than trying to build the mental models bottom up from the program. Another

reason these subjects were able to switch often from the top-down model directly to the

program model and back is related, we believe, to the fact that they were domain but not

language experts. Domain expertise gives them the ability to make connections to the

program code or situation model based on expectations from the domain.

Cor rective Maintenance

The corrective maintenance subjects spent the most time switching between program

and situation models. These subjects were attempting to uncover defects in the code

which requires that they understand the code at a low level, e.g. variable manipulation

and data structure. What is even more interesting is that lack of domain expertise can in-

tensify the effect: one subject, Cl was a domain novice and spent substantially more time

207

switching between situation and program models than the other three subjects who were

domain experts. For Cl, the debugging task and his lack of domain knowledge meant he

spent over 50% of his switches going between program and situation model levels. Also,

as expected, he spent slightly more time starting at the code level and abstracting to the

situation model than he did starting at the situation model and switching back to code.

Enhancement

Trends for the enhancement task are more difficult to detect. These two subjects

switched frequently between the top-down and program models and between the program

and situation models, but rarely between the top-down and situation models. Some of

this may be more related to expertise since they were both language and domain experts.

Having domain and language expertise allows one to develop connections directly to the

program model based on expectations from the domain. Another interesting characteristic

about both subjects is that they spent a substantial amount of time determining where in

the code to add the enhancement and tracking down errors. Because of these particular

tasks, their switching behavior is very similar to that of the corrective maintenance sub-

jects.

General Understanding

The group of General Understanding subjects consisted of three subjects. One of

these subjects, Ll , was a language only expert and switched the most between situation

and program models. This seems to confirm the theory that novices must build up an

understanding of the code in a bottom up manner. For the other two subjects, both

language and domain experts, the story is different. One subject, G2 , took a systematic

approach to understanding, i.e. he read the code line by line, essentially building his

mental representations bottom up. The other subject, Gl , used an opportunistic strategy

where he looked only at code that seemed interesting to him. G2 had a fewer number

of actual switches, tending to stay within a particular model for longer periods of time

before switching to another model. {See Figure C.3 for action sequences over time.) G 1

had substantially more switches with a tendency to stay within a particular model a much

shorter period of time (See Figure C.l). Both subjects shied away from switches from the

208

top-down to the situation model. This may be a reflection of the task in general. Whether

the goal is to understand a piece of code or an entire system at a high level, if there is no

goal beyond just understanding, then making connections between top-down and situation

models may not be as important. Finding code that supports domain expectations may be

enough, leaving the understanding of algorithms for a more specific task like debugging.

B.3.1.2 Switches Between Models - Totals By Expertise

Table B.29 demonstrates model switching behavior for three groups of experts: lan-

guage only, domain only, and language & domain.

Table B.29: Action Switches - Absolute & Percent of Total Switches by Expertise
Model Switches - All Subjects

Top-Down Situation Program
Expertise Model Model Model Model
Language Top-Down N/A 23 31

(2 subjects) 9% 12%
(Total Situation 31 N/A 68

switches 12% 27%
= 252) Program 24 75 NJA

10% 30%
Domain Top-Down N/A 67 94

(4 subjects) 13% 18%
(Total Situation 83 N/A 98

switches 15% 18%
= 533) Program 78 113 N/A

15% 21%
Language & Top-Down N/A 64 172

Domain 9% 24%
(5 subjects) Situation 90 N/A 109

(Total 13% 15%
switches Program 147 135 N7A
= 717) 20% 19%

Language Only Expertise

By far, the highest frequency of switches for language only experts is between pro-

gram and situation models. This helps to confirm the hypothesis that when there is a

lack of domain expertise, a mental model of the program is predominantly built from the

bottom up.

Domain Only Expertise

Domain experts switch most often between situation and program models. Switches

between situation and top-down models are also only slightly less frequent than those

209

between top-down and program models, reflecting the ability to make connections based

on expectations. Overall, switches for domain experts are fairly evenly distributed across

models. We surmise that, while they have the domain expertise, they do not have the lan-

guage expertise and need to make connections to the program model or top-down model

using the situation model as a bridge.

Language & Domain Expertise

The highest rate of switching for language and domain experts is between top-down

and program models. Again, this is not surprising since the domain expertise helps to

make the connections to the code based on expectations. The other interesting result is

that there are considerably fewer switches between top-down and situation models. We

hypothesize that , unlike the domain only experts, language and domain experts do not

necessarily need to use the situation model as a bridge between the top-down and program

models. They have expectations based on domain knowledge and can directly make the

connection into the program model without the help of an intermediate domain to translate

the code. This is especially evident in the 9% rate of switches from the top-down model

into the situation model.

B.3.1.3 Switches Between Models - Totals By Accumulated Knowledge

Table B.30 reports data on model switching behavior based on three levels of accu-

mulated knowledge.

Little Accumulated Knowledge

Subjects with little accumulated knowledge switch most often into and out of the pro-

gram model. It is difficult to determine the dominant influence for this group of subjects.

Three of the subjects (C2, C3, and EN2) spent the majority of their time building a

program model. They were trying to understand specific program behavior as it related

to known defects. This required work at the code level. An alternate conjecture is that

because they had little or no experience with the code, they could only build the repre-

sentation at the program and situation model levels. We theorize that this is part of what

the results represent, but we cannot conclude this from this set of subjects.

210

Table B.30: Action Switches - Absolute & Percent of Total Switches by Accumulated
Knowledge

Model Switches - All Subjects
Accumulated Top-Down Situation Program
Knowledge Model Model Model Model

Little Top-Down N/A 51 161
(4 subjects) 7% 23%

(Total Situation 83 N7A 123
switches 12% 18%
= 701} Program 128 155 N7A

18% 22%
Some Top-Down N/A 54 69

(4 subjects) 11% 14%
(Total Situation 67 N[A 114

switches 14% 23%
= 488} Program 58 126 NfA

12% 26%
Significant Top-Down N/A 49 67

16% 21%
(3 subjects) Situation 54 N7A 38

(Total 17% 12%
switches Program 63 42 N/A
= 313} 20% 14%

Some Accumulated Knowledge

The majority of the switches that occurred for subjects with some experience with the

code happened between program and situation models in both directions. This is probably

due to task and expertise, rather than accumulated knowledge. Two subjects (Cl and

C4) were working on debugging tasks. One subject, G2, used a line-by-line systematic

approach to understanding. Two subjects (Ll and Cl) were language only experts. Thus,

all subjects had a reason to stay mostly within the program model regardless of the amount

of prior experience.

Table B.30 shows that the distribution of switches among top-down and program and

top-down and situation models is fairly even. What we expect to see in general for sub-

jects with some accumulated knowledge is evenly distributed switches between all models.

We conjecture that with some accumulated knowledge, programmers are able to make

connections between all model levels based on what they already know. Further, because

they have only partially built the mental representations, we would expect to see a higher

frequency of switches among engineers with some accumulated knowledge than for those

with significant accumulated knowledge. Those with some prior experience need to con-

211

tinue building their mental representations at all three levels as well as the connections

between them. The average number of switches for those with some accumulated knowl-

edge was 122 per subject. The average for those with significant accumulated knowledge

was 104.

Significant Accumulated Knowledge

The highest frequency of switching for subjects with significant accumulated knowl-

edge occur between program and top-down models. Switching between top-down and

situation models is lower and switching between program and situation models is the low-

est. We conjecture that this behavior is related to amount of accumulated knowledge. For

those with significant accumulated knowledge, models at all three levels will be close to

complete and will need to be revised only due to changes to code or functionality. All

three subjects in this group (ADl, AD2, and ENl) were focused on either adding func-

tionality or porting code. Since they were very familiar with the code, they could easily

update the program and top-down models to reflect changes that occurred as a result of

the task. For example, knowing what functionality needs to be added (top-down model)

is quickly followed by identifying a specific location to add it (program model).

B.4 Information Needs

Information Needs are data necessary during a comprehension task. They can be

determined directly from statements about needed information or indirectly through ac-

tions (such as looking for specific information) or when the programmer could obviously

benefit if she had the data. The overall frequencies of each type of information needed for

all subjects was reported in Chapter Five (see Tables 5.27, 5.28, and 5.29.). This section

contains the details for those summarized results in section 5.5. Information needs are

grouped according to task, expertise, and accumulated knowledge is reported.

Each table contains the top 30 information needs because the remaining (unreported)

had only six or fewer references between all subjects. The information needs tables contain

six or seven columns (depending on the number of subgroups: task has four , while expertise

and accumulated knowledge have three each). The first contains the code used in analyzing

the protocols for information needs. The second contains a brief description of the needed

212

information. The 3rd, 4th, 5th, and 6th (for task-related) contain the absolute number of

references for each group of subjects. The last column is the total number of references

(and the number used to calculate the percentage figures for each cell in the row) to the

information need.

B.4.1 Information Needs- By Task

Tables B.31 and B.32 contain the information needs data by task. We see that overall,

17 (Domain concepts) is most frequent . However, it is only the most frequent for two of

the four tasks, corrective and adaptive maintenance. For General Understanding, it is the

second most important type, and for Enhancement it is the fifth. The reasons for this is

not readily apparent. Accumulated knowledge may be a factor. Of the five total references

to 17, four are attributable to EN2. While EN2 was a domain and language expert, be

bad little accumulated knowledge about the program. Therefore, be may have required

the additional domain information to help build up his top-down model of the program.

Nothing can be concluded about the type of information required during adaptive

maintenance except that these two subjects bad the fewest number of information needs

than any of the other tasks (the average number of information needs was 34 each, during

the programming session). We hypothesize that this is more a function of both exper-

tise and accumulated knowledge. Both were domain experts and both bad significant

knowledge about the program. The combination of expertise and experience would seem

to negate the need for a lot of additional information either on the system itself or the

domain.

For corrective maintenance, task related information is more apparent. The first

two most frequent information needs, 17 (Domain concepts) and 161 (model connected

information) are important in understanding bugs (as they are in other tasks) . What

seems more indicative of the task, however, is that 14 (location and uses of identifiers), 19

(list of browsed locations), 12 (function called by), 14 (call graph display), and 173 (bug

behavior isolated) are the next most frequent information needs. Discovering information

about the program at the code level is crucial to understanding a defect.

The enhancement tasks' most important information need was 19 (recently browsed

locations). Both subjects needed to get back to some place they had recently been and

213

wanted to know the location more often than they needed other information. It is dif-

ficult to draw conclusions for these subjects because, overall, they had a low number of

information needs (average per subject over programming session= 48). Compare this to

debugging (average per subject = 73.5) and General Understanding (average per subject

= 81.67). Both enhancement task subjects were language and domain experts and the

need for domain concept information was this group's fifth most important information

need. The other interesting result for these subjects is that the second and third most

frequent information needs are similar to the debugging task (161 and 14) . Recall that

earlier we said that the enhancement subject spent a significant amount of time tracking

bugs they introduced during the enhancement task. Therefore, this behavior makes sense

for this group.

The top information needs for General Understanding are not surprising. The top

two are domain knowledge (11) and connected model information (161). When there is no

specific goal other than to understand the program (perhaps for future maintenance tasks),

this type of information helps to build mental representations at the domain level as well

as at other levels depending on the individual preferences and strategies of the engineer.

What is interesting is that connected model information (161) was not as important to

G2 who was the person who read the code line by line during the programming session.

He had only three references to 161. On the other hand, he had about the same number

of references to 17 (Domain concepts) as the .other two subjects, which indicates G2

was interested in understanding domain concepts. The third most frequent information

need was 13 (Highlighted begin/ends of control blocks), which was mainly a result of

G2 's line by line strategy. He was responsible for 11 of the 14 references. The next

two information needs, 15 (data structure information) and 14 (Location and uses of

identifiers) is also typical information that is required, at least for the major components

of a program. The 6th most frequent type of information need for this group was 168 which

concerns design decisions. Determining what decisions were made during design can help

one to understand a great deal about the program, including implementation tradeoffs

and anomalies. Design decisions are high-level information, so it is not surprising that

the majority of the references were made by Gl, the engineer who looked at the code

opportunistically to "get a feel for what it does".

214

Table B.31: Information Needs Frequency By Task
Information Adaptive Corrective Enhance Understand

Code Need Task Task Task Task Tt l

17 Domain concept 11 41 5 28 85
descriptions

161 Connected
domain-program- 0 33 7 30 70
situation model
knowledge

14 Location and 1 26 9 11 47
Uses of identi-
fi ers

19 List of browsed 1 17 11 5 34
locations

15 Format of data 2 8 0 13 23
structure plus
descriptions

143 General classi- 1 11 6 5 23
fication of
routines/functs

12 Function called 1 14 3 3 21
By

11 Variable 1 2 1 13 17
definitions/
declarations

13 Highlighted 0 2 1 14 17
begin/ends of
control blocks

122 History of past 6 7 2 2 17
modifications

173 Bug behavior 1 11 5 0 17
isolated

114 Call Graph 0 12 1 3 16
Display

168 Design Issues/ 0 3 4 9 16
decisions

124 Executed state- 4 7 3 0 14
ments,procedure
calls,var values

142 Utility functs 0 0 1 13 14
definitions

127 Directory layout 5 5 0 2 12
organization

117 Location of 4 1 5 0 10
desired code

16 Location/ des- 1 3 0 5 9
cription lib/sys
calls

132 Common objects 2 1 1 5 9
not used in
traditional way

158 High-level des- 0 4 0 5 9
cript ion of how
code is laid out

167 Location to put 0 0 9 0 9
changes

120 Documentation 0 3 0 5 8
list & location

144 Routines that do 0 5 0 3 8
most domain work

215

Table B.32: Information Needs Frequency By Task (continued)
Information Adaptive Corrective Enhance Understand

Code N eed Task Task Task Task Ttl
172 Good direct ion, 0 6 0 2 8

possible program
segments

116 Naming 0 4 0 3 7
conventions for
system & Jibs

136 Location sequence 0 5 1 1 7
where ID is used

153 1FDEF'd behavior, 3 0 0 4 7
conditions which
branch is taken

166 Expected program 0 6 0 1 7
state, var values
when funct called

174 Bug description, 2 3 0 2 7
why /how other
fixes were done

179 Ripple Effect of 6 0 1 0 7
change

B.4.2 Information Needs- By Expertise

Tables B.33 and B.34 contain information needs grouped by expertise.

Domain concepts (11) and connected model information (161) are top information

needs for language only experts. With language only expertise there is a need for domain

knowledge. Because these subjects understand the language, it makes sense that making

connections from the program model to the other models is important . The more inter-

esting results for this group, however, is that the next few most important information

needs are all focused towards program model information. These are 15 (data structures),

12 (function called by) , 14 (location and uses of identifiers) , and 13 (highlighted begins

and ends of control blocks). This is probably due to their lack of domain expertise. Both

subjects, Cl and Ll , spent the majority of their time in the program model, at the level

in which they were comfortable. Assuming that they mainly concentrate on building a

program model, they would require information at that level. Thus, the hypothesis is that

language experts need to understand domain concepts and the connections between mod-

els, but they are most comfortable working within the program model (at least until they

become domain experts) and will need a lot of low level information directly concerned

with the code.

216

It is difficult to draw conclusions about the domain experts since three of the four

subjects (C2, C3, and C4) were working on a debugging task. The influence of task is

apparent not only in the high frequency of code level information needs (14 and 19) but

also because the fifth most important information need is 173, bug behavior isolated.

Language and domain experts need a wider variety of information at all levels. Not

only is domain concept information and connections between models important for this

group, but also location and uses of identifiers (14), a list of browsed locations (19), utility

functions identified and defined (142), variable definitions and declarations (11), and a

general classification of routines and functions (143) .

217

Table B 33· Information Needs Frequency By Expertise
Information Language Domain Language &

Ttl II Code Need Only Only Domain
17 Domain concept 23 27 35 85

descriptions
161 Connected

domain-program- 17 28 25 70
situation model
knowledge

14 Location and 7 23 17 47
Uses of identi-
tiers

19 List of browsed 2 15 17 34
locations

15 Format of data 9 6 8 23
structure plus
descriptions

143 General classi- 4 8 11 23
fication of
routines/functs

12 Function called 8 8 5 21
By

11 Variable 2 3 12 17
definitions/
declarations

13 Highlighted 5 0 12 17
begin/ends of
control blocks

122 History of past 4 9 4 17
modifications

173 Bug behavior 1 10 6 17
isolated

114 Call Graph 3 9 4 16
Display

168 Design Issues/ 3 2 11 16
decisions

124 Executed state- 0 9 5 14
ments ,procedure
calls, var values

142 Utility functs 0 0 14 14
definitions

127 Directory layout 3 5 4 12
organization

117 Location of 0 2 8 10
desired code

16 Location/des- 0 3 6 9
cription lib/sys
calls

132 Common objects 0 3 6 9
not used in
traditional way

158 High-level des- 1 3 5 9
cr iption of how
code is laid out

. 167 Location to put 0 0 9 9
changes

120 Documentation 4 3 1 8
list & location

144 Routines that do 1 5 2 8
most domain work

218

Table B.34: Information Needs Frequency By Expertise (continued)
Information Language Domain Language &

Code Need Only Only Domain Ttl
172 Good direction , 1 5 2 8

possible program
segments

116 Naming 0 4 3 7
conventions for
system & Jibs

136 Location sequence 0 5 2 7
where ID is used

153 IFDEF 'd behavior, 0 3 4 7
conditions which
branch is taken

166 Expected program 2 4 1 7
state, var values
when funct called

174 Bug description , 3 2 2 7
why /how other
fixes were done

179 Ripple Effect of 0 6 1 7
change

B .4.3 I n formation Needs- B y A ccumulated Knowled ge

Tables B.35 and B.36 contain information needs grouped by amount of accumulated

knowledge.

Subjects with little accumulated knowledge need domain information (I61) to help

make connections (I7) to other models. This is expected for this group because they have

spent little time with the code and do not yet have the mental models required to do

their tasks efficiently. The next most frequent information needs are 19 (list of browsed

locations), 14 (location and uses of identifiers), 143 (general classification of routines and

functions), 142 (utility functions identified and defined), and 114 (Call Graph). Most of

these are appropriate for gaining an understanding of code when little is known about it.

All five of these information needs were needed more often by this group than the others.

For instance, the average number of 14 (call graph) for those with little accumulated

knowledge was 3.25, for those with some it was .75, and those with significant accumulated

knowledge had no need for this information need. Thus, engineers with little accumulated

knowledge about the code tend to need types of information those with more experience

no longer need. This group also had a higher total average number of information needs

in general. Each subject had an average of 80 information needs during the programming

219

sessiOn. Those with some experience had an average of 67.5 while those with significant

accumulated knowledge had an average of 37.67.

Conclusions about information needs for people with some accumulated knowledge

about the program are difficult to draw from our sample. Three of the subjects (Cl, Ll,

and G2) worked mostly at the program model level, and this is reflected in their informa-

tion needs. Aside from needing domain concept and model connection information, these

subjects required information on location and uses of identifiers (14), highlighted begins

and ends (13), data structure information (115), and variable definitions/declarations (11).

One could argue that this is expected with some experience since they still have much to

learn about the program. In this regard, they are closer to those with little accumulated

knowledge than those with significant experience. While the group with some experience

had some of the same needs as those with little accumulated knowledge, their informa-

tion requirements are fewer. The hypothesis for the programmers with some accumulated

knowledge is that information needs are somewhere between those with little and those

with significant accumulated knowledge. This means less one-time needs like call graph or

general classifications offunctions than the subjects with little accumulated knowledge and

more information about model connections than the subjects with significant accumulated

knowledge.

Overall, subjects with significant accumulated knowledge do not need as much infor-

mation as the other two groups. 161 (connected model information) was the 6th most

important information need for this group. This implies that the majority of the connec-

tions are already there. Instead, this group's information needs seem tied more directly

to their specific task. For example, 14 (location and uses of identifiers), 173 (bug behavior

isolated), 122 (history of past modifications) , and 117 (location of desired code) are related

to ADl, AD2, or ENl's adaptive or enhancement task.

220

Table B.35: Information Needs Frequency By Accumulated Knowledge
Information Little Some Significant &

Code N eed Knowledge Knowledge Knowledge Ttl
17 Domain concept 34 39 12 85

descriptions
161 Connected

domain-program- 40 26 4 70
situation model
knowledge

14 Location and 20 19 8 47
Uses of identi-
fiers

19 List of browsed 24 3 7 34
locations

15 Format of data 8 13 2 23
structure plus
descriptions

143 General classi- 17 5 1 23
fication of
routines/functs

12 Function called 12 8 1 21
By

I1 Variable 4 12 1 17
definitions/
declarations

13 Highlighted 0 16 1 17
begin/ends of
control blocks

122 History of past 3 7 7 17
modifications

173 Bug behavior 5 6 6 17
isolated

114 Call Graph 13 3 0 16
Display

168 Design Issues/ 11 5 0 16
decisions

124 Executed state- 1 7 6 14
ments,procedure
calls,var values

142 Uti lity functs 14 0 0 14
definitions

127 Directory layout 1 6 5 12
organization

117 Location of 4 0 6 10
desired code

16 Location/des- 3 5 1 9
cription lib/sys
calls

132 Common objects 4 3 2 9
not used in
traditional way

158 High-level des- 8 1 0 9
cript ion of how
code is laid out

167 Location to put 4 0 5 9
changes

120 Documentation 4 4 0 8
list & location

144 Routines that do 7 1 0 8
most domain work

221

Table B.36: Information Needs Frequency By Accumulated Knowledge (continued)
Information II Little Some Significant &

Code Need Knowledge Know ledge Domain Knowledge Ttl
172 Good direction, 7 1 0 8

possible program
segments

116 Naming 6 1 0 7
conventions for
system & Jibs

136 Location sequence 6 0 1 7
where 10 is used

153 IFDEF 'd behavior, 4 0 3 7
conditions which
branch is taken

166 Expected program 0 7 0 7
state, var values
when funct called

174 Bug description, 0 5 2 7
why /how other
fixes were done

179 Ripple Effect of 1 0 6 7
change

222

Appendix C

PROGRAMMING SESSIONS - INDIVIDUAL SUBJECT RESULTS

This chapter contains the results of analysis of several individual protocols. Each

section contains a brief biography of the maintenance engineer and the task .Performed.

Tables summarizing the results for each subject include action counts, switches, hypothesis

types, and information needs. All tables are organized in the same manner as the corre-

sponding tables found in Chapter Five or Appendix B. These tables are the groundwork

for the rest of this study.

The Action- Type Frequency tables contain lists of the identified action types for each

model. Frequencies are organized by a tag used for encoding protocols (see Appendix A).

These tables contain the total number of references to each action and their frequency

by model level. The tables also include the total number of actions for each model level.

Actions with zero frequencies do not appear in the table.

Ref erences and Action Switches between Models tables demonstrate switching activity

generated by actions and indicate which model the programmer was actively constructing

during the programming session. The rows in each table indicate the starting model

and the column represents the ending model. Each table contains the total number of

references to each model component to highlight the difference between the total number

of actions in each model and those that actually caused a switch.

Action Sequence graphs illustrate model switching behavior. Within each graph,

model levels are represented on the Y-axis and time is represented on the X-axis . Time

steps represent action counts over time. For example, Figure C.l demonstrates that sub-

ject Gl started the programming session in the Top-Down model. The next 18 or so

actions occurred in the Top-Down model. The 20th action was a Situation model action.

This is indicated by the jump in the graph. Looking at these graphs gives us a method

for visualizing switching behavior. A similar graph is provided for hypothesis generated

switches.

Subject data also includes tables for hypothesis types. The Tags column contains

the codes used during protocol analysis. The Hypothesis Type column briefly describes

the hypothesis type and the last column give both the number of references to each

hypothesis type and the percent of total hypotheses in the associated model. The tables

also contain rows for total hypotheses per modeL Hypothesis types with zero frequencies

do not appear in the table. Similar to the action generated switching tables, hypothesis

generated switching tables are included in the hypotheses section for each subject.

Information Needs tables are provided on an individual subject basis. The column

labeled Code contains the code used during protocol analysis for identifying information

needs. The Information Need column provides a description of the information need. The

third column, Action Codes, lists model actions related to each need. The last column show

how often this information was required during the programming session. Information

needs with zero frequencies do not appear in the table.

Prior to each programming session, subjects were asked to find a task they knew they

would eventually have to complete in their normal jobs. Each session lasted two hours

during which subjects talked aloud while attempting to perform the task. We recorded

the session and later transcribed it for analysis. Each engineer's statements were studied

for a verification of the integrated model, action identification and counts, action and

hypothesis generated switches between models, hypothesis type identification and counts,

and information needs.

C.l General Understanding

Two protocols for general understanding were analyzed, Gland G2. General under-

standing is defined as learning the system for the purpose of understanding. Perhaps the

engineer has just acquired maintenance responsibility. The objective of the first engineer

was to understand an entire system and he applied an opportunistic approach to this task.

Understanding a single module using a systematic approach was the focus of the second

engineer.

224

C.l.l Gl: Domain/Language Expert - General Understanding

G 1 had chosen a piece of code of approximately 40,000 lines. He was also in the pro-

cess of learning a new CASE tool called PROCASE. This tool had several features which

were extremely helpful to the engineer during the comprehension session. Examples of

features are call-graph display of functions, text re-formatting, limited cross-referencing

capability for viewing variable declarations and use, and pruning & source text elision. The

engineer started the session with three major knowledge components. He had high-level

knowledge of program function as well as knowledge of the enhancement he was supposed

to provide. He had not looked at any documents other than the external requirements

specification, which is where he obtained the high-level knowledge of the program's func-

tionality. He had also looked at the directory containing the code so he knew the names

of the files for which he would be responsible.

A ction c. . 01
Prograrn -

1,~~

I 1/
Situation

Top- Down
0 so ic 1 s < 2 00 250 300 350 400 45 0

Tlrne S t ep

Figure C.1: G1: General Understanding - Action Sequence

Table C 1· G 1· References and Action Switches Between Models
Model Switches - Understand Program

Number of Top-Down Situation Program
References Model Mode l Model Mode l

231 Top-Down Model N/A 14 38
79 Situation Model 25 N/A 30

114 Program Model 27 41 N/A

225

Table C.2: Gl: Action-Type Frequencies - General Understanding
II Tag I Action- Type I Ttl . Refs I % Ttl. II

OPl Gain high-level Program overview 6 3%
OP2 Determine next prgm. seg to examine 21 9%
OP3 Generate/revise hypothesis re: functionality 62 27%
OP4 Determine relevance of prgrm segment 18 8%
OP6 Determine understand strategy 22 10%
OP7 Investigate oversight 1 0%
OP8 Failed hypothesis 3 1%
OP13 Study /initiate program execution 3 1%
OP15 Generate questions 11 5%
OP16 Answer questions 2 0%
OP17 Chunk & store knowledge 18 8%
OP20 Generate task 30 13%
OPCONF Confirmed hypothesis 6 3%
OPKNOW Top-down knowledge 28 12%
Total Top-Down Model Actions 231 54%
SIT2 Develop questions 6 8%
SIT4 Chunk & store 25 32%
SIT5 Determine relevance of sit . know. 1 1%
SIT7 Generate hypothesis 30 38%
SITS Determine understand strategy 1 1%
SITlO Failed hypothesis 1 1%
SITKNOW Situation model knowledge 15 19%
Total Situation Model Actions 79 19%
SYS1 Read intra code comments/related docs 27 23%
SYS2 Determine next prg segmt to examine 3 3%
SYS3 Examine next module in sequence 33 29%
SYS5 Examine data structs & definitions 3 3%
SYS7 Chunk & store knowledge 13 11%
SYS8 Generate hypothesis 7 6%
SYS10 Determine understand strategy 7 6%
SYSll Generate new task 1 1%
SYS12 Generate question 3 3%
SYS21 Mental simu lation 1 1%
SYSCONF Confirmed hypothesis 2 2%
SYSKNOW Program model knowledge 14 12%
Total Progrom Down Mode l Actions 114 27%

Table C.3: Gl: Hypothesis Generated Switches Between Models
Model Switches - Understand Progrom

Number of Top-Down Situation Progrom
Hypotheses Mode l Mode l Model Model

54 Top-Down Model N/A 14 2
30 Situation Model 13 N/A 4
7 Program Model 3 3 NJA

226

Figure C.2: Gl: Hypotheses Sequence

Table C.4: Gl: Hypothesis-Type Frequencies - General Understanding
Total Percent

Model Tag Hypothesis- Type Refers of Ttl
Top-Down OPH1 Domain Procedure functionality /Concepts 20 37%
(Domain) OPH2 Variable function ality/domain concepts 3 5%
Model OPH3 Rules of discourse/Expectations 1 2%

OPH5 Existence of installed (running) program 1 2%
OPH13 Numberjtypejlocation of file 2 4%
OPH14 Available function a lity 10 18%
OPH16 Level & st ructure of codejscope 15 28'7o
OPH17 Design Decisions/Modifications 2 4%
Total Top-Down Model Hypoth eses 54 50%

Situation SITH1 Variable function 7 23%
Model SITH2 Functionjcode block execution orderjstate 2 7'7o

SITH3 Functionjprocedure function , call function 11 37%
SITH7 Existence of fun ctionality jalgorithmf

variable 8 26%
SITH8 Program function 2 7~
Total Situation Model Hypothes es 30 33%

Program SYSH1 Variable fun ction 3 44%
Model SYSH4 Variable structure 1 14%

SYSH7 Variable value/defaults 1 14%
SYSH12 Variable definition & it 's location 1 14%
SYSH14 Code block function 1 14%
Total Program Model Hypotheses 7 8%

227

Table C 5· Gl· General Understanding- Information Needs

II Code
Subject

II Information Need Action Codes Frequencies
17 Domain concept descriptions OPl 10
161 Connected domain-program-situation SYS7 15

model knowledge
14 Location and Uses of identifiers OP2, SYS2, SYS3, 2

SYS7, SYSlO, SYSll
19 List of browsed locations OP2, OP4 , SYS2 4

OP4
15 Format of data structure plus description SYS5, SYS8, SYSll,

of what fi eld is used for in program and SYS12, SIT! 4
application domain, expected field values
and definitions.

143 A general classification of routines
and functions so that if one is OP2 4
understood the rest in the group
will be understood

12 List of routines that call a OPl, OP2 , OP4
specific routine SYS3, SYS7, SYS9 2

SYS12
Il Variable definitions including why SYS5, SYS8, SYSlO

necessary and how used, default SYS12, SYS17, 3
values and expected values SYS23

Il4 Call Graph Display OPl , OP2 , SYS3 3
I68 List of issues/decisions considered SYS12 6

during design
I42 Utility functions definitions and

comments explaining why it was OP2 13
rewritten

I32 If common objects are not used SYS5, SYS8 2
in traditional way, e.g. nil or null

158 High-level description of how OP3 5
code is laid out

I20 Documentation list and location OPl 1
144 List of routines that do most OP3 2

of the domain-type work
I72 Good direction to follow given what

is already known, possible program segments SYSlO 2
to examine

Il6 Naming conventions separated by system OP3, SYS3, SYS8
or library objects that use them S1T7 2
Rules used for new naming new procedures

136 Sequence of locations where 1D is used OP2 l
I 53 1FDEF'd behavior, conditions under SIT2 4

which the branch is taken or not
Language enhancements

112 Environment , global, local scope SYS3 2
I29 Naming conventions for program SYSl, SYS3 1
I39 Main program location OPl 2
141 Call graph with ext raneous OP2 2

information not relevant elided
I48 Code formatted in expected way SYS3 3
119 Acronym definitions SIT!, SIT7 1
I45 List of internal support routines OP3 2
147 List of identifiers and domain OP4 2

concepts that are important
149 File name of current file SYS3 1
155 Domain Simulation SIT2 1
no Function call count OPl, SYS2 1

228

Table C.6: Gl: General Understanding - Information Needs (continued)
Subject

Code Information Need Action Codes Frequencies
126 All include fi le definitions and uses OP1, SYS5 1
128 List of all routines with OP2, SYS2 1

initialization code
146 What kind of archi tecture dependent

code currently exists and is functional OP3 1
what architecture hooks exist so code
can be easi ly added.

II 151 What happens to read m data II SYS5 1 II

C.1.2 G2: Domain/Language Expert - Understand One Module

G2 was in the process of understanding one module in a system for which he recently

took over responsibility. The entire program consists of approximately 85 or 90 KLOC

(thousand lines of code). During the programming session he was interested in thoroughly

examining the main procedure which controlled a majority of the system. The system was

a terminal emulation program that uses a X.25 networking protocol for communications.

The program is written in a non-standard Pascal. The engineer was a software networking

expert (six years professional experience), however , he had only been working with the

X.25 protocol for less than one year. He was very familiar with three different versions of

Pascal as well as MS-DOS assembly language.

G2 preferred to work with a hard copy of the code and resorted to using a computer

for tasks like searching for variable use/definitions and for writing mail messages to other

experts when he was unable to answer certain questions himself. He annotated the hard

copy with important information which he frequent ly referred to during the session. He

also took a very systematic approach to learning. He followed the code, line by line and

attempted to understand everything before going on to the next line. At the end of the

two hours he bad successfully understood the entire module with very few unanswered

questions.

229

Table C.7: G2: Action~Type Frequencies- General Understanding
II Tag I Action-Type I Ttl. Refs I % Ttl. II

OP1 Gain high-level Program overview 23 39%
OP2 Determine next prgm. seg to examine 1 2%
OP3 Generate/revise hypothesis re : functionality 13 22%
OP6 Determine understand strategy 3 5%
OP15 Generate questions 4 6%
OP17 Chunk & store knowledge 1 2%
OP20 Generate task 6 10%
OPKNOW Top-down knowledge 8 14%
Total Top -Down Mode l Actions 59 17%
SIT1 Gain situation knowledge 11 33%
SIT4 Chunk & store 8 25%
SIT7 Generate hypothesis 7 21 %
SITKNOW Situation model knowledge 7 21 %
Total Situation Model Actions 33 10%
SYS1 Read intro code comments/related docs 18 7%
SYS2 Determine next prg segmt to examine 6 2%
SYS3 Examine next module in sequence 57 23%
SYS4 Examine next module in cntrl-flow 1 1%
SYS5 Examine data structs & definitions 3 1%
SYS7 Chunk & store knowledge 35 14%
SYS8 Generate hypothesis 40 16%
SYS10 Determine understand st rategy 9 4%
SYS11 Generate new task 15 6%
SYS12 Generate question 11 5%
SYS13 Determine if looking at right code 1 1%
SYS19 Failed hypot hesis 2 1%
SYS21 Mental simulation 5 2%
SYS23 Search for var defines/use 4 1%
SYS24 Search for block begin/end 10 4%
SYSCONF Confirmed hypothesis 2 1%
SYSKNOW Program model knowledge 28 11 %
Total Progmm Down Mode l Actions 247 73%

Table C 8· G2· References and Action Switches Between Models
Model Switches - Understand Program

Number of Top-Down Situation Program
References Model Model Model Mode l

59 Top-Down Model N/A 7 24
33 Situation Model 9 NfA 23
247 Program Model 22 26 NfA

230

Action S•qu•nee· G2

'"aetplot .. -

\ \ 1\ \
Situation

Top~Down
0 50 100 160 200 250 300 350

Tim• St•p

Figure C.3: G2: Understand One Module - Action Sequence

Figure C.4: G2: Understand One Module - Hypotheses Sequence

231

Table C.9: G2: Hypothesis-Type Frequencies - Understand One Module
Total Percent

Model Tag Hypothesis - Type Refers of Ttl
Top-Down OPHl Domain Procedure functionality /Concepts 7 54%
(Domain} OPH2 Variable functionali ty /domain concepts 2 15%
Model OPH3 Rules of discourse/Expectations 3 23%

OPH4 IJO behavior 1 8%
Total Top-Down Model Hypothes es 13 22%

Situation SITH1 Variable function 4 58%
Model SITH2 Functionjcode block execution orderfstate 1 14'7o

SITH3 Functionj procedure function , call function 1 14%
SITH7 Existence of functionality jalgorithmf

variable 1 14%
Total Situation Model Hypoth eses 7 11%

Program SYSHl Variable function 7 17%
Model SYSH2 Function/procedure function 4 10%

SYSH3 Procedure/function call behavior 1 3%
SYSH4 Variable structure 6 15%
SYSH5 Location/type/existence of function call 1 3'7o
SYSH6 Statement execution order /state 5 12%
SYSH7 Variable valuejdefaults 3 7%
SYSH9 Variablejconstruct equivalency 1 3%
SYSH10 Syntax meaning 1 3%
SYSHll Design decisions 2 5%
SYSH12 Variable definition & it 's locat ion 1 3%
SYSH14 Code block fun ction 2 5%
SYSH19 Code block boundary location 4 10%
SYSH20 Paramsftype definitions in procedure call 2 4%
Total Program Model Hypotheses 40 67%

Table C.lO: G2: Hypothesis Generated Switches Between Models
Model Switches - Understand Program Jl

Number of Top-Down Situation Program
Hypotheses Model Model Model Model

13 Top-Down Model N/A 0 5
7 Situation Model 0 N/A 7

40 Program Model 6 7 N/A

232

Table C 11· G2· Understand One Module Information Needs -
Code I IT

Subject
II Information Need Action Codes Frequencies

17 Domain concept descriptions OP1 9
161 Connected domain-program-situation SYS7 3

model knowledge
14 Location and Uses of identifiers 0?2, SYS2, SYS3, 5

SYS7, SYS10, SYSll
19 List of browsed locations 0?2, OP4, SYS2 1

OP4
15 Format of data structure plus description SYS5, SYS8, SYSll,

of what field is used for in program and SYS12, SIT1 4
application domain, expected · field values
and definitions.

143 A general classification of routines
and functions so that if one is OP2 1
understood the rest in the group
will be understood

Il Variable definitions including why SYS5, SYS8, SYS10
necessary and how used, default SYS12, SYS17, 8
values and expected values SYS23

13 Highlighted begin/ends SYS3, SYS7, SYS8, 11
of control blocks SYS10, SYS24

122 History of past modifications SYS3 1
168 List of issues/decisions considered SYS12 1

during design
16 Location and description of library 0?1, OP2, OP20 , 5

routines and system calls SYSll
132 If common objects are not used SYS5, SYS8 3

in traditional way, e.g. nil or null
116 Naming conventions separated by system OP3, SYS3, SYS8

or library objects that use them S1T7 1
Rules used for new naming new procedures

166 Expected program state, e.g. expected SYSll 1
variable values when procedure is called

Ill Language conventions that are SYS1, SYS3, SYSlO
different from standard conventions 4
Language enhancements

118 1/0 parameters, de.finitions , examples of SYS3, SYS5, SYS8 1
calls with explanation, what it is used for

129 Naming conventions for program SYS1, SYS3 4
130 Where variable is toggled , when SYS2, SYS12 1

and why, where passed to and why
148 Code formatted in expected way SYS3 1
145 List of internal support routines 0?3 2
147 List of identifiers and domain 0?4 1

concepts that are important
171 Concise error description SYS20 1
110 Function call count 0?1, SYS2 1
126 All include file definitions and uses OP1, SYS5 1
128 List of all routines with OP2, SYS2 1

initialization code
152 User defin ed code block identification SYS7 3
163 All definitions and uses of a variable

prioritized .. so more important uses show SYS10 1
. up first

154 List of ex perts SYSlO 2
159 How a variable is passed into a SYS1 1

procedure, e.g. by value, address, etc.
135 Any difference between variable SYS8 1

name and use
156 The include file a particular OP2 1

structure is defined in

233

G2: Understand One Module- Processes

This section contains the results of analyzing the protocols for comprehension pro-

cesses for G2. Processes are identified at the episode, aggregate-level, and session levels.

Each process level can be thought of as a higher level abstraction of the previous level.

These are presented in graph form as state machines. Lists of the sequences of states

are provided to illustrate paths through the graph. These are the actual sequences found

during the analysis of protocols.

Tables for process trigger frequencies are included and provide an indication of the

importance and identification of connections between processes.

Also provided are the information needs and frequencies found for each process at the

episode level and the number of times a particular process occurred in the protocol.

Episode Level Processes - Understand One Module

Episodes embody a sequence of activities carried out to accomplish a goal. Episodes

containing common elements with similar goals emerge as a process. To illustrate, in

our example protocol a particular episode classified as PJ starts with the overall goal of

understanding a specific block of code, e.g. "I'm going to read the description and see if

it gives me some good clues as to what's going on." Some of the observed activities that

support the original goal are: generating hypotheses while reading comments, chunking

information, and making note of interesting aspects and postponing investigation of them.

Table C.l2 lists seven episode-level processes and how often they occurred in one

example transcript (subject G2 (see table 4.1)) The table shows that our subject spent

the majority of his time reading the code, determining the behavior of a variable, and

Table C.l2: G2: Process Frequency Count
II Process Name I Process Code I Frequency

Read Block in Sequence Pl 13
Integrate Partially Understood P2 5
Determine Variable Def/Use P3 7
Incorporate Acquired Program Knowledge P4 5
Identify Block Boundaries P5 2
Resolve Deferred Questions P6 2
Understand a Procedure Call P7 8

234

incorporating this knowledge into his mental model of the program module. The engineer

applied a systematic strategy of reading each line of code in approximate sequence. Thus,

references to processes Pl, P3, and P4 support building the program model. We also

included these processes as state machine diagrams to illustrate the basic form of the

episodes.
Pl (Read Block in Sequence)

Read
Code

Start

Figure C.5: G2: Process 1 - Read Block

The Read Block in Sequence process models a progression of program model actions

that include reading a logical chunk of code and making note of important identifiers.

Relevance can later be determined from a list of key aspects organized according to some

priority scheme. The following excerpt taken from the protocol illustrates Pl.

235

SYS4

So when the routine starts, what does it do? It says look and see if the function , the call, the user input line which

is passed into this is an " F2" or "F3" function. So it says, IF the first thing that it found was " F2" or IF command

line match of the token with the literal F2 bracket bracket, or if the command line match was CANCEL then close

the file; but remember the name

SYSll

because I'm going to want to know what CLOSE-FILE actually does.

SYS8

It looks like it 's probably an internally called routine.

SYSll

So I'll go look for that in a second .

SYS3

Otherwise use VFMT to urn, write a null, looks like a null to the STREAM_$STDOUT and that is the end of that

IF statement .

SYS7

So that's what it does if it 's "F2".

Not all the activities represented by arcs in the diagram are found in every process

identified as Pl. For example, the above citation is actually a part of a larger Pl episode.

In the larger episode, instead of reaching the End-of-Block and Chunking & Storing fol-

lowed by the stopping state, the path takes the process to the starting state and begins

again.

236

Start

P2 (Integrate Partially Understood Material)

Beacon drives comparison
of expected vs. actual use

Figure C.6: G2: Process 2 - Integrate Partially Understood

The Integrate Partially Understood process attempts to integrate information that is

not entirely understood by the programmer. Rules of discourse and beacons can drive this

process when variable or procedure names do not meet expectations. An example taken

from the protocol illustrates P2:

SYS2

So, window, there's my other window. One, (click click of the keyboard). We're looking for CLOSE-FILE.

SYSl, SYS3

CLOSE-FILE is an internally defined routine and it says close the currently opened file if any, there is not an open

237

file , then we're just going to return . If there is an open file that's TRANSMIT or PASTE then we 'll close t he file,

set some variables to zero. If the open file was XMIT then we 're going write XMIT file whatever it's name was,

closed . Set, reset the number of events, okay,

SYS12

I'm not sure what that means.

SYS3

Urn, otherwise it 's not one of those two kinds of files then we 're going to close. This other file stream file urn set

the access mode to an appropriate thing and write out "RECEIVED FILE IS CLOSED" and END. So, and then

set open file to NONE.

SYS7 So all that routine does is close some sort of a special stream fi le and it looks like there are three kinds of

stream files. And it just closes whatever one that is. So that tells me a little bit about that.

Integrating partially understood information happens at all levels of abstraction. The

above episode is an example of an occurrence at the program model level. Another was

found at the top-down model level and one of the other occurrences was at a very low

program model level evident by the dialogue concerning loop variables.

238

P3 (Determine Var Def/use)

Next
Variable

Figure C.7: G2: Process 3 - Determine Var Definition

There are several possible paths through Determine Variable Definition/Use process

when determining variable definitions or behavior. When this process was found it even-

tually followed a related Pl process. This is reasonable since Pl defers detailed questions

about variable definition and use while P3 answers those questions if possible. The follow-

ing protocol segment demonstrates a simple path where G2 saw a reference to variable,

determined it was not very important at the moment and deferred resolution by recording

a question together with an hypothesis.

SYS23

239

But I think what I' ll do is look for X3 and see what happens just so I can find out what E is. And uh that looks

like it's going to be a lost cause.

OP6

Let's go back to 1 and look at XJ_incl.pas. So I want to make myself another note here. I need more terminals or

something.

SYS8

So here 's a, it's not exactly a question , but it "Is X3, the X.3 structure defined, we 'll have to fix that typo, in X

dot, X3.incl .pas? That sounds like that's a reasonable a good hypothesis but we never know for sure.

P4- Incorporate Acquired Program Knowledge

Start

Figure C.8: G2: Process 4 - Incorporate Acquired Knowledge

240

During the Incorporate Acquired Knowledge process, documents or code invoke pre-

viously acquired knowledge and he incorporates it into a larger information chunk repre-

sented by a higher level of abstraction. The next example protocol chunk illustrates this

process.

SYSl

And now we're going to look and see, we have a gateway name with an optional X25.

{ Stuff deleted ... }

SYS2, SYSl

So I need to look for my routine again. Okay, here's my routine. And, okay. Well , there's my comment.

It says, " Length of gateway name ie server with com card with optional X25 physical line number. Name optional

as of today."

SYSll, SYS8

So I gotta check and see,

it looks like this particular call allows for either a name or a li teral address and they're trying to decide which one

it is.

SYSl ,Conflrmed hypothesis,SYS3

And that's what the com ment has to do with . Optional X25 , physical,

that's what I thought. I was trying to figure out what PH started .

Okay, so it says if the first character of X25...NAME,

Program knowledge, SYS3/SIT1 , SYSl which we urn, which we filled in up here -

If the first character is an alphabetic character, that is capital A-Z or little a-z, then we 're going to try to resolve

the system name to and X.25 address

and it says the way we do that is to look at urn , a libra ry of routines called X25_LIB .PAS

Program knowledge, SYS8, Confirmed Hypoth, Program knowledge

and I have looked a little bit at this library and the functions in that appear to be relatively straight forward .

So for the time being I'm going to assume that X25_$NAME..R.ESOLVE is fairly straight forward.

In fact it 's one that I have looked at

SYS3/SITJ

and it basically gets a name and a name length and uh, returns and X25 address and an X25 address length . And

also a gateway and a gateway length so that allows it to identify the gateway and it checks to see whether or not it

241

to identify the gateway and it checks to see whether or not it successfully resolved that name into something. And

if it did not successfully resolve it then it writes an error and returns from this function to the calling function .

242

P5 - Identify Block Boundaries
Mark Intermediate

code block

Figure C.9: G2: Process 5 - Identify Block Boundaries

Delineating code blocks is the task embodied with the Identify Block Boundaries

process. Highlighting begins and ends of code blocks and control simulation are two ap-

proaches (paths) seen in the following transcript segment.

SYS24

Oh , boy. I may have to go look at the screen to figure what this END is t he END of. Yep.

SYS8

Because I think it might be the END of th is ELSE. But I'm not sure. I wonder if I 'm going to be able to fi gure t hat

out. (ooohhh)

SYS24

243

We're about to find out. Okay, t he first t hing I need to do is figure out where that END is. And that END is that

END right the re.

SYS8

Wondering if,

SYS19

nope. It 's not going to let me do it that way. One of the disadvantages of not having this written in C.

{ Stuff deleted ... }:

SYS24 So it certainly lines up with this ELSE. If t hat's the case then BEGIN, so that 's where that one began.

Looks to me like that must be .. okay if it's it , let's see what we do to it. Okay. So if it was a literal address .. hmmm.

SYS8/SIT7 /SYS21

What concerns me is that it seems like logically if we had a name that we were trying to resolve into an X.25

address , it looks to me like what we've done here is , resolve the name address, it looks to me like what we've done

here is, resolve the name into an X.25 address and then if it was okay, urn then what we want to do is jump around

this BEGIN, this block starts with ELSE BEGIN and urn, it seems to me that we would still want to do the CALL.

And so what I 'm puzzled over is that if that was a, it looks like to me right here we start on the assumption that

the first token was clear or disconnect.

SYS24

So if t he first token was CALL, which was what we say someplace up here, right there. So here 's the start of our

block that says CALL.

244

P6 - Resolve Deferred Questions

Start

Figure C.lO: G2: Process 6 - Resolve Deferred Questions

The Resolve Def erred Questions process covers situations when the solution to a pre-

viously formulated question is answered intentionally or unintentionally because the pro-

grammer stumbles across it while concentrating on unrelated questions. In the transcript

fragment G2 finally answers a question regarding the functionality of system procedure

called PUT _REC. Prior to the time represented by the segment, he bad been bothered

with the use of PUT _REC. He inadvertently finds the answer while looking for the defini-

tion of a variable CLEAR.

OPl - Read Manual

goody, CLEAR_PACKETS. You pack it . CALL, CALL_CLEAR, 2-14 and 4-5. Let's see if they tell me anything

245

particularly enlightening. Okay, Clear, Format Clear, no argu ments. Use this command to disconnect the Ca ll from

disk commands providing the sam e func t ion . Okay. And t he other was, 4-5. (sigh) 4-5. Call ...

I: Are you scanning for page 4-5?

B: Well, it said that it 's on page 4-5 that it's referenced . And so I 'm looking to see where in here it talks about

" CLEAR" and it doesn ' t tell me ...

I: Is is even related? (ha, ha)

SITl/OPl - Related knowledge

B: well, it's a little bit related but it's talking about establishing a channel and we're looking at clearing one. So

I 'm wondering if closing a connection, it only tells us about CLOSE. It doesn't tell us about CLEAR. Here in

exchanging data, it says, after you 've established a connection you can begin to exchange data, you send data with

PUT _R.EC call so in fact PUT _R.EC is sending some data across when specifying you must tell it the packet type

you are sending. (ah ba!)

Understand Procedure Call process is the first of the described processes that invokes

another process , P6. A sample transcript is not included because only one episode was

found in the example protocol and it spans several pages of text. The process begins

with the goal of finding a definition of PUT .REC and includes the P6 protocol segment

presented above.

Information Needs for Episode-Level Processes

The knowledge required for successful understanding includes the information needed

during comprehension processes. During our analysis we were able to associate informa-

tion needs with maintenance activities and thus with episode-level processes. Table C.l3

contains the information needs associated with processes Pl through P7 for subject G2.

Also included are frequencies.

246

P7- Understand Procedure Call

Figure C.ll: G2: Process 7 - Understand Procedure Call

247

Table C.l3: G2: Understanding One Module - Information Needs for Processes Pl- P7
II Episodic Process I Information Needs I Frequency Jl

P1: Code Block Boundaries 4
Read Data Type definitions & location of identifiers 3
Block Call Graph Display procedure callers 2

History ot past modifications 1
Data structure definitions tied to concepts in domain 1
Location of called procedures 1
History of browsed locations 1
Beacons tied to situation model or program model 1
Description of system calls 1
Location of documents for program & domain 1

P2: Location of identifier 1
Integrate Include file definitions and locations 1
Not High level domain concepts 1
Understood Description of toggles ,switches 1

History of browsed locations 1
Difference between expected & actual variable use 1

P3: Constant values and definitions 2
Determine Location of identifiers 2
Variable Most frequent ly used variables 1
Def/Use High level domain concepts 1

Deferred varsjprocs during P1 1
Annotated/ Annotatable code 1
Beacons tied to situation or program model 1
List of experts 1
Prioritized list of identifier references 1

P4: Code Block Boundaries 2
Incorporate
Acquired Variable/constant definition/use 1
Program
Knowledge Identifiers tied to concepts in domain 1
P5:
Identify Block Code Block Boundaries with text elision 1
Boundaries Code Block Boundaries without text elision 1
P6: List of Deferred variables/procedures 2
Resolve Locations of identifiers 1
Deferred Important domain concepts 1
Questions Location of domain concept descriptions 1
P7: Location of description of specific library routine 4
Understand Naming conventions tied to libraries & to domain concepts 3
Procedure Domain concept descriptions 3
Call Variable de.finitions of parameters in library call 2

Namir:g conventions & rules used in naming new procedures 1
Pre-defined (constant) values & definitions 1
Description of each parameter & function in specific library routine 1
To what is a variable initialized & where 1
Location of domain concept descriptions 1
Language conventions if different from std language conventions 1
Definition of library routines and uses 1
System error messages 1

248

Aggregate-level Processes - Understand O ne M odule

Aggregate-level processes are determined using sequences of episode-level processes

in protocols. Three aggregate processes were discovered in G2 's protocol and we illustrate

them below with state diagrams together with a description of the sequences of these

aggregate-level processes we observed in the transcript. Triggers cause process changes

between the episode-level processes comprising each aggregate process.

These aggregate processes include the following episode-level processes:

1. PA : Pl - Read block in sequence, P2 - Integrate partial knowledge including infor-

mation not completely understood, and P3 - Investigate Variables

2. PB : Pl - Read block in sequence, P3 - Investigate variables, P 4 - Identify Block

Boundaries, and P5 - Incorporate Acquired Program Knowledge.

3. PC: Pl - Read block in sequence, P3 - Investigate Variables, P6 - Resolve Deferred

Questions, and P7 - Understand Library Procedure Call.

249

End-<Jf- Biock

Process PA- Read, Integrate,
Investigate Variables

0 Chunk & Store
SyslO

Figure C.l2: G2: Process A - Aggregate-Level

The following paths through Figure C.l2 were found:

Pl ~ Pl ~ P2 ~ Pl ~ P3 ~ P3 ~ P2 ~ P3 ~ P3 ~ P3 ~ Pl

Pl ~ P2 ~ Pl

Pl ~ Pl ~ P2 ~ Pl

Pl ~ P3 ~ P3 ~ Pl

Process PA is a fully connected state diagram with self loops for episode-level pro-

cesses P1 and P3 only. An intuitive description of this aggregate process describes typical

250

progressions of episodes as follows :

As code is read, identifiers such as variables and procedure calls are prioritized in the order

they will be investigated after reaching the end of the block (Pl) . If there is an unexpected

use of an identifier or combination of statements (i.e. rules of discourse are violated) then

the confusing information is somehow incorporated into the current working mental rep-

resentation of the code (P2) . Once a logical block of code is read and all relevant detail is

arranged in a mental model, the priority list containing the deferred identifier information

can be examined (P 3).

Process PB - Read, Incorporate Acquired,
Investigate Variables, and

Chunk & Store
End-{)f-Block

Identify Block Boundaries

End-{)f-Block

Figure C.l3: G2: Process B - Aggregate-Level

The following paths through Figure C.l3 include:

251

Pl --+ P5 --+ Pl --+ P4 --+ Pl

Pl --+ P4 --+ P4 --+ P3 --+ Pl --+ Pl

Pl --+ P4 --+ P5 --+ P5 --+ Pl

Process P B is different from PA because the presence of the two episode-level processes

Incorporate Acquired Knowledge (P4) and Identify Block Boundaries (P5} suggest some

accumulated knowledge and larger code blocks, respectively. The first occurrence of PB

was observed at the beginning of the twelfth episode in the protocol. By this time G2

had considerable knowledge about the program. He was also several nesting levels deep

in the control structure. He was uncomfortable with being unsure of the control level he

was currently examining and decided to explicitly locate the physical block boundaries.

The following paths through Figure C.l4 include:

Pl --+ P7 --+ P7 --+ Pl

Pl --+ P7 --+ P7 --+ P3 --+ P7 --+ P6 --+ P7 --+ P6 --+ P6 --+ P7 --+ P7 --+ Pl

Pl --+ Pl --+ P7 --+ P7 --+ Pl

Process PC includes resolving deferred questions P6 and understanding procedure

calls P7 episode-level processes. It is similar to PA except that understanding procedure

calls are more involved and may require additional documentation such as maintenance

or reference manuals. In addition, PC is observed only after enough knowledge about

the code is accumulated to cause resolution of deferred questions. Our subject actually

invoked P6 when he stumbled across the answer to an unresolved question while looking

for clues to an unrelated problem.

Aggregate-Level Triggers

Triggers are important causes of state changes between episode-level processes. Ta-

ble C.l4 lists triggers found in the example protocol and their frequencies for processes A,

B, C, together with a total for all the aggregate processes.

252

Process PC- Read,Understand,Investigate
Variables, Resolve Deferred
Questions

End~f-Biock

End~f-Biock

Figure C.l4: G2: Process C - Aggregate-Level

253

Table C.l4: G2: Processes A,B,C, and Aggregate Trigger Frequencies
II Process ld I Process 1hgger I Frequency II

PA Beacon 2
Chunk & Store 5
cnd-ot-Block 7
End-of-Stack 1
Sys10 5

PB Beacon 5
Chunk & Store 1
End-of-Block 6
End-of-Stack 1
SyslO 0

PC Beacon 7
Chunk & Store 2
End-of-Block 7
End-of-Stack 0
Sys10 2

All Beacon 14
Aggregate Chunk & Store 8
Processes End-of-Block 20

End-of-Stack 2
Sys10 7

254

Session Level Process- Understand One M odule

Session-level processes (for Understanding a single module) are interesting because

they show that all the aggregate-level processes represent investigation towards building

chunks [36, 45]. Chunking is an important abstraction mechanism in code understanding.

Thus, at the session-level the purpose of each aggregate process is to understand a block

of code (using different detail steps and information) and then to chunk and store the

learned information.

Session level processes comprise the highest level process encompassing the entire

maintenance task for the two hour programming session. The state diagram in Figure C.l5

was derived in the same way as the aggregate-level processes by tracking the sequences

of aggregate-level processes. At the highest level, only End-of-block and Chunk & Store

trigger switches from one aggregate-level process to the next.

The following paths through Figure C.l5 were found:

P A --+ P B --+ PC --+ P A

PA-+PB-+PA

PA--+ PC--+ PA

PA--+ PC--+ PB

255

Process ABC
Understand One Module

Figure C.l5: G2: Process ABC - Session Level

256

C.2 Corrective Maintenance

Four subjects worked on corrective maintenance tasks, Cl, C2, C3 and C4.

C.2.1 Cl: Domain Novice/Language Expert - Fix Reported Bug

Cl's task was to fix a bug that had been reported by a customer. He is an expert

Pascal programmer but a novice in the application domain. The domain is terminal em-

ulation software which includes communications protocols. The documentation he had

access to included a bug report, an internal maintenance manual, a text book on com-

munications networks, and a history of previous bug fixes . He had spent only two hours

prior to the programming session looking over the bug reports and staring at t he block of

code identified in the bug report as the problem. He had also spent some time discussing

the bug with the engineer that had previous responsibility for the code. He had a copy of

the code on-line which he used specifically for searching. A custom cross referencing tool

found all instances of specific identifiers.

At the beginning of the programming session, Cl felt he knew which statement con-

tained the bug and concentrated solely on that module. His approach to understanding

was opportunistic in that he concentrated on the areas considered relevant. This turned

out to be detrimental because after two hours, he was no closer to understanding the bug.

Instead, he had only determined that his original hypothesis about the location of the bug

was incorrect and now he needed to locate the bug.

Table C 15· Cl· References and Action Switches Between Models
Model Switches - Understand Program

Number of Top-Down Situation Program
References Model Mode l Model Model

49 Top-Down Model N/A 14 14
162 Situation Model 18 N/A 29
145 Program Model 11 32 N/A

257

Action C1
Progra.rn

1
\ 1111[1/ A 1\ 1\"

plot" -

Situation

Top- Down
0 50 100 "'0 200 25 300 350 40 0

Tirne Step

Figure C.l6: Cl: Fix Reported Bug - Action Sequence

Figure C.17: Cl: Fix Reported Bug - Hypotheses Sequence

258

Table C.16: Cl: Action-Type Frequencies - Fix Reported Bug
II Tag I Action-Type I Ttl Refs I % Ttl IJ

OP1 Gain high-level Program overview 6 13%
OP2 Determine next prgm . seg to examine 7 14%
OP3 Generate/revise hypothesis re: functionality 9 18%
OP4 Determine relevance of prgrm segment 1 2%
OP6 Determine understand strategy 8 16%
OP8 Failed hypothesis 2 4%
OP15 Generate questions 1 2%
OP17 Chunk & store knowledge 4 8%
OP20 Generate task 4 8%
OPCONF Confirmed hypothesis 1 2%
OPKNOW Top-down knowledge 6 13%
Total Top-Down Model Actions 49 14%
SIT1 Gain situation knowledge 38 23%
SIT2 Develop questions 13 8%
SIT3 Determine answers to questions 6 4%
SIT4 . Chunk & store 41 25%
SIT5 Determine relevance of sit . know. 5 3%
SIT6 Determine next info to gain 6 4%
SIT7 Generate hypothesis 17 10%
SITS Determine understand strategy 5 3%
SITlO Failed hypothesis 1 1%
SITCONF Confirmed hypothesis 1 1%
SITKNOW Situation model knowledge 29 18%
Total Situation Model Actions 162 45%
SYS1 Read intro code comments/related docs 4 3%
SYS2 Determine next prg segmt to examine 15 10%
SYS3 Examine next module in sequence 21 15%
SYS4 Examine next module in cntrl-flow 1 1%
SYS5 Examine data structs & definitions 4 3%
SYS7 Chunk & store knowledge 21 14%
SYSB Generate hypothesis 24 17%
SYS9 Construct call tree 3 2%
SYS10 Determine understand strategy 19 13%
SYS19 Failed hypothesis 2 1%
SYS21 Mental simulation 5 3%
SYS24 Search for block begin/end 2 1%
SYSKNOW Program model knowledge 24 17%
Total Program Down Model Actions 145 41%

Table C.17: Cl: Hypothesis Generated Switches Between Models
Model Switches - Understand Program II

Number of Top-Down Situation Program
Hypotheses Model Model Mode l Mode l

9 Top-Down Model N/A 5 2
17 Situation Model 6 N/A 4
24 Program Model 1 5 N/A

259

Table C 18· Cl· Hypothesis-Type Frequencies - Fix Reported Bug
Total Percent

II Model Tag Hypothesis- Type Refers of Tt l
Top-Down OPH1 Domain Procedure functionality /Concepts 1 11%
(Domain) OPH2 Variable lunctionalityjdomain concepts 1 11%
Model OPH13 Numberftypejlocation of file 1 11%

OPH16 Level & structure of codejscope 5 56%
OPH18 LocationjStatusjdescriptionjcause of error 1 11%
Total Top-Down Model Hypoth eses 9 18%

Situation SJTH1 Variable function 2 12%
Model SITH2 Function/code b lock execution orderjstate 1 6%

SJTH3 Function/procedure function , call function 8 47%
SJTH5 Cause of buggy behavior 1 ~
SITH6 Comparison of terms/acronyms

/functionality 3 17%
SITH7 Existence of functionali ty falgori thmf

variable 2 12%
Total Situation Model Hypotheses 17 34%

Program SYSH6 Statement execution order /state 11 46%
Model SYSH7 Variable value/defaults 1 4%

SYSHlO Syntax meaning 5 21%
SYSH13 Code block/procedure comparison 2 8'7o
SYSH16 Code correctness, cause/location of error 4 17'7o
SYSH18 Location to add code/alternatives 1 4'1o
Total Progmm Model Hypotheses 24 48%

260

Table C.l9: Cl: Fix Reported Bug- Information Needs

II Action Codes
Subject

Code Information N eed Frequencies
17 Domain concept descriptions OPl 14
161 Connected domain-program-situation SYS7 5

model knowledge
14 Location and Uses of identifiers OP2, SYS2, SYS3 , 3

SYS7, SYS10, SYSll
19 List of browsed locat ions OP2, OP4, SYS2 2

OP4
15 Format of data structure plus descript ion SYS5 , SYS8, SYSll,

of what fi eld is used for in program and SYS12 , S1T1 4
application domain , expected field values
and definitions.

143 A general classification of routines
and functions so that if one is OP2 4
understood the rest in the group
will be understood

12 List of rou t ines that call a OP1, OP2 , OP4
specific routine SYS3, SYS7, SYS9 7

SYS12
13 Highlighted begin/ends SYS3, SYS7, SYS8, 2

of control blocks SYS10, SYS24
122 History of past modifications SYS3 3
173 Bug behavior isolated S1T1 1
114 Call Graph Display OPl, OP2, SYS3 3
168 List of issues/decisions considered SYS12 1

during design
127 Directory layout/organization : include OPl , OP2

files , mai n file, support files, 1
library files. File structure

158 High-level description of how OP3 1
code is laid out

172 Good direct ion to follow given what
is already known, possible program segments SYSlO 1
to examine

166 Expected program state, e.g. expected SYSll 2
vari able values when procedure is called

174 Good description of the bug and why S1Tl 1
and how other fixes were done

Ill Language conventions that are SYSl, SYS3, SYSlO
different from standard conventions 2
Language enhancements

162 Predefined (constant) variables and SYS8 1
values

113 Condit ions under which a branch is SYS3 4
taken or not . Include variable values

130 Where variable is toggled, when SYS2, SYS12 2
and why, where passed to a nd why

138 Nesting level of a. particular procedure SYS2, SYS7 5
119 Acronym definitions S1Tl , SIT7 3

261

C.2.2 C2: Domain Expert/Language Novice- Understand Bug

C2's task was to understand a reported bug. The program he worked on had the

capability for processing command line input, however, it was handling inputs incorrectly.

The program was a software management tool that allows users to create PERT charts

and GANT charts. Users normally interact with the program through an X-Windows

user interface. For batch processing a well behaved command line interface was necessary.

The interface code was implemented using the X-Windows Tool Kit (XT Intrinsics), with

which C2 was unfamiliar. He had eight years of Microsoft Windows and C programming

experience. Thus, he was an event-driven application expert , but a Unix XT Toolkit

novice. At the time of the programming session, he had never looked at the code or any

supporting documentation. His basic strategy was to start with the main program and

understand the event loop so could determine how the command line interface interacted

with the event loop.

Prog ,-o rn

S itua t ion

1/
Top- D o wn

0

J~~ I~
/

s o 100 1 5 0

A c t ion

/
2 00

Time S t o p

(

!II II

11 ~1m1

250 3 00

Figure C.l8: C2: Understand Bug - Action Sequence

262

,,._

350 400

Table C 20· C2· References and Action Switches Between Models
Model Switches- Understand Progmm

Number of Top-Down Situation Progmm
References Model Model Mode l Model

120 Top-Down Model N/A 23 31
92 Situation Model 26 N/A 41

151 Program Model 27 44 N/A

263

Table C.21: C2: Action-Type Frequencies - Understand Bug
II Tag I Action- Type I Ttl Refs I % Ttl II

OP1 Gain high- level Program overview 16 13%
OP2 Determine next prgm. seg to examine 3 2%
OP3 Generate/revise hypothesis re: funct ionality 18 15%
OP4 Determine relevance of prgrm segment 8 7%
OP6 Determine understand strategy 12 10%
OP7 Invest igate oversight 1 1%
OP8 Fai led hypothesis 1 1%
OPll High-level change plan/alternatives 7 6%
OP13 Study /initiate program execution 3 2%
OP14 Compare program segments 2 2%
OP15 Generate questions 4 3%
OP16 Answer quest ions 1 1%
OP17 Chunk & store knowledge 9 8%
OP18 Change directions 2 2%
OP20 Generate task 9 7%
OPKNOW Top-down knowledge 24 20%
Total Top-Down Mode l Actions 120 33%
SIT1 Gain situation knowledge 10 11%
SIT2 Develop quest ions 4 4%
SIT3 Determine answers to questions 1 1%
SIT4 Chunk & store 29 32%
SIT5 Determine relevance of sit. know. 4 4%
SIT6 Determine next info to gain 2 2%
SIT7 Generate hypothesis 18 20%
SITS Determine understand strategy 2 2%
SITll Mental simulation 2 2%
SIT12 Compare functionality of 2 versions 2 2%
SITCONF Confirmed hypothesis 1 1%
SITKNOW Situation model knowledge 17 19%
Total Situation Mode l Actions 92 25%
SYS1 Read intro code comments/related docs 15 10%
SYS2 Determine next prg segmt to examine 7 5%
SYS3 Examine next module in sequence 29 19%
SYS4 Examine next module in cntrl-flow 2 1%
SYS7 Chunk & store knowledge 23 15%
SYS8 Generate hypothesis 12 8%
SYS10 Determine understand strategy 14 9%
SYSll Generate new task 13 9%
SYS12 Generate question 9 6%
SYS13 Determine if looking at right code 3 2%
SYS14 Change direction 1 1%
SYS15 Generate/consider different code changes 13 9%
SYS17 Add/ Alter code 2 1%
SYS19 Failed hypothesis 2 1%
SYS23 Search for var defines/use 1 1%
SYSKNOW Program model knowledge 5 3%
Tota l Progrom Down Model A ctions 151 42%

264

Table C.22: C2: Hypothesis-Type Frequencies - Understand Bug
Total Percent

Model Tag Hypothesis· Type Refers of Tt l
Top-Down OPH1 Domain Procedure functionality /Concepts 3 17%
(Domain) OPH2 Variable functiona lity/domain concepts 1 5%
Model OPH6 Existence of specific functionality 3 17%

OPH7 Numberj typejexistenceflocation of libraries 4 22%
OPH9 Permissions/Environment set correctly/

Tool function ality 2 11%
OPHll Comparison of functionali ty at high level 1 6%
OPH13 Numberjtypejlocation of file 2 11%
OPH17 Design Decisions/Modifications 2 11%
To tal Top-Down Model Hypoth eses 18 37%

Situation SITH2 Function/code block execution order / state 6 33%
Model SIT H3 Function/procedure function , call function 7 39%

SITH6 Comparison of terms/acronyms
/functionali ty 1 6%

SITH7 Existence of functionality/algorithm/
variable 4 22%

Total Situation Model Hypotheses 18 38%
Program SYSH1 Variable function 1 8%
Model SYSH2 Functionjprocedure function 2 17'7o

SYSH4 Variable st ructure 4 34%
SYSH6 Statement execution order /state 1 8%
SYSH8 (Non-)Existence of construct (var j code) 2 17%
SYSH9 Variablejconstruct equivalency 1 8%
SYSH18 Location to add code/ alternat ives 1 8%
Tota l Program Model Hypoth eses 12 25%

Table C.23: C2: Hypothesis Generated Switches Between Models
Model Switches - Understand Program II

Number of Top-Down Situation Program
Hypotheses Model Model Model Model

18 Top-Down Model N/A 5 6
18 Situat ion Model 8 N/A 5
12 Program Model 2 9 N/A

265

Program

Situation

Top~Down
0 20 30

T im e S tep
40

Figure C.l9: C2: Fix Reported Bug - Hypotheses Sequence

266

60

Table C 24· C2: Fix Reported Bug - Information Needs
Subject

Code Information Need Action Codes Frequencies
17 Domain concept descriptions OPl 18
161 Connected domain-program-situation SYS7 12

model knowledge
14 Location and Uses of identifiers OP2, SYS2, SYS3, 8

SYS7, SYSlO, SYSll
19 List of browsed locations OP2, OP4, SYS2 7

OP4
15 Format of data structure plus description SYS5, SYS8, SYSll,

of what field is used for in program and SYS12, SIT! 1
application domain , expected field values
and definitions.

143 A general classification of routines
and functions so that if one is OP2 6
understood the rest in the group
will be understood

12 List of routines that call a OPl, OP2, OP4
specific routine SYS3, SYS7, SYS9 1

SYS12
122 History of past modifications SYS3 2
114 Call Graph Display OPl , OP2, SYS3 4
168 List of issues/decisions considered SYS12 1

during design
127 Directory layout/organization : include OPl, OP2

files, main fi le, support files, 1
library files . File structure

117 Location of desired code segment SYSl, SYS2 1
16 Location and description of library OPl, OP2, OP20 , 2

routines and system calls SYSll
158 High-level description of how OP3 3

code is laid out
120 Documentation list and location OPl 2
144 List of routines that do most OP3 4

of the domain-type work
172 Good direction to follow given what

is already known, possible program segments SYSlO 3
to examine

116 Naming conventions separated by system OP3, SYS3, SYS8
or library objects that use them S1T7 4
Rules used for new naming new procedures

112 Environment, global, local scope SYS3 1
162 Predefined (constant) variables and SYS8 1

values
139 Main program location OPl 3
147 List of identifiers and domain OP4 1

concepts that are important
149 File name of current file SYS3 1
155 Domain Simulation SIT2 1
121 Organized functions into categories OP2 1

in which functions are related
126 All include file definitions and uses OPl, SYS5 1
128 List of all routines with OP2, SYS2 1

initialization code
18 List of system calls based on OP1 2

specific naming convention

267

C.2.3 C3: Domain Expert/Language Novice - Fix Reported Bug

C3's task involved fixing a defect in the operating system's kernel. Prior to the

programming session, he had spent a couple of days reproducing the bug and stepping

through the program using a debugger. This gave him a high-level understanding of the

code structure and the particular code modules on which he should focus his attention.

C3 was an operating systems expert. He had worked for the previous five years on Unix

operating system development. He was a C programming language expert with 8 years

of experience. The system he was working with was written in Pascal, a language he had

worked with for less than a year.

The strategy he took to finding the defect was to concentrate on the modules he had

previously identified as related to the bug. He used an internally developed tool for finding

cross references to identifiers. For key data structures, he manually constructed data-flow

representations using Emacs. At the end of the session, he had determined that the defect

was not manifested in the area of the program where he had originally assumed it was

located.

Progr-am
Action Sequence· C3

a ·-
\ \ 111111111

Situation

. liilll

50 100 "150 200 260 300 350
Time S t e p

Figure C.20: C3: Fix Reported Bug - Action Sequence

268

Table C.25: C3: Action-Type Frequencies - Fix Reported Bug
II Tag I Action-Type I Ttl. Refs I % Ttl. II

OP2 Determine next prgm. seg to examine 23 19%
OP3 Generate/revise hypothesis re: functionality 25 21%
OP4 Determine relevance of prgnn segment 1 1%
OP6 Determine understand strategy 14 11%
OP8 Failed hypothesis 1 1%
OP14 Compare program segments 1 1%
OP15 Generate questions 4 3%
OP16 Answer quest ions 2 2%
OP17 Chunk & store knowledge 11 9%
OPCONF Confirmed hypothesis 1 1%
OPKNOW Top-down knowledge 38 31%
Total Top-Down Model Actions 121 37%
SIT4 Chunk & store 13 31%
SIT5 Determine relevance of sit. know . 2 5%
SIT7 Generate hypothesis 7 16%
SITS Determine understand strategy 2 5%
SITKNOW Situation model knowledge 18 43%
Total Situation Model Actions 42 13%
SYS1 Read intra code comments/related docs 7 4%
SYS2 Determine next prg segmt to examine 3 2%
SYS3 Examine next module in sequence 43 26%
SYS7 Chunk & store knowledge 51 30%
SYSB Generate hypothesis 18 11 %
SYS10 Determine understand strategy 9 5%
SYS12 Generate question 1 1%
SYS16 Answer question 1 1%
SYS19 Failed hypothesis 2 1%
SYS21 Mental simulation 3 2%
SYS23 Search for var defines/use 3 2%
SYSCONF Confirmed hypothesis 4 2%
SYSKNOW Program model knowledge 21 13%
Total Progrom Down Model Actions 166 50%

Table C 26· C3· References and Action Switches Between Models
Mode l Switches - Understand Progrom

Number of Top-Down Situation Progrom
References Model Model Model Model

121 Top-Down Model N/A 6 34
42 Situation Model 15 N/A 19
166 Program Model 25 28 N/A

269

Table C 27· C3· Hypothesis-Type Frequencies - Fix Reported Bug
Total Percent

Model Tag Hypothesis- Type Ref ers of Ttl

Top-Down OPH 1 Domain Procedure functionality /Concepts 5 19%
(Domain) OPH3 Rules of discourse/Expectations 1 4%
Model OPH7 Number /type/existence/location of libraries 1 4%

OPHll Comparison of fun ctionality at high level 1 4%
OPH13 Number/type/locat ion of fil e 1 4%
OPH14 Available function ality 2 7%
OPH16 Level & structure of code/scope 6 23%
OPH18 Location/Status/description/cause of error 8 31%
OPH19 Current location 1 4'Yo
Total Top-Down Model Hypothes es 26 51%

Situation SITH2 Function/code block execution order/st ate 1 14%
Model SITH3 Function/procedure function , call function 3 43%

SITH5 Cause of buggy behavior 2 29%
SITH7 E xistence of functionality/algorithm/

variable 1 14%
Total Situation Model Hypotheses 7 14%

Program SYSH2 Function/procedure function 3 17%
Model SYSH5 Location/type/ existence of fun ction call 1 6'ro

SYSH6 Statement execution order / state 2 11%
SYSH7 Variable valuejdefaults 2 11%
SYSHlO Syntax meaning 2 11 %
SYSH16 Code correctness, cause/location of error 6 33%
SYSH20 P arams/type definitions in procedure call 2 11%
Total Program Model Hypotheses 18 35%

Table C.28: C3: Hypothesis Generated Switches Between Models
Model Switches - Understand Program lJ

Number of Top-Down Situation Program
Hypotheses Model Model Model Model

26 Top-Down Model N/ A 2 6
7 Situation Model 2 N/A 3

18 Program Model 7 2 N/ A

270

Program

S ituation

Top- Down
0 10 20

Hypotheses S•quence: C3

30
Time St•p

Figure C.21: C3: Fix Reported Bug- Hypotheses Sequence

271

Table C.29: C3: Fix Reported Bug- Information Needs

II
Subject

Code Information Need Action Codes Frequencies
17 Domain concept descriptions OP1 2
161 Connected domain-program-situation SYS7 10

model knowledge
14 Location and Uses of identifiers OP2, SYS2, SYS3, 8

SYS7, SYSlO, SYSll
19 List of browsed locations OP2 , OP4, SYS2 8

OP4
15 Format of data structure plus description SYS5, SYS8, SYSll,

of what field is used for in program and SYS12, SIT1 3
application domain, expected field values
and definitions .

143 A general classification of routines
and functions so that if one is OP2 1
understood the rest in the group
will be understood

12 List of routines that call a OP1 , OP2, OP4
specific routine SYS3, SYS7, SYS9 6

SYS12
173 Bug behavior isolated SIT1 5
Il4 Call Graph Display OP1 , OP2, SYS3 5
16 Location and description of library OPl , OP2 , OP20, 1

routines and system calls SYSll
132 If common objects are not used SYS5, SYS8 1

in traditional way, e.g. nil or null
120 Documentation list and location OP1 1
144 List of routines that do most OP3 1

of the domain-type work
172 Good direction to follow given what

is already known, possible program segments SYS10 2
to exami ne

136 Sequence of locations where ID is used OP2 5
162 Predefined (constant) varia bles and SYS8 1

values
141 Call graph with extraneous OP2 2

information not relevant elided
137 Language definitions,e.g reserved

words, instruction defs , for C, SYS8, SYS18 1
Pascal, etc.

149 File name of current file SYS3 1
no Function call count OPl, SYS2 1
121 Organized functions into categories OP2 1

in which functions are related
163 All definitions and uses of a variable

prioritized .. so more important uses show SYS10 2
up first

159 How a variable is passed into a SYS1 1
procedure, e.g. by va lue, address, etc.

272

C .2.4 C 4: Domain Ex p ert/Language Novice - Track Down Bug

The problem C4 worked on involved the loss of data between two Unix sockets when

a server sends data to a client program. Prior to the programming session he had worked

on the code to fix two additional defects. C 4 is an operating systems expert with ten to

eleven years of experience on Unix operating system development. He is also an expert

C programmer. The system was written in Pascal, a language he had only been working

with for seven months.

He had already reproduced the defect by loading the program into a debugger and

watching the contents of the data structure passed between the server and client. His

strategy for locating the defect in the code was to re-load the program into a debugger

and step through the program and the associated system library functions. At the point

where he thought the defect was, he read code line by line. When this strategy failed,

he stepped over code he did not feel was relevant and searched for areas that had been

recently changed by previous owners of the code. At the end of the session, he had stepped

through all code on the server side and did not locate the defect . He indicated that his

next strategy would be to load the client code into the debugger and step though it in a

manner similar to the way he looked at the server side.

273

Program

Situation

~
Top- Down

0

/ v
150 100 1150

Action Sequence· C4

v
200

Time S t ep

/
260

1\
~~~~ 

300 

Figure C.22: C4: Track Down Bug - Action Sequence 

.. ctplo t'"-

350 

Table C 30· C4· References and Action Switches Between Models 
Model Switches - Understand Progrom 

Number of Top-Down Situation Progrom 
References Model Model Model Model 

171 Top-Down Model N/A 24 14 
103 Situation Model 27 N/A 23 
89 Program Model 12 25 N/A 

274 

400 



Table C.31: C4: Action-Type Frequencies - Track Down Bug 
II Tag I Action- Type I Ttl Refs I % Ttl. II 

OP1 Gain high-level Program overview 5 3% 
OP2 Determine next prgm. seg to examine 12 7% 
OP3 Generate/revise hypothesis re: functionality 24 14% 
OP4 Determine relevance of prgrm segment 8 4% 
OP5 Determine if prgm seg needs detail understand 1 1% 
OP6 Determine understand strategy 9 5% 
OP7 Investigate oversight 1 1% 
OP9 Mental simulation 1 1% 
OPll High-level change plan/alternatives 1 1% 
OP12 Observe buggy behavior 3 2% 
OP13 Study /initiate program execution 20 11% 
OP15 Generate questions 5 3% 
OP16 Answer questions 1 1% 
OP17 Chunk & store knowledge 5 3% 
OP20 Generate task 36 21% 
OPKNOW Top-down knowledge 22 39% 
Total Top-Down Model Actions 171 47% 
SIT1 Gain situation knowledge 1 1% 
SIT2 Develop questions 7 7% 
SIT3 Determine answers to questions 1 1% 
SIT4 C hunk & store 24 23% 
SIT5 Determine relevance of sit. know. 4 4% 
SIT6 Determine next info to gain 7 7% 
SIT7 Generate hypothesis 22 21% 
SITS Determine understand strategy 5 5% 
SIT10 Failed hypothesis 1 1% 
SITll Mental simulation 2 2% 
SITCONF Confirmed hypothesis 1 1% 
SITKNOW Situation model knowledge 28 27% 
Total Situation Mod el Actions 103 28% 
SYS1 Read intro code comments/related docs 1 1% 
SYS2 Determine next prg segmt to examine 1 1% 
SYS3 Examine next module in sequence 9 11% 
SYS4 Examine next module in cntrl-flow 13 15% 
SYS5 Examine data structs & definitions 1 1% 
SYS7 Chunk & store knowledge 20 23% 
SYS8 Generate hypothesis 11 12% 
SYS10 Determine understand strategy 4 4% 
SYSll Generate new task 8 9% 
SYS12 Generate quest ion 1 1% 
SYS13 Determine if looking at right code 4 5% 
SYS19 Failed hypothesis 3 3% 
SYS21 Mental simulation 1 1% 
SYSCONF Confirmed hypothesis 1 1% 
SYSKNOW Program model knowledge 11 12% 
Total Program Down Model Actions 89 25% 

275 



Table C.32: C4: Hypothesis-Type Frequencies - Track Down Bug 
Total Percent 

Model Tag Hypothesis- Type Refers of Ttl 
Top-Down OPHl Domain Procedure functionality /Concepts 2 8% 
(Domain) OPH8 Program functions correctly 1 4'7o 
Model OPH9 Permissions/Environment set correctly/ 

Tool fun ctionality 9 38% 
OPH13 Numberjtypeflocation of file 1 ~'7o 
OPH18 Location1Statusfdescription[cause of error 11 46'7o 
Total Top-Down Model Hypotheses 24 42% 

Situation SITHl Variable function 5 23% 
Model SITH2 Functionjcode block execution orderjstate 1 5% 

SITH3 Functionjprocedure function , call function 7 32'7o 
SITH4 Effect of running program 1 5'7o 
SITH5 Cause of buggy behavior 3 13'7o 
SITH7 Existence of functionality falgorithmf 

variable 3 13% 
SITH8 Program function 2 9'7o 
Total Situation Model Hypo theses 22 39% 

Program SYSH2 Function/procedure function 1 9% 
Model SYSH4 Variable structure 3 27% 

SYSH6 Statement execution ordeiJ'state 1 9% 
SYSH7 Variable valuejdefaults 5 46% 
SYSH8 (Non-)Existence of construct (varjcode) 1 9% 
Total Program Model Hypotheses 11 19% 

276 



Table C.33: C4: Hypothesis Generated Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
Hypoth eses Model Model Model Model 

24 Top-Down Model N/A 7 2 
22 Sit uation Model 7 N/A 5 
11 Program Model 2 5 N/A ' 

Figure C.23: C4: Track Down Bug - Hypotheses Sequence 

277 



Table C.34: C4: Track Down Bug - Information Needs 
Subject 

Code Information Need Action Code9 Frequencies 
17 Domain concept descriptions OPl 7 
161 Connected domain-program-situation SYS7 6 

model knowledge 
14 Location and Uses of identifiers OP2, SYS2 , SYS3, 7 

SYS7, SYS10, SYSll 
Il Variable definitions including why SYS5, SYS8, SYS10 

necessary and how used, default SYS12, SYS17, 2 
values and expected values SYS23 

122 History of past modifications SYS3 2 
173 Bug behavior isolated SIT1 5 
168 List of issues/decisions considered SYS12 l 

during design 
124 List of executed statements and SYS8 7 

procedure calls, variable values 
127 Directory layout/organization: include OP1, OP2 

files, main fi le, support fi les, 3 
library fi les. Fi le structure 

166 Expected program state, e.g. expected SYSll 4 
variable values when procedure is called 

174 Good description of the bug and why SITl 2 
and how other fixes were done 

112 Environment, global, local scope SYS3 2 
178 Dynamic function return values 5 
137 Language definitions,e.g reserved 

words, instruction defs, for C, SYS8, SYS18 1 
Pascal , etc. 

155 Domain Simulation SIT2 l 
176 Available tools to aid in understanding 3 
165 Assembly Language Code Segment SYS2 1 

number (Machine Code) 
177 Data-flow trace 1 

C.3 Enhancement 

T here are two enhancement programming sessions, ENl and EN2. 

C.3.1 ENl: Domain/Language Expert - Add Functionality 

ENl is an expert in the operating systems application domain. He is also an expert 

with the particular operating system he was working on with approximately 3 1/2 years 

experience. He is very fami liar wi th the programming language used to implement the 

operating system. 

T he task he worked on during the programming session involved adding new func-

tionality to an existing operating systems command. The enhancement was embedded in 

278 



code that was not written by ENl. At the start of the session, he had already written 

the enhancement code and was in the process of removing bugs. Throughout the session 

he would encounter a bug, track it down, fix it and compile it, which usually uncovered 

another bug. However, within the two hours he was able to remove all the bugs and watch 

the enhancement work correctly using local tests. At the end of session he was confident 

enough in the soundness of the new code to begin regression testing. 

Table C.35: ENl: Action-Type Frequencies- Enhancement 
II Tag I Action-Type I Ttl. Refs I % Ttl. II 

OP1 Gain high-level Program overview 1 3% 
OP2 Determine next prgm. seg to examine 9 25% 
OP3 Generate/revise hypothesis re: functionality 1 3% 
OP7 Investigate oversight 2 6% 
OPB Failed hypothesis 4 11% 
OPKNOW Top-down knowledge 19 52% 
Total Top-Down Model Actions 36 12% 
SIT1 Gain situation knowledge 3 5% 
SIT2 Develop questions 2 3% 
SIT3 Determine answers to quest ions 1 2% 
SIT4 Chunk & store 7 11% 
SIT5 Determine relevance of sit. know. 1 2% 
SIT7 Generate hypothesis 4 7% 
SITS Determine understand strategy 1 2% 
SIT9 Determine if error exists (missing funct) 2 3% 
SITlO Failed hypothesis 1 2% 
SITU Mental simulation 2 3% 
SITCONF Confirmed hypothesis 1 2% 
SITKNOW Situation model knowledge 35 58% 
Total Situation Model Actions 60 20% 
SYS1 Read int ro code com ments/related docs 2 21% 
SYS2 Determine next prg segmt to examine 6 3% 
SYS3 Examine next module in sequence 14 7% 
SYS4 Examine next module in cntrl-flow 11 6% 
SYS5 Examine data structs & definitions 2 1% 
SYS7 Chunk & store knowledge 17 8% 
SYSB Generate hypothesis 30 15% 
SYS10 Determine understand strategy 9 5% 
SYSll Generate new task 14 7% 
SYS12 Generate question 8 4% 
SYS13 Determine if looking at right code 2 1% 
SYS14 Change direction 2 1% 
SYS15 Generate/consider different code changes 3 2% 
SYS16 Answer question 1 0% 
SYS17 Add/ Alter code 15 8% 
SYS18 Determine location to set breakpt 11 6% 
SYS19 Failed hypothesis 7 3% 
SYS20 Determine error/omitted code to add 7 3% 
SYS21 Mental simulation 7 3% 
SYSCONF Confirmed hypothesis 1 0% 
SYSKNOW Program model knowledge 32 16% 
Total Program Down Mode l Actions 201 68% 

279 



Table C 36· ENl· References and Action Switches Between Models 

Program 

Situation 

T o p - Down 
0 

Number of 
References Model 

36 Top-Down Model 
60 Situation Model 

201 Program Model 

I (\ \ 
50 100 

Model Switches - Understand Program 
Top-Down Situation Program 
Mod el Model Model 
N/A 7 19 
11 N/A 18 
15 22 N/A 

Action Sequence· EN'1 

\ \ 
1 5 0 

Time Step 

~ 
200 

·actp 

250 

Figure C.24: ENl: Enhancement - Action Sequence 

280 

\ -1 

3 00 



Table C.37: ENl : Hypothesis-Type Frequencies - Enhancement 
Total Percent 

Model Tag Hypothesis- Type Refers of Tt l 
Top-Down OPH9 Permissions/Environment set correctly/ 

Tool functionality 1 50% 
(Domain) OPH16 Level & structure of codefscope 1 50% 
Model Tota l Top-Down Mode l Hypotheses 2 6% 
Situation SITH2 Function/code block execution order/state 1 25% 
Model SITH3 Functionjprocedure function , call funct ion 1 25% 

SITH4 Effect of running program 1 25 % 
SITH7 Existence of functionality ;algorithm/ 

variable 1 25% 
Total Situation Model Hypotheses 4 11% 

Program SYSH2 Function/procedure function 1 3% 
Model SYSH5 Locationjtypefexistence of function call 2 7% 

SYSH6 Statement execution order Jstate 3 10% 
SYSH7 Variable valuefdefaults 7 24% 
SYSH8 (Non-)Existence of constructJvarfcode2 1 3% 
SYSH16 Code correctness, causejlocation of error 15 50'7o 
SYSH18 Location to add code/alternatives 1 3'7o 
Total Program Model Hypotheses 30 83% 

Table C.38: ENl: Hypothesis Generated Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
Hypotheses Model Model Mode l Model 

2 Top-Down Model N/A 0 4 
4 Situation Model 0 N/A 4 
30 Program Model 5 3 N/A 

281 



Situation 

Top-Downo~----~5~~---,~o~----~,~5~----=2~0----~2~5~----~~._--=3~5+-----4~0~----~4~5------s~o 
Time Step 

Figure C.25: ENl: Enhancement - Hypotheses Sequence 

Table C 39· ENl· Enhancement- Information Needs 
Subject 

Code Information Need A ction Codes Frequencies 
17 Domain concept descriptions OP1 1 
161 Connected domain-program-situation SYS7 4 

model knowledge 
14 Location and Uses of identifiers OP2, SYS2, SYS3, 7 

SYS7, SYS10, SYSll 
19 List of browsed locations OP2, OP4, SYS2 6 

OP4 
13 Highlighted begin/ends SYS3, SYS7, SYSS, 1 

of control blocks SYS10, SYS24 
122 History of past modifications SYS3 1 
173 Bug behavior isolated SIT1 5 
124 List of executed statements and SYSS 2 

procedure calls, variable values 
117 Location of desired code segment SYS1, SYS2 2 
167 Location of wh·ere to put changes SYSll 5 
136 Sequence of loca tions where ID is used OP2 1 
170 State of system when crashed SYS18 2 
148 Code formatted in expected way SYS3 1 
125 Exact location to set breakpoint SYS18 3 
121 Organized functions into categories OP2 1 

in which functions are related 
165 Assembly Language Code Segment SYS2 2 

number (Machine Code) 
169 Possible errors and severities, case SYS17 1 

that always need safety checks 

282 



C.3.2 EN2: Language/Domain Expert Add Function 

EN2 worked on an enhancement task that involved adding a check for disk-full to 

a schematic capture CAD system. He was an expert in the domain, having worked on 

the system for several years. The subsystem that handles file creation was the general 

area where the new code would be added. He was not very familiar with this part of 

the system. Prior to the programming session he had used a debugger to step through 

the code so he could get an idea of the structure. The system was written in MainSail, 

which is a structured programming language similar to Pascal. EN2 had eight years of 

experience with MainSail. 

The main task EN2 worked on during the programming session was to determine 

the correct location to add the check for disk-full. The strategy he took was to load the 

code into the debugger and set breakpoints at strategic locations where he thought the 

enhancement might be added. He successively set and cleared breakpoints so he could look 

at details for relevant sections and skip details for those sections he judged unimportant 

to the task. By the end of the session, he had located where the enhancement should go 

and had written pseudo-code that would eventually be replaced by real code. 

283 



II\ IIIII 

nflllf I 
Figure C.26: EN2: Enhancement - Action Sequence 

284 



Table C 40· EN2· References and Action Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Progrom 
References Model Model Model Model 

156 Top-Down Model N/A 8 58 
53 Situation Model 17 N/A 33 

226 Program Model 49 42 N/A 

Figure C.27: EN2: Hypotheses Sequence 

285 



Table C.41: EN2: Action-Type Frequencies - Enhancement 
II Tag I Action-Type I Ttl Refs I % Ttl 

OP1 Gain high-level Program overview 1 1% 
OP2 Determine next prgm. seg to examine 6 4% 
OP3 Generate/revise hypothesis re: functionality 13 8% 
OP4 Determine relevance of prgrm segment 7 4% 
OP5 Determine if prgm seg needs detail understand 1 1% 
OP6 Determine understand strategy 5 3% 
OP8 Failed hypothesis 1 1% 
OP9 Mental simulation 1 1% 
OPll High-level change plan / alternatives 17 11% 
OP13 Study /initiate program execution 10 6% 
OP14 Compare program segments 3 2% 
OP15 Generate questions 7 4% 
OP16 Answer questions 4 3% 
OP17 Chunk & store knowledge 13 8% 
OP20 Generate task 35 22% 
OPCONF Confirmed hypothesis 1 1% 
OPKNOW Top-down knowledge 31 20% 
Total Top-Down Model Actions 156 36% 
SIT1 Gain situation knowledge 1 2% 
SIT2 Develop questions 1 2% 
SIT4 Chunk & store 31 58% 
SIT6 Determine next info to gain 1 2% 
SIT7 Generate hypothesis 1 2% 
SITU Mental simulation 11 21% 
SITKNOW Situation model knowledge 7 13% 
Total Situation Model Actions 53 12% 
SYS 1 Read intro code comments/related docs 13 6% 
SYS2 Determine next prg segmt to examine 10 4% 
SYS3 Examine next module in sequence 11 5% 
SYS4 Examine next module in cntrl-flow 17 8% 
SYS5 Examine data structs & definitions 1 0% 
SYS7 Chunk & store knowledge 40 18% 
SYS8 Generate hypothesis 11 5% 
SYS10 Determine understand strategy 3 1% 
SYSll Generate new task 24 11% 
SYS12 Generate question 7 3% 
SYS13 Determine if looking at right code 3 1% 
SYS15 Generate/consider different code changes 25 11% 
SYS16 Answer question 1 0% 
SYS17 Add/ Alter code 10 4% 
SYS18 Determine location to set breakpt 6 3% 
SYS19 Failed hypothesis 1 0% 
SYS20 Determine error/omitted code to add 17 8% 
SYS21 Mental simulation 13 6% 
SYS23 Search for var defines/use 1 0% 
SYSCONF Confirmed hypothesis 2 2% 
SYSKNOW Program model knowledge 10 4% 
Total Progmm Down Model Actions 226 52% 

286 



Table C.42: EN2: Hypothesis-Type Frequencies Enhancement 
Total Percent 

Model Tag Hypothesis- Type Refers of Ttl 
Top-Down OPH1 Domain Procedure functionality /Concepts 9 56% 
(Domain) OPH5 Existence of installed (running) program 2 12'7o 
Model OPH10 Location to add functionality 3 20% 

OPHll Comparison of functionality at high level 2 12'1o 
Total Top-Down Model Hypotheses 16 57% 

Situation SITH3 Function/procedure function , call function 1 1oo% 11 
Model Total Situation Model Hypotheses 1 4% II 
Program SYSH2 Function/procedure function 3 27% 
Model SYSH5 Locationftypefexistence of function call 1 9% 

SYSH7 Variable value/defaults 1 9'7o 
SYSH13 Code block/procedure comparison 1 9% 
SYSH16 Code correctness, cause/location of error 1 9% 
SYSH18 Location to add code/alternatives 4 37% 
Total Progmm Model Hypotheses 11 39% 

Table C.43: EN2: Hypothesis Generated Switches Between Models 
Model Switches - Understand Progmm 

Number of Top-Down Situation Progmm 
Hypoth eses Model Model Model Model 

16 Top-Down Model N/A 0 4 
1 Situation Model 1 N/A 0 

11 Program Model 3 1 N/A 

287 



Table C 44· EN2· Enhancement Information Needs -
II Code Information Need Action Codes 

Subject ] 
Frequencies 

17 Domain concept descriptions OP1 4 
161 Connected domain-program-situation SYS7 3 

model knowledge 
14 Location and Uses of identifiers OP2, SYS2, SYS3, 2 

SYS7, SYSlO, SYSll 
I9 List of browsed locations OP2, OP4, SYS2 5 

OP4 
I43 A general classification of routines 

and functions so that if one is OP2 6 
understood the rest in the group 
will be understood 

I2 List of routines that call a OPl, OP2, OP4 
specific routine SYS3, SYS7, SYS9 3 

SYS12 
11 Variable definitions including why SYS5, SYS8, SYS10 

necessary and how used, default SYS12, SYS17, 1 
values and expected values SYS23 

I22 History of past modifications SYS3 1 
114 Call Graph Display OP1, OP2, SYS3 1 
168 List of issues/decisions considered SYS12 4 

during design 
I24 List of executed statements and SYS8 1 

procedure calls, variable values 
142 Utility functions definitions and 

comments explaining why it was OP2 1 
rewritten 

117 Location of desired code segment SYS1, SYS2 3 
I32 If common objects are not used SYS5, SYS8 1 

in traditional way, e.g. nil or null 
I67 Location of where to put changes SYSll 4 
I79 Ripple Effect - Procedure affected by 

change, include port affects, dependencies in 1 
in Make file 

162 Predefined (constant) variables and SYS8 3 
values 

113 Conditions under which a branch is SYS3 1 
taken or not . Include variable values 

I30 Where variable is toggled, when SYS2, SYS12 2 
and why, where passed to and why 

I41 Call graph with extraneous OP2 1 
information not relevant elided 

125 Exact location to set breakpoint SYS18 1 
I46 What kind of architecture dependent 

code currently exists and is functional OP3 1 
what architecture hooks exist so code 
can be easily added . 

I77 Data-Row trace 1 

C.4 Adaptation . 

There are two adaptive maintenance programming sessions, ADl and AD2. 

288 



C.4.1 ADl: Language/Domain Expert Port Program 

The task ADl worked on was unlike any other we have observed. It involved porting 

whole programs from one machine platform to another and making sure they ran properly. 

The observed task was one part of a larger system porting project. 

The programs run under an X window environment and were designed for demonstrat-

ing graphics capabilities. Porting requires copying the programs to the target machine, 

recompiling the program, and running it to make sure is operates properly. ADl had 

expertise in several different areas including the source operating system, X-window pro-

gramming, and operating systems in general. His language expertise includes C, shell 

scripts, and make files. He had only 6 months of experience with the target operating 

system. At the beginning of the programming session, ADl had already copied, compiled, 

and run one of the programs. He had also determined that the program was not function-

ing properly. Therefore, the session started with a bug fix. He quickly fixed the problem 

and went on to successfully port several other X programs within two hours. 

P r-og r-a rTl' 

Situation 

Top- Down 
0 

1/ I 
so 100 

A ction Sequence· AD"t 

1 50 

I 
200 

Tirne Step 
250 

~ 
300 

Figure C.28: ADl: Port Programs - Action Sequence 

289 

.. actplot"-

350 400 



Table C.45: ADl: Action-Type Frequencies - Port Programs 
II Tag I Action- Type I Ttl Refs I % Ttl II 

OP1 Gain high-level Program overview 8 3% 
OP2 Determine next prgm. seg to examine 3 1% 
OP3 Generate/revise hypothesis re: functionality 21 9% 
OP4 Determine relevance of prgrm segment 3 1% 
OP6 Determine understand strategy 11 5% 
OP8 Failed hypothesis 4 2% 
OP9 Mental simulation 3 1% 
OPll High-level change plan/alternatives 9 4% 
OP12 Observe buggy behavior 9 4% 
OP13 Study /initiate program execution 34 14% 
OP14 Compare program segments 3 1% 
OP15 Generate questions 7 3% 
OP16 Answer questions 2 1% 
OP17 Chunk & store knowledge 10 4% 
OP18 Change directions 8 3% 
OP20 Generate task 30 13% 
OP22 Examine execution results 14 6% 
OPCONF Confirmed hypothesis 9 4% 
OPKNOW Top-down knowledge 51 21% 
Total Top-Down Model Actions 239 67% 
SIT1 Gain situation knowledge 5 10% 
SIT2 Develop questions 1 2% 
SIT3 Determine answers to questions 1 2% 
SIT4 Chunk & store 3 6% 
SIT7 Generate hypothesis 14 28% 
SIT9 Determine if error exists (missing funct) 1 2% 
SIT10 Failed hypothesis 4 8% 
SITCONF Confirmed hypothesis 3 6% 
SITKNOW Situation model knowledge 18 36% 
Total Situation Model Actions 50 14% 
SYSl Read intra code comments/related docs 2 3% 
SYS2 Determine next prg segmt to examine 4 6% 
SYS7 Chunk & store knowledge 2 3% 
SYS8 Generate hypothesis 3 4% 
SYSlO Determine understand strategy 2 3% 
SYSll Generate new task 2 3% 
SYS12 Generate question 6 8% 
SYS15 Generate/consider different code changes 4 6% 
SYS16 Answer question 6 8% 
SYS 17 Add/ Alter code 10 14% 
SYS20 Determine error/omitted code to add 2 3% 
SYS21 Mental simulation 4 6% 
SYS22 Compare code versions 2 3% 
SYSCONF Confirmed hypothesis 2 3% 
SYSKNOW Program model knowledge 19 27% 
Total Program Down Model Actions 70 19% 

Table C 46· ADl· References and Action Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
References Model Model Model Model 

239 Top-Down Model N/A 28 33 
50 Situation Model 28 N/A 5 
70 Program Model 34 4 N/A 

290 



Table C.47: ADl: Hypothesis-Type Frequencies - Port Programs 
Total Percent 

Model Tag Hypothesis- Type Refers of Ttl 
Top-Down OPH4 1/0 behavior 1 4% 
(Domain) OPH5 Existence of installed (running) program 5 22 '7o 
Model OPH6 Existence of specific functionality 4 17'7o 

OPH7 Numberjtypejexistencejlocation of libraries 2 9'7o 
OPH8 Program functions correctly 4 17'7o 
OPH9 Permissions/Environment set correctly 1 

Tool functionality 2 9% 
OPH12 How to duplicate warnings/errors; relative 

difficulty to set-up/test errors 1 4% 
OPH13 Number f_type[location of file 2 9% 
OPH14 Available functionality 1 4% 
OPH15 Approachesfrelative difficulty in making 

change 1 5% 
Total Top-Down Model Hypotheses 23 58% 

Situation SITH4 Effect of running program 4 29% 
Model SITH5 Cause of buggy behavior 2 14% 

SITH7 Existence of functionality /algorithm/ 
variable 1 7% 

SITH8 Program function 7 50% 
Total Situation Model Hypotheses 14 35% 

II Program I SYSH15 I Relevance of error m Makefile 1 I 33% 11 

II Model SYSH16 Code correctness, cause/location of error 1 33% 
SYSH17 Changes made correctly 1 34% 

II Total Program Model Hypotheses 3 7% 

Table C.48: ADl: Hypothesis Generated Switches Between Models 
Model Switches - Understand Progrom II 

Number of Top-Down Situation Progrom 
Hypoth eses Model Model Model Model 

23 Top-Down Model N/A 10 1 
14 Situation Model 11 N/A 1 
3 Program Model 1 1 N/A 

291 



Situation 

Top-Down 0~~------~~--+-~-==--+--+---==~------~~----~--~----~--~~----._~7~0 
Time Step 

Figure C.29: ADl:Port Programs - Hypotheses Sequence 

Table C.49: ADl: Port Programs - Information Needs 
Subject 

Code Information Need Action Codes Frequencies 
17 Domain concept descriptions OP1 11 
14 Location and Uses of identifiers OP2, SYS2, SYS3, 1 

SYS7, SYS10, SYSll 
19 List of browsed locations OP2, OP4, SYS2 1 

OP4 
122 History of past modifications SYS3 1 
173 Bug behavior isolated SIT1 1 
124 List of executed statements and SYS8 2 

procedure calls, variable values 
127 Directory layout/organization: include OP1, OP2 

files, main file, support files, 4 
library files. File structure 

!17 Location of desired code segment SYS1, SYS2 3 
16 Location and description of library OP1, OP2, OP20 , 1 

routines and system calls SYSll 
174 Good description of the bug and why SIT1 2 

and how other fixes were done 
149 File name of current file SYS3 1 
155 Domain Simulation SIT2 1 
171 Concise error description SYS20 2 
140 List of capabilities that may OP1 2 

need to be provided 

292 



Opportunistic Dynamic Resolution Process 

We analyzed relationships between hypotheses (for subject ADl), how sequences of 

goals and hypotheses affect achieving the overall goal of the task, and tried to identify an 

overall strategy of hypothesis generation and resolution. 

The protocol contained 20 major goals. For each goal, the analysis excerpted asso-

ciated hypotheses, supporting comprehension actions, and any subsidiary goals, hypothe-

ses, and actions. The result of the analysis is represented graphically. Each figure shows 

analysis results for an individual top-level goal. Ellipses represent goals, rectangles are 

hypotheses, and actions are triangles. Arrows show the flow of goal/hypothesis resolu-

tion. The flow of goals, hypotheses, and actions over time is determined by a left to right 

depth-first traversal of the tree. Each figure is accompanied by descriptions of each goal 

and supporting subgoals, hypotheses, and actions. 

293 



Goall 

Abandoned 

Goal2 

1----..:Fail 

Hypothesis 
2.1 
How 

Many 

~ 
Abandoned 

Figure C.30: AD1: Goals 1 and 2 

GOAL 1 

What he was doing: Invoked the program to watch it run incorrectly. 

Goal 1: Determine what was wrong by watching program behavior. 

Hypothesis 1: Cause of the buggy behavior and generation of alternative hypotheses. 

This hypothesis was never returned to and is considered abandoned. 

GOAL 2 

What he was doing: Looked at an !make file. 

Goal 2: To determine what libraries are needed by the program. 

Hypothesis 2: He guessed at how many; then listed them by name from memory. He 

tried to confirm this by using a tool that listed the libraries, including libraries used by 

other libraries. 

Sub-Hypothesis 2.1: Result of tool output led to acknowledging his original hypothesis 

294 



( #2) was incorrect ; there were more than his original estimate. He hypothesized that 

there were at least 4 libraries involved, but immediately abandoned this hypothesis be-

cause of the amount of work it would take to confirm it. He judged the answer to be 

irrelevant to the overall goal of porting the program. 

Location 

Fail =~on 
Existance 

of 
Directo<y 

Abandoned 

It may 
not 

exist 

AD1-Goal4 

Confirme 

Confirmed 

Hypothesi 

Figure C.31: ADl: Goal 4 

295 



GOAL 4 

What he was doing: See if the program runs on a particular system. He had never seen it 

on that platform. 

Goal 4: Get it to run on his system if it was there. 

Hypothesis 4: Doesn't exist on that system. In order to determine if it was there or not 

he generated two sub-goals. 

Sub- Goal 4.1: Determine if the program is where he expected. 

Sub-Hypothesis 4.1: He guessed at the location. It failed after a search of the directory 

he expected it to be in. This led directly to the next sub-hypothesis. 

Sub-Hypothesis 4.2: Hypothesis about the existence of another directory. Hypothesis 

was abandoned in favor of alternative goal/hypothesis sequence # 4.2 instead of searching 

for the directory itself. The alternative directory was never mentioned again. 

Sub- Goal 4. 2: Determine if the program was ever installed as part of the operating system. 

Sub-Hypothesis 4.3: Program doesn't exist on his system (space limitations) . He in-

voked a system-wide find command from a particular place within the file system and then 

went off to other things while the find was executing. Eventually, the find returned with 

nothing found. Thus, his hypothesis was confirmed; the program did not exist on that 

part of his system. 

Sub-Hypothesis 4.4: He then decided that he did not use the find command from the 

correct place. He reasoned that if he went to the root directory on his system and issued 

a find from there, he would be able to tell if the program had ever been installed. Again, 

he issued the find command and went on with other things. The find command returned 

with nothing found, confirming his hypothesis that the program was never installed. 

Sub-Hypothesis 4.5: At this point he knew the program was never installed but sus-

pects the program is in the release of the operating system somewhere. He hypothesized 

it was somewhere in the OS release bits. This lead to another sub-hypothesis about the 

correct find command to issue. 

Sub-Hypothesis 4.5.1: He thinks there are options to tell the find command program to 

search case insensitive. He looks for the option by reading man pages on the computer. 

This hypothesis is confirmed when he finds the correct option. 

He then uses the find command with the appropriate options from within the 0 /S direc-

296 



tory. The tool finds the files. His top-level hypothesis (#4) that the program does not 

exist, fails . 

297 



AD1-Goal7 

HYPothesis 7: Confirmed 

It runs 
I I I I ' ............ 

t--(15 
0 

0 
,...., 
C) 
<t:: 00 

O'l 
C'l 

C'l 

M 
cj 

Hypot~esis Hypothesis Cl) .... 
Fail4 I I ali I ;::! 

Program How bO 
Function A~~~:,~~ion 

..... 
will run ok ~ 



GOAL 7 
What he was doing: Try to port another client. 
Goal 7: Determine if the program runs . 
Hypothesis 7: He hypothesized that the program runs because it had successfully compiled at 
some point prior to the programming session. He reasoned that he could re-build the program 
by executing a Make command and then invoke the newly built client to watch it run. Several 
subgoals, hypotheses, and actions followed that confirmed the program was running as expected. 
Goal 7.1: Determine the program 's functionality. 
Hypothesis 7.1: He hypothesized that this program was a ping-pong game. He brought up the associated man 

pages and determined that instead it was a physical simulation of an ideal gas in a heated box. 

Goal 7.2: He noticed the program was not behaving as explained in the man pages. He decided 
to determine the cause. 
Hypothesis 7.2: Hypothesized the cause as related to warnings about missing files . He used top-down knowledge 

about client architecture to confirm this hypothesis. 

Hypothesis 7.3: He looked at the Make file and hypothesized that the missing files would be over-
written during the build process. This hypothesis was never returned to and considered abandoned. 
Action: He installed the program and then invoked it so he could watch it run . During the install 
process, he returned to Goal 4 before coming back to this one. 
Goal 7.3: After installing the program he wanted to confirm that it could find the missing files by 
executing the program. 
Hypothesis 7.4: Hypothesized that the program will run this time, that the missing files will be found . This 

hypothesis was immediately confirmed (no warning messages) . 

Action: The program was run, new warning messages were examined. 
Goal 7.4: To understand the new warning messages he decided to determine how to use the appli-
cation. 
Hypothesis 7.5: Hypothesized about how the application works. He was convinced he had to use a. trick to get 

the program to function correctly. He tried to duplicate the warnings by re-running the application but this time 

did not get the warnings. This hypothesis failed when he realized he was missing some required input. 

Hypothesis 7 .6: Based on the results of the previous hypothesis, he hypothesized that the program worked dif-

ferently. He tested his theory and this time the program behaved as expected . 

299 



AD1-Goal9 

Determine 
if directory 

Clean 

Hypothesis 

Clean 
command 
will work 
correctly 

Hypothesis 
9.1 

Won't 

Work 

• 
Confirmed 

ADl- Goalll 

Determine 

if program 
using shared 

libraries 

l 
Hypothesis 11: 

It is using 
shared 
libraries 

Figure C.33: ADl: Goals 9 & 11 

300 

Fail 



Goal9 

What he was doing: Thying to clean up his directory in order to rebuild the system. 

Goal 9: Determine if the directory was clean. 

• Hypothesis 9: He ran the make clean command and hypothesized that it would clean up 

the directory as expected and get rid of some specific files. Once the clean command was 

complete he listed the files to check if his hypothesis was correct. This hypothesis was 

confirmed after a brief period of confusion in which an additional hypothesis was generated. 

Goal 11 

Hypothesis 9.1: He looked at the list of files remaining in the directory and was mo-

mentarily confused . A file existed that he did not expect to still be in the directory. 

He hypothesized that the clean did not get rid of all the files he expected it to. This 

new hypothesis failed when he remembered that he had created the file to store old 

files into and that the clean command would not erase this file . 

What he was doing: Trying to build an executable version of a client program. 

Goal 11: To determine if the program building process was linking in shared libraries. 

• Hypothesis 11: As he watched the build process he hypothesized that the build was going 

to fail because it was trying to build the program with shared libraries. He reasoned , using 

top-down knowledge, that the configuration file requires the build to use shared libraries. 

After watching output from the build process, he determined that the build could not be 

using the shared libraries because the process was taking too long. 

301 



ADl- Goal13 

Hypothesis 1 

It was don 
correctly ~ Confirme 

ADl- Goal14 

H othesis 1 

Done 
Correctly t---11~ 

Confirmed 

Figure C.34: ADl: Goals 13 & 14 

302 



Goal 13 

What he was doing: He had made a change to a make file and wanted to verify what he 

had done. 

Goal 13: To determine if the changes had been done correctly. 

• Hypothesis 13: He hypothesized that he had done the task correctly. To confirm this , he did 

a file compare between an old version and the version he had just changed. By examining 

the differences he determined he had done the task correctly. 

Goal 14 

What he was doing: He had finished making the necessary changes for porting the client, 

had checked in the new files, and wanted to make sure the permissions were set so that 

nothing was writable. 

Goal 14: To determine that the permissions where set correctly after checking in all the 

files. 

• Hypothesis 14: He assumed that the permissions were set correctly by virtue of the change 

control system he was using. He wanted to double check this so he listed out all the files 

and their permission settings. His hypothesis was confirmed when he saw that all the files 

had read only permissions only. 

303 



Program 
Function 

Function 
of button 

AD1-Goal20 

I----• Fail 

Abandoned 

Hypothesis 
20.1.1: 

More detailed f.-----<~ Abandoned 
function 
of button 

Figure C.35: ADl : Goal 20 

304 



Goal 20 
What he was doing: He was working on porting another client he had never seen before. 

The program was never built prior to this session and he was trying to figure out the 

functionality of the program. 
Goal 20: To Determine the function of the program. 

Hypothesis 20: He had successfully built the program and invoked it to watch it run. 

Examining it, he assumed it was some kind of a graphics editor. The program contained 

a window with buttons and he immediately generated a goal with subsidiary hypothe-

ses about the function of these buttons. Eventually, this hypothesis failed after reading 

documentation and finding out it was not a graphics editor. 

• Goal 20.1: He saw a button and wanted to determine what the function of the button was. 

The button was labeled "Record" and using situation knowledge from previous experience 

he generated a hypothesis about what the record button does. 

Hypothesis 20.1: When he saw the button label he assumed the function to be a "Save" 

function. This assumption led to another, more detailed hypothesis about how the save 

is done. This hypothesis was abandoned and never referred to again during the session. 

* Hypothesis 20.1.1: Since the name of the button was "Record" , he assumed that 

the function of the button was to record key strokes and save them in a file. This 

hypothesis was abandoned and never referred to again during the session. 

• Both hypotheses 20.1 and 20.1.1 were abandoned when he ran into a problem caused by the 

windows environment he was working in and had to kill the program. He then restarted 

the program and decided at that point to read the on-line man pages. It was after reading 

these pages that he determined that his original hypothesis ( #20) was incorrect. In fact the 

program did something entirely different than he originally thought. 

Overall Comprehension Process 

Figure 5. 7 shows the sequence of all 20 goals. Circles represent the goals and arrows indi-

cate sequence. A solid arrow between two goals means the goal was complete before the 

next goal was begun. A dashed arrow represents interleaving between goals. The figure 

shows an obvious understanding process. Goals are resolved sequentially unless interleav-

ing of a fairly simple goal can be accomplished efficiently. The subject had experience 

with the domain and the task. He applied an arsenal of techniques to resolving the goals 

he generated. If he perceived a hypothesis or goal to be too difficult to resolve, he usually 

305 



abandoned it in favor of a more efficient alternative. If the return on investment of resolv-

ing a hypothesis was low, the hypothesis or goal was abandoned. If the goal or hypothesis 

seemed relatively easy to resolve, he usually pursued it as long as it was efficient and as 

long as it seemed the results would be worth the effort. 

8 

Interleaved 
processes 

Process 
Complete 

AD 1 - Goal Sequence 

Figure C.36: ADl: Goals Completion 

306 



C.4.2 AD2: Language N ovice/Domain Expert Add Function 

AD2 worked on a porting task that included moving NFS Disk-less functionality from 

one Unix platform to another. The task was to create a prototype of the functionality 

on the new platform for evaluation purposes, i.e., to determine whether this adaptation 

was worth doing for the new platform. AD2 had seven years of Unix operating systems 

experience and seven years of C programming language experience. He had worked on the 

kernel code of the target platform for the previous 6 years. 

Prior to the programming session, AD2 had moved code from the source platform 

to the target platform. He spent approximately one third of the programming session 

time setting up his environment so he could test whether the newly ported code would 

work correctly. The strategy he applied was to set up the environment, run a test that 

would exercise the new functionality on the target system, and track down defects as they 

occurred. By the end of the programming session he had fixed several problems but he was 

not completely successful in the porting the program. System memory problems caused a 

deadlock situation on the target system. 

P,-og,-arn 

Situation 

/ 1/ 
Top-Down 

0 50 100 

Action Sequen ce· AD2 

150 
Time S top 

/ 

200 

~ 
actplot" -

I 
250 

Figure C.37: AD2: Port Program/ Add Function - Action Sequence 

307 

300 



Table C.50: AD2: Action-Type Frequencies - Port Program/ Add Function 
II Tag I Action- Type I Ttl Refs I % Ttl II 

OP1 Gain high-level Program overview 2 1% 
OP2 Determine next prgm. seg to examine 1 1% 
OP3 Generate/revise hypothesis re: functionality 41 18% 
OP4 Determine relevance of prgrm segment 3 1% 
OP6 Determine understand strategy 7 3% 
OP7 Investigate oversight 1 1% 
OP8 Failed hypothesis 3 1% 
OP9 Mental simulation 1 1% 
OPll High-level change plan/alternatives 3 1% 
OP12 Observe buggy behavior 6 3% 
OP13 Study /initiate program execution 22 10% 
OP14 Compare program segments 2 1% 
OP15 Generate questions 10 4% 
OP16 Answer questions 2 1% 
OP17 Chunk & store knowledge 11 5% 
OP20 Generate task 55 24% 
OP22 Examine execution results 1 0% 
OPCONF Confirmed hypothesis 2 1% 
OPKNOW Top-down knowledge 52 23% 
Total Top-Down Model Actions 225 67% 
SIT1 Gain situation knowledge 2 4% 
SIT2 Develop questions 3 6% 
SIT3 Determine answers to quest ions 2 4% 
SIT4 Chunk & store 12 25% 
SIT6 Determine next info to gain 1 2% 
SIT7 Generate hypothesis 7 14% 
SIT11 Mental simulation 2 4% 
SITCONF Confirmed hypothesis 1 2% 
SITKNOW Situation model knowledge 19 39% 
Total Situation Model Actions 49 15% 
SYS1 Read intro code comments/related docs 3 5% 
SYS2 Determine next prg segmt to examine 1 2% 
SYS3 Examine next module in sequence 6 9% 
SYS5 Examine data structs & definitions 2 3% 
SYS7 Chunk & store knowledge 13 21% 
SYS8 Generate hypothesis 2 3% 
SYS10 Determine understand strategy 2 3% 
SYSll Generate new task 9 15% 
SYS12 Generate question 1 2% 
SYS13 Determine if looking at right code 1 2% 
SYS15 Generate/consider different code changes 4 6% 
SYS17 Add/ Alter code 6 10% 
SYS20 Determine error/omitted code to add 1 2% 
SYS23 Search for var defines/use 1 2% 
SYSCONF Confirmed hypothesis 1 2% 
SYSKNOW Program model knowledge 8 13% 
Total Progrom Down Model Actions 61 18% 

308 



Table C 51· AD2· References and Action Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
References Model Model Model Model 

225 Top-Down Model NJA 14 15 
49 Situation Model 15 NJA 15 
61 Program Model 14 16 N/A 

309 



Table C. 52: AD2: Hypothesis-Type Frequencies - Port Program/ Add Function 
Total Percent 

Model Tag Hypothesis- Type Refers of Ttl 
Top-Down OPH1 Domain Procedure functionality /Concepts 12 29% 
(Domain) OPH3 Rules of discourse; Expectations 1 2'Yo 
Model OPHB Program functions correctly 5 12% 

OPH9 Permissions/Environment set correctly f 
Tool functionality 2 5% 

OPH12 How to duplicate warnings/errors; relative 
difficu lty to set-up/test errors 5 12% 

OPH13 Number/type/location of file 1 2% 
OPH14 Available functionality 1 2% 
OPH16 Level & structure of codefscope 1 2% 
OPH18 Location/Status/description/cause of error 14 34% 
Total Top-Down Model Hypotheses 42 82% 

Situation SITH2 Function/code block execution order/state 1 17% 
Model SITH5 Cause of buggy behavior 4 66% 

SITH8 Program function 1 17'7o 
Total Situation Model Hypotheses 6 12% 

Program SYSHl Variable function 1 33% 
Model SYSH7 Variable value/defaults 1 33'Yo 

SYSH16 Code correctness, cause/location of error 1 34% 
Tota l Program Model Hypotheses 3 6% 

Table C.53: AD2: Hypothesis Generated Switches Between Models 
Model Switches - Understand Program II 

Number of Top-Down Situation Program 
Hypotheses Mod el Model Model Mode l 

42 Top-Down Model N/A 2 2 
6 Situation Model 2 N/A 1 
3 Program Model 2 1 N/A 

310 



p,.og,.am 

Situation 

Top- Down 
0 5 30 

Figure C.38: AD2: Hypotheses Sequence 

311 



Table C.54: AD2: Port Program/ Add Function- Information Needs 
Subject 

Code Information Need Action Codes Frequencies 
15 Format of data structure plus description SYS5, SYS8, SYSll, 

of what field is used for in program and SYS12, S1T1 2 
application domain, expected field values 
and definitions. 

143 A general classification of routines 
and functions so that if one is OP2 1 
understood the rest in the group 
will be understood 

12 List of routines that call a OPl , OP2, OP4 
specific routine SYS3, SYS7, SYS9 1 

SYS12 
Il Variable definitions including why SYS5, SYS8, SYSlO 

necessary and how used, default SYS12, SYS17, 1 
values and expected values SYS23 

122 History of past modifications SYS3 5 
!24 List of executed statements and SYS8 2 

procedure calls , variable values 
127 Directory layout/organization: incl ude OP1, OP2 

files, main file , support files, 1 
library files. File structure 

117 Location of desired code segment SYS1, SYS2 1 
132 If common objects are not used SYS5, SYS8 2 

in traditional way, e.g. nil or null 
!53 IFDEF'd behavior, conditions under SIT2 3 

which the branch is taken or not 
179 Ripple Effect - Procedure affected by 

change, include port affects, dependencies in 6 
in Make file 

170 State of system when crashed SYS18 4 
171 Concise error descri ption SYS20 1 
176 Available tools to aid in understanding 1 
164 System configuration for rebooting OP6 3 
180 Program execution sequence, how to use (e.g. man 1 

page 

312 



C.5 Code Leverage 

C.5.1 Ll: Language Expert/Domain Novice - Leverage Program 

Ll: Leverage Small Program - Actions 

Ll 's task was to implement a program inC by leveraging an existing program written 

in Pascal. The program was a software reliability system that takes defect data and 

analyzes it according to particular reliability models. Ll had very little experience in 

reliability models, having taken one graduate level class in the subject. He had at least 

one and a half years of C programming language and several years of Pascal. 

Prior to the programming session he had read a paper on the reliability models 

implemented in the program and he had run the program and watched the output. At 

the time of the programming session, he was leery of the code because he knew it to be 

very buggy. His strategy was to start with the main program and read it line by line. One 

of the main problems he struggled with during the session was how data was stored and 

read in by the program. He also tried mapping variable names in the program to concepts 

he had read about in the reliability paper. By the end of programming session, he had 

decided that the all he could really leverage were the equation implementations. 

313 



P,-og,-orn 

Situation 

Top- Down 
0 

I 
so 100 

Action Sequence· L'1 

v 
150 

Time S tep 

'\ Jilt 

200 2 50 

Figure C.39: Ll: Leverage Program - Action Sequence 

Figure C.40: Ll: Leverage Program - Hypotheses Sequence 

314 

It"--

\ 
300 



Table C.55: 11: Action-Type Frequencies - Leverage Program 
II Tag I Action- Type I Ttl Refs I % Ttl. II 

OPl Gain high-level Program overview 1 2% 
OP2 Determine next prgm . seg to examine 1 2% 
OP3 Generate/revise hypothesis re: functionality 15 28% 
OP6 Determine understand st rategy 6 11% 
OP8 Failed hypothesis 2 4% 
OP9 Mental simulation 1 2% 
OP15 Generate questions 2 4% 
OP17 Chunk & store knowledge 1 2% 
OP20 Generate task 8 15% 
OPCONF Confirmed hypothesis 1 2% 
OPKNOW Top-down knowledge 15 28% 
Total Top-Down Model Actions 53 18% 
SIT1 Gain situation knowledge 7 7% 
SIT2 Develop questions 1 1% 
SIT4 Chunk & store 15 16% 
SITS Determine relevance of sit. know. 4 4% 
SIT6 Determine next info to gain 8 9% 
SIT7 Generate hypothesis 20 21% 
SITS Determine understand strategy 9 10% 
SIT10 Failed hypothesis 1 1% 
SIT11 Mental simulation 2 2% 
SJTCONF Confirmed hypothesis 1 1% 
SIT KNOW Situation model knowledge 26 28% 
Total Situation Model Actions 94 32% 
SYS1 Read intro code comments/related docs 1 1% 
SYS2 Determine next prg segmt to examine 13 9% 
SYS3 Examine next module in sequence 20 14% 
SYS4 Examine next module in cntrl-flow 1 1% 
SYS5 Examine data structs & definitions 13 9% 
SYS7 Chunk & store knowledge 28 19% 
SYS8 Generate hypothesis 15 10% 
SYS10 Determine understand strategy 11 7% 
SYSll Generate new task 16 11% 
SYS12 Generate question 1 1% 
SYS15 Generate/consider different code changes 1 1% 
SYS19 Failed hypothesis 3 2% 
SYS21 Mental simu lation 4 2% 
SYS23 Search for var defin es/use 2 1% 
SYS24 Search for block begin/end 4 2% 
SYSCONF Confirmed hypothesis 2 1% 
SYSKNOW Program model knowledge 13 9% 
Total Program Down Model Actions 148 50% 

Table C 56· Ll· References and Action Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
References Model Model Model Model 

53 Top-Down Model N/A 9 17 
94 Situation Model 13 N/A 39 
148 Program Model 13 43 N/A 

315 



Table C. 57: Ll: Hypothesis-Type Frequencies - Leverage Program 
Total Percent 

Model Tag Hypothesis- Type Refers of Ttl 
Top-Down OPH1 Domain Procedure functionality /Concepts 6 40% 
(Domain) OPH3 Rules of discourse/Expectations 1 7% 
Model OPH4 1/0 behavior 3 20% 

OPH8 Program functions correctly 4 26% 
OPHIO Location to add func t ionality 1 7% 
Total Top-Down Model Hypotheses 15 30% 

Situation SITH1 Variable function 5 28% 
Model SITH2 Function/code block execution order/state 4 22'1o 

SITH3 Function/procedure function , call function 5 28% 
SITH6 Comparison of t erms/acronyms 

/functionality 1 6% 
SITH7 Existence of functionality /algorithm/ 

variable 3 16% 
Total Situation Model Hypoth eses 18 38% 

Program SYSHl Variable function 2 13% 
Model SYSH2 Function/procedure function 1 6% 

SYSH4 Variable structure 3 19% 
SYSH6 Statement execution order ; state 2 13% 
SYSH7 Variable valuejdefaults 1 6% 
SYSH10 Syntax meaning 1 6% 
SYSHll Design decisions 1 6'7o 
SYSH13 Code block/procedure comparison 1 6% 
SYSH14 Code block function 2 13% 
SYSH16 Code correctness, causej location of error 1 6% 
SYSH17 Changes made correctly 1 6'7o 
Total Program Model Hypotheses 16 32% 

Table C.58: Ll: Hypothesis Generated Switches Between Models 
Model Switches - Understand Program 

Number of Top-Down Situation Program 
Hypoth eses Model Model Model Model 

15 Top-Down Model N/A 4 5 
18 Situation Model 6 N/A 7 
16 Program Model 4 8 N/A 

316 



Table C.59: 11: Leverage Program - Information Needs 

II Action Codes 
Subject 

Code Information Need Frequencies 
17 Domain concept descriptions OP1 9 
161 Connected domain-program-situation SYS7 12 

model knowledge 
14 Location and Uses of identifiers OP2, SYS2, SYS3, 4 

SYS7, SYS10, SYSll 
15 Format of data structure plus description SYS5, SYS8, SYSll, 

of what field is used for in program and SYS12, S1Tl 5 
application domain, expected field values 
and definitions. 

12 List of routines that call a OP1 , OP2, OP4 
specific routine SYS3, SYS7, SYS9 1 

SYS12 
ll Variable definitions including why SYS5, SYS8, SYS10 

necessary and how used, default SYS12, SYS17, 2 
values and expected values SYS23 

13 Highlighted begin/ends SYS3, SYS7, SYS8, 3 
of control blocks SYS10 , SYS24 

122 History of past modifications SYS3 1 
168 List of issues/decisions considered SYS12 2 -during design 
127 Directory layout/organization: include OP1, OP2 

files , main fi le, support files, 2 
library files. Fi le structure 

120 Documentation list and location OP1 4 
144 List of routines that do most OP3 1 

of the domain-type work 
174 Good description of the bug and why S1T1 2 

and how other fixes were done 
Il2 Environment, global, local scope SYS3 1 
118 1/0 parameters, definitions, examples of SYS3, SYS5, SYS8 5 

calls with explanat ion, what it is used for 
137 Language definitions,e.g reserved 

words, instruction defs , for C, SYS8, SYS18 2 
Pascal , etc. 

151 What happens to read in data SYS5 1 

317 


	ETDF_1996_Vans_AMarie_001
	ETDF_1996_Vans_AMarie_002
	ETDF_1996_Vans_AMarie_003
	ETDF_1996_Vans_AMarie_004
	ETDF_1996_Vans_AMarie_005
	ETDF_1996_Vans_AMarie_006
	ETDF_1996_Vans_AMarie_007
	ETDF_1996_Vans_AMarie_008
	ETDF_1996_Vans_AMarie_009
	ETDF_1996_Vans_AMarie_010
	ETDF_1996_Vans_AMarie_011
	ETDF_1996_Vans_AMarie_012
	ETDF_1996_Vans_AMarie_013
	ETDF_1996_Vans_AMarie_014
	ETDF_1996_Vans_AMarie_015
	ETDF_1996_Vans_AMarie_016
	ETDF_1996_Vans_AMarie_017
	ETDF_1996_Vans_AMarie_018
	ETDF_1996_Vans_AMarie_019
	ETDF_1996_Vans_AMarie_020
	ETDF_1996_Vans_AMarie_021
	ETDF_1996_Vans_AMarie_022
	ETDF_1996_Vans_AMarie_023
	ETDF_1996_Vans_AMarie_024
	ETDF_1996_Vans_AMarie_025
	ETDF_1996_Vans_AMarie_026
	ETDF_1996_Vans_AMarie_027
	ETDF_1996_Vans_AMarie_028
	ETDF_1996_Vans_AMarie_029
	ETDF_1996_Vans_AMarie_030
	ETDF_1996_Vans_AMarie_031
	ETDF_1996_Vans_AMarie_032
	ETDF_1996_Vans_AMarie_033
	ETDF_1996_Vans_AMarie_034
	ETDF_1996_Vans_AMarie_035
	ETDF_1996_Vans_AMarie_036
	ETDF_1996_Vans_AMarie_037
	ETDF_1996_Vans_AMarie_038
	ETDF_1996_Vans_AMarie_039
	ETDF_1996_Vans_AMarie_040
	ETDF_1996_Vans_AMarie_041
	ETDF_1996_Vans_AMarie_042
	ETDF_1996_Vans_AMarie_043
	ETDF_1996_Vans_AMarie_044
	ETDF_1996_Vans_AMarie_045
	ETDF_1996_Vans_AMarie_046
	ETDF_1996_Vans_AMarie_047
	ETDF_1996_Vans_AMarie_048
	ETDF_1996_Vans_AMarie_049
	ETDF_1996_Vans_AMarie_050
	ETDF_1996_Vans_AMarie_051
	ETDF_1996_Vans_AMarie_052
	ETDF_1996_Vans_AMarie_053
	ETDF_1996_Vans_AMarie_054
	ETDF_1996_Vans_AMarie_055
	ETDF_1996_Vans_AMarie_056
	ETDF_1996_Vans_AMarie_057
	ETDF_1996_Vans_AMarie_058
	ETDF_1996_Vans_AMarie_059
	ETDF_1996_Vans_AMarie_060
	ETDF_1996_Vans_AMarie_061
	ETDF_1996_Vans_AMarie_062
	ETDF_1996_Vans_AMarie_063
	ETDF_1996_Vans_AMarie_064
	ETDF_1996_Vans_AMarie_065
	ETDF_1996_Vans_AMarie_066
	ETDF_1996_Vans_AMarie_067
	ETDF_1996_Vans_AMarie_068
	ETDF_1996_Vans_AMarie_069
	ETDF_1996_Vans_AMarie_070
	ETDF_1996_Vans_AMarie_071
	ETDF_1996_Vans_AMarie_072
	ETDF_1996_Vans_AMarie_073
	ETDF_1996_Vans_AMarie_074
	ETDF_1996_Vans_AMarie_075
	ETDF_1996_Vans_AMarie_076
	ETDF_1996_Vans_AMarie_077
	ETDF_1996_Vans_AMarie_078
	ETDF_1996_Vans_AMarie_079
	ETDF_1996_Vans_AMarie_080
	ETDF_1996_Vans_AMarie_081
	ETDF_1996_Vans_AMarie_082
	ETDF_1996_Vans_AMarie_083
	ETDF_1996_Vans_AMarie_084
	ETDF_1996_Vans_AMarie_085
	ETDF_1996_Vans_AMarie_086
	ETDF_1996_Vans_AMarie_087
	ETDF_1996_Vans_AMarie_088
	ETDF_1996_Vans_AMarie_089
	ETDF_1996_Vans_AMarie_090
	ETDF_1996_Vans_AMarie_091
	ETDF_1996_Vans_AMarie_092
	ETDF_1996_Vans_AMarie_093
	ETDF_1996_Vans_AMarie_094
	ETDF_1996_Vans_AMarie_095
	ETDF_1996_Vans_AMarie_096
	ETDF_1996_Vans_AMarie_097
	ETDF_1996_Vans_AMarie_098
	ETDF_1996_Vans_AMarie_099
	ETDF_1996_Vans_AMarie_100
	ETDF_1996_Vans_AMarie_101
	ETDF_1996_Vans_AMarie_102
	ETDF_1996_Vans_AMarie_103
	ETDF_1996_Vans_AMarie_104
	ETDF_1996_Vans_AMarie_105
	ETDF_1996_Vans_AMarie_106
	ETDF_1996_Vans_AMarie_107
	ETDF_1996_Vans_AMarie_108
	ETDF_1996_Vans_AMarie_109
	ETDF_1996_Vans_AMarie_110
	ETDF_1996_Vans_AMarie_111
	ETDF_1996_Vans_AMarie_112
	ETDF_1996_Vans_AMarie_113
	ETDF_1996_Vans_AMarie_114
	ETDF_1996_Vans_AMarie_115
	ETDF_1996_Vans_AMarie_116
	ETDF_1996_Vans_AMarie_117
	ETDF_1996_Vans_AMarie_118
	ETDF_1996_Vans_AMarie_119
	ETDF_1996_Vans_AMarie_120
	ETDF_1996_Vans_AMarie_121
	ETDF_1996_Vans_AMarie_122
	ETDF_1996_Vans_AMarie_123
	ETDF_1996_Vans_AMarie_124
	ETDF_1996_Vans_AMarie_125
	ETDF_1996_Vans_AMarie_126
	ETDF_1996_Vans_AMarie_127
	ETDF_1996_Vans_AMarie_128
	ETDF_1996_Vans_AMarie_129
	ETDF_1996_Vans_AMarie_130
	ETDF_1996_Vans_AMarie_131
	ETDF_1996_Vans_AMarie_132
	ETDF_1996_Vans_AMarie_133
	ETDF_1996_Vans_AMarie_134
	ETDF_1996_Vans_AMarie_135
	ETDF_1996_Vans_AMarie_136
	ETDF_1996_Vans_AMarie_137
	ETDF_1996_Vans_AMarie_138
	ETDF_1996_Vans_AMarie_139
	ETDF_1996_Vans_AMarie_140
	ETDF_1996_Vans_AMarie_141
	ETDF_1996_Vans_AMarie_142
	ETDF_1996_Vans_AMarie_143
	ETDF_1996_Vans_AMarie_144
	ETDF_1996_Vans_AMarie_145
	ETDF_1996_Vans_AMarie_146
	ETDF_1996_Vans_AMarie_147
	ETDF_1996_Vans_AMarie_148
	ETDF_1996_Vans_AMarie_149
	ETDF_1996_Vans_AMarie_150
	ETDF_1996_Vans_AMarie_151
	ETDF_1996_Vans_AMarie_152
	ETDF_1996_Vans_AMarie_153
	ETDF_1996_Vans_AMarie_154
	ETDF_1996_Vans_AMarie_155
	ETDF_1996_Vans_AMarie_156
	ETDF_1996_Vans_AMarie_157
	ETDF_1996_Vans_AMarie_158
	ETDF_1996_Vans_AMarie_159
	ETDF_1996_Vans_AMarie_160
	ETDF_1996_Vans_AMarie_161
	ETDF_1996_Vans_AMarie_162
	ETDF_1996_Vans_AMarie_163
	ETDF_1996_Vans_AMarie_164
	ETDF_1996_Vans_AMarie_165
	ETDF_1996_Vans_AMarie_166
	ETDF_1996_Vans_AMarie_167
	ETDF_1996_Vans_AMarie_168
	ETDF_1996_Vans_AMarie_169
	ETDF_1996_Vans_AMarie_170
	ETDF_1996_Vans_AMarie_171
	ETDF_1996_Vans_AMarie_172
	ETDF_1996_Vans_AMarie_173
	ETDF_1996_Vans_AMarie_174
	ETDF_1996_Vans_AMarie_175
	ETDF_1996_Vans_AMarie_176
	ETDF_1996_Vans_AMarie_177
	ETDF_1996_Vans_AMarie_178
	ETDF_1996_Vans_AMarie_179
	ETDF_1996_Vans_AMarie_180
	ETDF_1996_Vans_AMarie_181
	ETDF_1996_Vans_AMarie_182
	ETDF_1996_Vans_AMarie_183
	ETDF_1996_Vans_AMarie_184
	ETDF_1996_Vans_AMarie_185
	ETDF_1996_Vans_AMarie_186
	ETDF_1996_Vans_AMarie_187
	ETDF_1996_Vans_AMarie_188
	ETDF_1996_Vans_AMarie_189
	ETDF_1996_Vans_AMarie_190
	ETDF_1996_Vans_AMarie_191
	ETDF_1996_Vans_AMarie_192
	ETDF_1996_Vans_AMarie_193
	ETDF_1996_Vans_AMarie_194
	ETDF_1996_Vans_AMarie_195
	ETDF_1996_Vans_AMarie_196
	ETDF_1996_Vans_AMarie_197
	ETDF_1996_Vans_AMarie_198
	ETDF_1996_Vans_AMarie_199
	ETDF_1996_Vans_AMarie_200
	ETDF_1996_Vans_AMarie_201
	ETDF_1996_Vans_AMarie_202
	ETDF_1996_Vans_AMarie_203
	ETDF_1996_Vans_AMarie_204
	ETDF_1996_Vans_AMarie_205
	ETDF_1996_Vans_AMarie_206
	ETDF_1996_Vans_AMarie_207
	ETDF_1996_Vans_AMarie_208
	ETDF_1996_Vans_AMarie_209
	ETDF_1996_Vans_AMarie_210
	ETDF_1996_Vans_AMarie_211
	ETDF_1996_Vans_AMarie_212
	ETDF_1996_Vans_AMarie_213
	ETDF_1996_Vans_AMarie_214
	ETDF_1996_Vans_AMarie_215
	ETDF_1996_Vans_AMarie_216
	ETDF_1996_Vans_AMarie_217
	ETDF_1996_Vans_AMarie_218
	ETDF_1996_Vans_AMarie_219
	ETDF_1996_Vans_AMarie_220
	ETDF_1996_Vans_AMarie_221
	ETDF_1996_Vans_AMarie_222
	ETDF_1996_Vans_AMarie_223
	ETDF_1996_Vans_AMarie_224
	ETDF_1996_Vans_AMarie_225
	ETDF_1996_Vans_AMarie_226
	ETDF_1996_Vans_AMarie_227
	ETDF_1996_Vans_AMarie_228
	ETDF_1996_Vans_AMarie_229
	ETDF_1996_Vans_AMarie_230
	ETDF_1996_Vans_AMarie_231
	ETDF_1996_Vans_AMarie_232
	ETDF_1996_Vans_AMarie_233
	ETDF_1996_Vans_AMarie_234
	ETDF_1996_Vans_AMarie_235
	ETDF_1996_Vans_AMarie_236
	ETDF_1996_Vans_AMarie_237
	ETDF_1996_Vans_AMarie_238
	ETDF_1996_Vans_AMarie_239
	ETDF_1996_Vans_AMarie_240
	ETDF_1996_Vans_AMarie_241
	ETDF_1996_Vans_AMarie_242
	ETDF_1996_Vans_AMarie_243
	ETDF_1996_Vans_AMarie_244
	ETDF_1996_Vans_AMarie_245
	ETDF_1996_Vans_AMarie_246
	ETDF_1996_Vans_AMarie_247
	ETDF_1996_Vans_AMarie_248
	ETDF_1996_Vans_AMarie_249
	ETDF_1996_Vans_AMarie_250
	ETDF_1996_Vans_AMarie_251
	ETDF_1996_Vans_AMarie_252
	ETDF_1996_Vans_AMarie_253
	ETDF_1996_Vans_AMarie_254
	ETDF_1996_Vans_AMarie_255
	ETDF_1996_Vans_AMarie_256
	ETDF_1996_Vans_AMarie_257
	ETDF_1996_Vans_AMarie_258
	ETDF_1996_Vans_AMarie_259
	ETDF_1996_Vans_AMarie_260
	ETDF_1996_Vans_AMarie_261
	ETDF_1996_Vans_AMarie_262
	ETDF_1996_Vans_AMarie_263
	ETDF_1996_Vans_AMarie_264
	ETDF_1996_Vans_AMarie_265
	ETDF_1996_Vans_AMarie_266
	ETDF_1996_Vans_AMarie_267
	ETDF_1996_Vans_AMarie_268
	ETDF_1996_Vans_AMarie_269
	ETDF_1996_Vans_AMarie_270
	ETDF_1996_Vans_AMarie_271
	ETDF_1996_Vans_AMarie_272
	ETDF_1996_Vans_AMarie_273
	ETDF_1996_Vans_AMarie_274
	ETDF_1996_Vans_AMarie_275
	ETDF_1996_Vans_AMarie_276
	ETDF_1996_Vans_AMarie_277
	ETDF_1996_Vans_AMarie_278
	ETDF_1996_Vans_AMarie_279
	ETDF_1996_Vans_AMarie_280
	ETDF_1996_Vans_AMarie_281
	ETDF_1996_Vans_AMarie_282
	ETDF_1996_Vans_AMarie_283
	ETDF_1996_Vans_AMarie_284
	ETDF_1996_Vans_AMarie_285
	ETDF_1996_Vans_AMarie_286
	ETDF_1996_Vans_AMarie_287
	ETDF_1996_Vans_AMarie_288
	ETDF_1996_Vans_AMarie_289
	ETDF_1996_Vans_AMarie_290
	ETDF_1996_Vans_AMarie_291
	ETDF_1996_Vans_AMarie_292
	ETDF_1996_Vans_AMarie_293
	ETDF_1996_Vans_AMarie_294
	ETDF_1996_Vans_AMarie_295
	ETDF_1996_Vans_AMarie_296
	ETDF_1996_Vans_AMarie_297
	ETDF_1996_Vans_AMarie_298
	ETDF_1996_Vans_AMarie_299
	ETDF_1996_Vans_AMarie_300
	ETDF_1996_Vans_AMarie_301
	ETDF_1996_Vans_AMarie_302
	ETDF_1996_Vans_AMarie_303
	ETDF_1996_Vans_AMarie_304
	ETDF_1996_Vans_AMarie_305
	ETDF_1996_Vans_AMarie_306
	ETDF_1996_Vans_AMarie_307
	ETDF_1996_Vans_AMarie_308
	ETDF_1996_Vans_AMarie_309
	ETDF_1996_Vans_AMarie_310
	ETDF_1996_Vans_AMarie_311
	ETDF_1996_Vans_AMarie_312
	ETDF_1996_Vans_AMarie_313
	ETDF_1996_Vans_AMarie_314
	ETDF_1996_Vans_AMarie_315
	ETDF_1996_Vans_AMarie_316
	ETDF_1996_Vans_AMarie_317
	ETDF_1996_Vans_AMarie_318
	ETDF_1996_Vans_AMarie_319
	ETDF_1996_Vans_AMarie_320
	ETDF_1996_Vans_AMarie_321
	ETDF_1996_Vans_AMarie_322
	ETDF_1996_Vans_AMarie_323
	ETDF_1996_Vans_AMarie_324
	ETDF_1996_Vans_AMarie_325
	ETDF_1996_Vans_AMarie_326
	ETDF_1996_Vans_AMarie_327
	ETDF_1996_Vans_AMarie_328
	ETDF_1996_Vans_AMarie_329
	ETDF_1996_Vans_AMarie_330
	ETDF_1996_Vans_AMarie_331

