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On the drawdowns and drawups in diffusion-type
models with running maxima and minima

Pavel V. Gapeev∗ Neofytos Rodosthenous†

To appear in Journal of Mathematical Analysis and Applications

We obtain closed-form expressions for the values of joint Laplace transforms of the
running maximum and minimum of a diffusion-type process stopped at the first time at
which the associated drawdown and drawup processes hit constant levels. It is assumed
that the coefficients of the diffusion-type process are regular functions of the running
values of the process itself, its maximum and minimum, as well as its maximum drawdown
and maximum drawup processes. The proof is based on the solution to the equivalent
boundary-value problems and application of the normal-reflection conditions for the value
functions at the edges of the state space of the resulting five-dimensional Markov process.
We show that the joint Laplace transforms represent linear combinations of solutions to
the systems of first-order partial differential equations arising from the application of the
normal-reflection conditions.

1. Introduction

The main aim of this paper is to derive closed-form expressions for the Laplace transform
(2.5) of the first time to a given drawdown occurring before a fixed drawup of the diffusion-type
process X and its running maximum and minimum S and Q , defined in (2.1)-(2.3), stopped
at that time. The running maximum drawdown process Y is defined as the maximum of the
difference between the running maximum and the current value of the initial process (this
difference is sometimes called reflected process), while the running maximum drawup process Z
is defined as the maximum of the difference between the current value and the running minimum
of the process (this difference is sometimes called rally process). Such extremum processes
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have been intensively studied in the recent literature and found subsequent applications in
queuing theory, risk and option pricing theory, change-point detection and many others (see, e.g.
Asmussen [1], Peskir and Shiryaev [36], and Poor and Hadjiliadis [37] for extensive overviews
and further references).

The Laplace transform of the first time to a given drawdown of a Brownian motion with
linear drift and the running maximum stopped at that time was computed by Taylor [42], and
the joint law of those variables was obtained by Lehoczky [27]. Some explicit expressions for
other related characteristics such as the expectation and the density of the maximum drawdown
of the Brownian motion with linear drift were derived by Douady, Shiryaev, and Yor [8] and
Magdon-Ismail et al. [29], respectively. More recently, Pospisil, Vecer, and Hadjiliadis [38]
computed the probability of a drawdown of a given size occurring before a drawup of a fixed
size in several one-dimensional diffusion models. Mijatović and Pistorius [30] obtained the
laws of the first-passage times of spectrally positive and negative Lévy processes over constant
levels as well as analytically explicit identities for a number of characteristics of drawdowns and
drawups in those models.

In the present paper, closed-form expressions are derived for the joint Laplace transforms of
the first time to a given drawdown or drawup and the maximum and minimum values at that
time of a diffusion-type process with coefficients depending on the running values of the process
itself, its maximum and minimum, as well as its maximum drawdown and maximum drawup.
Such diffusion-type processes can be considered as immediate generalisations of diffusion pro-
cesses particularly arising in the so-called local volatility models introduced by Dupire [10],
where the local drift and diffusion coefficients depend only on the running value of the initial
process. Other extensions with diffusion coefficients depending on the running values of the
initial processes and their running minima were constructed by Forde [12] for given joint laws of
the terminal level and supremum at an independent exponential time (see also Forde, Pogudin,
and Zhang [14] and Zhang [43] for other important probability characteristics of processes of
such type). Cont and Fournié [6] and Fournié [15] obtained the valuation functional equations
for general functional path-dependent volatility models and considered the sensitivity analysis
of path-dependent financial derivative securities.

The dependence of the local drift and diffusion coefficients on the past dynamics of the
observable process through certain sufficient statistics is often used in financial practice as well
as well studied in the related literature. For instance, an increase of the maximum drawdown or
drawup of a risky asset price normally causes a structural change in the local drift representing
its expected return and dividend policy. It also triggers changes in the diffusion coefficient
representing the volatility rate of an asset price with a higher impact under a maximum draw-
down increase rather than a maximum drawup increase. Such sufficient statistics transparently
exhibit the risk levels of the assets and therefore usually influence the decisions taken by the
market participants. The demand for option pricing in models with stochastic interest rates
and volatility initiated the development and subsequent calibration of these models, based
on diffusion-type processes with tractable path-dependent coefficients, which were realised by
Henry-Labordère [23] and Ren, Madan, and Qian [39] among others.

The problem of finding the Markovian projections of continuous semimartingales in order to
mimic their marginal distributions was studied by Gyöngy [21] and then generalised by Bentata
and Cont [2] for the discontinuous case. The resulting Markov processes were given as weak
solutions of stochastic differential equations with coefficients depending on the running value
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of the initial process. These arguments were further developed by Brunick and Shreve [5] and
Forde [13] by extending the projections conditioned on path-dependent functionals of the initial
process along with its running value. The purpose of the resulting mimicking processes was
to give the opportunity to apply Markovian techniques and tackle both analytical and com-
putational aspects of the initial processes with path-dependent distributional characteristics.
Such processes were efficiently used by Dupire [10] and Klebaner [26] for solving option pricing
problems in models in which the dynamics of the risky assets are described by general con-
tinuous semimartingales and by Bentata and Cont [3] for the discontinuous case. Guyon [20]
showed that diffusion-type processes with path-dependent coefficients are conveniently helpful
in order to replicate the spot volatility dynamics of the financial market, particularly through
the extremum processes such as the running maximum. In this respect, the coefficients of the
diffusion-type model considered in this paper can be interpreted as the Markovian projection of
a continuous semimartingale conditioned on the current state of the associated five-dimensional
Markov process with four path-dependent components. Other similar Markovian projections
were studied by Bremaud [4] for queues and by Cont and Minca [7] for marked point processes
with path-dependent intensities. Calibrational aspects of such models with path-dependent
distributional characteristics were recently studied by Hambly, Mariapragassam, and Reisinger
[22] among others. We provide closed-form solutions to the boundary-value problems associ-
ated with the values of joint Laplace transforms as stopping problems for the five-dimensional
continuous Markov process.

Optimal stopping problems for running maxima of some diffusion processes were studied
by Jacka [24], Dubins, Shepp, and Shiryaev [9], and Peskir [32] among others. Discounted
optimal stopping problems for certain payoff functions depending on the running maxima of
geometric Brownian motions were initiated by Shepp and Shiryaev [41] and then taken further
by Pedersen [31], Guo and Shepp [18], Guo and Zervos [19], Glover, Hulley, and Peskir [17],
and [16] among others. The main feature of the resulting optimal stopping problems and their
equivalent free-boundary problems was the application of the normal-reflection condition for
the value functions at the diagonal of the two-dimensional state space to derive first-order
ordinary differential equations for the optimal stopping boundaries depending on the current
value of the running maximum process. These properties follow directly from the definition of
the infinitesimal operator of the two-dimensional continuous Markov process having the initial
process and the running maximum as its state space components. More recently, Peskir [34]-[35]
studied optimal stopping problems for three-dimensional Markov processes having the initial
diffusion process as well as its maximum and minimum as state space components.

The paper is organized as follows. In Section 2, we first introduce the setting and notation
of the model with a five-dimensional continuous Markov process, whose state space components
are the initial process, the running values of its maximum, minimum, maximum drawdown and
maximum drawup. We define the value function of the joint Laplace transform of the first
time to a given drawdown occurring before the first time of a fixed drawup together with the
running maximum and minimum stopped at that time. In Section 3, we obtain a closed-form
solution to the associated boundary-value problem and show that the value function represents
a linear combination of the solutions to the systems of first-order partial differential equations
which arise from the application of the normal-reflection conditions for this function at the
edges of the five-dimensional state space. In Section 4, we verify that the resulting solution
to the boundary-value problem provides the joint Laplace transform. The main results of the
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paper are stated in Theorem 4.1.

2. Preliminaries

In this section, we give a precise probabilistic formulation of the model and the five-
dimensional stopping problem as well as its equivalent boundary-value problem.

2.1. Formulation of the problem. Let us consider a probability space (Ω,F , P ) with
a standard Brownian motion B = (Bt)t≥0 . Assume that there exists a diffusion-type process
X = (Xt)t≥0 solving the stochastic differential equation

dXt = µ(Xt, St, Qt, Yt, Zt) dt+ σ(Xt, St, Qt, Yt, Zt) dBt (X0 = x) (2.1)

where x ∈ R is fixed, and µ(x, s, q, y, z) and σ(x, s, q, y, z) > 0 are continuously differentiable
functions on [−∞,∞]5 which are of at most linear growth in x and uniformly bounded in all
other variables. Here, the associated with X running maximum process S = (St)t≥0 and the
running minimum process Q = (Qt)t≥0 are defined by

St = s ∨ max
0≤u≤t

Xu and Qt = q ∧ min
0≤u≤t

Xu (2.2)

as well as the running maximum drawdown process Y = (Yt)t≥0 and the running maximum
drawup process Z = (Zt)t≥0 are given by

Yt = y ∨ max
0≤u≤t

(Su −Xu) and Zt = z ∨ max
0≤u≤t

(Xu −Qu) (2.3)

for arbitrary (s − y) ∨ q ≤ x ≤ s ∧ (q + z). It follows from the result of [28; Chapter IV,
Theorem 4.8] that the equation in (2.1) admits a pathwise unique (strong) solution. We also
define the associated first hitting (stopping) times

τa = inf{t ≥ 0 | y ∨ (St −Xt) ≥ a} and ζb = inf{t ≥ 0 | z ∨ (Xt −Qt) ≥ b} (2.4)

for some a, b > 0 fixed.
The main purpose of the present paper is to derive closed-form expressions for the joint

Laplace transform of the random variables τa ∧ ζb , Sτa∧ζb , and Qτa∧ζb . We therefore need
to compute the value function of the following stopping problem for the time-homogeneous
(strong) Markov process (X,S,Q, Y, Z) = (Xt, St, Qt, Yt, Zt)t≥0 given by

V ∗(x, s, q, y, z) = Ex,s,q,y,z
[
e−λ(τa∧ζb)−θSτa∧ζb−κQτa∧ζb I(τa < ζb)

]
(2.5)

for any (x, s, q, y, z) ∈ E5 and some λ, θ,κ > 0 fixed, where I(·) denotes the indicator func-
tion. Here, Ex,s,q,y,z denotes the expectation under the assumption that the five-dimensional
time-homogeneous (strong) Markov process (X,S,Q, Y, Z) defined in (2.1)-(2.3) starts at
(x, s, q, y, z) ∈ E5 , where we assume that the state space of (X,S,Q, Y, Z) is essentially
E5 = {(x, s, q, y, z) ∈ R5 | (s− y) ∨ q ≤ x ≤ s ∧ (q + z)} .

2.2. The boundary-value problem. By means of standard arguments based on the appli-
cation of Itô’s formula, it is shown that the infinitesimal operator L of the process (X,S,Q, Y, Z)
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acts on a function F (x, s, q, y, z) from the class C2,1,1,1,1 on the interior of E5 according to the
rule

(LF )(x, s, q, y, z) = µ(x, s, q, y, z) ∂xF (x, s, q, y, z) + σ2(x, s, q, y, z) ∂2xxF (x, s, q, y, z)/2 (2.6)

for all (s − y) ∨ q < x < s ∧ (q + z). In order to find analytic expressions for the unknown
value function V ∗(x, s, q, y, z) in (2.5), let us build on the results of general theory of Markov
processes (see, e.g. [11; Chapter V]). The value V ∗(x, s, q, y, z) from (2.5) solves the equivalent
boundary-value problem

(LV )(x, s, q, y, z) = λV (x, s, q, y, z) for s− a < (s− y) ∨ q < x < s ∧ (q + z) < q + b (2.7)

V (x, s, q, y, z)
∣∣
x=(s−a)+, y=a− = e−θs−κq for s− q ≥ a and 0 < z < b (2.8)

V (x, s, q, y, z)
∣∣
x=(q+b)−, z=b− = 0 for s− q ≥ b and 0 < y < a (2.9)

∂qV (x, s, q, y, z)
∣∣
x=q+

= 0 for 0 < s− q < y < a (2.10)

∂sV (x, s, q, y, z)
∣∣
x=s− = 0 for 0 < s− q < z < b (2.11)

∂yV (x, s, q, y, z)
∣∣
x=(s−y)+ = 0 for 0 < y < (s− q) ∧ a (2.12)

∂zV (x, s, q, y, z)
∣∣
x=(q+z)− = 0 for 0 < z < (s− q) ∧ b (2.13)

for a, b > 0 fixed.

3. Solutions to the boundary-value problem

In this section, we obtain closed-form solutions to the boundary-value problem in (2.7)-
(2.13) under various relations of the parameters of the model.

3.1. The general solution of the ordinary differential equation. We first observe
that the general solution of the equation in (2.7) has the form

V (x, s, q, y, z) = C1(s, q, y, z) Ψ1(x, s, q, y, z) + C2(s, q, y, z) Ψ2(x, s, q, y, z) (3.1)

where Ci(s, q, y, z), i = 1, 2, are some arbitrary continuously differentiable functions and
Ψi(x, s, q, y, z), i = 1, 2, are the two fundamental positive solutions (i.e. nontrivial linearly
independent particular solutions) of the second-order ordinary differential equation in (2.7).
Without loss of generality, we may assume that Ψ1(x, s, q, y, z) and Ψ2(x, s, q, y, z) are the
(strictly) increasing and decreasing (convex) functions, respectively. Note that these solu-
tions should satisfy the properties Ψ1(r, r, r, ε, ε) ↑ ∞ and Ψ2(r, r, r, ε, ε) ↓ 0 as r ↑ ∞ and
Ψ1(r, r, r, ε, ε) ↓ 0 and Ψ2(r, r, r, ε, ε) ↑ ∞ as r ↓ −∞ , for any sufficiently small ε > 0, on
the state space E5 of the process (X,S,Q, Y, Z). These functions can be represented as the
functionals

Ψ1(x, s, q, y, z) =

{
Ex,s,q,y,z[e

−λξ′I(ξ′ <∞)], if x ≤ x′

1/Ex′,s,q,y,z[e
−λξI(ξ <∞)], if x ≥ x′

(3.2)
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and

Ψ2(x, s, q, y, z) =

{
1/Ex′,s,q,y,z[e

−λξI(ξ <∞)], if x ≤ x′

Ex,s,q,y,z[e
−λξ′I(ξ′ <∞)], if x ≥ x′

(3.3)

of the first hitting times ξ = inf{t ≥ 0 |Xt = x} and ξ′ = inf{t ≥ 0 |Xt = x′} of the
process X solving the stochastic differential equation in (2.1) and started at x and x′ such
that (x, s, q, y, z), (x′, s, q, y, z) ∈ E5 , respectively (see, e.g. [40; Chapter V, Section 50] for
further details).

Then, by applying the conditions of (2.8)-(2.13) to the function in (3.1), we obtain the
equalities

C1(s, q, a, z) Ψ1(s− a, s, q, a, z) + C2(s, q, a, z) Ψ2(s− a, s, q, a, z) = e−θs−κq (3.4)

for s− q ≥ a and 0 < z < b ,

C1(s, q, y, b) Ψ1(q + b, s, q, a, z) + C2(s, q, y, b) Ψ2(q + b, s, q, a, z) = 0 (3.5)

for s− q ≥ b and 0 < y < a ,

2∑
i=1

(
∂qCi(s, q, y, z) Ψi(q, s, q, y, z) + Ci(s, q, y, z) ∂qΨi(x, s, q, y, z)

∣∣
x=q

)
= 0 (3.6)

for 0 < s− q < y < a ,

2∑
i=1

(
∂sCi(s, q, y, z) Ψi(s, s, q, y, z) + Ci(s, q, y, z) ∂sΨi(x, s, q, y, z)

∣∣
x=s

)
= 0 (3.7)

for 0 < s− q < z < b ,

2∑
i=1

(
∂yCi(s, q, y, z) Ψi(s− y, s, q, y, z) + Ci(s, q, y, z) ∂yΨi(x, s, q, y, z)

∣∣
x=s−y

)
= 0 (3.8)

for 0 < y < (s− q) ∧ a , and

2∑
i=1

(
∂zCi(s, q, y, z) Ψi(q + z, s, q, y, z) + Ci(s, q, y, z) ∂zΨi(x, s, q, y, z)

∣∣
x=q+z

)
= 0 (3.9)

for 0 < z < (s− q) ∧ b .

3.2. The solution to the boundary-value problem in the (X,S,Q)-setting. We
begin with the case in which µ(x, s, q, y, z) = µ(x, s, q) and σ(x, s, q, y, z) = σ(x, s, q) in (2.1)
and put y = s−x and z = x−q into (2.4). Then, the general solution V (x, s, q, y, z) = U(x, s, q)
of the equation in (2.7) has the form of (3.1) with Ci(s, q, y, z) = Di(s, q) and Ψi(x, s, q, y, z) =
Φi(x, s, q), i = 1, 2, in (3.1). We further denote the state space of the three-dimensional
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(strong) Markov process (X,S,Q) by E3 = {(x, s, q) ∈ R3 | q ≤ x ≤ s} and its border planes
by d31 = {(x, s, q) ∈ R3 |x = s} and d32 = {(x, s, q) ∈ R3 |x = q} . We also recall that the second
and third components of the process (X,S,Q) can increase and decrease only at the planes d31
and d32 , that is, when Xt = St and Xt = Qt for t ≥ 0, respectively.

(i) Let us first consider the domain a ∨ b ≤ s − q ≤ a + b . In this case, solving the
system of equations in (3.4) and (3.5), we conclude that the candidate value function admits
the representation

U(x, s, q;∞) = D1(s, q;∞) Φ1(x, s, q) +D2(s, q;∞) Φ2(x, s, q) (3.10)

in the region R3(∞) = {(x, s, q) ∈ E3 | q ≤ s− a ≤ x ≤ q + b ≤ s} , with

D1(s, q;∞) =
e−θs−κqΦ2(q + b, s, q)

Φ1(s− a, s, q)Φ2(q + b, s, q)− Φ1(q + b, s, q)Φ2(s− a, s, q)
(3.11)

and

D2(s, q;∞) =
e−θs−κqΦ1(q + b, s, q)

Φ1(s− a, s, q)Φ2(q + b, s, q)− Φ1(q + b, s, q)Φ2(s− a, s, q)
(3.12)

for all q + a ∨ b ≤ s ≤ q + a+ b (see Figures 1 and 2 below).

-
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Figure 1. A computer drawing of the state space of the process

(X,S,Q), for some q ∈ R fixed and a < b .

(ii) Let us now consider the domain a ≤ s−q < b . In this case, it follows from the equations
in (3.4) and (3.7) that the candidate value function admits the representation

U(x, s, q; a) = D1(s, q; a) Φ1(x, s, q) +D2(s, q; a) Φ2(x, s, q) (3.13)

in the region R3(a) = {(x, s, q) ∈ E3 | q ≤ s− a ≤ x ≤ s < q + b} , with

D2(s, q; a) =
(
e−θs−κq −D1(s, q; a) Φ1(s− a, s, q)

)
/Φ2(s− a, s, q) (3.14)
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for q+a ≤ s < q+b , where D1(s, q; a) solves the first-order linear ordinary differential equation

∂sD1(s, q; a)H1,2(s, q; a) +D1(s, q; a)H1,1(s, q; a) = H1,0(s, q; a) (3.15)

with

H1,2(s, q; a) = Φ1(s, s, q)− Φ1(s− a, s, q) Φ2(s, s, q)/Φ2(s− a, s, q) (3.16)

H1,1(s, q; a) = ∂s
(
Φ1(x, s, q)− Φ1(s− a, s, q) Φ2(x, s, q)/Φ2(s− a, s, q)

)∣∣
x=s

(3.17)

H1,0(s, q; a) = e−θs−κq
(
θ

Φ2(s, s, q)

Φ2(s− a, s, q)
− ∂s

(
Φ2(x, s, q)

Φ2(s− a, s, q)

)∣∣∣∣
x=s

)
(3.18)

for all q+a ≤ s < q+b . Observe that the process (X,S,Q) can exit the region R3(a) by passing
to the region R3(∞) in part (i) of this subsection only through the point x = s = q + b , by
hitting the plane d31 so that increasing its second component S . Thus, the candidate function
U(x, s, q) should be continuous at the point (q + b, q + b, q), that is expressed by the equality

D1(q + b, q; a) Φ1(q + b, q + b, q) +D2(q + b, q; a) Φ2(q + b, q + b, q) = 0 (3.19)

for all q ∈ R (see Figure 1 above). Hence, solving the differential equation in (3.15) together
with the system of equations in (3.14) with s = q + b and (3.19), we obtain

D1(s, q; a) = D1(q + b, q; a) exp

(∫ q+b

s

H1,1(u, q; a)

H1,2(u, q; a)
du

)
(3.20)

−
∫ q+b

s

H1,0(u, q; a)

H1,2(u, q; a)
exp

(∫ u

s

H1,1(v, q; a)

H1,2(v, q; a)
dv

)
du

for all q + a ≤ s < q + b , where D1(q + b, q; a) is given by

D1(q + b, q; a) (3.21)

=
e−θ(q+b)−κqΦ2(q + b, q + b, q)

Φ1(q + b− a, q + b, q)Φ2(q + b, q + b, q)− Φ1(q + b, q + b, q)Φ2(q + b− a, q + b, q)

for all q ∈ R .

(iii) Let us now consider the domain b ≤ s − q < a . In this case, it follows from the
equations in (3.5) and (3.6) that the candidate value function admits the representation

U(x, s, q; b) = D1(s, q; b) Φ1(x, s, q) +D2(s, q; b) Φ2(x, s, q) (3.22)

in the region R3(b) = {(x, s, q) ∈ E3 | s− a < q ≤ x ≤ q + b ≤ s} , with

D2(s, q; b) = −D1(s, q; b) Φ1(q + b, s, q)/Φ2(q + b, s, q) (3.23)

for q+b ≤ s < q+a , where D1(s, q; b) solves the first-order linear ordinary differential equation

∂qD1(s, q; b)H2,2(s, q; b) +D1(s, q; b)H2,1(s, q; b) = 0 (3.24)
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with

H2,2(s, q; b) = Φ1(q, s, q)− Φ1(q + b, s, q) Φ2(q, s, q)/Φ2(q + b, s, q) (3.25)

H2,1(s, q; b) = ∂q
(
Φ1(x, s, q)− Φ1(q + b, s, q) Φ2(x, s, q)/Φ2(q + b, s, q)

)∣∣
x=q

(3.26)

for all q + b ≤ s < q + a . Observe that the process (X,S,Q) can exit R3(b) by passing to the
region R3(∞) in part (i) of this subsection only through the point x = q = s − a , by hitting
the plane d32 so that decreasing its third component Q . Then, the candidate value function
should be continuous at the point (s− a, s, s− a), that is expressed by the equality

D1(s, s− a; b) Φ1(s− a, s, s− a) +D2(s, s− a; b) Φ2(s− a, s, s− a) = e−θs−κ(s−a) (3.27)

for all s ∈ R (see Figure 2 below). Hence, solving the differential equation in (3.24) together
with the system of equations in (3.23) with q = s− a and (3.27), we obtain

D1(s, q; b) = D1(s, s− a; b) exp

(
−
∫ q

s−a

H2,1(s, u; b)

H2,2(s, u; b)
du

)
(3.28)

for all q + b ≤ s < q + a , where D1(s, s− a; b) is given by

D1(s, s− a; b) (3.29)

=
e−θs−κ(s−a)Φ2(s− a+ b, s, s− a)

Φ1(s− a, s, s− a)Φ2(s− a+ b, s, s− a)− Φ1(s− a+ b, s, s− a)Φ2(s− a, s, s− a)

for s ∈ R .

-

6s

x
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

@
@
@

@@I

x = s#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
##

A
A
A
AAU

x = s− a

-x = q
� x = q + b

R3(∞)

R3(b)

R3(0)

Figure 2. A computer drawing of the state space of the process

(X,S,Q), for some q ∈ R fixed and b ≤ a .

(iv) Let us now consider the domain 0 ≤ s − q < a ∧ b . In this case, it follows that the
candidate value function admits the representation

U(x, s, q; 0) = D1(s, q; 0) Φ1(x, s, q) +D2(s, q; 0) Φ2(x, s, q) (3.30)
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in the region R3(0) = {(x, s, q) ∈ E3 | s − a < q ≤ x ≤ s < q + b} , where Di(s, q; 0),
i = 1, 2, solve the first-order linear partial differential equations in (3.6) and (3.7), for all
0 < s− q < a∧ b . Observe that, the process (X,S,Q) can exit R3(0) by passing to the region
R3(a ∧ b) in part (ii) or (iii) of this subsection only through the points x = s = q + a ∧ b
and x = q = s − a ∧ b , by hitting the plane d31 or d32 , so that increasing its second or third
components, S or Q , respectively. Then, the candidate value function should be continuous at
the points (q+ a∧ b, q+ a∧ b, q) and (s− a∧ b, s, s− a∧ b), that is expressed by the equalities

D1(q + a ∧ b, q; 0) Φ1(q + a ∧ b, q + a ∧ b, q) (3.31)

+D2(q + a ∧ b, q; 0) Φ2(q + a ∧ b, q + a ∧ b, q)
= D1(q + a ∧ b, q; a ∧ b) Φ1(q + a ∧ b, q + a ∧ b, q)
+D2(q + a ∧ b, q; a ∧ b) Φ2(q + a ∧ b, q + a ∧ b, q)

for all q ∈ R and

D1(s, s− a ∧ b; 0) Φ1(s− a ∧ b, s, s− a ∧ b) (3.32)

+D2(s, s− a ∧ b; 0) Φ2(s− a ∧ b, s, s− a ∧ b)
= D1(s, s− a ∧ b; a ∧ b) Φ1(s− a ∧ b, s, s− a ∧ b)
+D2(s, s− a ∧ b; a ∧ b) Φ2(s− a ∧ b, s, s− a ∧ b)

for all s ∈ R , where Di(q + a ∧ b, q; a ∧ b) and Di(s, s − a ∧ b; a ∧ b), i = 1, 2, are found in
(3.14)+(3.20) or (3.23)+(3.28). Moreover, we have the property D2(r, r; 0) → 0 as r ↓ −∞ ,
since otherwise U(r, r, r; 0) → ±∞ , that must be excluded by virtue of the obvious fact that
the value function in (2.5) is bounded (see Figures 1 and 2 above). We may therefore conclude
that the candidate value function admits the representation of (3.30) in the region R3(0) above,
where Di(s, q; 0), i = 1, 2, provide a unique solution of the two-dimensional system of first-
order linear partial differential equations in (2.10) and (2.11) with the boundary conditions
of (3.31)-(3.32) and D2(r, r; 0) → 0 as r ↓ −∞ . Hereafter, the existence and uniqueness of
solutions to such special kinds of systems of equations follow from the classical existence and
uniqueness results of solutions to appropriate boundary-value problems for first-order linear
partial differential equations.

3.3. The solution to the boundary-value problem in the (X,S,Q, Y )-setting.
We now continue with the case in which µ(x, s, q, y, z) = µ(x, s, q, y) and σ(x, s, q, y, z) =
σ(x, s, q, y) in (2.1) and put z = x− q into (2.4). Then, the general solution V (x, s, q, y, z) =
W1(x, s, q, y) of the equation in (2.7) has the form of (3.1) with Ci(s, q, y, z) = A1,i(s, q, y) and
Ψi(x, s, q, y, z) = Υ1,i(x, s, q, y), i = 1, 2, in (3.1). We further denote the state space of the four-
dimensional (strong) Markov process (X,S,Q, Y ) by E4

1 = {(x, s, q, y) ∈ R4 | (s− y)∨ q ≤ x ≤
s} and its border hyperplanes by d41,1 = {(x, s, q, y) ∈ R4 |x = s} , d41,2 = {(x, s, q, y) ∈ R4 |x =
q} , and d41,3 = {(x, s, q, y) ∈ R4 |x = s− y} . We also recall that the second, third, and fourth
components of the process (X,S,Q, Y ) can increase or decrease only at the planes d41,1 , d41,2 ,
and d41,3 , that is, when Xt = St , Xt = Qt , and Xt = St − Yt for t ≥ 0, respectively. Finally,
we introduce the stopping time νa = inf{t ≥ 0 |St − Yt = Qt} and observe that Yt = St − Qt

holds for all t ≥ νa .
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(i) Let us first consider the domain b ∨ y ≤ s− q ≤ y + b . In this case, it follows from the
equations in (3.5) and (3.8) that the candidate value function admits the representation

W1(x, s, q, y;∞) = A1,1(s, q, y;∞) Υ1,1(x, s, q, y) + A1,2(s, q, y;∞) Υ1,2(x, s, q, y) (3.33)

in the region R4
1(∞) = {(x, s, q, y) ∈ E4

1 | (s− a) ∨ q < s− y ≤ x ≤ q + b ≤ s} , with

A1,2(s, q, y;∞) = −A1,1(s, q, y;∞) Υ1,1(q + b, s, q, y)/Υ1,2(q + b, s, q, y) (3.34)

for q+ b ≤ s ≤ q+ y+ b < q+a+ b , where A1,1(s, q, y;∞) solves the first-order linear ordinary
differential equation

∂yA1,1(s, q, y;∞)G1,2(s, q, y;∞) + A1,1(s, q, y;∞)G1,1(s, q, y;∞) = 0 (3.35)

with

G1,2(s, q, y;∞) = Υ1,1(s− y, s, q, y)− Υ1,1(q + b, s, q, y)

Υ1,2(q + b, s, q, y)
Υ1,2(s− y, s, q, y) (3.36)

G1,1(s, q, y;∞) = ∂y

(
Υ1,1(x, s, q, y)− Υ1,1(q + b, s, q, y)

Υ1,2(q + b, s, q, y)
Υ1,2(x, s, q, y)

)∣∣∣∣
x=s−y

(3.37)

for all q + b ≤ s ≤ q + y + b < q + a + b . Observe that the process (X,S,Q, Y ) can reach
the edge of the region R4

1(∞) only through the point x = s − y = (s − a) ∨ q , by hitting the
hyperplane d41,3 , so that increasing its fourth component Y . Then, the component Y becomes
either equal to the value a or is set to S − Q and the region R4

1(∞) is identified with R3(b)
in part (iii) of Subsection 3.2. Thus, the candidate value function should be continuous at the
point ((s− a) ∨ q, s, q, (s− q) ∧ a), that is expressed by the equality

A1,1(s, q, (s− q) ∧ a;∞) Υ1,1((s− a) ∨ q, s, q, (s− q) ∧ a) (3.38)

+ A1,2(s, q, (s− q) ∧ a;∞) Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)

= U(q, s, q; b) I(q > s− a) + e−θs−κq I(q ≤ s− a)

for all q + b ≤ s ≤ q + y + b < q + a + b , where U(q, s, q; b) is determined in part (iii) of
Subsection 3.2 (see Figures 3 and 4 below). Hence, solving the differential equation in (3.35)
together with the system of equations in (3.34) and (3.38), we obtain

A1,1(s, q, y;∞) = A1,1(s, q, (s− q) ∧ a;∞) exp

(∫ (s−q)∧a

y

G1,1(s, q, u;∞)

G1,2(s, q, u;∞)
du

)
(3.39)

for all q + b ≤ s ≤ q + y + b < q + a+ b , where A1,1(s, q, (s− q) ∧ a;∞) is given by

A1,1(s, q, (s− q) ∧ a;∞) (3.40)

=
(U(q, s, q; b)I(q > s− a) + e−θs−κqI(q ≤ s− a))/Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)

(Υ1,1/Υ1,2)((s− a) ∨ q, s, q, (s− q) ∧ a)− (Υ1,1/Υ1,2)(q + b, s, q, (s− q) ∧ a)

for q ≤ s .
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(ii) Let us now consider the domain 0 < y < s − q < b . In this case, it follows that the
candidate value function admits the representation

W1(x, s, q, y; a) = A1,1(s, q, y; a) Υ1,1(x, s, q, y) + A1,2(s, q, y; a) Υ1,2(x, s, q, y) (3.41)

in the region R4
1(a) = {(x, s, q, y) ∈ E4

1 | (s−a)∨q < s−y ≤ x ≤ s < q+b} , where A1,i(s, q, y; a),
i = 1, 2, solve the system of first-order linear ordinary differential equations (3.7) and (3.8), for
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Figure 3. A computer drawing of the state space of the process

(X,S,Q, Y ), for some q, y ∈ R fixed and y < b .

all q + y < s < q + b . Observe that on one hand, the process (X,S,Q, Y ) can exit the region
R4

1(a) by passing to the region R4
1(∞) in part (i) of this subsection, only through the point

x = s = q+b , by hitting the hyperplane d41,1 so that increasing its second component S . On the
other hand, the process (X,S,Q, Y ) can reach the edge of the region R4

1(a) through the point
x = s− y = (s− a)∨ q , by hitting the hyperplane d41,3 so that increasing its fourth component
Y . Then, the component Y becomes either equal to the value a or is set to S − Q and the
region R4

1(a) is identified with R3(0) in part (iv) of Subsection 3.2. Thus, the candidate value
function should be continuous at the points (q+ b, q+ b, q, y) and ((s− a)∨ q, s, q, (s− q)∧ a),
that is expressed by the equalities

A1,1(q + b, q, y; a) Υ1,1(q + b, q + b, q, y) + A1,2(q + b, q, y; a) Υ1,2(q + b, q + b, q, y) = 0 (3.42)

for all q ∈ R and 0 < y < b , and

A1,1(s, q, (s− q) ∧ a; a) Υ1,1((s− a) ∨ q, s, q, (s− q) ∧ a) (3.43)

+ A1,2(s, q, (s− q) ∧ a; a) Υ1,2((s− a) ∨ q, s, q, (s− q) ∧ a)

= U(q, s, q; 0) I(q > s− a) + e−θs−κq I(q ≤ s− a)

for all q < s < q + b , where U(q, s, q; 0) is found in part (iv) of Subsection 3.2. Moreover,
we have the property A1,2(r, r, ε; a) → 0 as r ↓ −∞ , since otherwise W1(r, r, r, ε; a) → ±∞ ,
for any sufficiently small ε > 0, that must be excluded by virtue of the obvious fact that
the value function in (2.5) is bounded (see Figure 3 above). We may therefore conclude that
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the candidate value function admits the representation of (3.41) in the region R4
1(a), where

A1,i(s, q, y; a), i = 1, 2, provide a unique solution of the two-dimensional system of first-order
linear partial differential equations in (3.7) and (3.8) with the boundary conditions of (3.42)-
(3.43) and A1,2(r, r, ε; a)→ 0 as r ↓ −∞ , for any sufficiently small ε > 0.
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Figure 4. A computer drawing of the state space of the process

(X,S,Q, Y ), for some q, y ∈ R fixed and b ≤ y .

(iii) Let us finally consider the domain 0 ≤ s − q ≤ y . Observe that since the fourth
component Y is set to S − Q after the process (X,S,Q, Y ) hits both hyperplanes d41,2 and
d41,3 , we may conclude that the candidate value function takes the form

W1(x, s, q, y; b) = W1(x, s, q, s− q; b) = U(x, s, q; b) (3.44)

in the region R4
1(b) = {(x, s, q, y) ∈ E4

1 | s − a < s − y ≤ q ≤ x ≤ q + b ≤ s} (see Figure 4
above) and

W1(x, s, q, y; 0) = W1(x, s, q, s− q; 0) = U(x, s, q; 0) (3.45)

in the region R4
1(0) = {(x, s, q, y) ∈ E4

1 | s− a < s− y ≤ q ≤ x ≤ s < q + b} (see Figures 3 and
4 above), where the functions U(x, s, q; b) and U(x, s, q; 0) are determined in parts (iii) and
(iv) of Subsection 3.2, respectively.

3.4. The solution to the boundary-value problem in the (X,S,Q, Z)-setting.
We now continue with the case in which µ(x, s, q, y, z) = µ(x, s, q, z) and σ(x, s, q, y, z) =
σ(x, s, q, z) in (2.1) and put y = s− x into (2.4). Then, the general solution V (x, s, q, y, z) =
W2(x, s, q, z) of the equation in (2.7) has the form of (3.1) with Ci(s, q, y, z) = A2,i(s, q, z) and
Ψi(x, s, q, y, z) = Υ2,i(x, s, q, z), i = 1, 2, in (3.1). We further denote the state space of the four-
dimensional (strong) Markov process (X,S,Q, Z) by E4

2 = {(x, s, q, z) ∈ R4 | q ≤ x ≤ s∧(q+z)}
and its border hyperplanes by d42,1 = {(x, s, q, z) ∈ R4 |x = s} , d42,2 = {(x, s, q, z) ∈ R4 |x = q} ,
and d42,3 = {(x, s, q, z) ∈ R4 |x = q + z} . We also recall that the second, third, and fourth
components of the process (X,S,Q, Z) can increase or decrease only at the hyperplanes d42,1 ,
d42,2 , and d42,3 , that is, when Xt = St , Xt = Qt , and Xt = Qt + Zt for t ≥ 0, respectively.
Finally, we introduce the stopping time ηb = inf{t ≥ 0 |Qt + Zt = St} and observe that
Zt = St −Qt holds for all t ≥ ηb .
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(i) Let us first consider the domain a ∨ z ≤ s− q ≤ a+ z . In this case, it follows from the
equations in (3.4) and (3.9) that the candidate value function admits the representation

W2(x, s, q, z;∞) = A2,1(s, q, z;∞) Υ2,1(x, s, q, z) + A2,2(s, q, z;∞) Υ2,2(x, s, q, z) (3.46)

in the region R4
2(∞) = {(x, s, q, z) ∈ E4

2 | q ≤ s− a ≤ x ≤ q + z < s ∧ (q + b)} , with

A2,2(s, q, z;∞) =
(
e−θs−κq − A2,1(s, q, z;∞) Υ2,1(s− a, s, q, z)

)
/Υ2,2(s− a, s, q, z) (3.47)

for q+a ≤ s ≤ q+a+z < q+a+ b , where A2,1(s, q, z;∞) solves the first-order linear ordinary
differential equation

∂zA2,1(s, q, z;∞)G2,2(s, q, z;∞) + A2,1(s, q, z;∞)G2,1(s, q, z;∞) = G2,0(s, q, z;∞) (3.48)

with

G2,2(s, q, z;∞) = Υ2,1(q + z, s, q, z)− Υ2,1(s− a, s, q, z)

Υ2,2(s− a, s, q, z)
Υ2,2(q + z, s, q, z) (3.49)

G2,1(s, q, z;∞) = ∂z

(
Υ2,1(x, s, q, z)− Υ2,1(s− a, s, q, z)

Υ2,2(s− a, s, q, z)
Υ2,2(x, s, q, z)

)∣∣∣∣
x=q+z

(3.50)

G2,0(s, q, z;∞) = e−θs−κq
(
θ

Υ2,2(q + z, s, q, z)

Υ2,2(s− a, s, q, z)
− ∂z

(
Υ2,2(x, s, q, z)

Υ2,2(s− a, s, q, z)

)∣∣∣∣
x=q+z

)
(3.51)

for q + a ≤ s ≤ q + a + z < q + a + b . Observe that the process (X,S,Q, Z) can reach the
edge of the region R4

2(∞), only through the point x = q + z = (q + b) ∧ s , by hitting the
hyperplane d42,3 , so that increasing its fourth component Z . Then, the component Z becomes
either equal to the value b or is set to S − Q and the region R4

2(∞) is identified with R3(a)
in part (ii) of Subsection 3.2. Thus, the candidate value function should be continuous at the
point (s ∧ (q + b), s, q, (s− q) ∧ b), that is expressed by the equality

A2,1(s, q, (s− q) ∧ b;∞) Υ2,1(s ∧ (q + b), s, q, (s− q) ∧ b) (3.52)

+ A2,2(s, q, (s− q) ∧ b;∞) Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b) = U(s, s, q; a) I(s < q + b)

for all q + a ≤ s ≤ q + a + z < q + a + b , where U(s, s, q; a) is determined in part (ii) of
Subsection 3.2 (see Figures 5 and 6 below). Hence, solving the differential equation in (3.48)
together with the system of equations in (3.47) with z = (s− q) ∧ b and (3.52), we obtain

A2,1(s, q, z;∞) = A2,1(s, q, (s− q) ∧ b;∞) exp

(∫ (s−q)∧b

z

G2,1(s, q, u;∞)

G2,2(s, q, u;∞)
du

)
(3.53)

−
∫ (s−q)∧b

z

G2,0(s, q, u;∞)

G2,2(s, q, u;∞)
exp

(∫ u

z

G2,1(s, q, v;∞)

G2,2(s, q, v;∞)
dv

)
du

for all q + a ≤ s ≤ q + a+ z < q + a+ b , where A2,1(s, q, (s− q) ∧ b;∞) is given by

A2,1(s, q, (s− q) ∧ b;∞) (3.54)

=
e−θs−κq/Υ2,2(s− a, s, q, (s− q) ∧ b)− U(s, s, q; a)I(s < q + b)/Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b)

(Υ2,1/Υ2,2)(s− a, s, q, (s− q) ∧ b)− (Υ2,1/Υ2,2)(s ∧ (q + b), s, q, (s− q) ∧ b)
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for all q ≤ s .
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Figure 5. A computer drawing of the state space of the process

(X,S,Q,Z), for some q, z ∈ R fixed and z ≤ a .

(ii) Let us now consider the domain 0 < z < s − q < a . In this case, it follows that the
candidate value function admits the representation

W2(x, s, q, z; b) = A2,1(s, q, z; b) Υ2,1(x, s, q, z) + A2,2(s, q, z; b) Υ2,2(x, s, q, z) (3.55)

in the region R4
2(b) = {(x, s, q, z) ∈ E4

2 | s−a < q ≤ x ≤ q+z < s∧(q+b)} , where A2,i(s, q, z; b),
i = 1, 2, solve the system of first-order linear partial differential equations in (3.6) and (3.9), for
all q + z < s < q + a . Observe that on one hand, the process (X,S,Q, Z) can exit the region
R4

2(b) by passing to the region R4
2(∞) in part (i) of this subsection, only through the point

x = q = s−a , by hitting the hyperplane d42,2 so that decreasing its third component Q . On the
other hand, the process (X,S,Q, Z) can reach the edge of the region R4

2(b) through the point
x = q+ z = (q+ b)∧ s , by hitting the hyperplane d42,3 , so that increasing its fourth component
Z . Then, the component Z becomes either equal to the value b or is set to S − Q and the
region R4

2(b) is identified with R3(0) in part (iv) of Subsection 3.2. Thus, the candidate value
function should be continuous at the points (s− a, s, s− a, z) and (s∧ (q+ b), s, q, (s− q)∧ b),
that is expressed by the equalities

A2,1(s, s− a, z; b) Υ2,1(s− a, s, s− a, z) (3.56)

+ A2,2(s, s− a, z; b) Υ2,2(s− a, s, s− a, z) = e−θs−κ(s−a)

for all s ∈ R and 0 < z < a , and

A2,1(s, q, (s− q) ∧ b; b) Υ2,1(s ∧ (q + b), s, q, (s− q) ∧ b) (3.57)

+ A2,2(s, q, (s− q) ∧ b; b) Υ2,2(s ∧ (q + b), s, q, (s− q) ∧ b) = U(s, s, q; 0) I(s < q + b)

for all q < s < q+a , where U(s, s, q; 0) is determined in part (iv) of Subsection 3.2. Moreover,
we have the property A2,2(r, r, ε; b) → 0 as r ↓ −∞ , since otherwise W2(r, r, r, ε; b) → ±∞ ,
for any sufficiently small ε > 0, which must be excluded by virtue of the obvious fact that
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the value function in (2.5) is bounded (see Figure 5 above). We may therefore conclude that
the candidate value function admits the representation of (3.41) in the region R4

2(b), where
A2,i(s, q, z; b), i = 1, 2, provide a unique solution of the two-dimensional system of first-order
linear partial differential equations in (3.6) and (3.9) with the boundary conditions of (3.56)-
(3.57) and A2,2(r, r, ε; b)→ 0 as r ↓ −∞ , for any sufficiently small ε > 0.
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Figure 6. A computer drawing of the state space of the process

(X,S,Q,Z), for some q, z ∈ R fixed and a < z .

(iii) Let us finally consider the domain 0 ≤ s − q ≤ z . Observe that since the fourth
component Z is set to S − Q after the process (X,S,Q, Z) hits both hyperplanes d42,1 and
d42,3 , we may conclude that the candidate value function has the form

W2(x, s, q, z; a) = W2(x, s, q, s− q; a) = U(x, s, q; a) (3.58)

in the region R4
2(a) = {(x, s, q, z) ∈ E4

2 | q ≤ s − a ≤ x ≤ s ≤ q + z < q + b} (see Figure 6
above) and

W2(x, s, q, z; 0) = W2(x, s, q, s− q; 0) = U(x, s, q; 0) (3.59)

in the region R4
2(0) = {(x, s, q, z) ∈ E4

2 | s−a < q ≤ x ≤ s ≤ q+z < q+b} (see Figures 5 and 6
above), where the functions U(x, s, q; a) and U(x, s, q; 0) are determined in parts (ii) and (iv)
of Subsection 3.2, respectively.

3.5. The solution to the boundary-value problem in the (X,S,Q, Y, Z)-setting.
We finally consider the general form of the coefficients µ(x, s, q, y, z) and σ(x, s, q, y, z) in (2.1),
and thus, of the functions Ψi(x, s, q, y, z), i = 1, 2, in (3.1). We denote the border hyperplanes
of the state space E5 by d51 = {(x, s, q, y, z) ∈ R5 |x = s} , d52 = {(x, s, q, y, z) ∈ R5 |x = q} ,
d53 = {(x, s, q, y, z) ∈ R5 |x = s− y} , and d54 = {(x, s, q, y, z) ∈ R5 |x = q + z} . We also recall
that the second, third, fourth, and fifth components of the process (X,S,Q, Y, Z) can increase
or decrease only at the hyperplanes d51 , d52 , d53 , and d54 , that is, when Xt = St , Xt = Qt ,
Xt = St − Yt , and Xt = Qt + Zt for t ≥ 0, respectively.

(i) Let is now consider the domain 0 < y ∨ z < s− q ≤ y + z . In this case, it follows that
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the candidate value function admits the representation

V (x, s, q, y, z;∞) = C1(s, q, y, z;∞) Ψ1(x, s, q, y, z) + C2(s, q, y, z;∞) Ψ2(x, s, q, y, z) (3.60)

in the region R5(∞) = {(x, s, q, y, z) ∈ E5 | (s−a) < q ≤ s−y ≤ x ≤ q+z < s∧(q+b)} , where
Ci(s, q, y, z;∞), i = 1, 2, solve the first-order linear ordinary differential equations (3.8) and
(3.9) for all q < q+y∨z < s < q+y+z . Observe that, on one hand, the process (X,S,Q, Y, Z)
can reach the edge of the region R5(∞) through the point x = q + z = (q + b) ∧ s , by hitting
the hyperplane d54 so that increasing its fifth component Z . Then, the component Z becomes
either equal to the value b or is set to S−Q and the region R5(∞) is identified with R4

1(a) in
part (ii) of Subsection 3.3. On the other hand, the process (X,S,Q, Y, Z) can reach the edge
of the region R5(∞) through the point x = s − y = (s − a) ∨ q , by hitting the hyperplane
d53 so that increasing its fourth component Y . Then, the component Y becomes either equal
to the value a or is set to S − Q and the region R5(∞) is identified with R4

2(b) in part
(ii) of Subsection 3.4. Thus, the candidate value function should be continuous at the points
(s ∧ (q + b), s, q, y, (s − q) ∧ b) and ((s − a) ∨ q, s, q, (s − q) ∧ a, z), that is expressed by the
equalities

C1(s, q, y, (s− q) ∧ b;∞) Ψ1(s ∧ (q + b), s, q, y, (s− q) ∧ b) (3.61)

+ C2(s, q, y, (s− q) ∧ b;∞) Ψ2(s ∧ (q + b), s, q, y, (s− q) ∧ b) = W1(s, s, q, y; a) I(s < q + b)

for all q ≤ s and 0 < y < a , and

C1(s, q, (s− q) ∧ a, z;∞) Ψ1((s− a) ∨ q, s, q, (s− q) ∧ a, z) (3.62)

+ C2(s, q, (s− q) ∧ a, z;∞) Ψ2((s− a) ∨ q, s, q, (s− q) ∧ a, z)
= W2(q, s, q, z; b) I(q > s− a) + e−θs−κq I(q ≤ s− a)

for all q ≤ s and 0 < z < b , where W1(s, s, q, y; a) and W2(q, s, q, z; b) are determined in
parts (ii) of Subsections 3.3 and 3.4. Moreover, we have the property C2(r, r, ε, ε;∞) → 0
as r ↓ −∞ , since otherwise V (r, r, r, ε, ε;∞) → ±∞ , for any sufficiently small ε > 0, that
must be excluded by virtue of the obvious fact that the value function in (2.5) is bounded (see
Figures 7 and 8 below). We may therefore conclude that the candidate value function admits
the representation of (3.60) in the region R5(∞), where Ci(s, q, y, z;∞), i = 1, 2, provide a
unique solution of the two-dimensional system of first-order linear partial differential equations
in (3.8) and (3.9) with the boundary conditions of (3.61)-(3.62) and C2(r, r, ε, ε;∞) → 0 as
r ↓ −∞ , for any sufficiently small ε > 0.

(ii) Let us finally consider the domain 0 ≤ s− q ≤ y ∨ z . Observe that since the fourth or
fifth component, Y or Z , is set to S−Q after the process (X,S,Q, Y, Z) hits both hyperplanes
d52 and d53 , or d51 and d54 , respectively, we may conclude that the candidate value function takes
the form

V (x, s, q, y, z; a) = V (x, s, q, y, s− q; a) = W1(x, s, q, y; a) (3.63)

in the region R5(a) = {(x, s, q, y, z) ∈ E5 | (s − a) ∨ q < s − y ≤ x ≤ s ≤ q + z < q + b} (see
Figure 7 below),

V (x, s, q, y, z; b) = V (x, s, q, s− q, z; b) = W2(x, s, q, z; b) (3.64)

17



in the region R5(b) = {(x, s, q, y, z) ∈ E5 | s − a < s − y ≤ q ≤ x ≤ q + z < s ∧ (q + b)} (see
Figure 8 below), and

V (x, s, q, y, z; 0) = V (x, s, q, s− q, s− q; 0) = U(x, s, q; 0) (3.65)

in the region R5(0) = {(x, s, q, y, z) ∈ E5 | s − a < s − y ≤ q ≤ x ≤ s ≤ q + z < q + b} (see
Figure 7 and 8 below), where the functions W1(x, s, q, y; a) and W2(x, s, q, z; b) are determined
in parts (ii) of Subsections 3.3 and 3.4, and the function U(x, s, q; 0) is determined in part (iv)
of Subsection 3.2.
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Figure 7. A computer drawing of the state space of the process

(X,S,Q, Y, Z), for some q, y, z ∈ R fixed and y < z .
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4. Main results and proofs

In this section, taking into account the facts proved above, we formulate and prove the main
results of the paper.

Theorem 4.1 Suppose that the coefficients µ(x, s, q, y, z) and σ(x, s, q, y, z) of the diffusion-
type process X given by (2.1)-(2.3) are of their general form. Then the joint Laplace transform
V ∗(x, s, q, y, z) from (2.5) of the associated with X random variables τa , Sτa , and Qτa such
that τa < ζb from (2.4), admits the representation

V ∗(x, s, q, y, z) =


V (x, s, q, y, z;∞), if (s− a) ∨ q < s− y ≤ x ≤ q + z < s ∧ (q + b)

V (x, s, q, y, z; a), if s− a < s− y ≤ q ≤ x ≤ q + z < s ∧ (q + b)

V (x, s, q, y, z; b), if (s− a) ∨ q < s− y ≤ x ≤ s ≤ q + z < q + b

V (x, s, q, y, z; 0), if s− a < s− y ≤ q ≤ x ≤ s ≤ q + z < q + b

(4.1)
for any a, b > 0 fixed. Here, the function V (x, s, q, y, z;∞) takes the form of (3.60) with
Ci(s, q, y, z;∞), i = 1, 2, being a unique solution of the two-dimensional system of first-order
partial differential equations in (3.8)+(3.9) and satisfying the conditions of (3.61)-(3.62) to-
gether with the property C2(r, r, ε, ε;∞) → 0 as r ↓ −∞, for any sufficiently small ε > 0,
and the functions V (x, s, q, y, z; a), V (x, s, q, y, z; b), and V (x, s, q, y, z; 0) are given by (3.63),
(3.64), and (3.65), respectively.

Proof In order to verify the assertion stated above, it remains to show that the function defined
in (4.1) coincides with the value function in (2.5). For this, let us denote by V (x, s, q, y, z)
the right-hand side of the expression in (4.1). Then, taking into account the fact that the
function V (x, s, q, y, z) is C2,1,1,1,1 on E5 , by applying the change-of-variable formula from [33;
Theorem 3.1] to e−λt V (Xt, St, Qt, Yt, Zt), we obtain that the expression

e−λ(τa∧ζb∧t) V (Xτa∧ζb∧t, Sτa∧ζb∧t, Qτa∧ζb∧t, Yτa∧ζb∧t, Zτa∧ζb∧t) = V (x, s, q, y, z) +Mτa∧ζb∧t (4.2)

+

∫ τa∧ζb∧t

0

e−λu (LV − λV )(Xu, Su, Qu, Yu, Zu)

× I(Xu 6= Su, Xu 6= Qu, Xu 6= Su − Yu, Xu 6= Qu + Zu) du

+

∫ τa∧ζb∧t

0

e−λu ∂sV (Xu, Su, Qu, Yu, Zu) I(Xu = Su) dSu

+

∫ τa∧ζb∧t

0

e−λu ∂qV (Xu, Su, Qu, Yu, Zu) I(Xu = Qu) dQu

+

∫ τa∧ζb∧t

0

e−λu ∂yV (Xu, Su, Qu, Yu, Zu) I(Xu = Su − Yu) dYu

+

∫ τa∧ζb∧t

0

e−λu ∂zV (Xu, Su, Qu, Yu, Zu) I(Xu = Qu + Zu) dZu
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holds for all t ≥ 0 and the stopping times τa and ζb given by (2.4). Here, the process
M = (Mt)t≥0 defined by

Mt =

∫ t

0

e−λu ∂xV (Xu, Su, Qu, Yu, Zu) (4.3)

× I(Xu 6= Su, Xu 6= Qu, Xu 6= Su − Yu, Xu 6= Qu + Zu)σ(Xu, Su, Qu, Yu, Zu) dBu

is a continuous local martingale under Px,s,q,y,z . Note that, since the time spent by the process
X at the hyperplanes d5k , k = 1, 2, 3, 4, is of Lebesgue measure zero, the indicators in the third
line of formula (4.2) and in formula (4.3) can be ignored. Moreover, since the processes S , Q ,
Y , and Z change their values only on the hyperplanes d51 , d52 , d53 , and d54 , respectively, the
indicators appearing in the fourth to seventh lines of (4.2) can be set equal to one.

By virtue of straightforward calculations and the arguments of the previous section, it is
verified that the function V (x, s, q, y, z) solves the ordinary differential equation in (2.7) and
satisfies the normal-reflection conditions in (2.10)-(2.13). Observe that the process (Mτa∧ζb∧t)t≥0
is a uniformly integrable martingale, since the derivative and the coefficient in (4.3) are bounded
functions on the compact set {(x, s, q, y, z) ∈ R5 | a ∨ (s− y) ∨ q ≤ x ≤ s ∧ (q + z) ∧ b} . Then,
using the properties of the indicators mentioned above and taking the expectation with respect
to Px,s,q,y,z in (4.2), by means of the optional sampling theorem (see, e.g. [28; Chapter III,
Theorem 3.6] or [25; Chapter I, Theorem 3.22]), we get

Ex,s,q,y,z
[
e−λ(τa∧ζb∧t) V (Xτa∧ζb∧t, Sτa∧ζb∧t, Qτa∧ζb∧t, Yτa∧ζb∧t, Zτa∧ζb∧t)

]
(4.4)

= V (x, s, q, y, z) + Ex,s,q,y,z
[
Mτa∧ζb∧t

]
= V (x, s, q, y, z)

for all (x, s, q, y, z) ∈ E5 . Therefore, letting t go to infinity and using the instantaneous-
stopping conditions in (2.8)-(2.9) as well as the fact that e−λ(τa∧ζb) V (Xτa∧ζb , Sτa∧ζb , Qτa∧ζb ,
Yτa∧ζb , Zτa∧ζb) = 0 on {τa ∧ ζb = ∞} (Px,s,q,y,z -a.s.), we can apply the Lebesgue dominated
convergence theorem for (4.4) to obtain the equalities

Ex,s,q,y,z
[
e−λ(τa∧ζb)−θSτa∧ζb−κQτa∧ζb I(τa < ζb)

]
(4.5)

= Ex,s,q,y,z
[
e−λ(τa∧ζb) V (Xτa∧ζb , Sτa∧ζb , Qτa∧ζb , Yτa∧ζb , Zτa∧ζb)

]
= V (x, s, q, y, z)

for all (x, s, q, y, z) ∈ E5 , which directly implies the desired assertion. �
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representation of martingales. Annals of Probability 41 (109–133).

[7] Cont, R. and Minca, A. (2013). Recovering portfolio default intensities implied by
CDO quotes. Mathematical Finance 23(1) (94–121).

[8] Douady, R., Shiryaev, A. N. and Yor, M. (2000). On the probability charac-
teristics of downfalls in a standard Brownian motion. Theory of Probability and its
Applications 44 (29–38).

[9] Dubins, L., Shepp, L. A. and Shiryaev, A. N. (1993). Optimal stopping rules and
maximal inequalities for Bessel processes. Theory of Probability and its Applications
38(2) (226–261).

[10] Dupire, B. (1997). Pricing and hedging with smiles. In the Volume Mathematics of
derivative securities, M. A. H. Dempster and S. R. Pliska (eds.), Cambridge (103–111).

[11] Dynkin, E. B. (1965). Markov Processes. Volume I. Springer.

[12] Forde, M. (2011). A diffusion-type process with a given joint law for the terminal
level and supremum at an independent exponential time. Stochastic Processes and their
Applications 121 (2802–2817).

[13] Forde, M. (2014). On the Markovian projection in the Brunick-Shreve mimicking
result. Statistics and Probability Letters 85 (98–105).

[14] Forde, M., Pogudin, A. and Zhang, H. (2013). Hitting times, occupation times,
tri-variate laws and the forward Kolmogorov equation for a one-dimensional diffusion
with memory. Advances in Applied Probability 45 (860–875).
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