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THE DEPENDENCE OF THE RICHARDSON 

NUMBER ON SCALE LENGTH 

by 
Elmar R. Reiter and Peter F. Lester 

ABSTRACT 

It can be shown theoretically that the Richardson number 

depends on the thickness L of the layer over which it is computed. 

The relationship has the form Ri oc LP where 0 < P < 4/3. Experi­

mentally, FPS-16 radar wind measurements and detailed radiosonde 

observations show that p may also be a function of L and that with 

actual wind profiles even negative values of p may be encountered. 

From this study it appears that until accurate observations of 

the state of the atmospheric mesostructure are available, no unique 

correlation between Ri and clear air turbulence (CAT) should be 

expect·ed to exist. 
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1. Introduction 

In his derivation of a turbulence criterion, Hichardson (l D20) 

considered the balance between the turbulence generating forces 

caused by shearing stresses and the alleviating forces produced 

by a stable stratification of the atmosphere. If the ratio between 

these two forces, expressed by the non-dimensional Richardson 

number (Ri), is smaller than a certain critical value, laminar 

flow will break down into turbulence. The critical Richardson 

number, thus, considers a state of "just-no-turbulence" (see. 

for instance, Brunt, 1952; Sutton, 1953; and Hess, 1959). 

A rather wide range of such critical values of Richardson 

number (Ri) has been established by laboratory experiments, 

and by measurements in the free atmosphere. It is generally 

believed that for average atmospheric conditions the critical value 

should not lie far from I, even though several simplifying assump­

tions have been made in the derivation of this turbulence criterion 

(CaldeJ:', 1949; Dugstad. 1956). 

Richardson's criterion may be written as 

Ri = 

where ~ is the eddy diffusivity of heat, KM is the eddy viSCOSity. 

g the c,cceleration of gravity, T the mean temperature, ~L the 
8z 

(1) 

observed v~rtical temperature lapse rate, I'the dry adiabatic lapse 

rate and ~ the vertical (vector) wind shear. 
oZ ~ 

The ratio -- depends on stability. whereby K_ may exceed 
KM -~ 

KM in unstable air. and vice versa in very stable air (see Lumley 

and Panofsky, 1964). Laboratory measurements suggest values 



close to 1 for this ratio; however, values as larg(~ ~lS :3 hal/c been 

reported in unstable air. The most appropriate val UC' to be assumed 

for this ratio is still under dispute and, as pointed out by I,umley 

and Panofsky, conditions in the free atmosphere may not necessarily 

rely on values found satisfactory in the laboratory. Petterssen and 

Swinbank (1947) found ~H = O. 65 in the free atmosphere over 
M 

England. 

In addition to these uncertainties, the viscous dissipation of 

kinetic energy and the work done by fluctuating static pressure 

forces ,have been neglected in Richardson's original derivation 

(Calder, 1949). These effects may reduce the value of the criti­

cal Richardson number by a certain quantity which is difficult to 

evaluate and, therefore, is usually ignored. 

2. Richardson's Number and CAT 

Richardson's number has been applied frequently in correlating 

the occurrence of clear air turbulence (CAT) with atmospheric sta­

bility and vertical wind shear. A short summary of the rather diver­

gent findings is given in Table 1. 

A certain amount of discrepancy should be expected in such 

correlations because of the following short comings of the measure­

ments on which estimates of Ri are based. 

(i) Lack of resolution: The time lag in the temperature 

elements of present radiosonde systems and the two-minute over­

lapping averaging which is applied to radar wind measurements set 

a severe limitation to the detail with which stability and vertical wind 

shear may be determined from routine aerological observations. At 

stratospheric levels, and especially in the vicinity of strong jet streams, 

the details of vertical wind profiles measured by standard equipment 

become rather unreliable (Reiter, 1958. 1961. 1963). There is little 

hope, therefore. to find perfect correlations between CAT and small 

details in such sounding measurements. 
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TABLE I 

Empirical Correlations Between Ri and CAT 

Investigator 

Anderson (1957) 

Bannon (1951) 

Berenger and Heissat 
(1959) 

Briggs (l961) 

Briggs and Roach (19 6 3) 

Colson (1963) 

Endlich (1964) 

Endlich and McLean 
(1965) 

D,z 

300 m 

50-100 mb 

2000' 

Helationship between 
CAT and Hi 

50% probability of CAT 
with Ri < 1. 06, 8270 
with Ri < 6 

30% probability of CAT 
with Ri < 3. No relation 
between CAT and Ri in 
stratosphere 

70% probability of CAT 
with Ri < 1 

80% of CAT forecasts 
successful for Ri < 5 
or horizontal shear 
> O. 3 hr- l 

Significant increase in 
turbulence for a decrease 
in Ri. For Ri :::. 5, 99 
cases had no turbulence 
and 50 had slight to mode­
rate turbulence 

Fair correlation between 
CAT and Hi for flights 
below 29,000' 

Ric = 1 generally delineated 
regions that were larger 
than (but included) actual 
CAT regions 

50% increase in frequency 
of occurrence of all 
classes of turbulence 
with Ri < 0.7 



Investigcdor 

Endlich and Mancuso 
(1964) 

Jaffe (1963) 

Kao and Woods (1964) 

Klemin and Pinus 
(1953)':' 

Korilova (1958)':' 

Kronebach (1964) 

Lake (1956) 

Panofsky and McLean 
(1964) 

P'chelko (1960)':' 
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Table I Continued. 

b"z 

50, 25 mb 

between standard 
reporting levels 

Petterssen and Swinbank 
(1947) 

50 mb 

Pinus and Shmeter (l962) 

Relationship between 
CAT and Hi 

Ri = O. 6 correctly identi­
fied 28% of turbulent cases 
and 920/0 of non -turbulent 

R " 1 11 cases. IC :: over 
forecasts" CAT 

Ri criterion verified as 
CAT indicator with 

Ric = 1. 5 

Agreement between CAT 
and low Ri ( "-' 1. 0 ) 

80 -90% probability of 
CAT with Ri < O. 5. 
50% probability of CAT 
with O. 5 < Ri < 4.0 

79% probability of CAT 
with Ri < 10 

Ri useful for 12 -hour 
CAT forecast (Ric:: 1. 0) 

No clear relationship 
between CAT and Ri 

All CAT reports occurred 
in regions of low Ri. 
Uncertainty of wind shears 
leads to overestimate of 
Ri 

31 % probability of CAT 
with Ri < 10 

Found Ric = 10 54 for the 
free atmosphere 

85"70 probability of CAT 
with Ri < 4 
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Table I Continued. 

Investigator 

Pinus and Shmeter 
(1965) 

Rustenbeck (1963) 

Scoggins (1963) 

Scorer {1957) 

Stinson et al. (1964) 

Weinstein et al. (1966) 

Zavarina and Yudin (1960) 

.6.z 

2000' 

250 m 

250 m 

1000 m 

Relationship between 
CAT and Ri 

Concluded: Ri does not 
give a necessary and 
sufficient condition for 
the occurrence of turbu­
lence but the smaller the 
value, the greater the 
probability of turbulence 

In general, CAT frequency 
64%, Ri ~ 5, although in 
the region 4000' above to 
10,000' below the level of 
maximum winds 79% of 
CAT with Ri < 5. Poor 
correlation in the strato­
sphere 

No correlation 

CAT probability approaches 
100% with Ri ~ 0.01 

Layers with Ri < 1 were 
common and persisted for 
many hours 

Utilized Ri criterion 
(e. g., Ri < O. 5 turbulent. 
Ri > 1. a non-turbulent) to 
show that the strong shears 
can be maintained in a stable 
stratosphere by quasi-inertial 
oscillations 

Found good correlation with 
Ric = 1 

':' Studies summarized by Pinus and Shmeter (1 D62) 
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(ii) Lack of synchronization: If CAT occurrence has to be 

compared with Richardson numbers computed from soundings taken 

at several hundred kilometers distance~ poor correlation has to be 

expected (Zavarina~ 1958; Zavarina and Yudin~ 1960). The same 

holds for non-synchronous measurements at different heights, such 

as they may be obtained from aircraft cross-sectional flights 

(Reiter~ 1960). Substituting from the equations of motion in 

Eq. (1). one arrives at (Radok and Clarke, 1958) 

Ri = (2) 

(oz/on)o and (oz/on)p are the slopes of isentropic and isobaric sur­

faces, respectively. It appears from Eq. (2) that Richardson's num­

ber is very sensitive to changes in the vertical wind shear with time, 

expressed by oV/o8. Such changes are very difficult to measure with 

present techniques. 

(iii) Improper choice of scale length: For practical appli­

cations of Richardson' s number. the differentials in Eq. (1) will 

have to be replaced by differences. Since vertical shear and thermal 

stability may not be considered constant in the free atmosphere, Ri 

thus computed will be a function of .6. z. Lumley and Panofsky (1964) 

remark that "the more detailed the measurements, the better is the 

relation (between Ri and CAT). It is quite possible that, if wind 

measurements were more closely spaced, and accurate local Richard­

son numbers could be computed, the correlation would be perfect. " 

It :.s quite obvious that Richardson numbers computed between 

the 500 and 300 mb surface leave much to be desired if correlations 

with CAT in the "jet stream front" are sought. On the other hand, 

computation of Ri over very thin layers may become equally mean­

ingless because a large portion of the spectrum of eddy sizes may 

be filtEred out by too detailed a resolution in the "spot" measurements 

of a sounding. 
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3. The Scale Dependence of Richardson's Number 

Zavarina and Yudin (1960) were led to the conclusion that 

Richardson numbers computed over layers of finite extent are 

directly dependent on the layer thickness. We may write 

where r is the dry-adiabatic lapse rate and "( = - a T is the actual aZ 
lapse rate, T is the mean absolute temperature of the layer. 

Furthennore. 

r-,,(=r-,,( 
st 

_ 0 T' 
L 

( 3) 

(4) 

'Y st is the lapse rate in the standard atmosphere, L is the thickness 

of the layer over which Richardson's number is computed, and T' is 

the departure of the actual temperature from the standard tempera­

ture. 0 signifies differences between the top and bottom of the 

layer L. 

We may also write 

- 2 - 2 
(6 u) + ( 6 v) 

L2 
(5) 

( 0 u)2 and ( 0 v)2 assume the role of transverse structure functions 

(Tatarski. 1961) 

D 
trans 

( 6) 
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where subscripts 1 and 2 refer to values measured at the top and 

bottom of the layer L, respectively. 

Kulik (I957) and Mahlman (1965) find that for large scales of 

motions.. the structure function of the wind is proportional to the 

scale of averaging 

For such large scales one may also assume that 

c5 T' 
L 

« r - 'Y 
st 

(7) 

( 8) 

where, for a given standard lapse rate, the quantity r - 'Y st assumes 

a constant value. Therefore, 

L2 
Ri oc L = L (9) 

The proportionality (7) also underlies Taylor's (I952) earlier obser­

vations from which he concluded that for velocity differences meas­

ured time intervals t apart 

2 
( u - u

t
) rx. t (IO) 

From later investigations (Taylor, 1955) he found a relationship 

(11 ) 

to be more valid (see Pasquill, 1962). 
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For shallow layers L, Zavarina and Yudin (1960) propose the 

proporiionalities 

in agreement with turbulence theory: According to Obukhov and 

YagloIT_ (1958), and to Tatarski (1961), the transverse structure 

function for the wind field may be written as 

D (L) == C 2/3 L 2/3 . 
trans E 

Obukhov (1958) arrives at a structure function of the temperature 

field of turbulent flow, having the form 

-H (L) == a 2 
...:o,.N;""'1/"-3-

E 

(12) 

(13) 

(14) 

where N == K (grad T)2, K being the thermal conductivity with a 

magnitude of O. 19 cr!;/ sec for air, and a
2 

is assumed to be a con­

stant (see also Stephens and Reiter, 1966). Temperature in this 

derivation has been considered a conservative passive parameter. 

The RMS values of the temperature fluctuation, which carry 

the same dimensions as 0 T' in (12), may be written as 

== a 6r­
yE 

(15) 

hence the assumed proportionality oT'cx:L
1
/

3
. Subscripts 1 and 2, 

again, refer to values at the top and bottom of the layer L. 
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I"rom (12) it appears that for shallow layers 

Hi 0( 
T. 

2 1/:3 
J • L 

2/ :1 L . L 

2/ :3 
= L 

For practical purposes one should, therefore, expect that 

I ,· I P ,,1 ex ~ 

where 2/:3 < p < 1. The lower boundary of this range rests on the 

same assumptions as those on which turbulent conditions in the 

inertial sub range were derived. The upper boundary assumption, 

however, is based on empirical evidence of the behavior of the 

structure function. 

One may take yet another theoretical approach: According to 

Tatarski (1 D61), the one-dimensional spectral density 

E (k) = 
r(p+l) 

21T 
. ~ c 2 k-( p + 1 ) 

SIn 2 

corresponds to the structure [unction 

2 P D (L) = c L for 0 < P < 2 

(17) 

(I 8) 

(1 n) 

In this notation l' stands for me gamma [unction. Bolgiano (1959, 

1962) suggested that under stable conditions a buoyant subrange may 

be established in which 

E(k) ex k- 11/ 5 
(20) 

This would, according to (18) and (l D), yield a structure function 

(21 ) 

and a Hichardson number (assuming no effect of temperature fluctUa­

tions) 
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4/'-
R o I ;) 

1 rx, 

On the other hand, a buoyant sub range with 

as suggested by Shur (1962), Vinnichenko. Pinus and Shur (1965) 

and by Lumley (1965) would yield 

and hence 

Ri oc L 
0 

i. e., Hi is independent of layer thickness. 

The temperature spectrum in Bolgiano's assumptions on the 

k - 7/ 5 ~ L-4/ 5 
buoyant subrange is oc • This would yield L oc-

and again 

Ri 0( L 
0 

Zavarina's and Yudin's conclusions, given by (17), and the 

expressions (22), (24), and (25) are mainly based on theoretical 

reasoning. From standard radiosonde equipment and from air­

craft measurements of present accuracy, it will be difficult, if 

not impossible, to check the validity of the proportionality (17). 

(22) 

(23) 

(24) 

(25) 

The very accurate wind measurements with FPS-16 radar (Scoggins, 

1962) and wind computations from rocket response (Reisig, 1956), 

howevE:'r, have the required resolution to make such an investiga­

tion possible. 

Using the latter, Essenwanger (196:3) (see also Essenwanger 

and BilJions, 1965 and Essenwanger. 1 H65) concluded that mean 

vertical vector wind shears, v (in sec -1), are related to layer 
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thicknesses L over which they are computed, by a power law of 

the form 

where a
o 

and a
l 

arc "constants" which may depend on altitude, 

location and time. The rocket data used by Essenwanger suggest 

a value a
l 
~ - O. 5 for mean shears, v

L
/ using layer thicknesses 

from 48 m to 960 m. For observed extreme shears a similar 

exponential dependence on layer thickness seems to hold, with 

(26) 

an exponent a
l 
~ - 2/3. Belmont and Shen (1966) find an exponent 

of -1/3 using the notation of Eq. (26) for average shears measured 

by jimspheres. The latter data have been smoothed slightly before 

subjecting them to the statistical investigation. 

Assuming with Zavarina and Yudin that for sufficiently large L 

the Richardson number becomes independent of 6 T' (see inequality 

(8) ), one may write 

Ri C( L (27) 

for mean conditions prevailing in Essenwanger's data sample. This 

is in agreement with Zavarina's and Yudin's deductions. An exponent 

of 1/3 may be assumed in this proportionality if, according to (12), 
6 T' -2/3 . 
L or L IS adopted. 

Considering that extreme shears (a
l 
~ - 2/3) are probably 

characteristic of layers with a near-critical Richardson number, 

one may write 

Ri ex: L 4/3 or L +2/;3 (28) 

oTt '""-' oT' -2/3 
depending on the condition --r::- = 0 or r::- 0( L . The latter 

of the two exponents in expression (28) again falls within the range 

specified by Zavarina and Yudin. 
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Armendariz and Rider (l966) found that the relationship 

(29) 

satisfied balloon data obtained over White Sands. New Mexico very 

well. (i~ V)L is the magnitude of the wind vector difference 

(in ft· SE:C -1 ) measured over the layer L. According to their 

results hI ~ 1/3. slightly larger than this value for mean wind 

differenees and slightly smaller for maximum wind differences. 

This is :.n agreement with Essenwanger's resu1ts~ since (~V)L = v· L. 

hence b] = (a
i 

+ 1). The same relationship between Richardson 

number and layer thickness as given in (28). therefore. should be 

applicable to the White Sands data. 

These results are summarized in Table II. 

From the theoretical considerations outlined above~ we may 

arrive at the following conclusions: 

(i) In general. the functional relationship between Richardson's 

number and the thickness of the layer over which this number has been 

estimated may be expressed by a power-law of the form 

(ii) From turbulence theory it appears that the exponent p 

should be positive~ and larger (ca. 1) for thick layers than for 

thin ones (ca. 2/3). 

(30) 

(iii) From the relationship (16) it appears that for p = 2/3 

the shear contribution to Richardson's number would be proportional 
-4/3 

to L ~ meaning that the shear should decrease with increasing 

thickness L. This calls for the presence of a convex ("blunt") wind 

profile. One might argue. therefore. that a convex wind profile is 

a necessary condition for isotropic turbulence to develop. such as it 

prevails in the inertial subrange. A concave wind profile. on the 

other hand. might indicate that perturbation kinetic energy in the 

layer under consideration is not yet in inertial equilibrium. 
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TABLE II 

Theoretical and Previous Empirical Helationships 
Between Ri and Layer Thickness L 

._--------

Author Seale 
Structure Function Stability 

Ri or Shear Influence 
-------

Zavarina Large DocL None L1 

Zavarina 
Small D ex L 2/3 61' oc L 1/:3 2/3 
(Inertial) L 

Bolgiano 
Buoyant Doc L 6/ 5 

None (stable) 4/5 
Subrange L 

Shur 
Buoyant D ex L2 None (stable) L

O 

Subrange 

Bolgiano 
Buoyant 6/5 

6TocL l / 5 
L

O 

Subrange 
Dex L 

Essenwanger Unspecified -1/2 Ll v = a L 
0 

Essenwanger Unspecified v = a L 
0 

-1/2 
T' L

1
/

3 
{, oc. L 1/ 3 

Essenwanger Unspecified v = a 
0 

L 
-2/3 L 4/3 

Armendariz Unspecified v = a L -2/:3 o T' oc L 1/:3 2/3 
0 

L 

Belmont 
Smoothed L -1/3 None 2/3 
Profile v = a L 

0 

Total rc:.nge of proportionality for Ri oc L p. 0 .::: p .::: L 4/ :i 
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4. Experimental He~mlts from FPS-16 Soundings 

A number of detailed wind soundings. taken at Cape Kennedy 

on 29 December 1964 and on 10 February and 27 April 1965 were 

investigated. Detailed analysis efforts were concentrated on the 

first of these days, because wind measurements conveniently fell 

between radiosonde observation times so that vertical temperature 

profiles are available for this period. Table III contains a list of 

sounding runs used in this study. 

29 December 1964 

10 February 1965 

27 Apr:ll 1965 

T ABLE III 

Release Times of Soundings 

FPS-16 Radar 
Spherical Balloon 

1306 GMT 

1600 GMT 

1731 GMT 

1900 GMT 

2031 GMT 

2200 GMT 

1305 GMT 

1530 GMT 

2305 GMT 

1600 GMT 

2314 GMT 

Hadiosonde 

1115 GMT 

1715 GMT 

2315 GMT 

1046 GMT 

1144 GMT 
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A typica.l \·'PS-l() wind sounding !"corn this p('l'iod is shown ill 

\"ig. 1. The vertical tC'mper'atu1'(, pl'o[ih's n)('lli.ioned ill '\';lbll' HI 

arc shown in \"ig. 2. Till' tr'opopaus(' during lids per'i()el is located 

at approximately 12000 m. 

In order to synchronize the ternperatur(' data w it.l! liw w inc! datn, 

the former w('rc linearly interpolated to give values corresponding 

to the rdease time of the FIPS-l () soundings. Since changes in the 

vertical temperature structure were relatively small, no correction 

was attempted for varying ascent rates or wind- and temperature­

sounding balloons. \,'or each level z of any wind sounding listed in 

Table III the temperature was obtained by programming the equation 

'1', l(z) - T,(z) 
= T ,(z) + 1 + 1 

1 ~t 
1. 

where ~mbscr.ipts i and i+l refer to values measured at height z by 

the ith and (i+1)st radiosonde in Table III. b. 1. is the time interval 

between soundings, and t, the time of the wind sounding, is counted 

from the release time of the i
th 

radiosonde. 

Since wind data were reported for every 25 m, temperat.ure data, 

however, for every 250 m along the vertical profiles. another linear 

interpolation had to be made of the ('orm 

T (;;; ) + 
1. 0 

T (z ) - T (z ) 
t n 1. 0 

b.z 
Z, 

1 
( :32) 

where i = 0, 1, 2 ... n, ~z = z = 250 nl, and z. = 2;; . i meters. 
11 1 

U Eing Hw actual wind data and the interpolated temperat.ure data 

obtainEd from Egs. (:.31) and (32,), Richardson's number may be corn­

puted for increasing layer' thieknesses L. T in Eq. (1) wa~ approxi­

mated by 

'r = 
T -t T - 1 2 

2 
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where subscripts 1 and 2 refer to values at the top and the bottom 

of layer L. Tests showed that this simplified c~prcssion for mean 

temperatures introduced negligibJy small errors when compared 

with the more accurate expression 

n 

1 ) T. '1' = 
n L-_ 1 

i=O 

where values T. are available at 25 m intervals. 
1 

A computer program delivered values of Ri, using Eq. (l) 

and the interpolation schemes mentioned above, for layers L 

which were centered at 

z. = (2250 + 250 . 1) meters 
1 

(34) 

( 35) 

for i = 0, 1, 2, ... 47. The highest layers under consideration, 

thus, were centered at an altitude of 14,000 m in the stratosphere. 

For each level z. Richardson numbers were eomputed for layers 
1 

L = 50 m, 100 m, ... 4000 m, centered at level z .. 
1 

Fig. 3 shows the distribution of Hichardson's number with height 

for the 1731 GMT sounding on 29 December 1964. Due to the variation 

of Ri values over nearly four orders of magnitude, Hi has been plotted 

on a logarithmic scale. Vertical Ri-profiles have been entered in this 

diagram for various layer thicknesses L. One finds on the average an 

increase of Ri with increasing L. This is in qualitative agreement with 

the calculations by Zavarina and Yudin. 

One finds, furthermore, from Fig. 3 that by increasing the layer 

thickness L, details in the vertical distribution of Ri not only become 

obscure, but also misrepresented. The secondary maximum i.n Hi, 

for instance, whieh appears at 5750 rn for L = 250 m, bc'comes the 

dominant feature with L = 4000 rn. 
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Regions with Ri < 1 become almost completely obliterated when 

increasi.ng L to 500 m and beyond. Only the low values of Ri between 

4750 and 5500 m are reflected even by larger layer thicknesses. This 

would mean that Ri = 1 should not be considered a critical Richardson 

number for the onset of turbulence in the free atmosphere if sizeable 

layer thicknesses have to be used for its computation. 

In order to study the effect of layer thickness on computed values 

of Richardson' s number, results of the computations outlined above 

were arranged into characteristic groups. Naturally, not all results 

of the calculations can be presented here. The following examples 

have been chosen for the typical features which they reveal. 

Fig. 4 contains a composite of curves Ri (L) obtained from the 

region of low Richardson number near 4750 to 5000 m for observation 

times ciS indicated. From Fig. lone may see that the layer of strong 

shear extends over a depth of approximately 1 km and is located near 

the top of a stable layer (Fig. 2). In agreement with this we find a 

discontinuity in the slopes of the Ri (L) curves near L = 1000 m (Fig. 4). 

Within the shearing layer (L < 1000 m), the exponent p in the proportionality 

Ri ex L P ranges from approximately 1/3 to 1, with an average value close to 
1 

p = 2/3. This agrees with the theoretical derivations by Zavarina and 

Yudin (1960) and with the empirical findings on vertical wind shears by 

EssenVlanger, Armendariz and Rider (see Table rn. The wind profile 

is slightly convex, hence the positive exponent p. 

A~; the computations arc extended beyond the shearing layer (L.J > 1000 m), 

an exponent p ~ 5 seems to prevail. Such values for p are not predicted by 

any of the theoretical approaches outlined in ehc.ptcr 3 0 It should be pointed 

out, though, that none of the previous derivations take into account any pre­

'dominant mesoscale structure that may appear in vertical wind profiles. 

--_ .. _---

1 Since the plots of Ri versus L are logarithmic, p is merely the slope 
of the average trend and is easily determined. 
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The abrupt change in slope that appears in Fig. 4 near L ;; 1000 m 

is the manifestation of such a predominant vertical scale characteri;:­

ing the wind profiles under investigation. 

Another layer with relatively low Richardson number j s located 

near 9250 m (Fig. 3). Curves of Ri (L) for this layer are shown in 

Fig. 5. The average value for p seems to lie between 2/:-3 and 1. 

The center of the layer lies close to a minimum of wind speed in the 

vertical wind profile (Fig. 1). This brings about the positive exponent 

p. Thermal stability is low in this region (Fig. 2). 

A gradual increase in layer thickness to 4000 m remains within 

the general characteristics of the wind or temperature profile. Hence, 

no abrupt changes in slope are found in Fig. 5. 

Fig. 6 contains curves Ri (L) for layers centered at z = 5500 m. 

According to Fig. 1 this level characterizes a peak {maximum} in 

the vertical wind profiles. (Curves were not plotted beyond 1900 GMT 

because the wind speed maximum deteriorated beyond this observation 

time.) These curves appear to be rather similar to those presented 

in Fig. 4, except for the larger slope values, P. for layer thicknesses 

L>lIOOm. 

Fig. 7 shows data for layers centered at 6250 m. The vertical 

wind profiles in this region reveal a layer of approximately 500 m 

thickneBs in which ,6,u is close to zero. On either side of this layer 

wind sh'~ars of the same sign prevail. A range of layer thicknesses 

results in which p becomes negative. More examples of a similar 

nature may be found in the available data sample, occurring with 

layers of nearly constant wind speed. Over the extent of such a 

layer, the Richardson number becomes independent of layer thick­

ness. This fact is portrayed by the "hump" in Fig. 7. As L is 

increased beyond the thickness of this layer, the adjacent wind 

shears of equal sign tend to reduce the value of Ri, thus rendering 

p < 0 for a limited range of thicknesses L. 
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From these data it is easily seen that no general rules for the 

dependence of Richardson's number on layer thickness, such as 

proposed, for instance, by Za\-arina and Yudin (l H (0) can be adopted. 

This is not too surprising because as the Layer thickness is increased 

beyond a few hundred meters, the time-persistent mesoscale structure 

of the atmosphere becomes prominent in the form of irregularly spaced 

stable and less stable layers with positive or negative vertical wind 

shears. This mesoscale structure, however, does not follow turbulence 

theory derived for the inertial subrange (Essenw anger, 1965). 

Th3 theoretical derivations were mainly based on a structure 

fUrlction of the form 

2 
D = ~u 

trans 
( 36) 

The averaging process. indicated by the "bar". relates to time. 

assuming that mean wind velocity components are known for two 

levels :3eparated by the distance L. Figs. 4 to 7, however. represent 

instantaneous conditions. Certain discrepancies. therefore. should 

be expected between the results shown in these diagrams and the 

predictions made from theory. 

On the other hand. one should recognize the fact that the meso­

structcre in the vertical wind profiles change only slowly. This may 

be recognized from the systematic behavior of the Ri = f (L) curves 

plotted for various observation times in Figs. 4 to 7. Thus, for 

time averaging over several hours one should not expect a drastic 

improvement in the agreement between theory and observations 

because of the prevalence of this mesostructure. 

This structure may be more effectively removed by a space­

averaging process rather than a time average. One might define 

a vertically space-averaged Richardson number 

r 1 
Ri ( boz) = 

n +- 1 

n 

~ Hi. (boz) 
1 

(:37) 
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where the subscript i refers to the llumber ur the :aYl>t' given t)y 

Eq. (35), Such average Hichardsol1 llurnl)(.:n5 at'(' !)j()tted ill Fig. 8 

for the ~oundjng at 17:31 GMT on 2~) December 1 ~JtA. i<'ur' comparison, 

slope lines [or p .7:: 1 and I> :;0 2/:3 have been cIlter'(~d into this diagram. 

It should be pointed out thai. Ri computed from Eq. (:37) will be 

different from an average IUclJardson number computed from space-
~2 ~ 

averaged structure functions based upon values of 6. u and 6. T. 

However, since we are interested only ill the exponent of the pro­

portionality Ri ex r..P, the error resulting from an evaluation of Ri 

instead of 6.-"'u
2 

and 6.'1' will not enter into our consideration. 

From Fig. 8 we see that the curve Ri (L) is rather much dis­

turbed by irregular "peaks". These are the result of a few dominant 

layers with high Richardson numbers. In spite of these, the average 

slope of the curve seems to lie between p = I and p = 2/3, as pre­

dicted by Zavarina and Yudin. The minima in this curve, however, 

seem to align with a slope of p ~ 4/5 for layers of 100 to 1000 m 

thickness, and with p ~ 3/2 for thicker layers. The latter value 

falls close to the results of Essenwanger. Armendariz and Rider. 

whereaE the former value would result by applying Bolgiano's 

buoyant subrange. 

EVE'n though Fig. 8 lends some encouragement to the theoretical 

reasoning advanced earlier. it will be of little practical value. Hydro­

dynamic instabilities of vertical shear and stratification. which may 

result in CAT (Reiter. 1966) are not so much controlled by the average 

Richardson number ih measured throughout the troposphere. but by 

flow processes and instabilities within relatively thin layers. The 

Richardson number within these. however. show s a very unpredictable 

yet strong. dependence on layer thickness L, as evident from Figs. 

4 to 7. 
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Conclusions 

From the foregoing discussion we may arrive at the following 

rather general conclusions on the behavior of Richardson's number 

in the free atmosphere: 

(1) There usually is a strong dependence of Ri on layer 

thickness L. The functional relationship, however, varies with 

height, and from case to case. The same holds for a "critical!! 

Richardson number, under which CAT might be expected. Hence, 

it does not. appear fruitful to specify "critical" Ri numbers for 

CAT occurrence unless the dependence Ri = f (L) is known for the 

time and tae vicinity of the atmospheric level in question. 

(2) Even if L was specified together with values of Ri J 

C 

not much would be gained in CAT prediction, in view of the variability 

of p in the possible relationship Ri 0( L P. The detailed characteristics 

of the vertical wind and temperature profiles would have to be known, 

in order to provide an estimate of the physical causes for a certain 

value of p. 

(3) For sets of curves Ri = f (L) obtained at (short) time 

intervals for the same height z of the center point of the layer, a 

simple reIationship of the form Ri 0( LP rarely ever holds for 50 m 

::::. L ::::. 4000 m (see Figs. 4 to 7). The theoretical approach taken by 

Zavarina and Yudin also predicts different values of p to hold for 

different ranges of L. The experimental results presented here 

reveal, however, that instead of p = const for certain sub-ranges 

of L, a functional relationship p ::: f (L) has to be expected (approxi­

mated by the heavy dashed lines in .!:<'igs. 4 and 5). Since this function, 

again, varies from case to case, and from level to level. no attempt 

has been made to express it explicitly for any of the cases shown in 

Figs. 4 to 7. That such a functional relationship exists may be 
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shown 3.S follows: We may rewrite the Richardson number in finite 

difference form as a function of scale length L , i. e. , 

1L ~ () 
e L 

Ri = 2 
(b.u/L) 

Logarithic differentiation of (:3B) leads to 

ain Ri 
oL 

o lin b. e 1 () lin b.u 
= +--2---

8L L ()L 

Eq. (l'7) may be written as 

(:"38) 

(39) 

Hi = ALP . (40) 

where A is a constant of proportionality. Logarithmic dif­

ferentiation of (40) yields 

8 in Ri 
8L 

= 8 pin L 
aL 

Thus we may arrive at 

~= 
8L 

1 - P + _1 _ ( 8 in b. 0 _ 2 8 in b.u 
Lin L in L 8 L 8 L 

(41) 

(42) 

It appears from (42), that the variation of the exponent, p , with 

scale :Length is dependent on scale length L and on the shape of the 

tempe:C'ature and wind profiles. 

(4) The data presented in these diagrams have been collected 

at Cape Kennedy mainly under conditions of weak anticyclonic flow 



-25-

aloft. It would be of interest to explore the general relationship 

Ri (L) as shown in Fig. 8 for different flow regimes, especially 

those prevailing near the jet stream, and for different locations. 

(5) In order to establish a more meaningful relationship 

between a critical Richardson number and CAT it will be necessary 

to measure detailed vertical wind and temperature profiles in regions 

where and at times when, CAT is actually experienced. This would 

necessitate simultaneous radiosonde ascents, FPS-16 rawinsonde 

measurements, and aircraft measurements of CAT--preferably 

of turbulence spectra. Such an experimental field program should 

take advantage of geographic areas over which CAT is experienced 

relatively frequently. The region over. and to the lee of, the Rocky 

Mountains would offer such advantageous locations (Foltz, 1967; 

Reiter and Foltz, 1967). 

(6) In spite of the discouraging outlook on a generally valid 

relationship between Ri , L, and the occurrence of CAT which 
c 

appears to emerge from the present investigation, one might be 

able to establish certain threshold values of ~ V observed over certain 

minimum layer thicknesses L . together with certain degrees of 
mIn 

thermal stability, under which CAT is likely to occur. Since the 

phenomenon of CAT is tied to a rather narrow range of "wavelengths" 

in the spectrum of atmospheric perturbations (ca. 20-300 m, see 

Reiter and Burns. 1966), one should expect that a shearing layer 

would have to attain a certain minimum thickness L . before 
mIn 

eddies of a size and energy to be felt as CAT could be generated. 

A wavelength dependence Richardson number (Reiter. 1961. 1963) 

might offer a means of estimating characteristic eddy sizes developing 

out of unstable flow conditions. More detailed information from a well­

planned and well-executed field program will be necessary. however, 

before ,such possible relationships can be investigated. 
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