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STRONG SUPERMARTINGALES AND LIMITS OF
NONNEGATIVE MARTINGALES

BY CHRISTOPH CZICHOWSKY1 AND WALTER SCHACHERMAYER2

London School of Economics and Political Science and Universität Wien

Given a sequence (Mn)∞n=1 of nonnegative martingales starting at
Mn

0 = 1, we find a sequence of convex combinations (M̃n)∞n=1 and a lim-
iting process X such that (M̃n

τ )∞n=1 converges in probability to Xτ , for all
finite stopping times τ . The limiting process X then is an optional strong
supermartingale. A counterexample reveals that the convergence in proba-
bility cannot be replaced by almost sure convergence in this statement. We
also give similar convergence results for sequences of optional strong super-
martingales (Xn)∞n=1, their left limits (Xn−)∞n=1 and their stochastic integrals
(
∫

ϕ dXn)∞n=1 and explain the relation to the notion of the Fatou limit.

1. Introduction. Komlós’s lemma (see [12, 18] and [4]) is a classical result
on the convergence of random variables that can be used as a substitute for com-
pactness. It has turned out to be very useful, similarly to the Bolzano–Weierstrass
theorem, and has become a work horse of stochastic analysis in the past decades. In
this paper, we generalize this result to work directly with nonnegative martingales
and convergence in probability simultaneously at all finite stopping times.

Let us briefly explain this in more detail. Komlós’s subsequence theorem states
that given a bounded sequence (fn)

∞
n=1 of random variables in L1(P ), there ex-

ists a random variable f ∈ L1(P ) and a subsequence (fnk
)∞k=1 such that the

Cesàro means of any subsubsequence (fnkj
)∞j=1 converge almost surely to f .

It quickly follows that there exists a sequence (f̃n)
∞
n=1 of convex combinations

f̃n ∈ conv(fn, fn+1, . . .) that converges to f almost surely that we refer to as Kom-
lós’s lemma.

Replacing the almost sure convergence by the concept of Fatou convergence,
Föllmer and Kramkov [9] obtained the following variant of Komlós’s lemma
for stochastic processes. Given a sequence (Mn)∞n=1 of nonnegative martingales
Mn = (Mn

t )0≤t≤1 starting at Mn
0 = 1, there exists a sequence (M

n
)∞n=1 of convex
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combinations M
n ∈ conv(Mn,Mn+1, . . .) and a nonnegative càdlàg supermartin-

gale X = (Xt)0≤t≤1 starting at X0 = 1 such that M
n

is Fatou convergent along the
rationals Q∩ [0,1] to X in the sense that

Xt = lim
q∈Q∩[0,1],q↓t

lim
n→∞M

n

q = lim
q∈Q∩[0,1],q↓t

lim
n→∞

M
n

q, P -a.s.,

for all t ∈ [0,1) and X1 = limn→∞ M
n

1.
In this paper, we are interested in a different version of Komlós’s lemma for

nonnegative martingales in the following sense. Given the sequence (Mn)∞n=1 of
nonnegative martingales as above and a finite stopping time τ defining fn := Mn

τ

gives a sequence of nonnegative random variables that is bounded in L1(P ).
By Komlós’s lemma there exist convex combinations M̃n ∈ conv(Mn,Mn+1, . . .)

such that M̃n
τ converges in probability to some random variable fτ . The ques-

tion is then, if we can find one sequence (M̃n)∞n=1 of convex combinations
M̃n ∈ conv(Mn,Mn+1, . . .) and a stochastic process X = (Xt)0≤t≤1 such that we
have that M̃n

τ converges to Xτ in probability for all finite stopping times τ .
Our first main result (Theorem 2.6) shows that this is possible and that the lim-

iting process X = (Xt)0≤t≤1 is an optional strong supermartingale. These super-
martingales have been introduced by Mertens [14] and are optional processes that
satisfy the supermartingale inequality for all finite stopping times. This indicates
that optional strong supermartingales are the natural processes for our purpose to
work with, and we expand in Theorem 2.7 our convergence result from martingales
(Mn)∞n=1 to optional strong supermartingales (Xn)∞n=1.

In dynamic optimization problems our results can be used as substitute for
compactness; compare, for example, [5, 9, 11, 13, 17]. Here the martingales Mn

are usually a minimizing sequence of density processes of equivalent martingale
measures for the dual problem or, as in [5] and [9], the wealth processes of self-
financing trading strategies.

At a fixed stopping time the convergence in probability can always be strength-
ened to almost sure convergence by simply passing to a subsequence. By means
of a counterexample (Proposition 4.1) we show that this is not possible for all
stopping times simultaneously.

Conversely, one can ask what the smallest class of stochastic processes is that is
closed under convergence in probability at all finite stopping times and contains all
bounded martingales. Our second contribution (Theorem 2.8) is to show that this is
precisely the class of all optional strong supermartingales provided the underlying
probability space is sufficiently rich to support a Brownian motion.

As the limiting strong supermartingale of a sequence of martingales in the sense
of convergence in probability at all finite stopping times is no longer a semimartin-
gale, we need to restrict the integrands to be predictable finite variation processes
ϕ = (ϕt )0≤t≤1 to come up with a similar convergence result for stochastic integrals
in Proposition 2.12. For this, we need to extend our convergence result to ensure
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the convergence of the left limit processes (Xn−)∞n=1 in probability at all finite stop-
ping times to a limiting process X(0) = (X(0))0≤t≤1 as well after possibly passing
once more to convex combinations. It turns out that X(0) is a predictable strong su-
permartingale that does, in general, not coincide with the left limit process X− of
the limiting optional strong supermartingale X. The notion of a predictable strong
supermartingale has been introduced by Chung and Glover [2] and refers to pre-
dictable processes that satisfy the supermartingale inequality for all predictable
stopping times. Using instead of the time interval I = [0,1] its Alexandroff double
arrow space Ĩ = [0,1] × {0,1} as index set we can merge both limiting strong
supermartingales into one supermartingale X = (Xt̃ )t̃∈Ĩ indexed by Ĩ .

Our motivation for studying these questions comes from portfolio optimization
under transaction costs in mathematical finance in [3]. While for the problem with-
out transaction costs the solution to the dual problem is always attained as a Fatou
limit, the dual optimizer under transaction costs is in general a truly làdlàg optional
strong supermartingale. So we expect our results naturally to appear whenever one
is optimizing over nonnegative martingales that are not uniformly integrable or
stable under concatenation, and they might find other applications as well.

The paper is organized as follows. We formulate the problem and state our main
results in Section 2. The proofs are given in Sections 3, 5, 6 and 7. Section 4
provides the counterexample that our convergence results cannot be strengthened
to almost sure convergence.

2. Formulation of the problem and main results. Let (�,F,P ) be a prob-
ability space and L0(P ) = L0(�,F,P ) the space of all real-valued random
variables. As usual we equip L0(P ) with the topology of convergence in prob-
ability and denote by L0+(P ) = L0(�,F,P ;R+) its positive cone. We call a
subset A of L0(P ) bounded in probability or simply bounded in L0(P ), if
limm→∞ supf ∈A P (|f | > m) = 0.

Komlós’s subsequence theorem (see [12] and [18]) states the following.

THEOREM 2.1. Let (fn)
∞
n=1 be a bounded sequence of random variables in

L1(�,F,P ). Then there exists a subsequence (fnk
)∞k=1 and a random variable f

such that the Cesàro means 1
J

∑J
j=1 fnkj

of any subsubsequence (fnkj
)∞j=1 con-

verge P -almost surely to f , as J → ∞.

In applications this result is often used in the following variant that we also refer
to as Komlós’s lemma; compare Lemma A.1 in [4].

COROLLARY 2.2. Let (fn)
∞
n=1 be a sequence of nonnegative random vari-

ables that is bounded in L1(P ). Then there exists a sequence (f̃n)
∞
n=1 of convex

combinations

f̃n ∈ conv(fn, fn+1, . . .)

and a nonnegative random variable f ∈ L1(P ) such that f̃n
P -a.s.−→ f .
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As has been illustrated by the work of Kramkov and Schachermayer [13] and
Žitković [19] (see also [17]) Komlós’s lemma can be used as a substitute for com-
pactness, for example, in the derivation of minimax theorems for Lagrange func-
tions, where the optimization is typically over convex sets. Replacing the P -almost
sure convergence by the concept of Fatou convergence Föllmer and Kramkov [9]
used Komlós’s lemma to come up with a similar convergence result for stochas-
tic processes. For this, we equip the probability space (�,F,P ) with a filtration
F = (Ft )0≤t≤1 satisfying the usual conditions of right continuity and complete-
ness and let (Mn)∞n=1 be a sequence of nonnegative martingales Mn = (Mn

t )0≤t≤1
starting at Mn

0 = 1. For all unexplained notation from the general theory of stochas-
tic processes and stochastic integration, we refer to the book of Dellacherie and
Meyer [8].

The construction of the Fatou limit by Föllmer and Kramkov can be summarized
as in the following proposition.

PROPOSITION 2.3 (Lemma 5.2 of [9]). Let (Mn)∞n=1 be a sequence of non-
negative martingales Mn = (Mn

t )0≤t≤1 starting at Mn
0 = 1. Then there exists a se-

quence (M
n
)∞n=1 of convex combinations

M
n ∈ conv

(
Mn,Mn+1, . . .

)
and nonnegative random variables Zq for q ∈ Q∩ [0,1] such that:

(1) M
n

q

P -a.s.−→ Zq for all q ∈ Q∩ [0,1];
(2) the process X = (Xt)0≤t≤1 given by

Xt := lim
q∈Q∩[0,1],q↓t

Zq and X1 = Z1(2.1)

is a càdlàg supermartingale;
(3) the process X = (Xt)0≤t≤1 is the Fatou limit of the sequence (M

n
)∞n=1

along Q∩ [0,1], that is,

Xt = lim
q∈Q∩[0,1],q↓t

lim
n→∞M

n

q = lim
q∈Q∩[0,1],q↓t

lim
n→∞

M
n

q, P -a.s., and

X1 = lim
n→∞M

n

1.

Here it is important to note that limq∈Q∩[0,1],q↓t denotes the limit to t through
all q ∈ Q∩[0,1] that are strictly bigger than t . Therefore we do not have in general
that Xt = limn→∞ M

n

t for t ∈ [0,1), not even for t ∈ Q∩ [0,1], as is illustrated in
the simple example below.

EXAMPLE 2.4. Let (Yn)
∞
n=1 be a sequence of random variables taking values

in {0, n} such that P [Yn = n] = 1
n

and define a sequence (Mn)∞n=1 of martingales
Mn = (Mn

t )0≤t≤1 by

Mn
t = 1 + (

Yn − 1
)
1�1/2(1+1/n),1�(t).
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Then Mn
t converges to 1�0,1/2�(t) for each t ∈ [0,1]. However, the càdlàg Fatou

limit is X = 1�0,1/2�(t).

The convergence, of course, also fails at stopping times in general. This moti-
vates us to ask for a different extension of Komlós’s lemma to nonnegative mar-
tingales in the following sense. Let (Mn)∞n=1 be again a sequence of nonnegative
martingales Mn = (Mn

t )0≤t≤1 starting at Mn
0 = 1 and τ a finite stopping time.

Then defining fn := Mn
τ gives a sequence (fn)

∞
n=1 of nonnegative random vari-

ables that are bounded in L1(P ). By Komlós’s lemma there exist convex combi-
nations M̃n ∈ conv(Mn,Mn+1, . . .) and a nonnegative random variable fτ such
that

M̃n
τ =: f̃n

P -a.s.−→ fτ .

The questions are then:

(1) Can we find one sequence (M̃n)∞n=1 of convex combinations

M̃n ∈ conv
(
Mn,Mn+1, . . .

)
such that, for all finite stopping times τ , we have

M̃n
τ

P -a.s.−→ fτ(2.2)

for some random variables fτ that may depend on the stopping times τ?
(2) If (1) is possible, can we find a stochastic process X = (Xt)0≤t≤1 such that

Xτ = fτ for all finite stopping times τ?
(3) If such a process X = (Xt)0≤t≤1 as in (2) exists, what kind of process is it?

Let us start with the last question. If such a process X = (Xt)0≤t≤1 exists, it
follows from Fatou’s lemma that it is (up to optional measurability) an optional
strong supermartingale.

DEFINITION 2.5. A real-valued stochastic process X = (Xt)0≤t≤1 is called
an optional strong supermartingale, if:

(1) X is optional;
(2) Xτ is integrable for every [0,1]-valued stopping time τ ;
(3) for all stopping times σ and τ with 0 ≤ σ ≤ τ ≤ 1, we have

Xσ ≥ E[Xτ |Fσ ].

These processes have been introduced by Mertens [14] as a generalization of
the notion of a càdlàg (right continous with left limits) supermartingale that one is
usually working with. Indeed, by the optional sampling theorem each càdlàg su-
permartingale is an optional strong supermartingale, but not every optional strong
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supermartingale has a càdlàg modification. For example, every deterministic de-
creasing function (Xt)0≤t≤1 is an optional strong supermartingale, but there is
little reason why it should be càdlàg. However, by Theorem 4 in Appendix I in
[8], every optional strong supermartingale is indistinguishable from a làdlàg (left
and right limits) process, and so we can assume without loss of generality that all
optional strong supermartingales we consider in this paper are làdlàg. Similarly to
the Doob–Meyer decomposition in the càdlàg case, every optional strong super-
martingale X has a unique decomposition

X = M − A(2.3)

into a local martingale M and a nondecreasing predictable process A starting at 0.
This decomposition is due to Mertens [14] (compare also Theorem 20 in Ap-
pendix I in [8]) and is therefore called the Mertens decomposition. Note that, under
the usual conditions of completeness and right continuity of the filtration, we can
and do choose a càdlàg modification of the local martingale M in (2.3). On the
other hand, the nondecreasing process A is in particular làdlàg.

For làdlàg processes X = (Xt)0≤t≤1 we denote by Xt+ := limh↘0 Xt+h and
Xt− := limh↘0 Xt−h the right and left limits and by �+Xt := Xt+ − Xt and
�Xt := Xt − Xt− the right and left jumps. We also use the convention that
X0− = 0 and X1+ = X1.

After these preparations we have now everything in place to formulate our main
results. The proofs will be given in the Sections 3, 5, 6 and 7.

THEOREM 2.6. Let (Mn)∞n=1 be a sequence of nonnegative càdlàg martin-
gales Mn = (Mn

t )0≤t≤1 starting at Mn
0 = 1. Then there is a sequence (M̃n)∞n=1 of

convex combinations

M̃n ∈ conv
(
Mn,Mn+1, . . .

)
and a nonnegative optional strong supermartingale X = (Xt)0≤t≤1 such that, for
every [0,1]-valued stopping time τ , we have that

M̃n
τ

P−→ Xτ .(2.4)

Combining the above with a similar convergence result for predictable finite
variation processes by Campi and Schachermayer [1] allows us to extend our con-
vergence result to optional strong supermartingales by using the Mertens decom-
position. Theorem 2.6 is thus only a special case of the following result.

THEOREM 2.7. Let (Xn)∞n=1 be a sequence of nonnegative optional strong
supermartingales Xn = (Xt)0≤t≤1 starting at Xn

0 = 1. Then there is a sequence
(X̃n)∞n=1 of convex combinations

X̃n ∈ conv
(
Xn,Xn+1, . . .

)
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and a nonnegative optional strong supermartingale X = (Xt)0≤t≤1 such that, for
every [0,1]-valued stopping time τ , we have convergence in probability, that is,

X̃n
τ

P−→ Xτ .(2.5)

We thank Kostas Kardaras for indicating that convergence (2.5) is topological.
It corresponds to the weak topology that is generated on the space of optional
processes by the topology of L0(P ) and all evaluation mappings eτ (X)(ω) :=
Xτ(ω)(ω) that evaluate an optional process X = (Xt)0≤t≤1 at a finite stopping
time τ . By the optional cross section theorem this topology is Hausdorff.

Given Theorem 2.6 and Theorem 2.7 above one can ask conversely what the
smallest class of stochastic processes is that is closed under convergence in proba-
bility at all finite stopping times and contains the set of bounded martingales. Here
the next result shows that this set is the set of optional strong supermartingales.

THEOREM 2.8. Let X = (Xt)0≤t≤1 be an optional strong supermartingale
and suppose that its stochastic base (�,F,F,P ) is sufficiently rich to support a
Brownian motion W = (Wt)0≤t≤1. Then there is a sequence of bounded càdlàg
martingales (Mn)∞n=1 such that, for every [0,1]-valued stopping time τ , we have
convergence in probability, that is,

Mn
τ

P−→ Xτ .(2.6)

We thank Perkowski and Ruf for pointing out to us that they have indepen-
dently obtained a similar result to Theorem 2.8 for càdlàg supermartingales in
Proposition 5.9 of [15] by taking several limits successively. Moreover, we would
like to thank Ruf for insisting on a clarification of an earlier version of Theo-
rem 2.8 which led us to a correction of the statement [convergence in probabil-
ity in (2.6) as opposed to almost sure convergence] as well as to a more detailed
proof.

Let us now turn to the theme of stochastic integration. By Theorem 2.6 the limit
of a sequence (Mn)∞n=1 of martingales in the sense of (2.4) will, in general, be no
longer a semimartingale. In order to come up with a similar convergence result for
stochastic integrals ϕ ·Mn = ∫

ϕ dMn, we therefore need to restrict the choice of
integrands ϕ = (ϕt )0≤t≤1 to predictable finite variation processes. As we shall ex-
plain in more detail in Section 7 below, this allows us to define stochastic integrals
ϕ · X = ∫

ϕ dX with respect to optional strong supermartingales X = (Xt)0≤t≤1
pathwise, since X is làdlàg. These integrals coincide with the usual stochastic in-
tegrals, if X = (Xt)0≤t≤1 is a semimartingale. For a general predictable, finite
variation process ϕ, the stochastic integral ϕ ·X depends not only on the values of
the integrator X but also explicitly on that of its left limits X−; see (7.3) below. As
a consequence, in order to obtain a satisfactory convergence result for the integrals
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ϕ ·Xn to a limit ϕ ·X, we have to take special care of the left limits of the integra-
tors. (The convergence of stochastic integrals is crucially needed in applications
in mathematical finance, where the integrals correspond to the gains from trading
by using self-financing trading strategies.) More precisely: given the convergence

X̃n
τ

P−→ Xτ as in (2.5), at all [0,1]-valued stopping times τ of a sequence (X̃n)∞n=1
of optional strong supermartingales do we have the convergence of the left limits

X̃n
σ−

P−→ Xσ−(2.7)

for all [0,1]-valued stopping times σ as well?
For totally inaccessible stopping times σ , we are able to prove that (2.7) is

actually the case.

PROPOSITION 2.9. Let (Xn)∞n=1 and X be nonnegative optional strong super-
martingales (Xn

t )0≤t≤1 and (Xt)0≤t≤1 such that

Xn
q

P−→ Xq

for every rational number q ∈ [0,1]. Then

Xn
τ−

P−→ Xτ−
for all [0,1]-valued totally inaccessible stopping times τ .

At accessible stopping times σ , the convergence X̃n
τ

P−→ Xτ for all finite
stopping times τ does not necessarily imply convergence (2.7) of the left lim-
its X̃n

σ−. Moreover, even if the left limits X̃n
σ− converge to some random vari-

able Y in probability, it may happen that Y 
= Xσ−. In order to take this phe-
nomenon into account, we need to consider two processes X(0) = (X

(0)
t )0≤t≤1 and

X(1) = (X
(1)
t )0≤t≤1 that correspond to the limiting processes of the left limits X̃n−

and the processes X̃n itself or, alternatively, replace the time interval I = [0,1] by
the set Ĩ = [0,1] × {0,1} with the lexicographic order. The set Ĩ is motivated by
the Alexandroff double arrow space. Equipping the set Ĩ with the lexicographic
order simply means that we split every point t ∈ [0,1] into a left and a right point
(t,0) and (t,1), respectively, such that (t,0) < (t,1), that (t,0) ≤ (s,0) if and
only if t ≤ s and that (t,1) < (s,0) if and only if t < s. Then we can merge both
processes, X(0) = (X

(0)
t )0≤t≤1 and X(1) = (X

(1)
t )0≤t≤1, into one process,

Xt̃ =
{

X
(0)
t , t̃ = (t,0),

X
(1)
t , t̃ = (t,1),

(2.8)

for t̃ ∈ Ĩ , which is by (2.11) below a supermartingale indexed by t̃ ∈ Ĩ . As the limit
of the left limits, the process X(0) = (X

(0)
t )0≤t≤1 will be predictable and it will turn

out that it is even a predictable strong supermartingale. We refer to the article of
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Chung and Glover [2] (see the second remark following the proof of Theorem 3
on page 243) as well as Definition 3 in Appendix I of the book of Dellacherie and
Meyer [8] for the subsequent concept.

DEFINITION 2.10. A real-valued stochastic process X = (Xt)0≤t≤1 is called
a predictable strong supermartingale if:

(1) X is predictable;
(2) Xτ is integrable for every [0,1]-valued predictable stopping time τ ;
(3) for all predictable stopping times σ and τ with 0 ≤ σ ≤ τ ≤ 1, we have

Xσ ≥ E[Xτ |Fσ−].
After these preparations we are able to extend Theorem 2.7 to hold also for left

limits.

THEOREM 2.11. Let (Xn)∞n=1 be a sequence of nonnegative optional strong
supermartingales starting at Xn

0 = 1. Then there is a sequence (X̃n)∞n=1 of con-
vex combinations X̃n ∈ conv(Xn,Xn+1, . . .), a nonnegative optional strong super-
martingale X(1) = (X

(1)
t )0≤t≤1 and a nonnegative predictable strong supermartin-

gale X(0) = (X
(0)
t )0≤t≤1 such that

X̃n
τ

P−→ X(1)
τ ,(2.9)

X̃n
τ−

P−→ X(0)
τ ,(2.10)

for all [0,1]-valued stopping times τ , and we have that

X
(1)
τ− ≥ X(0)

τ ≥ E
[
X(1)

τ |Fτ−
]

(2.11)

for all [0,1]-valued predictable stopping times τ .

With the above we can now formulate the following proposition. Note that,
since ϕ · X̃n ∈ conv(ϕ ·Xn,ϕ ·Xn+1, . . .), part (2) is indeed an analogous result to
Theorem 2.7 for stochastic integrals.

PROPOSITION 2.12. Let (Xn)∞n=1 be a sequence of nonnegative optional
strong supermartingales Xn = (Xn

t )0≤t≤1 starting at Xn
0 = 1. Then there exist

convex combinations X̃n ∈ conv(Xn,Xn+1, . . .) as well as an optional and a pre-
dictable strong supermartingale X(1) and X(0) such that:

(1) X̃n
τ

P−→ X
(1)
τ and X̃n

τ−
P−→ X

(0)
τ for all [0,1]-valued stopping times τ ;

(2) for all predictable processes ϕ = (ϕt )0≤t≤1 of finite variation, we have that

ϕ · X̃n
τ

P−→
∫ τ

0
ϕc

u dX(1)
u + ∑

0<u≤τ

�ϕu

(
X(1)

τ − X(0)
u

)+ ∑
0≤u<τ

�+ϕu

(
X(1)

τ − X(1)
u

)
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for all [0,1]-valued stopping times τ , where ϕc denotes the continuous part of ϕ,
that is,

ϕc
t := ϕt − ∑

0<u≤t

�ϕu − ∑
0≤u<t

�+ϕu for t ∈ [0,1].(2.12)

3. Proof of Theorems 2.6 and 2.7. The basic idea for the proof of Theo-
rem 2.6 is to consider the Fatou limit X = (Xt)0≤t≤1 as defined in (2.1). Morally
speaking X = (Xt)0≤t≤1 should also be the limit of the sequence (M)∞n=1 in the
sense of (2.4). However, as we illustrated in Example 2.4, things may be more deli-
cate. While we do not need to have convergence in probability at all finite stopping
times in general, the next lemma shows that we always have one-sided P -almost
sure convergence.

LEMMA 3.1. Let X and (M
n
)∞n=1 be as in Proposition 2.3. Then we have that(

M
n

τ − Xτ

)− P -a.s.−→ 0, as n → ∞,(3.1)

for all [0,1]-valued stopping times τ , where x− = max{−x,0}.
PROOF. Let σk be the kth dyadic approximation of the stopping time τ , that

is,

σk := inf{t ∈ Dk|t > τ } ∧ 1,(3.2)

where Dk = {j2−k|j = 0, . . . ,2k}. As M
n

is a martingale, we have M
n

τ =
E[Mn

σk
|Fτ ], for every n ∈ N, and therefore

lim
n→∞

M
n

τ = lim
n→∞

E
[
M

n

σk

∣∣Fτ

]≥ E
[

lim
n→∞

M
n

σk

∣∣∣Fτ

]
= E[Zσk

|Fτ ]
for all k by Fatou’s lemma, where Zq is defined in Proposition 2.3, for every q ∈
Q ∩ [0,1]. Since Zσk

→ Xτ P -a.s. and in L1(P ) by backward supermartingale
convergence (see Theorem V.30 and the proof of Theorem IV.10 in [8], e.g.), we
obtain that

lim
n→∞

M
n

τ ≥ Xτ ,

which proves (3.1). �

For any sequence (M̂n)∞n=1 of convex combinations

M̂n ∈ conv
(
M

n
,M

n+1
, . . .

)
,

we can use the one-sided convergence (3.1) to show in the next lemma that at any
given stopping time τ , we either have the convergence of M̂n

τ to Xτ in probability,
or there exists a sequence (M̃n)∞n=1 of convex combinations

M̃n ∈ conv
(
M̂n, M̂n+1, . . .

)
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and a nonnegative random variable Y such that M̃n
τ

P−→ Y . In the latter case, Y ≥
Xτ and E[Y ] > E[Xτ ], as we shall now show.

LEMMA 3.2. Let X and (M
n
)∞n=1 be as in Proposition 2.3, let τ be a [0,1]-

valued stopping time and (M̂n)∞n=1 a sequence of convex combinations M̂n ∈
conv(M

n
,M

n+1
, . . .). Then we have either(

M̂n
τ − Xτ

)+ P−→ 0, as n → ∞,(3.3)

with x+ = max{x,0}, or there exists a sequence (M̃)∞n=1 of convex combinations

M̃n ∈ conv
(
M̂n, M̂n+1, . . .

)⊆ conv
(
M

n
,M

n+1
, . . .

)
and a nonnegative random variable Y such that

M̃n
τ

P−→ Y, as n → ∞,(3.4)

and
E[Yτ ] > E[Xτ ].(3.5)

PROOF. If (3.3) does not hold, there exists α > 0 and a subsequence (M̂n),
still denoted by (M̂n)∞n=1 again indexed by n, such that

P
(
M̂n

τ − Xτ > α
)≥ α(3.6)

for all n. Since E[M̂n
τ ] = 1, there exists by Komlós’s lemma a sequence (M̃n)∞n=1

of convex combinations M̃n ∈ conv(M̂n, M̂n+1, . . .) and a nonnegative random
variable Y such that (3.4) holds. To see (3.5), we observe that, for each ε > 0,

1{M̂n
τ ≥Xτ −ε}

P−→ 1, as n → ∞,

by (3.1). From the inequality

M̂n
τ 1An ≥ Xτ1An + α1An,

where An := {M̂n
τ ≥ Xτ + α}, we obtain

M̂n
τ 1{M̂n

τ ≥Xτ −ε} ≥ Xτ1{M̂n
τ ≥Xτ −ε} + α1An.

Now taking the convex combinations leading to M̃n and then

Ỹ n ∈ conv(α1An,α1An+1, . . .)

such that Ỹ n P−→ Ỹ , as n → ∞, we derive

Y ≥ Xτ + Ỹ − ε(3.7)

by passing to limits. Since |Ỹ n| ≤ 1 and E[Ỹ n] ≥ α2, we deduce from Lebesgue’s

theorem that Ỹ n L1(P )−→ Ỹ , as n → ∞, and E[Ỹ ] ≥ α2. Therefore (3.7) implies that

E[Y ] ≥ E[Xτ ] + E[Ỹ ] − ε ≥ E[Xτ ] + α2 − ε

for each ε > 0 and hence (3.5) by sending ε → 0. �
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By the previous lemma we either already have the convergence of M̂n
τ to Xτ in

probability at a given stopping time τ , or we can use Komlós’s lemma once again
to find convex combinations M̃n ∈ conv(M̂n, M̂n+1, . . .) and a random variable Y

such that M̃n
τ

P−→ Y . The next lemma shows that we can exhaust this latter phe-
nomenon by a countable number of stopping times (τm)∞m=1 and that we can use
the random variables Ym := P − limn→∞ M̃n

τm
to redefine the càdlàg supermartin-

gale X at the stopping times τm to obtain a limiting process X̃ = (X̃t )0≤t≤1. The
limiting process X̃ will be an optional strong supermartingale, and we can relate
the loss of mass Ym − Xτm to the right jumps �+Ãτm of the predictable part of the
Mertens decomposition X̃ = M̃ − Ã.

LEMMA 3.3. In the setting of Proposition 2.3, let (τm)∞m=1 be a sequence of
[0,1] ∪ {∞}-valued stopping times with disjoint graphs, that is, �τm� ∩ �τk � = ∅

for m 
= k. Then there exists a sequence (M̃n)∞n=1 of convex combinations M̃n ∈
conv(M

n
,M

n+1
, . . .) such that, for each m ∈ N, the sequence (M̃n

τm
)∞n=1 converges

P -a.s. to a random variable Ym on {τm < ∞}. The process X̃ = (X̃t )0≤t≤1 given
by

X̃t (ω) =
{

Ym(ω), t = τm(ω) < ∞ and m ∈N,

Xt(ω), elsewhere
(3.8)

is an optional strong supermartingale with the following properties:

(1) X̃+ = X, where X̃+ denotes the process of the right limits of X̃;
(2) denoting by X̃ = M̃ − Ã, the Mertens decomposition of X̃, we have

X̃τm − Xτm = −�+X̃τm = �+Ãτm := Ãτm+ − Ãτm(3.9)

for each m ∈ N.

PROOF. Combining Komlós’s lemma with a diagonalization procedure we ob-
tain nonnegative random variables Ym and convex combinations M̃n ∈ conv(M

n
,

M
n+1

, . . .) such that

M̃n
τm

P -a.s.−→ Ym,

for all m ∈ N, and we can define the process X̃ via (3.8). This process X̃ is clearly
optional.

To show that X̃ is indeed an optional strong supermartingale, we need to verify
that

X̃
1 ≥ E[X̃
2 |F
1](3.10)

for every pair of [0,1]-valued stopping times 
1 and 
2 such that 
1 ≤ 
2. For this,
we observe that it is sufficient to consider (3.10) on the set {
1 < 
2}. For i = 1,2
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denote by (
i,k)
∞
k=1 the kth dyadic approximation of 
i as in (3.2) above. Then we

have

E[X̃
2 |F
1]

= E

[
lim

n→∞
∞∑

m=1

M̃n
τm

1{τm=
2} + lim
k→∞

(
lim

n→∞M
n


2,k

)
1{τm 
=
2,∀m}

∣∣∣F
1

]

= E

[
lim

n→∞
∞∑

m=1

M̃n
τm

1{τm=
2} + lim
k→∞

(
lim

n→∞ M̃n

2,k

)
1{τm 
=
2,∀m}

∣∣∣F
1

]

≤ E

[
lim

n→∞
∞∑

m=1

M̃n
τm

1{τm=
2}
(3.11)

+ lim
k→∞

(
lim

n→∞E
[
M̃n


2,k
|F
2

])
1{τm 
=
2,∀m}

∣∣∣F
1

]

= E
[

lim
n→∞ M̃n


2

∣∣F
1

]
(3.12)

≤ E
[

lim
k→∞ lim

n→∞E
[
M̃n


2
|F
1,k

]∣∣F
1

]
(3.13)

= E
[

lim
k→∞ lim

n→∞ M̃n

1,k

∣∣F
1

]
(3.14)

= E

[
lim

k→∞ lim
n→∞

∞∑
m=1

M̃n

1,k

1{τm=
1} + lim
k→∞ lim

n→∞ M̃n

1,k

1{τm 
=
1,∀m}
∣∣∣F
1

]

≤ lim
k→∞ lim

n→∞
∞∑

m=1

E
[
M̃n


1,k
|F
1

]
1{τm=
1}

(3.15)
+ E

[
lim

k→∞ lim
n→∞M

n


1,k

∣∣F
1

]
1{τm 
=
1,∀m}

= lim
n→∞

∞∑
m=1

M̃n
τm

1{τm=
1} + E
[

lim
k→∞Z
1,k

∣∣F
1

]
1{τm 
=
1,∀m}(3.16)

=
∞∑

m=1

X̃τm1{τm=
1} + X
11{τm 
=
1,∀m} = X̃
1(3.17)

by using Fatou’s lemma in (3.11), (3.13) and (3.15), the martingale property of the
M̃n and the convergence in probability of the Mn in (3.12), (3.14) and (3.16) and
exploiting the backward supermartingale convergence of (Z
1,k

)∞k=1 in (3.17).

(1) We argue by contradiction and assume that G := {X̃+ 
= X} has P(π(G)) >

0, where π :� × [0,1] → � is given by π((ω, t)) = ω. As the set G is optional,
there exists by the optional cross-section theorem (Theorem IV.84 in [8]) a [0,1]∪
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{∞}-valued stopping time σ such that �σ{σ<∞}� ⊆ G and P(σ < ∞) > 0, which
is equivalent to the assumption that the set F := {X̃σ+ 
= Xσ } has strictly positive
measure P(F) > 0. Without loss of generality we can assume that there exists
δ > 0 such that F ⊆ {σ + δ < 1}. Let (hi)

∞
i=1 be a sequence of real numbers de-

creasing to 0 that are no atoms of the laws τm − σ for all m ∈ N. Then defining
σi := (σ + hi)F ∧ 1 for each i ∈ N gives a sequence of stopping times such that
X̃σi

= Xσi
for each i and σi ↘ σ on F . But this implies that

X̃σ+ = lim
i→∞ X̃σi

= lim
i→∞Xσi

= Xσ on F,(3.18)

which contradicts P(F) > 0 and hence also P(π(G)) > 0.
(2) By property (1), modifying X at countably many stopping times (τm)∞m=1

to obtain X̃ leaves right limits of the làdlàg optional strong supermartingale X̃

invariant so that these remain

X̃τm+ = Xτ+
m

= Xτm on {τm < 1} for each m.(3.19)

Since M̃ is càdlàg, this implies that

X̃τm − Xτm = −�+X̃τm = �+Ãτm(3.20)

for each m, thus proving property (2). �

Continuing with the proof of Theorem 2.6, the idea is to define the limiting
supermartingale X by (3.8) and to use Lemma 3.3 to enforce the convergence at
a well-chosen countable number of stopping times (τm)∞m=1 to obtain the conver-
gence in (2.5) for all stopping times. It is rather intuitive that one has to take special
care of the jumps of the limiting process X. As these can be exhausted by a se-
quence (τk)

∞
k=1 of stopping times, the previous lemma can take care of this issue.

However, the subsequent example shows that there also may be a problem with the
convergence in (2.4) at a stopping time τ at which X is continuous.

EXAMPLE 3.4. Let σ :� −→ [0,1] be a totally inaccessible stopping time,
(At )0<t≤1 its compensator so that (1�σ,1�(t) − At)0≤t≤1 is a martingale. Let
(Yn)

∞
n=1 be a sequence of random variables independent of σ such that Yn takes

values in {0, n} and P [Yn = n] = 1
n

. Define the continuous supermartingale

X1
t = 1 − At, 0 ≤ t ≤ 1,

and the optional strong supermartingale

X2
t = 1 − At + 1�σ �(t), 0 ≤ t ≤ 1.

Define the sequences (M1,n)∞n=1 and (M2,n)∞n=1 of martingales by

M
1,n
t = 1 − At + Yn1�σ,1�(t),

M
2,n
t = 1 − At + 1�σ,1�(t) + (Yn − 1)1�σ+1/n,1�(t)
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for t ∈ [0,1] and n ∈ N. Then we have that

M1,n
τ

P−→ X1
τ ,

(3.21)
M2,n

τ

P−→ X2
τ

for all [0,1]-valued stopping times τ . The left and right limits of X1 and X2 co-
incide, that is, X1− = X2− and X1+ = X2+, but X1 
= X2. As X1 = X1− = X1+ = X2+
coincides with the Fatou limits X

1
(and X

2
, resp.) of (M1,n)∞n=1 [and (M2,n)∞n=1,

resp.], this example illustrates that we cannot deduce from the Fatou limits X
1

and X
2
, where it is necessary to correct the convergence by using Lemma 3.3.

Computing the Mertens decompositions X1 = M1 − A1 and X2 = M2 − A2, we
obtain

M1 = 1,

A1 = σ ∧ t,

M2 = 1 − σ ∧ t + 1�σ,1�,

A2 = 1�σ,1�.

This shows that using X2 instead of X
2 = X1 changes the compensator of M2 not

only after the correction in the sense of Lemma 3.3 on �σ,1� but on all of [0,1].
As the previous example shows, it might be difficult to identify the stopping

times (τm)∞m=1, where one needs to enforce the convergence in probability by us-
ing Lemma 3.3. Therefore we combine the previous lemmas with an exhaustion
argument to prove Theorem 2.6.

PROOF OF THEOREM 2.6. Let T be the collection of all families T =
(τm)

N(T )
m=1 of finitely many [0,1] ∪ {∞}-valued stopping times τm with disjoint

graphs. For each T ∈ T, we consider an optional strong supermartingale XT that

is obtained by taking convex combinations X̃n,T ∈ conv(M
n
,M

n+1
, . . .) such that

X̃n,T
τm

P−→ Y T
m on {τm < ∞} for each m = 1, . . . ,N(T ) and then setting

XT
t (ω) =

{
Y T

m (ω), t = τm(ω) < ∞ and m = 1, . . . ,N(T ),

Xt(ω), else,
(3.22)

as explained in Lemma 3.3. Then each XT has a Mertens decomposition

XT = MT − AT ,(3.23)

and we have by part (2) of Lemma 3.3 that

E

[
N(T )∑
m=1

(
XT

τm∧1 − Xτm∧1
)]= E

[
N(T )∑
m=1

�+AT
τm∧1

]
≤ 1.
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Therefore

ϑ̂ := sup
T ∈T

E

[
N(T )∑
m=1

(
XT

τm∧1 − Xτm∧1
)]≤ 1,(3.24)

and there exists a maximizing sequence (Tk)
∞
k=1 such that

E

[
N(Tk)∑
m=1

(
X

Tk

τm∧1 − Xτm∧1
)]↗ sup

T ∈T
E

[
N(T )∑
m=1

(
XT

τm∧1 − Xτm∧1
)]= ϑ̂ .(3.25)

It is easy to see that we can assume that (Tk)
∞
k=1 can be chosen to be increas-

ing, that is, Tk ⊆ Tk+1 for each k. This means that Tk+1 just adds some stopping
times to those which appear in Tk . Then T̃ := ⋃∞

k=1 Tk is a countable collec-
tion of stopping times (τm)∞m=1 with disjoint graphs, and by Lemma 3.3 there

exists an optional strong supermartingale XT̃ and convex combinations Xn,T̃ ∈
conv(M

n
,M

n+1
, . . .) such that X

n,T̃
τ̃m

P−→ Y T̃
m for all m and

XT̃
t (ω) :=

{
Y T̃

m (ω), t = τm(ω) < ∞,

Xt(ω), else.
(3.26)

As we can suppose without loss of generality that Xn,Tk+1 ∈ conv(Xn,Tk ,Xn+1,Tk ,

. . .) and Xn,T̃ ∈ conv(Xn,Tk ,Xn+1,Tn+1, . . .), we have that Y
Tk
m = Y

Tk+1
m = Y T̃

m on
{τm < 1} for all k ≥ m. Let XT̃ = M T̃ −AT̃ be the Mertens decomposition of XT̃ .
Then

�+AT̃
τm

= XT̃
τm

− Xτm = XTk
τm

− Xτm = �+ATk
τm

(3.27)

on {τm < 1} for m ≤ N(Tk), since, as we explained in the proof of Lemma 3.3,
modifying X at countably many stopping times does not change the right limits,
and these remain

XT̃
τm+ = Xτm = X

Tk
τm+ on {τm < 1} for m ≤ N(Tk).(3.28)

This implies that

N(Tk)∑
m=1

(
X

Tk

τm∧1 − Xτm∧1
)= N(Tk)∑

m=1

(
XT̃

τm∧1 − Xτm∧1
)= N(Tk)∑

m=1

�+AT̃
τm∧1(3.29)

and therefore

E

[ ∞∑
m=1

�+AT̃
τm∧1

]
= E

[ ∞∑
m=1

(
XT̃

τm∧1 − Xτm∧1
)]= ϑ̂(3.30)

by the monotone convergence theorem.
Now suppose that there exists a [0,1]-valued stopping time τ such that Xn,T̃

τ

does not converge in probability to XT̃
τ . By Lemma 3.2 we can then pass once
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more to convex combinations M̃n ∈ conv(Xn,T̃ ,Xn+1,T̃ , . . .) such that there exists

a random variable Y such that M̃n
τ

P−→ Y , M̃n
τm

P−→ Y T̃
m and an optional strong

supermartingale X̃ such that

X̃t (ω) =
{

Y(ω), t = τ(ω) ≤ 1,

XT̃
t (ω), else.

(3.31)

However, since E[X̃τ − Xτ ] > 0 by Lemma 3.2, setting T̃k := Tk ∪ {T } gives a
sequence in T such that

lim
k→∞E

[
N(T̃k)∑
m=1

(
X

T̃k

τm∧1 − X
T̃k

τm∧1
)]

= lim
k→∞E

[
N(Tk)∑
m=1

(
X

Tk

τm∧1 − Xτm∧1
)]+ E[X̃τ − Xτ ]

= ϑ̂ + E[X̃τ − Xτ ] > ϑ̂,

and therefore a contradiction to the definition of ϑ̂ as supremum. Here we can take
the convex combinations M̃n ∈ conv(Xn,T̃ ,Xn+1,T̃ , . . .) for all T̃k . �

Combining Theorem 2.6 with a similar convergence result for predictable finite
variation processes by Campi and Schachermayer [1], we now deduce Theorem 2.7
from Theorem 2.6.

PROOF OF THEOREM 2.7. We consider the extension of Theorem 2.6 to local
martingales first. For this, let (Xn)∞n=1 be a sequence of nonnegative local martin-
gales Xn = (Xn

t )0≤t≤1 and (σ n
m)∞m=1 a localizing sequence of [0,1]-valued stop-

ping times for each Xn. Then, for each n ∈ N, there exists m(n) ∈ N such that
P(σn

m < 1) < 2−(n+1) for all m ≥ m(n). Define the martingales

Mn := (
Xn)σn

m(n)(3.32)

that satisfy Mk = Xk for all k ≥ n on Fn := ⋂
k≥n{σk

m(k) = 1} with P(Fn) >

1 − 2−n. By Theorem 2.6 there exist a sequence of convex combinations M̃n ∈
conv(Mn,Mn+1, . . .) and an optional strong supermartingale X such that

M̃k
τ

P−→ Xτ on Fn

for all [0,1]-valued stopping times τ . Therefore taking X̃n ∈ conv(Xn,Xn+1, . . .)

with the same weights as M̃n ∈ conv(Mn,Mn+1, . . .) gives

X̃k
τ

P−→ Xτ on Fn
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for all [0,1]-valued stopping times τ and for each n and, since X̃k = M̃k for all

k ≥ n. But, since P(F c
n ) < 2−n → 0, as n → ∞ this implies that X̃k

τ

P−→ Xτ for
all [0,1]-valued stopping times τ . This finishes the proof in the case when the Xn

are local martingales.
For the case of optional strong supermartingales, let (Xn)∞n=1 be a sequence

of nonnegative optional strong supermartingales Xn = (Xn
t )0≤t≤1 and Xn =

Mn − An their Mertens decompositions into a càdlàg local martingale Mn and
a predictable, nondecreasing, làdlàg process An. As the local martingales Mn ≥
Xn + An ≥ Xn are nonnegative, there exists by the first part of the proof a se-
quence of convex combinations M̂n ∈ conv(Mn,Mn+1, . . .) and an optional strong
supermartingale X̂ with Mertens decomposition X̂ = M̂ − Â such that

M̂n
τ

P−→ X̂τ(3.33)

for all [0,1]-valued stopping times τ . Now let Ân ∈ conv(An,An+1, . . .) be the
convex combinations that are obtained with the same weights as the M̂n. Then
there exists a sequence (Ãn)∞n=1 of convex combinations Ãn ∈ conv(Ân, Ân+1, . . .)

and a predictable, nondecreasing, làdlàg process Ã such that

P
[

lim
n→∞ Ãn

t = Ãt ,∀t ∈ [0,1]
]
= 1.(3.34)

Indeed, we only need to show that (Ãn
1)n∈N is bounded in L0(P ); then (3.34)

follows from Proposition 3.4 of Campi and Schachermayer in [1]. By monotone
convergence we obtain

E
[
Ãn

1
]= lim

m→∞E
[
Ãn

1∧σn
m

]= lim
m→∞E

[
M̃n

1∧σn
m

− X̃n
1∧σn

m

]≤ 1

for all n ∈ N and therefore the boundedness in L0(P ). Here M̃n ∈ conv(M̂n,

M̂n+1, . . .) and X̃n ∈ conv(X̂n, X̂n+1, . . .) denote convex combinations having the
same weights as the Ân and (σn

m)∞m=1 is a localizing sequence of stopping times
for the local martingale M̃n.

Taking convex combinations does not change the convergence (3.33), and so
X̃n ∈ conv(Xn,Xn+1, . . .) is a sequence of convex combinations and X̃ := X̂ − Â

an optional strong supermartingale such that

X̃n
τ

P−→ X̃τ(3.35)

for all [0,1]-valued stopping times τ . �

REMARK 3.5. (1) Observe that the proof of Theorem 2.7 actually shows that
the limiting optional strong supermartingale X is equal to X up to a set that is
included in the graphs of countably many stopping times (τm)∞m=1.

(2) Replacing Komlós’s lemma (Corollary 2.2) by Komlós’s subsequence theo-
rem (Theorem 2.1) in the proof of Theorems 2.6 and 2.7, we obtain, by taking sub-
sequences of subsequences rather than convex combinations of convex combina-
tions, the following stronger assertion: Given a sequence (Xn)∞n=1 of nonnegative
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optional strong supermartingales Xn = (Xn
t )0≤t≤1 starting at Xn

0 = 1, there exists
a subsequence (Xnk )∞k=1 and an optional strong supermartingale X = (Xt)0≤t≤1

such that the Cesàro means 1
J

∑J
j=1 X

nkj of any subsubsequence (X
nkj )∞j=1 con-

verge to X in probability at all finite stopping times, as J → ∞.

4. A counterexample. At a single finite stopping time τ we may, of course,
pass to a subsequence to obtain that M̃n

τ converges not only in probability but
also P -almost surely to X̃τ . The next proposition shows that we cannot strengthen
Theorem 2.6 to obtain P -almost sure convergence for all finite stopping times
simultaneously. The obstacle is, of course, that the set of all stopping times is far
from being countable.

PROPOSITION 4.1. Let (Mn)∞n=1 be a sequence of independent nonnegative
continuous martingales Mn = (Mn

t )0≤t≤1 starting at Mn
0 = 1 such that

Mn
τ

P−→ 1 − τ(4.1)

for all [0,1]-valued stopping times τ . Then we have for all ε > 0 and all sequences
(M̃n)∞n=1 of convex combinations M̃n ∈ conv(Mn,Mn+1, . . .) that there exists a
stopping time τ such that

P
[

lim
n→∞ M̃n

τ = +∞
]
> 1 − ε.

REMARK 4.2. If (�,F, (Ft )0≤t≤1,P ) supports a sequence (Wn)∞n=1 of in-
dependent Brownian motions Wn = (Wn

t )0≤t≤1, the existence of a sequence
(Mn)∞n=1 verifying (4.1) follows similarly as in the proof of Theorem 2.8 in Sec-
tion 5 below.

For the proof of Proposition 4.1 we will need the following auxiliary lemma.

LEMMA 4.3. In the setting of Proposition 4.1, let τ and σ be two [0,1]-valued
stopping times such that τ ≤ σ and τ < σ on some A ∈ Fτ with P(A) > 0.
Then there exists, for all c > 1, a constant γ = γ (c, τ, σ ) > 0 and a number
N = N(τ,σ ) ∈ N such that

P

(
sup

t∈[τ,σ ]
M̃n

t > c + 1
)

≥ γ

for all n ≥ N .

PROOF. Let α = E[(σ−τ)1A]
P(A)

and ε ∈ (0,1) such that α > (c + 4)ε and

P(Bn) ≥ (1 − ε)P (A)
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for all n ≥ N , where

An := {∣∣M̃n
τ − (1 − τ)

∣∣< ε
}∩ A,

Bn := {∣∣M̃n
σ − (1 − σ)

∣∣< ε
}∩ An.

Then setting 
n := inf{t ∈ [τ, σ ]|M̃n
t > c + 1} we can estimate

E
[
M̃n

τ 1An

]= E
[
M̃n


n∧11An

]
= E

[
M̃n


n∧1(1An∩{
n≤1} + 1{
n>1}∩Bn + 1{
n>1}∩Bc
n∩An)

]
≤ (c + 1)P (
n ≤ 1,An) + E

[
(1 − σ + ε)1Bn

]+ (c + 1)P
(
Bc

n ∩ An

)
by the optional sampling theorem and the continuity of M̃n. Since

E
[
M̃n

τ 1An

]≥ E
[
(1 − τ − ε)1An

]≥ E
[
(1 − τ − ε)1Bn

]
,

we obtain that

E
[(

(1 − τ − ε) − (1 − σ + ε)
)
1Bn

]− (c + 1)
(
P(A) − P(Bn)

)
≤ (c + 1)P (
n ≤ 1,An)

≤ (c + 1)P (
n ≤ 1)

and therefore that

γ := α − 3ε − (c + 1)ε

c + 1
P(A) ≤ P(
n ≤ 1) = P

(
sup

t∈[τ,σ ]
M̃n

τ > c + 1
)

for all n ≥ N , where γ > 0 by our choice of ε, as E[(σ − τ)1Bn] ≥ (α − ε)P (A).
�

PROOF OF PROPOSITION 4.1. We shall define τ as an increasing limit of a
sequence of stopping times τm. For this, we set n0 = 0, τ0 = 0 and σ0 = 1

2 and
then define for m ∈ N successively

nm(ω) := inf
{
n ∈ N

∣∣∣n > nm−1(ω) and ∃t ∈ [τm−1(ω), σm−1(ω)
]

with M̃n
t (ω) ≥ 2m + 1

}
,

τm(ω) := inf
{
t ∈ (τm−1(ω), σm−1(ω)

)|M̃nm(ω)
t (ω) ≥ 2m + 1

}∧ 1,

σm(ω) := inf
{
t > τm(ω)|M̃nm(ω)

t (ω) < 2m}∧ σm−1(ω).

By construction and the continuity of M̃n we then have, for all k ≥ m, that

M̃
nm(ω)
t (ω) ≥ 2m for all t ∈ [τk(ω), σk(ω)

]
on {τk < 1}. Therefore setting τ := limm→∞ τm gives that

M̃nm(ω)
τ (ω) ≥ 2m for all m
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on {τ < 1}. So it only remains to show that

P(τ < 1) ≥ 1 − ε.(4.2)

We prove (4.2) by induction. For this, assume that there exists for each m ∈ N0,
some αm > 0 and Nm ∈ N0 such that P(Dm) < 1 − ε2−m for

Dm := {
σm > τm + αm,nm ∈ (Nm−1,Nm]}.(4.3)

Indeed, for m = 0, we can choose α0 = 1
2 ,N−1 = 0 and N0 = 1. Regarding the

induction step we first show that nm < ∞ P -a.s. on Dm−1. To that end, we can
assume w.l.o.g. that the (M̃n)∞n=1 are also independent by choosing the blocks of
which we take the convex combinations disjoint and passing to a subsequence. As
we are only making an assertion about the limes superior, this will be sufficient.
Moreover, we observe that

F := {nm < ∞} ∩ Dm−1 =
∞⋃

n=Nm−1

Fn ∩ Dm−1

with Fn := {∃t ∈ (τm−1(ω), σm−1(ω)]|M̃n
t (ω) ≥ 2m + 1}. Then using the estimate

1 − x ≤ exp(−x) and the independence of the Fn of each other and Dm−1 gives

P
(
Dm−1 ∩ Fc)= lim

k→∞P

(
k⋂

n=Nm−1

Fc
n

)
P(Dm−1)

= lim
k→∞

k∏
n=Nm−1

(
1 − P(Fn)

)
P(Dm−1)

≤ lim
k→∞ exp

(
−

k∑
n=Nm−1

P(Fn)

)
P(Dm−1).

Since
∑∞

n=Nm−1
P(Fn) = ∞ by Lemma 4.3, this implies that P(Dm−1 ∩ Fc) = 0

and hence that nm < ∞ P -a.s. on Dm−1. More precisely, by applying Lemma 4.3
for c = 2m with τ = τm−1, σ = σm−1 and A = Dm−1 to M̃n for n ≥ Nm−1, we get
that P(Fn) ≥ γ > 0 for all n ≥ Nm−1. Therefore τm < 1 P -a.s. on Dm−1 as well.
By the continuity of the M̃n and, as τm < 1

2 on Dm−1, we obtain that 1
2 ≥ σm > τm

P -a.s. on Dm−1, which finishes the induction step.
Now, since {τ < 1} ⊇⋂∞

m=1 Dm =: D and

P(D) ≥ 1 −
∞∑

m=1

P
(
Dc

m

)= 1 −
∞∑

m=1

ε

2m
= 1 − ε,

we have established (4.3), which completes the proof of the proposition. �
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5. Proof of Theorem 2.8. We now pass to the proof of Theorem 2.8. The
following lemma yields a building block.

LEMMA 5.1. Let W = (Wt)0≤t≤1 be a standard Brownian motion on (�,F,

F,P ) and 
 a [0,1] ∪ {∞}-valued stopping time. Then there exists a sequence
(ϕn)∞n=1 of predictable integrands of finite variation such that Mn := ϕn ·W ≥ −1
is a bounded martingale for each n ∈ N and

Mn
τ

P -a.s.−→ −1�
,1�(τ ) = −1{τ>
}, as n → ∞,(5.1)

for all [0,1]-valued stopping times τ .

PROOF. We consider the case 
 ≡ 0 first. There are many possible choices for
the integrands (ϕn)∞n=1. To come up with one, we use the deterministic functions

ψn
t := 1

2−n − t
1(0,2−n)(t).

Then the continuous martingales Nn := (ψn ·Wt)0≤t<2−n are well defined, for each
n ∈ N. It follows from the Dambis–Dubins–Schwarz theorem that the stopping
times

τn := inf
{
t ∈ (0,2−n)|Nn

t = −1
}
,

σn,k := inf
{
t ∈ (0,2−n)|Nn

t > k
}

are P -a.s. strictly smaller than 2−n for all n, k ∈N, since〈
Nn〉

t = 1

2−n − t
− 1

2−n
for t ∈ [0,2−n)

and limt↗2−n〈Nn〉t = ∞. Therefore setting ψ̃n,k = ψn1�0,τn∧σn,k � gives a se-
quence

Ñn,k = ψ̃n,k ·W = (
ψn ·W )τn∧σn,k

of bounded martingales such that, for all [0,1]-valued stopping times τ ,

Ñn,k
τ

P -a.s.−→ −1 on
{
τ ≥ 2−n}, as k → ∞,

since σn,k ↗ 2−n P -a.s, as k → ∞. Defining ϕn := ψ̃n,k(n) and Mn = Ñn,k(n) as
a suitable diagonal sequence such that Mn

2−n = Ñ
n,k(n)

2−n → −1, as n → ∞, then

yields the assertion for 
 ≡ 0, as Mn
0 = 0 for all n ∈ N and 1{τ≥2−n}

P -a.s.−→ 1{τ>0},
as n → ∞.

Next we observe that if we consider for some [0,1] ∪ {∞}-valued stopping
time σ the stopped Brownian notion Wσ = (Wσ∧t )0≤t≤1, then we obtain by the
above argument that(

Mn)σ
τ = Mn

σ∧τ = (
ϕn •

(
Wσ ))

τ

P -a.s.−→ 1(0,1)(σ ∧ τ)

for every [0,1]-valued stopping time τ .
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For the general case 
 
≡ 0, consider the process Wt := (Wt+
 − W
)0≤t≤1

which is a Brownian motion with respect to the filtration F := (F t )0≤t≤1 :=
(F(t+
)∧1)0≤t≤1 that is independent of F
 and stopped at the F-stopping time
σ̄ := (1 − 
). Then the general case 
 
≡ 0 follows by applying the result for 
 ≡ 0
for the stopped Brownian motion W and the stopping time τ̄ = (τ −
){τ>
} which
is always smaller than σ̄ . Indeed, as the corresponding martingales M

n
obtained

for W with respect to (F t )0≤t≤1 start at 0, the processes

Mn
t (ω) =

{
0, t ≤ 
(ω) ∧ 1,

M
n

t+
(ω)(ω), 
(ω) < t ≤ 1,

are martingales with respect to the filtration F = (Ft )0≤t≤1 that converge to
1�
,1�(τ ) P -a.s. for every [0,1]-valued F-stopping time τ . �

PROOF OF THEOREM 2.8. Let X = M − A be the Mertens decomposition of
the optional strong supermartingale X. It is then sufficient to show the assertion
for M and A separately.

(1) We begin with the local martingale M . As any localizing sequence (τm)∞m=1
of stopping times for M gives a sequence M̃m := Mτm of martingales that con-
verges uniformly in probability, we obtain a sequence M

n
of martingales that

converges P -a.s. uniformly to M by passing to a subsequence (M̃)∞n=1 such that
P(τn < 1) < 2−n. To see that we can choose the Mn to be bounded, we observe
that setting

M
n,k

t := E
[
M

n

1 ∧ k ∨ −k|Ft

]
for t ∈ [0,1] gives for every martingale M

n
a sequence of bounded martingales

M
n,k = (M

n,k

t )0≤t≤1 such that M
n,k

1
L1(P )−→ M

n

1, as k → ∞, and therefore locally
in H1(P ) by Theorem 4.2.1 in [10]. By the Burkholder–Davis–Gundy inequality
(see, e.g., Theorem IV.48 in [16]), this also implies uniform convergence in prob-
ability and hence P -a.s. uniform convergence by passing to a subsequence, again

indexed by k. Then taking a diagonal sequence (M
n,k(n)

)∞n=1 gives a sequence of

martingales (Mn)∞n=1 = (M
n,k(n)

)∞n=1 that converges P -a.s. uniformly to M and
therefore also satisfies (2.6) for every [0,1]-valued stopping time τ .

(2) To prove the assertion for the predictable part A, we decompose

A = Ac +
∞∑
i=1

�+Aσi
1�σi,1� +

∞∑
j=1

�A
j
1�
j ,1�

into its continuous part Ac, its totally right-discontinuous part Ard :=∑∞
i=1 �+Aσi

1�σi,1� and totally left-discontinuous part Ald :=∑∞
j=1 �A
j

1�
j ,1�.
By superposition it is sufficient to approximate −Ac, each single right jump
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process −Aσi
1�σi,1� for i ∈ N and each single left jump process −�A
j

1�
j ,1�

for j ∈ N separately. Indeed, let (Mc,n)∞n=1, (Mrd,i,n)∞n=1 for each i ∈ N and
(Mld,j,n)∞n=1 for each j ∈N be sequences of bounded martingales such that

Mc,n
τ

P−→ −Ac
τ ,(5.2)

Mrd,i,n
τ

P−→ −�+Aσi
1�σi ,1�(τ ),(5.3)

Mld,j,n
τ

P−→ −�A
j
1�
j ,1�(τ ),(5.4)

as n → ∞, for all [0,1]-valued stopping times τ . Then setting

Mn := Mc,n +
n∑

i=1

Mrd,i,n +
n∑

j=1

Mld,j,n

gives a sequence of bounded martingales such that Mn
τ

P−→ −Aτ , as n → ∞, for
all [0,1]-valued stopping times τ .

(2a) We begin with showing the existence of (Mrd,i,n)∞n=1 for some fixed i ∈ N.
For this, we set

ϑ
i,n
t := (�+Aσi

∧ n)1�σi,1�ϕ
n
t ∈ L2(W),

where (ϕn)∞n=1 is a sequence of integrands as obtained in Lemma 5.1 for the stop-

ping time 
 = σi . Then it follows immediately from Lemma 5.1 that ϑi,n ·Wτ
P -a.s.−→

�+Aσi
1�σi ,1�(τ ), as n → ∞, for every [0,1]-valued stopping time τ and therefore

that

Mrd,i,n := ϑi,n ·W
gives a sequence of bounded martingales such that (5.3) holds. Note that by the
construction of the integrands ϕn in Lemma 5.1 the approximating martingales
Mrd,i,n are 0 on �0, σi �, constant to either −�+Aσi

∧ n or (�+Aσi
∧ n)k(n) on

�σi + 2−n,1�. Therefore they converge P -a.s. uniformly to −�+Aσi
on �σi +

2−m,1� for each m ∈ N.
(2b) To obtain the approximating sequence (Mld,j,n)∞n=1 for some fixed j ∈ N,

we observe that the stopping time 
j is predictable and let (
j,k)
∞
k=1 be an an-

nouncing sequence of stopping times, that is, a nondecreasing sequence of stop-

ping times such that 
j,k < 
j on {
j > 0} and 
j,k
P -a.s.−→ 
j , as k → ∞. Since

�A
j
∈ L1(P ) is F
j−-measurable by Theorem IV.67.b) in [7] and F
j− =∨∞

k=1 F
j,k
by Theorem IV.56.d) in [7], we have that

E[�A
j
|F
j,k

]P -a.s.−→ �A
j
, as k → ∞,(5.5)

by martingale convergence. Therefore setting

Ãld,j,k := E[�A
j
|F
j,k

]1�
j,k,1�(5.6)
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gives a sequence of single right jump processes that converges to �A
j
1�
j ,1�

P -a.s. at each [0,1]-valued stopping time τ , since 1�
j,k,,1�(τ )
P -a.s.−→ 1�
j ,1�(τ ),

as k → ∞, for all [0,1]-valued stopping times τ .
By part (2a) there exists for each k ∈ N a sequence (M̃j,k,n)∞n=1 of bounded

martingales such that M̃
j,k,n
τ

P -a.s.−→ −Ã
ld,j,k
τ , as n → ∞, for all [0,1]-valued stop-

ping times τ . For the stopping time 
j we can therefore find a diagonal sequence

(M̃j,k,n(k))∞k=1 such that M̃
j,k,n(k)

j

P -a.s.−→ −Ã
ld,j,k

j , as k → ∞. By the proof of

Lemma 5.1 and part (2a) above we can choose the martingales M̃j,k,n(k) such
that M̃j,k,n(k) ≡ 0 on �0, 
j,k � and M̃j,k,n(k) ≡ −(E[�A
j

|F
j,k
] ∧ n(k)) on

�(
j,k + 2−n(k))Fk
,1�, where the set

Fk :=
{
M̃

j,k,n(k)


j+2−n(k) = −(E[�A
j
|F
j,k

] ∧ n(k)
)}

has probability P(Fk) > 1 − 2−k . This sequence (M̃j,k,n(k))∞k=1 therefore already

satisfies M̃
j,k,n(k)
τ

P -a.s.−→ −�A
j
1�
j ,1�(τ ) for all [0,1]-valued stopping times τ

and we have (5.4).
(2c) For the approximation of the continuous part Ac, we observe that by the

left-continuity and adaptedness of Ac there exists a sequence (Ãn)∞n=1 of nonde-
creasing integrable simple predictable processes that converges uniformly in prob-
ability to Ac and hence P -a.s. uniform by passing to a fast convergent subsequence
again indexed by n; see for example Theorem II.10 in [16]. Recall that a simple
predictable process is a predictable process Ã of the form

Ã =
m∑

i=1

�+Aσi
1�σi ,1�,(5.7)

where (σi)
m
i=1 are [0,1] ∪ {∞}-valued stopping times such that σi < σi+1 for i =

1, . . . ,m − 1 and �+Aσi
is Fσi

-measurable.
By part (2a) there exists, for each n ∈ N, a sequence (M̃n,k)∞k=1 of martingales

such that M̃n,k
τ

P -a.s.−→ −Ãn
τ , as k → ∞, for all [0,1]-valued stopping times τ . There-

fore we can pass to a diagonal sequence M̃n,k(n) such that

P
[

lim
n→∞ M̃n,k(n)

q = −Ac
q,∀q ∈ Q∩ [0,1]

]
= 1.(5.8)

By Theorem 2.7 there exists a sequence (Mn)∞n=1 of convex combinations

Mn ∈ conv
(
M̃n,k(n), M̃n+1,k(n+1), . . .

)
and an optional strong supermartingale X such that Mn

τ

P−→ Xτ for all [0,1]-
valued stopping times τ .

To complete the proof it therefore only remains to show that X = −Ac. For this,
we argue by contradiction and assume that the optional set G := {X 
= −Ac} is not
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evanescent, that is, that P(π(G)) > 0, where π((ω, t)) = ω denotes the projection
on the first component. By the optional cross-section theorem (Theorem IV.84 in
[8]) there then exists a [0,1] ∪ {∞}-valued stopping time τ such that Xτ 
= −Ac

τ

on F := {τ < ∞} with P(F) > 0, which we can decompose into an accessible
stopping time τA and a totally inaccessible stopping time τ I such that τ = τA ∧ τ I

by Theorem IV.81.c) in [7]. On {τ I < ∞} we obtain that Mn
τI − = Mn

τI

P−→ XτI

and Ac
τI − = Ac

τI from the continuity of Mn and Ac. Therefore XτI = −Ac
τI , as

Mn
τI −

P−→ XτI − by Proposition 2.9 and XτI − = −Ac
τI − by (5.8). This implies

that P(τ I < ∞) = 0 and hence P(τA < ∞) = P(F) > 0. Since τA is accessible,
there exists a predictable stopping time σ such that P(τA = σ < ∞) > 0. By the
strong supermartingale property of X we have that

Xσ− ≥ E[Xσ |Fσ−] ≥ E[Xσ+|Fσ−] on {σ < ∞},
as σ is predictable. Since X− = −Ac− and X+ = −Ac+ by (5.8), this implies that
Xσ = −Ac

σ by the continuity of Ac. However, this contradicts P(F) > 0 and there-
fore shows (5.2), which completes the proof. �

6. Proof of Theorem 2.11. We begin with the proof of Proposition 2.9, and
for this, we will use the following variant of Doob’s up-crossing inequality that
holds uniformly over the set X of nonnegative optional strong supermartingales
X = (Xt)0≤t≤1 starting at X0 = 1.

LEMMA 6.1. For each ε > 0 and δ > 0, there exists a constant C = C(ε, δ) ∈
N such that

sup
X∈X

P
[
Mε(X) > C

]
< δ,

where the random variable Mε(X) is pathwise defined as the maximal amount of
moves of the process X of size bigger than ε, that is,

Mε(X)(ω)

:= sup
{
m ∈ N

∣∣∣∣∣Xti (ω) − Xti−1(ω)
∣∣> ε, for 0 ≤ t0 < t1 < · · · < tm ≤ 1

}
.

PROOF. Choose n ∈ N such that 1
n

≤ ε
2 , fix some X ∈ X and denote by X =

M −A its Mertens decomposition. Then M = X +A is a nonnegative càdlàg local
martingale and hence a càdlàg supermartingale such that

E[Mt ] ≤ 1

for all t ∈ [0,1]. Letting C1 ∈ N with C1 ≥ 2
δ

we obtain from Doob’s maximal
inequality that

P
(
M∗

1 := sup
0≤s≤1

Ms > C1

)
≤ 1

C1
≤ δ

2
.
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Then we divide the interval [0,C1] into nC1 =: N subintervals Ik := [ k
N

, k+1
N

] of
equal length of at most ε

2 for k = 0, . . . ,N − 1. The basic intuition behind this is
that whenever the nonnegative (càdlàg) local martingale M = (Mt)0≤t≤1 moves
more than ε, while its supremum stays below C1, it has at least to cross one of the
subintervals Ik . For each interval Ik we can estimate the number U(M; Ik) of up-
crossings of the interval Ik by the process M = (Mt)0≤t≤1 up to time 1 by Doob’s
up-crossing inequality by

P
[
U(M; Ik) > C2

]≤ N

C2
E
[
U(M; Ik)

]≤ N

C2
sup

0≤t≤1
E[Mt ] ≤ N

C2
.

Choosing C̃2 = 2N2

δ
we obtain that

P
[
U(M; Ik) > C̃2

]≤ δ

2N
.

Then summing over all intervals gives for the number Uε(M) of up-moves of the
process M of size ε that

P
[
Uε(M) > C̃2N

]
≤ P

[
M∗

1 ≤ C1,∃k ∈ {1, . . . ,N} with U(M; Ik) > C̃2
]+ P

[
M∗

1 > C1
]≤ δ.

Since X = M − A is nonnegative starting at X0 = 1 and A is nondecreasing, the
number Mε(X) of moves of X of size ε is smaller than 2(Uε(X) + N). Therefore
we can conclude that

P
[
Mε(X) > C

]≤ δ(6.1)

for C = 2(C̃2 + 1)N . To complete the proof, we observe that the constants C1

and C = 2(C̃2 + 1)N are independent of the choice of the optional strong super-
martingale X ∈ X, and we can therefore take the supremum over all X ∈ X in the
inequality (6.1). �

Let X = (Xt)0≤t≤1 be a làg (existence of left limits) process and τ be a (0,1]-
valued stopping time. For m ∈ N, let τm be the mth dyadic approximation of the
stopping time τ as defined in (3.2). Note that τm is { 1

2m , . . . ,1}-valued, as τ > 0.
As (Xt)0≤t≤1 is assured to have làg trajectories, we obtain

Xτm−2−m
P -a.s.−→ Xτ−, as m → ∞,(6.2)

and therefore in probability. The next lemma gives a quantitative version of this
rather obvious fact.

LEMMA 6.2. Let τ be a totally inaccessible (0,1]-valued stopping time. Then
the convergence in (6.2) above holds true in probability uniformly over all nonneg-
ative optional strong supermartingales X ∈ X, that is, X = (Xt)0≤t≤1, starting at
X0 = 1. More precisely, we have for each ε > 0 that

lim
m→∞ sup

X∈X
P
[|Xτm−2−m − Xτ−| > ε

]= 0.(6.3)
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PROOF. Denote by A = (At )0≤t≤1 the compensator of τ , which is the unique
continuous increasing process such that (1�τ,1� − At)0≤t≤1 is a martingale. For
every predictable set G ⊆ � × [0,1], we then have

P [τ ∈ G] = E[1G1�τ �] = E

[∫ 1

0
1G(t) d1�τ,1�(t)

]
= E

[∫ 1

0
1G(t) dAt

]
.(6.4)

Here we used that the predictable σ -algebra on � × [0,1] is generated by the left-
open stochastic intervals, that is, intervals of the form �σ1, σ2� for stopping times
σ1 and σ2 and a monotone class argument to deduce the second equality in (6.4).
The third equality is the definition of the compensator. Fix X ∈ X, ε > 0, δ > 0
and apply Lemma 6.1 and the integrability of A1 to find c = c(ε, δ, τ ) such that
the exceptional set

F1 = {
Mε(X) ≥ c

}
(6.5)

satisfies

E[1F1A1] < δ.(6.6)

Find m large enough such that

E[1F2A1] < δ,(6.7)

where F2 is the exceptional set

F2 =
{
∃k ∈ {1, . . . ,2m} such that Ak/2m − A(k−1)/2m >

δ

c

}
.(6.8)

Define G to be the predictable set

G =
2m⋃
k=1

{
(ω, t)

∣∣∣∣k − 1

2m
< t ≤ k

2m
and

(6.9)

sup
(k−1)/2m≤u≤t

∣∣Xu−(ω) − X(k−1)/2m(ω)
∣∣≤ ε

}
.

We then have P [τ /∈ G] < 3δ. Indeed, applying (6.4) to the complement Gc of G

we get

P [τ /∈ G] = E

[
(1F1∪F2 + 1�\(F1∪F2))

∫ 1

0
1Gc dAt

]
,

where F1 and F2 denote the exceptional sets in (6.5) and (6.8). By (6.6) and (6.7),

E

[
1F1∪F2

∫ 1

0
1Gc dAt

]
≤ 2δ.(6.10)

On the set � \ (F1 ∪ F2) we deduce from (6.5), (6.8) and (6.9) that∫ 1

0
1Gc dAt ≤ c

δ

c
= δ
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so that

P [τ /∈ G] ≤ 3δ.(6.11)

For (ω, t) ∈ G such that k−1
2m < t ≤ k

2m , we have∣∣Xt−(ω) − X(k−1)/2m(ω)
∣∣≤ ε

so that by (6.11) we get

P
[|Xτ− − Xτm−2−m | > ε

]
< 3δ,

which shows (6.3). �

PROOF OF PROPOSITION 2.9. Fix ε > 0, and apply Lemma 6.2 to find m ∈ N

such that

P
[|X̃τm−2−m − X̃τ−| > ε

]
< ε,(6.12)

for each X̃ ∈ X. As (Xn
q)∞n=1 converges to Xq in probability, for every rational

number q ∈Q∩ [0,1] we have

P

[
max

0≤k≤2m

∣∣Xn
k/2m − Xk/2m

∣∣> ε

]
< ε,

for all n ≥ N(ε). We then may apply (6.12) to Xn and X to conclude that

P
[∣∣Xn

τ− − Xτ−
∣∣> 3ε

]
< 3ε. �

With Proposition 2.9 we have now everything in place to prove Theorem 2.11.

PROOF OF THEOREM 2.11. The existence of the optional strong supermartin-
gale X(1) is the assertion of Theorem 2.7. To obtain the predictable strong super-
martingale X(0), we observe that, since X̃n and X(1) are làdlàg, the optional set

F :=
∞⋃

n=1

{
X̃n 
= X̃n−

}∪ {X(1) 
= X
(1)
−
}

has at most countably many sections, and therefore there exists by Theorem 117
in Appendix IV of [7] a countable number of [0,1] ∪ {∞}-valued stopping times
(σm)∞m=1 with disjoint graphs such that F =⋃∞

m=1�σm�. By Theorem IV.81.c) in
[7] we can decompose each stopping time σm into an accessible stopping time σA

m

and a totally inaccessible stopping time σ I
m such that σm = σA

m ∧ σ I
m. Again com-

bining Komlós’s lemma with a diagonalization procedure we obtain a sequence

of convex combinations X̃n ∈ conv(Xn,Xn+1, . . .) such that X̃n
τ

P−→ X
(1)
τ for all

[0,1]-valued stopping times τ as well as

X̃n
τm−

P -a.s.−−−→Y (0)
m , as n → ∞,
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for all stopping times τm := σA
m ∧ 1 and suitable nonnegative random variables

Y
(0)
m for m ∈ N. Now we can define X(0) by

X
(0)
t (ω) =

{
Y

(0)
m (ω), t = σA

m(ω) and m ∈ N,

X
(1)
t− (ω) = X

(1)
t (ω), else.

For all [0,1]-valued stopping times τ , we then have convergence (2.10), that is,

X̃n
τ−(ω) = X̃n

τ (ω)1F

(
ω, τ(ω)

)+ ∞∑
m=1

X̃n

τ−
m
1{σA

m =τ } +
∞∑

m=1

X̃n
σ I

m−1{σI
m=τ }

P−→ X(0)
τ (ω)1F

(
ω, τ, (ω)

)+ ∞∑
m=1

Y (0)
m 1{σA

m =τ } +
∞∑

m=1

X
(1)

σ I
m−1{σI

m=τ },

since X̃n = X̃n− for all n ∈ N on F and X̃n
σ−1{σ=τ }

P−→ Xσ−1{σ=τ } for all [0,1]-
valued totally inaccessible stopping times τ by Proposition 2.9. As all stopping
times σA

m are accessible and each Y
(0)
m is Fτm−-measurable, we have that X(0) is

an accessible process such that X
(0)
τ 1{τ<∞} is Fτ−-measurable for every stopping

time τ . Therefore X(0) is by Theorem 3.20 in [6] even predictable. By Remark 5.(c)
in Appendix I of [8] the left limit process X̃n− of each optional strong supermartin-
gale X̃n is a predictable strong supermartingale satisfying

X̃n
τ− ≥ E

[
X̃n

τ |Fτ−
]

for all [0,1]-valued predictable stopping times. Therefore the predictable strong

supermartingale property [part (3) of Definition 2.10] and X
(0)
τ ≥ E[X(1)

τ |Fτ−]
follow immediately from (2.9) and (2.10) by Fatou’s lemma. To see X

(1)
τ− ≥ X

(0)
τ ,

let (τm)∞m=1 be a foretelling sequence of stopping times for the predictable stopping
time τ . Then we have

X̃n
τm

≥ E
[
X̃n

τm+k
|Fτm

]
for all n,m, k ∈N. Applying Fatou’s lemma we then obtain

X̃n
τm

≥ E
[
X̃n

τ−|Fτm

]
by sending k → ∞,

X(1)
τm

≥ E
[
X

(0)
τ−|Fτm

]
by sending also n → ∞ and finally X

(1)
τ− ≥ X

(0)
τ by sending m → ∞. �
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7. Proof of Proposition 2.12. One application of Theorem 2.11 is a conver-
gence result for stochastic integrals of predictable integrands of finite variation
with respect to nonnegative optional strong supermartingales.

Fix a nonnegative optional strong supermartingale X ∈ X, and let ϕ = (ϕt )0≤t≤1
be a predictable process of finite variation, so that it has làdlàg paths. We then
define ∫ t

0
Xu(ω)dϕu(ω) :=

∫ t

0
Xu(ω)dϕc

u(ω) + ∑
0<u≤t

Xu−(ω)�ϕu(ω)

(7.1) + ∑
0≤u<t

Xu(ω)�+ϕu(ω)

for all t ∈ [0,1], which is P -a.s. pathwise well defined, as X is ládlág and ϕ of
finite variation. Here the integral

∫ t
0 Xu(ω)dϕc

u(ω) with respect to the continuous
part ϕc [see (2.12)] can be defined as a pathwise Riemann–Stieltjes integral or a
pathwise Lebesgue–Stieltjes integral, as both integrals coincide.

To ensure the integration by parts formula

ϕt(ω)Xt(ω) − ϕ0(ω)X0(ω) =
∫ t

0
ϕu(ω)dXu(ω) +

∫ t

0
Xu(ω)dϕu(ω),(7.2)

we define the stochastic integral ϕ ·Xt := ∫ t
0 ϕu dXu by∫ t

0
ϕu(ω)dXu(ω) :=

∫ t

0
ϕc

u(ω)dXu(ω) + ∑
0<u≤t

�ϕu(ω)
(
Xt(ω) − Xu−(ω)

)
(7.3)

+ ∑
0≤u<t

�+ϕu(ω)
(
Xt(ω) − Xu(ω)

)
for t ∈ [0,1] that is again pathwise well defined. The integral

∫ t
0 ϕc

u(ω)dXu(ω)

can again be defined as a pathwise Riemann–Stieltjes integral or a pathwise
Lebesgue–Stieltjes integral. If X = (Xt)0≤t≤1 is a semimartingale, the definition
of (

∫ t
0 ϕu dXu)0≤t≤1 via (7.3) coincides with the classical stochastic integral.

We first derive an auxiliary result.

LEMMA 7.1. Let (Xn)∞n=1, X(0) and X(1) be làdlàg stochastic processes such
that:

(i) Xn
τ

P−→ X
(1)
τ and Xn

τ−
P−→ X

(0)
τ for all [0,1]-valued stopping times τ ;

(ii) for all ε > 0 and δ > 0, there are constants C1(δ) > 0 and C2(ε, δ) > 0
such that

sup
X∈X 0

P
[

sup
0≤s≤1

|Xs | > C1(δ)
]
≤ δ,(7.4)

sup
X∈X 1

P
[
Mε(X) > C2(ε, δ)

]≤ δ,(7.5)
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where X 0 = {X(0),X(1),Xn,Xn− for n ∈ N}, X 1 = {X(1),Xn for n ∈ N} and

Mε(X) := sup
{
m ∈N

∣∣∣∣∣Xti (ω) − Xti−1(ω)
∣∣> ε for 0 ≤ t0 < t1 < · · · < tm ≤ 1

}
for X ∈ X 1.

Then we have, for all predictable processes ϕ = (ϕt )0≤t≤1 of finite variation, that:∫ τ

0
Xn

u dϕu
P−→

∫ τ

0
X(1)

u dϕc
u + ∑

0<u≤τ

X(0)
u �ϕu + ∑

0≤u<τ

X(1)
u �+ϕu;(1)

∫ τ

0
ϕu dXn

u

P−→
∫ τ

0
ϕc

u dX(1)
u + ∑

0<u≤τ

�ϕu

(
X(1)

τ − X(0)
u

)
(2)

+ ∑
0≤u<τ

�+ϕu

(
X(1)

τ − X(1)
u

)
for all [0,1]-valued stopping times τ . Convergence (1) is even uniformly in proba-
bility.

PROOF. (1) We first show that

sup
0≤t≤1

∣∣∣∣ ∑
0<u≤t

Xn
u−�ϕu − ∑

0<u≤t

X
(0)
u−�ϕu

∣∣∣∣ P−→ 0, as n → ∞,(7.6)

that is, uniformly in probability. The proof of the convergence

sup
0≤t≤1

∣∣∣∣ ∑
0<u≤t

Xn
u�+ϕu − ∑

0<u≤t

X
(1)
u−�+ϕu

∣∣∣∣ P−→ 0, as n → ∞,

is completely analog and therefore omitted.
Since ϕ is predictable and of finite variation and hence làdlàg, there exists a

sequence (τm)∞m=1 of [0,1] ∪ {∞}-valued stopping times exhausting the jumps
of ϕ. Using the stopping times (τm)∞m=1 we can write

∑
0<u≤t

Xu�ϕu =
∞∑

m=1

Xτm�ϕτm1{τm≤t}

for all X ∈ X 0 and estimate

sup
0≤t≤1

∣∣∣∣∣
∞∑

m=1

Xn
τm−�ϕτm1{τm≤t} −

∞∑
m=1

X(0)
τm

�ϕτm1{τm≤t}
∣∣∣∣∣

(7.7)

≤
N∑

m=1

∣∣Xn
τm− − X(0)

τm

∣∣∣∣�ϕτm

∣∣+ sup
m∈N

∣∣Xn
τm− − X(0)

τm

∣∣ ∞∑
m=N+1

|�ϕτm |.
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Combining (7.7) with the fact that ϕ is of finite variation we obtain (7.6), as

sup
m∈N

∣∣Xn
τm− − X(0)

τm

∣∣ ∞∑
m=N+1

|�ϕτm | P−→ 0, as N → ∞,

by (7.4) and
∑N

m=1 |Xn
τm− − X

(0)
τm ||�ϕτm | P−→ 0, as n → ∞, for each N by as-

sumption (i).
The key observation for the proof of the convergence

sup
0≤t≤1

∣∣∣∣∫ t

0
Xn

u dϕc
u −

∫ t

0
X(1)

u dϕc
u

∣∣∣∣ P−→ 0, as n → ∞,(7.8)

is that we can use assumption (ii) to approximate the stochastic Riemann–Stieltjes
integrals by Riemann sums in probability uniformly for all X ∈ X 1, as either the
integrator or the integrand moves very little. Indeed, for ε > 0 and c1, c2 > 0, we
have that

sup
0≤t≤1

∣∣∣∣∣
∫ t

0
Xu dϕc

u −
N∑

m=1

Xσm−1

(
ϕc

σm∧t − ϕc
σm−1∧t

)∣∣∣∣∣
≤

N∑
m=1

sup
u∈[σm−1,σm]

|Xu − Xσm−1 |
(∣∣ϕc

∣∣
σm

− ∣∣ϕc
∣∣
σm−1

)
≤ c22c1

ε

4c1c2
+ ε

2c1
c1 = ε

on {|ϕ|1 ≤ c1} ∩ {X∗
1 ≤ c1} ∩ {Mε/(2c1)(X) ≤ c2}, where the stopping times

(σm)∞m=0 are given by σ0 = 0 and

σm := inf
{
t > σm−1

∣∣∣∣∣∣ϕc
∣∣
t − ∣∣ϕc

∣∣
σm−1

>
ε

4c1c2

}
∧ 1

and N = 4c1c2
ε

. Choosing c1, c2 > 0 and hence N sufficiently large we therefore
obtain

sup
X∈X 1

P

(
sup

0≤t≤1

∣∣∣∣∣
∫ t

0
Xn dϕc

u −
N∑

m=1

Xσm−1

(
ϕc

σm∧t − ϕc
σm−1∧t

)∣∣∣∣∣> ε

)
< δ

for any δ > 0 by assumption (ii). Combing this with the estimate

sup
0≤t≤1

∣∣∣∣∫ t

0
Xn

u dϕc
u −

∫ t

0
X(1)

u dϕc
u

∣∣∣∣
≤ sup

0≤t≤1

∣∣∣∣∣
∫ t

0
Xn

u dϕc
u −

N∑
m=1

Xn
σm−1

(
ϕc

σm∧t − ϕc
σm−1∧t

)∣∣∣∣∣
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+
N∑

m=1

∣∣Xn
σm−1

− X(1)
σm−1

∣∣(∣∣ϕc
∣∣
σm

− ∣∣ϕc
∣∣
σm−1

)

+ sup
0≤t≤1

∣∣∣∣∣
∫ t

0
X(1)

u dϕc
u −

N∑
m=1

X(1)
σm−1

(
ϕc

σm∧t − ϕc
σm−1∧t

)∣∣∣∣∣
then implies (7.8), as

max
m=0,...,N−1

∣∣Xn
σm

− X(1)
σm

∣∣ P−→ 0, as n → ∞,

for each fixed N by assumption (i).

(2) As Xn
τ ϕτ

P−→ X
(1)
τ ϕτ for all [0,1]-valued stopping times, this assertion fol-

lows immediately from (1) and the integration by parts formula (7.2). �

Combining the previous lemma with Lemma 6.1 allows us now to complete the
proof of Proposition 2.12.

PROOF OF PROPOSITION 2.12. Part (1) is Theorem 2.11, and part (2) fol-
lows from Lemma 7.1 as soon as we have shown that its assumptions are satis-
fied. Assumption (i) is (1) and for the set X 1 assumption (ii) can be derived from
Lemma 6.1. Therefore it only remains to show (7.4) for X(0) and Xn− for n ∈ N.
For the left limits (7.4) follows from the validity of the latter for the processes
Xn for n ∈ N and for the predictable strong supermartingale X(0) from (3.1) in
Appendix I of [8]. �
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