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Maximizing Social Welfare in Congestion Games via

Redistribution

Victor Naroditskiy

University of Southampton

Richard Steinberg

London School of Economics and Political Science

Abstract

It is well-known that efficient use of congestible resources can be achieved
via marginal pricing; however, payments collected from the agents generate a
budget surplus, which reduces social welfare. We show that an asymptotically
first-best solution in the number of agents can be achieved by the appropriate
redistribution of the budget surplus back to the agents.

1. Introduction

Congestion games model situations in which multiple agents use shared re-
sources, where each agent’s value of a resource decreases with the total usage
of the resource or, equivalently, the corresponding level of congestion, a neg-
ative externality. Thus, the higher the level of congestion, the less valuable
the resource is to an agent. From the viewpoint of social welfare, the best
use of resources occurs when the sum of the agents’ values is maximized, i.e.,
when the use of resources is efficient.

In order to direct self-interested agents towards the efficient use of re-
sources, one can resort to pricing. Specifically, requiring each agent to pay for
the corresponding disutility she imposes on others1 results in an efficient use
of the resources (see, e.g., MacKie-Mason and Varian (1995); Kelly (1997)).
While such pricing will maximize the agents’ total value, each agent who

1These payments are known as Pigouvian taxes (Pigou, 1920), marginal cost prices, or
congestion prices.
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makes a payment will suffer a reduction in utility. In some contexts, the col-
lected revenue is desirable, as it increases the utility of the party collecting it
(e.g., the seller). However, in many congestion scenarios the main objective is
the welfare of the agents, which is decreased by any payments collected (Cole
et al., 2006). Indeed, congestion scenarios often arise in settings where the
resources are intended for public use and not for the generation of revenue.
In this work we ask: How can social welfare be maximized in congestion
games? More specifically: How can most of the revenue be redistributed back
to the agents while ensuring that an efficient allocation is achieved?

In the first part of the paper, after observing that an atomic congestion
game can be modeled as the allocation of multiple copies of heterogeneous
items, we show that as the number of agents increases, all of the revenue can
be redistributed asymptotically while still achieving the efficient allocation.
Specifically, we prove that a redistribution rule designed for non-congestion
models by Bailey (1997) and generalized by Cavallo (2006) asymptotically
achieves full budget balance in the presence of congestion. Thus, we iden-
tify a first-best solution to the problem of welfare maximization in atomic
congestion games. It is interesting to observe that while in non-congestion
settings (e.g., allocating multiple copies for an identical item to agents with
unit demand) the revenue redistributed by Bailey-Cavallo can be arbitrar-
ily low, we show here that in congestion settings (asymptotically) all of the
revenue is redistributed.

In the atomic context, we also clarify the relationship between congestion
prices and VCG payments by proving that, as the efficient level of congestion
increases, the two asymptotically approach each other. Intuitively, both con-
gestion prices and VCG payments charge the agent for the “externality” she
imposes on others, and therefore, the connection between them is not entirely
surprising. However, we have not seen a formal analysis of the relationship
between the prices, while the two are normally treated separately (see, e.g.,
Sections 9.1 and 9.5 in Courcoubetis and Weber (2003)).

In the last section of the paper prior to the Discussion, we turn to non-
atomic congestion games. We show that revenue can be redistributed to the
agents in equal shares, resulting in a first-best solution. As the effect of an
individual agent on the total congestion in an atomic congestion game be-
comes negligibly small, the redistributed amounts for atomic and nonatomic
models coincide.

We now place our work within the existing literature. Revenue redis-
tribution has received considerable attention in the work on mechanism de-
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sign, mostly in the context of dominant-strategy implementation in allo-
cation models. Specifically, the agenda of welfare maximization in models
without a residual claimant has been pursued in the allocation of identical
items (Moulin, 2009; Guo and Conitzer, 2008, 2009; de Clippel et al., 2014),
the allocation of non-identical items (Guo, 2012), in public good settings
(Naroditskiy et al., 2012), and for the general application of redistribution
(Cavallo, 2006). However, the revenue redistribution literature has thus far
not considered scenarios with congestion, even though redistribution is im-
portant there. Indeed, many congestion scenarios are characterized by the
lack of a residual claimant (as argued above), and high amounts of revenue
collected before redistribution (as argued below). In this paper, we apply the
rule from (Cavallo, 2006) to redistribute revenue in a model with congestion.

Following this revenue redistribution literature, our results on atomic con-
gestion games are derived in the context of centralized mechanisms. Con-
gestion games are usually considered in a decentralized context. However,
centralized mechanisms have been applied to the study of congestion games,
e.g., in the context of computational complexity (Chakrabarty et al., 2005;
Blumrosen and Dobzinski, 2007). In more detail, Blumrosen and Dobzinski
(2007) derive computational complexity of finding welfare-maximizing use
of resources. The model they adopt is also different. In our atomic case,
agents have combinatorial preferences over the resources but share the same
congestion function. In their case, congestion functions are player specific,
and agents have non-combinatorial valuations over resources.

Well-studied in the field of congestion pricing are routing and traffic equi-
libria models (see, e.g., Roughgarden (2005)). In these models agents are to
be routed along the edges of a network with each agent associated with a
sink node and a source node. Edges on the network differ in their capacity to
carry traffic as reflected by edge-specific congestion functions. A congestion
function specifies the cost each agent routed along the edge experiences. The
objective is to induce a congestion-minimizing flow when agents make their
routing choices selfishly. However, the agents may arrive at a non-efficient
Nash equilibrium. A seminal text (Beckmann et al., 1956) shows how edges
can be priced in order to induce the efficient flow in Nash equilibrium. Specif-
ically, each edge is associated with the congestion price equal to the marginal
cost incurred by the agents using the edge.

The question of welfare-maximization in congestion domains has been
considered before. Cole et al. (2006) investigated how congestion prices can
be modified when no redistribution is possible. Redistribution of revenue was
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studied by Adler and Cetin (2001) within a model that had been introduced
by Vickrey (1969). In Vickrey’s model, congestion is manifested in waiting
times to use a resource. Agents form a queue, and the waiting time of each is
given by their position in the queue. Prices can be used to eliminate waiting
times by encouraging each agent to deviate from her preferred departure
time. Thus, agents have different costs. Deviation from the ideal departure
time can be interpreted as the level of service provided—the greater the
deviation, the lower the level of service. Payments of agents receiving a
higher level of service can be redistributed to agents receiving a lower level of
service. In contrast, in this paper we focus on a model where each allocated
agent obtains the same level of service, i.e., experiences the same level of
congestion, which is the case in congestion games.

The remainder of the paper is structured as follows. In Section 2 we
show that a first-best solution to welfare-maximization in atomic congestion
games is provided by applying the Bailey-Cavallo redistribution rule. We
derive the result for the single-resource congestion game first, and then for
general congestion games. This section also shows that congestion prices and
VCG payments in congestion settings are fundamentally similar. Section 3
talks about nonatomic routing games. There we prove that revenue can be
redistributed in equal shares. Concluding remarks appear in Section 4.

2. Centralized Solution: Atomic Congestion Games

This section focuses on games where the number of players is finite and each
may have a non-negligible effect on congestion. We describe how congestion
effects from these games can be represented in an allocation model, and apply
a redistribution rule that was designed for allocation settings.

The mapping between congestion and allocation models will make it clear
that the impossibility result regarding fully budget-balanced efficient mech-
anisms (Green and Laffont, 1977; Holmstrom, 1979) apply to our model.

Both allocation models and congestion models are concerned with allo-
cating scarce resources. A difference is that in most allocation models an
agent’s utility depends only on what is allocated to him, while in congestion
models an agent’s utility also depends on how many other agents use the
same resources. However, we can view each congestible resource as an item,
multiple copies of which can be allocated. Each copy has a cost representing
the total decrease in utility experienced by the agents due to sharing the
resource with one more agent. We illustrate this in Section 2.1.
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2.1. Single-Resource Atomic Congestion Game

We begin the study of welfare maximization in congestion settings by first
considering the model of a single congestible resource. We would like to apply
a redistribution rule designed for allocation settings, and begin by transform-
ing the congestion problem into an allocation problem. We then evaluate the
performance of the Bailey-Cavallo redistribution rule (Bailey, 1997; Cavallo,
2006) and prove that it is asymptotically optimal in the number agents. Fi-
nally, we extend the results to general multi-resource congestion games.

In the single-resource atomic routing model, n agents would like to travel
along a single link. Congestion on the link when k agents are routed is
denoted by the individual congestion function g(k), which measures the con-
gestion cost experienced by an agent using the link. Each agent has a private
value vi ∈ R for traveling along the link. Monetary transfers are allowed,
and agents’ utilities are quasi-linear.

To transform the congestion problem into an allocation problem, we first
consider the allocation model where k identical items are allocated among n
agents. The utility of an agent is

ui(v; f, t) = fi(v) vi − ti(v)

where fi(v) ∈ {0, 1} determines the allocation of agent i and ti(v) ∈ R

denotes the payment. The allocation function must satisfy the allocation
constraint,

∑
i fi(v) ≤ k.

We modify the allocation model to include congestion. To do this, we
remove the allocation constraint and express the agent’s utility as

ui(v) = fi(v) [vi − g(F )]− ti(v) where F =
∑
i

fi(v).

We make the standard assumption that g is convex (see, e.g., MacKie-Mason
and Varian (1995) or Courcoubetis and Weber (2003) Chapter 9.1). Here

G(k) = k g(k)

measures the total congestion cost.
We consider the class of efficient mechanisms : i.e., mechanisms where

the allocation rule maximizes the sum of the values of the allocated agents
taking congestion into account, i.e.,

max
f

∑
i

fi(v) [vi − g(F )]. (1)
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The socially optimal or efficient level of congestion is easy to characterize:
sorting the agents in decreasing order of values (v1 ≥ . . . ≥ vn), the efficient
allocation is fi(v)=1 for all i ≤ m(v), where

m(v) = argmax
i

{vi−g(i) > (i−1) [g(i)− g(i−1)]}. (2)

To ease notation, we will often write m instead of m(v) to denote the efficient
level of congestion when agents’ values are given by v.

The only mechanisms that implement the efficient level of congestion in
dominant strategies are the Groves mechanisms (see, e.g., Mas-Colell et al.
(1995)), which include the VCG mechanism. Under the VCG mechanism,
unallocated agents pay nothing, while allocated agents pay

tvcgi (v) = max {vm+1 − g(m), (m−1) [g(m)− g(m−1)]}. (3)

VCG payments have an intuitive explanation. The mechanism charges
each allocated agent i≤m the “externality” her presence imposes on others.
This externality is manifested in either forcing one agent out of the allocation
(in which case, the level of congestion does not change) or in having an
additional unit of traffic allocated (increasing the congestion experienced by
the other agents). In the former case, agent i takes an item away from agent
m+1 (this is the agent who would have been allocated had agent i ≤ m
not been there). The externality is the loss of utility vm+1−g(m) incurred
by agent m+1. Here, the maximum in (3) resolves to the first term, as
the requirement for agent m+1 to be allocated in absence of agent i is
vm+1−g(m) ≥ (m−1) [g(m)− g(m−1)]. In the latter case, only m−1 agents
are allocated when agent i is not there, and her presence decreases their
utility by the total of (m−1) [g(m)− g(m−1)].

All mechanisms within the Groves class can be described through VCG
payments together with a redistribution function h(v−i), where v−i refers to
the vector v with the ith component removed. Under a Groves mechanism,2

agent i pays

ti(v) = tvcgi (v) + h(v−i). (4)

2In fact, Groves mechanisms allow for non-anonymous payment functions: a different
function hi can be specified for each agent. However, the mechanism considered in this
paper uses the same function h for each agent.
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Definition 1. Grove mechanisms are specified by an efficient allocation func-
tion (i.e., the efficient level of congestion) and payments of the form (4).

Each Groves mechanism corresponds to a different redistribution function h.
Our goal is to find h that maximizes social welfare. Since social welfare is
reduced by the payments, we are looking for the function h that redistributes
as much of the VCG revenue as possible.

The VCG revenue is the sum of the VCG payments

R(v) =
∑
i

tvcgi (v). (5)

Observing that the VCG payment of each allocated agent is the same, the
revenue can be expressed as

R(v) = mmax {vm+1 − g(m), (m−1) [g(m)− g(m−1)]} . (6)

The higher the traffic, the higher the VCG payments, and the more revenue
that is collected. This revenue directly reduces the social welfare. As we
show next, for some valuations of the agents the entire social welfare is lost.

The maximum social welfare possible without external subsidies is the
value of the efficient allocation

m∑
i=1

[vi − g(m)] =
m∑
i=1

vi −mg(m).

However, all of this welfare may go into payments. For example, consider the
valuation profile where each allocated agent has the same value of v1 = . . . =
vm = g(m) + (m−1)[g(m) − g(m−1)] and vm+1 = . . . = vn = 0. The VCG
payment of each allocated agent is (m−1)[g(m)− g(m−1)], and the value of
the efficient allocation equals the VCG revenue (both are m(m−1)[g(m) −
g(m−1)]), resulting in zero welfare. This example represents the worst case
for social welfare. However, in comparison with the total congestion cost, a
relatively high revenue will always be collected—not just in the worst-case.
Specifically, we show in Lemma 7 that, for any profile of values, the VCG
revenue is close to or exceeds the total congestion cost.

Following the literature on redistribution in allocation domains (see, e.g.,
Moulin (2009); Guo and Conitzer (2009)), we would like to redistribute as
much of the revenue as possible. Following the literature, we adopt the
strictest performance metric—that of worst-case guarantee. The performance
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of a redistribution rule is measured by the fraction of revenue guaranteed to
be redistributed for any profile of agents’ valuations:

r = min
v

H(v)

R(v)

where H(v) =
∑
i

h(v−i).
(7)

The redistribution ratio r equals zero when no redistribution occurs and
equals one when the entire revenue is redistributed. Under this metric, the
redistribution ratio of the VCG mechanism is zero, as the example above
illustrates.

We will prove that applying the Bailey-Cavallo redistribution rule in the
congestion setting results in the redistribution of all the revenue asymptot-
ically in the number of agents. We begin with the definition of the Bailey-
Cavallo rule.

Definition 2. The Bailey-Cavallo rule redistributes to each agent an equal
share of the revenue collected had the agent not been present:

h(v−i) =
1

n
R(v−i) (8)

where R(v−i) =
∑
j �=i

tvcgj (v−i). (9)

From (7), the ratio of Bailey-Cavallo is:

r =
1

n
min
v

∑
i R(v−i)

R(v)
.

A crucial requirement of a redistribution function is that it should be no
deficit : i.e., it should not redistribute more revenue than has been collected,
otherwise, an external subsidy will be needed to run the mechanism.

Lemma 1. Bailey-Cavallo satisfies no deficit, H(v) ≤ R(v), for convex g.

Proof From (7) and (8), we want to show

H(v) ≤ R(v)∑
j

R(v−j)

n
≤ R(v).

8



It is enough to argue that for any excluded agent j, R(v−j) ≤ R(v). Recalling
(6)

R(v) = mmax{vm+1 − g(m), (m− 1)[g(m)− g(m− 1)]}.
Let m−j denote the number of items allocated when agent j is not present,
and observe that m−j ∈ {m− 1,m}. When m−j = m

R(v−j) = mmax{(v−j)m+1 − g(m), (m− 1)[g(m)− g(m− 1)]}
where (v−j)m+1 refers to them+1 element of vector v−j. As (v−j)m+1 ≤ vm+1,
it holds that R(v−j) ≤ R(v).

Now we consider the case m−j = m − 1. Observe that the excluded
agent can only be one of the first m agents: j ≤ m. Had agent j > m
been excluded, the first m agents would have been allocated contradicting
m−j = m− 1. Computing R(v−j) when m−j = m− 1 given that j ≤ m, we
obtain

R(v−j) = (m− 1)max{vm+1 − g(m− 1), (m− 2)[g(m− 1)− g(m− 2)]}
By convexity of g, the second term of the max for R(v−j), (m−2)[g(m−1)−
g(m− 2)], is less than the second term of the max for R(v), (m− 1)[g(m)−
g(m− 1)]. Thus, it is enough to focus on the first term of the max and show
that

(m− 1)(vm+1 − g(m− 1)) ≤ R(v).

Observe that from (6)

m(m− 1)(g(m)− g(m− 1)) ≤ R(v).

But

(m− 1)(vm+1 − g(m− 1)) ≤ m(m− 1)(g(m)− g(m− 1)).

follows from

vm+1 − g(m− 1) ≤ m(g(m)− g(m− 1))

which holds as only m − 1 agents are allocated (i.e., the agent with value
vm+1, who is the mth agent in the market without j, is not allocated). �
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We make an observation that provides intuition for why the proof of
revenue monotonicity is so involved. Counterintuitively, the VCG payment
of an agent may increase when another agent is removed. We illustrate this
on a problem with 3 agents: agents 1 and 2 have value 100 and agent 3
has value 4. The congestion function is g(1) = 0 and g(2) = 2. The VCG
payment of agent 1 is 2 when all agents are present and 4 when agent 2 is
removed. The total revenue collected, however, is 4 with and without agent
2.

Next, we bound the redistribution ratio by observing that the VCG pay-
ments can be bounded from below and above based on the efficient level of
congestion.

Lemma 2. The VCG payment of any allocated agent i is bounded by

(m−1) [g(m)− g(m−1)] ≤ tvcgi (v) ≤ (m+1) [g(m+1)− g(m)]. (10)

Proof The lower bound follows trivially from (3). We will now prove the
upper bound. Since the efficient allocation includes m and not m+1 agents,
we obtain vm+1 − g(m+1) ≤ m [g(m+1)− g(m)] and

vm+1 − g(m) ≤ m [g(m+1)− g(m)] + g(m+1)− g(m)

= (m+1) [g(m+1)− g(m)]. (11)

Observe that since g is convex, it follows that

(m−1) [g(m)− g(m−1)] ≤ (m+1) [g(m+1)− g(m)]. (12)

The upper bound follows immediately from (3), (11) and (12), completing
the proof. �

The upper bound is tight when the value of agent m + 1 is just below
the level that would result in an efficient allocation of m + 1 items. This is
the case when agent m + 1 is forced out and the VCG payment is given by
vm+1 − g(m). The lower bound is tight when the value of the m+ 1 agent is
below (m−1)(g(m)− g(m−1)).

Note that the lower and upper bounds on the VCG payment depend on
the efficient level of congestion m(v) but not directly on v. In particular, the
bounds are the same for any allocated agent i. Similar to the bounds, con-
gestion prices are defined for a given level of congestion m, but independent
of the values of the agents.
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Beckmann et al. (1956) showed how edges can be priced in order to in-
duce the efficient congestion level in equilibrium. Specifically, an efficient
congestion level m results in the Nash equilibrium of a routing game when
each edge is priced at mg′(m). We will call mg′(m) the efficient congestion
price.

By the convexity of g, the efficient congestion price mg′(m) is bounded
by

m [g(m)− g(m−1)] ≤ mg′(m) ≤ m [g(m+1)− g(m)].

These bounds fall within the bounds of VCG payments: i.e.,

(m−1) [g(m)− g(m−1)] ≤ mg′(m) ≤ (m+1) [g(m+1)− g(m)].

For the following results we introduce a restriction on the rate of growth of
g. Specifically, we only consider sub-exponential functions. A function g(m)
is sub-exponential if g(m) ∈ O(2h(m)) where h(m) ∈ o(m). As the name
suggests, the restriction rules out functions that grow exponentially. Such a
restriction is reasonable, since an exponentially growing congestion function
would mean that a single agent can have a multiplicative effect on the con-
gestion of all agents, which is highly non-standard for most applications of
congestion modeling, such as road congestion or packet routing.

Lemma 3. For a sub-exponential function g, the relative difference between
the VCG payment of agent i and the efficient congestion price approaches
zero as the efficient level of congestion m(v) increases.3 This holds for any
agent i. In symbols,

for all v ∈ R
n | m(v) → ∞

m(v)g′(m(v))− tvcgi (v)

m(v)g′(m(v))
= 0 ∀ i. (13)

Proof For ease of notation we write

lim
m→∞

mg′(m)− tvcgi (v)

mg′(m)
. (14)

3In the asymptotic analysis involving m → ∞, it is implied that n → ∞ as n ≥ m.
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We need to show

lim
m→∞

tvcgi (v)

mg′(m)
= 1 ∀ i. (15)

It is enough to show that the lower bound on the VCG payment is at least
1 and the upper bound is at most 1:

1 ≤ lim
m→∞

(m−1)[g(m)− g(m−1)]

mg′(m)
≤ lim

m→∞
tvcgi (v)

mg′(m)
≤ lim

m→∞
(m+ 1)[g(m+ 1)− g(m)]

mg′(m)
≤ 1.

We start with the lower bound. We use convexity of g in the first inequality
and sub-exponentiality of g in the second equality:

lim
m→∞

(m−1)[g(m)− g(m−1)]

mg′(m)
≥ lim

m→∞
m−1

m

g′(m−1)

g′(m)
= 1.

Similarly, we obtain for the upper bound:

lim
m→∞

(m+1)[g(m+1)− g(m)]

mg′(m)
≤ lim

m→∞
(m+1)

m

g′(m+ 1)

g′(m)
= 1.

�

This result says that in the congestion model VCG payments are effec-
tively the same as congestion prices. Specifically, VCG payments of all allo-
cated agents are the same and approach the congestion price as m increases.

We now turn to analyzing the performance of the Bailey-Cavallo redistri-
bution rule in the congestion model. In the next lemma, we use the bounds
on the VCG payments derived above to provide performance guarantees that
are based only on the level of congestion and are independent of the total
number of agents. Efficient level of congestion depends on the congestion
function and the valuations of agents. Congestion function is a parameter in
our derivations. In our analysis, we provide guarantees for all possible val-
uations. To proceed, we need to subdivide the valuation space into subsets
with constant efficient level of congestion: Vx = {v ∈ V | m(v) = x}, where
V = {v ∈ R

n | v1 ≥ v2 ≥ . . . ≥ vn} and x ∈ {1, 2, . . . , n}.
Lemma 4. The fraction of revenue redistributed by Bailey-Cavallo is at least

min
v∈Vx

H(v)

R(v)
≥ (x−1)(x−2) [g(x−1)− g(x−2)]

x(x+1) [g(x+1)− g(x)]
∀x ∈ {1, 2, . . . , n}. (16)

12



Proof Recall that under Bailey-Cavallo the total redistribution is H(v) =
1
n

∑
i R(v−i). For any efficient level of congestion x, it is enough to show that

for any agent j

min
v∈Vx

R(v−j)

R(v)
≥ (x−1)(x−2) [g(x−1)− g(x−2)]

x(x+1) [g(x+1)− g(x)]
. (17)

Applying Lemma 2 to the market without agent j, we obtain:

(m(v−j)−1) [g(m(v−j))− g(m(v−j)−1)] ≤ tvcgi (v−j)

≤ (m(v−j)+1) [g(m(v−j)+1)− g(m(v−j))].

Excluding an agent from the market either leaves the efficient level of conges-
tion the same, or decreases it by one. Thus, for v ∈ Vx, x−1 ≤ m(v−j) ≤ x
and by convexity of g

(x−2) [g(x−1)− g(x−2)] ≤ tvcgi (v−j) ≤ (x+1) [g(x+1)− g(x)]. (18)

Expressions (10) and (18) allow us to bound, respectively, the total revenue,
R(v) =

∑
i t

vcg
i (v), and the total revenue with agent j excluded, R(v−j) =∑

i�=j t
vcg
i (v−j):

x(x−1) [g(x)− g(x−1)] ≤ R(v) ≤ x(x+1) [g(x+1)− g(x)] (19)

(x−1)(x−2) [g(x−1)− g(x−2)] ≤ R(v−j) ≤ x(x+1) [g(x+1)− g(x)].

Equation (17) follows immediately. �

By convexity of g, the result in Lemma 4 can be stated as

min
v∈Vx

H(v)

R(v)
≥ (x−1)(x−2)

x(x+1)
· g

′(x−2)

g′(x+1)
∀x ∈ {1, 2, . . . , n}. (20)

For a sub-exponential g, the fraction of revenue redistributed increases with
allocated traffic x and approaches 1 asymptotically as n, x → ∞. This
bound can be complemented by the following bound, which approaches 1
asymptotically as n → ∞ for x < ∞.

Lemma 5. The fraction of revenue redistributed by Bailey-Cavallo is at least

min
v∈Vx

H(v)

R(v)
≥ n− x− 1

n
∀x ∈ {1, 2, . . . , n}. (21)
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Proof For any x, observe that agents x + 2, x + 3, . . . , n affect neither the
congestion nor the VCG revenue: that is, R(v−i) = R(v) ∀i ≥ x + 2. The

amount redistributed to each of these n−x− 1 agents is exactly R(v)
n

and we
obtain

H(v) =
1

n

n∑
i=1

R(v−i) ≥ 1

n

n∑
i=x+2

R(v−i) =
1

n

n∑
i=x+2

R(v) = (n− x− 1)R(v)

�

Combining the bounds above, we obtain the following result.

Theorem 1. The fraction of revenue redistributed by Bailey-Cavallo is at
least

min
v∈Vx

H(v)

R(v)
≥ max

{
(x−1)(x−2)

x(x+1)
· g

′(x−2)

g′(x+1)
,
n− x− 1

n

}
∀x ∈ {1, 2, . . . , n}.

(22)

This bound provides a performance guarantee for any level of efficient conges-
tion and for any number of agents. We will argue below that asymptotically
the bound approaches 1: i.e., all of the revenue is redistributed. However,
finite-case performance guarantees are non-trivial even for small values of m
and n. We illustrate this in Figure 1, which shows the guarantee for two
congestion functions: g(m) = cm, where c is any constant and g(m) = m2.
The two lines are obtained by plotting (20) for the corresponding function g.
The decreasing solid line corresponds to (21) for n = 20. The performance
guarantee for each of the two g functions are independent of n (clearly n
has to be at least as high as m). For n = 20, the performance guarantee is
given by the maximum of the corresponding g line and the solid line. So for
a linear g, the worst ratio is around .6 and for the quadratic g, it is around
.4. Note that these result does not depend on differentiability of g: we can
plug in (16) instead of (20), which will provide a slightly better bound.

We now show that the fraction of revenue redistributed approaches one
as the number of agents increases.

Theorem 2. For a sub-exponential g, the fraction of revenue redistributed
by Bailey-Cavallo approaches 1 asymptotically as the number of agents in-
creases:

lim
n→∞

min
v

H(v)

R(v)
= 1.
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Figure 1: Performance guarantees

Proof

lim
n→∞

min
v

H(v)

R(v)
= lim

n→∞
min

x∈{1,2,...,n}
min
v∈Vx

H(v)

R(v)
≥

lim
n→∞

min
x∈{1,2,...,n}

max

{
(x−1)(x−2)

x(x+1)
· g

′(x−2)

g′(x+1)
,
n− x− 1

n

}

We need to show that

lim
n→∞

max

{
(x− 1)(x− 2)

x(x+ 1)
· g

′(x− 2)

g′(x+ 1)
,
n− x− 1

n

}
= 1 ∀x ∈ {1, 2, . . . , n}

For x < ∞, the equation holds as limn→∞ n−x−1
n

= 1. For x = ∞, the equa-

tion holds as (x−1)(x−2)
x(x+1)

· g′(x−2)
g′(x+1)

= 1. The last result holds by subexponentiality

of g, which implies limx→∞
g′(x−2)
g′(x+1)

= 1. �

Thus, in this model, the Bailey-Cavallo rule asymptotically redistributes all
revenue. In contrast, without congestion effects (i.e., in the model where
m identical items are allocated), Bailey-Cavallo only redistributes n−m−1

n
of

the collected revenue (Guo and Conitzer, 2009). Although Bailey-Cavallo is
asymptotically optimal in the allocation model when the number of items
is negligible relative to the number of agents, it is arbitrarily bad when the
number of items is close to the number of agents.

We can provide some intuition for the improved performance of the redis-
tribution rule when congestion is present. The VCG payment of each allo-
cated agent in the allocation model is vm+1. For value profiles where the first
m+1 agents have the same non-zero value, say x, and the other agents have a
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zero value, the VCG mechanism collects mvm+1 = mx, but VCG in the mar-
ket without agent i ≤ m collectsmvm+2 = 0. As a result, agents 1, 2, . . . ,m+1
receive no redistribution, and the overall fraction of redistributed revenue is
low. This does not occur in the congestion model, as, by (18), a VCG pay-
ment in the market without agent i is at least (m−2) [g(m−1)− g(m−2)].

We note that the optimal redistribution rule for allocating homogeneous
items was derived by Moulin (2009) and Guo and Conitzer (2009). Their rule

improves upon Bailey-Cavallo guaranteeing 1− (n−1
m )

∑n−1
i=m (n−1

i )
, which asymptoti-

cally approaches one when fewer than half of the agents are allocated (Moulin,
2009). To complement these results, de Clippel et al. (2014) derived a non-
efficient mechanism that provides asymptotic optimality when the ratio of
allocated agents approaches 1, but leaves a positive gap when the ratio of
allocated agents is strictly below 1. In contrast, our results for the congestion
model prove that Bailey-Cavallo is asymptotically optimal regardless of the
number of items allocated (or, the efficient level of congestion).

Finally, we motivate the need to redistribute by showing that collected
revenue is high.

Lemma 6. For a convex g, the revenue collected in congestion prices is at
least as high as the total congestion cost G(m) = mg(m).

Proof The congestion price is mg′(m) and the total revenue collected in
congestion prices is m2g′(m). Each agent incurs the congestion cost of g(m)
for the total congestion cost of mg(m). We want to show

m2g′(m) ≥ mg(m)

mg′(m) ≥ g(m)

which follows immediately from the convexity of g.

Note that the congestion revenue can in fact be much higher than the total
congestion cost. For g(m) = m5, the congestion revenue is 5m5 while the
total congestion cost is m5.

Given that congestion prices are similar to VCG payments as we argued
in Lemma 3, a similar results holds for the VCG revenue.

Lemma 7. For a convex g, the VCG revenue is at least mg(m−1), that is,
above the congestion cost when the level of congestion is m−1.
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Proof From (19) we have

R(v) ≥ m(m−1)[g(m)− g(m−1)]

From the convexity of g

(m−1)(g(m)− g(m−1)) ≥ (m−1)g′(m−1) ≥ g(m−1)

yielding

R(v) ≥ mg(m−1).

�

2.2. Atomic Congestion Games

We now extend the results derived above to a general congestion games
model, where K resources are available. Congestion on a resource r ∈ K
used by mr agents is given by gr(mr). Agent i has a value vi(L) for each

subset of resources L ⊆ K. Formally, vi ∈ R
2|K|

, and V = R
n2|K|

.
The VCG payment is now defined for the set of resources allocated to

agent i, rather than for individual resources. However, we can bound the
VCG payment of agent i based on a per-resource externality imposed on
others as we did in (10). Letting fi(v) or fi denote the set of resources
allocated to agent i, the efficient allocation is

f = argmax
f ′

∑
i

vi(f
′
i)−

∑
r

mr(f
′) gr(mr(f

′)) where

mr(f
′) =

∑
i

1{r∈f ′
i}.

Here mr(f) denotes the congestion on resource r under allocation f . Similar
to f , we define f−j as the efficient allocation in the market without agent j.

f−j = argmax
f ′

∑
i�=j

vi(f
′
i)−

∑
r

mr(f
′) gr(mr(f

′)).

We use mr = mr(f) and m−j
r = mr(f

−j) to denote the efficient level of
congestion on resource r in the market with and without agent j respectively.
Let S(v) and S(v−j) denote the value of f and f−j, respectively. Finally, let

Ŝj(v) = S(v)− [vj(fj)−
∑
r∈fj

gr(mr(f))] (23)
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vi a b c d e

agent 1 11 x x x x x
agent 2 4 x x
agent 3 4 x x
agent 4 4 x x
agent 5 4 x x
agent 6 5 x

(a) The desired set of resources and
its value for each agent.

mr ga gb gc gd ge

1 0 0 0 0 0
2 0 5 5 5 5
3 0
4 1
5 2

(b) Congestion functions for re-
sources

Table 1: The table on the left specifies values of agents 1-6 for resources a-d. For example,
agent 3 has the value of 4 for the set of resources a and c. The table on the right specifies
the congestion function for each resource. For example, the congestion on resource a is 1
when 4 units are used. The empty cells can be filled in with any values satisfying convexity
of gr.

denote the value of the efficient allocation not counting agent j (the amount
in brackets is the contribution of agent j to the value of the efficient allocation
f). The VCG payment of agent j is

tvcgj (v) = S(v−j)− Ŝj(v). (24)

General atomic games are more complex than the single-resource games
studied in the previous section. In particular, revenue-monotonicity does
not hold (as, hence, Lemma 1 does not hold) and upper bounding the VCG
payment is more complex than a straightforward generalization of the single-
resource upper bound to

∑
r∈fj(mr + 1)(gr(mr + 1)− gr(mr)). However, the

main result that almost all of the revenue can be redistributed remains. We
start with an example illustrating non-monotonicity of revenue and showing
that a most natural generalization of the upper bound does not apply.

There are 6 agents (agent 1 through agent 6), and 5 resources (a, b, c,
d, e). Each agent is single-minded, i.e., has positive value for a single set
of resources. The values of each agent for its corresponding set of interest
appear in Table 1a, while the congestion functions for the resources appear
in Table 1b. The efficient allocation is for agents 1 and 6 to be allocated their
corresponding sets, a, b, c, d, e and a, respectively. The resource usage of this
allocation is m(v) = (2, 1, 1, 1, 1). The social welfare is S(v) = (11+5)− 0 =
16. When either agent 1 or agent 6 is not present, the efficient allocation is to
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agents 2 through 5. The resource usage is m(v−1) = m(v−6) = (4, 1, 1, 1, 1).
The social welfare is S(v−1) = S(v−6) = 4 · 4− 4 = 12.

The VCG payment of agent 6 is

tvcg6 (v) = 12− (16− (5− 0)) = 1.

A direct generalization of the upper bound incorrectly suggests that the
payment cannot exceed∑

r∈f6
(mr + 1)(gr(mr + 1)− gr(mr)) = (ma + 1)(ga(ma + 1)− ga(ma)) = 0.

The revenue in the market with all agents is

R(v) = tvcg1 + tvcg6 = 7 + 1 = 8

where tvcg1 (v) = 12− (16− (11− 0)) = 7. The revenue in the market without
agent 6 is

R(v−6) = tvcg2 + tvcg3 + tvcg4 + tvcg5 = 4 · 3 = 12

where tvcg2 = tvcg3 = tvcg4 = tvcg5 = 12 − (12 − (4 − 1)) = 3 as when agents 6
and i ∈ {2, 3, 4, 5} are absent, the efficient allocation is to agents {2, 3, 4, 5}\
{i}, the resource usage is (3, 1, 1, 1, 1) and social welfare is 12. The revenue
without agent 6 is higher than the revenue with agent 6. Thus, revenue is
non-monotone.

The non-monotonicity of revenue may result in violation of Lemma 1. To
recover the no-deficit property, we can apply a generalization of redistribution
rule in Equation 8 suggested by Cavallo (2006):

h̃(v−i) =
1

n
min
vi

R(v)

In words, an agent receives 1
n
of the lowest possible revenue she can induce

through her reported value. In the analysis below, we study the original re-
distribution function in (8) noting that a budget deficit may occur. Bounding
the exact amount remains open for future work.

Lemma 8. The VCG payment of agent j is bounded by∑
r∈fj

(mr−1) (gr(mr)− gr(mr−1)) ≤ tvcgj (v) (25)

≤
∑
r∈fj

(m−j
r + 1)(gr(m

−j
r + 1)− gr(m

−j
r ))−

∑
r∈fj

gr(mr) +
∑
r∈fj

gr(m
−j
r ).

(26)
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Proof Holding the allocation of other agents unchanged, the removal of
agent j decreases the congestion cost on resources that she used by exactly∑

r∈fj(mr−1) [gr(mr) − gr(mr−1)]. Thus, agents i 	= j achieve the welfare

of Ŝj +
∑

r∈fj(mr−1) [gr(mr) − gr(mr−1)] when each agent i is allocated

according to fi and agent j uses no resources. This provides a lower bound
on the optimal welfare S(v−j) without agent j, and the lower bound in the
theorem follows immediately. We now turn to the upper bound.

S(v) ≥ S(v−j) + vj(fj)−
∑
r∈fj

gr(m
−j
r )−

∑
r∈fj

(m−j
r + 1)(gr(m

−j
r + 1)− gr(m

−j
r )) (27)

Ŝj(v) + [vj(fj)−
∑
r∈fj

gr(mr)]

≥ S(v−j) + vj(fj)−
∑
r∈fj

gr(m
−j
r )−

∑
r∈fj

(m−j
r + 1)(gr(m

−j
r + 1)− gr(m

−j
r )) (28)

S(v−j)− Ŝj(v) ≤
∑
r∈fj

(m−j
r + 1)(gr(m

−j
r + 1)− gr(m

−j
r ))−

∑
r∈fj

gr(mr) +
∑
r∈fj

gr(m
−j
r )

The left-hand side of (27) is the optimal solution while the right-hand side
is a feasible solution: agents j 	= i are allocated according to f−j, while i
is allocated fi. Inequality (28) rewrites S(v) as the sum of values of agents
other than i and agent i. The final inequality is obtained by rearranging the
terms. �

While valuations are combinatorial, we can break bounds down by re-
source. We define agent’s bounds on payment for resource r as

t̂jr = (mr − 1)(gr(mr)− gr(mr − 1)) (29)

t̄jr = (m−j
r + 1)(gr(m

−j
r + 1)− gr(m

−j
r ))− gr(mr) + gr(m

−j
r ) (30)

with the property that the VCG payment is bounded by the sum of bounds
on the corresponding resources:∑

r∈fj
t̂jr ≤ tvcgj ≤

∑
r∈fj

t̄jr (31)

The bound is similar to (10), but the link between the efficient congestion
levels with and without agent j is more difficult to characterize than in
the single-resource case where m − 1 ≤ m−j ≤ m holds. However, the
fundamental similarity remains: an agent pays marginal congestion costs for
each of the resources that she uses. We introduce two mild restrictions on
how m−j

r relates to mr.
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Assumption 1. As the efficient congestion level on resource r increases,
removing a single agent cannot change the efficient congestion level by a
non-vaninishing fraction. In symbols,

lim
mr→∞

m−j
r

mr

= 1 ∀r, j

Assumption 2. As the efficient congestion level on resource r increases,
removing a single agent cannot change the resource’s congestion cost by a
non-vaninishing fraction. In symbols,

lim
mr→∞

g′r(m
−j
r )

g′r(mr)
= 1 ∀r, j

Lemma 9. Under Assumptions 1 and 2 and for a sub-exponential function
g, the relative difference between the VCG payment of agent i and the effi-
cient congestion price approaches zero as the efficient level of congestion mr

increases on all of the resources used by i. This holds for any agent j. In
symbols,

for all v ∈ V | mr(v) → ∞ ∀ r ∈ fj(∑
r∈fj mr(v)g

′
r(mr(v))

)
− tvcgj (v)∑

r∈fj mr(v)g′r(mr(v))
= 0 ∀ j. (32)

Proof For ease of notation we write

lim
{mr→∞}r∈fj

(∑
r∈fj mrg

′
r(mr)

)
− tvcgj (v)∑

r∈fj mrg′r(mr)
. (33)

We need to show

lim
{mr→∞}r∈fj

tvcgj (v)∑
r∈fj mrg′r(mr)

= 1 ∀j. (34)

It is enough to show that the lower bound on the VCG payment is at least
1 and the upper bound is at most 1:

1 ≤ lim
{mr→∞}r∈fj

∑
r∈fj

t̂jr∑
r∈fj

mrg′r(mr)
≤ lim

{mr→∞}r∈fj

tvcgj (v)∑
r∈fj

mrg′r(mr)
≤ lim

{mr→∞}r∈fj

∑
r∈fj

t̄jr∑
r∈fj

mrg′r(mr)
≤ 1.

These inequalities follow from Lemma 10, which proves the bound for each
resources individually, and from Lemma 11, which shows how individual
bounds combine into the result of this theorem.
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Lemma 10. Under Assumptions 1, 2 and for a sub-exponential function g,
the relative difference between the lower bound on resource r and the efficient
congestion price approaches zero as the efficient level of congestion mr(v)
increases. The same holds for the upper bound on resource r and the efficient
congestion price. This holds for any agent j.

lim
mr→∞

t̂jr(v)

mrg′r(mr)
= 1 ∀ j ∀ r

lim
mr→∞

t̄jr(v)

mrg′r(mr)
= 1 ∀ j ∀ r

Proof We start with the first equality which holds by convexity and subex-
ponentiality of g:

lim
mr→∞

t̂jr(v)

mrg′r(mr)
= lim

mr→∞
(mr − 1)(gr(mr)− gr(mr − 1))

mrg′r(mr)

= lim
mr→∞

mr − 1

mr

· lim
mr→∞

gr(mr)− gr(mr − 1)

g′r(mr)
= lim

mr→∞
gr(mr)− gr(mr − 1)

g′r(mr)

1 = lim
mr→∞

g′r(mr − 1)

g′r(mr)
≤ lim

mr→∞
gr(mr)− gr(mr − 1)

g′r(mr)
≤ lim

mr→∞
g′r(mr)

g′r(mr)
= 1.

(35)

For the second equality, we first show that the limit is at most one. Using
convexity, subexponentiality and Assumtion 1 in the last step, we derive:

lim
mr→∞

t̄jr(v)

mrg′r(mr)
= lim

mr→∞
(m−j

r + 1)(gr(m
−j
r + 1)− gr(m

−j
r ))− gr(mr) + gr(m

−j
r )

mrg′r(mr)

≤ lim
mr→∞

(m−j
r + 1)g′r(m

−j
r + 1)− gr(mr) + gr(m

−j
r )

mrg′r(mr)

≤ lim
mr→∞

(m−j
r + 1)g′r(m

−j
r + 1) + g′r(m

−j
r )(m−j

r −mr)

mrg′r(mr)
=

≤ lim
mr→∞

(m−j
r + 1)g′r(m

−j
r + 1) + g′r(m

−j
r + 1)max(m−j

r −mr, 0))

mrg′r(mr)
=

lim
mr→∞

(max(2m−j
r −mr + 1,m−j

r + 1))g′r(m
−j
r + 1)

mrg′r(mr)
=

lim
mr→∞

max(2m−j
r −mr + 1,m−j

r + 1)

mr

· g
′
r(m

−j
r )

g′r(mr)
= 1.
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We now show that the same limit is at least one. Using convexity, subexpo-
nentiality and Assumtions 1 and 2 in the last step, we derive:

lim
mr→∞

t̄jr(v)

mrg′r(mr)
= lim

mr→∞
(m−j

r + 1)(gr(m
−j
r + 1)− gr(m

−j
r ))− gr(mr) + gr(m

−j
r )

mrg′r(mr)

≥ lim
mr→∞

(m−j
r + 1)g′r(m

−j
r )− gr(mr) + gr(m

−j
r )

mrg′r(mr)

≥ lim
mr→∞

(m−j
r + 1)g′r(m

−j
r ) + g′r(mr)(m

−j
r −mr)

mrg′r(mr)
=

= lim
mr→∞

m−j
r + 1

mr

· lim
mr→∞

g′r(m
−j
r )

g′r(mr)
+ lim

mr→∞
m−j

r −mr

mr

= 1

These two bounds yield

lim
mr→∞

t̄jr(v)

mrg′r(mr)
= 1.

�

Lemma 11.

lim
{mr→∞}r∈fj

∑
r∈fj t̂

j
r∑

r∈fj mrg′r(mr)
= 1 ∀ j

lim
{mr→∞}r∈fj

∑
r∈fj t̄

j
r∑

r∈fj mrg′r(mr)
= 1 ∀ j

Proof From Lemma 10, we have

lim
mr→∞

t̂jr(v)

mrg′r(mr)
= 1 ∀ r.

To complete the proof, we apply Lemma 12 to αr(mr) = t̂jr(mr) and βr(mr) =
mrg

′
r(mr). The proof for t̄jr is analogous. �

Lemma 12.

lim
mr→∞

αr(mr)

βr(mr)
= 1 ∀r ∈ K

implies

lim
{mr→∞}r∈K

∑
r∈K αr(mr)∑
r∈K βr(mr)

= 1.
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Proof By definition of the limit we have: ∀ εr > 0 ∃c | ∀mr > c

(1− εr)βr(mr) ≤ αr(mr) ≤ (1 + εr)βr(mr).

Summing over r, we get

∑
r

(1− εr)βr(mr) ≤
∑
r

αr(mr) ≤
∑
r

(1 + εr)βr(mr).

Let ε̄ = maxr εr:

(1− ε̄)
∑
r

βr(mr) ≤
∑
r

αr(mr) ≤ (1 + ε̄)
∑
r

βr(mr)

(1− ε̄) ≤
∑

r αr(mr)∑
r βr(mr)

≤ (1 + ε̄).

The last line is equivalent to

lim
{mr→∞}r∈K

∑
r∈K αr(mr)∑
r∈K βr(mr)

= 1.

�

Next we show that the Bailey-Cavallo redistribution rule is asymptotically
optimal in atomic congestion games.

As in the previous section, performance bounds depend on a valuation
profile only through the profile’s effect on the efficient congestion. Our first
bound depends on the efficient congestion without any excluded agent j as
well as when all agents are present. Let zr ∈ {1, 2, . . . , n} ∀r and x−j

r ∈
{1, 2, . . . , n} ∀j, r. The valuations space V = R

n2|K|
can be partitioned into

regions Vz,x = {v ∈ V | m−j
r (v) = x−j

r ∀r, j and mr(v) = zr ∀r} with constant
levels of efficient congestion in the markets with each of the agents excluded
and in the market with all agents.

Lemma 13. The fraction of revenue redistributed by Bailey-Cavallo is at
least

min
v∈Vz,x

H(v)

R(v)
≥

1
n

∑
j

∑
r∈K x−j

r (x−j
r −1) (gr(x

−j
r )− gr(x

−j
r −1))∑

j

(∑
r∈fj

(x−j
r + 1)(gr(x

−j
r + 1)− gr(x

−j
r ))−∑

r∈fj
gr(zr) +

∑
r∈fj

gr(x
−j
r )

)
(36)

∀z ∈ {1, 2, . . . , n}|K|, x ∈ {1, 2, . . . , n}|nK|
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Proof Using (25), for the numerator, we obtain:

H(v) =
1

n

∑
j

R(v−j) =
1

n

∑
j

∑
i�=j

tvcgi (v−j)

≥ 1

n

∑
j

∑
i�=j

∑
r∈f−j

i

(x−j
r −1) (gr(x

−j
r )− gr(x

−j
r −1))

=
1

n

∑
j

∑
r∈K

x−j
r (x−j

r −1) (gr(x
−j
r )− gr(x

−j
r −1)).

Using (26), for the denominator, we have:

R(v) =
∑
j

tvcgj (v)

≤
∑
j

⎛
⎝∑

r∈fj
(x−j

r + 1)(gr(x
−j
r + 1)− gr(x

−j
r ))−

∑
r∈fj

gr(zr) +
∑
r∈fj

gr(x
−j
r )

⎞
⎠ .

�

By convexity of g, the result in Lemma 13 can be stated as

min
v∈Vz,x

H(v)

R(v)
≥

1
n

∑
j

∑
r∈K x−j

r (x−j
r −1) g′r(x

−j
r −1)∑

j

(∑
r∈fj

(x−j
r + 1)g′r(x

−j
r + 1)−∑

r∈fj
gr(zr) +

∑
r∈fj

gr(x
−j
r )

)

≥
1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj

(
(x−j

r + 1)g′r(x
−j
r + 1) + g′r(x

−j
r )(x−j

r − zr)
)

≥
1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj

(
(x−j

r + 1)g′r(x
−j
r + 1) + g′r(x

−j
r + 1)max(x−j

r − zr, 0)
)

≥
1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj

g′r(x
−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

(37)

∀z ∈ {1, 2, . . . , n}|K|, x ∈ {1, 2, . . . , n}|nK|

The bound above depends only on the level of efficient congestion. Next
we derive a bound that depends on both the number of agents present and
the efficient level of congestion. This is a generalization of Lemma 5.
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Lemma 14. The fraction of revenue redistributed by Bailey-Cavallo is at
least

min
v∈Vz,x

H(v)

R(v)
≥ n−∑

r zr −
∑

j

∑
r x

−j
r

n
∀p (38)

∀z ∈ {1, 2, . . . , n}|K|, x ∈ {1, 2, . . . , n}|nK|

Proof Recall the definition of agent j’s VCG payment in (24). The only
agents that affect the value of S(v) (and therefore the value Ŝj(v) for each j)
are the agents who are allocated (removing all other agents has no effect on
S(v)). The maximum number of allocated agents is

∑
r zr: it occurs when

each allocated agent receives exactly one resource. Similarly, the number
of agents that determine S(v−j) is bounded by

∑
r x

−j
r . Any other agent i

has no effect on VCG payments and receives hi(v) = 1
n
R(v−i) = 1

n
R(v) in

redistribution. �

Combining the bounds, we obtain the following result.

Theorem 3. The fraction of revenue redistributed by Bailey-Cavallo is at
least

min
v∈Vz,x

H(v)

R(v)
≥ max{

1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj

g′r(x
−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

,

n−∑
r zr −

∑
j

∑
r x

−j
r

n
} (39)

∀z ∈ {1, 2, . . . , n}|K|, x ∈ {1, 2, . . . , n}|nK|

We now establish asymptotic optimality of Bailey-Cavallo as the number
of agents increases.

Theorem 4. For a sub-exponential function gr and under Assumptions 1
and 2, the fraction of revenue redistributed by Bailey-Cavallo approaches 1
asymptotically as the number of agents increases

lim
n→∞

min
v

H(v)

R(v)
= 1.
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Proof

lim
n→∞

min
v

H(v)

R(v)
= lim

n→∞
min

z∈{1,2,...,n}|K|

x∈{1,2,...,n}|nK|

min
v∈Vz,x

H(v)

R(v)
≥

lim
n→∞

min
z∈{1,2,...,n}|K|

x∈{1,2,...,n}|nK|

max{
1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj g

′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

,

n−∑
r zr −

∑
j

∑
r x

−j
r

n
}

We need to show that

lim
n→∞

max{
1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj g

′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

,

n−∑
r zr −

∑
j

∑
r x

−j
r

n
} = 1

∀z ∈ {1, 2, . . . , n}|K|, x ∈ {1, 2, . . . , n}|nK|

For zr < ∞ ∀r (note that by Assumption 1, zr < ∞ ⇒ x−j
r < ∞ ∀j), the

equation holds as limn→∞
n−∑

r zr−
∑

j

∑
r x

−j
r

n
= 1.

We now turn to the case when there is at least one resource r such that
zr = ∞ (and by Assumption 1, x−j

r = ∞ ∀j). We rewrite the bound to
allow us to consider each resource separately.

lim
n→∞

1
n

∑
j

∑
r∈K x−j

r (x−j
r − 1) g′r(x

−j
r − 1)∑

j

∑
r∈fj g

′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

= lim
n→∞

∑
r∈K

1
n

∑
j x

−j
r (x−j

r − 1) g′r(x
−j
r − 1)∑

r∈K
∑

j|r∈fj g
′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

Only resources K̂ = {r | zr = ∞} will have an effect on the bound

lim
n→∞

∑
r∈K

1
n

∑
j x

−j
r (x−j

r − 1) g′r(x
−j
r − 1)∑

r∈K
∑

j|r∈fj g
′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

= lim
n→∞

∑
r∈K̂

1
n

∑
j x

−j
r (x−j

r − 1) g′r(x
−j
r − 1)∑

r∈K̂
∑

j|r∈fj g
′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

.
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We first show that the limit for each resource is one, and then apply Lemma 12
to complete the proof.

lim
n→∞

1
n

∑
j x

−j
r (x−j

r − 1) g′r(x
−j
r − 1)∑

j|r∈fj g
′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

∀r ∈ K̂

Dividing by zrg
′
r(zr), and using Assumptions 1 and 2

lim
n→∞

1
n

∑
j x

−j
r∑

j|r∈fj 1
= lim

n→∞

1
n

∑
j x

−j
r

zr
= lim

n→∞
1

n

∑
j

x−j
r

zr
= lim

n→∞
1

n

∑
j

1 = lim
n→∞

1

n
n = 1.

Finally, Lemma 12 allows us to combine the bounds for each r ∈ K̂ into

lim
n→∞

∑
r∈K̂

1
n

∑
j x

−j
r (x−j

r − 1) g′r(x
−j
r − 1)∑

r∈K̂
∑

j|r∈fj g
′
r(x

−j
r + 1)max(2x−j

r − zr + 1, x−j
r + 1)

= 1.

�

We proved that Bailey-Cavallo fully redistributes the revenue collected in
congestion domains as the number of agents increases. Specifically, the VCG
mechanism with the Bailey-Cavallo rule provides an asymptotically optimal
solution to the problem of welfare maximization in congestion games: the
resources are used efficiently and only an asymptotically vanishing fraction
of social welfare is lost in payments. Thus, in congestion domains, we are
able to obtain a first-best solution: an efficient allocation and budget-balance.

3. Decentralized Solution: Nonatomic Routing

We now consider nonatomic routing: a class of routing games where the
number of agents is large and a single agent has no effect on the efficient
level of congestion. In these games, congestion prices are used to achieve the
efficient level of congestion. The solution concept here is Nash equilibrium.
The agents do not report their values to the center, but rather, the efficient
level of congestion arises under the equilibrium behavior of the agents when
congestion prices are charged. We show that redistributing the revenue col-
lected in congestion prices in equal shares to all agents (regardless of which
resources they use) provides the first-best solution.

We illustrate our results on a canonical example from routing (see, e.g., Rough-
garden (2005)). In Pigou’s example (see Figure 2) there are two parallel edges
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Figure 2: Pigou’s example.

and all agents need to be routed from source to sink.4 The objective is to
minimize the routing cost. The cost of the top edge is a function of the traf-
fic, which, in this example, we take to be linear gt(mt) = mt while the cost
of the bottom edge is constant gb(mb) = 1. In nonatomic models, the total
traffic can be normalized to 1: that is mt + mb = 1. The total congestion
cost is minimized when half of the traffic is routed along the top edge and
half—along the bottom. The congestion cost is 1

2
+ 1

2
1
2
= 3

4
. Without conges-

tion prices, all of the agents take the top edge, and the resulting congestion
cost is 1.

Charging congestion prices along each edge results in the efficient level of
congestion arising in a Nash equilibrium. We denote by pr(mr) = mrg

′
r(mr)

the congestion price along the edge r. For the congestion cost functions in
Figure 2, we have pt(mt) = mt and pb(mb) = 0. It is easy to check that
mt = mb =

1
2
is a Nash equilibrium: an agent is indifferent between taking

either edge at the equilibrium level of congestion. Let cr(mr) = gr(mr) +
pr(mr) denote this total cost which consists of the congestion disutility (or,
congestion cost) and the congestion price. At equilibrium, each of the agents
taking the top edge incurs a lower congestion cost of 1

2
but has to pay an

additional 1
2
in congestion prices while the agents on the bottom edge only

incur a high congestion cost of 1. From the point of view of the agents, the
total congestion cost is the same as in the equilibrium without congestion
prices: C = mtct(mt) +mbcb(mb) = 1.

4This corresponds to a special case of the model studied in the previous section when
each agent has a single value for being routed, and this value is larger than the congestion
prices. In this special case, the efficient level of congestion is the one that minimizes the
total congestion cost.
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We improve on this by returning to the agents the cost incurred in conges-
tion prices. The revenue collected is R(m) = mtpt(mt) = mtmtg

′
t(mt) =

1
4
.

Suppose each agent receives the rebate of h(m) = 1
4
regardless of which edge

she takes. Incentives are not affected by the rebate: in the equilibrium with-
out rebates, agent’s costs for taking either edge are equal, but now each of
the costs is reduced by h(m). So the agents taking either edge incur the cost
of 3

4
and the total congestion cost of C = 3

4
which is the total congestion cost

under the efficient level of congestion, and therefore, the first-best solution.
We extend the example above to a routing model. There is a network

given by a graph G. Each pair of nodes is associated with the amount of
traffic rk that needs to be routed from the first (source) to the second (sink)
node. The traffic rk is composed of the demand of a large number of agents
with contribution of any individual agent being negligible. Edges of the graph
correspond to resources r and each is associated with a congestion function
gr. Congestion price pr(mr) = mrg

′
r(mr) is collected from everyone using

resource r.
The total revenue collected is the sum of congestion prices paid by agents

on each edge they take:

R(m) =
∑
r

mrpr(mr). (40)

Let h(m) denote the redistribution (or, subsidy) that an agent receives. We

set h(m) to be an equal share of the total revenue
∫ 1

0
h(m)dx = R(m) or,

simply, h(m) = R(m) (recall that in nonatomic models the total traffic is set

to 1; setting it to n, we would get h(m) = R(m)
n

).

Theorem 5. The efficient level of congestion is the Nash equilibrium of the
mechanism that charges the congestion price pr(mr) = mrg

′
r(mr) for resource

r and redistributes to each agent the amount h(m) =
∑

r mrpr(mr).

Proof The proof follows from the result that the efficient level of congestion
is the Nash equilibrium of the game without rebates (Beckmann et al., 1956)
and the observation that the rebate an agent receives is independent of her
actions. Indeed, the rebate is defined as R(v) and the agents affect on R(v)
is negligible: R(v) = R(v−i). Note that the mechanism is budget-balanced
by construction. �

We link this result to the study of subsidies in (Maillé and Stier-Moses,
2009). The authors investigate the use of subsidies instead of congestion
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prices to regulate congestion. Indeed, subsidies can be viewed as negative
congestion prices. For the example we covered, the authors suggest the sub-
sidy of 1

2
for the bottom edge. This will result in the efficient level of conges-

tion, but will require an influx of money to subsidize the agents taking the
bottom edge: 1

2
1
2
= 1

4
. The authors leave the question of considering subsi-

dies in combination with prices for future work. In particular, subsidizing the
mechanism is not desirable. As the example above illustrates, subsidies can
be used in combination with congestion prices to achieve full budget-balance.

The congestion games model discussed in Section 2.2 and the nonatomic
model above coincide as the number of agents in the atomic model becomes
large and the effect of a single agent becomes negligible. When a single agent
has no noticeable effect on the revenue R(v−i) ≈ R(v), the redistribution in

(8) becomes R(v)
n

.

4. Discussion

The redistribution problem arises in scenarios where payments are needed
to achieve the efficient use of resources but the ultimate objective is the to-
tal welfare of the agents. Welfare maximization has been previously studied
in the allocation of items. There, the VCG mechanism is typically used to
choose the efficient allocation but it can collect arbitrarily high payments
from the agents. The collected payments must leave the system in order to
maintain dominant-strategy implementation (see, e.g., Moulin (2009); Guo
and Conitzer (2009)). To this end, a number of recent papers have sug-
gested ways of distributing much of the revenue in various allocation models
(see Naroditskiy et al. (2013) and references therein). In contrast, the prob-
lem of redistribution in congestion scenarios has received little prior atten-
tion, despite the high revenue collected in congestion prices.

We provide positive results for a congestion model: an efficient outcome
and asymptotic budget balance are obtained when the Bailey-Cavallo redis-
tribution rule is applied. This finding is surprising given that, in the absence
of congestion effects, no known mechanism provides an asymptotically first-
best solution. In the absence of congestion effects, the optimal efficient mech-
anism cannot guarantee non-zero social welfare when the number of items is
close to the number of agents (Moulin, 2009; Guo and Conitzer, 2009). Here
inefficient mechanisms provide better performance (de Clippel et al., 2014),
but still do not provide a first-best solution. While no impossibility results
have been derived for allocating multiple-identical items to agents with unit
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demand, it is conceivable that there is no first-best solution for allocation
without congestion. Our results show that the introduction of congestion
effects ensures the existence of the first-best solution; further, we prove that
the Bailey-Cavallo rule achieves it.

In addition to providing a first-best solution to welfare-maximization in
the congestion model, this paper connects results on redistribution in central-
ized dominant-strategy VCG mechanisms and decentralized congestion-price
mechanisms. In particular, we formally show that congestion prices and VCG
payments are fundamentally similar and that so are the optimal solutions in
both models.
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