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Abstract 
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persistence cannot be explained by permanent differences in amenities, local demographic 
composition or the propensity of women to work. Population does respond strongly to differences in 
economic fortunes, although these movements are not large enough to eliminate shocks within a 
decade. Over the longer run, persistence in local joblessness is largely explained by serial correlation 
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1 Introduction
It is well known that local joblessness persists over many decades. See, for example,
Kline and Moretti (2013) and Rappaport (2012) on the US, Overman and Puga (2002)
on Europe, and OECD (2005) for cross-country comparisons. The first panel of Figure 1
compares employment-population ratios (from here on, “employment rates”) in 1980 and
2010 among individuals aged 16 to 64, for the 50 largest US commuting zones in 1980.
The OLS slope coe�cient is 0.5. We argue that these persistent disparities reflect real
gaps in labor market opportunities (for individuals with a fixed set of characteristics):
they cannot be explained by permanent di�erences in local demographic composition.
There is also little evidence that they are compensated by local amenities.

The most natural explanation for the persistence of disparities in employment rates
across areas is constraints on labor mobility, which limit the adjustment to local shocks.
But, the second panel of Figure 1 suggests a substantial migratory response. Based on
the best-fit line, those commuting zones with the lowest jobless rates in 1980 grew by over
50 percentage points more in the subsequent three decades than those with the highest
rates1, notwithstanding the unusually large growth experienced by many Sunbelt cities
(below the 37th parallel). But despite this, the migration responses are insu�cient to
equalize labor market outcomes over long periods of time.

We argue the missing piece of the puzzle is serial correlation in local demand shocks.
As Figure 2 shows, employment growth between 1950 and 1980 is strongly correlated with
growth between 1980 and 2010.2 Of course, Figures 1 and 2 are impressionistic. But, in
the analysis that follows, we derive and estimate a model to understand the mechanisms
at play. The bottom line is that persistence in joblessness is driven by persistence in
local demand shocks, together with a migration response that is large but not su�cient
to keep up with demand.

The structure of the paper is as follows. In the next section, we analyze a simple
model of the local economy, based on the classic Rosen-Roback framework (Rosen, 1979;
Roback, 1982). Unlike much of the literature, we do not assume that local workers supply
their labor inelastically. Or alternatively, in the framework of Blanchflower and Oswald
(1994), the “wage curve” (the relationship between the local wage and employment rate)
is not vertical. This means that local demand shocks a�ect employment rates and not
just wages. Indeed, Blanchard and Katz (1992) and Beaudry, Green and Sand (2014b)
present evidence that real wages change little along the adjustment path to local demand
shocks. If labor supply is not inelastic, we show how one can use the employment rate
as a “su�cient statistic” for local economic opportunity - as an alternative to the more

1These population responses were previously documented by Glaeser, Scheinkman and Shleifer (1995)
and Glaeser and Shapiro (2001).

2Similar patterns have previously been documented by Blanchard and Katz (1992) and Dao, Furceri
and Loungani (2014).
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common real consumption wage. This approach has precedent in Blanchard and Katz
(1992), who implicitly rely on a similar claim in deriving their empirical model. We
argue this change in focus from wages to employment rates has practical advantages, as
employment rates are easier to measure than real consumption wages for our detailed
local geographies. Also, since the employment rate is a stock measure like population,
our estimates are directly informative of the speed of population adjustment.

We combine our model of local equilibrium for a fixed population with a simple model
of migration: individuals tend to move to areas that o�er higher utility, although this
process takes time. While our model is set in continuous time, we derive predictions about
the change in population over a discrete interval. This leads to an equation in which the
change in log local population is influenced by (1) the change in log employment and (2)
a disequilibrium term, specifically the lagged log employment rate. This is essentially a
local-level error-correction mechanism (ECM).

Many studies in the recent urban literature have estimated the response of (usu-
ally decadal) population growth to contemporaneous demand shocks (such as Bound and
Holzer, 2000; Glaeser, Gyourko and Saks, 2006; Notowidigdo, 2011; Autor, Dorn and
Hanson, 2013; Beaudry, Green and Sand, 2014b; Acemoglu et al., 2014), identified with
suitable instruments. But, by excluding the lagged disequilibrium term, there is an im-
plicit assumption that the local economy is in equilibrium at each observation. This
jars somewhat with existing evidence of large e�ects on labor force participation (see
e.g. Bound and Holzer, 2000; Autor and Duggan, 2003; Autor, Dorn and Hanson, 2013),
which is suggestive of substantial persistence. Furthermore, Hornbeck (2012) shows that
population adjustment away from the Great Plains, following the 1930s Dust Bowl crisis,
continued through the 1950s. In their seminal study, Blanchard and Katz (1992) focus
exclusively on the dynamics (at annual frequency), estimating a vector-autoregression
(VAR) in state-level employment growth, employment rate and participation rate (con-
trolling for state-specific trends). But, identification in the VAR framework relies on
the exclusion of contemporaneous shocks, which is problematic for the longer data fre-
quencies which interest us. The novelty of the ECM specification is to control for both
contemporaneous employment shocks and the lagged disequilibrium term simultaneously.

The third section describes our data, based on decennial census records from 1950-2010
for the 722 Commuting Zones3 (CZs) of the Continental US. We also report estimates
of the persistence in the local employment rate. This is remarkably strong over many
decades, for both men and women, and both before and after 1980. Controlling for local
demographic composition and time-invariant amenities makes little di�erence, and the
persistence remains strong even after controlling for CZ fixed e�ects. The persistence is
somewhat weaker among higher skilled workers and among labor force participants (as

3This geographical scheme was originally developed by Tolbert and Sizer (1996) and recently popu-
larized by Autor and Dorn (2013) and Autor, Dorn and Hanson (2013).
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opposed to the general population).
Section 4 presents estimates of our model for population growth. We instrument

contemporaneous employment growth using an industry shift-share (following Bartik,
1991), and the lagged employment rate using the shift-share’s lag. The model fits the data
well. In our preferred estimates, the elasticity of population to contemporaneous (decadal)
employment growth is 0.66, and the elasticity to the initial local employment rate is 0.45.
This implies a large but incomplete population adjustment over ten years, correcting for
about half the initial deviation in the local employment rate. In specifications controlling
for CZ fixed e�ects or after first di�erencing (both are demanding specifications, given
the short panels), our estimates of population adjustment (and the standard errors) are
larger. Evidence of a decline in the size of the migration response over time is mixed,
despite a steady fall in regional migration rates since the 1980s (see e.g. Molloy, Smith
and Wozniak, 2011).4 But, we do find evidence that the local high skilled population
adjusts more quickly than the low skilled.

Although we identify a sizable population response, it is slower than some previous
estimates in the literature suggest. Blanchard and Katz (1992), the seminal study in this
field, find the e�ect of a state-level employment shock on the employment rate disappears
within seven years.5 Data frequency may help explain the di�erence in our results:
without access to the data now available, Blanchard and Katz impute long-run responses
from an empirical model with two annual lags. This imputation may over-state the long-
run pace of adjustment if, for example, it is the most mobile workers who move first. We
instead benefit from multiple decades of census data.

The estimates discussed so far take the level of employment as given. But, for a
complete analysis of the long-run response to a local shock, we also need an equation
describing how employment responds to population growth and joblessness. In particular,
a growing population or slack labor markets may attract new productive investments or

4Our result may lend support to the view that the declining migration rate is driven by falling returns
to migration (Kaplan and Schulhofer-Wohl, 2012; Molloy, Smith and Wozniak, 2014), rather than rising
mobility costs. Having said that, Dao, Furceri and Loungani (2014) and Bayer and Juessen (2012) find
a clear decline in the population response to local shocks in recent decades.

5Dao, Furceri and Loungani (2014) and Beyer and Smets (2015) find comparable results (across US
states) using a similar model to Blanchard and Katz (1992), though with updated datasets. The model
has also been applied to European regions: Decressin and Fatás (1995), Jimeno and Bentolila (1998),
Dao, Furceri and Loungani (2014) and Beyer and Smets (2015) find the e�ect of local demand shocks on
the employment rate disappears within ten years. Unlike Blanchard and Katz (1992), Obstfeld and Peri
(1998) estimate the model without controlling for region-specific trends: they find similar results for the
US, though demand shocks persist beyond ten years in some European countries. More recent studies
have looked at the experience of the Great Recession. Using administrative panel data, Yagan (2014)
finds that the migration option provided little insurance (in employment terms) to Americans a�ected
by adverse local employment shocks in the recession. Still, he argues this is largely due to relatively poor
employment outcomes of migrants in their new cities, rather than insu�cient migration; so this view
does not contradict Blanchard and Katz (1992). Having said that, Monras (2015) argues that Yagan
(2014) neglects the role of migratory inflows to a�ected cities (focusing instead on outflows), and he
finds that migration did attenuate the impact of local shocks on wages during the recession.

3



a�ect the demand for non-traded goods. Following the example of Beaudry et al. (2014a;
2014b), we instrument population growth using climate indicators.

We then derive the dynamic response to a local shock, based on our preferred estimates
of the population and employment equations. The employment rate is predicted to follow
an AR(1) process with a decadal persistence of 0.55. While this explains most of the
persistence over one decade in the data, it clearly cannot account for the large persistence
after 30 years reported in Figure 1. Instead, we match the data by injecting persistence
into the local demand shock itself : we find that an AR(1) parameter of between 0.6 and
0.8 (in the demand innovation process) is needed to achieve this. Of course, we do not
directly observe local demand shocks - and these numbers do appear large. But, the
persistence in our demand instrument (the industry shift-share) falls in the same range;
and this reassures us that these numbers are plausible.

Section 6 explores some other outcomes. First, we document the impact of the de-
mand shocks on wages and housing costs, though these are di�cult to interpret without
a local index of real consumption wages. And second, we consider the role of commut-
ing. We show that changes in commuting patterns across CZs play an important role
in the adjustment to local shocks. In particular, the share of employed residents who
work locally (in their own CZ) is sensitive to how the local area is performing (relative
to adjacent CZs). This is significant, given that labor market outcomes in CZs are usu-
ally assumed to be independent in empirical work. This result is also consistent with
the findings of Monte, Redding and Rossi-Hansberg (2015). They compute equilibrium
commuting and population responses to local productivity shocks, calibrating a general
equilibrium model using cross-sectional data across US counties and CZs. Our results
also reflect work by Cheshire et al. (2004), who study commuting adjustments between
European regions.

Our main conclusion is that the persistent disparities in local joblessness do indeed
reflect persistent di�erences in labor market opportunities and utility, for individuals with
fixed characteristics. Migration acts to reduce these disparities, but serial correlation in
local demand growth ensures these adjustments are insu�cient to equalize utility across
regions.

2 A simple model
In this section, we present a slightly modified version of the classic Rosen-Roback model
(Rosen, 1979; Roback, 1982) - see also the recent overviews by Glaeser and Gottlieb
(2009) and Moretti (2011). There is a single traded good with price P , common across
all areas. And there is a single non-traded good, housing, with price P

h

r

which does vary
across areas, r. Assuming preferences are homothetic (perhaps for convenience more than
realism), there is a unique price index in each area given by:
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(1)

On the population side we assume that everyone is homogeneous ex ante, and total
population is given by L

r

. When in work, individuals earn W

r

. In the standard formulation
of the Rosen-Roback model, employment and population are synonymous; but this is an
important distinction to make in our model, and we denote employment by N

r

. We
assume (see Albouy, 2008) that labor income is taxed at a rate · and that those not
in work earn a fraction fl of the local wage (e.g. through unemployment insurance or
disability benefits). Total income in an area is then given by:

Y

r

= (1 ≠ ·) W

r

N

r

+ flW

r

(L
r

≠ N

r

) (2)

Using (1) and basic consumer theory, there will be a demand for housing which, in log
form, we write as:
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where lower case variables denote logs, and the final line substitutes a log-linear approx-
imation of (2).

Now consider the production side of the economy. We assume housing production
does not depend on local labor, so we can write the supply curve as6:

s

h

r

= s

h

1
p

h

r

≠ p

2
(4)

We also assume production of the traded good does not depend on land. Consequently,
the demand for labor in area r can be written as:

n

d

r

= z

r

+ n

d (w
r

≠ p) (5)

where z

r

is an area-specific shifter that will be the source of local shocks. To close
the model, we need a labor supply curve or its equivalent in non-competitive models.
In the classic formulation of the Rosen-Roback model, labor is assumed to be supplied
inelastically so that n

s

r

= l

r

. However, we will assume there is some elasticity in this
relationship, so we work with a formulation:

6We do not consider here the implications of the fact that housing is a durable good and, in part,
an irreversible investment. As Glaeser and Gyourko (2005) and Notowidigdo (2011) note, this yields a
specification with an asymmetric impact of demand shocks on population, depending on whether the
city is growing or shrinking.
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(6)

where ÷

r

is a region-specific di�erence in the labor supply curve. This implies there is
a positive relationship between the real consumer wage in an area and its employment
rate. Although we do distinguish between population and employment, we do not, for
ease of exposition, distinguish between labor force and population, so the employment-
population ratio and unemployment rate are synonymous (a more complicated model
could address this distinction). (6) can be interpreted as an elastic labor supply curve if
the labor market is competitive, or as a “wage curve” (Blanchflower and Oswald, 1994)
in some other labor market model.

For a given local population, we can solve for the locally-determined variables as a
function of the exogenous variables. The workings of this model are well-known but are
briefly repeated here. If labor supply is inelastic, an increase in the local demand for
labor cannot lead to a rise in employment. Consequently, based on (5), the local wage
must rise. From (3), this raises the demand for housing, so the price of housing in the
area must also grow to equilibrate the housing market. The more inelastic the supply of
housing, the more the housing price will grow. But, this price rise will not generally o�set
the growth in wages, so the real consumer wage of workers is higher after the shock.

If we relax the assumption that labor supply is completely inelastic, the e�ect on
wages is more muted as the employment rate also rises. The more elastic is (6) with
respect to the wage, the more the variation will show up in employment rates - and less
in real wages.

We define utility in region r as:

u

r

= — (n
r

≠ l

r

) + (w
r

≠ e

r

) + ã

r

(7)

where ã

r

is the value of local amenities. Utility is a function of the employment rate and
the real consumer wage which, in turn, is a function of local wages and prices. But, it is
di�cult empirically to disentangle the e�ect of employment and wages without indepen-
dent shocks.7 In particular, a labor demand shock in this model will not yield independent
variation in these two variables. In these circumstances, either the employment rate or
real consumer wage alone can serve as a one-dimensional measure of local labor market
conditions: the other variable can be substituted in (7) using the wage curve (6). In

7See Beaudry et al. (2012; 2014a; 2014b) for one attempt to do so. They exploit national-level
di�erences in industry-specific employment and wage growth, together with local di�erences in industrial
composition. This gives rise to distinct local industry-weighted wage and employment shift-shares, which
have some independent variation.
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particular, eliminating the real consumer wage gives:

u

r

= — (n
r
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) + a

r

i.e. utility is just a function of the employment rate and a fixed e�ect a

r

, an amalgam
of the amenity e�ect and any local di�erences in the “wage curve”. Blanchard and Katz
(1992) implicitly perform a similar transformation in identifying their VAR model in local
quantities (employment growth, employment rate and participation rate). One does lose
information in doing this; but if there is a single shock, it is not information that could
be identified in any case. Note that this transformation does not require us to assume the
elasticity of housing supply is the same in all areas8, though this will influence the extent
to which labor demand shocks a�ect the employment rate in the short run dynamics.

One could perform a similar substitution to eliminate the employment rate from (7)
and write everything in terms of the real consumer wage. Much of the literature does this,
albeit often implicitly. There is nothing to choose between the approaches theoretically,
except in the extreme cases where labor supply is completely inelastic or the real consumer
wage completely rigid. Practically though, local wage deflators are available for shorter
periods and fewer geographies than employment rates and are notoriously di�cult to
estimate where they are available at all. The most typical approach is to use only housing
costs (though non-traded goods prices are also likely to matter) or a regional price index,
the most common of which in the US is the American Chambers of Commerce Researchers
Association (ACCRA) index based on the prices of 59 items across 300 cities. But this has
been shown to su�er from some serious problems (Koo, Phillips and Sigalla, 2000)9, the
correction of which has large e�ects on the relative price indices in di�erent cities (Phillips
and Daly, 2010). Albouy (2008) also describes how real wage measures are sensitive to
the treatment of various taxes and benefits, non-tradable goods expenditure and non-
labor income. And aside from measurement concerns, there is one further advantage of
the employment rate over the real wage: employment is measured in the same units as
population and this allows us to more directly assess the speed of adjustment.

In this section, we have presented a very simple model that forms the basis for the
empirical model we estimate below. Appendix A shows how the same type of equation
in (8) can be derived from more complicated models with a non-traded goods sector that
employs local labor (as in Moretti, 2010), agglomeration e�ects (see Glaeser and Gottlieb,
2009; Moretti, 2011 for overviews), endogenous amenities (e.g. Glaeser, Kolko and Saiz,
2001; Diamond, 2013), frictional labor markets (e.g. Beaudry et al., 2012; 2014a; 2014b),

8See Glaeser and Gyourko (2005), Glaeser, Gyourko and Saks (2006) and Saiz (2010) for evidence on
local heterogeneity in housing elasticities.

9The ACCRA index has been criticized for sampling error, as well as various biases due to data
quality and basket definition.
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or heterogeneity in skills (e.g. Moretti, 2011; Diamond, 2013).
So far, we have described the short-run equilibrium contingent on a fixed population.

We combine this with a simple model for the migration response, in which the local
population responds to the gap between local and aggregate utility, the latter of which
we denote by u. This suggests the following equation:

ˆl

r

(t)
ˆt

= ≠g (u
r

(t) ≠ u (t)) (9)
= a

r

(t) + “ (n
r

(t) ≠ l

r

(t))

where t denotes time, and the second line is a linearization of the first. In a steady-state,
the “spatial arbitrage” condition of the Rosen-Roback model guarantees that utility is
equal in all areas. In this case, a local demand shock will drive up population in an
area in response to rising utility; but this will force up house prices, which produces
countervailing downward pressure on local real wages and employment rates. If the local
demand shock is small enough to have no e�ect on the aggregate economy, the final
equilibrium will have workers no better-o� than before, with higher local wages perfectly
o�-set by higher local house prices. But, we would expect all of this to take time, and
(9) embodies a simple adjustment process.

The specification in (9) assumes local population flows depend solely on current labor
market conditions and amenities, while forward-looking rational agents should also pay
attention to expected future conditions. If current conditions are a su�cient statistic for
future conditions, one can still derive an equation like (9); but the sensitivity to current
employment opportunities is a mixture of the true sensitivity and the persistence in
utility; see Gallin (2004). Gallin also shows how one can derive an Euler equation for the
migration decision in the presence of forward-looking agents by including expected future
migration as an extra control and instrumenting it. But, this approach requires good
instruments both for current labor market conditions and future migration, something
which is quite demanding. In addition, models with forward-looking agents typically
struggle to estimate precisely the discount factor that measures the relative importance
of current and future conditions (see, for example, Gallin, 2004; Kennan and Walker,
2011) and often impose a value, when the assumption of forward-looking behavior is
a claim one might wish to test. We prefer to stick with (9), while acknowledging the
di�culty of giving a structural interpretation to the estimates.

Given that our data are in discrete time, we next discretize equation (9). Notice it
can be written as:

ˆe
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which has as a solution:
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which can be re-arranged to give:
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ṅ

r

(s) ds +
1
1 ≠ e

≠“t

2
[n

r

(0) ≠ l

r

(0)](13)

+1
“

[a
r

(t) ≠ a

r

(0)] ≠ 1
“

ˆ
t

0
e

“(s≠t)
ȧ
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If employment n
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and the supply shifter a
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change at a constant rate over the period,
then this can be written as:
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The above yields the following empirical specification to be estimated on decadal data:

�l

rt

= —0 + —1�n

rt

+ —2 (n
rt≠1 ≠ l

rt≠1) + —3�a

rt

+ —4art≠1 + d

t

+ Á

rt

(15)

where t denotes time periods at decadal intervals, � is a decadal change, d

t

are time
e�ects, and Á

rt

represents an unobserved supply-side shock. Notice that equation (15)
has the form of an error-correction mechanism (ECM), with local population adjusting
to catch up with employment growth �n

rt

. If population adjusts instantaneously to local
employment shocks, —1 would take a value of 1. And controlling for employment changes,
—2 would equal 1 if local population adjustment over one decade is su�cient to compensate
for initial deviations in the local employment rate from equilibrium. Practically though,
if —1 = 1, it would not be possible to estimate —2 since there would be no observable
deviations from equilibrium.

We control for a range of observable amenities in place of the supply e�ects �a

rt

and a

rt≠1, which allow the equilibrium employment rate to vary geographically. We also
consider specifications which control for these supply e�ects (whether local amenities
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or wage curve di�erences) using time-invariant area fixed e�ects. We estimate these
specifications in two ways: either by including a full set of area r binary indicators, or by
first di�erencing all variables to eliminate the fixed e�ects. We next turn to the data we
use to estimate (15).

3 Data

3.1 Local population and employment

We identify local labor markets r with the Commuting Zones (CZs) originally developed
by Tolbert and Sizer (1996). CZs were recently popularized by Autor and Dorn (2013)
and Autor, Dorn and Hanson (2013) as an alternative to Metropolitan Statistical Areas
(MSAs). MSAs cover only a limited proportion of the US landmass (unlike CZs whose
coverage is universal); and there have been changes in MSA definitions over time: this
would be particularly problematic for the very long run analysis of this study. Tolbert
and Sizer group the full set of US counties into 741 CZs, applying an algorithm to cross-
county commuting data from the census of 1990. We restrict our analysis to the 722 CZs
on the mainland. Fortunately, county boundaries have been very stable over time, so we
can consistently identify these CZs in all census data in our time-frame (since 1950).10

Our empirical application is based on the decennial censuses of 1950-2010, with the
final year supplemented with data from the American Community Survey (ACS) between
2009 and 2011. The 1940s present distinct empirical challenges11; and before 1940, em-
ployment status definitions changed on a regular basis.12 Our main estimates are based
on local population and employment counts for all individuals aged 16-64. But, we also
estimate the model separately for di�erent education, gender and age groups. These
count variables are largely based on local census aggregates from the NHGIS (Minnesota
Population Center, 2011), but we supplement these with information from the IPUMS
census and ACS micro-data (Ruggles et al., 2010) where required. We describe how we
construct our variables in Appendix B.

10We make just one modification to the Tolbert-Sizer CZ scheme to enable us to construct consistent
geographies over time. Specifically, we incorporate La Paz County (AZ) into the same CZ as Yuma
County (AZ). Tolbert and Sizer allocated La Paz and Yuma to di�erent CZs, but the two counties only
separated in 1983.

11Clearly, the outbreak of war is an important structural break. And also, the process governing local
employment changes was markedly di�erent in the 1940s as a consequence of New Deal public works
programs at the beginning of the decade.

12In particular, individuals were defined as employed before 1940 if they were at work on the
reference day; but since 1940, they were only required to have worked one hour in the refer-
ence week. This change in definition is likely to have had divergent e�ects on employment counts
in di�erent industries. See the IPUMS webpage for further details: http://usa.ipums.org/usa-
action/variables/EMPSTAT#comparability_section. Also, the 1920 census was conducted in January
(as opposed to April since 1930), and this has severe implications for comparability in agricultural areas
(given the seasonality of employment).
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As we explain in the following section, OLS estimates of (15) are likely to be biased,
due to reverse causation and omitted supply e�ects. So, credible identification requires
an instrument which excludes these supply e�ects. In keeping with much of the literature
13, we rely on the industry shift-share variable b

rt

originally proposed by Bartik (1991).
This predicts the growth of local labor demand (over one decade), assuming that the
stock of employment in each industry i grows at the same rate in every area r, where this
growth rate is estimated using national-level data. Specifically:

b

rt

=
ÿ

i

„

i

rt≠1

1
n

i(≠r)t ≠ n

i(≠r)t≠1
2

(16)

where „

i

rt≠1 is the share of workers in area r at time t ≠ 1 employed in industry i. The
term

1
n

i(≠r)t ≠ n

i(≠r)t≠1
2
, expressed in logs, is the growth of employment nationally in

industry i, excluding area r. This modification to standard practice was proposed by
Autor and Duggan (2003) to address concerns about endogeneity to local employment
counts.

We use the contemporaneous Bartik shift-share b

N

rt

as an instrument for current em-
ployment growth �n

rt

, and we use the lagged shift-share b

rt≠1 to instrument for the
lagged employment rate (n

rt≠1 ≠ l

rt≠1). The intuition for the lagged instrument is that
the employment rate, at any point in time, can be written as a distributed lag of past
labor demand shocks. In practice, it is su�cient to instrument using the first lag alone.
To our knowledge, our simultaneous use of both the Bartik shift-share and its lag is new
to the literature. We construct these instruments using 2-digit industry data from the
IPUMS micro-data: see Appendix B for further details.

As an aside, notice that the lagged instrument b

rt≠1 would have no power to iden-
tify the coe�cient on(n

rt≠1 ≠ l

rt≠1) if —1 in equation (15) is truly equal to 1: in that
scenario, instantaneous population adjustment would mean the local employment rate is
unresponsive to demand shocks. But, this hypothesis is rejected by our estimates.

3.2 Amenity controls

We control for a range of observable amenities in our empirical specifications. Because
the impact of some of these controls might vary over time, we interact each of them
(except the migrant enclave indicator) with a full set of year e�ects in the regressions
below.

We do not control for amenities which are likely to be endogenous to current labor
market conditions, such as crime and local restaurants, since these present challenges for
identification. As we discuss in Appendix A, this means we must interpret —1 and —2 in
equation (15) as reduced form e�ects. That is, these parameters account for all e�ects of

13See, for example, Blanchard and Katz (1992); Bound and Holzer (2000); Notowidigdo (2011);
Beaudry et al. (2012; 2014a; 2014b).
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employment on utility (and local population growth), both the direct labor market e�ects
(discussed in Section 2 above) and the indirect e�ects due to changes in local amenities
such as crime (see Diamond, 2013).

We use the following controls. First, we include a binary indicator for the presence
of coastline (ocean or Great Lakes).14 Coastline may provide consumption or productive
amenities (Rappaport and Sachs, 2003) or physical constraints on population expansion
(Saiz, 2010).

Second, we control for some climate indicators. In the sample period, population has
grown disproportionately in the Sun Belt region. A popular explanation is the advent of
air conditioning, which facilitated a more comfortable and productive life in hotter regions
(Oi, 1996). But, Rappaport (2007) shows that Americans have increasingly located in
cities with pleasant weather, specifically cool summers with low humidity and warm
winters. And he argues that a rising valuation of climate amenities can help explain
observed trends in Southern population, with this changing valuation driven perhaps
by rising incomes.15 Cheshire and Magrini (2006) find similar trends among European
regions. However, based on changes in local prices and wages, Glaeser and Tobio (2007)
argue that climate is not the primary cause. They propose that, before 1980, population
was drawn to the South largely because of improving productivity; and after 1980, the
key factor was an elastic supply of housing. Following Rappaport (2007), we control for
the maximum January temperature, maximum July temperature and mean July relative
humidity.16

Third, we control for log population density in 1900. This measure can proxy for the
pull of under-developed land or “frontier” regions. Alternatively, there may be consump-
tion or productive amenities (or disamenities) associated with population density. We
use a historical measure of density to ease concerns over endogeneity.17

We also control for an index of CZ isolation. Specifically, this is the log distance
to the closest CZ, where distance is measured between population-weighted centroids in
1990.18 Isolation may matter for two reasons. First, it might be considered an amenity
or disamenity. And second, it limits opportunities for cross-CZ commuting. Indeed, we
emphasize in this study that CZs are not distinct local labor markets: many workers

14This data was kindly shared by Jordan Rappaport.
15In particular, Rappaport finds that hot humid summers have deterred population growth, controlling

for winter temperature. This is inconsistent with an important role for air conditioning.
16We take county-level data on temperature from the Center for Disease Control and Prevention, based

on the period 1979-2011; see http://wonder.cdc.gov/. And our relative humidity data is taken from the
Natural Amenities Scale study by McGranahan (1999), for the period 1941-70. All county-level climate
data is aggregated to CZ-level using land area weights.

17These densities are estimated using county-level population and area data from NHGIS. There have
been some changes in county boundaries in the intervening period, and we impute CZ-level data using
land area allocations based on shapefiles made available by NHGIS.

18Population-weighted centroids for counties in 1990 are taken from the Missouri Census Data Cen-
ter: http://mcdc.missouri.edu/websas/geocorr90.shtml. We estimate CZ centroids by computing the
population-weighted averages across the latitudes and longitudes of county centroids.
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commute across CZ boundaries.
Finally, an important contributor to local population growth is foreign migration.

Of course, local inflows of foreign migrants are partly a response to local employment
growth. But, as is well known, migrants are often guided in their location choice by the
“amenity” of established co-patriot communities.19 In the empirical migration literature,
there has been a long tradition (popularized by Card, 2001) of proxying these preferences
with historical local settlement patterns. Following Card, we construct a “shift-share”
predictor m

ct

for the contribution of foreign migration to local population growth:

m

rt

=
q

o

„

o

rt≠1M
new

o(≠r)t

L

rt≠1
(17)

where „

o

rt≠1 is the share of population in area r at time t ≠ 1 which is native to origin o.
M

new

o(≠r)t is the number of new migrants arriving in the US (excluding area r) between t≠1
and t. The numerator of equation (17) then gives the predicted inflow of all migrants
over those ten years to area r. This is scaled by L

rt≠1, the initial population of area r.
Similarly to the Bartik industry shift-shares above, the exclusion of area r helps allay
concerns over endogeneity of the shift-share measure to the dependent variable, local
population growth �l

rt

. We construct this migrant shift-share variable using census and
ACS micro-data from IPUMS, based on 79 origin countries: see Appendix B for further
details.

3.3 Estimates of the persistence of the local employment rate

Before moving to the population response, we present some estimates of our main object
of interest: the persistence of local joblessness. In the first row of Table 1, we set out
the autocorrelation function (ACF) of the time-demeaned log local employment rate in
the data.20 The persistence is very strong: the ACF remains above one half even at
the sixth (decadal) lag. This reflects the patterns of Figure 1 above. The persistence is
similar before and after 1980 (see rows 2 and 3), but weaker among the labor force (row
4) compared to the broader population. And it is largely driven by low skilled workers
(see rows 5 and 6), especially at the larger lags.

There are several supply-side explanations for this persistence, but the evidence sug-
gests these are unlikely to play an important role. First, one might think the persistence
is driven by geographical variation in women’s preferences for labor market participation.
The ACF at smaller lags is indeed larger for women then men (see rows 7 and 8). But,
the di�erence is not large: the correlation coe�cients are 0.90 and 0.74 respectively at
the first lag. Alternatively, local variation in demographic composition may be respon-

19For example, because of job networks (Munshi, 2003) or cultural amenities (Gonzalez, 1998).
20For each decadal lag, we estimate the correlation coe�cient using a pooled sample of all CZs and all

census years with available data.
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sible. In particular, regional skill di�erences are very persistent over time21, and low
skilled workers face lower employment rates. But, adjusting local employment rates for
demographic composition makes little di�erences to the result (see row 9).22 A third
hypothesis is permanent di�erences in amenities which compensate individuals for labor
market conditions. We test this by purging log employment rates of local variation in
climate, coastline and population density, as well as the migrant shift-share variables
(which proxy the attractiveness of CZs for new migrants).23 But again, this makes little
di�erence to the observed persistence (row 10).

Certainly, unobserved local variation in amenities or demographic variation may play
an important role - though we believe we have controlled for the most important e�ects.
As it turns out, even controlling for a full set of state fixed e�ects24 has little e�ect on the
ACF (row 11), at least at the first few lags. It is also noteworthy that, at these smaller
lags, the level of persistence is similar both within and between states. The between-state
results are reported in row 12, where we trace out the ACF for state-level employment
rates.

In the final rows, we study the e�ect of including CZ fixed e�ects. Given that the panel
is short (only seven observations per CZ), these fixed e�ects are estimated with substantial
error. This causes a downward bias in the ACF, as purging these e�ects introduces an
artificial negative correlation between the employment rate and its lag. This is clear from
the implausibly negative correlation coe�cients at the larger lags in row 13. Fortunately,
this bias is quantifiable. Appendix C shows how one can derive bias-corrected estimates
of the true ACF from the sample ACF, although an identifying assumption is required.
Our approach is to fix the ratio fi of the sixth to fifth autocorrelation: we report results
for fi = 0.9, fi = 0.5, and fi = 0. The ACF for fi = 0.9 looks similar to the the basic

21Consider, for example, the log relative supply of college graduates: that is, the ratio of the local
college graduate population (aged 16-64) to the non-graduate population. An OLS regression of the log
relative supply in 2010 on the relative supply in 1950, across CZs, gives a coe�cient of 0.68.

22We purge local employment rates of observable demographic characteristics in the following way. For
each cross-section of the IPUMS micro-data (using the census for 1950-2000 and the ACS of 2009-11 for
2010), we run a logit regression of employment on a range of characteristics (age and age squared; four
education indicators, each interacted with age and age squared; a gender dummy, interacted with all the
earlier-mentioned variables; and black, Hispanic and foreign-born indicators) and a set of location fixed
e�ects (where “locations” are the finest geographical indicator available in the census micro-data). Based
on these estimates, we then predict the average employment rate in each location - assuming the local
demographic composition in each location is identical to the national composition. We then estimate
CZ-level data by weighting the location data by appropriate population allocations (see Appendix B).
Unfortunately, we do not have sub-state location indicators in 1960, so we exclude that year from our
data series.

23Specifically, we regress the log employment rate on three climate variables (the maximum January
and July temperatures and mean July relative humidity), a dummy for the presence of coastline, the
log population density in 1900, the log distance to the closest CZ centroid, and the migrant shift-share,
with observations weighted by the local population share. All the above controls, excluding the migrant
shift-share, are also interacted with a full set of year e�ects. The purged employment rate observations
are the residuals from this regression.

24Some CZs straddle state boundaries, so we allocate these to the state accounting for the largest
population share of the CZ.
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ACF in row 1. But, the decay is larger for smaller fi: the correlation for fi = 0 is strong
at the first few lags, though the fixed e�ects explain much of the correlation thereafter.
We argue below that these fixed e�ects are likely to be picking up persistence in local
demand growth. Broadly speaking, the message of Table 1 is one of strong persistence in
local joblessness over long periods of time.

4 Estimates of population response

4.1 Basic estimates

In this section, we report estimates of (15). Panel A of Table 2 presents OLS and IV
estimates for three specifications: (1) a “basic” specification, which includes the amenity
controls, interacted with year e�ects; (2) a fixed e�ect specification, in which the time-
invariant component of the supply shifter a

rt≠1 is modeled as an area fixed e�ect; and (3)
a first-di�erenced specification (another way to eliminate a time-invariant fixed e�ect),
where the dependent variable is the double di�erenced log population, and the endogenous
right-hand side variables are the double di�erenced log employment and the lagged change
in the log employment rate. We weight all observations by lagged local population share,
and standard errors are clustered by CZ.

It is worth emphasizing that the fixed e�ect and first di�erenced specifications are
empirically very demanding, and other studies which analyze decadal or long term di�er-
ences (such as Autor, Dorn and Hanson, 2013; Beaudry, Green and Sand, 2014b; Bound
and Holzer, 2000) have not estimated them.25 Given the short time dimension (just six
observations), it is di�cult to empirically disentangle a “genuine” supply fixed e�ect (due
to local variation in the amenity or wage curve) from long run persistence in the employ-
ment rate driven by sluggish migratory adjustment. We might then expect the fixed
e�ect and first di�erenced specifications to overstate the migratory response to initial
local deviations in the employment rate.

In all three OLS specifications, the signs on the variables are what we would ex-
pect. Higher contemporaneous employment growth is associated with higher population
growth; and the estimated coe�cient does not vary greatly across specifications, falling
at around 0.8. The coe�cient on the lagged employment rate is positive, implying that
areas that are doing better initially tend to gain population in the subsequent decade.
This e�ect is much more sensitive to specification, ranging from 0.2 to 1.

But, there are good reasons to think that the OLS estimates su�er from a range of
biases. First, population and employment growth are clearly jointly determined26, so

25Blanchard and Katz (1992) and other studies which estimate VAR models do tend to control for
local trends, but they benefit from more time observations (since they use annual data).

26Indeed, we estimate the employment response to population in Section 5 below.
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the coe�cient on employment growth cannot be interpreted as causal. Specifically, un-
observed supply-side shocks to population (driven, for example, by local amenities) will
a�ect local job creation, and this should bias the OLS estimate of —1 upwards. Further-
more, if these unobserved supply shocks are persistent, OLS estimates of —2 may be biased
downwards. For example, an improvement in local amenities should a�ect local popu-
lation growth positively but the employment rate negatively. To the extent that these
amenity e�ects are persistent, some of these biases may be addressed somewhat in the
fixed e�ect specification. But, the inclusion of fixed e�ects may introduce a “Nickell bias”
(Nickell, 1981): demeaning creates an artificial correlation between the lagged employ-
ment rate (which contains a lagged dependent variable: population) and the regression
error.

To deal with these problems, we instrument both of the variables of interest in the
estimation of (15). Specifically, we use current and lagged Bartik shocks as described
in the data section above. As we note in Section 2, the transmission from these shocks
to employment (in the first stage) will be influenced by local di�erences in the elasticity
of housing supply (Glaeser and Gyourko, 2005; Glaeser, Gyourko and Saks, 2006; Saiz,
2010; Notowidigdo, 2011; Zabel, 2012). But, we find that our first stage regressions have
su�cient power without accounting for this heterogeneity.

We would expect the current Bartik shock to be most strongly correlated with current
employment growth and the lagged Bartik shock to be most strongly correlated with the
lagged employment rate. The first stages are reported in Panel B of Table 2. In the basic
specification, this pattern materializes very strongly. The instruments have considerable
power and, remarkably, su�cient independent variation despite the substantial serial
correlation in the Bartik shock (see Figure 5 below). Contemporaneous employment
growth is only responsive to the current Bartik shock, with a coe�cient close to 1. And
the lagged employment rate is only responsive to the lagged instrument, with a coe�cient
of about 0.5 in the basic specification. The smaller e�ect in the latter is indicative of a
sizable population response, consistent with our second stage results below.

Having said that, when we introduce fixed e�ects or estimate in first di�erences27, the
patterns of correlations between the endogenous variables and the instruments become
more complicated (though the instruments remain powerful). We prefer the basic IV
specification, despite the fact that the p-value (not reported here) for joint significance
of the fixed e�ects is negligible. This is for two reasons. First, the first stage results in
the basic specification are more compelling; and second, as noted above, it is di�cult
empirically to disentangle a fixed e�ect from long run persistence in a short panel.

The IV estimates are reported in the second part of Panel A in Table 2. Our esti-
mate of —1, the elasticity to contemporaneous employment growth, is 0.66 in the basic

27The instruments in the first di�erenced specification are the first di�erenced Bartik shift shares, both
current and lagged.
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specification. As expected, this falls below the OLS estimate, though the reverse is true
under fixed e�ects. The IV coe�cient on the lagged employment rate, —2, is 0.45 in the
basic specification, larger than the equivalent OLS estimate (though the opposite holds
under first di�erences). In the non-basic specifications, the IV estimates of —1 and —2 are
closer to 1, with the fixed e�ect estimate of —2 just exceeding 1. This should probably
be expected in a short panel, since the fixed e�ects are likely to soak up much of the
persistence.

One might be concerned that the basic IV results are driven by a few outliers, but
the graphical analysis in Appendix D shows this is not the case. We also show in the
appendix that the results are robust to the exclusion of population weights: weighting
makes little di�erence to the basic specification, and the unweighted fixed e�ects and
first di�erenced coe�cients are smaller and closer to the basic specification. Also, our —1

estimate is not sensitive to the amenity controls, though omitting the climate controls
does yield smaller population responses to the lagged employment rate.

As we emphasize in the introduction, a novel feature of our specification is the inclusion
of the lagged error-correction term. It is strongly significant in all specifications in Table
2. We show in Appendix D that omitting the error-correction term (following the example
of other studies in the urban literature, as outlined in the introduction) yields a larger
coe�cient on contemporaneous local employment growth: 0.82 compared to the 0.66 in
the basic specification of column 4. This is to be expected, given the serial correlation in
the Bartik instrument.

Broadly speaking, the results in Table 2 show there is a robust relationship between
population growth on the one hand and employment growth and the lagged employment
rate on the other. One way to summarize the results is to consider what the estimates
imply about the impact of a change in employment, starting from a position of equilibrium
(for reasons we explain later, this is not the same as the impact of a shock to labor
demand). Based on the basic IV estimates (in column 4), a 10% contraction of local
employment causes population in the first decade to fall by 6.6%, a large change but not
enough to remove the impact of the shock within a decade. As the employment rate is
then 3.4% lower after 10 years, population continues to decline by 1.5% in the second
decade (according to our —2 estimate). So after 20 years, the employment rate would be
1.9% lower than the pre-shock level.

Our model in Section 2 does not distinguish between the working-age population
and the labor force: that is, it does not consider the participation decision. Table 3
reports estimates of our basic equation when we substitute labor force for population.
Specifically, the dependent variable becomes the change in log labor force, and the lagged
employment rate is now measured relative to the labor force rather than population.
Similar patterns emerge, but the labor force responds more strongly to both regressors
than population. In particular, the —2 estimates are insignificantly di�erent from 1. This

17



is in line with the conclusions of Beaudry, Green and Sand (2014b), who do not study
the inactive population. Taken together, Tables 2 and 3 suggest that any sluggishness in
the population response to initial local employment rate di�erentials is associated with
changes on the participation margin. The importance of the participation margin tallies
with findings from Autor and Duggan (2003), Rappaport (2012) and Autor, Dorn and
Hanson (2013), who identify large declines in economic activity (and rising take-up of
disability benefits) in cities subject to adverse shocks. It should not come as a surprise
then that much of the persistence in local joblessness is driven by inactivity, rather than
unemployment (as demonstrated in Table 1).

Our results do imply a sizable migration response, but smaller than that suggested
by Blanchard and Katz (1992). Blanchard and Katz estimate a state-level VAR (in local
employment growth, employment rate and participation rate) with two lags, using annual
data from the Current Population Survey (CPS) over the period 1978-1990. At the time,
this was probably the best available data; but this is a very di�erent frequency from ours
and may explain the di�erence in results. Obstfeld and Peri (1998) raise concerns about
the long run predictions from a model with just two annual lags. One particular issue
is that the most mobile workers are the quickest to respond to an employment shock,
so projecting the initial responses forward may bias upwards the long run population
response. Indeed, this may help explain why our (basic specification) IV estimate of —1

is larger than —2 in Table 2 (column 4): the —2 coe�cient is picking up the migratory
response of those workers who did not move immediately when the demand shock was
realized.

Recently, there have been concerns about a decline in gross migration rates since
1980, and whether this means migratory responses to local shocks have become more
sluggish (see e.g. Molloy, Smith and Wozniak, 2011). Table 4 reports estimate of our
population growth equation for two sub-samples: before and after 1980. The fixed e�ects
and first di�erence specifications do suggest larger population responses (to both variables
of interest) in the early period, though these specifications are especially demanding given
a time dimension of just four observations. In contrast, the basic specification gives little
support for this hypothesis: while the coe�cient on employment growth is larger in the
early period, the coe�cient on the lagged employment rate is somewhat smaller. This is
consistent with our finding of similar persistence in the employment rate both before and
after 1980 (see Table 1).

4.2 Demographic decomposition

The estimates above are based on local aggregates of employment and population stocks,
across all working-age individuals. But, these estimates may mask divergent patterns
within more detailed demographic groups. In particular, it has often been argued that
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lower skilled migratory flows are less sensitive to economic conditions. We address these
concerns by estimating models separately for di�erent demographic groups. To this end,
we use group-specific stocks for all relevant variables: the population growth outcome,
and the employment growth and lagged employment rate regressors. We also construct
our migrant shift-share controls for specific demographic groups (see Appendix B). But
we use the same two instruments as before: the current and lagged Bartik shift-shares.

Table 5 reports estimates for college graduates and non-graduates. In line with other
work (e.g. Bound and Holzer, 2000; Wozniak, 2010; Notowidigdo, 2011), we find some
evidence of larger population responses among higher skilled workers, at least in our
(preferred) basic specification28. This is also consistent with our finding in Table 1 that
local employment rates are more persistent among lower skilled labor. In our basic IV
results, —1 is 0.87 for graduates and 0.64 for non-graduates. And, the elasticity —2 to the
lagged employment rate is 0.73 for graduates and 0.45 for non-graduates; though —2 is
larger among non-graduate workers in the fixed e�ect and first di�erenced specifications.

Table 6 presents IV estimates by gender and for three broad age groups. The response
to current employment growth is somewhat larger for men and 25-44s in all specifications.
But, in the basic specification, our —2 estimate is largest among 45-64s. We report the
first stages of all these estimates in Appendix E.

Overall, the evidence suggests our simple model for population growth performs well
and is a useful framework for thinking about the impact of demand shocks on employment
rates.

5 Dynamic response to demand shocks

5.1 Estimates of employment response

The estimates we have presented allow us to make predictions about how population
responds, conditional on the level of employment in an area. But, this is is not the same
as the response to a shock to labor demand, because employment itself is endogenous.
If the adjustment of labor demand is sluggish (like population), we can derive a similar
ECM equation for employment growth:
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(18)
28There has been some debate on why lower skilled workers are less likely to leave cities su�ering

slumps in demand; see also Topel (1986) and Wozniak (2010). The low skilled are commonly thought
to face prohibitive migration costs; and Kennan (2015) provides evidence for this hypothesis from a
structural model. Notowidigdo (2011) argues they are relatively sheltered from local demand shocks
because of declining housing costs (low income families spend a larger share of their income on housing)
and transfer payments. Amior (2015) claims the obstacle to low skilled mobility is meager returns to
employment, amplified by limited search e�ort (by both firms and workers).
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where b

rt

is the Bartik shock, and �a

rt

and a

rt≠1 are observed amenity e�ects. This
is identical to the population response equation, but with population and employment
reversed. In the simple model presented earlier, population only a�ects employment
indirectly by shifting wages; but in reality, there is likely to be a direct e�ect also. This
is because an expanding population should trigger rising demand for non-traded goods
(see, for example, Moretti, 2010, or the model extension in Appendix A). Also, slack
labor markets may encourage firms to locate to area r, even if low wages do not. These
intuitions are consistent with the specification of (18), but will a�ect its interpretation.

To estimate this equation, we need instruments for both �l

rt

and (n
rt≠1 ≠ l

rt≠1).
Naturally, for the latter, we use the lagged Bartik shift-share, while controlling for the
current shift-share in the regression. But, it is harder to identify a convincing instrument
for population growth, which is exogenous of changes in labor demand. There is precedent
in the literature for estimating this kind of equation. Beaudry et al. (2014a; 2014b) study
the impact of changes in the log labor force (rather than population) on changes in log
employment and the log employment/labor force ratio. They identify this elasticity using
a range of climate indicators: January and July temperatures and rainfall. In the first
cited paper, they also use a migrant shift-share instrument, though we find this variable
has little explanatory power for local population29.

Instead, we use the climate controls. Hot and humid summers may conceivably be
linked to demand growth, if the expansion of air conditioning during the sample period
increased labor productivity (Oi, 1996). Our strategy is therefore to control for July heat
and humidity in the regression, and use winter January temperature as an instrument.
This follows Rappaport’s (2007) reasoning that, as incomes have grown, Americans have
been drawn to cities with mild winters (which have value as a consumption amenity).
Since the e�ect of January temperature may change over time, we also include the inter-
action of January temperature and a time trend as a further instrument.

The results are reported in Table 7. Across all specifications, the OLS elasticity of
employment with respect to population is close to 1. This is larger than the IV elasticity
in the basic specification (in column 4) of 0.69. This is to be expected: we know from
Table 2 that population responds positively to employment. In comparison, Beaudry et
al. (2014a; 2014b) estimate an IV elasticity of employment with respect to the labor force
of close to 1. The di�erence in our results is largely explained by the di�erent variables
we use. In results not reported here, we estimate a larger coe�cient of 0.9 when we
substitute labor force for population in equation (18).

Of course, January temperatures may be statistically conflated with other relevant
factors. In particular, Glaeser and Tobio (2007) argue that population growth in the Sun
Belt was largely driven by growing productivity before 1980 and lax housing regulation

29See column 7 (our preferred specification) of Table D1 in Appendix D. This may be suggestive of
geographical displacement of native-born individuals.
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thereafter. As a further test (in results not reported here), we attempt to absorb some
of these e�ects by controlling for a full set of interactions between nine census division
indicators and year e�ects. As it happens, our estimates are little a�ected: the impact of
population growth in the basic IV specification changes from 0.69 to 0.68. Having said
that, we remain less confident about these instruments than the Bartik shift-shares we
use in the population equation.

Next consider “2, the coe�cient on (n
rt≠1 ≠ l

rt≠1). In our basic IV specification, a
1% deviation in the initial employment rate leads to a -0.32% decrease in subsequent
employment growth. Again, this seems sensible: tighter labor markets (with higher
wages) should presumably discourage job creation.

The IV estimator with fixed e�ects has little power, and the first di�erenced results
appear unrealistic. But, the identification (purely through the interaction between Jan-
uary temperature and the time trend) is clearly demanding. Given these concerns, we
rely on the estimates from the basic IV specification (in column 4) in the analysis which
follows.

5.2 Impulse response functions

Our estimates from the population and employment equations (15 and 18) allow us to
simulate the dynamic response to a local labor demand shock. Specifically, we rely on
the following simultaneous equation model:

�n

rt

= “0 + “1�l

rt

+ “2 (n
rt≠1 ≠ l

rt≠1) + z

rt

(19)

and

�l

rt

= —0 + —1�n

rt

+ —2 (n
rt≠1 ≠ l

rt≠1) (20)

where z

rt

represents the demand shock. From these two equations, one can derive a
model for the evolution of the employment rate:

x

rt

=
C

1 ≠ (1 ≠ “1) —2 ≠ (1 ≠ —1) “2

1 ≠ —1“1

D

x

rt≠1 +
C

1 ≠ —1

1 ≠ —1“1

D

z

rt

(21)

where

x

rt

= n

rt

≠ l

rt

≠ (1 ≠ —1) “0 ≠ (1 ≠ “1) —0

(1 ≠ “1) —2 ≠ (1 ≠ —1) “2
(22)

is the deviation of the log employment rate from its steady-state. Notice the employment
rate follows an AR(1) process conditional on the labor demand shock z

rt

. The coe�cient
on z

rt

is the “shock amplification”, the initial e�ect of the shock: this is increasing in
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“1 but moderated by —1. And the persistence, identified by the coe�cient on x

rt≠1, is
dampened by larger —1 and —2 as well as larger (more negative) “2; though the e�ect of
“1 depends on the other parameters.

Our preferred estimates of the —s and “s30 place the shock amplification (for the
employment rate) at 0.62 and the AR(1) persistence at 0.55. As noted above, we do have
concerns about our estimates of the employment equation - and “1 in particular. In Table
8, we compute the amplification and persistence for di�erent combinations of “1 and “2,
given our preferred estimates of —1 and —2. For comparison, we have included our own
estimates of “1 and “2 in the table (0.692 and -0.319 respectively). The amplification is
invariant to “2, though does vary markedly with “1. In contrast, the persistence is much
more sensitive to “2 than “1. It is worth noting that turning the employment response o�
entirely (with both “ parameters taking zero) yields a very similar AR(1) parameter to
our preferred estimates. This suggests that population growth, rather than employment
growth, accounts for the bulk of the adjustment to local demand shocks: this is consistent
with the findings of Blanchard and Katz (1992) and Hornbeck (2012).

Consider a one-o� permanent local demand shock: an innovation of 0.1 log points
in z

rt

for some area r at t = 1, from an initial steady-state equilibrium. The impulse
response is shown in Figure 3, based on our preferred estimates of the — and “ parameters.
The large employment response (to population growth) greatly amplifies the impact on
local stocks, with employment and population coming to rest at 0.18 log points above
their original level. Of greater interest to this study is the impact on the employment
rate. The population response moderates somewhat the initial impact of the innovation
on the employment rate, though the e�ect clearly persists beyond one decade.

Having said that, the model alone clearly cannot match the magnitude of persistence
in the data, as reported in Table 1, especially after the first lag or two. The impulse
response function shows that equilibrium is largely restored in the model two decades
after the shock. In contrast, in Table 1, the ACF of the local employment rate only
reaches 0.5 by the sixth decadal lag.

5.3 Matching model to data

What explains this excess persistence in the data? In Section 3 above, we found lit-
tle evidence that supply-side explanations play a substantial role. Instead, persistent
demand-side factors appear more plausible. How much persistence in the unobserved
demand shock z

rt

is required to match the observed persistence in joblessness? Suppose
that z

rt

follows an AR(1) process:
30Our preferred estimates are the following: —1 = 0.664 and —2 = 0.445, based on the basic IV

specification of column 4 of Table 2 (Panel A); and “1 = 0.692 and “2 = ≠0.319, based on the basic IV
specification of column 4 of Table 7 (Panel A).
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z

rt

= ⁄z

rt≠1 + u

rt

(23)

Substituting equation (23) for z

rt

in (21) gives an AR(2) expression for x

rt

:

(1 ≠ ⁄L) (1 ≠ ◊L) x

rt

= û

rt

(24)

where L is the lag operator, and

◊ = 1 ≠ (1 ≠ “1) —2 ≠ (1 ≠ —1) “2

1 ≠ —1“1
(25)

and
û

rt

=
C

1 ≠ —1

1 ≠ —1“1

D

u

rt

(26)

Notice in equation (24) that ◊ and ⁄ are not separately identifiable using data on the
employment rate x

rt

alone. But, we can calibrate ◊ using our IV estimates of the — and
“ parameters. And, we can then assign the remainder of the persistence to ⁄, the AR(1)
parameter in the labor demand shock.

We plot the x

rt

ACFs for di�erent ⁄ values in Figure 4, together with the ACF for
the time-demeaned log employment rate, purged of observable amenity e�ects (the 10th
row in Table 1). The ⁄ = 0 line is the simulated ACF with a white noise shock. The
model with ⁄ = 0 accounts for about two thirds of the observed persistence at the first
decadal lag, but its explanatory power declines substantially thereafter. To match the
autocorrelation of the first lag, a ⁄ of approximately 0.6 is required; and the third to
sixth lags require a ⁄ of 0.8. A higher order of persistence in z

rt

would likely achieve a
better fit.

Are these ⁄ values realistic? In Figure 5, we plot the ACF of local employment
growth.31 There is clearly strong persistence, though this may conflate a range of supply
and demand shocks (as well as various feedback e�ects). In addition, measurement error
in the employment series may introduce significant biases.

We also plot the ACF for the time-demeaned Bartik shift-share, our instrument for
changes in local employment. As a relatively exogenous measure of local demand growth,
it may help guide our prior on the z

rt

process. Figure 5 reveals strong persistence in
this series also, similar to that of local employment growth. We estimate an AR(1)
parameter for the Bartik shift-share of 0.68. This falls between the 0.6 and 0.8 bounds
which, as Figure 4 shows, are required to match the employment rate ACF. This Bartik
shift-share analogy yields a natural explanation for persistence in the demand shocks:
long-run declines in agricultural and then manufacturing employment (as illustrated in
Figure 6), combined with stickiness in local industrial composition. The flip side of this

31Our employment growth series ends at the fifth lag, because our sample does not include local
employment counts in 1940.
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is growing demand in ideas-producing regions: see, for example, Moretti (2004), Glaeser
(2005), Glaeser and Ponzetto (2007) and Moretti (2012).

This story is consistent with our estimates of the (bias-corrected) ACF purged of CZ
fixed e�ects, reported in rows 14-16 of Table 1. The fixed e�ects explain a relatively
small fraction of the persistence at the first few decades (compared to the basic ACF
in row 1), but potentially much more thereafter (depending on the assumption used to
estimate the ACF). This makes sense if the fixed e�ects are largely serving to absorb the
serial correlation in demand. As is clear from Figure 4, persistence in demand is more
important for matching the ACF at larger lags: the model alone does a reasonable job
at the initial lags.

The key idea comes from a well-known feature of ECMs: continuous shocks have a
permanent e�ect on the deviation from equilibrium. To see this, suppose that z

rt

in
(19) is fixed at some constant z: every period, an area experiences the same increase or
decrease in labor demand. In the steady-state, the local employment rate deviation x

rt

must rest at some level x

ú
r

. Imposing x

rt

= x

ú
r

in equation (21) gives:

x

ú
r

= 1 ≠ —1

(1 ≠ “1) —2 ≠ (1 ≠ —1) “2
z (27)

so that areas facing continuous negative local demand shocks will have permanently lower
employment rates. For our benchmark parameter values, the coe�cient on z is 1.38. That
is, a 1% permanent deviation in the local growth of labor demand yields a 1.38% deviation
in the employment rate.

6 Other outcomes of interest

6.1 Wage and housing price e�ects

In this study, for the reasons explained above, we have focused on changes in quantities
rather than prices. For completeness though, we document here the impact of local em-
ployment shocks on residualized wages and housing costs (the most important component
of price di�erentials across areas). Specifically, we re-estimate the population equation
(15), but simply change the dependent variable to log wage or price changes.

We construct residualized local wages and housing costs using the IPUMS census
and ACS micro-data samples from each cross-section since 1970. Although earnings and
housing cost data are available before 1970, the census extract of 1960 does not include
sub-state geographical identifiers (see Appendix B). Our wage sample consists of full-time
(at least 35 hours) and full-year (at least 40 weeks) employees aged 16-64, excluding those
living in group quarters. We study the e�ect on weekly wages specifically, estimated by
dividing annual labor earnings by weeks worked. Within each cross-section, we extract
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log wage residuals from a regression on detailed demographic characteristics.32 We then
estimate the average log residual within each CZ.33

We estimate residualized housing costs, separately for rents (for renters) and prices
(for homeowners), in a similar way. We restrict the sample to houses and flats; and we
exclude farms, units with over 10 acres of land, and units with commercial use. Within
each cross-section, we extract log housing cost residuals (separately for rents and prices)
from a hedonic regression on a range of observed housing characteristics.34 Then, as with
wages, we estimate average log residuals within each CZ.

We report our estimates in Table 9. These are much more sensitive to specification
than our population response estimates in Table 2. For example, the impact of the lagged
employment rate on wage growth varies not just in magnitude but also in sign, depending
on whether we included CZ fixed e�ects. But generally, the estimates do suggest that
nominal wages respond positively to the same factors as population growth. The same is
true of rents and house prices.

Given that we do not have a model to interpret the estimates in Table 9, it is perhaps
simpler to study the reduced form results. We report these in Table 10. The “long
run” (two decade) e�ect of a Bartik shock on a variable can be derived by summing
the coe�cients on the current and lagged shocks. Notice the long run impact on all
three variables is positive, though there is some negative feedback in the second decade
- perhaps because a delayed labor supply response in the second decade puts downward
pressure on wages. Notice also that the short run impact on prices is much larger than
on rents, though the long run e�ects are similar. The short run overshooting of prices is
presumably driven by expectations of asset price appreciation (see e.g. Gallin, 2008).

To assess the impact on real consumption wages, we need to know how much wages
must grow relative to housing costs to keep individuals indi�erent. One estimate might
be the share of housing costs in total expenditure (about 0.25, according to Davis and
Ortalo-Magne, 2011). By this reckoning, the “short run” (decadal) elasticity of real wages
(deflated by housing rents) to a Bartik shock is 0.4035, and the long run e�ect is 0.07.
On the other hand, Albouy (2008) argues that a household requires a 0.65% increase in
earnings to remain indi�erent to a 1% increase in housing costs. His calculation takes into

32Specifically, we control for age and age squared; four education e�ects, and interactions between these
and the age quadratic; interactions between a gender dummy and all previously mentioned variables;
and black, Hispanic and foreign-born dummies.

33As explained in Appendix B, sub-state geographical identifiers vary by census cross-section. In
general, these cannot precisely identify the CZ boundaries. Our strategy is to weight these log residuals
using appropriate population allocations between these identifiers and the CZs; see Appendix B for
further detail on these allocations.

34These consist of number of rooms (9 indicators); number of bedrooms (6 indicators); interaction
between number of rooms and bedrooms; building age (up to 9 indicators, depending on cross-section);
and indicators for kitchen, complete plumbing and condominium status. We also control for a house/flat
dummy, as well as interactions between this and all previously mentioned variables.

35This is equal to the wage e�ect minus one quarter of the rent e�ect.
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account housing’s share of total expenditure (which he estimates at 21%), the e�ective
federal tax rate on labor income adjusted for homeowner tax benefits (32%), the share of
household income that depends on local wages (75%), and the fact that the cost-of-living
di�erences across cities amount to a third of di�erences in local housing costs (net of
homeowner tax benefits). By this reckoning, the short run e�ect on real wages would be
approximately zero, and the long run e�ect would be negative. Clearly, the estimate of
the real wage e�ect is very sensitive to this parametrization. This is one reason why we
prefer to summarize local labor market conditions using the employment rate.

6.2 Commuting response to employment shocks

Until now, we have treated commuting zones as distinct local labor markets and assumed
that workers who wish to work elsewhere must change residence. This seems reasonable,
given that CZs are constructed to minimize the commuting flows between them. But,
commuting flows between CZs are not negligible, and this raises the possibility that com-
muting itself may respond to economic shocks. We make use of cross-county commuting
flow data published by the Census Bureau since 1970. Data has not been constructed
for 2010, but is available for a pooled ACS sample of 2006-10 - so we use this instead.36

The share of workers employed outside their CZ of residence grew from 3.4% in 1970 to
7.5% in 2006-10. As one would expect, there is considerable heterogeneity across CZs. In
Figure 7, we plot the distribution across CZs of the share of workers commuting outside
their CZ in 1970 and 2006-10. The maximum share rose from 27% to 42% over the period.

Let n

L

rt

be the log employment of area r residents who commute locally, with n

rt

being
the log employment of all area r residents. Our strategy is to re-estimate the population
equation (20), but simply replace the dependent variable with �s

L

rt

= �n

L

rt

≠ �n

rt

;
that is, the change in the log share of employed residents who work locally, i.e. do
not commute across a CZ boundary.37 By using the same right-hand side variables as
in the population equation, we can directly compare the magnitude of the population
and commuting responses to local employment conditions. The basic specification is the
following:

�s

L

rt

= ”0 + ”1�n

rt

+ ”2 (n
rt≠1 ≠ l

rt≠1) + ”3�a

rt

+ ”4art≠1 + Á

rt

(28)
36We take data for 1970 and 1980 from the BEA (http://www.bea.gov/regional/histdata/releases/0405jtw/

index.cfm) and download flow data for 1980 and 1990 directly from the Census Bureau website
(http://www.census.gov/hhes/commuting/data/commuting.html). Data for the ACS 2006-10 sample
is available at http://www.census.gov/population/metro/data/other.html. Note that we estimate local
commuting shares (that is, the share of workers employed outside their CZ of residence) based on data
for all employed workers, rather than the 16-64 age group we usually study: age-disaggregated flows are
unavailable in most cross-sections.

37Given that most workers commute locally, variation in the log share is approximately equivalent to
variation in the absolute share. But, the log specification yields a simpler interpretation of the estimates
which we set out below.
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where �a

rt

and a

rt≠1 are observed amenity e�ects. Following large local employment
growth, fewer workers in area r should be tempted to commute elsewhere (at significant
cost): ”1 should be positive. And a large initial employment rate should have a similar
e�ect, so ”2 should be positive.

An important concern is that commuting decisions are largely dependent on the em-
ployment situation in neighboring CZs, but these are themselves correlated with local
conditions. Given this, we also estimate specifications of the form:
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rt
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(29)
where n

A

rt

is the log of total employment across all adjacent CZs, and l

A

rt

is the log of total
population. 3 of our 722 CZs are islands38, and we omit them for this exercise.

Clearly, employment growth and the initial employment rate in adjacent CZs are
endogenous to �s

L

rt

. As a result, we require two more instruments to identify ”3 and ”4.
For each CZ, we compute the (employment-weighted) average Bartik shift-share across
adjacent CZs; and we use the current and lagged shift-shares as our instruments. We
report our estimates in Table 11.

According to our basic IV estimates in column 1, the elasticity of the local commut-
ing share with respect to local employment growth and the lagged employment rate is
about 0.1. This is a substantial e�ect, given that the elasticity of population is around
0.5. These e�ects are even larger, once we control (in column 2) for employment con-
ditions in adjacent CZs. The coe�cient on local employment growth reaches 0.18, and
the coe�cient on the lagged employment rate 0.15. The e�ects of the adjacent CZs are
negative and approximately equal in magnitude. The first stage results of the basic spec-
ification show considerable power in disentangling the e�ects of area r and the adjacent
areas, with the appropriate instruments driving most of the variation in the corresponding
endogenous variables.

The e�ect of the lagged employment rate is more than twice as large in the fixed
e�ect specification (columns 3 and 4) and more than three times in the first di�erenced
specification (columns 5 and 6), though the first stage results are less compelling: while
the instruments retain much power, correlation patterns between the endogenous variables
and instruments are more complex.

Broadly speaking, these results indicate that commuting plays an important role in
the adjustment to local shocks, even when the areas are defined as commuting zones.

38These are Martha’s Vineyard (MA), Nantucket (MA) and San Juan Islands (WA).
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7 Conclusion
In this paper, we have explored the persistence in labor market opportunities across
commuting zones in the US. We have argued for the use of the employment rate as a
summary measure of local labor market opportunities, rather than the more conventional
real wage. The two measures are equivalent as long as the labor supply or wage curve is
not completely inelastic, which is plausible. And the quantity measure has two advan-
tages. First, it su�ers fewer measurement di�culties than real wages. And second, our
estimates of the population response are directly informative of the speed of adjustment.

Joblessness across US commuting zones shows a high level of persistence even over a
period of 60 years. We have claimed this cannot be explained by permanent (or highly
persistent) di�erences in the characteristics of areas, whether due to demographic com-
position or amenities. Using a simple model, we derive an ECM specification to model
the adjustment of population to local demand shocks which explicitly accounts for the
response to disequilibrium. We show that this model performs well empirically. The mi-
gration response is large, but not as large as commonly thought: adjustment to shocks is
not complete within a decade. Over longer periods, we explain persistence in joblessness
by serial correlation in the local demand shocks themselves. An adverse local demand
shock is followed by population adjustment; but further negative shocks are likely to
follow also, so the employment rate does not return to its original level. We have argued
this persistence in local demand growth may be driven by long-run changes in industrial
composition, but the exact causes should be the subject of future research.
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Tables and figures

Table 1: The Autocorrelation Function for the employment rate

Employment rate variant Lag
1 2 3 4 5 6

(1) Raw Data (time-demeaned) 0.84 0.78 0.71 0.60 0.55 0.52
Sub-samples

(2) Years 1950-80 0.82 0.78 0.72 - - -
(3) Years 1980-10 0.85 0.73 0.73 - - -
(4) Labor force 0.53 0.45 0.46 0.38 0.36 0.28
(5) College graduate 0.54 0.22 0.17 0.11 0.06 0.05
(6) Non-graduate 0.82 0.74 0.66 0.53 0.46 0.44
(7) Male 0.74 0.68 0.65 0.53 0.45 0.25
(8) Female 0.90 0.78 0.68 0.55 0.41 0.42
(9) Composition-adjusted 0.84 0.76 0.68 0.65 0.51 0.50
(10) CZ amenity controls 0.84 0.78 0.69 0.57 0.49 0.41
(11) Within-state 0.76 0.66 0.53 0.36 0.29 0.19
(12) Collapsed to state 0.82 0.75 0.69 0.57 0.53 0.51

Within-CZ
(13) Unadjusted 0.25 -0.02 -0.26 -0.53 -0.42 -0.49
(14) Bias-corrected: fi = 0.9 0.81 0.72 0.65 0.53 0.49 0.44
(15) Bias-corrected: fi = 0.5 0.69 0.55 0.43 0.22 0.16 0.08
(16) Bias-corrected: fi = 0 0.67 0.51 0.38 0.15 0.09 0

This table summarizes autocorrelation functions of the time-demeaned log employment
rate, across five decadal lags. In general, these are estimated as the ratio of the lag-
specific autocovariance to the product of the current and lagged standard deviations
(weighted by CZ population share), across all CZs. Rows 2-8 estimate ACFs for par-
ticular subsamples of the data. Row 9 reports the ACF for the log employment rate
adjusted for local demographic composition; the construction of this variable is de-
scribed in footnote 22. As explained in the footnote, we are unable to construct this
data for 1960, so we omit that year from our data series. Consequently, the sample used
in the estimation of the ACF in row 9 is somewhat di�erent to the other rows, though
we take comfort from the stability in our estimates over time (as indicated by rows 2
and 3). Row 10 purges the log employment rate of variation in observed amenities, as
described in footnote 23. In row 11, we purge the log employment rate of state fixed
e�ects (as well as time e�ects). Some CZs do straddle state boundaries, so we allocate
these to the state accounting for the largest population share of the CZ. In row 12, we
estimate ACFs for the (time-demeaned) log employment rate of the 48 states of the
Continental US (rather than the 722 CZs). Row 13 purges the log employment rate
of CZ fixed e�ects (in the same way that row 11 removed state fixed e�ects). But,
given the short panel, these estimates are biased. We correct for this bias following the
procedure described in Appendix C. This procedure requires one identifying assump-
tion. We fixed the ratio fi of the sixth to fifth autocorrelation, and report estimates for
di�erent fi in rows 14-16.
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Table 2: Basic estimates for population response

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log emp 16-64 0.793*** 0.790*** 0.822*** 0.664*** 0.813*** 0.715***
(0.013) (0.014) (0.012) (0.026) (0.037) (0.030)

Lagged log emp rate 16-64 0.198*** 0.576*** 1.047*** 0.445*** 1.037*** 0.796***
(0.015) (0.033) (0.030) (0.051) (0.156) (0.101)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log emp 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Current Bartik shock 1.147*** 1.105*** 1.008*** 0.011 -0.146*** -0.051
(0.069) (0.074) (0.080) (0.040) (0.033) (0.032)

Lagged Bartik shock -0.043 -0.157** -0.223** 0.534*** 0.217*** 0.244***
(0.060) (0.064) (0.087) (0.052) (0.034) (0.025)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

This table reports OLS and IV estimates of —1 and —2 in the population response equation
(15), as well as the first stage estimates (in Panel B), across 722 CZs and six (decadal)
time periods. In the basic specification (columns 1 and 4), the dependent variable is the log
decadal change in the CZ population, and the endogenous variables are the log change in local
employment and the lagged log employment-population ratio, with all stocks corresponding
to individuals aged 16-64. These are instrumented by the current and lagged Bartik industry
shift-shares respectively, as defined in equation (16). We also control for a full set of time
e�ects, three climate variables (the maximum January and July termperatures, and mean
July relative humidity), a dummy for the presence of coastline, the log population density in
1900, the log distance to the closest CZ centroid, and the migrant shift-share (as described in
equation (17)); all these controls, excluding the migrant shift-share, are also interacted with
all the time e�ects. We report estimates from a fixed e�ects specification in columns 2 and 5,
where we control for a full set of CZ dummies. And columns 3 and 6 report a first di�erenced
specification, where all variables in the basic specification (including the instruments) are
di�erenced; so the dependent variable in the double di�erence in log population (we lose one
decade in our sample through this transformation). Errors are clustered by CZ, and robust
standard errors are reported in parentheses. Each observation is weighted by the lagged local
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 3: Basic estimates for labor force response

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log emp 16-64 0.947*** 0.954*** 0.955*** 0.883*** 0.980*** 0.886***
(0.006) (0.007) (0.006) (0.014) (0.040) (0.020)

Lagged log emp rate 16-64 0.453*** 0.947*** 1.330*** 1.253*** 2.660*** 1.061***
(0.022) (0.047) (0.033) (0.257) (0.890) (0.174)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log emp 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Current Bartik shock 1.147*** 1.105*** 1.008*** -0.004 -0.040*** 0.007
(0.069) (0.074) (0.080) (0.010) (0.010) (0.017)

Lagged Bartik shock -0.043 -0.157** -0.223** 0.075*** 0.037** 0.076***
(0.060) (0.064) (0.087) (0.011) (0.016) (0.014)

Observations 4,332 4,332 3,610 4,332 4,332 3,610
This table reports OLS and IV estimates of the labor force response to employment shocks, as well as
the first stage estimates (in Panel B), across 722 CZs and six (decadal) time periods. The empirical
specifications are identical to those in Table 2, based on equation (15), except the endogenous stock
variables are restricted to labor force participants. That is, the dependent variable is the log change
in the local active labor force, and the endogenous variables are the log employment change and the
lagged log employment rate (measured here as the ratio of employed to all participants), with all stocks
corresponding to individuals aged 16-64. See the notes of Table 2 for further details. Errors are clustered
by CZ, and robust standard errors are reported in parentheses. Each observation is weighted by the lagged
local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Population estimates before and after 1980

1950-1980 1980-2010
Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

OLS

� log emp 16-64 0.805*** 0.839*** 0.867*** 0.772*** 0.697*** 0.758***
(0.013) (0.020) (0.015) (0.022) (0.024) (0.022)

Lagged log emp rate 16-64 0.195*** 0.911*** 1.156*** 0.204*** 0.717*** 0.848***
(0.022) (0.049) (0.041) (0.018) (0.060) (0.052)

IV

� log emp 16-64 0.734*** 0.871*** 0.849*** 0.524*** 0.545*** 0.450***
(0.034) (0.040) (0.041) (0.032) (0.047) (0.073)

Lagged log emp rate 16-64 0.378*** 0.956*** 1.027*** 0.482*** 0.657*** 0.312**
(0.068) (0.150) (0.120) (0.078) (0.111) (0.149)

FS: � log emp 16-64

Current Bartik shock 1.133*** 1.055*** 1.023*** 1.210*** 0.908*** 0.708***
(0.091) (0.130) (0.104) (0.092) (0.193) (0.178)

Lagged Bartik shock -0.051 -0.094 -0.056 0.024 -0.566** -0.558***
(0.079) (0.137) (0.093) (0.127) (0.225) (0.201)

FS: Lagged log emp rate 16-64

Current Bartik shock 0.005 -0.126*** -0.106*** 0.074 0.146 0.184***
(0.035) (0.039) (0.031) (0.087) (0.096) (0.071)

Lagged Bartik shock 0.476*** 0.239*** 0.226*** 0.789*** 0.523*** 0.462***
(0.063) (0.057) (0.043) (0.089) (0.082) (0.056)

Observations 2,166 2,166 1,444 2,166 2,166 1,444
Like Table 2, this table reports OLS, IV and first stage estimates of the population response equation
(15) across 722 CZs, though this time separately for the period 1950-1980 (in the first three columns) and
1980-2010 (in the final three). See the notes of Table 2 for further details. Errors are clustered by CZ,
and robust standard errors are reported in parentheses. Each observation is weighted by the lagged local
population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 5: Estimates by skill

College graduates Non-graduates
Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

OLS

� log emp 16-64 0.943*** 0.947*** 0.951*** 0.770*** 0.764*** 0.796***
(0.007) (0.007) (0.005) (0.015) (0.017) (0.014)

Lagged log emp rate 16-64 0.702*** 0.781*** 0.912*** 0.193*** 0.571*** 1.018***
(0.062) (0.053) (0.016) (0.016) (0.033) (0.032)

IV

� log emp 16-64 0.865*** 0.829*** 0.838*** 0.636*** 0.805*** 0.684***
(0.046) (0.083) (0.055) (0.028) (0.046) (0.032)

Lagged log emp rate 16-64 0.729*** 0.610* 0.628** 0.452*** 1.113*** 0.806***
(0.155) (0.346) (0.261) (0.056) (0.197) (0.114)

Observations 4,332 4,332 3,610 4,332 4,332 3,610
This table reports OLS and IV estimates of the population response equation (15) across 722 CZs and
six (decadal) time periods, separately for college graduates (with at least four years of college) and
non-graduates. The endogenous variables in these specifications are education-specific. For example, for
college graduates, we regress the log decadal change in the CZ graduate population on the log change in
graduate employment and the lagged log graduate employment rate. Similarly, the migrant shift-share
is constructed to predict the contribution of new migrants to the education-specific local population (see
Appendix B). Otherwise, these specifications are identical to those in Table 2; see the notes below that
table for further details. In particular, the instruments are the same as in Table 2: the current and
lagged Bartik shift-share in each case. First stage estimates are reported in the Appendix E. Errors are
clustered by CZ, and robust standard errors are reported in parentheses. Each observation is weighted
by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: IV estimates by sex and age

Age group 16-64 16-24 25-44 45-64
Male Female All All All
(1) (2) (3) (4) (5)

Basic specification

� log emp 0.732*** 0.531*** 0.616*** 0.751*** 0.478***
(0.020) (0.066) (0.024) (0.028) (0.041)

Lagged log emp rate 0.430*** 0.445*** 0.414*** 0.530*** 0.603***
(0.058) (0.051) (0.035) (0.067) (0.086)

CZ fixed e�ects

� log emp 0.935*** 0.430*** 0.761*** 0.851*** 0.753***
(0.072) (0.075) (0.068) (0.026) (0.055)

Lagged log emp rate 1.083*** 0.871*** 1.014*** 1.241*** 1.031***
(0.230) (0.137) (0.237) (0.172) (0.125)

Observations 4,332 4,332 4,332 4,332 4,332

First di�erences

� log emp 0.736*** 0.537*** 0.586*** 0.805*** 0.603***
(0.039) (0.040) (0.037) (0.026) (0.041)

Lagged log emp rate 0.642*** 0.830*** 0.522*** 1.073*** 0.871***
(0.136) (0.075) (0.129) (0.107) (0.072)

Observations 3,610 3,610 3,610 3,610 3,610
This table reports IV estimates of the population response equation (15) across 722
CZs and six (decadal) time periods, separately for gender and age groups (16-24, 25-
44 and 45-64). The endogenous variables in these regressions are group-specific. For
example, in column 1, we regress the log decadal change in the CZ male population on
the log change in male employment and the lagged log male employment rate. Simil-
arly, the migrant shift-share is constructed to predict the contribution of new migrants
to the group-specific population (see Appendix B). Otherwise, these specifications are
identical to those in Table 2; see the notes below that table for further details. In
particular, the instruments are the same as in Table 2: the current and lagged Bartik
shift-share in each case. First stage estimates are reported in the Appendix E. Errors
are clustered by CZ, and robust standard errors are reported in parentheses. Each
observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05,
* p<0.1.
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Table 7: Estimates for employment response

PANEL A: OLS and IV
OLS IV

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

� log pop 16-64 1.012*** 0.985*** 1.011*** 0.692*** -7.847 2.076***
(0.011) (0.018) (0.016) (0.075) (28.625) (0.688)

Lagged log emp rate 16-64 -0.148*** -0.727*** -1.264*** -0.319*** 3.386 -1.316***
(0.014) (0.044) (0.035) (0.068) (13.677) (0.358)

Observations 4,332 4,332 3,610 4,332 4,332 3,610

PANEL B: First stage
� log pop 16-64 Lagged log emp rate 16-64

Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

Basic specification

Max temp January 0.385*** 0.022
(0.086) (0.059)

Max temp January * time -0.014 -0.017 -0.008*** -0.048*** -0.043*** -0.009***
(0.015) (0.016) (0.003) (0.014) (0.012) (0.003)

Lagged Bartik shock 0.216*** 0.113** 0.044 0.529*** 0.218*** 0.246***
(0.056) (0.053) (0.062) (0.049) (0.034) (0.024)

Observations 4,332 4,332 3,610 4,332 4,332 3,610
This table reports OLS and IV estimates of “1 and “2 in the employment response equation (18), as well as
the first stage estimates (in Panel B), across 722 CZs and six (decadal) time periods. In the basic specification
(columns 1 and 4), the dependent variable is the log decadal change in CZ employment, and the endogenous
variables are the log change in local population and the lagged log employment-population ratio, with all
stocks corresponding to individuals aged 16-64. As in the population equation (see Table 2), we instrument
the lagged employment rate with the lagged Bartik shift-share. And we instrument local population growth
with two variables: the (time-invariant) maximum January tenmperature and its interaction with a time
trend. We also control for a full set of time e�ects, two climate variables (the maximum July termperature
and mean July relative humidity), a dummy for the presence of coastline, the log population density in 1900,
the log distance to the closest CZ centroid, the migrant shift-share (as described in equation (17)) and the
current Bartik shift-share; all these controls, excluding the migrant and Bartik shift-shares, are also interacted
with all the time e�ects. We report estimates from a fixed e�ects specification in columns 2 and 5, where we
control for a full set of CZ dummies. And columns 3 and 6 report a first di�erenced specification, where all
variables in the basic specification (including the instruments) are di�erenced; so the dependent variable in
the double di�erence in log population (we lose one decade in our sample through this transformation). Errors
are clustered by CZ, and robust standard errors are reported in parentheses. Each observation is weighted by
the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Sensitivity of computed shock amplification and persistence parameters

“1 value “2 value
0 -0.319 -0.6 -0.9

Shock amplification

0 0.336 0.336 0.336 0.336
0.3 0.420 0.420 0.420 0.420

0.692 0.622 0.622 0.622 0.622
0.9 0.835 0.835 0.835 0.835

AR(1) persistence

0 0.555 0.448 0.353 0.252
0.3 0.611 0.477 0.359 0.233

0.692 0.747 0.548 0.373 0.187
0.9 0.890 0.623 0.388 0.138
This table computes the parameters, in equa-
tion (21), on (i) the demand shock zrt (the
shock amplification) and (ii) the lagged log
employment rate deviation (the AR(1) per-
sistence), for di�erent values of “1 and “2.
In each instance, we set —1 and —2 at 0.664
and 0.445 respectively, our preferred estim-
ates from the basic specification of the pop-
ulation equation (15) in Table 2. Notice the
“1 = 0.692 and “2 = ≠0.319 cases correspond
to our preferred estimates from the basic spe-
cification of the employment equation (18) in
Table 7.
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Table 9: Wage and price e�ects: OLS and IV

OLS IV
� log wage � log rent � log price � log wage � log rent � log price

(1) (2) (3) (4) (5) (6)

Basic specification

� log emp 16-64 0.227*** 0.365*** 0.822*** 0.575*** 0.892*** 1.497***
(0.023) (0.025) (0.096) (0.068) (0.081) (0.181)

Lagged log emp rate 16-64 -0.038* 0.020 -0.134* -0.533*** -0.230 -0.909***
(0.021) (0.031) (0.076) (0.124) (0.147) (0.277)

CZ fixed e�ects

� log emp 16-64 0.540*** 0.729*** 1.657*** 0.906*** 1.195*** 1.806***
(0.043) (0.053) (0.158) (0.103) (0.096) (0.258)

Lagged log emp rate 16-64 0.465*** 0.471*** 0.471* 0.659* 0.904** -0.042
(0.073) (0.137) (0.285) (0.377) (0.381) (0.640)

Observations 2,888 2,888 2,888 2,888 2,888 2,888

First di�erences

� log emp 16-64 0.686*** 0.910*** 2.062*** 1.107*** 1.277*** 2.203***
(0.047) (0.052) (0.176) (0.134) (0.106) (0.353)

Lagged log emp rate 16-64 0.622*** 0.746*** 0.929** 1.471*** 1.003** 0.709
(0.127) (0.174) (0.433) (0.367) (0.470) (1.167)

Observations 2,166 2,166 2,166 2,166 2,166 2,166
This table reports OLS and IV estimates of the response of wages and housing costs to employment shocks, across 722
CZs and four (decadal) time periods beginning in 1970. We cannot construct this data in 1960, since the census micro-
data of that year does not include sub-state geographical identifiers (see Appendix B). The empirical specifications
are identical to those in Table 2, based on the population response equation (15), except we change the dependent
variable to the local change in the log residualized wage (in columns 1 and 4), residualized housing rent (columns 2
and 5) and residualized house price (3 and 6). The residualization method for each variable is described in Section 6.1.
The two instruments are the current and lagged Bartik shift-share. See the notes under Table 2 for further details on
the empirical specification. Errors are clustered by CZ, and robust standard errors are reported in parentheses. Each
observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Table 10: Wage and price e�ects: reduced form

� log wage � log rent � log price
(1) (2) (3)

Basic specification

Current Bartik shock 0.647*** 1.001*** 1.683***
(0.095) (0.103) (0.204)

Lagged Bartik shock -0.362*** -0.15 -0.611***
(0.113) (0.092) (0.161)

CZ fixed e�ects

Current Bartik shock 0.926*** 1.223*** 1.805***
(0.122) (0.163) (0.373)

Lagged Bartik shock -0.086 -0.104 -0.561*
(0.212) (0.180) (0.305)

Observations 2,888 2,888 2,888

First di�erences

Current Bartik shock 1.083*** 1.214*** 2.042***
(0.140) (0.165) (0.447)

Lagged Bartik shock -0.036 -0.246 -0.725
(0.239) (0.243) (0.586)

Observations 2,166 2,166 2,166
This table reports reduced form estimates of the response of wages
and housing costs to employment shocks, which correspond to the
OLS and IV estimates in Table 9. These are based on the popula-
tion response equation (15), estimated in Table 2, except we change
the dependent variable to the local change in the log residualized
wage (in columns 1 and 4), residualized housing rent (columns 2
and 5) and residualized house price (3 and 6). The residualization
method for each variable is described in Section 6. The two instru-
ments are the current and lagged Bartik shift-share. The sample
covers 722 CZs and four (decadal) time periods beginning in 1970.
We cannot construct this data in 1960, since the census micro-data
of that year does not include sub-state geographical identifiers (see
Appendix B). See the notes under Table 2 notes for details on the
included controls. Errors are clustered by CZ, and robust standard
errors are reported in parentheses. Each observation is weighted
by the lagged local population share. *** p<0.01, ** p<0.05, *
p<0.1.
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Table 11: Estimates for changes in log share of employed residents working locally

Basic FE FD
(1) (2) (3) (4) (5) (6)

IV

� log emp 16-64 0.114*** 0.182*** 0.096*** 0.196*** 0.130*** 0.210***
(0.024) (0.041) (0.023) (0.040) (0.031) (0.054)

Lagged log emp rate 16-64 0.107*** 0.154*** 0.218*** 0.493*** 0.371*** 0.957***
(0.024) (0.042) (0.073) (0.113) (0.118) (0.248)

� log emp 16-64 (adj) -0.154*** -0.187*** -0.171***
(0.038) (0.044) (0.047)

Lagged log emp rate 16-64 (adj) -0.157** -0.382*** -0.784***
(0.071) (0.111) (0.246)

FS: � log emp 16-64

Current Bartik shock 1.121*** 1.025*** 1.000*** 0.785*** 0.911*** 0.782***
(0.101) (0.127) (0.132) (0.160) (0.143) (0.162)

Lagged Bartik shock 0.01 0.112 -0.304** -0.223 -0.425** -0.296
(0.094) (0.102) (0.143) (0.158) (0.186) (0.192)

Current Bartik shock (adj) 0.201 0.617*** 0.382**
(0.174) (0.163) (0.160)

Lagged Bartik shock (adj) -0.282** -0.142 -0.279**
(0.122) (0.138) (0.135)

FS: Lagged emp rate 16-64

Current Bartik shock -0.007 0.017 0.031 0.053 0.051 0.032
(0.119) (0.125) (0.064) (0.071) (0.048) (0.050)

Lagged Bartik shock 0.689*** 0.681*** 0.287*** 0.212*** 0.295*** 0.212***
(0.089) (0.098) (0.039) (0.043) (0.033) (0.038)

Current Bartik shock (adj) -0.066 -0.056 0.022
(0.115) (0.072) (0.054)

Lagged Bartik shock (adj) 0.013 0.183*** 0.200***
(0.077) (0.061) (0.056)

FS: � log emp 16-64 (adj)

Current Bartik shock 0.295*** 0.253* 0.244*
(0.112) (0.135) (0.138)

Lagged Bartik shock 0.057 0.414*** 0.347***
(0.084) (0.109) (0.101)

Current Bartik shock (adj) 1.255*** 0.750*** 0.622***
(0.128) (0.161) (0.182)

Lagged Bartik shock (adj) -0.659*** -0.862*** -1.019***
(0.119) (0.139) (0.133)

FS: Lagged emp rate 16-64 (adj)

Current Bartik shock 0.035 0.013 0.075**
(0.059) (0.038) (0.032)

Lagged Bartik shock -0.018 -0.137*** -0.079**
(0.062) (0.045) (0.034)

Current Bartik shock (adj) 0.05 0.258*** 0.199***
(0.106) (0.060) (0.053)

Lagged Bartik shock (adj) 0.529*** 0.463*** 0.363***
(0.077) (0.050) (0.037)

Observations 2,876 2,876 2,876 2,876 2,157 2,157
This table reports OLS and IV estimates of the elasticity of the share of employed residents working locally to
employment shocks, as well as the first stage estimates, across 722 CZs and four (decadal) time periods beginning in
1970 (when our commuting data begins). In columns 1, 3 and 5, the right-hand side of the empirical specification
is identical to that of Table 2, based on the population response equation (15). In the remaining columns, we also
control for the change in the log total employment in all adjacent CZs and the lagged log employment rate across
those CZs. To this end, we include two further instruments: the current and lagged (employment-weighted) average
Bartik shift-share across adjacent CZs. We exclude from our sample those 3 CZs which are islands (with no adjacent
CZs): these are Martha’s Vineyard (MA), Nantucket (MA) and San Juan Islands (WA). See the notes under Table 2
for further details on the empirical specification. Errors are clustered by CZ, and robust standard errors are reported
in parentheses. Each observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
*** p<0.01, ** p<0.05, * p<0.1.
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Figure 1: Persistence in employment ratio and population response

Note: Data-points denote commuting zones (CZs). Sample is restricted to the 50 largest commuting zones in 1980, and
divided into CZs above and below the 37th parallel (where the latter corresponds to the Sunbelt region). Employment rate
and population growth are estimated for individuals aged 16-64.
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Figure 2: Persistence in local employment growth

Note: Data-points denote commuting zones. Sample is restricted to the 50 largest commuting zones in 1950. Employment
growth is estimated for individuals aged 16-64.
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Figure 3: Impulse response function

Note: This figure illustrates the impulse response following an innovation of 0.1 log points in zrt for some area r at t = 1,
from an initial position of a steady-state equilibrium. The response is based on our preferred estimates of the — and “

parameters.
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Figure 4: ACFs of employment rate: data and simulated for di�erent ⁄

Note: This figure illustrates the observed and simulated persistence of the log employment rate. The orange line is the
time-demeaned ACF of the log employment rate in the data, purged of observable amenity e�ects (the 10th row in Table
1). The dashed lines are the simulated ACFs for di�erent values of ⁄ in equation (24), given our preferred estimates of the
— and “ parameters.
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Figure 5: ACFs for local employment growth and Bartik series

Note: This figure illustrates the time-demeaned ACFs of the change in log CZ employment and the Bartik shift-share
described in equation (16). The estimation of the ACFs is described in the notes accompanying Table 1. Our panel for the
Bartik shift-share variable is one (decadal) period longer than for local employment growth, with the former including the
1940s. As described in the Appendix B, the employment counts of the 1940 census are not comparable with those of later
years.
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Figure 6: Employment shares by industry

Note: Professional and financial services include all medical, legal, engineering, architectural, accounting, advertising,
financial, insurance and real estate services.
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Figure 7: Histograms (across CZs) of fraction employed outside CZ: 1970 and 2006-10

Appendices

A Alternative local labor market models
The model presented in the main body of the paper is deliberately kept very simple to
make clear the main ideas. But one might be concerned that some of the theoretical
results are not robust to our assumptions. In this appendix, we sketch more elaborate
models to address some of these concerns. We consider the implications of a non-traded
goods sector that does employ labor, agglomeration e�ects, endogenous amenities, fric-
tional labor markets and heterogeneous skills.

First, it should be noted there is a simple explanation why the basic results are
robust to these considerations. Notice that utility can be expressed as a function of the
employment rate and the amenity, after combining the wage curve (6) and the utility
equation (7). Essentially, for a given labor supply curve or “wage curve”, the welfare
of workers can be summarized by their position on that curve. This position can be
expressed by either the real wage or employment rate, as long as there is some elasticity
to the relationship. The validity of this argument is independent of how labor demand
is modeled. And if amenities are endogenous, this will also be captured to the extent
that they depend on variables that can be reduced to the employment rate. With this in
mind, we next sketch more generalized versions of the simple model in the main text.

A.1 Non-traded goods sector that employs labor

Assume that the expenditure function in area r is given by:
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where P

t is the price of traded goods (treated as exogenous to the area), P
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is the local
price of non-traded goods, P
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is the local price of housing, A
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is a local amenity, and U
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is local utility. We assume that preferences are homothetic for simplicity, so that we do
not need to track the income distribution within areas. Suppose that total income within
an area r is given by:
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so that income in a region derives from total labor income (which is taxed) and some
benefits paid to residents who are not in work.

From (A1) and (A2), we can derive the following demands for the three di�erent types
of goods where lower-case denotes logarithms:
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Now consider the production side of the economy. We assume that the quantity supplied
of the traded good is given by:
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where Z

r

is an area-specific output shifter which is the source of the Bartik shock, and
the supply of the non-traded good and housing are given by:
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Associated with these supply functions are labor demand functions:
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Finally, to close the model, we need a labor supply curve or “wage curve”. We simply
assume that the employment rate is a function of the local real wage:
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For a given local population, this allows us to solve for the locally-determined variables
as a function of the exogenous variables. For the reasons given earlier, utility can be
expressed as a function of the employment rate. The main insight from this model is
that we would expect local employment to respond to local population directly and not
just through any e�ect on the real wage. The reason is that non-traded goods demand
has to be met from local employment. This insight can help motivate our model for local
employment growth in Section 5 in the main text.

A.2 Agglomeration e�ects in production

The most common way to model agglomeration e�ects is to assume that the scale of
operations (perhaps measured by aggregate employment) a�ects productivity, so there is
a spillover from the aggregate level of employment onto the demand for labor of individual
firms. But, at the aggregate level, this produces a very similar labor demand curve as we
have used (though if the agglomeration e�ects are very large, one does have to worry about
stability of equilibria). Therefore, our basic equation relating utility to the employment
rate will remain as before.

A.3 Endogenous amenities

It may be that the level of population or activity in an area a�ects the level of the
amenities o�ered, e.g. by a�ecting the range of goods on o�er, the crime rate, the level
of social capital or population density itself (e.g. Glaeser, Kolko and Saiz, 2001; Glaeser
and Redlick, 2009; Glaeser, Resseger and Tobio, 2009). The endogeneity of amenities
may also amplify the impact of a given demand shock on welfare (see Diamond, 2013).
But, if these endogenous responses can be summarized by the employment rate or real
wage, this will still lead to equations similar to the ones we have used.

A.4 Labor markets with frictions

Beaudry, Green and Sand (2014b) use a local labor market model with frictions to inves-
tigate issues very similar to the ones we have considered. In this framework, the labor
demand curve is replaced by a vacancy creation curve, and market tightness is measured
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using the ratio of unemployment to vacancies. But, there is a one-to-one relationship
between the unemployment-vacancy ratio and the employment rate. So, the wage bar-
gaining curve - which gives a relationship between the real wage and the unemployment-
vacancy ratio - can simply be translated to a wage curve like the one we have used.

On the labor demand side, the standard non-competitive model imposes constant
returns to scale in production. And vacancies are created up to the point where the
hiring cost, suitably amortized, is equal to the gap between the marginal product and the
wage. The hiring cost is assumed to be a function of the unemployment-vacancy ratio
which, as argued above, can be replaced by the employment rate; so this gives a negative
relationship between the employment rate and the wage. This does di�er from the labor
demand curve we presented in the main body of the paper, as population appears directly
in this relationship with an elasticity of 1 (see Beaudry, Green and Sand, 2014a). But the
elasticity will be less than 1 if one introduces some diminishing returns to labor on the
production side (perhaps from imperfect competition); and we have shown above how,
with non-traded goods, population will have a direct role in any case. So, models with
frictions lead to very similar if not identical conclusions and specifications of empirical
equations.

A.5 Heterogeneous labor

Much of the recent urban literature emphasizes di�erences by skill (e.g. Moretti, 2011;
Notowidigdo, 2011; Diamond, 2013). If there are skill-specific labor supply curves, then
one can derive equations for population growth in di�erent skill groups as a function of
skill-specific changes in employment and the lagged employment rate. But, the labor
demand curve for one type of labor will depend on the wages of all types of labor,
reflecting the complementarity or substitutability between skill groups. This might alter
the specification of the response of employment to population changes, though this is not
our main focus of interest.

B Manipulation of census and ACS data

B.1 Population and employment

Where possible, we take our population and employment data from the published county-
level aggregates39. Published population counts (by age and gender) are based on 100%
samples, while employment status counts (for employment, unemployed and inactive)

39We extract these from the National Historical Geographic Information System (Minnesota Pop-
ulation Center, 2011). At the time of writing, county-level employment data for 1960 was unavail-
able on NHGIS. Instead, we take this data from the County Book of 1962, downloaded from ICPSR:
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/12.
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are usually based on samples of 15-20% (depending on the variable and year). The US
Census Bureau did not implement a long form questionnaire in 2010, so we supplement
data in that year with the American Community Survey (ACS) between 2009 and 2011;
the ACS covers a 1% sample each year.

The published data do not report counts for all the demographic cells of interest.40

Fortunately, micro-data samples from the US census and ACS are available for each cross-
section. Our strategy is to disaggregate the published local population and employment
counts (into components of interest) using CZ-specific shares estimated from the micro-
data. For example, to impute the local population of college graduates aged 16-64 in a
given year, we multiply the published local population count (in that age group) with
the CZ-specific college graduate population share (estimated from micro-data).

Micro-data samples from the US census and ACS are made available for each cross-
section by IPUMS (organized by Ruggles et al., 2010); and with the exception of 1960,
these are accompanied by sub-state geographical identifiers. These identifiers vary across
years41, and it is not possible to perfectly identify commuting zones based on their bound-
aries. Following Autor and Dorn (2013) and Autor, Dorn and Hanson (2013), we estimate
population allocations of the geographical identifiers into CZs42; and we impute CZ out-
comes by appropriately weighting outcomes for the available geographical identifiers with
these allocations. Unfortunately, no sub-state identifiers are available in the 1960 micro-
data. We impute CZ-level outcomes for 1960 by linear interpolation, using CZ-specific
estimates for 1950 and 1970. It should be emphasized that this linear interpolation is
only applied to demographic shares (such as skill or age shares): as noted above, we use
the aggregate county-level census data of 1960 for our basic employment and population
counts (for all 16-64s).

B.2 Industry shift-shares

To construct the industry shift-shares, we require local data on detailed industrial em-
ployment composition. We take this data from the IPUMS census extracts and ACS

40In particular, county-level employment status counts are not disaggregated by age in the 1950, 1960
and 1970 censuses (except for the total labor force in 1970); these are simply reported for 14+ or 16+
groups. Also, disaggregations of both population and employment by education are not available in any
year for the 16-64 age group.

41There are 467 State Economic Areas (SEAs) in the continental US in 1940 and 1950, 405 county
groups in 1970, 1,148 county groups in 1980, 1,713 Public Use Microdata Areas (PUMAs) in 1990, 2,057
PUMAs in 2000 and the ACS until 2011, and 2,336 PUMAs in the ACS of 2012.

42We take county-SEA lookup tables from IPUMS (https://usa.ipums.org/usa/resources/volii/
sea_county_components.xls), and use NHGIS county population counts to estimate
CZ allocations. We also take our data for the 1970 and 1980 population al-
locations from IPUMS: see https://usa.ipums.org/usa/resources/volii/1970cgcc.xls and
https://usa.ipums.org/usa/resources/volii/cg98stat.xls respectively. For the remaining years, we
generate the allocations using the MABLE/Geocorr applications on the Missouri Census Data Center
website: http://mcdc.missouri.edu.
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samples, restricting our sample to workers aged 16-64. IPUMS has created consistent
3-digit industry series based on both the 1950 and 1990 census scheme.43 We use the
consistent 1950 scheme to estimate industry shift-shares in the 1940s, 1950s, 1960s and
1970s; and we use the consistent 1990 scheme for all decades thereafter. As a precaution,
since conversions of more disaggregated codes are inevitably less accurate, we aggregate
all our industry data to the 2-digit level.

We use the same method outlined in the sub-section above to impute employment
counts for each CZ (by industry), exploiting the available sub-state geographical identi-
fiers. We impute employment counts in 1960 through the following steps. First, for each
industry-year cell, we estimate the share of employment in each CZ in 1950 and 1970.
Second, we impute values for 1960 by linear interpolation. Given the ad hoc nature
of linear interpolation, these CZ shares will not sum to 1 (within industry-year cells);
so we scale these shares by constant factors (within industry-year cells) to ensure that
they do. And third, we multiple these shares with aggregate industry employment counts
(estimated using the 1960 micro-data) to impute employment counts in CZ-industry cells.

B.3 Migrant shift-shares

We use the IPUMS micro-data to construct the migrant shift-share controls. This exercise
requires a panel of CZ-origin-year cells. We include 79 origin countries in this panel. And
we impute CZ-specific 1960 data in the same way outlined in the sub-section above.

In the main specifications, we restrict the inflow of new migrants M

new

o(≠r)t arriving
between t ≠ 1 and t, in equation (17), to those aged 16-64 in year t. These quantities are
simple to estimate between 1970 and 2010, because the census in these years and ACS
include data on number of years in the US. For earlier census years, we impute M

new

o(≠r)t

using cohort changes. For example, we estimate the inflow of new migrants of origin o in
the 1950s as the di�erence between (1) the origin-specific stock of migrants in 1960 aged
16-64 and (2) the origin-specific stock of migrants in 1950 aged 6-54. The denominator
L

rt≠1 in equation (17), the initial local population, is also restricted to individuals aged
16-64. But, we estimate the local share by migrant origin „

o

rt≠1 using the entire sample
(of all ages).

In the group-specific models (by education, sex and age), we estimate the new migrant
inflows M

new

o(≠r)t and initial population L

rt≠1 using group-specific counts.

C Unbiased estimator for the fixed e�ect ACF
In this appendix, we show how we derive an unbiased autocorrelation function for the
time-demeaned log employment rate, x

rt

, controlling for local fixed e�ects. Our data
43See https://usa.ipums.org/usa/volii/occ_ind.shtml.
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is limited to 7 time observations (over the period 1950-2010) and 722 areas, which we
generalize in this exposition to T and R respectively. Suppose x

rt

in area r is stationary
with mean µ

r

, which we allow to vary across areas. We are interested in modeling the
average ACF across areas; so for simplicity, we assume that C

n, the nth order covariance,
does not vary with area r, i.e. we have:

C

n = E [(x
rt

≠ µ

r

) (x
rt≠n

≠ µ

r

)] (C1)

for all r. But, C

n cannot be estimated directly because µ

r

is unknown.
Suppose we estimate µ

r

using the sample mean:
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We can use µ̂

r

to form a sample estimate of the covariance for area r :
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for n Æ T ≠ 1. Since T is small, Ĉ
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is a biased estimator for C

n. But, we can derive the
form of the bias. Specifically, taking expectations of (C3):
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so that:
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) is an unknown quantity, which can be derived by equating the final two
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Next, substituting (C6) and (C9) into (C4) gives:
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This shows that the expectation of the biased covariance estimators Ĉ

n

r

are linear func-
tions of the true covariances C

n.44 That is, there exists a T ◊ T square matrix A such
that:
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is a T -length vector of the sample covariances for area r, Ĉ
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; and similarly, C

is a vector of the true covariances C

n. In the context of (C11), a natural way to derive
an unbiased estimator for C would be to invert the matrix A. The problem is that A

does not have full rank. It is easiest to see the intuition for this if T = 2. In this case,
one cannot separately identify the variance and the first-order covariance, since the only
useful information is contained in x

r2 ≠ x

r1. Similarly, T observations are insu�cient to
identify T ≠1 variance/covariance parameters. One further restriction on the covariances
is required for identification. We assume that C
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where

A1 =

Q

ccca
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44In particular, notice that C0 = T
T ≠1 E

1
Ĉ0

r

2
if observations are independent, from which the standard

formula for deriving an unbiased estimate of the variance follows.
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is the top left submatrix of A, excluding the final column and final row. And

a1 =

Q

ccca

A [0, T ≠ 1]
...

A [T ≠ 2, T ≠ 1]

R

dddb

(T ≠1)◊1

(C14)

is the final column of A, excluding the final row. And so:
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which implies:
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where the square matrix in (C16) is the sum of (1) A1 and (2) a (T ≠ 1)◊ (T ≠ 1) square
matrix with fia1 in the final column and 0s in the remaining columns. Inverting this
expression then suggests a set of unbiased estimators C̃

n for the true covariances:
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which is a linear function of the biased covariances, averaged across areas r. The highest
order covariance estimator C̃

T ≠1 is set to fiC̃

T ≠2. The average nth order ACF can then
be estimated as:

ACF

n = C̃

n

C̃

0 (C18)

For large R and small T , this is a consistent estimate of the true ACF.
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D Robustness checks for population response
In Table D1, we study the robustness of the IV population responses estimates from
equation (15). Panel A reports a range of specifications with di�erent controls, weighting
the regressions by the lagged local population share (as we do in the estimates above).
Notice that columns 7, 9 and 10 in Panel A are identical to columns 4, 5 and 6 respectively
of Table 2 above. Panel B reports unweighted estimates of the same specifications.

The coe�cient on contemporaneous employment growth varies little with the choice
of controls or weighting: our estimates range from 0.60 to 0.82, with the standard error
hovering around 0.03. In contrast, the coe�cient on the lagged employment ratio varies
somewhat more, especially among the weighted estimates of Panel A. In particular, the
estimate in column 1 with no controls is 0.27, compared to 0.45 in our preferred spec-
ification (with no fixed e�ects or first di�erencing). Most of the di�erence is driven by
the inclusion of the climate controls of column 3. The interactions between the time-
invariant amenity controls and year e�ects in column 7 have little e�ect. The omission
of the lagged ECM term (and its lagged Bartik instrument) in column 8 yields a larger
coe�cient on the change in employment: 0.82 compared to 0.66. This is a consequence of
the serial correlation in the Bartik instrument. Finally, as we note in the main text, the
fixed e�ects and first di�erenced estimates in columns 9 and 10 are significantly larger
than the basic estimates in column 7.

In Panel B, the coe�cient on the lagged employment ratio generally becomes smaller
as controls are included. The estimate with no controls in column 1 is 0.58, and the full
set of controls in column 7 yields an estimate of 0.38. Notice this is not much di�erent
to our weighted estimate (0.45) in Panel A. This suggests the responsiveness of popula-
tion is not markedly di�erent in larger cities. Interestingly also, including fixed e�ects
or first di�erencing (columns 9 and 10) makes much less di�erence in the unweighted
specifications, with those estimates falling at 0.57 and 0.69 respectively.

In Figure D1, we present the estimates from column 7 (our preferred specification)
graphically. This exercise is useful in demonstrating that the estimates are not driven by
outliers. These plots follow the logic of the Frisch-Waugh theorem, but applied to 2SLS.
In particular, we use the first stage regressions to predict a full set of values for each
endogenous regressor. Then, on the y-axis of the first panel, we plot the residuals from
a regression of population growth on the predicted lagged employment rate, together
with all the exogenous variables. On the x-axis, we plot the residuals of a regression of
employment growth on the same set of explanatory variables. In the second panel, we
repeat the exercise for the lagged employment rate. Notice the standard errors of the
best-fit slopes do not correspond to those in Table D1; this is because this naive estimator
does not account for the standard error in the first stage. In any case, it is clear that the
result is not driven by outliers.
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Table D1: Robustness checks for population response

PANEL A: WEIGHTED BY LAGGED LOCAL POP SHARE
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

� log emp 16-64 0.711*** 0.703*** 0.661*** 0.670*** 0.688*** 0.684*** 0.664*** 0.819*** 0.813*** 0.715***
(0.030) (0.033) (0.029) (0.028) (0.022) (0.022) (0.026) (0.020) (0.037) (0.030)

Lagged log emp rate 16-64 0.268*** 0.191*** 0.362*** 0.401*** 0.473*** 0.457*** 0.445*** 1.037*** 0.796***
(0.053) (0.044) (0.048) (0.051) (0.054) (0.048) (0.051) (0.156) (0.101)

Migrant shift-share 0.228*** 0.01 0.057 0.101 0.073 0.056 0.093*** 0.412*** 0.316***
(0.058) (0.058) (0.062) (0.063) (0.063) (0.068) (0.031) (0.124) (0.089)

Max temp January 0.236*** 0.246*** 0.207*** 0.212*** 0.141*** 0.016
(0.022) (0.024) (0.025) (0.025) (0.036) (0.031)

Max temp July -0.095** -0.129*** -0.171*** -0.165*** -0.093 0.002
(0.042) (0.048) (0.047) (0.046) (0.072) (0.063)

Mean humidity July -0.080*** -0.072*** -0.033** -0.034** 0.053** 0.081***
(0.016) (0.017) (0.015) (0.014) (0.025) (0.023)

Coastline dummy -0.008** -0.007* -0.009** 0.01 0.007
(0.004) (0.004) (0.003) (0.007) (0.006)

Log pop density 1900 -0.007*** -0.005*** -0.012*** -0.010***
(0.001) (0.001) (0.003) (0.003)

Log distance to closest CZ 0.015** 0.015 -0.01
(0.007) (0.013) (0.012)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenities x year e�ects No No No No No No Yes Yes Yes Yes
CZ fixed e�ects No No No No No No No No Yes No
First-di�erenced spec No No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610

PANEL B: UNWEIGHTED
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

� log emp 16-64 0.646*** 0.627*** 0.601*** 0.616*** 0.615*** 0.604*** 0.621*** 0.739*** 0.656*** 0.674***
(0.024) (0.024) (0.021) (0.020) (0.021) (0.021) (0.026) (0.023) (0.028) (0.024)

Lagged log emp rate 16-64 0.580*** 0.510*** 0.417*** 0.449*** 0.444*** 0.416*** 0.383*** 0.572*** 0.691***
(0.052) (0.046) (0.035) (0.038) (0.040) (0.039) (0.036) (0.083) (0.076)

Migrant shift-share 0.577*** 0.199*** 0.237*** 0.236*** 0.182** 0.084 0.066* -0.008 0.062
(0.074) (0.077) (0.079) (0.078) (0.075) (0.074) (0.037) (0.088) (0.088)

Max temp January 0.365*** 0.380*** 0.379*** 0.370*** 0.245*** 0.139***
(0.020) (0.021) (0.020) (0.020) (0.026) (0.023)

Max temp July -0.494*** -0.529*** -0.528*** -0.488*** -0.338*** -0.221***
(0.039) (0.040) (0.039) (0.038) (0.058) (0.051)

Mean humidity July -0.028** -0.017 -0.021 -0.007 0.058* 0.075***
(0.013) (0.013) (0.018) (0.018) (0.030) (0.026)

Coastline dummy -0.015*** -0.015*** -0.018*** 0.014* 0.01
(0.005) (0.005) (0.005) (0.008) (0.007)

Log pop density 1900 0.001 0.003* 0.000 -0.001
(0.002) (0.002) (0.003) (0.003)

Log distance to closest CZ 0.037*** 0.046*** 0.036***
(0.007) (0.012) (0.011)

Year e�ects Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Amenities x year e�ects No No No No No No Yes Yes Yes Yes
CZ fixed e�ects No No No No No No No No Yes No
First-di�erenced spec No No No No No No No No No Yes

Observations 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 4,332 3,610
This table tests robustness of our IV estimates of the population response in Table 2, to contemporaneous employment growth and the lagged employment
rate. As before, our sample covers the 722 CZs and six (decadal) time periods. First, we test robustness of our estimates to the weighting of observations:
Panel A weights observations of the lagged population share, and Panel B applies no weighting. And second, we test robustness to the inclusion of
progessively more controls. Columns 1-7 do not condition on CZ e�ects, and the final two columns report the fixed e�ect and first di�erenced specifications.
Notice that columns 7, 9 and 10 in Panel A are identical to columns 4, 5 and 6 respectively of Table 2 above. In column 8, we show what happens if the
lagged ECM term (and its lagged Bartik instrument) are omitted. Errors are clustered by CZ, and robust standard errors are reported in parentheses. Each
observation is weighted by the lagged local population share. *** p<0.01, ** p<0.05, * p<0.1.
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Figure D1: Graphical illustration of 2SLS coe�cients

Note: Following the Frisch-Waugh theorem, this figure graphically depicts the 2SLS coe�cients of the basic specification
(column 4, Table 2; column 7, Table D1). The first panel illustrates the coe�cient on employment growth, and the second
panel the coe�cient on the lagged employment rate. We construct these graphs in two steps. We use the first stage
regressions to predict a full set of values for each endogenous regressor. Then, on the y-axis of the first panel, we plot the
residuals from a regression of population growth on the predicted lagged employment rate, together with all exogenous
variables. On the x-axis, we plot the residuals of a regression of employment growth on the same set of explanatory variables.
In the second panel, we repeat the exercise for the lagged employment rate. Data-points denote CZ-year observations,
with size corresponding to lagged population. Standard errors for the best-fit slope are heteroskedasticity-consistent and
clustered by CZ. Notice the standard errors of the best-fit slopes do not correspond to those in Table 2; this is because
this naive estimator does not account for the standard error in the first stage. A small number of outlying data points (no
more than 30 minor CZs in each panel) have been excluded because of our choice of axis range.

E Supplementary first stage estimates
Table E1 reports the first stage regressions which accompany the IV estimates in Tables 5
and 6. These are estimates of the population response equation (15), with the endogenous
population and employment variables restricted to particular education, gender and age
groups.

55



Table E1: First stage estimates by demographic group

� log emp 16-64 Lagged emp rate 16-64
Basic FE FD Basic FE FD
(1) (2) (3) (4) (5) (6)

College-graduates

Current Bartik shock 0.860*** 0.715*** 0.566*** -0.170*** -0.115** -0.023
(0.091) (0.093) (0.124) (0.048) (0.057) (0.048)

Lagged Bartik shock -0.294*** -0.537*** -0.511*** 0.166*** 0.171*** 0.162***
(0.083) (0.100) (0.113) (0.043) (0.056) (0.040)

Non-graduates

Current Bartik shock 1.091*** 1.137*** 1.051*** -0.034 -0.164*** -0.059*
(0.067) (0.076) (0.081) (0.042) (0.036) (0.034)

Lagged Bartik shock -0.129** -0.145** -0.219** 0.535*** 0.222*** 0.267***
(0.059) (0.065) (0.087) (0.053) (0.037) (0.026)

Men

Current Bartik shock 1.246*** 1.221*** 1.197*** -0.196*** -0.294*** -0.183***
(0.073) (0.082) (0.087) (0.033) (0.037) (0.027)

Lagged Bartik shock -0.026 -0.135** -0.142 0.451*** 0.188*** 0.192***
(0.063) (0.066) (0.094) (0.040) (0.037) (0.027)

Women

Current Bartik shock 0.792*** 0.725*** 0.626*** 0.644*** 0.416*** 0.321***
(0.064) (0.064) (0.076) (0.086) (0.069) (0.068)

Lagged Bartik shock -0.076 -0.188*** -0.314*** 0.634*** 0.230*** 0.270***
(0.059) (0.069) (0.084) (0.083) (0.045) (0.031)

16-24s

Current Bartik shock 1.601*** 1.616*** 1.639*** -0.102 -0.312*** -0.195***
(0.098) (0.114) (0.133) (0.070) (0.055) (0.052)

Lagged Bartik shock -0.191** -0.234** -0.286** 0.848*** 0.305*** 0.379***
(0.084) (0.113) (0.137) (0.087) (0.074) (0.049)

25-44s

Current Bartik shock 1.238*** 1.197*** 1.023*** 0.05 -0.05 0.027
(0.075) (0.085) (0.097) (0.034) (0.030) (0.038)

Lagged Bartik shock -0.124* -0.245*** -0.292*** 0.377*** 0.182*** 0.219***
(0.069) (0.070) (0.101) (0.040) (0.031) (0.025)

45-64s

Current Bartik shock 0.789*** 0.740*** 0.727*** -0.012 -0.199*** -0.088***
(0.069) (0.067) (0.080) (0.041) (0.049) (0.030)

Lagged Bartik shock 0.143*** 0.023 -0.02 0.507*** 0.230*** 0.245***
(0.054) (0.058) (0.063) (0.056) (0.031) (0.026)

Observations 4,332 4,332 3,610 4,332 4,332 3,610
This table reports first stage estimates from the group-specific IV regressions in Tables 5 and 6, based
on the population response equation (15). The endogenous variables in each case are the local change
in log employment and the lagged log employment rate, within the specified demographic group. See
the notes accompanying Tables 5 and 6 for further details on the empirical specification. The sample
covers 722 CZs and six (decadal) time periods. Errors are clustered by CZ, and robust standard errors
are reported in parentheses. Each observation is weighted by the lagged local population share. ***
p<0.01, ** p<0.05, * p<0.1.

56



Bibliography
Acemoglu, Daron, David Autor, David Dorn, Gordon H. Hanson, and Bren-

dan Price. 2014. “Import Competition and the Great US Employment Sag of the
2000s.” National Bureau of Economic Research Working Paper No. 20395.

Albouy, David. 2008. “Are Big Cities Bad Places to Live? Estimating Quality of Life
across Metropolitan Areas.” National Bureau of Economic Research Working Paper
No. 14472.

Amior, Michael. 2015. “Why are Higher Skilled Workers More Mobile Geographically?
The Role of the Job Surplus.” Centre for Economic Performance Discussion Paper 1338.

Autor, David H., and David Dorn. 2013. “The Growth of Low-Skill Service Jobs
and the Polarization of the US Labor Market.” The American Economic Review,
103(5): 1553–1597.

Autor, David H., and Mark G. Duggan. 2003. “The Rise in the Disability Rolls and
the Decline in Unemployment.” The Quarterly Journal of Economics, 157–205.

Autor, David H., David Dorn, and Gordon H Hanson. 2013. “The China Syn-
drome: Local Labor Market E�ects of Import Competition in the United States.” The
American Economic Review, 103(6): 2121–2168.

Bartik, Timothy J. 1991. Who Benefits from State and Local Economic Development
Policies? W.E. Upjohn Institute for Employment Research.

Bayer, Christian, and Falko Juessen. 2012. “On the Dynamics of Interstate Migra-
tion: Migration Costs and Self-Selection.” Review of Economic Dynamics, 15(3): 377–
401.

Beaudry, Paul, David A. Green, and Benjamin M. Sand. 2012. “Does Industrial
Composition Matter for Wages? A Test of Search and Bargaining Theory.” Economet-
rica, 80(3): 1063–1104.

Beaudry, Paul, David A. Green, and Benjamin M. Sand. 2014a. “In Search of
Labor Demand.” National Bureau of Economic Research Working Paper No. 20568.

Beaudry, Paul, David A. Green, and Benjamin M. Sand. 2014b. “Spatial Equi-
librium with Unemployment and Wage Bargaining: Theory and Estimation.” Journal
of Urban Economics, 79: 2–19.

Beyer, Robert C.M., and Frank Smets. 2015. “Labour Market Adjustments and
Migration in Europe and the U.S.: How Di�erent?” European Central Bank Working
Paper No. 1767.

57



Blanchard, Olivier J., and Lawrence F. Katz. 1992. “Regional Evolutions.” Brook-
ings Papers on Economic Activity, 23(1): 1–76.

Blanchflower, David G., and Andrew J. Oswald. 1994. The Wage Curve. Cam-
bridge: MIT Press.

Bound, John, and Harry J. Holzer. 2000. “Demand Shifts, Population Adjustments,
and Labor Market Outcomes during the 1980s.” Journal of Labor Economics, 18(1): 20–
54.

Card, David. 2001. “Immigrant Inflows, Native Outflows, and the Local Labor Market
Impacts of Higher Immigration.” Journal of Labor Economics, 19(1): 22–64.

Cheshire, Paul C., and Stefano Magrini. 2006. “Population Growth in European
cities: Weather Matters – But Only Nationally.” Regional Studies, 40(1): 23–37.

Cheshire, Paul C., Stefano Magrini, Francesca Medda, and Vassilis Monas-
tiriotis. 2004. “Cities are not Isolated States.” In City Matters. , ed. Martin Boddy
and Michael Parkinson, 129–149. Bristol: The Policy Press.

Dao, Mai, Davide Furceri, and Prakash Loungani. 2014. “Regional Labor Market
Adjustments in the United States.” International Monetary Fund Working Paper No.
1426.

Davis, Morris A, and François Ortalo-Magne. 2011. “Household Expenditures,
Wages, Rents.” Review of Economic Dynamics, 14(2): 248–261.

Decressin, Jörg, and Antonio Fatás. 1995. “Regional Labor Market Dynamics in
Europe.” European Economic Review, 39(9): 1627–1655.

Diamond, Rebecca. 2013. “The Determinants and Welfare Implications of US Workers’
Diverging Location Choices by Skill: 1980-2000.” http://web.stanford.edu/≥diamondr.

Gallin, Joshua H. 2004. “Net Migration and State Labor Market Dynamics.” Journal
of Labor Economics, 22(1): 1–21.

Gallin, Joshua H. 2008. “The Long-Run Relationship Between House Prices and Rents.”
Real Estate Economics, 36(4): 635–658.

Glaeser, Edward L. 2005. “Urban Colossus: Why is New York America’s Largest
City?” National Bureau of Economic Research Working Paper No. 11398.

Glaeser, Edward L., and Charles Redlick. 2009. “Social Capital and Urban Growth.”
International Regional Science Review, 32(3): 264–299.

58



Glaeser, Edward L., and Giacomo A.M. Ponzetto. 2007. “Did the Death of Dis-
tance Hurt Detroit and Help New York?” National Bureau of Economic Research
Working Paper No. 13710.

Glaeser, Edward L., and Jesse Shapiro. 2001. “Is There a New Urbanism? The
Growth of US cities in the 1990s.” National Bureau of Economic Research Working
Paper No. 8357.

Glaeser, Edward L., and Joseph Gyourko. 2005. “Urban Decline and Durable Hous-
ing.” Journal of Political Economy, 113(2): 345–000.

Glaeser, Edward L., and Joshua D. Gottlieb. 2009. “The Wealth of Cities: Agglom-
eration Economies and Spatial Equilibrium in the United States.” Journal of Economic
Literature, 47(4): 983–1028.

Glaeser, Edward L., and Kristina Tobio. 2007. “The Rise of the Sunbelt.” National
Bureau of Economic Research Working Paper No. 13071.

Glaeser, Edward L., Jed Kolko, and Albert Saiz. 2001. “Consumer City.” Journal
of Economic Geography, 1(1): 27–50.

Glaeser, Edward L., José A. Scheinkman, and Andrei Shleifer. 1995. “Economic
Growth in a Cross-Section of Cities.” Journal of Monetary Economics, 36(1): 117–143.

Glaeser, Edward L., Joseph Gyourko, and Raven E. Saks. 2006. “Urban Growth
and Housing Supply.” Journal of Economic Geography, 6(1): 71–89.

Glaeser, Edward L., Matt Resseger, and Kristina Tobio. 2009. “Inequality in
Cities.” Journal of Regional Science, 49(4): 617–646.

Gonzalez, Arturo. 1998. “Mexican Enclaves and the Price of Culture.” Journal of Urban
Economics, 43(2): 273–291.

Hornbeck, Richard. 2012. “The Enduring Impact of the American Dust Bowl: Short-
and Long-Run Adjustments to Environmental Catastrophe.” The American Economic
Review, 102(4): 1477–1507.

Jimeno, Juan F., and Samuel Bentolila. 1998. “Regional Unemployment Persistence
(Spain, 1976–1994).” Labour Economics, 5(1): 25–51.

Kaplan, Greg, and Sam Schulhofer-Wohl. 2012. “Understanding the Long-Run
Decline in Interstate Migration.” National Bureau of Economic Research Working Paper
No. 18507.

59



Kennan, John. 2015. “Spatial Variation in Higher Education Financing and the Supply
of College Graduates.” http://www.ssc.wisc.edu/≥jkennan.

Kennan, John, and James R. Walker. 2011. “The E�ect of Expected Income on
Individual Migration Decisions.” Econometrica, 79(1): 211–251.

Kline, Patrick, and Enrico Moretti. 2013. “Place Based Policies with Unemploy-
ment.” The American Economic Review, 103(3): 238–243.

Koo, Jahyeong, Keith R. Phillips, and Fiona D. Sigalla. 2000. “Measuring Re-
gional Cost of Living.” Journal of Business and Economic Statistics, 18(1): 127–136.

McGranahan, David A. 1999. “Natural Amenities Drive Rural Population Change.”
Agricultural Economic Report No. 781, U.S. Department of Agriculture.

Minnesota Population Center. 2011. “National Historical Geographic Information
System: Version 2.0.” University of Minnesota.

Molloy, Raven, Christopher L. Smith, and Abigail K. Wozniak. 2011. “Internal
Migration in the United States.” Journal of Economic Perspectives, 25(3): 173–96.

Molloy, Raven, Christopher L. Smith, and Abigail Wozniak. 2014. “Declining
Migration Within the US: The Role of the Labor Market.” National Bureau of Economic
Research Working Paper No. 20065.

Monras, Joan. 2015. “Economic Shocks and Internal Migration.” IZA Discussion Paper
No. 8840.

Monte, Ferdinando, Stephen J. Redding, and Esteban Rossi-
Hansberg. 2015. “Commuting, Migration and Local Employment Elasticities.”
http://www.princeton.edu/≥erossi/CMLEE.pdf.

Moretti, Enrico. 2004. “Human Capital Externalities in Cities.” In Handbook of Urban
and Regional Economics. Vol. 4, , ed. J. Vernon Henderson and Jacques F. Thisse,
2243–2291. Amsterdam: Elsevier.

Moretti, Enrico. 2010. “Local Multipliers.” The American Economic Review, 373–377.

Moretti, Enrico. 2011. “Local Labor Markets.” In Handbook of Labor Economics.
Vol. 4B, , ed. David Card and Orley Ashenfelter, 1237–1313. New York: Elsevier.

Moretti, Enrico. 2012. The New Geography of Jobs. New York: Houghton Mi�in Har-
court.

Munshi, Kaivan. 2003. “Networks in the Modern Economy: Mexican Migrants in the
US Labor Market.” The Quarterly Journal of Economics, 118(2): 549–599.

60



Nickell, Stephen. 1981. “Biases in Dynamic Models with Fixed E�ects.” Econometrica,
49(6): 1417–1426.

Notowidigdo, Matthew J. 2011. “The Incidence of Local Labor Demand Shocks.”
National Bureau of Economic Research Working Paper No. 17167.

Obstfeld, Maurice, and Giovanni Peri. 1998. “Regional Non-Adjustment and Fiscal
Policy.” Economic Policy, 207–259.

OECD. 2005. “How Persistent Are Regional Disparities in Employment? The Role of
Geographic Mobility.” OECD Employment Outlook.

Oi, Walter Y. 1996. “The Welfare Implications of Invention.” In The Economics of
New Goods. , ed. Timothy F. Bresnahan and Robert J. Gordon, 109–142. Chicago:
University of Chicago Press.

Overman, Henry G., and Diego Puga. 2002. “Unemployment Clusters across Eu-
rope’s Regions and Countries.” Economic Policy, 17(34): 115–148.

Phillips, Keith R., and Christina Daly. 2010. “Improving the ACCRA US Regional
Cost of Living Index.” Journal of Economic and Social Measurement, 35(1): 33–42.

Rappaport, Jordan. 2007. “Moving to Nice Weather.” Regional Science and Urban
Economics, 37(3): 375–398.

Rappaport, Jordan. 2012. “Why Does Unemployment Di�er Persistently Across Metro
Areas?” Federal Reserve Bank of Kansas City, Economic Review, 97(2): 5–35.

Rappaport, Jordan, and Je�rey D. Sachs. 2003. “The United States as a Coastal
Nation.” Journal of Economic Growth, 8(1): 5–46.

Roback, Jennifer. 1982. “Wages, Rents, and the Quality of Life.” The Journal of Po-
litical Economy, 1257–1278.

Rosen, Sherwin. 1979. “Current Issues in Urban Economics.” , ed. Peter N. Miezkowski
and Mahlon R. Straszheim, Chapter Wage-based Indexes of Urban Quality of Life, 74–
104. Baltimore: Johns Hopkins University Press.

Ruggles, Steven, J. Trent Alexander, Katie Genadek, Ronald Goeken,
Matthew B. Schroeder, and Matthew Sobek. 2010. “Integrated Public Use Mi-
crodata Series: Version 5.0 [Machine-readable database].” Minneapolis: University of
Minnesota.

Saiz, Albert. 2010. “The Geographic Determinants of Housing Supply.” The Quarterly
Journal of Economics, 125(3): 1253–1296.

61



Tolbert, Charles M., and Molly Sizer. 1996. “U.S. Commuting Zones and Labor
Market Areas: A 1990 Update.” Economic Research Service Sta� Paper No. 9614.

Topel, Robert H. 1986. “Local Labor Markets.” The Journal of Political Economy,
94(3): S111–S143.

Wozniak, Abigail. 2010. “Are College Graduates More Responsive to Distant Labor
Market Opportunities?” Journal of Human Resources, 45(4): 944–970.

Yagan, Danny. 2014. “Moving to Opportunity? Migratory Insurance Over the Great
Recession.” http://eml.berkeley.edu/≥yagan/.

Zabel, Je�rey E. 2012. “Migration, Housing Market, and Labor Market Responses to
Employment Shocks.” Journal of Urban Economics, 72(2): 267–284.

62



CENTRE FOR ECONOMIC PERFORMANCE 
Recent Discussion Papers 

1356 Sarah Flèche 
Richard Layard 

Do More of Those in Misery Suffer From 
Poverty, Unemployment or Mental Illness? 

1355 Mirko Draca 
Theodore Koutmeridis 
Stephen Machin 

The Changing Returns to Crime: Do 
Criminals Respond to Prices? 

1354 Jae Song 
David J. Price 
Fatih Guvenen 
Nicholas Bloom 

Firming Up Inequality 

1353 Gianmarco I. P. Ottaviano 
Giovanni Peri 
Greg C. Wright 

Immigration, Trade and Productivity in 
Services: Evidence from UK Firms 

1352 Joanne Blanden 
Emelia Del Bono 
Sandra McNally 
Brigitta Rabe 

Universal Pre-School Education: The Case of 
Public Funding With Private Provision 

1351 David Atkin 
Benjamin Faber 
Marco Gonzalez-Navarro 

Retail Globalization and Household Welfare: 
Evidence from Mexico 

1350 Louis-Philippe Beland 
Richard Murphy 

Ill Communication: Technology, Distraction 
& Student Performance 

1349 Nicholas Oulton Space-Time (In)Consistency in the National 
Accounts: Causes and Cures 

1348 Gianluca Benigno 
Nathan Converse 
Luca Fornaro 

Large Capital Inflows, Sectoral Allocation 
and Economic Performance 

1347 Nitika Bagaria 
Barbara Petrongolo 
John Van Reenen 

Can Helping the Sick Hurt the Able? 
Incentives, Information and Disruption in a 
Disability-Related Welfare Reform 



1346 Mark Bryan 
Alex Bryson 

Has Performance Pay Increased Wage 
Inequality in Britain? 

1345 Christos Genakos 
Mario Pagliero 
Eleni Garbi 
 

When Pressure Sinks Performance: Evidence 
from Diving Competitions 

1344 David Marsden The Future of the German Industrial 
Relations Model 

1343 George Ward Is Happiness a Predictor of Election Results? 

1342 Nicholas Oulton 
Gavin Wallis 

Integrated Estimates of Capital Stocks and 
Services for the United Kingdom: 1950-2013 

1341 Camille Terrier Giving a Little Help to Girls? Evidence on 
Grade Discrimination and its Effect on 
Students' Achievement 

1340 Olivier Marie 
Ulf Zölitz 
 

'High' Achievers? Cannabis Access and 
Academic Performance 

1339 Terence C. Cheng 
Joan Costa-i-Font 
Nattavudh Powdthavee 
 

Do You Have To Win It To Fix It? A 
Longitudinal Study of Lottery Winners and 
Their Health Care Demand 

1338 Michael Amior Why are Higher Skilled Workers More 
Mobile Geographically? The Role of the Job 
Surplus 

1337 Misato Sato 
Antoine Dechezleprêtre 

Asymmetric Industrial Energy Prices  
and International Trade 

1336 Christos Genakos 
Svetoslav Danchev 
 

Evaluating the Impact of Sunday Trading 
Deregulation 

1335 Georg Graetz 
Guy Michaels 
 

Robots at Work 

The Centre for Economic Performance Publications Unit 
Tel 020 7955 7673 Fax 020 7404 0612 

Email info@cep.lse.ac.uk Web site http://cep.lse.ac.uk  

mailto:info@cep.lse.ac.uk
http://cep.lse.ac.uk/

