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Bayesian switching multiple disorder problems

Pavel V. Gapeev∗

To appear in Mathematics of Operations Research

The switching multiple disorder problem seeks to determine an ordered infinite se-
quence of times of alarms which are as close as possible to the unknown times of disorders,
or change-points, at which the observable process changes its probability characteristics.
We study a Bayesian formulation of this problem for an observable Brownian motion with
switching constant drift rates. The method of proof is based on the reduction of the ini-
tial problem to an associated optimal switching problem for a three-dimensional diffusion
posterior probability process and the analysis of the equivalent coupled parabolic-type
free-boundary problem. We derive analytic-form estimates for the Bayesian risk function
and the optimal switching boundaries for the components of the the posterior probability
process.

1 Introduction.

Suppose that, at time t = 0, we begin to observe a sample path of some stochastic process
X = (Xt)t≥0 , with probability characteristics changing their values at some unknown disorder
times at which an unobservable two-state process Θ = (Θt)t≥0 switches between one state
and the other. The switching multiple disorder problem is to decide at which time instants
(�n)n∈ℕ one should give alarm signals to indicate the occurrence of changes in the current state
of the process Θ, as close as possible to the initial disorder times. Such quickest disorder, or
change-point, detection problems have originally arisen and still play a prominent role in quality
control, where one observes the output of a production line and wishes to detect deviations from
the acceptable levels. After the introduction of the original control charts by Shewhart [34],
various modifications of the disorder problem have been recognised (see, e.g. Page [27]) and
implemented in a number of applied sciences (see, e.g. Carlstein, Müller, and Siegmund [11]).
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The problem of detecting a single change in the constant drift rate of a Brownian motion
(Wiener process) was formulated and explicitly solved by Shiryaev [35]-[36] and [39]-[40] (see
also Shiryaev [41; Chapter IV] and Peskir and Shiryaev [29; Chapter VI, Section 22] for further
references). The optimal time of alarm was sought as a stopping time minimising a linear
combination of the false alarm probability and the expected delay time in the detection of the
disorder. Shiryaev [35] and [37] proposed another formulation of the problem in which the
occurrence of a single change should be preceded by a long period of observations, under which
a stationary regime has been established. The resulting optimal multi-stage detection procedure
consisted in searching for a sequence of stopping times minimising the average delay time given
that the mean time between two false alarms is fixed. More recently, Feinberg and Shiryaev
[15] derived an explicit solution of the quickest detection problem in the generalised Bayesian
formulation and proved the asymptotic optimality of the associated detection procedure for the
related minimax formulation. Extensive overviews of these and other related sequential quickest
change-point detection methods were provided in Shiryaev [42] and Poor and Hadjiliadis [31].

In the present paper, we formulate and solve the switching multiple disorder problem for an
observed Wiener process X changing its drift rate from �i to �1−i , when Θ changes its state
from i to 1 − i , for every i = 0, 1. In contrast to the problem of detecting a single change,
in the switching multiple disorder problem, one looks for an infinite non-decreasing sequence of
the alarm times (�n)n∈ℕ minimising a series of linear combinations of discounted average losses
due to false alarms and delay penalty costs in the detection of the disorder times. We propose
a formulation of the problem in which Θ is assumed to be a continuous time Markov chain of
intensity � , started at the state 0 or 1 with probabilities 1− � and � , respectively.

Apart from other possible areas of application, such a situation usually happens in models of
illiquid financial markets, which have trading investors of different kinds. It is natural to assume
that the small investors can only influence little fluctuations of the market prices of risky assets,
while the large investors can affect the pricing trends as well, by means of either buying or selling
substantial amounts of assets. More precisely, the pricing trends should either rise up or fall
down at some random times, after essential amounts of assets are bought or sold, respectively.
We can thus consider a model of such financial markets in which the dynamics (of logarithms)
of the asset prices are described by a Brownian motion with switching drift rates. We may
further assume that our model allows for an infinite number of free-of-charge transactions on
the infinite time interval and use an exponential constant discounting rate r which can be
chosen equal to the riskless short rate of a bank account. The problem of detecting a single
change in the probability characteristics of the accessible financial data, which is associated
with the appearance of arbitrage opportunities in the market, was considered by Shiryaev [42].

In the present paper, we reduce the initial Bayesian switching multiple disorder problem
to an associated optimal switching problem for the posterior probability process, which is a
filtering estimate of the current state of the unobservable drift rate of a Brownian motion.
The use of exponential discounting makes our problem well-connected to the problem of single
disorder detection with exponential delay penalty costs studied by Shiryaev [38], Poor [30],
Beibel [6], and Bayraktar and Dayanik [1] (see also Bayraktar, Dayanik and Karatzas [2]-[3]
for other important quickest detection problems for Poisson processes). We show that the op-
timal switching times can be expressed as the first times at which the appropriate posterior
probability process exits certain connected regions restricted by boundaries, depending on the
running states of some other conditional probability processes. We verify that the Bayesian
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risk functions and the optimal switching boundaries are uniquely characterised by means of the
equivalent coupled free-boundary problem for a parabolic-type partial differential operator. We
derive analytic form estimates for the resulting Bayesian risk functions and the optimal switch-
ing boundaries and formulate the appropriate explicit sequential switching multiple disorder
detection procedure.

Optimal switching problems represent extensions of the corresponding optimal stopping
problems and games in which one looks for an infinite sequence of optimal stopping times. A
general approach for studying such problems was developed in Bensoussan and Friedman [7]-[8],
and Friedman [16] (see also Friedman [17; Chapter XVI]). This investigation was continued by
Brekke and Øksendal [10], Duckworth and Zervos [13], Yushkevich and Gordienko [46], and
Hamadène and Jeanblanc [21] among others for the continuous time case, and by Yushkevich
[44]-[45] for the discrete time case. Other optimal switching and impulse control problems,
involving hidden Markov chains in the observable jump processes, were recently studied by
Bayraktar and Ludkovski [4]-[5].

The paper is organised as follows. In Section 2, for the initial Bayesian quickest multiple
disorder detection problem, we construct the associated optimal switching problem and reduce
the latter to the appropriate three-dimensional coupled optimal stopping problem. In Section
3, we present the equivalent free-boundary problem and describe the structure of the optimal
stopping boundaries. Applying the change-of-variable formula with local time on surfaces,
obtained by Peskir [28], we prove that the solution of the coupled optimal stopping problem
can be determined as a unique solution of the free-boundary problem, satisfying the appropriate
smooth-fit conditions. In Section 4, we reduce the resulting parabolic-type partial differential
operator to the normal form, which is amenable for further considerations. We derive closed
form estimates for the Bayesian risk functions and the optimal switching boundaries, which are
expressed in terms of Heun’s double confluent functions, and describe the resulting sequential
switching multiple disorder detection procedure. The main results are stated in Theorem 3.1
and Corollary 4.1. The optimal sequential detecting scheme is displayed more explicitly in
Corollary 3.1.

2 Formulation of the problem.

In this section, we present a Bayesian formulation of the switching multiple disorder problem
for an observable Brownian motion (see, e.g. [41; Chapter IV, Section 4] or [29; Chapter VI,
Section 22] for the single disorder case). In these formulations, it is assumed that one observes a
sample path of a Brownian motion X with the drift rate switching between �0 and �1 at some
unobservable random times (we assume that �0 = 0 and �1 = � , without loss of generality).

2.1 The setting.

Let us assume that all the considerations take place on a probability space (Ω,G, P�) with a
continuous-time Markov chain Θ = (Θt)t≥0 with two states, 0 and 1, and an independent of Θ
standard Brownian motion (Wiener process) B = (Bt)t≥0 started at zero under P� . Assume
that Θ has the initial distribution {1−�, �} , the transition-probability matrix {(�0e

−(�0+�1)t+
�1)/(�0 +�1), �0(1− e−(�0+�1)t)/(�0 +�1);�1(1− e−(�0+�1)t)/(�0 +�1), (�1e

−(�0+�1)t +�0)/(�0 +
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�1)} , so that the intensity-matrix {−�0, �0;�1,−�1} , for all t ≥ 0 and some �i > 0, i = 0, 1,
fixed. In other words, the Markov chain Θ changes its state from i to 1 − i at exponentially
distributed times of intensity �i , for every i = 0, 1, which are independent of the dynamics of
the Brownian motion B . Such a process Θ is called telegraphic signal in the literature (see,
e.g. [25; Chapter IX, Section 4] or [14; Chapter VIII]).

Suppose that we observe a continuous process X = (Xt)t≥0 given by the expression:

Xt = �

∫ t

0

Θs ds+ � Bt (2.1)

where � ∕= 0 and � > 0 are some given constants. Being based upon the continuous observation
of X , our task is to find among (non-decreasing) sequences of stopping times (�n)n∈ℕ of X
(i.e., stopping times with respect to the natural filtration ℱt = �(Xs ∣ 0 ≤ s ≤ t) of the process
X , for t ≥ 0) an optimal sequence (� ∗n)n∈ℕ at which the alarms should be sounded as close
as possible to the unknown switching times of the process Θ. More precisely, the Bayesian
switching multiple disorder problem consists of computing the Bayesian risk function:

V ∗(�) = inf
(�n)n∈ℕ

∞∑
k=1

E�

[
e−r�2k−1 I(Θ�2k−1

= Θ0) + e−r�2k I(Θ�2k ∕= Θ0) (2.2)

+ c

∫ �2k−1

�2k−2

e−rt I(Θt ∕= Θ0) dt+ c

∫ �2k

�2k−1

e−rt I(Θt = Θ0) dt

)]
and finding the non-decreasing sequence of optimal stopping times (� ∗n)n∈ℕ with � ∗0 = 0, at
which the infimum is attained in (2.2), where I(⋅) denotes the indicator function. Note that
the function V ∗(�) expresses the Bayesian risk of the whole sequence (�n)n∈ℕ in the case in
which the process Θ starts at Θ0 , which has the prior distribution P�(Θ0 = 1) = � and
P�(Θ0 = 0) = 1 − � , for all � ∈ [0, 1]. We therefore see that E�

[
e−r�2k−1 I(Θ�2k−1

= Θ0)
]

and E�
[
e−r�2k I(Θ�2k ∕= Θ0)

]
expresses the average discounted loss due to a false alarm, and

E�
∫ �2k−1

�2k−2
e−rt I(Θt ∕= Θ0) dt and E�

∫ �2k
�2k−1

e−rt I(Θt = Θ0) dt expresses the average discounted

loss due to a delay in detecting of the time at which Θ changes its state either from Θ0 to
1 − Θ0 , or from 1 − Θ0 to Θ0 , respectively, for any k ∈ ℕ . In this case, c > 0 is a cost rate
due to a delay in detection, and r > 0 is a discounting rate.

Using the fact that (�n)n∈ℕ is a non-decreasing sequence of stopping times with respect to
the filtration (ℱt)t≥0 , by means of standard arguments, which are similar to those presented in
[41; pages 195-197], we obtain:

E�

[
e−r�n I

(
Θ�n ⪋ Θ0

)]
= E�

[
E�

[
e−r�n I

(
Θ�n ⪋ Θ0

) ∣∣∣ℱ�n]] (2.3)

= E�

[
e−r�n P�

(
Θ�n ⪋ Θ0

∣∣∣ℱ�n)]
and

E�

∫ �n

�n−1

e−rt I
(

Θ�n ⪋ Θ0

)
dt = E�

∫ ∞
0

e−rt I
(
�n−1 ≤ t,Θt ⪋ Θ0, t < �n

)
dt (2.4)

= E�

∫ ∞
0

E�

[
e−rt I

(
�n−1 ≤ t,Θt ⪋ Θ0, t < �n

) ∣∣∣ℱt] dt = E�

∫ �n

�n−1

e−rt P�

(
Θt ⪋ Θ0

∣∣∣ℱt) dt
holds for every i = 0, 1 and any n ∈ ℕ .
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2.2 Sufficient statistics.

It is known from [25; Theorem 9.1] (see also [25; Chapter IX, Example 3]) that the posterior
probability process Π = (Πt)t≥0 defined by Πt = P�(Θt = 1 ∣ ℱt) solves the stochastic differential
equation:

dΠt =
(
�0 − (�0 + �1)Πt

)
dt+

�

�
Πt(1− Πt) dBt (2.5)

with Π0 = � , where the innovation process B = (Bt)t≥0 defined by:

Bt =
1

�

(
Xt −

∫ t

0

�Πs ds

)
(2.6)

is a standard Brownian motion under the probability measure P� , with respect to the filtration
(ℱt)t≥0 , according to P. Lévy’s characterisation theorem (see, e.g. [25; Chapter IV, Theo-
rem 4.1]). It is also seen from (2.5) that Π is a (time-homogeneous strong) Markov process
with respect to its natural filtration, which obviously coincides with (ℱt)t≥0 . It also follows
from [25; Theorem 9.3] that the process Πi = (Πi

t)t≥0 defined by Πi
t = P�(Θt = i,Θ0 = i ∣ ℱt),

for i = 0, 1, solves the stochastic differential equation:

dΠi
t =

(
�1−i (2i− 1) (i− Πt)− �0 Π0

t − �1 Π1
t

)
dt+

�

�
Πi
t(i− Πt) dBt (2.7)

with Π1
0 = 1−Π0

0 = � , for any � ∈ [0, 1]. It follows from [26; Chapter VII, Theorem 7.2.4] that
the (time-homogeneous) process (Π,Π0,Π1) = (Πt,Π

0
t ,Π

1
t )t≥0 has the strong Markov property

with respect to its natural filtration, which inherently coincides with (ℱt)t≥0 .
Taking into account the expressions in (2.3) and (2.4), and the fact that Π0

t +Π1
t = P�(Θt =

Θ0 ∣ ℱt), we therefore conclude that the Bayesian risk function from (2.2) admits the represen-
tation:

V ∗(�) = inf
(�n)n∈ℕ

∞∑
k=1

E�

[
e−r�2k−1 (Π0

�2k−1
+ Π1

�2k−1
) + e−r�2k (1− Π0

�2k
− Π1

�2k
) (2.8)

+ c

∫ �2k−1

�2k−2

e−rt (1− Π0
t − Π1

t ) dt+ c

∫ �2k

�2k−1

e−rt (Π0
t + Π1

t ) dt

]
where the infimum is taken over all non-decreasing sequences of stopping times (�n)n∈ℕ . By
virtue of the strong Markov property of the process (Π,Π0,Π1), we can reduce the problem of
(2.8) to the following coupled optimal stopping problem:

V ∗i (�, �0, �1) = inf
�i
E�,�0,�1

[
e−r�i

(
(2i− 1) (i− Π0

�i
− Π1

�i
) + V ∗1−i(Π�i ,Π

0
�i
,Π1

�i
)
)

(2.9)

+ c

∫ �i

0

e−rt (1− 2i) (1− i− Π0
t − Π1

t ) dt

]
where the infimum is taken over all stopping times �i , i = 0, 1, of the process (Π,Π0,Π1),
which starts at some (�, �0, �1) ∈ [0, 1]3 , under the probability measure P�,�0,�1 .

5



3 Main results and proofs.

In this section, we formulate and prove the main assertions of the paper, which are related
to the coupled optimal stopping problem in (2.9), and thus to the quickest switching multiple
disorder detection problem in (2.2) and (2.8).

3.1 The structure of the optimal stopping times.

In order to specify the structure of the optimal stopping times in the problem of (2.9), let us
introduce the function:

Fi(�, �0, �1) =
c�0

r(�0 + �1 + r)
− c(1− i)

r
+

c(�1 − �0)

r(�0 + �1 + r)
� +

1∑
j=0

c(�1−j − �j + r)

r(�0 + �1 + r)
�j (3.1)

and use Itô’s formula (see, e.g. [25; Theorem 4.4]) to obtain:

e−rt Fi(Πt,Π
0
t ,Π

1
t ) = Fi(�, �0, �1) + c

∫ t

0

e−rs
(
1− i− Π0

s − Π1
s

)
ds+N i

t (3.2)

where the process N i = (N i
t )t≥0 defined by:

N i
t =

∫ t

0

e−rs
�

�

(
c(�1 − �0)

r(�0 + �1 + r)
Πs(1− Πs) +

1∑
j=0

c(�1−j − �j + r)

r(�0 + �1 + r)
Πj
s(j − Πs)

)
dBs (3.3)

is a continuous square integrable martingale under P�,�0,�1 . Then, applying Doob’s optional
sampling theorem (see, e.g. [25; Theorem 3.6]), we get from the expression in (3.2) that:

E�,�0,�1
[
e−r�i Fi(Π�i ,Π

0
�i
,Π1

�i
)
]

= Fi(�, �0, �1) + cE�,�0,�1

∫ �i

0

e−rt
(
1− i− Π0

t − Π1
t

)
dt (3.4)

holds for all (�, �0, �1) ∈ [0, 1]3 and any stopping time �i . Hence, inserting the expression of
(3.4) into the one of (2.9), we see that the coupled optimal stopping problem takes the form:

U∗i (�, �0, �1) = inf
�i
E�,�0,�1

[
e−r�i

(
(1− 2i)Gi(Π�i ,Π

0
�i
,Π1

�i
) + U∗1−i(Π�i ,Π

0
�i
,Π1

�i
)
)]

(3.5)

with U∗i (�, �0, �1) = V ∗i (�, �0, �1) + (1− 2i)Fi(�, �0, �1) and

Gi(�, �0, �1) = Fi(�, �0, �1) + F1−i(�, �0, �1) + �0 + �1 − i (3.6)

=
2c(�1 − �0)

r(�0 + �1 + r)
� +

1∑
j=0

(
2c(�1−j − �j + r)

r(�0 + �1 + r)
+ 1

)
�j +

c(�0 − �1 − r)
r(�0 + �1 + r)

− i

for all (�, �0, �1) ∈ [0, 1]3 and i = 0, 1. Thus, by means of the results of general theory of
optimal stopping problems (see, e.g. [41; Chapter III, Section 3] and [29; Chapter I, Section 2]),
it follows from the structure of the reward in (3.5) that the optimal stopping times are given
by:

�∗i = inf
{
t ≥ 0

∣∣U∗i (Πt,Π
0
t ,Π

1
t ) = (1− 2i)Gi(Πt,Π

0
t ,Π

1
t ) + U∗1−i(Πt,Π

0
t ,Π

1
t )
}

(3.7)
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for i = 0, 1, whenever they exist. It is seen from the structure of the function Fi(�, �0, �1) in
(3.6) that if the point (�, �0, �1) belongs to the corresponding continuation region:

C∗i = {(�, �0, �1) ∈ [0, 1]3 ∣U∗i (�, �0, �1) < (1− 2i)Gi(�, �0, �1) + U∗1−i(�, �0, �1)} (3.8)

then the points (�, �′0, �
′
1), with either �′j ≥ �j or �′j ≤ �j and �′1−j = �1−j when �j ≤ �1−j

holds for some j = 0, 1, belong to either C∗0 or C∗1 , respectively. Then, taking into account the
concavity of the functions (1−2i)Gi(�, �0, �1)+U∗1−i(�, �0, �1) in �j on [0, 1], we may therefore
conclude that there exist functions 0 < a∗(�, �1−j), b∗(�, �1−j) < 1 such that the continuation
regions in (3.8) for the coupled optimal stopping problems of (2.9) and (3.5) take the form:

C∗0 = {(�, �0, �1) ∈ [0, 1]3 ∣�j > a∗(�, �1−j)} and C∗1 = {(�, �0, �1) ∈ [0, 1]3 ∣ �j < b∗(�, �1−j)}
(3.9)

so that the corresponding stopping regions are the closures of the sets:

D∗0 = {(�, �0, �1) ∈ [0, 1]3 ∣ �j < a∗(�, �1−j)} and D∗1 = {(�, �0, �1) ∈ [0, 1]3 ∣ �j > b∗(�, �1−j)}
(3.10)

when �j ≤ �1−j holds for some j = 0, 1. It follows from the facts that the gain function
Gi(�, �0, �1) in (3.6) is linear and the difference function (U∗i − U∗1−i)(�, �0, �1) in (3.5) is
concave in the closure of D∗i from (3.10), for every i = 0, 1, that the boundaries a∗(�, �1−j)
and b∗(�, �1−j) are continuous and of bounded variation.

Summarising the facts proved above, we are now ready to formulate the following assertion.

Lemma 3.1 Let the process X be given by the equation in (2.1). Then, the optimal stopping
times �∗i , i = 0, 1, in the coupled optimal stopping problems of (2.9) and (3.5) take the form:

�∗0 = inf
{
t ≥ 0

∣∣Πj
t ≤ a∗(Πt,Π

1−j
t )

}
and �∗1 = inf

{
t ≥ 0

∣∣Πj
t ≥ b∗(Πt,Π

1−j
t )

}
(3.11)

whenever they exist, for some continuous functions of bounded variation 0 < a∗(�, �1−j), b∗(�, �1−j) <
1, when �j ≤ �1−j holds for some j = 0, 1. In that case, the optimal Bayesian times of alarms
(� ∗n)n∈ℕ in the quickest switching multiple disorder detection problem of (2.8) are given by:

� ∗2k−1 = inf
{
t ≥ � ∗2k−2

∣∣Πj
t ≤ a∗(Πt,Π

1−j
t )

}
and � ∗2k = inf

{
t ≥ � ∗2k−1

∣∣Πj
t ≥ b∗(Πt,Π

1−j
t )

}
(3.12)

for every k ∈ ℕ.

3.2 The coupled free-boundary problem.

By means of standard arguments based on the application of Itô’s formula (see, e.g. [22;
Chapter V, Section 5.1] or [26; Chapter VII, Section 7.3]), it is shown that the infinitesimal
operator L(Π,Π0,Π1) of the process (Π,Π0,Π1) from (2.5) and (2.7) has the structure:

L(Π,Π0,Π1) = (�0 − (�0 + �1)�) ∂� +
1

2

(�
�

)2

�2(1− �)2 ∂2
�� −

(�
�

)2

�0�
2(1− �) ∂2

��0
(3.13)

+ (�1 (� − �1)− �0 �0) ∂�0 +
1

2

(�
�

)2

�2
0�

2 ∂2
�0�0

+
(�
�

)2

�1�(1− �)2 ∂2
��1

+ (�0 (1− � − �0)− �1 �1) ∂�1 +
1

2

(�
�

)2

�2
1(1− �)2 ∂2

�1�1
−
(�
�

)2

�0�1�(1− �) ∂2
�0�1
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for all (�, �0, �1) ∈ (0, 1)3 . We also note that the fact that the stochastic differential equations
for the posterior probabilities in (2.5) and (2.7) are driven by the same (one-dimensional)
innovation Brownian motion yields the property that the infinitesimal operator in (3.13) is of
parabolic type.

In order to characterise the unknown value functions U∗i (�, �0, �1), i = 0, 1, from (3.5), as
well as the unknown boundaries a∗(�, �1−j) and b∗(�, �1−j) from (3.11), we may use the results
of the general theory of optimal stopping problems for continuous time Markov processes (see,
e.g. [20], [41; Chapter III, Section 8] and [29; Chapter IV, Section 8]). More precisely, we
formulate the associated coupled free-boundary problem:

(L(Π,Π0,Π1)Ui − rUi)(�, �0, �1) = 0 for (�, �0, �1) ∈ Ci (3.14)

(U0 − U1 −G0)(�, �0, �1)
∣∣
�j=a(�,�1−j)+

= (U1 − U0 +G1)(�, �0, �1)
∣∣
�j=b(�0,�1−j)− = 0 (3.15)

(Ui − U1−i)(�, �0, �1) = (1− 2i)Gi(�, �0, �1) for (�, �0, �1) ∈ Di (3.16)

(Ui − U1−i)(�, �0, �1) < (1− 2i)Gi(�, �0, �1) for (�, �0, �1) ∈ Ci (3.17)

(L(Π,Π0,Π1)Ui − rUi)(�, �0, �1) > 0 for (�, �0, �1) ∈ Di (3.18)

with 0 < a(�, �1−j), b(�, �1−j) < 1, where the instantaneous-stopping conditions of (3.15)
are satisfied at a∗(�, �1−j) and b∗(�, �1−j) for all (�, �1−j) ∈ [0, 1]2 , when �j ≤ �1−j for
some j = 0, 1. Note that the superharmonic characterisation of the value function (see, e.g.
[41; Chapter III, Section 8] and [29; Chapter IV, Section 9]) implies that U∗i (�, �0, �1), i =
0, 1, from (3.5) are the largest functions satisfying the expressions in (3.14)-(3.18) with the
boundaries a∗(�, �1−j) and b∗(�, �1−j), respectively. Moreover, since the system in (3.14)-(3.18)
admits multiple solutions, we need to use certain additional conditions which would specify the
appropriate solution providing the value function and the optimal switching boundaries for the
initial problem of (3.5). For this, let us assume that the following smooth-fit conditions:

(U0 − U1 −G0)�j(�, �0, �1)
∣∣
�j=a(�,�1−j)+

= (U1 − U0 +G1)�j(�, �0, �1)
∣∣
�j=b(�,�1−j)− = 0 (3.19)

hold for all (�, �1−j) ∈ (0, 1)2 , when �j ≤ �1−j for some j = 0, 1.
We further provide an analysis of the parabolic-type free-boundary problem in (3.14)-(3.17),

satisfying the inequality in (3.18) and the conditions of (3.19), and such that the resulting
boundaries are continuous and of bounded variation. Since such free-boundary problems can-
not normally be solved explicitly, the existence and uniqueness of classical as well as viscosity
solutions of the variational inequalities, arising in the context of optimal stopping problems,
have been extensively studied in the literature (see, e.g. Friedman [17], Bensoussan and Li-
ons [9], Krylov [24], or Øksendal [26]). Although the necessary conditions for existence and
uniqueness of such solutions in [17; Chapter XVI, Theorem 11.1], [24; Chapter V, Section 3,
Theorem 14] with [24; Chapter VI, Section 4, Theorem 12], and [26; Chapter X, Theorem 10.4.1]
can be verified by virtue of the regularity of the coefficients of the three-dimensional diffusion
process, the application of these classical results would still have rather inexplicit character.

We therefore continue with the following verification assertion related to the free-boundary
problem formulated above.

Lemma 3.2 Assume that the optimal stopping times �∗i , i = 0, 1, in the problem of (3.5) have a
form of (3.11) with the continuous boundaries of bounded variation 0 < a∗(�, �1−j), b∗(�, �1−j) <

8



1, when �j ≤ �1−j holds for some j = 0, 1. Then, the value functions from (3.5) admit the
representations:

U∗0 (�, �0, �1) =

{
U0(�, �0, �1; a∗(�, �1−j)), for �j > a∗(�, �1−j)

G0(�, �0, �1) + U∗1 (�, �0, �1), for �j ≤ a∗(�, �1−j)
(3.20)

and

U∗1 (�, �0, �1) =

{
U1(�, �0, �1; b∗(�0, �1)), for �j < b∗(�, �1−j)

−G1(�, �0, �1) + U∗0 (�, �0, �1), for �j ≥ b∗(�, �1−j)
(3.21)

with

U0(�, �0, �1; a∗(�, �1−j)) = E�,�0,�1
[
e−r�

∗
0
(
G0(Π�∗0

,Π0
�∗0
,Π1

�∗0
) + U∗1 (Π�∗0

,Π0
�∗0
,Π1

�∗0
)
)]

(3.22)

and

U1(�, �0, �1; b∗(�0, �1−j)) = E�,�0,�1
[
e−r�

∗
1
(
−G1(Π�∗1

,Π0
�∗1
,Π1

�∗1
) + U∗0 (Π�∗1

,Π0
�∗1
,Π1

�∗1
)
)]

(3.23)

whenever the inequalities of (3.18) hold in the regions from (3.10) for every i = 0, 1, where the
boundaries a∗(�, �1−j) and b∗(�, �1−j) are uniquely determined by the conditions of (3.19).

Proof. In order to verify the assertions stated above, let us denote by Ui(�, �0, �1), i =
0, 1, the right-hand sides of the expressions in (3.22) and (3.23), respectively. It follows by the
strong Markov property of the process (Π,Π0,Π1) that the functions U0(�, �0, �1; a∗(�, �1−j))
in (3.22) and U1(�, �0, �1; b∗(�, �1−j)) in (3.23) solve the partial differential equation of (3.14)
and satisfy the instantaneous-stopping conditions of (3.15). Then, using the fact that the
function Ui(�, �0, �1) satisfies the conditions of (3.16)-(3.17) by construction, we can apply the
local time-space formula from Peskir [28] (see also [29; Chapter II, Section 3.5] for a summary
of the related results and further references) to obtain:

e−rt Ui(Πt,Π
0
t ,Π

1
t ) = Ui(�, �0, �1) +M i

t + Lit (3.24)

+

∫ t

0

e−rs (L(Π,Π0,Π1)Ui − rUi)(Πs,Π
0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C∗i

)
ds

where the process M i = (M i
t )t≥0 defined by:

M i
t =

∫ t

0

e−rs
(

(Ui)�(Πs,Π
0
s,Π

1
s)
�

�
Πs(1− Πs) +

1∑
j=0

(Ui)�j(Πs,Π
0
s,Π

1
s)
�

�
Πj
s(j − Πs)

)
(3.25)

× I
(
Πj
s ∕= a∗(Πs,Π

1−j
s ),Πj

s ∕= b∗(Πs,Π
1−j
s )

)
dBs

is a continuous local martingale under the probability measure P�,�0,�1 with respect to the
filtration (ℱt)t≥0 , for every i = 0, 1. Here, the process Li = (Lit)t≥0 is given by:

Lit =
1

2

∫ t

0

e−rs Δ�jUi(Πs,Π
0
s,Π

1
s) I
(
Πj
s = ci(Π

0
s,Π

1−j
s )

)
dℓis (3.26)
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where we set Δ�jUi(�, ci(�, �1−j), �1−j) = (Ui)�j(�, ci(�, �1−j)+, �1−j)−(Ui)�j(�, ci(�, �1−j)−, �1−j)
with c0(�, �1−j) = a(�, �1−j) and c1(�, �1−j) = b(�, �1−j), and the process ℓi = (ℓit)t≥0 defined
by:

ℓit = P�,�0,�1 − lim
"↓0

1

2"

∫ t

0

I
(
− " < Πj

s − ci(Πs,Π
1−j
s ) < "

) (�
�

)2

⟨Πj − ci(Π,Π1−j)⟩s (3.27)

is the local time of Πj at the surface ci(Π,Π
1−j) at which the partial derivative (Ui)�j(�, �0, �1)

may not exist, and ⟨Πj−ci(Π,Π1−j)⟩ is the quadratic variation of the process Πj−ci(Π,Π1−j).
It follows from the structure of the gain function (1− 2i)Gi(�, �0, �1) +U∗1−i(�, �0, �1) in (3.5),
and the optimal stopping times �∗i in (3.11), that the inequalities Δ�jUi(�, ci(�, �1−j), �1−j) ≤ 0
should hold for all (�, �1−j) ∈ [0, 1]2 , when �j ≤ �1−j for some j = 0, 1, so that the continuous
process Li defined in (3.26) is non-increasing. We may therefore conclude that Lit = 0, i = 0, 1,
can hold for all t ≥ 0 if and only if the smooth-fit conditions of (3.19) are satisfied.

Using the assumption that the inequality in (3.18) holds with the boundaries a∗(�, �1−j) and
b∗(�, �1−j), we conclude from the conditions in (3.15)-(3.17) that (L(Π,Π0,Π1)Ui−rUi)(�, �0, �1) ≥
0 holds for any �j ∕= a∗(�, �1−j) and �j ∕= b∗(�, �1−j), when �j ≤ �1−j for some j =
0, 1. Moreover, by virtue of the fact that �∗i is an optimal stopping time, the inequality
(Ui−U1−i)(�, �0, �1) ≤ (1− 2i)Gi(�, �0, �1) holds for all (�, �0, �1) ∈ [0, 1]3 and every i = 0, 1.
Since the time spent by Πj at the surfaces a∗(Π,Π

1−j) and b∗(Π,Π
1−j) of bounded variation

is of Lebesgue measure zero, the indicators which appear in the integrals in the second lines of
(3.24) and in (3.25) can be ignored. Thus, the expression in (3.24) yields that the inequalities:

e−r�i
(
(1− 2i)Gi(Π�i ,Π

0
�i
,Π1

�i
) + U1−i(Π�i ,Π

0
�i
,Π1

�i
)
)

+ Li�i (3.28)

≥ e−r�i Ui(Π�i ,Π
0
�i
,Π1

�i
) + Li�i ≥ Ui(�, �0, �1) +M i

�i

hold for any stopping time �i and every i = 0, 1. Let (�ni )n∈ℕ be an arbitrary localising
sequence of stopping times for the processes M i . Then, taking the expectations with respect
to P�,�0,�1 in (3.28), by means of the optional sampling theorem (see, e.g. [25; Theorem 3.6]),
we get that the inequalities:

E�,�0,�1
[
e−r(�i∧�

n
i )
(
(1− 2i)Gi(Π�i∧�ni ,Π

0
�i∧�ni

,Π1
�i∧�ni

) + U1−i(Π�i∧�ni ,Π
0
�i∧�ni

,Π1
�i∧�ni

)
)

+ Li�i∧�ni

]
≥ E�,�0,�1

[
e−r(�i∧�

n
i ) Ui(Π�i∧�ni ,Π

0
�i∧�ni

,Π1
�i∧�ni

) + Li�i∧�ni

]
(3.29)

≥ Ui(�, �0, �1) + E�,�0,�1 M
i
�i∧�ni

= Ui(�, �0, �1)

hold. Hence, letting n go to infinity and using Fatou’s lemma, we obtain:

E�,�0,�1
[
e−r�i

(
(1− 2i)Gi(Π�i ,Π

0
�i
,Π1

�i
) + U1−i(Π�i ,Π

0
�i
,Π1

�i
)
)

+ Li�i
]

(3.30)

≥ E�,�0,�1
[
e−r�i Ui(Π�i ,Π

0
�i
,Π1

�i
) + Li�i

]
≥ Ui(�, �0, �1)

for any stopping time �i such that E�,�0,�1L
i
�i
> −∞ and all (�, �0, �1) ∈ [0, 1]3 , where Li�i = 0

holds whenever the conditions of (3.19) are satisfied. By virtue of the structure of the stopping
times in (3.11), it is readily seen that the equalities in (3.30) hold with �∗i instead of �i when
(�, �0, �1) ∈ D∗i , for every i = 0, 1.

Let us now show that the equalities are attained in (3.30) when �∗i replaces �i when
(�, �0, �1) ∈ C∗i , for every i = 0, 1, and the smooth-fit conditions of (3.19) hold. By virtue
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of the fact that the function Ui(�, �0, �1) and the continuous boundaries of bounded variation
a∗(�, �1−j) and b∗(�, �1−j) solve the partial differential equation in (3.14) and satisfy the con-
ditions of (3.15) and (3.19), it follows from the expression in (3.24) and the structure of the
stopping times in (3.11) that the equalities:

e−r(�
∗
i ∧�ni )

(
(1− 2i)Gi(Π�∗i ∧�ni ,Π

0
�∗i ∧�ni

,Π1
�∗i ∧�ni

) + U1−i(Π�∗i ∧�ni ,Π
0
�∗i ∧�ni

,Π1
�∗i ∧�ni

)
)

(3.31)

= e−r(�
∗
i ∧�ni ) Ui(Π�∗i ∧�ni ,Π

0
�∗i ∧�ni

,Π1
�∗i ∧�ni

) + Li�∗i ∧�ni = Ui(�, �0, �1) +M i
�∗i ∧�ni

hold for (�, �0, �1) ∈ C∗i and any localising sequence (�ni )n∈ℕ of M i . Hence, taking expectations
and letting n go to infinity in (3.31), and using the fact that Gi(�, �0, �1) and Ui(�, �0, �1),
i = 0, 1, are bounded functions, we apply the Lebesgue dominated convergence theorem to
obtain the equalities:

E�,�0,�1
[
e−r�

∗
i
(
(1− 2i)Gi(Π�∗i

,Π0
�∗i
,Π1

�∗i
) + U1−i(Π�∗i

,Π0
�∗i
,Π1

�∗i
)
)]

= Ui(�, �0, �1) (3.32)

for all (�, �0, �1) ∈ [0, 1]3 . We may therefore conclude that the function Ui(�, �0, �1) coincides
with the value function U∗i (�, �0, �1) of the optimal stopping problem in (3.5), for i = 0, 1,
whenever the smooth-fit conditions of (3.19) hold.

In order to prove uniqueness of the value functions U∗i (�, �0, �1), i = 0, 1, and the bound-
aries a∗(�, �1−j) and b∗(�, �1−j) as solutions of the free-boundary problem in (3.14)-(3.17)
with the smooth-fit conditions of (3.19), let us assume that there exist other continuous bound-
aries of bounded variation a′(�, �1−j) and b′(�, �1−j) such that the inequality in (3.18) is
satisfied. Then, define the functions U ′i(�, �0, �1), i = 0, 1, as in (3.20) and (3.21) with
U ′0(�, �0, �1; a′(�, �1−j)) and U ′1(�, �0, �1; b′(�, �1−j)) as in (3.22) and (3.23), and the stopping
times � ′i , i = 0, 1, as in (3.11) with a′(�, �1−j) and b′(�, �1−j) instead of a∗(�, �1−j) and
b∗(�, �1−j), respectively. Following the arguments from the previous part of the proof and us-
ing the fact that the functions U ′i(�, �0, �1), i = 0, 1, solve the partial differential equation in
(3.14) and satisfies the conditions of (3.15) and (3.19) with a′(�, �1−j) and b′(�, �1−j) instead
of a(�, �1−j) and b(�, �1−j) by construction, we apply the change-of-variable formula from [28]
to get:

e−rt U ′i(Πt,Π
0
t ,Π

1
t ) = U ′i(�, �0, �1) +M i

t

′
(3.33)

+

∫ t

0

e−rs (L(Π,Π0,Π1)U
′
i − rU ′i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C ′i

)
ds

where the process M i′ = (M i
t
′
)t≥0 defined as in (3.25) with (U ′i)�(�, �0, �1) and (U ′i)�j(�, �0, �1)

instead of (U ′i)�(�, �0, �1) and (U ′i)�j(�, �0, �1) is a continuous local martingale with respect to
the probability measure P�,�0,�1 , and C ′i is defined as in (3.9) with a∗(�, �1−j) and b∗(�, �1−j)
instead of a′(�, �1−j) and b′(�, �1−j). Thus, taking into account the structure of the stopping
times � ′i , i = 0, 1, we obtain from (3.33) that:

e−r(�
′
i∧�ni

′)
(
(1− 2i)Gi(Π�′i∧�ni

′ ,Π0
�′i∧�ni

′ ,Π1
�′i∧�ni

′) + U ′1−i(Π�′i∧�ni
′ ,Π0

�′i∧�ni
′ ,Π1

�′i∧�ni
′)
)

(3.34)

= e−r(�
′
i∧�ni

′) U ′i(Π�′i∧�ni
′ ,Π0

�′i∧�ni
′ ,Π1

�′i∧�ni
′) = U ′i(�, �0, �1) +M i′

�′i∧�ni
′

holds for (�, �0, �1) ∈ C ′i and any localising sequence (�ni
′)n∈ℕ of M i′ . Hence, taking expecta-

tions and letting n go to infinity in (3.34) and using the fact that Gi(�, �0, �1) and Ui(�, �0, �1),
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i = 0, 1, are bounded functions, by means of the Lebesgue dominated convergence theorem, we
have that the equality:

E�,�0,�1
[
e−r�

′
i
(
(1− 2i)Gi(Π�′i

,Π0
�′i
,Π1

�′i
) + U ′1−i(Π�′i

,Π0
�′i
,Π1

�′i
)
)]

= U ′i(�, �0, �1) (3.35)

is satisfied. Therefore, recalling the fact that �∗i , i = 0, 1, are the optimal stopping times in (3.5)
and comparing the expressions in (3.32) and (3.35), we see that the inequality U ′i(�, �0, �1) ≥
Ui(�, �0, �1) should hold for all (�, �0, �1) ∈ [0, 1]3 .

To prove the fact that a∗(�, �1−j) ≤ a′(�, �1−j) and b′(�, �1−j) ≤ b∗(�, �1−j) holds, let us
take a point �j < a∗(�, �1−j) ∧ a′(�, �1−j) or �j > b∗(�, �1−j) ∨ b′(�, �1−j), for which we have
U ′i(�, �0, �1) = Ui(�, �0, �1) = Gi(�, �0, �1), i = 0, 1. For this, we consider the stopping times:

ϰ∗0 = inf
{
t ≥ 0

∣∣Πj
t ≥ a∗(Πt,Π

1−j
t )

}
and ϰ∗1 = inf

{
t ≥ 0

∣∣Πj
t ≤ b∗(Πt,Π

1−j
t )

}
. (3.36)

Then, inserting ϰ∗i ∧�ni and ϰ∗i ∧�ni ′ into (3.24) and (3.33) in place of t , and using the arguments
similar to the ones above, we obtain:

E�,�0,�1
[
e−rϰ

∗
i Ui(Πϰ∗i ,Π

0
ϰ∗i
,Π1

ϰ∗i
)
]

= Ui(�, �0, �1) (3.37)

+ E�,�0,�1

∫ ϰ∗i

0

e−rs (L(Π,Π0,Π1)Ui − rUi)(Πs,Π
0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C∗i

)
ds

and

E�,�0,�1
[
e−rϰ

∗
i U ′i(Πϰ∗i ,Π

0
ϰ∗i
,Π1

ϰ∗i
)
]

= U ′i(�, �0, �1) (3.38)

+ E�,�0,�1

∫ ϰ∗i

0

e−rs (L(Π,Π0,Π1)U
′
i − rU ′i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C ′i

)
ds

for all (�, �0, �1) ∈ [0, 1]3 . Hence, taking into account the fact that U ′i(�, a∗(�, �1−j), �1−j) ≥
Ui(�, a∗(�, �1−j), �1−j) and U ′i(�, b∗(�, �1−j), �1−j) ≥ Ui(�, b∗(�, �1−j), �1−j) holds for every i =
0, 1, we get from (3.37) and (3.38) that the inequality:

E�,�0,�1

∫ ϰ∗i

0

e−rs (L(Π,Π0,Π1)Ui − rUi)(Πs,Π
0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C∗i

)
ds (3.39)

≤ E�,�0,�1

∫ ϰ∗i

0

e−rs (L(Π,Π0,Π1)U
′
i − rU ′i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C ′i

)
ds

is satisfied. Thus, by virtue of the assumption of continuity of a′(�, �1−j) and b′(�, �1−j),
we see from (3.39) that a∗(�, �1−j) ≤ a′(�, �1−j) and b′(�, �1−j) ≤ b∗(�, �1−j) holds for all
(�, �0, �1) ∈ [0, 1]3 .

We finally show that a′(�, �1−j) and b′(�, �1−j) should coincide with a∗(�, �1−j) and
b∗(�, �1−j). For this, we take �j ∈ (a∗(�, �1−j), a

′(�, �1−j)) or �j ∈ (b′(�, �1−j), b∗(�, �1−j))
for some (�, �1−j) ∈ [0, 1]2 for such it exists. Hence, inserting �∗i ∧ �ni ′ into (3.33) in place of t
and using the arguments similar to the ones above, we obtain:

E�,�0,�1
[
e−r�

∗
i U ′i(Π�∗i

,Π0
�∗i
,Π1

�∗i
)
]

= U ′i(�, �0, �1) (3.40)

+ E�,�0,�1

∫ �∗i

0

e−rs (L(Π,Π0,Π1)U
′
i − rU ′i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C ′i

)
ds
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for all (�, �0, �1) ∈ [0, 1]3 . Thus, since we have U ′i(�, �0, �1) = Ui(�, �0, �1) = Gi(�, �0, �1)
for �j = a∗(�, �1−j) and �j = b∗(�, �1−j), and U ′i(�, �0, �1) ≥ Ui(�, �0, �1), we see from the
expressions in (3.32) and (3.40) that the inequality:

E∗�,�0,�1

∫ �∗i

0

e−rs (L(Π,Π0,Π1)U
′
i − rU ′i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) /∈ C ′i

)
ds ≤ 0 (3.41)

should hold for every i = 0, 1, but that is impossible due to the assumption of continuity
of a∗(�, �1−j) and b∗(�, �1−j). We may therefore conclude that a∗(�, �1−j) = a′(�, �1−j) and
b∗(�, �1−j) = b′(�, �1−j), so that U ′i(�, �0, �1) coincides with Ui(�, �0, �1) for all (�, �0, �1) ∈
[0, 1]3 and every i = 0, 1. □

3.3 The location of the optimal stopping boundaries.

Suppose that the inequality a∗(�, �1−j) < b∗(�, �1−j) holds for all (�, �1−j) ∈ [0, 1]2 when
�j ≤ �1−j for some j = 0, 1. This property means that the solution of the coupled optimal
stopping problem and the corresponding optimal quickest switching multiple disorder detection
procedure is nontrivial. In this case, the equalities in (3.14) and (3.16) directly imply that the
inequality in (3.18) takes the form:

(1− 2i)Hi(�, �0, �1) > 0 for (�, �0, �1) ∈ Di (3.42)

with

Hi(�, �0, �1) = �0 + c+ ir + (�1 − �0) � − (2(�0 + c) + r) �0 − (2(�1 + c) + r) �1 (3.43)

for every i = 0, 1. Observe that the expressions in (3.42)-(3.43) are equivalent to the fact that
the sets:

R0 = {(�, �0, �1) ∈ [0, 1]3 ∣ (2(�0 + c) + r)�0 + (2(�1 + c) + r) �1 > �0 + c+ (�1− �0) �} (3.44)

and

R1 = {(�, �0, �1) ∈ [0, 1]3 ∣ (2(�0 +c)+r) �0 +(2(�1 +c)+r)�1 < r+�0 +c+(�1−�0) �} (3.45)

belong to the continuation regions C∗0 and C∗1 from (3.9), which means that the inequalities:

a∗(�, �1−j) < a(�, �1−j) ≡
�0 + c+ (�1 − �0)� − (2(�1−j + c) + r)�1−j

2(�j + c) + r
(3.46)

and

b∗(�, �1−j) > b(�, �1−j) ≡
r + �0 + c+ (�1 − �0)� − (2(�1−j + c) + r)�1−j

2(�j + c) + r
(3.47)

are satisfied, so that 0 < a∗(�, �1−j) < a(�, �1−j) < b(�, �1−j) < b∗(�, �1−j) < 1 holds for all
(�, �1−j) ∈ (0, 1)2 . It is therefore natural to call the parameters of the model admissible when
the inequalities in (3.46)-(3.47) are satisfied, since otherwise, the optimal stopping times in the
problem of (3.5) do not have the structure of (3.11) whenever they exist.
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3.4 The structure of the optimal stopping boundaries.

Applying Itô’s formula to the expression in (3.6), we get:

e−rtGi(Πt,Π
0
t ,Π

1
t ) = Gi(�, �0, �1) +

∫ t

0

e−rsHi(Πs,Π
0
s,Π

1
s) ds+N∗it (3.48)

where the function Hi(�, �0, �1) is given by (3.43), the process N∗i = (N∗it )t≥0 defined by:

N∗it = N i
t +N1−i

t +
1∑
j=0

∫ t

0

e−rs
�

�
Πj
s(j − Πs) dBs (3.49)

is a continuous square integrable martingale under the probability measure P�,�0,�1 , and the
processes N i = (N i

t )t≥0 , i = 0, 1, are defined in (3.3). Then, applying Doob’s optional sampling
theorem, we get from the expression in (3.48) that:

E�,�0,�1
[
e−r�

∗
i Gi(Π�i ,Π

0
�i
,Π1

�i
)
]

= Gi(�, �0, �1) + E�,�0,�1

∫ �i

0

e−rtHi(Πt,Π
0
t ,Π

1
t ) dt (3.50)

holds for all (�, �0, �1) ∈ [0, 1]3 and any stopping time �i . Moreover, we can observe from the
application of the change-of-variable formula in (3.24) that the expression:

e−rt U∗1−i(Πt,Π
0
t ,Π

1
t ) = U∗1−i(�, �0, �1) +M

∗(1−i)
t (3.51)

+

∫ t

0

e−rs (L(Π,Π0,Π1)U
∗
1−i − rU∗1−i)(Πs,Π

0
s,Π

1
s) I
(
(Πs,Π

0
s,Π

1
s) ∈ D∗1−i

)
ds

holds, where M∗(1−i) = (M
∗(1−i)
t )t≥0 defined by:

M
∗(1−i)
t =

∫ t

0

e−rs (U∗1−i)�(Πs,Π
0
s,Π

1
s)
�

�
Πs(1− Πs) dBs (3.52)

+
1∑
j=0

∫ t

0

e−rs (U∗1−i)�j(Πs,Π
0
s,Π

1
s)
�

�
Πj
s(j − Πs) dBs

is a continuous local martingale under P�,�0,�1 , for every i = 0, 1. By virtue of the concavity of
the value functions U∗i (�, �0, �1), i = 0, 1, it follows that the derivatives in (3.52) are bounded,

so that the process (M
∗(1−i)
�∗i ∧t

)t≥0 is a square integrable integrable martingale under P�,�0,�1 .

Hence, applying Doob’s optional sampling theorem, we get from the expressions in (3.51) that:

E�,�0,�1
[
e−r�

∗
i U∗1−i(Π�∗i

,Π0
�∗i
,Π1

�∗i
)
]

= U∗1−i(�, �0, �1) (3.53)

+ E�,�0,�1

∫ �∗i

0

e−rt (L(Π,Π0,Π1)U
∗
1−i − rU∗1−i)(Πt,Π

0
t ,Π

1
t ) I
(
(Πt,Π

0
t ,Π

1
t ) ∈ D∗1−i

)
dt

holds for all (�, �0, �1) ∈ [0, 1]3 and every i = 0, 1. Thus, getting the expressions in (3.50) and
(3.53) together, we obtain from the definition of the optimal stopping times in (3.5) that:

(U∗i − U∗1−i − (1− 2i)Gi)(�, �0, �1) = E�,�0,�1

∫ �∗i

0

e−rt (1− 2i)Hi(Πt,Π
0
t ,Π

1
t ) dt (3.54)

+ E�,�0,�1

∫ �∗i

0

e−rt (L(Π,Π0,Π1)U
∗
1−i − rU∗1−i)(Πt,Π

0
t ,Π

1
t ) I
(
(Πt,Π

0
t ,Π

1
t ) ∈ D∗1−i

)
dt
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holds for all (�, �0, �1) ∈ [0, 1]3 and every i = 0, 1.
Let us now fix some (�, �0, �1) ∈ C∗i and denote by �∗i = �∗i (�, �0, �1) the optimal stopping

time in the problem of (3.5). In this case, it follows from (3.54) and the structure of the optimal
stopping times in (3.7) that the inequality:

(U∗i −U∗1−i− (1− 2i)Gi)(�, �0, �1) ≤ E�,�0,�1

∫ �∗i ∧�∗1−i

0

e−rt (1− 2i)Hi(Πt,Π
0
t ,Π

1
t ) dt < 0 (3.55)

holds, where the function Hi(�, �0, �1) defined in (3.43) admits the representation:

Hi(�, �0, �1) = �0 + c+
2r(c(�1−j − �j − �0 − �1)− �j(�0 + �1 + r))

2c(�1−j − �j + r) + r(�0 + �1 + r)
i (3.56)

+
c(2(�j + c) + r)(�0 − �1 − r)

2c(�1−j − �j + r) + r(�0 + �1 + r)
− r(2(�j + c) + r)(�0 + �1 + r)

2c(�1−j − �j + r) + r(�0 + �1 + r)
Gi(�, �0, �1)

+ (�1−j − �j)
2c(�0 + �1 + 2(c+ r)) + r(�0 + �1 + r)

2c(�1−j − �j + r) + r(�0 + �1 + r)

(
(1− 2j) � − �1−j

)
for every i = 0, 1, when �j ≤ �1−j for some j = 0, 1. Let us then take (�′, �′0, �

′
1) ∈ [0, 1]3

such that Gi(�, �0, �1) = Gi(�
′, �′0, �

′
1) holds with �1−j ≤ �′1−j in case i = 0 and �′1−j ≤ �1−j

in case i = 1, as well as �′ ≤ � in case i = j and � ≤ �′ in case i ∕= j . Hence, using the facts
that (Π,Π0,Π1) is a time-homogeneous strong Markov process and �∗i = �∗i (�, �0, �1) does not
depend on (�′, �′0, �

′
1), taking into account the comparison results for solutions of stochastic

differential equations in Veretennikov [43], we obtain:

(U∗i − U∗1−i − (1− 2i)Gi)(�
′, �′0, �

′
1) ≤ E�′,�′0,�′1

∫ �∗i ∧�∗1−i

0

e−rt (1− 2i)Hi(Πt,Π
0
t ,Π

1
t ) dt (3.57)

≤ E�,�0,�1

∫ �∗i ∧�∗1−i

0

e−rt (1− 2i)Hi(Πt,Π
0
t ,Π

1
t ) dt

holds for every i = 0, 1. By virtue of the inequality in (3.55) and the expression in (3.56), we
may therefore conclude that (�′, �′0, �

′
1) ∈ C∗i , so that the functions:

a∗(�, �1−j) +
2c(1− 2j)(�1−j − �j)� + (2c(�j − �1−j + r) + r(�0 + �1 + r))�1−j

2c(�1−j − �j + r) + r(�0 + �1 + r)
(3.58)

and

b∗(�, �1−j) +
2c(1− 2j)(�1−j − �j)� + (2c(�j − �1−j + r) + r(�0 + �1 + r))�1−j

2c(�1−j − �j + r) + r(�0 + �1 + r)
(3.59)

are decreasing in �1−j and increasing or decreasing in � on [0, 1] in case j = 0 or j = 1,
respectively.

We are now in a position to formulate the main assertion of the paper, which follows from
a straightforward combination of Lemmata 3.1 and 3.2 together with the arguments above.

Theorem 3.1 Suppose that the assumptions of Lemmata 3.1 and 3.2 hold for admissible pa-
rameters of the model. Then, the value functions V ∗i (�, �0, �1), i = 0, 1, in the coupled optimal
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stopping problem of (2.9) are given by V ∗i (�, �0, �1) = U∗i (�, �0, �1)− (1− 2i)Fi(�, �0, �1) with
Fi(�, �0, �1) defined in (3.1). Here, the value functions U∗i (�, �0, �1), i = 0, 1, in (3.5) have
the form of (3.20)-(3.21) with (3.22)-(3.23), and the continuous optimal stopping boundaries
a∗(�, �1−j) and b∗(�, �1−j) in (3.11) are uniquely specified by the smooth-fit conditions of (3.19)
and satisfy the properties proved above, when �j ≤ �1−j holds for some j = 0, 1. Moreover,
the boundaries a∗(�, �1−j) and b∗(�, �1−j) satisfy the inequalities in (3.46)-(3.47) and are such
that the functions in (3.58)-(3.59) are decreasing in �1−j , and either increasing or decreasing
in � on [0, 1] in case of either j = 0 or j = 1, respectively.

Based on the result proved above, let us finally formulate the following explicit optimal
sequential procedure for the Bayesian switching multiple disorder detection.

Corollary 3.1 Suppose that the assumptions of Theorem 3.3 hold. Then, in the quickest
switching multiple disorder detection problem of (2.8) for the observation process X from (2.1),
the Bayesian risk function takes the form V ∗(�) = V ∗0 (�, 1 − �, �), for all � ∈ [0, 1], and the
optimal switching times (� ∗n)n∈ℕ have the form of (3.12). Moreover, the following quickest
multiple disorder detection procedure is optimal for every k ∈ ℕ:

(i) stop the observations at time � ∗2k−1 from (3.12), that is, as soon as the process Πj from
(2.7) exits the region (a∗(Π,Π

1−j), 1], conclude that the process Θ has switched from the state
Θ0 to 1−Θ0 , when �j ≤ �1−j holds for some j = 0, 1, and then, continue with step (ii);

(ii) stop the observations at time � ∗2k from (3.12), that is, as soon as the process Πj exits
the region [0, b∗(Π,Π

1−j)), conclude that the process Θ has switched from the state 1 − Θ0 to
Θ0 , when �j ≤ �1−j holds for some j = 0, 1, and then, continue with the step (i).

4 Some analytic-form estimates.

In this section, we provide analytic-form estimates for the value functions of the coupled optimal
stopping problems of (2.9) and (3.5), and thus, for the Bayesian risk function in (2.8) as well
as for the optimal stopping boundaries from (3.11) and (3.12).

4.1 The change of variables.

In order to derive such estimates, we shall reduce the operator in (3.13) to the normal form, by
means of the one-to-one correspondence transformation process proposed by A.N. Kolmogorov
in [23] (see also [18]-[19]). For this, let us define the processes Y = (Yt)t≥0 and Z = (Zt)t≥0 by:

Yt = Π0
t/(1− Πt) ≡ P�(Θ0 = 0 ∣ ℱt,Θt = 0) and Zt = Π1

t/Πt ≡ P�(Θ0 = 1 ∣ ℱt,Θt = 1) (4.1)

for all t ≥ 0. Then, by means of Itô’s formula, we get that the processes Y and Z admit the
representations:

dYt = �1
(Πt − Π1

t )(1− Πt)− Π0
tΠt

(1− Πt)2
dt = �1

Πt

1− Πt

(1− Yt − Zt) dt (4.2)

and

dZt = �0
(Πt − Π1

t )(1− Πt)− Π0
tΠt

Π2
t

dt = �0
1− Πt

Πt

(1− Yt − Zt) dt (4.3)
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with Y0 = Z0 = 1. It is seen from the equations in (4.2)-(4.3) that the processes Y and Z are
of bounded variation on their state space [0, 1].

It follows from the expressions in (4.1) that there exists a one-to-one correspondence between
the processes (Π,Π0,Π1) and (Π, Y, Z). Hence, the function U∗i (�, �0, �1) from (2.9) is equal
to the one of the coupled optimal stopping problem:

W ∗
i (�, y, z) = inf

�i
E�,y,z

[
e−r�i

(
(1− 2i) Ĝi(Π�i , Y�i , Z�i) +W ∗

1−i(Π�i , Y�i , Z�i)
)]

(4.4)

where the infimum is taken over all stopping times �i , for every i = 0, 1, and the function
Ĝi(�, y, z) = Gi(�, y(1− �), z�) admits the representation:

Ĝi(�, y, z) = A(y, z) � +

(
2c(�1 − �0 + r)

r(�0 + �1 + r)
+ 1

)
y +

c(�0 − �1 − r)
r(�0 + �1 + r)

− i (4.5)

with

A(y, z) =
2c(�1 − �0)

r(�0 + �1 + r)
+

(
2c(�0 − �1 + r)

r(�0 + �1 + r)
+ 1

)
z −

(
2c(�1 − �0 + r)

r(�0 + �1 + r)
+ 1

)
y (4.6)

for all (�, y, z) ∈ [0, 1]3 . Here P�,y,z is a probability measure under which the diffusion process
(Π, Y, Z) = (Πt, Yt, Zt)t≥0 starts at some (�, y, z) ∈ [0, 1]3 and solves the equations of (2.5) and
(4.2)-(4.3). It thus follows from (3.11) that there exist functions g∗(y, z) and ℎ∗(y, z) such that
0 < g∗(y, z) ≶ ℎ∗(y, z) < 1 when A(y, z) ≷ 0, and the optimal stopping times in the problem
of (4.4) have the structure:

�∗0 = inf
{
t ≥ 0

∣∣Πt ⋚ g∗(Yt, Zt) when A(Yt, Zt) ≷ 0
}

(4.7)

and
�∗1 = inf

{
t ≥ 0

∣∣Πt ⋛ ℎ∗(Yt, Zt) when A(Yt, Zt) ≷ 0
}
. (4.8)

In this case, the continuation regions from (3.9) take the form:

C∗0 =
{

(�, y, z) ∈ [0, 1]3
∣∣ � ≷ g∗(y, z) when A(y, z) ≷ 0

}
(4.9)

and
C∗1 =

{
(�, y, z) ∈ [0, 1]3

∣∣ � ≶ ℎ∗(y, z) when A(y, z) ≷ 0
}

(4.10)

so that the corresponding regions from (3.10) are given by:

D∗0 =
{

(�, y, z) ∈ [0, 1]3
∣∣ � ≶ g∗(y, z) when A(y, z) ≷ 0

}
(4.11)

and
D∗1 =

{
(�, y, z) ∈ [0, 1]3

∣∣ � ≷ ℎ∗(y, z) when A(y, z) ≷ 0
}

(4.12)

respectively. Here, due to the monotonicity of the functions in (3.58)-(3.59), the boundaries
g∗(y, z) and ℎ∗(y, z) are uniquely determined from the equations zg(y, z) = a∗(g(y, z), y(1 −
g(y, z))) and zℎ(y, z) = b∗(ℎ(y, z), y(1 − ℎ(y, z))) in case �1 ≤ �0 , and y(1 − g(y, z)) =
a∗(g(y, z), zg(y, z)) and y(1− ℎ(y, z)) = b∗(ℎ(y, z), zℎ(y, z)) in case �0 ≤ �1 , respectively.
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4.2 The coupled free-boundary problem.

Standard arguments then show that the infinitesimal operator L(Π,Y,Z) of the process (Π, Y, Z)
from (2.5) and (4.2)-(4.3) has the structure:

L(Π,Y,Z) = (�0 − (�0 + �1) �) ∂� +
1

2

(�
�

)2

�2(1− �)2 ∂2
�� (4.13)

+ �1
�

1− �
(1− y − z) ∂y + �0

1− �
�

(1− y − z) ∂z (4.14)

for all (�, y, z) ∈ (0, 1)3 . It can be shown by means of the same arguments as in the proof of
Theorem 3.3 above that the value functions U∗i (�, y, z), i = 0, 1, from (4.4) and the boundaries
g∗(y, z) and ℎ∗(y, z) from (4.7)-(4.8) solve the free-boundary problem:

(L(Π,Y,Z)Wi − rWi)(�, y, z) = 0 for (�, y, z) ∈ Ci (4.15)

(W0 −W1 − Ĝ0)(�, y, z)
∣∣
�=g(y,z)± = 0 when A(y, z) ≷ 0 (4.16)

(W1 −W0 + Ĝ1)(�, y, z)
∣∣
�=ℎ(y,z)∓ = 0 when A(y, z) ≶ 0 (4.17)

(Wi −W1−i)(�, y, z) = (1− 2i) Ĝi(�, y, z) for (�, y, z) ∈ Di (4.18)

(Wi −W1−i)(�, y, z) < (1− 2i) Ĝi(�, y, z) for (�, y, z) ∈ Ci (4.19)

(L(Π,Y,Z)Wi − rWi)(�, y, z) > 0 for (�, y, z) ∈ Di (4.20)

with

(W0 −W1 − Ĝ0)�(�, y, z)
∣∣
�=g(y,z)± = 0 when A(y, z) ≷ 0 (4.21)

(W1 −W0 + Ĝ1)�(�, y, z)
∣∣
�=ℎ(y,z)∓ = 0 when A(y, z) ≶ 0 (4.22)

where the instantaneous-stopping conditions in (4.16)-(4.17) and the smooth-fit conditions
(4.21)-(4.22) hold for all (y, z) ∈ (0, 1)2 .

Since the solution of the free-boundary problem of (4.15)-(4.20) with (4.21)-(4.22) cannot

be found in an explicit form, let us introduce the functions Ŵi(�, y, z) and the boundaries

ĝ(y, z) and ℎ̂(y, z) satisfying the boundary conditions of (4.16)-(4.19) and (4.21)-(4.22) and
the expressions:

(L(Π,Y,Z)Wi − rWi)(�, y, z) (4.23)

= �1
�

1− �
(1− y − z) (Wi)y(�, y, z) + �0

1− �
�

(1− y − z) (Wi)z(�, y, z) for (�, y, z) ∈ Ci

(L(Π,Y,Z)Wi − rWi)(�, y, z) (4.24)

> �1
�

1− �
(1− y − z) (Wi)y(�, y, z) + �0

1− �
�

(1− y − z) (Wi)z(�, y, z) for (�, y, z) ∈ Di

for Ĉi and D̂i defined as in (4.9)-(4.12) with ĝ(y, z) and ℎ̂(y, z) instead of g∗(y, z) and ℎ∗(y, z),
respectively. Observe that the equalities in (4.23) and (4.18) directly imply that the inequality
in (4.24) takes the form:

(1− 2i) Ĥi(�, y, z) > 0 for (�, y, z) ∈ Di (4.25)
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with

Ĥi(�, y, z) = c+ ir + �0 (1− �) (1− 2y) + �1 � (1− 2z)− (2c+ r) (y + (z − y) �) (4.26)

for every i = 0, 1. We further look for functions which solve the resulting ordinary differen-
tial coupled free-boundary problem of (4.23)+(4.16)-(4.19)+(4.21)-(4.22)+(4.24) in which the
variables y and z are parameters.

4.3 The existence of solution of the ordinary free-boundary prob-
lem.

The general solution of the second-order ordinary differential equation in (4.23) has the form:

Wi(�, y, z) =
1∑
j=0

Kij(y, z)Qj(�) (4.27)

where Kij(y, z), i, j = 0, 1, are some continuously differentiable functions, and the functions
Qj(�), j = 0, 1, are given by:

Qj(�) =
√
�(1− �)

( �

1− �

)(�1−�0)/�

exp

(
2�0 + (�1 − �0)(j + �)

�(j + (1− 2j)�)

)
(4.28)

× Sj
(

(−1)j+1 ',  0, �,  1;

√
�0(1− �) +

√
�1�√

�0(1− �)−
√
�1�

)
for all � ∈ (0, 1) with

� =
(�
�

)2

, ' =
8
√
�0�1

�
, � =

32
√
�0�1(�0 − �1)

�2
(4.29)

and

 j =
(−1)j+1

�2

(
�2 + 4(2r + �0 + �1) + 4(�1 − �0)2 − 16(�0�1 + (−1)j�

√
�0�1)

)
. (4.30)

Here, the functions Sj(�, �, , �;x), j = 0, 1, are two positive fundamental solutions (i.e. non-
trivial linearly independent particular solutions) of Heun’s double confluent ordinary differential
equation:

S ′′(x) +
2x5 − �x4 − 4x3 + 2x+ �

(x− 1)3(x+ 1)3
S ′(x) +

�x2 + (2� + )x+ �

(x− 1)3(x+ 1)3
S(x) = 0 (4.31)

with the boundary conditions S(0) = 1 and S ′(0) = 0. Note that the series expansion of the
solution of the equation in (4.31) converges under all −1 < x < 1, and the appropriate analytic
continuation can be obtained through the identity S(�, �, , �;x) = S(−�,−�,−,−�; 1/x).
The (irregular) singularities at −1 and 1 of the equation in (4.31) are of unit rank and can
be transformed into that of a confluent hypergeometric equation (see, e.g. Decarreau et al.
[12] and Ronveaux [33] for an extensive overview and further details). According to the results
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from Rogers and Williams [32; Chapter V, Section 50], we can specify the positive (strictly)
convex functions Qj(�), j = 0, 1, as (strictly) decreasing and increasing on the interval (0, 1)
and having singularities at 0 and 1, respectively.

Taking into account the fact that the function � 7→ W0(�, y, z) should be bounded as � ↑ 1
when A(y, z) > 0 and as � ↓ 0 when A(y, z) < 0, while the function � 7→ W1(�, y, z) should
be bounded as � ↓ 0 when A(y, z) > 0 and as � ↑ 1 when A(y, z) < 0, we get that the solution
in (4.27) should be of the form:

Wi(�, y, z) =
1∑
j=0

Kij(y, z)Qj(�) I
(
(−1)i+jA(y, z) > 0

)
(4.32)

for i = 0, 1. Then, applying the instantaneous-stopping and smooth-fit conditions from (4.16)-
(4.17) and (4.21)-(4.22) to the function in (4.32), we obtain that the equalities:

(W0 −W1 − Ĝ0)(g(y, z), y, z) = (W1 −W0 + Ĝ1)(ℎ(y, z), y, z) = 0 (4.33)

(W0 −W1 − Ĝ0)�(g(y, z), y, z) = (W1 −W0 + Ĝ1)�(ℎ(y, z), y, z) = 0 (4.34)

hold for some 0 < g(y, z) ≶ ℎ(y, z) < 1 fixed when A(y, z) ≷ 0, respectively. It thus follows
that the functions:

W0(�, y, z; g(y, z)) =
1∑
j=0

K0j(y, z; g(y, z))Qj(�) I
(
(−1)jA(y, z) > 0

)
(4.35)

and

W1(�, y, z;ℎ(y, z)) =
1∑
j=0

K1j(y, z;ℎ(y, z))Qj(�) I
(
(−1)jA(y, z) < 0

)
(4.36)

provide a solution of the system in (4.23)+(4.16)-(4.19)+(4.21)-(4.22)+(4.24), for any 0 <
g(y, z) ≶ ℎ(y, z) < 1 fixed when A(y, z) ≷ 0. Here, the functions K0j(y, z; g(y, z)) and
K1j(y, z;ℎ(y, z)), for every j = 0, 1, are determined as solutions of the linear system of (4.33)-
(4.34), for all (y, z) ∈ [0, 1]2 .

4.4 The uniqueness of solution of the ordinary free-boundary prob-
lem.

Using the standard comparison arguments for solutions of the second order ordinary differential
equations in (4.23), we conclude that the resulting curves � 7→ W0(�, y, z; g(y, z)) and � 7→
W1(�, y, z;ℎ(y, z)) from (4.35)-(4.36) do not intersect each other on the intervals (g(y, z), 1]
and [0, ℎ(y, z)), respectively, for different 0 < g(y, z) < ℎ(y, z) < 1 fixed when A(y, z) > 0 and
on the intervals [0, g(y, z)) and (ℎ(y, z), 1], respectively, for different 0 < ℎ(y, z) < g(y, z) < 1
fixed when A(y, z) < 0. We also observe by virtue of the properties of the functions Qj(�),
j = 0, 1, in (4.28) that W0(�, y, z; g(y, z)) and W1(�, y, z;ℎ(y, z)) are bounded and concave on
(g(y, z), 1] and [0, ℎ(y, z)) when A(y, z) > 0 and on [0, g(y, z)) and (ℎ(y, z), 1] when A(y, z) <
0, respectively. Moreover, we see that (W0)�(�, y, z; g(y, z))→∞ and (W1)�(�, y, z;ℎ(y, z))→
−0 as � ↓ 0, as well as (W0)�(�, y, z; g(y, z))→ +0 and (W1)�(�, y, z;ℎ(y, z))→ −∞ as � ↑ 1
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when A(y, z) > 0, while (W0)�(�, y, z; g(y, z)) → −0 and (W1)�(�, y, z;ℎ(y, z)) → ∞ as
� ↓ 0, as well as (W0)�(�, y, z; g(y, z))→ −∞ and (W1)�(�, y, z;ℎ(y, z))→ +0 as � ↑ 1 when

A(y, z) < 0, respectively. It thus follows from the structure of the gain functions Ĝi(�, y, z),
i = 0, 1, in (4.5) that system in (4.33)-(4.34) with (4.32) admits a unique solution ĝ(y, z) and

ℎ̂(y, z).
On the other hand, it follows from the structure of the regions from (4.11)-(4.12) that the

inequalities in (4.25) with (4.26) are equivalent to:

c+ �0 (1− 2y)− (2c+ r) y ⋛ ĝ(y, z) (�0 (1− 2y)− �1 (1− 2z) + (2c+ r) (z − y)) (4.37)

and

r + c+ �0 (1− 2y)− (2c+ r) y ⋚ ℎ̂(y, z) (�0 (1− 2y)− �1 (1− 2z) + (2c+ r) (z − y)) (4.38)

when A(y, z) ≷ 0 for all (y, z) ∈ (0, 1)2 , respectively.
Summarising these facts above and taking into account the arguments of Subsection 3.3, let

us formulate the following assertion.

Corollary 4.1 Assume that the unique solution ĝ(y, z) and ℎ̂(y, z) of the system in (4.33)-
(4.34) with (4.35)-(4.36) satisfies the inequalities in (4.37)-(4.38) when A(y, z) ≷ 0, respec-
tively. Then, the functions:

Ŵ0(�, y, z) =

{
W0(�, y, z; ĝ(y, z)), for � ≷ ĝ(y, z) if A(y, z) ≷ 0

Ĝ0(�, y, z) + Ŵ1(�, y, z), for � ⋚ ĝ(y, z) if A(y, z) ≷ 0
(4.39)

and

Ŵ1(�, y, z) =

{
W1(�, y, z; ℎ̂(y, z)), for � ≶ ℎ̂(y, z) if A(y, z) ≷ 0

−Ĝ1(�, y, z) + Ŵ0(�, y, z), for � ≷ ℎ̂(y, z) if A(y, z) ≷ 0
(4.40)

where the functions W0(�, y, z; g(y, z)) and W1(�, y, z;ℎ(y, z)) are given by (4.35)-(4.36), co-
incide with the value functions of the coupled optimal stopping problem:

Ŵi(�, y, z) = inf
�i
E�,y,z

[
e−r�i

(
(1− 2i) Ĝi(Π�i , Y�i , Z�i) + Ŵ1−i(Π�i , Y�i , Z�i)

)
(4.41)

−
∫ �i

0

e−rt (1− Yt − Zt)
(
�1Πt

1− Πt

(Ŵi)y(Πt, Yt, Zt) +
�0(1− Πt)

Πt

(Ŵi)z(Πt, Yt, Zt)

)
dt

]
with Ĝi(�, y, z) given by (4.5), and the set Ĉi is defined as C∗i in (4.9)-(4.10) with ĝ(y, z)

and ℎ̂(y, z) instead of g∗(y, z) and ℎ∗(y, z), respectively, for i = 0, 1. Moreover, the functions

ĝ(y, z) and ℎ̂(y, z) provide hitting boundaries for the stopping times:

�̂0 = inf
{
t ≥ 0

∣∣Πt ⋚ ĝ(Yt, Zt) when A(Yt, Zt) ≷ 0
}

(4.42)

and
�̂1 = inf

{
t ≥ 0

∣∣Πt ⋛ ℎ̂(Yt, Zt) when A(Yt, Zt) ≷ 0
}

(4.43)

which turn out to be optimal in (4.41), whenever the integral there is of finite expectation, for
any (y, z) ∈ [0, 1]2 fixed.
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The proof of this assertion follows the arguments of the proof of Theorem 3.1 and is based
on the verification Lemma 3.2.

-

6

(Ŵ1 − Ŵ0)(�, y, z)

−Ĝ0(�, y, z)

−Ĝ1(�, y, z)

ĝ(y, z) ℎ̂(y, z)

g∗(y, z) ℎ∗(y, z)

W

�1

for each (y, z) fixed

Remark 4.1 Note that the functions Ŵi(�, y, z) in (4.41) provide lower (upper) estimates
for the initial value functions W ∗

i (�, y, z) from (4.4) whenever the both partial derivatives

(Ŵi)y(�, y, z) and (Ŵi)z(�, y, z) are negative (positive), for i = 0, 1, and all (�, y, z) ∈ [0, 1]3 .
By virtue of the structure of the value functions, this fact implies that the boundaries ĝ(y, z)

and ℎ̂(y, z) in (4.42)-(4.43) provide lower (upper) and upper (lower) estimates for the initial
optimal switching boundaries g∗(y, z) and ℎ∗(y, z) in (4.7)-(4.8) whenever A(y, z) > 0, and
upper (lower) and lower (upper) estimates whenever A(y, z) < 0, for any (y, z) ∈ [0, 1]2 fixed.

The figure above represents a computer drawing of the function (Ŵ1−Ŵ0)(�, y, z) with the

optimal switching boundaries ĝ(y, z) and ℎ̂(y, z) satisfying the conditions of (4.37)-(4.38), in

the case in which the both partial derivatives (Ŵi)y(�, y, z) and (Ŵi)z(�, y, z) are negative, for
i = 0, 1, and A(y, z) > 0 holds, for any (y, z) ∈ [0, 1]2 fixed. The same picture also corresponds
to the case in which the parameters of the model are admissible, so that the inequalities in
(3.46)-(3.47) hold for the original optimal switching boundaries a∗(�, �1−j) and b∗(�, �1−j), for
any (�, �1−j) ∈ [0, 1]2 fixed, when �j ≤ �1−j holds for some j = 0, 1.

22



Acknowledgments.

The author is grateful to Savas Dayanik, Xin Guo, and Olympia Hadjiliadis for many useful
discussions. The author is indebted to two anonymous Referees for their helpful suggestions
which allow to improve the content and presentation of the paper. The author thanks the
Editors to their encouragement to prepare the revised version of the paper.

References

[1] E. Bayraktar and S. Dayanik. Poisson disorder problem with exponential penalty for delay.
Mathematics of Operations Research, 31:217–233, 2006.

[2] E. Bayraktar, S. Dayanik, and I. Karatzas. The standard Poisson disorder problem revis-
ited. Stochastic Processes and their Applications, 115:1437–1450, 2005.

[3] E. Bayraktar, S. Dayanik, and I. Karatzas. Adaptive Poisson disorder problem. Annals of
Applied Probability, 16:1190–1261, 2006.

[4] E. Bayraktar and M. Ludkovski. A sequential tracking of a hidden Markov chain using
point process observations. Stochastic Processes and their Applications, 119:1792–1822,
2009.

[5] E. Bayraktar and M. Ludkovski. Inventory management with partially observed non-
stationary demand. Annals of Operations Research, 176:7–39, 2010.

[6] M. Beibel. A note on sequential detection with exponential penalty for the delay. Annals
of Statistics, 28:1696–1701, 2000.

[7] A. Bensoussan and A. Friedman. Non-linear variational inequalities and differential games
with stopping times. Journal of Functional Analysis, 16:305–352, 1974.

[8] A. Bensoussan and A. Friedman. Nonzero-sum stochastic differential games with stopping
times. Transactions of American Mathematical Society, 231:275–327, 1977.

[9] A. Bensoussan and J. L. Lions. Applications of Variational Inequalities in Stochastic
Control. (French Edition 1978) North Holland, Amsterdam, 1982.

[10] J. A. Brekke and B. Øksendal. Optimal switching in an economic activity under uncer-
tainty. SIAM Journal on Control and Optimization, 32:1021–1036, 1994.

[11] E. Carlstein, H.-G. Müller, and D. Siegmund. Change-Point Problems. IMS Lecture Notes
Monograph Series 23, 1994.

[12] A. Decarreau, M. C. Dumont-Lepage, P. Maroni, A. Robert, and A. Ronveaux. Formes
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