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Cross-classified Sampling: Some Estimation Theory

C. J. Skinnera,

aDepartment of Statistics, London School of Economics and Political Science, Houghton
Street, London, WC2A 2AE, U.K.

Abstract

For a population represented as a two-way array, we consider sampling via
the product of independent row and column samples. Theory is presented for
the estimation of a population total under alternative methods of sampling
the rows and columns.

Keywords: plane sampling, survey sampling, two dimensional sampling

1. Introduction

In some surveys the population can be represented by the elements of a
two-way array, (i, j), i = 1, . . . , N, j = 1, . . . ,M , and it is natural to take a
sample as a Cartesian product S = {(i, j) : i ∈ SR, j ∈ SC}, where SR and
SC are samples selected from the rows {1, . . . , N} and columns {1, ...,M},
respectively. A procedure in which SR and SC are selected independently
by probability sampling schemes is called cross-classified sampling, following
Ohlsson (1996).

A typical application of cross-classified sampling is to a survey of busi-
nesses which each handle a large number of products. Data is then collected
from a sample of businesses on a sample of products.

We take the inferential objective to be to estimate the total of a variable
y across units in the finite population, given only data on the values of y
for units in the sample. In the business application, y might denote the
value of the sale or purchase of a product in some time period and there
may be interest in the total sales in the population. In some applications,
there might be subunits, such as transactions, in which case y may be the
sum across such subunits. This framework can also allow for cases where a
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product is not handled by a business in the time period by setting y = 0.
Dalén and Ohlsson (1995) present an application of the use of cross-classified
sampling in the construction of the Swedish Consumer Price Index.

Although cross-classified sampling can be treated within the general frame-
work of finite population sampling, so that, for example, a Horvitz-Thompson
estimator can be defined (Ohlsson, 1996), many specific aspects of this method
are not covered by standard theory. For example, the latter typically treats
sample quantities in different strata as independent, whereas we shall have to
allow for dependence induced between strata in one dimension by sampling
in the other dimension. Apart from the two key papers cited so far, the lit-
erature on the theory of cross-classified sampling is very limited. Vos (1964)
provides some results for simple random sampling. There is a rather more ex-
tensive literature on the special case when the row and columns are ordered,
typically in space, but possibly in time. This is usually called two-dimensional
sampling or plane sampling. See e.g. Quenouille (1949), Bellhouse (1977),
Iachan (1985) and Stevens and Olsen (2004). We shall, however, not assume
an ordering of rows or columns and shall not refer further to this literature.

In this paper, we extend the theory in Ohlsson (1996) in a number of
ways. First, we provide more explicit results on stratified sampling both
from design-based and model-based perspectives. Second, we present results
for with replacement unequal probability sampling. These results may be of
interest in their own right, since it is common in business surveys for either
businesses or the volume of product sales to vary considerably by size and
for probability proportional to size sampling to be employed. However, in
addition, we shall make use of the theory for with replacement sampling
to construct bootstrap procedures for variance estimation. Such procedures
may prove simpler to implement in practice than the more direct procedures
we describe first.

2. Estimation for Simple Random and Stratified Sampling

We consider the estimation of the finite population total

Y =
N∑
i=1

M∑
j=1

yij,

where yij denotes the value of y for population unit (i, j) and is observed
only for units (i, j) ∈ S. We consider two particular sampling schemes.
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2.1. Simple Random Sampling

We first consider the prototypical case where SR and SC are selected
by simple random sampling without replacement (SRSWOR). The natural
unbiased estimator of Y here is the Horvitz-Thompson estimator given by

Ŷsrs =
NM

nm

∑
i∈SR

∑
j∈SC

yij,

where n and m are the sizes of SR and SC respectively. The (design-based)
variance of this estimator is now presented together with an unbiased esti-
mator of this variance. The first of these results is given in Ohlsson (1996).

Theorem 2.1. Under the SRSWOR design above, the estimator Ŷsrs is un-
biased for Y , with variance

var(Ŷsrs) = N2M2

{
(1− fR)

σ2
R

n
+ (1− fC)

σ2
C

m
+ (1− fC) (1− fR)

σ2
RC

nm

}
,

(1)
where

σ2
R =

1

N − 1

N∑
i=1

(Ȳi. − Ȳ..)2, σ2
C =

1

M − 1

M∑
j=1

(Ȳ.j − Ȳ..)2,

σ2
RC =

1

N − 1

1

M − 1

N∑
i=1

M∑
j=1

(yij − Ȳi. − Ȳ.j + Ȳ..)
2,

fR = n/N , fC = m/M , Ȳi. =
∑M

j=1 yij/M , Ȳ.j =
∑N

i=1 yij/N and Ȳ.. =∑N
i=1

∑M
j=1 yij/NM .

An unbiased estimator of var(Ŷsrs) is obtained by replacing σ2
R, σ2

C and
σ2
RC in (1) by

σ̂2
R =

1

n− 1

∑
i∈SR

(ȳi. − ȳ..)2 − (1− fC)
σ̂2
RC

m
,

σ̂2
C =

1

m− 1

∑
j∈SC

(ȳ.j − ȳ..)2 − (1− fR)
σ̂2
RC

n
,

σ̂2
RC =

1

(n− 1)(m− 1)

∑
i∈SR

∑
j∈SC

(yij − ȳi. − ȳ.j + ȳ..)
2,
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where ȳi. =
∑

j∈SC yij/m, ȳ.j =
∑

i∈SR yij/n and ȳ.. =
∑

i∈SR

∑
j∈SC yij/nm.

Proof. The variance expression in (1) is given by Ohlsson (1996), with the ba-
sis of its proof indicated. The unbiasedness of σ̂2

R, σ̂2
C and σ̂2

RC may be shown
by taking successive expectations with respect to the two sampling schemes
and using standard results in sampling theory (Cochran, 1977, Theorem 2.4).

2.2. Stratified Random Sampling

As noted in the introduction, variance expressions are less staightfor-
ward to obtain under stratification in cross-classified sampling than in stan-
dard theory. We now suppose that the rows and columns are stratified
into G and H strata respectively and relabel the elements of the popula-
tion as quadruples (g, h, i, j), where g = 1, . . . , G, h = 1, . . . , H, i = 1, . . . , Ng

and j = 1, . . . ,Mh. The values Ng and Mh denote the stratum sizes, with∑
Ng = N and

∑
Mh = M . We suppose that samples SRg and SCh are

selected independently by SRSWOR from the row and column strata respec-
tively, with sizes ng and mh. The value of y for unit (g, h, i, j) is denoted
yghij and the total of interest becomes

Y =
G∑
g=1

H∑
h=1

Ng∑
i=1

Mh∑
j=1

yghij.

The natural unbiased estimator of Y is again the Horvitz Thompson es-
timator, which may be expressed as

Ŷstr =
G∑
g=1

H∑
h=1

NgMh

ngmh

∑
i∈SR

g

∑
j∈SC

h

yghij. (2)

We use notation Ȳg.i., Ȳg..., etc. to denote population means over the

’dot’ subscript so that, for example, Ȳg.i. =
∑H

h=1

∑Mh

j=1 yghij/M . We simi-
larly use notation ȳg.i., ȳg... etc. to denote sample means, subject to weight-
ing means across strata g and h by Ng/ng and Mh/mh, as in (2). Thus,

ȳghi. = m−1h
∑

j∈SC
h
yghij, whereas ȳg.i. = M−1∑H

h=1

∑
j∈SC

h
(Mh/mh)yghij.

The stratum sampling fractions are denoted fRg = ng/Ng and fCh = mh/Mh.
We now present the (design-based) variance of this estimator and an unbiased
estimator of this variance.
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Theorem 2.2. Under the stratified random sampling design above, Ŷstr is
unbiased for Y , with variance

var(Ŷstr) =
G∑
g=1

N2
gM

2 (1− fRg)
σ2
Rg

ng
+

H∑
h=1

N2M2
h (1− fCh)

σ2
Ch

mh

+
G∑
g=1

H∑
h=1

N2
gM

2
h (1− fRg) (1− fCh)

σ2
RCgh

ngmh

, (3)

where

σ2
Rg =

1

Ng − 1

Ng∑
i=1

(Ȳg.i. − Ȳg...)2, σ2
Ch =

1

Mh − 1

Mh∑
j=1

(Ȳ.h.j − Ȳ.h..)2,

σ2
RCgh =

1

Ng − 1

1

Mh − 1

Ng∑
i=1

Mh∑
j=1

(yghij − Ȳghi. − Ȳgh.j + Ȳgh..)
2.

An unbiased estimator of var(Ŷstr) is given by

V̂ (Ŷstr) =
G∑
g=1

N2
gM

2 (1− fRg)
σ̂2
Rg

ng
+

H∑
h=1

N2M2
h (1− fCh)

σ̂2
Ch

mh

+
G∑
g=1

H∑
h=1

N2
gM

2
h (1− fRg) (1− fCh)

σ̂2
RCgh

ngmh

, (4)

where

σ̂2
Rg =

1

ng − 1

∑
i∈SR

g

(ȳg.i. − ȳg...)2 −
H∑
h=1

M2
h

M2mh

(1− fCh)σ̂2
RCgh, (5)

σ̂2
Ch =

1

mh − 1

∑
j∈SC

h

(ȳ.h.j − ȳ.h..)2 −
G∑
g=1

N2
g

N2ng
(1− fRg)σ̂2

RCgh, (6)

σ̂2
RCgh =

1

(ng − 1)(mh − 1)

∑
i∈SR

g

∑
j∈SC

h

(yghij − ȳghi. − ȳgh.j + ȳgh..)
2. (7)
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Proof. The unbiasedness of Ŷstr follows straightforwardly, as in Theorem 2.1.
The variance follows by evaluating moments of

∑
i∈SR

g

∑
j∈SC

h
yghij with re-

spect to each of the row and column sampling schemes separately, combining
these moments within general expressions provided by Ohlsson (1996, The-
orem 2.1) and then evaluating further moments as necessary with respect to
the other dimension of sampling. The unbiasedness of V̂ (Ŷstr) is shown by
evaluating expectations successively with respect to the two dimensions of
sampling.

3. Model-based Variances

We now consider a model-based analogue of the results in the previous
section. This may serve various purposes, in particular it may enable es-
tablished software to be employed for estimation. A standard model for
values ygi in a singly stratified population with strata g = 1, . . . , G and units
i = 1, . . . , Ng within stratum g is ygi = µg + egi, where the egi are uncorre-
lated with egi ∼ (0, σ̃2

g) (i.e. with mean 0 and variance σ̃2
g) and the µg and

σ̃2
g are fixed parameters (Valliant et al., 2000, Example 2.3.3).We propose to

extend this model to a stratified cross-classified population by writing:

yghij = µgh + ugi + vhj + eghij, (8)

where the ugi, vhj and eghij are uncorrelated random effects, ugi ∼ (0, σ̃2
Rg),

vhj ∼ (0, σ̃2
Ch) and eghij ∼ (0, σ̃2

RCgh) and the µgh, σ̃
2
Rg, σ̃

2
Ch and σ̃2

RCgh are
fixed parameters. We denote expectation under this model by Eξ.

Theorem 3.1. Under model (8), the estimator Ŷstr is unbiased for Y , in
the sense that Eξ(Ŷstr − Y ) = 0, and Eξ(Ŷstr − Y )2 takes the same form as

var(Ŷstr) in (3) with σ2
Rg, σ

2
Ch and σ2

RCgh replaced by σ̃2
Rg, σ̃

2
Ch and σ̃2

RCgh,
respectively.

Proof. This follows by replacing yghij in Ŷstr − Y by the right hand side of
(8), noting that µgh drops out of this expression, and evaluating the model
expectations of this function of the random effects and its square.

We can also show that the estimators σ̂2
Rg, σ̂

2
Ch and σ̂2

RCgh in (5),(6) and(7)
are unbiased for σ̃2

Rg, σ̃
2
Ch and σ̃2

RCgh under the model. These estimators are
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referred to as ANOVA estimators in the mixed model literature Searle et al.
(1992, sect. 4.4). This literature also offers alternative estimation methods,
including maximum likelihood under the assumption that the random effects
are normally distributed (Searle et al., 1992, Goldstein, 2011) and a number
of established software packages may be used to implement such methods.

4. With Replacement Sampling

We now suppose that each of SR and SC is selected by with replacement
(WR) sampling with possibly unequal probabilities. Thus SR is obtained
by n independent draws from {1, . . . , N}, at each of which unit i is drawn
with probability pi. Similarly, SC is obtained by m independent draws from
{1, . . . ,M}, at each of which unit j is drawn with probability qj. Thus,∑N

1 pi =
∑M

1 qj = 1.
The natural unbiased estimator of Y, extending the Hansen-Hurwitz es-

timator (Berger and Tillé, 2009), is

Ŷwr =
1

nm

n∑
k=1

m∑
l=1

yi(k)j(l)
pi(k)qj(l)

, (9)

where i(k) and j(l) denote the units in {1, . . . , N} and {1, . . . ,M} selected
on the kth and lth draws, respectively. The (design-based) variance of this
estimator and an unbiased estimator of this variance are given in the following
theorem. We see that results are analogous to those in Theorem 2.1, where
the finite population corrections disappear and variances and their estimators
are weighted by the factors 1/(Npi) and 1/(Mqj), which each reduce to 1 in
the equal probability case.

Theorem 4.1. Under the WR design above, the estimator Ŷwr is unbiased
for Y , with variance

var(Ŷwr) = N2M2

{
σ2
Rwr

n
+
σ2
Cwr

m
+
σ2
RCwr

nm

}
, (10)

where

σ2
Rwr =

N∑
i=1

(
Ȳi.
Npi
− Ȳ..

)2

pi , σ2
Cwr =

M∑
j=1

(
Ȳ.j
Mqj

− Ȳ..
)2

qj,

σ2
RCwr =

N∑
i=1

M∑
j=1

(
yij

NMpiqj
− Ȳi.
Npi
− Ȳ.j
Mqj

+ Ȳ..

)2

piqj,
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and Ȳi., Ȳ.j and Ȳ.. are defined in Theorem 2.1. Unbiased estimators of σ2
Rwr,

σ2
Cwr and σ2

RCwr are given by

σ̂2
Rwr =

1

n− 1

n∑
k=1

(
ȳi(k).wr
Npi(k)

− ȳ..wr
)2

− σ̂2
RCwr

m
,

σ̂2
Cwr =

1

m− 1

m∑
l=1

(
ȳ.j(l)wr
Mqj(l)

− ȳ..wr
)2

− σ̂2
RCwr

n
,

σ̂2
RCwr =

1

(n− 1)(m− 1)

n∑
k=1

m∑
l=1

(
yi(k)j(l)

NMpi(k)qj(l)
−
ȳi(k).wr
Npi(k)

−
ȳ.j(l)wr
Mqj(l)

+ ȳ..wr

)2

,

respectively, where ȳi(k).wr = m−1
∑m

l=1 yi(k)j(l)/(Mqj(l)) for k = 1, . . . , n,

ȳ.j(l)wr = n−1
∑n

k=1 yi(k)j(l)/(Npi(k)) for l = 1, . . . ,m and ȳ..wr = (MN)−1Ŷwr.

Proof. The unbiasedness of Ŷwr follows by first evaluating its expectation
conditional on SR, giving

ER(Ŷwr) =
M

n

n∑
k=1

Ȳi(k).
pi(k)

.

That the expectation of this quantity is Y follows as in the proof of the
unbiasedness of the usual Hansen-Hurwitz estimator. The variance of Ŷwr
is similarly obtained in two steps, where, for example, the result of the first
step, conditional on SR, is:

ER(Ŷwr − Y )2 =

[(
M

n

n∑
k=1

Ȳi(k).
pi(k)

)
− Y

]2
+

1

m

M∑
j=1

[
1

n

n∑
k=1

(
yi(k)j
pi(k)qj

−
MȲi(k).
pi(k)

)]2
qj.

The unbiasedness of σ̂2
Rwr, σ̂

2
Cwr and σ̂2

RCwr follow similarly.

5. Bootstrap Variance Estimation

Possible benefits of bootstrap variance estimation are (i) that it reduces
the complexity of the programming requirements of the previous variance
estimators in section 2 (and hence the potential for coding error in practice)
and (ii) that it is applicable to a broader class of point estimators. We just
consider the case of stratified random sampling as in section 2.2.

We propose the following algorithm for generating a single bootstrap repli-
cate from a stratified random sample.
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1. draw independent WR samples with equal probabilities (pi = 1/ng) of
size n∗g from SRg , g = 1, . . . , G.

2. draw independent WR samples with equal probabilities (qj = 1/mh) of
size m∗h from SCh , h = 1, . . . , H.

Let Ŷ ∗str take the same form as Ŷstr in (2) but where the sums are across
units selected in the bootstrap replicate, allowing for duplication, as in (9).
We define the bootstrap estimator of the variance of Ŷstr as

V̂boot(Ŷstr) = var∗(Ŷ
∗
str),

where var∗ denotes variance across repeated independent bootstrap repli-
cates, as in Wolter (2007, Chapter 5). In practice, only a finite number of
bootstrap replicates will be drawn. Some initial empirical work suggests that
200 replicates is sufficient to make the resulting bootstrap variance estima-
tor an adequate approximation in practice to the ’infinite replicate’ bootstrap
variance estimator (c.f. Wolter, 2007, p. 195) but I have not undertaken any
systematic assessment of the number of replicates needed and I shall ignore
this approximation henceforth for simplicity.

The following result shows that the bootstrap variance estimator becomes
equal to the estimator in Theorem 2.2, if finite population correction (fpc)
terms 1 − fRg and 1 − fCh and the bias correction terms in σ̂2

Rg and σ̂2
Ch

are removed. The fpc terms become negligible when the sampling fractions
ng/Ng and mh/Mh are small. The bias correction terms may be expected to
make smaller relative contributions as the stratum sample sizes ng and mh

increase.

Theorem 5.1. The bootstrap variance estimator with n∗g = ng−1 and m∗h =
mh − 1 may be expressed as

V̂boot =
G∑
g=1

N2
gM

2
s2Rg
ng

+
H∑
h=1

N2M2
h

s2Ch
mh

+
G∑
g=1

H∑
h=1

N2
gM

2
h

σ̂2
RCgh

ngmh

, (11)

where

s2Rg =
1

ng − 1

ng∑
i=1

(ȳg.i. − ȳg...)2, s2Ch =
1

mh − 1

mh∑
j=1

(ȳ.h.j − ȳ.h..)2. (12)
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Proof. The proof follows as in the with replacement results by taking expecta-
tions in turn by the row and column bootstrap sampling. Letting ER

∗ denote
expectation over the column bootstrap sampling, we find that ER

∗ (Ŷ ∗str) =∑
h(Mh/mh)

∑mh

j=1Ahj, where Ahj =
∑

g(Ng/n
∗
g)
∑n∗

g

k=1 yghi(k)j. It follows

that E∗

(
Ŷ ∗str

)
= Ŷstr. We also obtain varR∗ (Ŷ ∗str) =

∑
h(M

2
h

∑mh

j=1(Ahj −
Āh)

2/(mhm
∗
h), where Āh =

∑mh

j=1Ahj/mh. The result follows by taking fur-
ther expectations of the relevant terms over the row bootstrap sampling.

6. Conclusion

The results in this paper may be useful for both design and estimation in
surveys employing cross-classified sampling. Design issues may arise, for ex-
ample, when sample sizes need to be determined for both rows and columns,
under a joint resource constraint, and the relative contributions of row and
column sampling to the variance need to be assessed.
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