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In studies of multiple groups of respondents, such as cross-national surveys

and cross-cultural assessments in psychological or educational testing, an important

methodological consideration is the comparability or “equivalence” of measurement

across the groups. Ideally full equivalence would hold, but very often it does not. If

non-equivalence of measurement is ignored when it is present, substantively interest-

ing comparisons between the groups may become distorted. We consider this question

in multigroup latent variable modeling of multiple-item scales, specifically latent trait

models for categorical items. We use numerical sensitivity analyses to examine the

nature and magnitude of the distortions in different circumstances, and the factors

which affect them. The results suggest that estimates of multigroup latent variable

models can be sensitive to assumptions about measurement, in that non-equivalence

of measurement does not need to be extreme before ignoring it may substantially af-

fect cross-group comparisons. We also discuss the implications of such findings on the

analysis of large comparative studies.

Keywords : Cross-national surveys; Differential item functioning; Latent trait

models; Measurement invariance; Cross-cultural assessment; Item Response Theory.
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1. Introduction

The methodological research question considered in this article is the following:

When we use a multigroup latent variable model to analyze data from multiple-item

scales in a cross-national survey or other multigroup data, when and to what extent

are comparative conclusions about the distributions of latent constructs across groups

sensitive to an incorrect assumption that measurement equivalence holds for all of the

items? We begin by briefly introducing the key terms in this statement.

In a cross-national social survey the same questions, translated into the local

languages, are asked of respondents in several countries (for an overview of the field,

see Smith 2010 and other chapters in Harkness et al. 2010). Data of this kind arise also

from comparative studies in educational and psychological assessment, such as cross-

national programmes of educational testing (e.g. the PISA and PIAAC programmes

by OECD) where literacy and numeracy tests are administered to subjects in different

countries to study levels of competence. A key purpose of such studies is to answer

research questions about comparisons between different groups of subjects.

Often several questions (items) are used together as a multiple-item scale to

measure an underlying (latent) construct, and analyzed using statistical latent vari-

able models. We focus on latent trait models for categorical items since many survey

questions are of a categorical nature, as are typical items in psychological and educa-

tional testing. In psychometric applications, these models are more commonly known

as item response theory (IRT) models. Furthermore, because we consider data with

multiple groups such as countries, we focus on multigroup extensions of the models.
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As an illustrative example of such analysis, we consider data on a measure of

depression from Round 6 of the European Social Survey (ESS) from 2012 (European

Social Survey, 2014). The survey included a shortened version of the CES-D depression

scale (Radloff 1997; Bracke et al. 2008). This has eight items, but for simplicity of

illustration we have shortened it to six by omitting two reverse-coded items. The items

ask how much of the time in the past week the respondent felt depressed (labeled item

A below), felt that everything they did was an effort (B), had restless sleep (C), felt

lonely (D), felt sad (E), and could not get going (F). The items had four response

options (‘none or almost none’, ‘some’, ’most’, or ‘all or almost all’ of the time) but we

have dichotomized these by combining the last three levels, to align the example with

the focus on binary items in our sensitivity analysis. For most items and countries,

around 30-70% of the respondents gave an answer of at least ‘some of the time’. The

data are probability samples from general adult populations of 29 countries (as listed

in Figure 1), with 752–2968 respondents per country and a total sample size of 54,673.

===== Figure 1 around here. =====

Figure 1 shows results from one multigroup latent trait model for these data.

The points connected by the solid line are estimated means of a latent depression trait,

measured by the six items, for each of the countries. Here higher values indicate higher

levels of depression. The results show clear geographic regularities, for example with

the lowest averages being for Nordic countries and the highest for Eastern Europe and

the Balkans. The standard deviation of the trait in the UK is fixed at 1, so some

of the differences in the country-level means (of up to 1.5 individual-level standard
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deviations) are clearly substantially large. Many of the between-country differences

are statistically significant (standard errors of the estimated means are around 0.05).

One of the crucial issues in the design and analysis of such multigroup studies

is measurement equivalence. This essentially means comparability: An item is equiv-

alent across groups if it works the same way in all of the groups. If this is not the

case, observed differences between groups will reflect not just true differences in the

distributions of the constructs of interest but also non-equivalence of measurement.

In a multigroup latent variable model, non-equivalence is operationalized as an

association between the group and an item. It is then possible to specify models with

and without equivalence, by comparing them to assess the extent of non-equivalence,

and, if necessary, to employ a model in which some items are non-equivalent. This

is not yet done routinely in cross-national studies, where measurement is typically

assumed equivalent by default, but the use of non-equivalence models is increasing.

Such models are, however, practically and conceptually problematic to the extent that

we would still prefer to avoid them if possible. Lack of measurement equivalence in

multigroup comparisons thus presents a dilemma for the data analyst, where neither

ignoring non-equivalence nor allowing for it are fully appealing as general approaches.

This dilemma would be fortuitously resolved if comparative conclusions were in-

sensitive to assumptions about the measurement, in particular to wrongly ignoring any

non-equivalence in it. But how often is this the case in circumstances that are com-

monly encountered in comparative research? The implications would be very different

if group comparisons were severely distorted even by small variation in measurement,

than if they were only affected by the grossest violations of equivalence. This is the
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question considered in this article. In other words, if we act as if our measures function

in the same way in all groups, but in truth they do not, when will this cause substan-

tively interesting comparative conclusions about the groups to be seriously misleading?

Figure 1 examines this question for the ESS data on depression. The points

connected by the solid line are estimated country means under the assumption of

equivalence, while those labeled with ‘1’ are from the best-fitting model where one of

the six items (specifically item F) is allowed to be non-equivalent across the countries.

The other sets of estimates come similarly from models with 2, 3 and 4 non-equivalent

items. What is of interest here is how the estimated means and rankings of the countries

change between these models. It can be seen that there are many noticeable changes,

especially with larger numbers of non-equivalent items. For example, the average

levels of depression for Germany, UK and France are similar when estimated from the

equivalence model, but dramatically different under non-equivalence models.

This illustration is an example of the kind of sensitivity analysis where we focus on

a single observed data set. Recently, Oberski (2013) has proposed convenient methods

for carrying out such analysis for multigroup structural equation models. Our focus in

this article is on the other type of sensitivity analysis, which examines the sensitivity of

estimates using numerical analyses of a wide range of scenarios on synthetic data. This

has been done previously by Kaplan & George (1995) and De Beuckelaer & Swinnen

(2011), using simulation studies for factor analysis models and focusing on significance

tests of comparative hypotheses. There appear to be no other published studies of

this kind, or any that consider the sensitivity of parameter estimates of the latent

variable models for categorical items that we examine here. Furthermore, our analysis
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is implemented in a way which avoids the need for simulation and requires only one

model fit for each scenario that we consider. This makes it possible to examine more

cases and in a finer-grained manner than would be possible with a simulation study.

Methods and results of the sensitivity analysis are described in Section 4. Before

that, multi-group latent trait models are defined in Section 2. Substantive interpreta-

tion of non-equivalence of measurement, statistical approaches to detecting and mod-

eling it, and the motivation of the sensitivity analysis, are discussed in Section 3. The

article concludes with a further discussion of the conclusions in Section 5.

2. Multigroup latent variable models

We first define the multigroup latent trait models which will be the focus of the

sensitivity analysis. Discussions of different families of latent variable models can be

found in, for example, Bollen (1989), Hagenaars & McCutcheon (2002) and de Ayala

(2009), and of general frameworks for them in Bartholomew et al. (2011) and Skrondal

& Rabe-Hesketh (2004). Literature on multigroup latent variable models goes back to

at least Jöreskog (1971), Sörbom (1974) and Byrne et al. (1989) for linear factor analysis

and to Muthén & Christoffersson (1981) for latent trait models; current overviews of

multigroup models can be found in Kankaraš et al. (2011) and references cited therein.

Some of this literature is discussed further in Section 3.2 below.

Let η denote a single latent variable for one respondent (for simplicity of pre-

sentation, we focus on a univariate η and omit the respondent subscript). Let

Y = (Y1, . . . , Yp) be p dichotomous items (with values 0 and 1) that are regarded

as measures of η. Both Y and η are random variables, and an observed value of Y is
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y = (y1, . . . , yp). Suppose further that each respondent belongs to one of G observed

groups. The joint distribution of Y and η given the group is defined by pg(y|η) pg(η),

where pg(·) denotes a conditional or marginal probability density function and the sub-

script g that a distribution depends on group g = 1, . . . , G. Here the measurement

model pg(y|η) describes how Y measure η in each group, and the structural model

pg(η) specifies the distribution of the latent variable given the group.

For categorical Y, the measurement model is given by the probabilities Pg(Y =

y|η) ≡ pg(y|η). We make the common assumption that the items are conditionally

independent given the latent variable, so that Pg(Y = y|η) =
∏p

j=1 Pg(Yj = yj|η) is

determined by the univariate measurement models for each of the items Yj individually.

For binary items, Pg(Yj = yj|η) = [π
(g)
j (η)]yj [1 − π

(g)
j (η)]1−yj for yj = 0, 1, where

π
(g)
j (η) ≡ Pg(Yj = 1|η). Finally, as η is unobserved, any inference will be based on the

conditional distribution of Y given the group only, that is

Pg(Y = y) =

∫ [
p∏

j=1

[π
(g)
j (η)]yj [1− π(g)

j (η)]1−yj

]
pg(η) dη. (1)

In the latent trait models that we consider, we assume that η ∼ N(κ(g), φ(g)) is

continuous and normally distributed with mean κ(g) and variance φ(g) in each group g.

For the measurement models, we use the logistic model (Birnbaum 1968)

logit[π
(g)
j (η)] = τ

(g)
j + λ

(g)
j η (2)

where τ
(g)
j and λ

(g)
j are the intercept and loading parameter (also known as the difficulty
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and discrimination) of the model for item j = 1, . . . , p in group g. The curve of π
(g)
j (η)

as a function of η is known as the item characteristic curve of item Yj. For identifiability,

with one trait η we must have p ≥ 3 and need to impose some constraints to identify

the scale of the latent trait, for example the condition that κ(1) = 0 and φ(1) = 1 which

we will use (in addition, some assumptions on measurement equivalence are needed, as

discussed in Section 3.2).

The data on Y for all the respondents can be summarized as a G × 2p group-

by-items contingency table of the frequencies ngl of observations with the response

patterns l = 1, . . . , 2p of the p binary items Yj in the groups g = 1, . . . , G. The sample

size in group g is then ng =
∑

l ngl and the total sample size n =
∑

g ng. We treat

the group totals ng as fixed, and assume that observations for the n respondents are

statistically independent. The log-likelihood function for model (1) is then

`(θ) =
G∑

g=1

2p∑
l=1

ngl logPg(Y = yl;θ) (3)

where yl denotes the lth response pattern, Pg(Y = yl;θ) is defined by (1), and θ de-

notes all the parameters of the model. Maximum likelihood estimates of the parameters

are obtained by maximizing `(θ) with respect to θ.

Substantively interesting comparative questions typically center on whether the

parameters of the structural model (the means and variances of the latent trait) vary

between the groups. In contrast, any group differences in the measurement parameters

are typically unwelcome and of little substantive interest. They define the question of

equivalence or non-equivalence of measurement, which we discuss next.
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3. Measurement equivalence and non-equivalence

3.1 Definitions and interpretations

Responses to individual survey or test questions do not only return information

about the concepts they aim to measure but are also influenced by the particular ques-

tion wording and other contextual factors (Schuman & Presser 1981; Tourangeau et al.

2000). When the influence of such factors varies systematically between respondents in

different groups, there is non-equivalence of measurement across the groups. In cross-

national research reasons for it may include imperfect comparability of translations of

the questions, variation in response styles and fieldwork practices, and cross-national

differences in the meaning and salience of the questions themselves. Instead of “equiv-

alence”, the term “invariance” is also often used (Johnson (1998) gives an excellent

review of how these terms have been used in cross-cultural research). In modeling of

psychological and educational tests, the terms differential item functioning (DIF) or

item bias are also commonly used for non-equivalence of measurement.

In a multigroup latent trait model, measurement equivalence holds across groups

g = 1, . . . , G for item j if π
(g)
j (η) = πj(η) for all groups and at every value of η,

which in turn is true if both the intercepts τ
(g)
j = τj and loadings λ

(g)
j = λj of the

measurement model (2) are the same across the groups. If this is the case for all the

items j = 1, . . . , p, measurement of η by this set items is fully equivalent across the

groups. This definition of equivalence is generally adopted in the literature (see, for

example, Mellenbergh 1989, Meredith 1993 and Millsap 2011 for clear discussions).

Implicitly it goes back to at least Meredith (1964), who first made a clear distinction



MEASUREMENT NON-EQUIVALENCE: A SENSITIVITY ANALYSIS 11

between equivalence in the measurement and structural models, and showed that the

former may hold even when the latter does not. In particular, it is recognized that

non-equivalence in latent trait (IRT) models should be defined as differences in the

item characteristic curves between groups (see e.g. Lord 1980 and Mellenbergh 1989,

1992). Millsap (2011) provides an up-to-date discussion of the difficulties related to

measurement in psychology and of non-equivalence of measurement in particular.

A measurement model may also possess partial rather than full measurement

equivalence. This may mean that equivalence holds for some but not all of the in-

dividual items (Byrne et al. 1989) and/or of the measurement parameters of a given

item (see e.g. Meredith 1993; Steenkamp & Baumgartner 1998 give a summary of the

variants of this idea which are commonly distinguished in multigroup factor analysis).

3.2 Using modeling to detect and allow for non-equivalence of measurement

There is a large literature on incorporating non-equivalence within latent variable

models. Its main themes are outlined in this section. A much more extensive treatment

can be found in the excellent review by Millsap (2011) and references cited therein.

Our discussion is fairly brief, because the focus of the rest of the article will then be

elsewhere, namely in examining what happens if the analysis does not employ the

methods reviewed in this section.

The first task is detecting non-equivalence of measurement. Within the latent

variable framework, this can be done by comparing the goodness of fit of models with

equivalence and (partial) non-equivalence. This approach goes back to the introduction

of multigroup factor analysis by Jöreskog (1971); for examples of its use with latent
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trait (IRT) models, see for instance Thissen et al. (1988; 1993). The model comparison

can be done using standard methods of model assessment, including likelihood ratio

(LR) tests of nested pairs of models. In large samples this test has high power in

detecting even small differences, so less oversensitive alternatives have been proposed.

For factor analysis these include fit indices such as the RMSEA (Browne & Cudeck

1993) and the CFI (Bentler 1990), for which various cut-off points have been proposed

(e.g. Chen 2007). These indices are not available for latent trait models, but statistics

such as the AIC and BIC criteria or residuals in lower-dimensional marginal tables

(Bartholomew et al. 2011) may be considered in their stead.

Among the most recent literature on detecting non-equivalence, Raykov et al.

(2012) provide a critical discussion of the existing testing procedures, and Kim et al.

(2012) study the performance of an adjusted likelihood ratio test when the multiple

causes, multiple indicators (MIMIC) model is used for the detection. Jak et al. (2013)

develop a test for use with a two-level factor model, and Rutkowski & Svetina (2014)

study the appropriateness of the fit indices developed for multi-group confirmatory

factor analysis models for testing for non-equivalence in large-scale surveys.

Second, if such methods detect non-equivalence, we can employ partial equiva-

lence models where for some items the parameters of the measurement model do vary

across the groups. It is also possible to extend the models further to aim to explain the

non-equivalence, essentially by modeling with explanatory variables the cross-group

variation in measurement parameters (see e.g. Soares et al. 2009; Davidov et al. 2012).

In our example of depression items in the European Social Survey, multigroup

latent trait modeling reveals a large amount of non-equivalence in the six items across
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the 29 countries. First, a model with any one item freed to be non-equivalent fits

better than the full equivalence model, according to the LR test and both AIC and

BIC. Freeing any 2, 3, or 4 items improves the fit further (the best-fitting models of

these types have items F, (B,F), (A,B,F) and (A,B,C,F) non-equivalent; estimated trait

means from these models are shown in Figure 1).

The LR test and AIC indicate still better fit if a fifth item is freed, leaving only one

cross-nationally equivalent item. Here, however, we are at the limit of identifiability of

the model. Having just one equivalent item produces the same fit whichever this item

is chosen to be, and also the same fit as the best-fitting model with no equivalent items

(and an infinite number of other models; this result is used in the “alignment” method

of Asparouhov & Muthén 2014, which seeks the latent scale on which the items are least

non-equivalent in aggregate). All of these choices, however, give different estimates for

the means and variances of the latent trait. Using such a model thus requires an

arbitrary choice of which one item is declared to be non-equivalent, or a conclusion

that no between-group differences in the structural models are meaningfully identified.

Measurement equivalence across 29 countries is always likely to be difficult to

achieve. As a second example, we considered data for just Sweden, Norway and Den-

mark (this is also discussed in Section 4). Here we select a model with three items

(B,C,D) non-equivalent (freeing also E improves the fit further according to LR test and

AIC, but only slightly). So even for such a small group of fairly similar countries with

closely related languages, half of the items are judged to be formally non-equivalent.

Bracke et al. (2008) also carried out multigroup analysis of the CES-D depression

scale in the ESS, using factor analysis of the four-point versions of all eight items
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from Round 3 of the survey. Considering measurement equivalence by both gender

and 25 countries, they settled for a partial equivalence model where 112 of the 400

intercept parameters in the measurement models were non-equivalent and the rest of

the intercepts and all the loadings were equivalent. This conclusion was reached using

the RMSEA, CFI and TLI statistics, whereas LR tests and the AIC and BIC would

again indicate a still larger number of non-equivalent parameters.

3.3 What to do about non-equivalence? — Motivation of the sensitivity analysis

When such modeling is applied to data from large cross-national surveys or testing

programmes, it is very often concluded that many of the measurement items are not

equivalent across all the countries. This was the case in our example, and also for

instance in Davidov et al. (2008), Kankaraš & Moors (2009), Meuleman & Billiet

(2012), Nagengast & Marsh (2014), and several contributions to Davidov et al. (2011).

What then can be done about non-equivalence of measurement in multigroup

analysis? Broadly, the main possibilities may be labeled allow and ignore. The “allow”

approach means searching for a well-fitting partial equivalence model and using it as

the basis of the final conclusions from the analysis. This may seem like a natural and

straightforward way to address and contain the challenge of non-equivalence. However,

we would argue that it is not, but that it may bring up severe difficulties of its own.

Some of these difficulties are practical, with increased computing times and numbers

of models to be considered. But the more profound problems are conceptual. For

example, a well-fitting partial equivalence model with an unambiguously defined latent

scale may not exist at all, i.e. there may not be even two items which are judged to be
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equivalent (this was the case in our example). These conditions on identifiability can

be relaxed in Bayesian modeling with informative prior distributions (e.g. Soares et al.

2009, Fox 2010, and Muthén & Asparouhov 2012, 2013), but this rather hides rather

than resolves the inherent limit of identifiability in partial equivalence models.

Other conceptual complications arise as soon as any items are treated as non-

equivalent, i.e. when they work differently in different groups. This has several impli-

cations for the interpretation of the results. First, the non-equivalent items contribute

relatively little to the estimated structural model; for example, the country means in

Figure 1 are mostly driven by the data on the items which are equivalent in these

models. Second, any latent variable scores assigned to individuals from such models

will depend also on the group and not just the responses to the items. The dilemma is

whether such measurement still means the same thing in all of the groups, and whether

we are comfortable with using a model which incorporates it to draw comparative con-

clusions about the constructs. The dilemma does not admit an easy solution, as both

positive and negative answers to it can be reasonably defended.

In contrast, the “ignore” approach means simply using the full equivalence model,

irrespective of any evidence of non-equivalence. This treats each item in the same

way in all groups, so it avoids the complications of non-equivalence models. Its own

conceptual disadvantage is also clear: if we believe in the latent variable model with

non-equivalence, the equivalence model is misspecified and will in general give biased

estimates of the parameters. Ignoring this, however, can also be defended. Doing so

means de-emphasizing the latent variable interpretation and treating the model mainly

as a pragmatic aid in deriving a single measurement scale applied to all the groups.
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3.4 Sensitivity analyses — Observed vs. synthetic data

Both ignoring non-equivalence of measurement and allowing for it thus have their

disadvantages, and the choice between them is not obvious. This would not matter

much if these approaches generally gave similar conclusions about the parameters of

interest — in which case we could with confidence use the simpler equivalence model.

But when is this likely to be case in practice? This is the question of the sensitivity

of the equivalence model to misspecification: if there is true non-equivalence but it is

ignored, how does this affect comparative conclusions about the groups?

There are two distinct but complementary approaches to such analysis. The first

is to assess sensitivity in individual observed data sets, by fitting both equivalence

and non-equivalence models and comparing estimates for the parameters of interest

from them. Our analysis of the depression items, as discussed above and displayed

in Figure 1, is an example of this approach. In this case we fitted all 58 distinct

models where different subsets of the six items were non-equivalent. A method which

reduces such modeling burden has recently been proposed by Oberski (2013). His

“expected parameter change for parameters of interest” or EPC-interest provides a

good approximation of what would happen to estimates of the structural parameters

if specified measurement parameters were allowed to be non-equivalent. This in turn

builds on older measures of Modification Indices and Expected Parameter Change

(Jöreskog & Sörbom 1986; Saris et al. 1987; Saris et al. 2009) where the focus is on

testing or estimating what would happen to some parameters if model constraints on

those same parameters were relaxed.
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In the second type of sensitivity analysis, changes in estimates are examined not

for specific real data but in different hypothetical circumstances, varying any aspects of

the true models that may affect the results. This provides a complementary approach

which can be used for what analysis of observed data sets cannot do, namely to build

the big picture of the effects of ignoring non-equivalence of measurement, both in

outline and in detail. It can also provide information on choices in study design and

on potential sources of sensitivity in individual studies. We will carry out sensitivity

analysis of this type, as explained in the next section.

4. The sensitivity analysis

4.1 Research questions

Suppose that, in groups g, the observed frequencies ngl of response patterns l for

a set of binary items are generated by a latent trait model as defined in Section 2. The

parameters of this model are the means κ(g) and variances φ(g) of the latent trait in the

groups, and the intercepts τ
(g)
j and loadings λ

(g)
j of the measurement model (2) for each

item j. The true model will in general contain some non-equivalence of measurement,

so that for some items the true values of τ
(g)
j and λ

(g)
j will be different across the groups.

Another model is then fitted to the data. This is of the same form as the true

model, except that it will assume full measurement equivalence. In other words, the

fitted model will allow the parameters of the latent trait to vary across groups, but it

will constrain the measurement intercepts τ
(g)
j = τj and loadings λ

(g)
j = λj of each item

to be the same in all groups. This model is thus in general misspecified.

Parameter estimates from the fitted model will then converge to some values.
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Our goal is to examine what these will be in different circumstances, and how they

relate to the parameter values of the true model. In particular, we want to compare

estimates of κ(g) and φ(g) that are obtained from the fitted model to the true values of

these parameters, i.e. to assess how sensitive the conclusions about the parameters of

the structural model are to misspecifications of the measurement model.

There are many degrees and dimensions in which the true model may deviate

from full equivalence. We will focus on three of them: (i) the number or proportion

of items which are non-equivalent; (ii) the degree of non-equivalence in these items;

(iii) the relative strength of these items as measures of the latent trait. The aim is to

gain understanding on how variation in these dimensions affects the bias due to model

misspecification. Overarching these specific questions is a looser and semi-qualitative

research question, which is whether the misspecification matters in the first place —

that is, whether the bias in the estimated structural parameters may be large enough

to be of concern, given levels of non-equivalence which may be expected in real data.

We will throughout consider examples where the fitted model has the same num-

ber of latent traits as the true model (one, in all of our examples). Another potential

type of sensitivity is that the apparent number of traits, as chosen by empirical criteria,

may also be affected by misspecification of the model. In other words, when measure-

ment equivalence is imposed on the fitted model, true non-equivalence may instead

manifest itself as a apparent extra traits in the structural model. The sensitivity of

this aspect of the modeling will depend on which model selection criteria are used and

how they behave under model misspecification. Examining these questions is beyond

the scope of this paper but is an important topic for future research.
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4.2 Methodology

The most obvious way to implement the sensitivity analysis would be a simulation

study where many data sets were generated from each true model, the misspecified

equivalence model fitted to each of them, and the results averaged over the simulations.

This was done by Kaplan & George (1995) and De Beuckelaer & Swinnen (2011) in their

sensitivity analyses for factor analysis models. This, however, requires a large number

of data sets and model fits for every true model, so it will be time-consuming if we want

to consider many different situations — as we wish to do, in order to examine the effect

of several different factors and of varying the magnitude of measurement equivalence

by small steps. Here we achieve this by replacing simulation studies with an approach

which requires only one data set and model fit for each true model.

Our approach draws on general results on maximum likelihood (ML) estimates of

misspecified models, as derived by Berk (1966), Huber (1967), Akaike (1973) and White

(1982). These show that if data are generated from a model with true parameters θ∗0

and a model with parameters θ is then fitted to the data, ML estimates of θ will

converge (as n→∞) to the value θ0 of θ which maximizes the expected value of the

log-likelihood (3) of the misspecified model evaluated over the true model, i.e.

Eθ∗
0
[`(θ)] =

G∑
g=1

2p∑
l=1

n∗gl logPg(Y = yl;θ) (4)

where Eθ∗
0

denotes expectation with respect to the true model,

n∗gl = Eθ∗
0
(ngl) = ng Pg(Y = yl;θ

∗
0), (5)
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Pg(Y = yl;θ
∗
0) are the probabilities of the response patterns given the true parameter

values, and Pg(Y = yl;θ) the probabilities under the fitted model. Here θ0 is thus what

ML estimates of the parameters of the misspecified equivalence model are estimating

when the true model is a non-equivalence model with parameters θ∗0. As the result is

asymptotic, θ0 will be a good representation of the expected value of the misspecified

estimate in real data sets with sufficiently large samples, in roughly the same way as

is required for the adequacy of ML estimates for correctly specified models.

Crucially, (4) is of the same form as the log-likelihood (3) but with n∗gl in the role

of the data. This suggests a simple two-step procedure for a sensitivity analysis:

(1) For a given true model with parameter values θ∗0, calculate the true probabilities

Pg(Y = yl;θ
∗
0) of the different response patterns, and thus generate a contingency table

with frequencies n∗gl from (5).

(2) Fit the misspecified model of interest (here the equivalence model) with n∗gl as

the data. The resulting parameter “estimates” are θ0.

For the pseudo sample sizes ng used in step (1), only their ratios between groups g

matter while the absolute values of ng make no difference to θ0. In all of our examples

we have set ng to be equal across the groups.

An analogous approach has been used for other purposes, by Rotnitzky & Wypij

(1994) to examine biases due to missing data, Heagerty & Kurland (2001) to study

the effects of misspecification of generalized linear mixed models, and Biemer (2011)

to examine properties of latent class models (Biemer coins the term “expeculation” for

it), but the method has not before been applied in the context where we use it here.

The models were fitted using Mplus 6.12 (Muthén & Muthén, 2010), and calcu-
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lation of the expected frequencies n∗gl and other data management were in R (R Core

Team, 2012). Because likelihood functions for latent trait models can have several local

maxima, multiple starting values were used for the estimation algorithm. Since in a

one-trait latent trait model the direction of the trait is arbitrary, the fitted trait was

rotated (i.e. reversed) where necessary so that the trait always had the same direc-

tion. Further information about the computer implementation and annotated code are

available as supplementary material on the Psychological Methods website.

4.3 Design of the studies

Table 1 shows the settings used for the sensitivity analysis in Section 4.4. It gives

the true parameter values for a one-trait latent trait model for three groups. In all of

the cases the notional sample sizes ng are taken to be equal across the groups.

===== Table 1 around here. =====

Part (a) of the table shows the values of the structural parameters, i.e. the mean

κ(g) and variance φ(g) of the single normally distributed latent trait in the groups. These

are fixed at κ(1) = 0 and φ(1) = 1 in group 1 for identification, but freely estimated in

the other groups. Their true values are in fact 0 and 1 in all the groups, so the true

situation is such that the structural model does not depend on the group. This equality

is not imposed on the fitted model, where the trait mean and variance are estimated as

separate parameters for groups 2 and 3. Their estimates will then converge to the true

values, i.e. be equal across the groups, when the whole model is correctly specified, but

not necessarily when the measurement model is misspecified. We use a true model of

this kind, with a common structural model across the groups, in all of the analyses for
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convenience of interpretation: It is then easy to remember that any difference between

the groups in the fitted structural model must be bias due to model misspecification.

The true measurement models are specified by fixing values of the response prob-

abilities π
(g)
j (η) for each item j and group g at two values of the trait η (at −1.5 and

+1.5); these then determine the parameters (τ
(g)
j and λ

(g)
j ) of the measurement model

(2), and thus the response probabilities at other values of η. Part (b) of Table 1 shows

how these fixed values are chosen for those items which are specified to have equivalence

of measurement. We use items with two distinct measurement models, referred to as

Lower- and Higher-discrimination items (‘L’ and ‘H’ for short). Their item response

curves π
(g)
j (η) are shown by the solid curves in plots (a) and (c) of Figure 2. They

differ in that the response probability depends on η more strongly for an H-type than

for an L-type item, i.e. that an H-type item is a more discriminating measure of η.

To introduce non-equivalence into the measurement model, we set the response

probabilities to be different across the groups for some items. The probabilities shown

in part (b) are 0.8 when η takes on the value −1.5. If an item is non-equivalent, this

0.8 is changed across the groups to the values shown in part (c) of Table 1. This shows

20 different cases, each with a different true measurement model. Across the 20 cases,

the item probabilities for one of the groups (group 1 throughout) remain the same,

while those for the other groups take on different values, corresponding to different

magnitudes of nonequivalence. In case 16 the probabilities become equal across the

groups, so this is the case of full equivalence. In each of these cases the response

probability at η = −1.5 remains at the same fixed value (as in part (b) of the table)

in all groups, and the probabilities at other values of η are determined accordingly.
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===== Figure 2 around here. =====

A non-equivalent measurement model of this kind is illustrated by plot (a) of

Figure 2 for an L-type item, and plot (c) for an H-type item. These show how the true

probabilities π
(g)
j (η) for a non-equivalent item depend on the trait η in the three groups,

in the non-equivalence case 9 in part (c) of Table 1 (the line of circles indicates the fitted

equivalence model in one of our scenarios; this will be discussed in the next section).

This is a case where the level of non-equivalence might be regarded as moderate but

not extreme. We will often discuss results for it specifically below, in order to provide

additional focus for the discussion and a link for results across different plots.

Part (d) of Table 1 summarizes the other settings. They are defined by the eight

combinations of three binary choices. First, the total number of items is either 4 or

8, and in each case half are of type L and half of type H. Second, the proportion of

non-equivalent items is 25% (1 out of 4, or 2 out 8) or 50% (2/4 or 4/8). Third, the

non-equivalent items are either all of type L or all of type H. For brevity, the different

scenarios defined by these choices are sometimes referred to as “1H/4” (1 H-type item

out of a total of 4 items is non-equivalent) and so on. For each scenario, we examine

each of 20 cases of degree of non-equivalence that are defined in part (c) of Table 1.

When reporting the results, we consider also two further measures in order to

summarize the degree of non-equivalence in the different cases. The first is an overall

measure of Differential Test Functioning (DTF) which is often used to summarize non-

equivalence (DIF) in IRT applications (see Millsap 2011 for a discussion). We define

it as follows. First, let the “score” T be the average of a single respondent’s responses
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to the p binary items Yj. Second, the expected score is Eg(T |η) =
∑

j π
(g)
j (η)/p for

an individual who belongs to group g and has the value η of the latent trait. Next,

consider two individuals who have the same value of the trait but who belong to our

groups 1 and 3 (for which the measurement models are furthest apart). The expected

difference in scores between these individuals is D(η) = E3(T |η)− E1(T |η). The DFT

measure we use is the square root of the expected value of D(η)2 calculated over the

distribution of η in group 1, i.e. the square root of DFT =
∫
D(η)2 p1(η) dη where

p1(η) is the standard normal distribution. Somewhat loosely, this can be thought of

as the difference in the score that a randomly selected member of group 1 would be

expected to receive if the measurement model of group 3 rather than group 1 applied

to that individual. This is 0 under full equivalence and positive otherwise.

The second summary measure arises from the work of Satorra & Saris (1985),

who derived an approximation of the power of a likelihood ratio test of nested models

in general covariance structure analysis. This approximation is very convenient here

because it makes use of the quantities which are already produced as part of our sen-

sitivity analysis. Generalized to our case, the result shows that if we were to carry

out a likelihood ratio test of the null hypothesis that the full equivalence model holds,

against the alternative hypothesis defined by the true model, the power of this test is

calculated using a non-central χ2 distribution (and degrees of freedom equal to those

of the test). The crucial part of the result is that the correct noncentrality parameter

of this distribution can be approximated by the likelihood ratio test statistic for this

hypothesis, calculated with the true probabilities Pg(Y = y;θ∗0) and the estimated

probabilities Pg(Y = y;θ0) in the roles of the observed and fitted proportions respec-
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tively. Calculating this power measure also requires that a notional sample size is

specified for the test. Below we use a sample size of 1000 in each group.

4.4 Results of the sensitivity analysis for latent trait models

We begin with an example of the sensitivity of the estimated measurement mod-

els, before focusing on the structural models in the rest of the discussion. In Figure 2,

the circled line in plot (a) shows the values to which the estimated response probabili-

ties πj(η) for the one non-equivalent item of type L (i.e. with Low discrimination) would

converge when an equivalence model was fitted to data where the true model followed

case 9 of the 1L/4 scenario of the examples in Table 1 (i.e. one where 1 L-type item

is non-equivalent, out of a total of 4 items). These values have been determined using

the method explained in Section 4.2. We will refer to them (somewhat imprecisely) as

the “estimated values” of the parameters under different degrees of misspecification.

For the measurement model the question of interest is then what this estimate will be,

given that the true values of the measurement probabilities vary across the groups.

===== Figure 2 around here. =====

In this first example the answer is that the estimated common measurement

model is effectively an average of the true group-specific models in the three groups.

This can also be seen in plot (b), which shows for this scenario the estimated intercepts

τj and loadings λj for this item across all 20 cases of non-equivalence. The horizontal

axis of the plot spans these 20 cases, and is labeled by the values of the measurement

probability for group 3 shown (in bold) in part (c) of Table 1. Case 16 where the true
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model has measurement equivalence is indicated by the dashed vertical line, and the

non-equivalence case 9 which we often use for illustration by the dotted vertical line.

The estimates in the correctly specified full equivalence case 16 are, as they should

be, the true parameter values. In case 9, in contrast, the estimated common intercept

is further from, and the loading closer to 0 than in case 16, thus defining the flatter

curve which is seen in plot (a). This happens across all the 20 cases, in all of which the

estimated measurement model is roughly an average of the group-specific ones. On the

other hand, the estimates for the three equivalent items (one of which is also shown in

plot (b)) are not affected by the misspecification of the non-equivalent item, but retain

essentially their true values across all the cases of this scenario.

However, these broad conclusions do not hold in all situations. Plots (c) and

(d) show analogous results for the 2H/4 examples. Here the common estimated mea-

surement model is not an average of the three within-group ones but close to just one

of them, the most discriminating model which applies in group 1. Estimates for the

equivalent items are now also slightly more strongly affected than they were in the

first example. Similar results are obtained for the 1H/4 scenario, suggesting that the

pattern seen in plots (c) and (d) is due to the fact that the non-equivalent items are

highly discriminating rather than that two of them are non-equivalent. These results il-

lustrate that the common measurement model of an item estimated under equivalence

need not be simply an average of the group-specific models for that item, but that

there may instead be more complex interplay of models between groups and between

different items — and with the structural models, as will be seen below.
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Plot (d) of Figure 2 shows also, for case 9, approximations of the same estimated

measurement parameters obtained from a standard simulation study. This is included

to provide one illustration of this alternative to our non-simulation method of sensitivity

analysis, and to show that the two approaches do produce similar results. In the

simulation study, 1000 simulated data sets were generated with ng = 1000 observations

in each group (in a simulation, unlike in our approach, specific sample sizes do need to

be specified) and with the true parameters of case 9. The stars shown in the plot are

the average values, across the simulations, of the estimates of the four measurement

parameters considered here. It can be seen that, as expected, they agree well with the

asymptotic estimates obtained from our calculations. This is also true for the estimated

structural parameters, which are shown in Figures 3 and 4 below.

In the rest of this section we focus on the estimated distributions of the latent

trait in the groups. Figure 3 shows the estimated means κ(3) in group 3 for all the

scenarios and cases defined in Table 1, and Figure 4 the standard deviations
√
φ(3)

similarly (in group 1 these parameters are always fixed at 0 and 1 respectively, and

their estimated values for group 2 are roughly half-way between the ones for groups

1 and 3). Recall that in each case the mean in group 3 is really 0 and the standard

deviation is 1, a result which is correctly recovered when the true measurement model

agrees with the fitted full equivalence model. In the other cases, where the equivalence

model is misspecified, the estimated parameters of the structural model incorrectly

indicate some differences between the groups. We are interested in assessing how the

nature and degree of this bias depends on the three factors considered here, i.e. the

number and type of non-equivalent items, and the degree of non-equivalence in them.
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===== Figures 3 and 4 around here. =====

For the degree of non-equivalence the conclusion is, unsurprisingly, that for each

given scenario the bias increases with increasing non-equivalence, that is when moving

further away from the full equivalence case. This increase is mostly smooth, but with

one conspicuous exception, which occurs in the example where two low-discrimination

items out of four items are non-equivalent (scenario 2L/4). There the bias in both the

means and the standard deviations increases abruptly when we move into the most

extreme cases of non-equivalence. Behind this sudden change is a dramatic example of

the interplay between estimated measurement and structural models. What happens

in these extreme cases is that the estimated measurement model is abruptly reconfig-

ured, so that the (non-equivalent) low-discrimination items obtain larger discrimination

parameters (loadings) than do the true high-discrimination items. The latent trait im-

plied by the estimated measurement model is thus effectively re-defined, from a trait

which is measured more strongly by the true H-items than the L-items into a trait for

which the opposite is true. The estimated parameters of the trait are then similarly

reconfigured, to reconcile this measurement model with the observed data.

We can examine the extent of non-equivalence in terms of both the proportion

and total number of non-equivalent items. It appears that the proportion matters more,

in that for a given type of item the bias is roughly similar for the same proportion of

non-equivalent items irrespective of the total number (e.g. for the 1/4 and 2/8 cases),

although with larger proportions there is also evidence that smaller totals are associated

with slightly more bias. For the proportion, the results are clear and unsurprising: the
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higher the proportion of items which are really non-equivalent, the larger is the bias in

the structural parameters estimated under the assumption of equivalence.

In terms of which types of items are non-equivalent, we focus on the contrast

between more or less discriminating (“H” vs. “L”) items. Here Figures 3 and 4 suggest

somewhat different conclusions for estimated means vs. standard deviations of the

latent trait. For the means there is evidence that when the proportion of non-equivalent

items is large, the bias is larger when these items are more strongly discriminating, but

these differences are relatively small. For the standard deviations, the differences are in

the same direction but much clearer: biases in the estimated standard deviations are in

all cases low when only L-type items are non-equivalent, but much larger when H-type

items are non-equivalent. These differences are related to those for measurement models

in Figure 2. There it was observed that for non-equivalent L-items the measurement

model estimated under equivalence was an average of the group-specific models, while

for H-items it was instead close to the most discriminating group-specific model. It

appears that in the former case much of the impact of the model misspecification

is absorbed by the measurement model, leaving the standard deviations of the trait

largely unaffected — whereas the reverse is true when H-items are non-equivalent, in

which case the estimated standard deviations are badly biased.

Motivated by these results on the standard deviations, we considered a variant of

these analyses (detailed results are not shown). This was identical to the ones discussed

above, except that in the estimation the variance of the latent trait was constrained to

be equal (to 1) across all the groups. Recall that in these cases the true variances are in

fact equal, and in practice we might often be willing to make this assumption. We might
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then suspect that specifying this part of the structural model correctly could reduce

bias in the other part, i.e. the trait means. Instead, however, the opposite was true:

the bias in the estimated means was worse when the variances are constrained than

when they are not. This happens, in essence, because the estimated misspecified model

involves a compromise of biases in different parameters in order to yield the best overall

fit to the observed data. Since the measurement parameters are not allowed to assume

their true, nonequivalent values, all the estimated parameters — both measurement

and structural — shift to achieve this compromise. If the structural variances are fixed

at particular values — even when these are the true ones — all of the shifting in the

structural model is done by the means, which thus end up having still more bias.

Returning to the main results in Figures 3 and 4, we may also consider the

absolute magnitudes of the biases. Considering first our illustrative, moderate non-

equivalence case 9, we observe that the bias in the estimated mean is here around

0.1-0.15 when only a quarter of the items are non-equivalent, but rises to around 0.3

when half are non-equivalent. The former is arguably not large for a variable with

a standard deviation of 1, but the latter could be considered non-negligible. These

biases increase when the magnitude of the non-equivalence increases, although only

slowly when the proportion of non-equivalent items is low. In the estimated standard

deviations the biases are small when the non-equivalent items are low-discriminating

but can easily be substantial when high-discriminating items are non-equivalent.

Figure 5 shows the estimated trait means (i.e. their bias, since the true value is

0) in all the 160 cases in Figure 3, against the two summary measures of the degree of

non-equivalence defined in Section 4.3. In the upper plot, the means are plotted against
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the square root of the Differential Test Functioning (DTF) measure. Here the bias in

the estimated means generally increases with increasing non-equivalence as measured

by DTF. However, this relationship is not simple, in that similar levels of DTF lead to

different degrees of bias in different situations. This finding, which is likely to hold for

any single-number measure of non-equivalence, suggests that no such overall measure

is likely to be a precise predictor of the bias arising from ignoring non-equivalence.

The second measure shown in Figure 5 is the approximate power of the test of

non-equivalence. This power is high in most cases. Typically the only cases where it

is not very near 1 are the ones with very small degrees of non-equivalence. In these

cases the bias is also inevitably small. However, the bias is also small in very many

cases where the power is effectively 1, for example in our reference case 9 (marked

with triangles in the plot) in several scenarios. This suggests that in practice methods

of model assessment like the likelihood ratio test may often detect non-equivalence in

cases where ignoring it would make very little difference on the estimates of interest.

===== Figure 5 around here. =====

To relate one real example to these scenarios, consider data on the depression

items in the ESS for Sweden, Norway and Denmark. As discussed in Section 3.2,

model selection suggests that three of the six items are non-equivalent between these

three countries, so we treat this as the true measurement model. In terms of the scenar-

ios, the nonequivalent items in this model are between the H and L types in strength of

measurement, and their nonequivalence across the countries is roughly comparable to

the cases at around 0.55–0.7 on the horizontal axes of Figures 3 and 4. For such cases,
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the sensitivity analysis suggested a bias of around 0.2 trait standard deviations in the

estimated means, and a downward bias in the standard deviations. This is also what

we see in this example. Estimated trait means from the true nonequivalence model are

0 (fixed), −0.36 (standard error 0.07) and −0.19 (0.06) and standard deviations 1, 1.22

and 1.03 for Sweden, Norway and Denmark respectively. From the full equivalence

model, the means are 0, −0.17 (0.05) and 0.02 (0.04) and standard deviations 1, 0.96,

0.80 similarly. The mean difference between Sweden and Denmark becomes nonsignif-

icant when estimated under the equivalence model. Square root of the estimated DFT

measure (between Sweden and Denmark) is 0.045 in the example.

This example is thus a “3/6” scenario with nonequivalence roughly comparable to

our cases 10–14 (with a mixture of items and cases). That this is so for Sweden, Norway

and Denmark, which form one of the most homogenous subsets of three countries in

the ESS, suggests that for most other countries the non-equivalence of measurement

will be greater and thus closer to more extreme ones of our scenarios — and the

estimates from the equivalence and non-equivalence models will be correspondingly

more different. These differences will also be large for any analysis of all or most of the

29 countries together, comparison of which would often be our main goal. Examples

of the sensitivity of the estimated trait means for them can be seen in Figure 1.

In summary, our sensitivity analysis indicates that the magnitude of non-

equivalence and the proportion of non-equivalent items are the strongest factors which

affect the bias that arises from incorrectly employing a full equivalence model, while

other factors such as which kinds of items are non-equivalent have a smaller but non-

negligible impact. Constraining the variances of a latent variable to be equal across
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groups increases the bias in their means. Ignoring a limited amount of non-equivalence

in a small proportion of items may not have a serious impact on estimates of the latent

distribution across groups (even in many cases where standard model selection crite-

ria would strongly reject the equivalence model). However, this will change when the

amount of non-equivalence increases, in which case the bias can be substantial.

5. Conclusions and discussion

We have studied the sensitivity of conclusions from multigroup latent variable

modeling when non-equivalence of measurement is incorrectly ignored. The simplest

version of our research question was whether this can severely affect between-group

comparisons of the distributions of the latent variables, given realistic levels of non-

equivalence. The answer is yes in general, although there is also a fairly wide range of

circumstances where the conclusions are relatively unaffected. These findings broadly

agree with those of earlier studies by Kaplan & George (1995) and De Beuckelaer &

Swinnen (2011) who studied analogous questions on significance tests.

We have focused on latent trait (IRT) models where the latent variable is contin-

uous but the observed items are treated as categorical. We might expect fairly similar

results for factor analysis models where both types of variables are continuous. Latent

class models, where all the variables are categorical, could plausibly give rise to effects

which were not observed in our examples with a continuous latent trait. Sensitivity of

latent class models is thus a promising subject for future research. More work of this

kind remains to be done also for models with continuous latent variables, especially in

situations which were not considered here, These include, for example, cases with larger
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numbers of items or with more heterogeneity in the discrimination and non-equivalence

of the items, and sensitivity of the selection of the number of latent variables. With

the method of sensitivity analysis we have proposed, such explorations can be carried

out much more efficiently than with conventional simulation studies.

Such findings are of interest because levels of non-equivalence which can lead to

serious biases can and do occur frequently in large cross-national and other comparative

studies. Our results thus do not support the convenient and reassuring conclusion that

non-equivalence could in general be simply ignored. It is also not likely to be commonly

limited to a few items only, which could be omitted at little cost. Instead, the analyst

needs to make an explicit choice between two imperfect ways forward, as we discussed

in Section 3.4. One of them is to use models which allow for non-equivalence in some

of the observed items, an approach which comes with practical and conceptual costs

of its own. The other is to use an equivalence model after all; this is always possible,

but it effectively means treating the observed items as comparable at face value, and

de-emphasizing their interpretation as measures of latent constructs. The results of our

sensitivity analysis would then be interpreted as indicating how conclusions of interest

might vary depending on how we treated the observed survey or test items, without

arguing that treating them equally across groups is necessarily wrong. Either way, the

choice faced by the comparative researcher is not a simple one.
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Figure 1. Estimated means by country for a latent trait indicating depression, from multi-
group latent trait models for six binary items in Round 6 of the European Social Survey
(2012). Higher values indicate higher levels of depression, and the average for UK is fixed at
0 for identification. The estimates connected by the solid line are from a model which assumes
equivalence of measurement for all six items, and the other estimates from best-fitting models
where 1, 2, 3 or 4 items are allowed to be non-equivalent across the countries.
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Figure 2. Results for measurement models estimated under measurement equivalence when
the true model is specified as in Table 1. In each case there are 4 items, 2 of type H and 2
of type L (as specified by part (b) of Table 1). In the example shown in plots (a) and (b),
one item of type L is non-equivalent. Plot (a) shows the true item response probabilities for
this item as a function of the latent trait in the three groups, in non-equivalence case 9 in
part (c) of Table 1. It also shows the common response probabilities that would be estimated
under equivalence in this case. Plot (b) shows such estimated values of the parameters of
the measurement model across all 20 scenarios of non-equivalence considered here, for the
non-equivalent item and one equivalent item. Plots (c) and (d) are similar to (a) and (b)
respectively, but for an example where the there are two non-equivalent items of type H. The
horizontal axis of plots (b) and (d) is labeled by the values of the probabilities shown in bold
in (c) of Table 1, and the vertical dashed and dotted lines indicate cases 16 (full equivalence)
and 9 respectively. The stars in plot (d) indicate corresponding estimates from a standard
simulation study discussed in the text.
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Figure 3. Results of sensitivity analysis of all the scenarios of latent-trait models defined in
Table 1. For each of them, the figure shows the value to which the estimate of the mean κ(3)

of the latent trait in group 3 would converge if a full equivalence model was fitted to data
from the true model defined by the scenario. The true value of this mean is 0 throughout.
The horizontal axis is labeled by the values of the probabilities shown in bold in (c) of Table
1, and the vertical and dashed and dotted lines indicate cases 16 (full equivalence) and 9
respectively. The star shows an analogous value of κ(3) obtained from a standard simulation
study (as discussed in the text) for scenario “2H/4” (i.e. one where 2 high-discrimination
items out of 4 total items are non-equivalent).
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Figure 4. This figure is analogous to Figure 3, and shows the values to which estimates
of the standard deviation

√
φ(3) of the latent trait in group 3 would converge in the same

scenarios. The true value of this standard deviation is 1 throughout.
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Figure 5. Plots of the bias in the estimated means of the latent trait in the cases shown
in Figure 3 (on the vertical axes) against the square root of the measure of Differential Test
Functioning (upper plot) and approximate power of a test of non-equivalence (lower plot)
which are defined in Section 4.3.
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(a) Structural model: One normally distributed latent trait η, with the following
parameters in three groups:

Group (g) Mean (κ(g)) s.d. (
√
φ
(g)

)
1 0 (fixed) 1 (fixed)
2 0 1
3 0 1

Sample sizes ng are the same in all groups.

(b) Measurement model for those binary response items Yj which are equivalent across
the groups: Response probabilities πj(η) = P (Yj = 1|η), and the intercepts τj and
loadings λj of the measurement models:

πj(η) given η at:
−1.5 0 +1.5 τj λj

Lower-discrimination items (‘L’): 0.8‡ 0.5 0.2† 0.000 −0.924
Higher-discrimination items (‘H’): 0.8‡ 0.2 0.015† −1.386 −1.848

The probabilities marked with ‡ and † are fixed to determine τj and λj and thus all
other response probabilities.

(c) Measurement model for those items which are non-equivalent across the groups:
20 different scenarios, with the following values for the probabilities marked with ‡ in
table (b):

Sensitivity case (1–20)
Group 1 2 3 . . . 8 9 . . . 15 16 17 . . . 20

1 .80 .80 .80 . . . .80 .80 . . . .80 .80 .80 . . . .80
2 .50 .52 .54 . . . .64 .66 . . . .78 .80 .82 . . . .88
3 .20 .24 .28 . . . .48 .52 . . . .76 .80 .84 . . . .96

In each case the probabilities marked with † remain the same as in table (b), and the
parameters of the measurement model are determined by these two fixed probabilities.

(d) Number and configuration of the items:
* 4 or 8 items, half of type L and half of type H.
* If 4 items, 1 or 2 non-equivalent. If 8 items, 2 or 4 non-equivalent.
* The non-equivalent items are all of type L, or all of type H.

Table 1: Parameter settings for the true model in the sensitivity analysis of latent trait
models. Unless otherwise mentioned, the horizontal axis of each figure in Section 4.4 spans
the 20 cases in table (c) and is labeled by the values of the probability in Group 3 (shown
here in bold). The dashed vertical line in each of these figures corresponds to case 16 (full
equivalence) and the dotted vertical line to case 9.
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