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1 Introduction

Financial risk is usually forecasted with sophisticated statistical methods.
However, in spite of their prevalence in industry applications and financial
regulations, the performance of such methods is generally poorly understood.
This is a concern since minor variations in model assumptions can lead to
vastly different risk forecasts for the same portfolio, forecasts that are all
equally plausible ex–ante.

Addressing this deficiency is the main objective of our work. We compare and
contrast the most common risk measures, Value–at–Risk (VaR) and expected
shortfall (ES), investigate their performance characteristics in typical usage
scenarios and study recent methodological proposals. The ultimate aim to
analyze how these risk measures perform as well as what works best and
what should be avoided in implementation.

Three main challenges arise in the forecasting of financial risk: the choice of
risk measure, data choice and usage and which statistical method is used.
Ever since its introduction by J.P. Morgan (1993) and especially the incor-
poration into financial regulations by the Basel Committee (1996), VaR is
the most commonly used market risk measure. While it has come under
considerable criticism, it has generally been preferred, partly because of the
work of Yamai and Yoshiba (2002, 2005).

While any statistical method benefits from as much data as possible, in prac-
tice that is usually not possible because of the presence of new instruments,
structural breaks, financial innovations or other aspects that reduce the rel-
evance of old data. This practical limitation is brought into an especially
sharp contrast when coupled with a desire for longer liquidity horizons as
expressed in the Basel regulations.

Suppose data is observed at the daily frequency. There are three ways one can
obtain multi–day holding period risk forecasts: First, estimate a daily risk
forecast and apply some scaling law to obtain the multi–day forecast, typi-
cally square–root–of–time. We call this approach the time–scaling approach.
Alternatively one can time aggregate daily observations. Focussing on log
returns, a 10 day return would be the sum of 10 one–day returns, and the
risk forecasts would then be made by these 10 day returns. Here we have two
alternatives. We can either use non–overlapping aggregated data, or allow
the aggregation periods to overlap. We term the first the non–overlapping

approach and the second the overlapping approach. The Basel Committee on
Banking Supervision (BSBC), as expressed in the 2013 version of the Basel
III Proposals, was keen on the overlapping approach, but not in the revised
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2014 version.

A large number of statistical methods for forecasting risk have been proposed,
but as a practical matter, only a handful have found significant traction, as
discussed in Danielsson et al. (2014). Of these, all but one depend on a para-
metric model, while one, historical simulation (HS), is model independent.
Our objective in this paper is not to compare and contrast the various risk
forecast methods: after all, a large number of high–quality papers exist on
this very topic. Instead, we want to see how a representative risk forecast
method performs, identifying results that are related technical choices on the
other two key issues: risk measure and data.

Considering our objectives, it is appropriate to focus on HS, not only is it a
commonly used method, for example, in the US bank sample of O’Brien and
Szerszen (2014), 60% use HS. More fundamentally, the good performance of
a specific parametric model is usually driven by the fact that the model is
close to the data generating process (DGP) and it is not possible to find a
parametric model that performs consistently well across all DGPs. Although
HS is the simplest estimation method, it has the advantage of not being
dependent on a particular parametric DGP. Its main deficiency, the poor
performance in the presence of structural breaks, will not affect our main
analysis, since we do not impose structural breaks in our simulation setup.

Our first contribution is the practical comparison of VaR to ES. A common
view holds that VaR is inherently inferior to ES, a view supported by three
convincing arguments. First, VaR is not a coherent measure unlike ES,
as noted by Artzner et al. (1999). Second, as a quantile, VaR is unable
to capture the risk in the tails beyond the specific probability, while ES
accounts for all tail events. Finally, it is easier for financial institutions to
manipulate VaR than ES. Perhaps swayed the theoretical advantages, ES
appears increasingly preferred both by practitioners and regulators, most
significantly expressed in Basel III. While the Proposal is light on motivation,
the little that is stated only refers to theoretic tail advantages.

The practical properties of both ES and VaR are less understood, and are
likely to provide conflicting signals since implementation introduces addi-
tional considerations, some of which work in the opposite direction. The
estimation of ES requires more steps and more assumptions than the esti-
mation of VaR, giving rise to more estimation uncertainty. However, ES
smooths out the tails and therefore might perform better in practice.

Our second contribution is to investigate how best to use data. Ideally, the
non–overlapping approach is preferred, but in practice it would likely re-
sult in excessively large data requirements, beyond what would be available
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in most cases. This means that any implementation needs to depend on
either the time–scaling approach or overlapping approach. From a purely
theoretic point of view, the time–scaling approach is not very attractive, the
common square–root–of–time approach is only correct for scaling VaR or ES
for independendly and identically distributed (i.i.d.) normal returns, and
in practice is either higher or lower depending on the unknown underlying
stochastic process. This suggests that the overlapping approach might be
preferred, both because by aggregating high frequency observations we get
smoother forecasts due to the smoothing of what might be seen as anoma-
lous extreme outcomes and also when dealing with infrequent trading, high–
frequency (daily) observations become unreliable.

Our purely anecdotal observation of practitioners suggests that using the
overlapping approach is increasingly preferred to the scaling method. Cer-
tainly, the Basel Committee held that view in 2013. However, the overlapping
approach gives rise to a particular theoretical challenge, induced dependence
in the constructed dataset, and hence the potential to increase the estimation
uncertainty. The pros and cons of using the overlapping approach for fore-
casting risk have until now been mostly conjectured, and not been supported
by analytical work. While some theoretical results exist on the properties of
square–root–of–time approach compared to overlapping approach, little to
none exists on the impact on risk forecasts.

In our third and final contribution we study whether the estimation of risk
measures is robust when considering smaller — and typical in practical use
— sample sizes. Although the asymptotic properties of risk measures can be
established using statistical theories, and such analysis is routinely reported,
sample sizes vary substantially. This implies that the known asymptotic
properties of the risk forecast estimators might be very different in typical
sample sizes.

We address each of these three questions from both theoretic and empirical
points of view. Ideally, one would evaluate the robustness of risk analysis
with real data, but that is challenging because we do not know the DGP of
the observed data and neither do we have any assurance that data across
time and assets maintains consistent statistical properties. We therefore do
the analysis in three stages starting with theoretic and simulation analysis,
which allows us to study properties of the risk measures when we know the
DGP. We then augment the analysis by results from the CRSP universe of
stock returns.

Our theoretic analysis directly relates to the vast extant literature on risk
measures. By contrast, it is surprising that so little Monte Carlo analysis of
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the practical statistical properties of risk measures exist. We surmise that
an important reason relates to computational difficulties, especially the very
large simulation size needed. We are estimating not only the risk measures
but also the uncertainty of those estimates, where for example, we need to
capture the “quantiles of the quantiles”. To achieve robust results, in the
sense that they are accurate up to three significant digits, one needs to draw
ten million samples, each of various sizes.

We obtain three sets of results. First, we confirm that for Gaussian and heavy
tailed return distributions, which encompass the majority of asset returns,
VaR and ES are related by a small constant. In the special case of Basel
III, the 97.5% ES is essentially the same as the 99% VaR in the Gaussian
case, while for heavy–tailed distributions, ES is somewhat larger, but not by
much. As the sample size gets smaller, the 97.5% ES gets closer and closer to
the the 99% VaR, falling below it at the smallest sample sizes. This suggests
that even if ES is theoretically better at capturing the tails, in practice one
might just multiply VaR by a small constant to get ES.

Second, ES is estimated with more uncertainty than the VaR. We find this
both when we estimate each at the same 99% probability levels and also when
using the Basel III combination, ES(97.5%) and VaR(99%). A sample size of
half a century of daily observations is needed for the empirical estimators to
achieve their asymptotic properties. At the smallest sample sizes, 500 or less,
the uncertainty becomes very large, to an extent that it would be difficult
to advise using the resulting risk forecasts for important decisions, especially
those where the cost of type II errors is not trivial. The confidence bounds
around the risk forecasts are very far from being symmetric, the upper 99%
confidence bound is a multiple of the forecast, which obviously cannot be the
case for the lower confidence bound. This means that if one uses the standard
error as a measure of uncertainty, it will be strongly biased downwards.

In our final result, we compare the square–root–of–time approach to the
overlapping approach and find that the overlapping approach results in more
uncertainty.

The structure of the paper is as follows. We discuss the theoretic properties
of the risk measures in Section 2 and the Monte Carlo results in Section 3.
Empirical results using stock returns in the Center for Research in Security
Prices (CRSP) database are presented in Section 4. The implications of out
analysis are discussed in Section 5 and Section 6 concludes. Some of the
mathematical derivations have been relegated to the Appendix.
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2 Risk measure theory

Many authors have considered the various theoretical properties of statis-
tical risk measures and the underlying estimation methods. Here we are
interested in three particular aspects of risk measures that see little coverage
in the extant literature: The relationship between ES and VaR, the impact
of using the overlapping approach and the small sample properties of the
risk measures. We consider both the case where the probability for VaR and
ES is the same, and also the Basel III case where the comparison is between
ES(97.5%) and VaR(99%).

Denote the profit and loss of a trading portfolio as PL and let X ≡ −PL,
so we can indicate a loss by a positive number. Suppose we obtain a sample
of size N , where, without loss of generality, we assume that the observations
are i.i.d., with distribution F . Denote the probability by p.

We refer to VaR and ES by qF := qF (p) and eF := eF (p), respectively,
where p is the tail probability level and estimate them by HS. Rank the N
observations as XN,1 ≤ XN,2 ≤ · · · ≤ XN,N . Then

q̂F = XN,[pN ],

êF =
1

(1− p)N

(1−p)N
∑

j=1

XN,N−j+1.
(1)

Asymptotically, these estimators are unbiased, but a well–known result, dat-
ing at least back to Blom (1958), finds that quantile estimators, like HS, are
biased in small samples, so that the XN,[pN ] quantile does not correspond
exactly to the p probability, instead, the probability is slightly lower. It is
straightforward to adjust for this bias, using for example the methods pro-
posed by Hyndman and Fan (1996).

2.1 VaR and ES

2.1.1 The levels of VaR and ES

Consider the ratio of ES to VaR, eF/qF , for a range of distribution functions
F . Starting with the Gaussian, with mean zero and standard deviation σ,
then qF = σqN(0,1) and eF = σeN(0,1), where N(0, 1) denotes the standard
normal distribution. It is obvious that for the same p levels, eF (p)/qF (p) > 1

6



and it is straightforward to verify that in this case:

lim
p→1

eF (p)

qF (p)
= 1.

In other words, as we consider increasing, but same for both, extreme prob-
abilities, although the ES is higher than the VaR, the relative difference
diminishes. At a finite level, such a ratio can be explicitly calculated, for
example, eF (0.99)/qF (0.99) = 1.146. When considering different p levels for
the two risk measures, such as in comparing the Basel III proposal, we get
eF (0.975)/qF (0.99) = 1.005. Hence the two risk measures are roughly identical
under normality.

Since financial returns exhibit heavy tails, a more realistic distribution takes
that into account. Similar to the normal case, it is straightforward to calcu-
late the ratio of ES to VaR for the Student–t distribution with any particular
degrees of freedom, and probability levels. Supposing that we consider the
Student–t with degrees of freedom three. Then eF (0.99)/qF (0.99) = 1.54 and
eF (0.975)/qF (0.99) = 1.11.

However, we are more interested in a general expression of the relationship
between VaR and ES, one that applies to most heavy–tailed distributions.
To this end, we make use of Extreme Value Theory (EVT) and define a
heavy–tailed distribution by regular variation. That is, we assume that

lim
t→∞

1− F (tx)

1− F (t)
= x−α,

for some α > 0, known as the tail index. For the Student–t distribution, the
tail index equals the degrees of freedom. Note that the assumption of regular
variation only applies to the right tail of F , and thus does not impose any
restriction on the rest of the distribution, allowing this approach to capture
a large range of models. Indeed, an assumption of on regular variation is
sufficient for inference on tail risk measures.

The following proposition gives the theoretical foundation on comparing the
levels of VaR and ES at high probability levels. For Proof see the Appendix.

Proposition 1 Suppose F is a heavy–tailed distribution with tail index α.
Given any constant c > 0, we have that

lim
s→0

eF (1− cs)

qF (1− s)
=

α

α− 1
c−1/α.
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To compare the VaR and ES with the same probability level, one can take
c = 1 and s = 1− p in Proposition 1, and get that

lim
p→1

eF (p)

qF (p)
=

α

α− 1
,

that is, when the probability is the same for both risk measures, the ES is
equivalent to the VaR times the multiplier α/(α−1). This ratio is higher than
one, which gives the essential difference between heavy–tailed distributions
and thin–tailed distributions such as the normal distribution. Since the mul-
tiplier is decreasing in α, the more heavy–tailed the distribution of F , the
larger the difference between ES and VaR.

To compare the VaR(99%) with ES(97.5%), set c and s in Proposition 1 such
that s = 1% and cs = 2.5%. Then;

eF (p2)

qF (p1)
≈ α

α− 1
(2.5)−1/α := f(α).

That is, when comparing ES(97.5%) to VaR(99%), the ratio is given by
the function f(α). We plot this function in Figure 1 for α ranging from 2
to 5, which is more than wide enough to cover tail thicknesses commonly
observed. Note the ratio is decreasing in α, ranging between 1.105 and 1.041
for α ranging from 3 to 5.

2.1.2 The estimation uncertainty of VaR and ES

In what follows, we focus our attention on the best case scenario where the
data is i.i.d. and we know it is i.i.d. If we also had to estimate the dynamic
structure, the estimation uncertainty would be further increased. We focus
our attention on the case where F is heavy–tailed with a tail index α, with
the Gaussian as the special case where α = +∞.

We only consider the HS method, and derive the asymptotic properties of
two estimators, q̂F and êF , as given in (1). In HS estimation, only the top
(1− p)N order statistics are used.

Denote the number of observations used in estimators (1) as kq := kq(N) and
ke := ke(N), such that kq, ke → ∞, kq/N → 0, ke/N → 0 as N → ∞. We
can then generalize (1) by defining the ES and VaR as:

q̂F (1− kq/N) = XN,N−kq ,

êF (1− ke/N) =
1

ke

ke
∑

j=1

XN,N−j+1.
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The following proposition gives the asymptotic properties of these estimators
for a general k sequence. For Proof see the Appendix.

Proposition 2 Suppose that X1, · · · , XN are i.i.d. and drawn from a heavy

tailed distribution function F with α > 2. Denote U = (1/(1−F ))← as the

quantile function. Assume the usual second order condition holds:

lim
t→∞

U(tx)
U(t)

− x1/α

A(t)
= x1/αx

ρ − 1

ρ
,

for a constant ρ ≤ 0 and a function A(t) such that limt→∞A(t) = 0. Suppose
k := k(N) is an intermediate sequence such that as N → ∞, k → ∞,

k/N → 0 and
√
kA(N/k) → λ with a constant λ. Then, we have that as

N → ∞,

√
k

(

q̂F (1− k/N)

qF (1− k/N)
− 1

)

d→ N

(

0,
1

α2

)

,

√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ N

(

0,
2(α− 1)

α2(α− 2)

)

.

From Proposition 2, both estimators are asymptotically unbiased. We focus
on comparing their asymptotic variances.

First, we consider the case in which the ES and VaR probability is the same.
In that case, ke = kq = (1− p)N . Consequently, we get that

Var
(

êF (p)
eF (p)

)

Var
(

q̂F (p)
qF (p)

) ≈
2(α−1)
α2(α−2)

1
ke

1
α2

1
kq

=
2(α− 1)

α− 2
= 1 +

α

α− 2
.

Which means that when considering the same probability level, the relative
estimation uncertainty of the ES measure is higher than that of the VaR
measure. The difference is larger for lower α, i.e. heavier distributions.

Next, we compare the estimation uncertainty of VaR(99%) and ES(97.5%).
In this case, we need to set ke/kq = (1−p2)/(1−p1) = 2.5, which reflects the
relative difference in the two tail probabilities. By applying the Proposition
with kq and ke such that ke/kq = 2.5, we get that

Var
(

êF (p2)
eF (p2)

)

Var
(

q̂F (p1)
qF (p1)

) ≈
2(α−1)
α2(α−2)

1
ke

1
α2

1
kq

=
4(α− 1)

5(α− 2)
=: g(α).
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The function g(α) is decreasing in α. By solving g(α) = 1, we get the
break–even point at αbe = 6. For α > 6, g(α) < 1; if α < 6, then g(α) > 1.

That means, if the losses are heavy–tailed with α < 6, the estimation uncer-
tainty in ES(97.5%) is higher than that of VaR(99%).

2.2 Overlapping and time–scaling approaches

Consider the problem of forecasting risk over holding periods longer than
one day, say a H days. We have three main choices in risk forecasting: using
H–day returns from the non–overlapping approach, using the time–scaling
approach for daily risk forecasts, typically

√
H, or using the overlapping

approach to construct H–day returns.

Each approach has its own pros and cons, the first is the most accurate,
but likely to result in unreasonable data requirements. The second is only
strictly correct when the returns are i.i.d. normal, while the last induces serial
dependence in the constructed H–day returns. If one has sufficient data, the
first should always be used. In the absence of that one has to choose between
the latter two. Hence, in this Section, we focus on comparing the overlapping
approach and time–scaling approach.

Suppose Y1, Y2, · · · , YN+H−1 are i.i.d. daily observations with the common
distribution function G. We can then define the two alternatives by;

The overlapping approach Calculate overlapping observations by

Zi =

H
∑

j=1

Yi+j−1

and use Z1, · · · , ZN in estimation with (1). Denote the distribution of
Zi by F ;

The square–root–of–time approach Use Y1, · · · , YN , to estimate qG by
q̂G from (1). Then we estimate qF by

√
Hq̂G.

The number of observations used in these approaches is N +H − 1 and N ,
respectively so the required sample sizes are comparable. The overlapping
approach provides a direct estimate of qF , while the time scaling approach
only provides an estimate of

√
HqG, which is an approximation of qF . In

practice, this approximation turns to be an exact relation if F is i.i.d. normal,
and slightly too high for i.i.d. heavy–tailed distributions.
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Consider the overlapping approach. In this case, the H−day observations
Z1, · · · , ZN are not independent but exhibit a moving average. Clearly, if G
is Gaussian, so is F . If G is heavy–tailed with tail index α, F will also be
heavy–tailed with tail index α; see Feller (1971).

Consider the estimation uncertainty of risk measures based on dependent
observations. The following Proposition is parallel to Proposition 2.

Proposition 3 Suppose Z1, · · · , ZN are dependent observations defined as

Zi =
∑H

j=1 Yi+j−1, where Y1, Y2, · · · , YN+H−1 are i.i.d. observations from a

heavy tailed distribution function with α > 2. Under the same notations and

conditions as in Proposition 2, we have that as N → ∞,

√
k

(

q̂F (1− k/N)

qF (1− k/N)
− 1

)

d→ N

(

0, H
1

α2

)

,

√
k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ N

(

0, H
2(α− 1)

α2(α− 2)

)

.

Proposition 3 shows that using overlapping data enlarges the estimation vari-
ance for the estimators on both VaR and ES by a factor proportional to H ,
leading to the following corollary on the comparison of estimation variance
across the strategies.

Corollary 4 As N → ∞, for a given k sequence satisfying the conditions

in Proposition 3, we have that

Var

(

q̂F (k/N)

qF (k/N)

)

∼ H Var

(√
Hq̂G(k/N)√
HqG(k/N)

)

.

A similar results holds for ES.

To conclude, for both risk measures, given our assumptions, the overlapping
approach will result in a standard deviation that is

√
H times higher as the

standard deviation using the square–root–of–time approach. For non– i.i.d.
data it is necesary to use simulations to compare the two cases, and we do
that in the next Section.

3 Simulation study

While the theoretic results in Section 2 provide guidance as to the asymptotic
performance of the estimators on VaR and ES, in typical sample sizes the
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asymptotics may not yet hold. For that reason, it is of interest to investigate
the properties of the estimators for a range of sample sizes that might be en-
countered in practical applications, and we do that by means of an extensive
simulation study.

Though, it would be straightforward to consider other probability levels, for
the remainder of this Section, we focus on presenting results from the Basel
II and III probabilities, and so we can omit the probability from the notation,
unless otherwise indicated. Hence VaR means VaR(99%) and ES ES(97.5%)
below. We report the full set of results for both probabilities in the the web
appendix at www.ModelsandRisk.org/VaR-and-ES.

In each simulated sample, the sample sizes, N , range from 100 to 12,500 or
more, in intervals of 100, or more. For presentation purposes, we convert
sample sizes above 300 into number of years with a year consisting of 250
observations, so a sample size at 250,000 corresponds to 1,000 years. In
the interest of tractability, below we focus on a representative subset of the
sample sizes, with full results reported in the web appendix.

We consider two fat tailed distributions, the Student–t and the Pareto. The
results from both are qualitatively similar, so in what follows we focus on the
Student–t, leaving the Pareto to the web appendix.

We forecast risk by HS as in (1). Although it is well known that the HS esti-
mator is slightly biased, (see e.g. Blom, 1958), since we focus on comparing
the estimation uncertainty, we do not need to adjust the bias by the methods
proposed by Hyndman and Fan (1996). Another concern is that the mean of
HS estimates across multiple draws is also biased (see e.g. Danielsson et al.,
2015). Again since our main interest is in the uncertainty and not the bias,
a bias adjustment is not necessary.

3.1 The number of simulations

The simulations are used not only to obtain estimates of the risk measures,
but more importantly the uncertainty of those estimates. This means that
in practice we aim to capture the quantiles of the quantiles. Our somewhat
ad hock criteria for the results is that they are accurate for at least three
significant digits, and as it turns out it requires at least S = 107 simulations.
For the largest sample sizes, we are then generating S×N = 107×2.5×105 =
2.5 × 1012 random numbers, and for each sequence need to find a quantile
and a mean.

Why is such a large simulation necessary? Taking the VaR measure as an ex-
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ample, from each sample, we obtain one simulated quantity q̂F/qF −1. Across
S simulated samples, we obtain S such ratios denoted as r1, r2, · · · , rS. They
are regarded as i.i.d. observations from the distribution of q̂F/qF , denoted
as FR. Since we intend to obtain the 99% confidence interval of this ra-
tio, [F−1R (0.005), F−1R (0.995)], we take the [0.005S]-th and [0.995S]-th order
statistics among r1, · · · , rS, rS,[0.0005S] and rS,[0.995S] to be the estimates of
the lower and upper bounds respectively. For the lower bound, following
Theorem 2 in Mosteller (1946), we get that as S → ∞,

√
S

(

rS,[0.0005S]

F−1R (0.005)
− 1

)

d→ N

(

0,
0.0005 · (1− 0.0005)

(

F−1R (0.005)
)2

f 2
R(F

−1
R (0.005))

)

,

where fR is the density function of FR. Following Proposition 2, the distribu-
tion FR can be approximated by a normal distribution with a given standard
deviation σN . Using this approximated distribution, we can calculate the
asymptotic variance of rS,[0.0005S]/F−1

R
(0.005) as

σ2
R =

0.005 · (1− 0.005)

(σNΦ−1(0.005))
2
(

1
σN

φ
(

σNΦ−1(0.005)
σN

))2 = 3.586.

Note that this variance is independent of σN . Therefore this result can be
applied to any estimator that possesses asymptotic normality.

To ensure that the relative error between our simulated lower bound rS,[0.0005S]
and the actual lower bound F−1R (0.005) is less than 0.001 with a confidence
level of 95%, the restriction requires a minimum S such that

S ≥ σ2
R ∗
(

Φ−1(0.975)

0.001

)2

= 1.378× 107.

A minimum of S = 107 samples is necessary for our simulation study and
that is the number of simulated samples we use throughout this section.

3.2 Level comparison of the risk measures

The theoretic results in Section 2.1.1 indicate that the relative difference
between VaR and ES is small for distributions that do not have very heavy
tails, where the difference is inversely related to the tail thickness. We explore
this relation by Monte Carlo simulations with a finite sample size. For each
given α, we simulate observations from standard Student–t distribution with
degree of freedom ν = α, and for each simulated sample, we calculate the
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ratio between the two estimators êF and q̂F . Such a procedure is repeated S
times for each given sample sizes. We plot the average ratio across different
simulated samples with respect to the variation of α, reported in Figure 1.

Figure 1: Ratio of ES(97.5%) to VaR(99%)
The number of simulations is S = 107. The figure shows the ratio of ES(97.5%) to
VaR(99%) for a range of sample sizes.

2.0 2.5 3.0 3.5 4.0 4.5 5.0
α

Theory
300 days
4 years
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50 years

1.0

1.1

1.2

The solid line shows the theoretical level of the ratio, the f(α) function in
Section 2.1.1, declining towards one as the tails become progressively thinner.
The same decline is observed for every sample size. The results for the larger
sample sizes, 10 and 50 years, are increasingly close to the theoretic results,
and at 50 years, virtually the same.

As the sample size decreases, the relative difference between ES and VaR
decreases sharply, especially for the heavier tails. For example, while asymp-
totic theory suggests that for α = 3, ES is 11% larger than VaR, at 300 days
it is only 3% and 8% at 4 years. At the smallest sample sizes, for tails that
are slightly thinner than is usual, the ES falls below the VaR.

3.3 Estimation accuracy

The asymptotic results in Section 2.1.2 show that ES is estimated more
precisely than VaR for relatively thin distributions, and less precisely for the
fatter and more typical distributions, with the break even point at α = 6.
Below we investigate this results further for finite samples.

For each given α, we simulate N observations from a standard Student–
t distribution with degrees of freedom ν = α, where N varies from 100
to 125,000. For each simulated sample, we obtain the two estimates êF
and q̂F and calculate the relative estimation error as the ratio between the
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estimates and their corresponding true values, eF and qF . Such a procedure
is repeated S times for each given sample size. We then report the mean
and standard error of the estimation errors, as well as the 99% empirical
confidence interval, corresponding to the 0.5% and 99.5% quantiles from
the S simulated estimation errors, respectively. Table 1 gives the summary
information for various sample sizes and tail thicknesses.

Table 1: Comparison of the estimation accuracy

VaR(99%) ES(97.5%)

α Sample size bias se 99% conf bias se 99% conf

2.5 300 days 1.11 (0.33) [0.61,2.46] 1.01 (0.38) [0.54,2.64]
2.5 2 years 1.06 (0.22) [0.67,1.89] 1.01 (0.29) [0.61,2.20]
2.5 10 years 1.01 (0.09) [0.82,1.28] 1.00 (0.13) [0.78,1.48]
2.5 50 years 1.00 (0.04) [0.91,1.11] 1.00 (0.06) [0.89,1.19]

3 300 days 1.09 (0.27) [0.65,2.16] 1.01 (0.27) [0.60,2.14]
3 2 years 1.05 (0.19) [0.70,1.73] 1.00 (0.21) [0.66,1.82]
3 10 years 1.01 (0.08) [0.84,1.23] 1.00 (0.09) [0.82,1.31]
3 50 years 1.00 (0.03) [0.92,1.09] 1.00 (0.04) [0.91,1.12]

4 300 days 1.07 (0.21) [0.69,1.85] 1.00 (0.19) [0.66,1.73]
4 2 years 1.04 (0.15) [0.74,1.55] 1.00 (0.15) [0.72,1.52]
4 10 years 1.01 (0.06) [0.86,1.19] 1.00 (0.06) [0.86,1.20]
4 50 years 1.00 (0.03) [0.93,1.08] 1.00 (0.03) [0.93,1.08]

Note: For each given α and sample size N , S = 107 observations from a standard Student–t distribution

with degree of freedom ν = α are simulated. For each simulated sample, the ES and VaR are estimated and

then divided by their corresponding true values. The resulting ratio is regarded as the relative estimation

error. The table reports the bias (mean), standard error and 0.5% and 99.5% quantiles of these ratios

across the simulated samples. The two quantiles are reported as the lower and upper bounds of the 99%

confidence interval. In comparing across the two risk measures, the red values indicates whose with the

higher standard error.

We obtain three main results: First, the Monte Carlo results are consistent
with the theoretic result in Proposition 2, i.e. ES is estimated with more
uncertainty than VaR. This simulation results show that the only exception
occurs at the very small sample size combined with a higher α.

Second, the estimation bias increases as the sample size becomes smaller.
This is expected given the HS bias of Blom (1958) and Monte Carlo bias of
Danielsson et al. (2015). It also follows that the use of ES will partly offset
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the HS bias.

Finally, the empirical confidence bounds indicate that the estimation errors
are highly positively skewed, especially for the small sample sizes. For exam-
ple, at N = 300 and α = 2.5, the 99% confidence interval for VaR ranges from
about 61% to 246% of the true value. Even for an uncommonly large 10–year
sample, the confidence bound is [0.82,1.28]. For ES(97.5%), the confidence
bounds are wider at [0.54,2.64] and [0.78,1.48], respectively.

3.4 The overlapping approach and the time–scaling

approach

The theoretic results in Section 2.2 provided insights into the impact of using
overlapping estimation or time–scaling to obtain multi–day holding period
risk forecasts. We further extend those results by means of Monte Carlo sim-
ulations, both investigating the final example properties but also examining
the impact of using dependent data. Below we only report a subset of the
results for VaR, as the results for ES were qualitatively similar, with the full
results available in the web Appendix.

For each given distribution andH , we simulate N daily observations, S = 107

times, varying N from 300 to 12,500 (50 years). For each simulated sample,
we estimate the H–day holding period VaR using both the time–scaling and
overlapping date approaches. Similar to the above, we divide the estimates
by the true values. Since we estimate the VaR of the H–day holding period,
which is not analytically tractable, we have to rely on simulation results with
very large data samples to obtain the true values. We consider H = 10 and
H = 50.

3.4.1 Data generating process: The i.i.d. case

We start with the i.i.d. case and report the results in Table 2, which is similar
to Table 1, with the addition of two columns that show the ratios of the se
and the width of the confidence interval, for the overlapping approach over
the square–root–of–time approach.

The i.i.d. simulation results are consistent with those predicted by Propo-
sition 3 in that time–scaling results in better estimation accuracy than the
overlapping destination. Both the standard errors and the width of the con-
fidence intervals for the overlapping approach are much higher than that of
the time–scaling approach, ranging from 1.3 to 3.9 times larger.
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Table 2: Impact of overlapping data on VaR: Student–t

(a) H=10

N α overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 2.5 1.01 (0.81) [0.43,4.48] 1.13 (0.33) [0.62,2.49] 2.5 2.2
2 years 2.5 1.12 (0.88) [0.50,5.31] 1.08 (0.23) [0.68,1.91] 3.8 3.9
10 years 2.5 1.03 (0.21) [0.70,1.92] 1.03 (0.089) [0.83,1.29] 2.4 2.7
50 years 2.5 1.00 (0.080) [0.84,1.26] 1.02 (0.039) [0.92,1.12] 2.1 2.1

300 days 3.0 1.00 (0.49) [0.48,3.25] 1.16 (0.29) [0.69,2.30] 1.7 1.7
2 years 3.0 1.06 (0.54) [0.56,3.65] 1.12 (0.20) [0.75,1.84] 2.7 2.8
10 years 3.0 1.01 (0.15) [0.75,1.61] 1.08 (0.081) [0.90,1.32] 1.9 2.0
50 years 3.0 1.00 (0.060) [0.87,1.19] 1.07 (0.035) [0.98,1.17] 1.7 1.7

300 days 4.0 0.98 (0.29) [0.53,2.23] 1.17 (0.23) [0.75,2.02] 1.3 1.3
2 years 4.0 1.02 (0.28) [0.61,2.32] 1.13 (0.17) [0.81,1.70] 1.6 1.9
10 years 4.0 1.00 (0.10) [0.80,1.35] 1.10 (0.068) [0.94,1.30] 1.5 1.5
50 years 4.0 1.00 (0.043) [0.90,1.13] 1.09 (0.030) [1.02,1.17] 1.4 1.5

(b) H=50

N α overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 2.50 0.72 (0.43) [0.15,2.44] 1.15 (0.34) [0.63,2.53] 1.3 1.2
2 years 2.50 0.81 (0.46) [0.27,2.79] 1.09 (0.23) [0.69,1.94] 2.0 2.0
10 years 2.50 1.08 (0.77) [0.56,4.55] 1.04 (0.090) [0.84,1.31] 8.6 8.5
50 years 2.50 1.01 (0.16) [0.75,1.69] 1.03 (0.039) [0.94,1.14] 4.1 4.7

300 days 3.00 0.76 (0.32) [0.17,1.95] 1.20 (0.30) [0.71,2.37] 1.1 1.1
2 years 3.00 0.84 (0.32) [0.30,2.12] 1.15 (0.21) [0.77,1.89] 1.5 1.6
10 years 3.00 1.02 (0.39) [0.61,2.89] 1.11 (0.083) [0.92,1.35] 4.7 5.3
50 years 3.00 1.00 (0.11) [0.80,1.39] 1.10 (0.036) [1.01,1.20] 3.1 3.1

300 days 4.00 0.78 (0.27) [0.18,1.65] 1.20 (0.24) [0.77,2.08] 1.1 1.1
2 years 4.00 0.86 (0.25) [0.33,1.70] 1.16 (0.17) [0.83,1.74] 1.5 1.5
10 years 4.00 0.99 (0.19) [0.65,1.74] 1.13 (0.070) [0.97,1.33] 2.7 3.0
50 years 4.00 1.00 (0.076) [0.83,1.23] 1.12 (0.031) [1.05,1.21] 2.5 2.5

Note: For each given α and holding period H, N daily observations from standard Student–t distribution

with degree of freedom ν = α are simulated with a year consisting of 250 days. For each simulated sample,

the VaR of H-day holding period is estimated using the two strategies in Section 2.2 separately, and then

divided by the corresponding true value obtained from pre-simulations. The resulting ratio is regarded as

the relative estimation error. The table reports the mean, standard error and 0.5% and 99.5% quantiles

of these ratios across S simulated samples with S = 107. The two quantiles are reported as the lower

and upper bounds of the 99% confidence interval. The last two columns show the ratios of the se and the

width of the confidence interval, for the overlapping approach over the square–root–of–time approach.
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The bias and uncertainty for the overlapping approach first increases and then
decreases as the sample size increases, something not observed for the time–
scaling approach. We surmise that this happens because as N increases from
300 to 1,000, so does the probability of having very large daily losses. These
daily losses will persist in H–day losses for H days, which is a significant
fraction of the sample of H–day losses. This reduces the estimation accuracy.
Eventually, as the N increases further, we move away from the scenario that
the persistent large H–day losses can be regarded as a large fraction of the
sample. Therefore, the sample size effect starts to perform. This implies that
the overlapping approach performs the worst when used for typical sample
sizes, such as two years.

3.4.2 Data generating process: Dependent data

Table 3: Impact of overlapping data on VaR, t-GARCH(0.01, 0.04, 0.94, 6.0)

(a) H=10

N overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 1.01 (0.33) [0.49,2.38] 1.14 (0.29) [0.68,2.33] 1.1 1.1
2 years 1.02 (0.29) [0.57,2.28] 1.11 (0.22) [0.72,2.00] 1.3 1.3
10 years 1.01 (0.14) [0.75,1.52] 1.06 (0.100) [0.86,1.40] 1.4 1.4
50 years 1.00 (0.059) [0.87,1.18] 1.05 (0.044) [0.95,1.18] 1.3 1.3

(b) H=50

N overlapping approach square–root–of–time approach Ratios of
overlap to scaling

mean se 99% conf mean se 99% conf se range

300 days 0.78 (0.32) [0.17,2.00] 1.16 (0.29) [0.69,2.37] 1.1 1.1
2 years 0.85 (0.31) [0.30,2.05] 1.12 (0.23) [0.74,2.02] 1.3 1.4
10 years 0.99 (0.24) [0.60,2.00] 1.08 (0.10) [0.87,1.42] 2.4 2.5
50 years 1.00 (0.10) [0.79,1.33] 1.07 (0.044) [0.96,1.20] 2.3 2.3

Note: For each holding period H, N daily observations from the GARCH model (2) are simulated with a

year consisting of 250 days. For each simulated sample, the VaR ofH–day holding period is estimated using

the two strategies in Section 2.2 separately, and then divided by the corresponding true value obtained

from pre-simulations. The resulting ratio is regarded as the relative estimation error. The table reports

the mean standard error and 0.5% and 99.5% quantiles of these ratios across S simulated samples with

S = 107. The two quantiles are reported as the lower and upper bounds of the 99% confidence interval.

The last two columns show the ratios of the se and the width of the confidence interval, for the overlapping

approach over the square–root–of–time approach.
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The overlapping approach induces serial dependence and is therefore likely to
be especially sensitive to the inherent dependence of the data. We therefore
also explore the impact of simulating from dependent data, using a speci-
fication that both captures the fat tails and dependence. There are many
different ways one could specify such a model. A commonly used specification
would be a normal GARCH model, but such a model would not adequately
capture the tails, (see e.g. Sun and Zhou, 2014) and we therefore opted for a
GARCH model with Student–t innovations. We parameterized the simula-
tion model by estimating the same specification for a number of stocks and
picking a typical set of parameters. In particular:

{

Xt = σtεt;
σ2
t = 0.01 + 0.94σ2

t−1 + 0.04X2
t−1;

(2)

where εt are i.i.d. innovation terms following a standardized Student–t dis-
tribution with degree of freedom 6 and unit variance.

Table 3 reports the result based daily observations generated from the GARCH
model. Notice that due to the serial dependence in the GARCH model, our
theoretical result in Proposition 3 may not hold. Therefore, we have to rely
on the simulation result for comparing the two approaches.

Compared to the i.i.d. case, the time–scaling approach results in even lower
standard errors than the overlapping approach. In addition, there are two
important differences between the i.i.d. and dependent cases for the overlap-
ping approach. First, in the dependent case, the standard errors and biases
decrease as N increases. Second, for H = 50, and N less than 10 years, there
is a downward bias, i.e. the estimates are lower than the true value. The
bias can be around 20% for low values of N .

The first difference provides some support for using the overlapping approach
for dependent data, even though the time–scaling approach still performs
better in terms of estimation accuracy. This benefit is counteracted by the
second observation, where, for example, from a viewpoint of a prudential
regulator, the lower bound of the confidence interval based on overlapping
approach is much lower than that based on time–scaling approach.

4 Empirical results

While the theoretic and simulation results above provide a clear picture of
the relative properties of various risk measures, they were obtained under
particular distributional assumptions. To augment those results, we also
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employ observed returns from CRSP. The downside is that since we do not
know the true value of the risk measures, we cannot directly validate the
estimation uncertainty, but can approximated by means of a block bootstrap
procedure.1

Our data sets consists of daily returns on all stock prices traded on NASDAQ,
NYSE or AMSE from 1926 to 2014. We removed illiquid stocks2 as well as
those with less than 650 observations.3 This filtering procedure results in
7,686 stocks. For each stock, we split the time series into non–overlapping
samples with sample sizes N and then pool all samples from different stocks
together. The sample sizes in this analysis are N = 600, 1000 and 5000
resulting in 34,244, 20,097 and 2,503 samples for each of the three sample
sizes, respectively.

Similar to the simulation analysis, the probability levels are 99% for VaR
and 97.5% for ES. For expositional expediency, we therefore drop a reference
to the probabilities from the notation.

In line with the theoretic and simulation analysis, the real data study consists
of three parts: a comparison of the levels of VaR and ES, the relative esti-
mation uncertainty between VaR and ES and overlapping and time-scaling
approaches.

4.1 Level comparison

To compare the levels of VaR and ES, we calculate the ratio ES/VaR for each
sample and report the cross-sectional mean, median and standard error. In
addition, we report the fraction of samples with a ratio above one in the row
ratio. Finally, we do a t–test to test the mean equaling one across all samples,
and report the p–value in the row p–value. All results are in Column 4 of
Table 4.

We observe that the level of ES is slightly but statistically significantly higher

1The block size needs to be large enough to capture the inherent dependence in the
data, and we opted for 200 days.

2The liquidity criterion is related to the sample splitting procedure. A non–overlapping
sample of one stock is included in our analysis if on the first day of the sample the stock
has a share price above 5$ and market capitalization is higher than the 10% quantile of
the market capitalization of all stocks traded on NYSE on that day.

3The minimum sample size is determined at N + H , where N is the minimum sample
size 600 and H is the longest liquidity horizon in our analysis 50. The reason to choose
the minimum sample size at N = 600 instead of 500 is due to the block bootstrapping
procedure: the sample size is required to be a multiple of the block size, 200.
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than that of VaR for each of the sample sizes respectively. However, the
economic significance is rather weak, especially for the smaller and more
typical sample sizes such as N = 600.

Following the simulation results in Figure 1, the ratio for large sample sizes
is close to its theoretical value f(α). By taking the mean ratio 1.06 under
N = 5, 000, we invert the relation f(α) = 1.06 to get that α∗ = 4.01. This
result is in line with the estimated tail index of stock returns in literature,
see, e.g. Jansen and de Vries (1991).

4.2 Estimation accuracy

In order to compare the estimation uncertainty of VaR and ES, we start with
calculating the variation coefficient ratio (VCR) between ES and VaR, for
each sample. The VCR between two risk measures ϕ1 and ϕ2 is defined as

VCR(ϕ1, ϕ2) =
σ(ϕ1)/ϕ̂1

σ(ϕ2)/ϕ̂2

,

where ϕ̂i is the point estimate for ϕi and σ(ϕi) is the standard error of the
estimation obtained from block bootstrapping, i = 1, 2.

The block bootstrapping procedure is as follows. We randomly draw a num-
ber of blocks consisting of consecutive observations with a block size B = 200
from the given sample. With N/B blocks, we construct a bootstrapped sam-
ple with sample size N . For each bootstrapped sample j, we get the point
estimate of ϕi as ϕ̂i

(j), where j = 1, 2, · · · , K. Here the number of replica-
tion K = 5, 000. Then we calculate the standard error σ(ϕi) as the sample
standard deviation among the K bootstrapped estimates.

From the theoretic analysis of i.i.d. data, one would expect that the VCR
(ES,VaR) exceeds one. However, the results in Column 5 in Table 4 show that
the VCR (ES,VaR) exceeds one only for the largest sample size N = 5, 000
so the empirical results only partially support the theoretic results. This is
comparable with some exceptional results in the simulation study, see Table
1, the last panel with α = 4.

To further explore the economic impact of estimation uncertainty, we com-
pare the lower bound of the 99% confidence interval when estimating the two
risk measures. For each given sample, using the bootstrapping procedure, we
take the 0.005K–th and 0.995K–th quantiles among the K bootstrapped es-
timates of VaR to construct the 99% confidence interval for the VaR estimate.
We focus on the lower bound and denote it as l(VaR). Similarly, we obtain
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l(ES) Then, we calculate the ratio between the standardized lower bounds
as

Q(VaR,ES) =
l(VaR)/ ̂VaR

l(ES)/̂ES

We report the outcome based on these ratios in the 5th column of Table 4.
The lower bound of VaR is significantly higher than that of ES across all
sample sizes, in line with our simulation results in Table 1.

4.3 The overlapping approach and the time–scaling

approach

Finally, we compare the overlapping approach and the time–scaling approach,
in particular the square–root–of–time approach. The notation VCR (VaR
H10) is the VCR is between the VaR measures using the overlapping ap-
proach and square–root–of–time approach, and similarly for ES and H = 50.
The results are reported in the last four columns of Table 4.

We find strong evidence that all four VCRs are significantly above one. These
results are in line with our qualitative conclusion drawn from theoretical
analysis and simulations. The average VCR for H = 10 is below

√
10 and

that for H = 50 is below
√
50. Therefore, the empirical VCR is lower than

the predicted VCR when assuming independence. Nevertheless, they are
close to the simulation results when the DGP is a t–GARCH process, see
Table 3. Hence, we conclude both from simulation and real data analysis
that the serial dependence leads to VCR that are lower than those derived
from the independent case.

5 Analysis

The theoretic, simulation and real data analysis together paint a clear picture
of the performance of common risk measures and provide a deep understand-
ing of results often observed in practice.

Three main results emerge.

First, the theoretic superiority of ES over VaR comes at the cost of higher
estimation error for ES. For many end–users, using typical sample sizes of a
few hundred to a few thousand observations, this may well tip the advantage
in favor of VaR.
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Table 4: Empirical analysis with the CRSP data

N
Number of
Samples

Level ES and VaR uncertainty VCR holding period comparisons

ES/VaR VCR (ES,VaR) Q(VaR,ES) VaR H10 VaR H50 ES H10 ES H50

mean 1.03 0.91 1.02 1.39 2.28 1.41 2.53
median 1.01 0.86 1.01 1.16 1.78 1.24 2.04

600 34,244 se 0.09 0.39 0.11 1.01 2.49 0.73 2.48
ratio 0.57 0.29 0.55 0.61 0.85 0.70 0.93

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mean 1.04 0.96 1.01 1.40 1.90 1.33 1.97
median 1.03 0.92 1.01 1.22 1.63 1.24 1.73

1000 20,097 se 0.08 0.29 0.09 0.80 1.06 0.53 0.96
ratio 0.71 0.34 0.54 0.67 0.88 0.73 0.93

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

mean 1.06 1.01 1.01 1.43 2.03 1.35 1.85
median 1.06 0.98 1.01 1.35 1.83 1.31 1.75

5000 2,503 se 0.04 0.18 0.04 0.49 0.89 0.33 0.64
ratio 0.97 0.45 0.58 0.83 0.95 0.87 0.96

p–value 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note: The table shows the empirical results using daily returns on all liquid traded stocks on NASDAQ, NYSE or AMSE from 1926 to 2014. Each stock return

series is split into non–overlapping samples with sample sizes N = 600, 1, 000, 5, 000. All samples from different stocks are pooled together. A sample is included

if on the first day of the sample the stock has a share price above 5$ and market capitalization higher than the 10%th quantile of the market capitalization

of all stocks traded on NYSE on that day. The number of samples are reported in column 2. Column 4 reports the summary statistics of the ratios ES/VaR

across all samples. The row “ratio” reports the fraction of samples with a ratio above one. The row “p–value” reports the p–value of a t-test that the mean

equals to one. The empirical results for the variation coefficient ratio (VCR) between ES and VaR are reported in Column 5. For the calculation of the VCR,

a block bootstrapping procedure is employed with details in Section 4. Column 5 reports the empirical results based on the ratio Q(VaR, ES), which measures

the relative difference in the lower bound of the confidence intervals for VaR and ES with the calculation details in Section 4. The last four columns report the

empirical results based on the VCR between the a given risk measure and liquidity horizon using the overlapping approach and square–root–of–time approach.
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The second result is that the overlapping approach is much less accurate than
the time–scaling approach. This certainly holds for i.i.d. data and with the
dependent structure considered here. Indeed, there seems to be little reason
to use the overlapping approach when forecasting risk. If one is interested in
longer holding periods, the time–scaling approach approach allowed in Basel
II and the 2014 version of Basel III, is more accurate than the overlapping
approach in the 2013 version of Basel III.

Finally, both ES and VaR are highly sensitive to the sample size. The asymp-
totic properties of the estimators can only be attained when sample sizes span
half a century or more. For the smaller sample sizes, below a few thousand
days, the uncertainty becomes considerable, and at 500 or less very little
signal remains. Consider the case of typically thick tails (α = 3) and a 500
day sample size. In this case, the 99% confidence interval around the true
value of one is [0.70, 1.73] for VaR(99%) and [0.66,1.82] for ES(97.5%).

We also observed estimation biases using the HS method, expected given
Blom (1958). Nevertheless, sometimes the estimation bias can work in the
opposite direction: an upwards bias may lead to a relatively high value on
the lower bound. Therefore, a full discussion on estimation uncertainty may
take into account both bias and variance. Regardless, it is straightforward
to adjust for this bias, using for example the methods proposed by Hyndman
and Fan (1996).

From a purely statistical point of view, there is little to recommend ES over
VaR. Still, there can be very good reasons for opting for a risk measure like
ES that otherwise is less accurate statistically than the alternatives. Because
VaR is only one point on the distribution and profit and loss and ES captures
the entire tail from that point, ES harder to manipulate.

A financial institution may manipulate the risk forecast by picking a partic-
ular estimation method. However, there is no guarantee that an estimation
method that delivers a favorable result today will deliver similar favorable re-
sults in the future. Instead, manipulation is much likely to happen by picking
trades that place assets on the on the lower boundary of the confidence inter-
val, something very easy to do while being virtually undetectable. Because
ES captures all tail events, it is be harder to implement such manipulation
than if VaR is used.
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5.1 Implications for back testing

The high estimation uncertainty for both risk measures provides one expla-
nation for why violation ratios in back testing so often deviate from the
expected values by large amounts. Since the lower bound can be regarded
as an estimate of the risk metric within a reasonable confidence level, the
violation ratio based on the lower bound can also be regarded as acceptable
at the same confidence level. However, due to the large difference in absolute
value, the actual violation ratio using the lower bound may largely deviate
from the expectation. This makes the backtesting procedure on reported risk
measures challenging.

The high uncertainty of risk forecasts explains why back–testing procedures,
such as violation ratio analysis, often perform so badly, since the main-
tained Bernoulli distribution for violations does not hold in typical sample
sizes. This is above and beyond the well-known small sample problem in the
Bernoulli distribution when calculation violation ratios.

5.2 Implications for Basel III

In the latest Basel III market risk proposals, the Basel committee suggests
replacing 99% VaR with 97.5% ES. Our results indicate that this will lead to
less accurate risk forecasts. If the regulators are concerned by precision, VaR
is preferred. However, ES is harder to manipulate than VaR and therefore
might be preferred even if it is less accurate.

When looking at the confidence intervals, a particular regulatory focus is on
the lower bounds. This does give banks some scope for deliberately underre-
porting risk, perhaps by cherry picking trades known to be on the lower edge.
On the other hand, since the confidence bound is highly asymmetric, with
a much higher upside, if banks use the point estimate of the risk measures,
they are more likely to hold excessively large trading book capital than they
are to hold too little capital.

Finally, in some cases the 99% VaR is larger than the 97.5% ES, meaning that
the move from Basel II to Basel III may result in lower risk forecasts. This
is especially likely for the smaller sample sizes most likely to be encountered
in practice.
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5.3 The importance of confidence bounds

These results indicate that it is not advisable for neither financial institutions
nor the regulators to rely solely on point estimates of risk forecasts. It is im-
portant to also report the confidence bounds. Furthermore, given the highly
asymmetric nature of these bounds, the actual bounds should be reported,
rather than reporting the standard error only.

6 Conclusion

In this paper we focus on three issues in risk analysis: the choice of risk mea-
sures, the aggregation method when considering longer holding period and
the number of observations needed for accurate risk forecast. We compare
the most commonly used risk measures, the VaR and ES.

We conclude that overall VaR is superior to ES, yielding more accurate risk
forecasts. When it comes to longer holding periods, the time–scaling ap-
proach has the advantage over the overlapping approach. Finally, we need
half a century of daily data for the estimators to reach their asymptotic prop-
erties, with the uncertainty increasing rapidly with lower sample sizes. At
sample sizes of few hundred, the risk forecast retain very little information
content.
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Appendix

Proof of Proposition 1.

Recall that F is a heavy-tailed distribution with tail index α. Danielsson
et al. (2006) showed that if α > 1

lim
s→0

eF (1− s)

qF (1− s)
=

α

α− 1
. (3)

In addition, from the regular variation condition, we get that

lim
s→0

qF (1− cs)

qF (1− s)
= (2.5)−1/α. (4)

The proposition is proved by combining Eq. (3) and (4).

Proof of Proposition 2.

Under the conditions in the proposition, Theorem 2.4.8 in de Haan and
Ferreira (2006) showed that there exists a proper probability space with
Brownian motions {WN(s)}s≥0 such that as N → ∞,
∣

∣

∣

∣

√
k

(

XN,N−[ks]

U(N/k)
− s−1/α

)

− 1

α
s−

1
α
−1WN (s)−

√
kA(N/k)s−

1
α
s−ρ − 1

ρ

∣

∣

∣

∣

P→ 0

(5)
holds uniformly for all 0 < s ≤ 1.

By taking s = 1, the first statement on q̂F (1 − k/N) follows immediately.
To prove the second statement on êF (1 − k/N) , we apply the integral for
s ∈ (0, 1] to (5) and obtain that as N → ∞
√
k

(

êF (1− k/N)

U(N/k)
− 1

1− 1/α

)

−
∫ 1

0

1

α
s−

1
α
−1WN (s)ds−λ

1

(1− ρ)(1− 1/α− ρ)

P→ 0.

Notice that it is necessary to have α > 2 to guarantee the integrability of
∫ 1

0
1
α
s−

1
α
−1WN (s)ds.

Similarly, from the inequality (2.3.23) in de Haan and Ferreira (2006), we get
that for any ε > 0, with sufficiently large N ,
∣

∣

∣

∣

√
k

(

U(N/ks)

U(N/k)
− s−1/α

)

−
√
kA(N/k)s−

1
α
s−ρ − 1

ρ

∣

∣

∣

∣

≤ ε
√
kA(N/k)s−1/α−ρ−ε,

holds for all 0 < s ≤ 1. With a small ε such that 1/α + ρ + ε < 1, we can
take integral for s ∈ (0, 1] on both sides and obtain that as N → ∞,

√
k

(

eF (1− k/N)

U(N/k)
− 1

1− 1/α

)

→ λ
1

(1− ρ)(1− 1/α− ρ)
.
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Therefore, by comparing the asymptotics of êF (1−k/N)
U(N/k)

and eF (1−k/N)
U(N/k)

, we get
that √

k

(

êF (1− k/N)

eF (1− k/N)
− 1

)

d→ α− 1

α2

∫ 1

0

s−
1
α
−1W (s)ds.

The proof is finished by verifying the variance of the limit distribution as
follows.

Var

(

α− 1

α2

∫ 1

0

s−
1
α
−1W (s)ds

)

=
(α− 1)2

α4

∫ 1

0

ds

∫ 1

0

dt
(

s−
1
α
−1t−

1
α
−1min(s, t)

)

=
2(α− 1)2

α4

∫ 1

0

dt

(

t−
1
α
−1

∫ t

0

s−
1
αds

)

=
2(α− 1)

α3

∫ 1

0

t−
2
αdt

=
2(α− 1)

α2(α− 2)
.

Proof of Proposition 3.

Proposition 2 was proved based on the limit relation (5). We refer to a similar
relation based on dependent data, see Theorem 2.1 in Drees (2003). There
exists a proper probability space with Gaussian processes {BN (s)}s≥0 such
that
∣

∣

∣

∣

√
k

(

XN,N−[ks]

U(N/k)
− s−1/α

)

− 1

α
s−

1
α
−1BN (s)−

√
kA(N/k)s−

1
α
s−ρ − 1

ρ

∣

∣

∣

∣

P→ 0

(6)
holds uniformly for all 0 < s ≤ 1, as N → ∞. Here the Gaussian processes
{BN (s)}s≥0 has a covariance function c(x, y) := Cov(BN(x), BN(y)) deter-
mined by the dependence structure as follows. Denote cm(x, y) as the tail
dependence function between X1 and X1+m as

lim
t→∞

tPr(X1 > U(t/x), X1+m > U(t/y)) = cm(x, y).

Then

c(x, y) = min(x, y) +

+∞
∑

m=1

(cm(x, y) + cm(y, x)).

We calculate the specific c function under the moving average structure Xi =
∑H

j=1 Yi+j−1. It is clear that cm(x, y) = 0 for m ≥ H . Next, for 1 ≤ m < H ,
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we have that

cm(x, y) = lim
t→∞

tPr(X1 > U(t/x), X1+m > U(t/y))

= lim
t→∞

tPr(

H
∑

j=m+1

Yj > max(U(t/x), U(t/y)))

= lim
t→∞

t(H −m) Pr(Yj > U(t/min(x, y)))

=
H −m

H
min(x, y).

Consequently,

c(x, y) = min(x, y) + min(x, y) · 2
H−1
∑

m=1

H −m

H
= Hmin(x, y).

The covariance function of BN(s) indicates that we can write BN (s) =√
HWN(s), where WN is a standard Brownian motion. The proposition

is thus proved by following similar steps as in the proof of Proposition 2.
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