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Abstract

The central problem in case based reasoning (CBR) is to infer a solution for a new
problem-instance by using a collection of existing problem-solution cases. The basic
heuristic guiding CBR is the hypothesis that similar problems have similar solutions.
Recently, some attempts at formalizing CBR in a theoretical framework have been made,
including work by Hüllermeier who established a link between CBR and the probably
approximately correct (PAC) theoretical model of learning in his ‘case-based inference’
(CBI) formulation. In this paper we develop further such probabilistic modelling, framing
CBI it as a multi-category classification problem. We use a recently-developed notion of
geometric margin of classification to obtain generalization error bounds.
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1. Introduction and related work

The basic problem in case based reasoning (CBR) is to infer a solution for a new problem-
instance by using a collection of existing problem-solution cases [1]. (We will henceforth
use ‘problem’ for ‘problem instance’.) The basic heuristic that guides CBR is the hy-
pothesis that similar problems have similar solutions (see [2], for example). The area of
CBR research has had practical success and has been shown to be widely applicable [3].
The well known methodological framework of case-based reasoning divides CBR into four
main steps (referred to as the R4 framework): retrieve, reuse, refine and retain [2].

There have been a number of attempts to develop a sound theoretical basis for CBR.
Significant recent work, due to Hüllermeier [4], makes a connection between CBR and
the probably approximately correct (PAC) theoretical model of learning [5]. Hüllermeier
defines case-based reasoning as a prediction process, which allows him to make the connec-
tion between CBR and the learning based on a sample. He calls this framework case-based
inference (CBI) and it aims to solve the ‘retrieve’ and ‘reuse’ steps of the R4 framework.
Given a new problem to be solved, CBI aims just to produce a ‘promising’ set of solutions
for use by the remaining two steps of the R4 framework. The last two stages of the R4

framework use not just the set of candidate solutions but also domain-knowledge, user
input and further problem-solving strategies [2]. As noted in Section 5.4 of [6], these steps
adapt the set of promising solutions into a solution that fits the existing problem.

In this paper, we continue work in the direction inspired by [2], probabilistically mod-
elling case-based inference as a multi-category classification problem. We use a recently-
developed notion of geometric margin of classification, called width, to obtain general-
ization error bounds. This notion has recently been used in [7] to exploit regularity in
training samples for the problem of classification learning in finite metric spaces. The
main results in the current paper are bounds on the error of case-based learning which
involve the sample width.

Dubois and Prade [8] and Dubois et al. [9] attempted to provide a formal model of CBR
which is based on fuzzy logic. The similarity between two problems (or two solutions)
is represented by a fuzzy relations. There is no learning process for determining these
relations. Our model differs from theirs in that we learn from examples to produce a set of
candidate solutions for input problems; and we do not employ fuzzy logic, but statistical
learning under the PAC framework.
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Ontañón and Plaza [10] introduce a model of knowledge transfer for case-based inference
part of CBR. It produces, from retrieved cases (cases whose problems are similar to the
given problem), a set of conjectures (or incomplete solutions) rather than actual solutions.
A conjecture may require further adaptation, for instance using some domain specific rules,
in order to produce a solution. (Their model can deal with cases where there is no clear
distinction between a problem and solution.) Our model differs from theirs in that it
produces a set of complete solutions for the input problem (rather than conjectures); and
our model expands on the CBI framework of Hüllermeier, and hence we have two separate
spaces, one for solutions and one for problems.

In Section 2, we start by describing Hüllermeier’s framework of CBI, where the goal is
to predict a ‘credible’ or promising set of solutions for a given input problem instance.
We outline and explain our contribution and its connections with this framework. The
key idea is that we model CBI as a supervised learning problem. Section 3 describes
a probabilistic model that is the basis of our analysis. We redefine what is meant by
a credible set in this context and we provide a mathematical formalism for measuring
the success of a method for predicting credible sets. Section 4 presents some recent
results on the generalization accuracy of learning multi-category classifiers defined on
metric spaces, and provides results on which we draw for the conclusions of this paper.
Section 5 describes in detail the important transformation of learning CBI to the problem
of supervised learning. Section 6 provides bounds on the error of learning CBI. These
bounds can serve as a guiding criterion for the design of successful algorithms.

One main contribution is to show how learning CBI over the wide spectrum of complex and
unstructured CBR domains can be transformed to standard supervised learning problems.
A further contribution is in showing how the large-width advantage (familiar from the
branch of learning theory known as large-margin learning) can also be realised for learning
CBI.

2. Case-based inference (CBI)

In the Introduction, we mentioned that CBI infers as an output a set of candidate, or
‘promising’, solutions rather than solving the full CBR problem by predicting a single
specific solution. This is at the basis of what Hüllermeier [4] calls approximate reasoning.
We now describe his framework (using slightly different notation).
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2.1. Hüllermeier’s CBI framework

In the general set-up of Hüllermeier’s case-based inference, there is a problem space,
denoted by X , and a solution space, denoted by Y . We define Z := X × Y . The
problem space and solution space may be very general; in particular, not only finite-
dimensional vector spaces (as those that are common in supervised learning) but also
problems described by more complex structures like trees, graphs, or plans. Each of the
spaces, X , Y , has a similarity function, simX : X ×X → [0, 1] and simY : Y ×Y → [0, 1],
respectively. These are reflexive and symmetric; that is, simX (x, x) = 1, and simX (x, x′) =
simX (x′, x), and similarly for simY . The goal of case-based inference in [4] can be described
as follows.

Goal of CBI in [4]: Given a sample {zi}mi=1 = {(xi, yi)}mi=1 (also referred to as a case-
base), consisting of problem-solution pairs, and given a new problem instance x, produce
for it a subset of solutions (subset of Y) called a credible set, that contains some (possibly
all) solutions for the problem x.

An underlying assumption is that there exists some unknown relationship between the
level of similarity of pairs of problems and the similarity of their solutions. Hüllermeier[4]
represents this by a similarity profile σ, mapping from [0, 1] to [0, 1] and defined by

σ(α) := inf
x,x′∈X :simX (x,x′)=α

simY(y, y′)

where (x, y), (x′, y′) ∈ Z are two problem-solution pairs. This function σ represents in a
formal way the CBR assumption that similar problems have similar solutions, since given
any pair of problems that are similar by a value of α, their solutions must be at least
similar by a level of σ(α).

Theoretically speaking, if one knows σ then, for a given problem x, one can produce a
’credible’ set of solutions, which is defined as

C(x) :=
m⋂
i=1

Γσ (zi, x) (1)

where Γσ(zi, x) ⊆ Y is given by

Γσ(zi, x) = {y : simY(y, yi) ≥ σ(simX (xi, x))} .
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Since σ is unknown, the aim in this framework is to learn a hypothesis function which
approximates σ. This is called a ‘similarity hypothesis’ h : [0, 1] → [0, 1]. Substituting h
for σ in (1) yields the following hypothesis set:

Ch(x) :=
m⋂
i=1

Γh (zi, x) (2)

where
Γh(zi, x) = {y : simY(y, yi) ≥ h(simX (xi, x))} .

If it is possible to guarantee that h(α) ≤ σ(α), for all α ∈ [0, 1] then C(x) ⊆ Ch(x),
which means that the hypothesis set must be a credible set since it contains the credible
set of (1). In reality, one cannot guarantee this, and hence Ch(x) may not be a credible
set. But one can state probabilistic confidence levels that this holds if h is chosen from
a suitable class of empirical similarity hypotheses. It is not intended here to describe
the details of this class of hypothesis but we note that the class consists of hypotheses
that are generated by the classic candidate-elimination algorithm (see algorithm Find-S
of [11]). Hypotheses h in this class are piecewise-constant on [0, 1] and the generalization
heuristic of the Find-S algorithm is used to learn a good h.

To explain what a good h is, let us first define the notion of consistency. A hypothesis
h is consistent with the sample if for all 1 ≤ i, j ≤ m, simX (xi, xj) = α implies that
simY(yi, yj) ≥ h(α).

For any two hypotheses h and h′, h is said to be stronger than h′ if h(α) ≥ h′(α) for all
α ∈ [0, 1]. This implies that for any problem instance x the corresponding set Ch(x) is
contained in Ch′(x), that is, the set corresponding to h is more specific than the set that
corresponds to h′. Then, the goal of learning in [4] is as follows.

Goal of learning in [4]: Find the strongest h that is consistent with the sample.

Hüllermeier’s Algorithm 1 (see [4]) achieves this goal by producing a consistent hypothesis
which is piecewise constant over the subintervals of a partition of [0, 1] which is fixed
before the learning starts. The algorithm converges to the strongest hypothesis of this
kind. Hüllermeier obtains a bound on the probability that Ch(x) does not contain a
solution of x. The bound is of the form O(1/m) and is linearly proportional to the size
of the partition. This means that as m increases, there is a higher probability that Ch(x)
is a credible set.
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2.2. Our contribution

Learning is at the core of the above-mentioned inference framework. It is responsible
for generating a set Ch that with high probability contains solutions for future problem
instances. While the learning approach taken by Hüllermeier is sensible, it leads to sets
that are constrained to take a special form as defined by (2) and based on hypotheses h
that are piecewise constant over a partition which is chosen in advance, based on heuristic
domain knowledge. The resulting mapping that outputs a credible solution set from an
input problem instance is very particular and hence potentially introduces an inductive
bias [11], which is a known cause for less accurate learning [5], meaning that there is more
chance that the learnt mapping produces a set which is not credible.

To circumvent that, in this paper we extend the CBI model such that no a priori inductive
bias is placed through a choice of a particular class of mappings. We represent the CBI as
a multi-category classification problem where the class of hypotheses is different from the
one used by Hüllermeier. Our class of hypotheses models an extremely rich non-parametric
class of mappings from problem space to subsets of the solution space, while respecting
the CBR assumption that similar problems have similar solutions. As we describe in
Sections 4 and 5 we consider vector-valued functions which represent distances from a
given input problem instance x to general labeled subsets S of the space. The fact that
these sets can be any subsets of the metric space makes the hypothesis class extremely
rich. In this paper we do not offer any particular algorithm to search over this space but
we provide theorems that apply to any hypothesis in this class: hence they apply to any
learning algorithm over this class (the inductive bias enters from the choice of a supervised
learning algorithm). If, for example, we use as sets S the sample points that correspond
to the case-base (referred to as auxiliary samples in Section 5) then the mapping h is
based on a multi-category nearest-neighbor rule.

The overall goal of CBI remains as in Hüllermeier’s framework, but the goal of learning
is different from that of Hüllermeier. We have provided generalization error bounds in
Section 6 and the goal of learning becomes that of producing by any means and with any
algorithm hypotheses that give low value to these bounds. Our error bounds can provide
criteria for an algorithm to minimize. In particular, this motivates the use of algorithms
that seek to maximize sample width.

In comparison to CBR, there are two important points to emphasize here: first, CBR
is fundamentally based on “lazy learning” [12] where the inference, or generalization, is
done at the problem-solving time. Our learning approach for CBI is left open as we do
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not offer any particular algorithm to obtain the hypothesis that is used for inferring the
credible set given an input problem instance. In particular, this hypothesis can be based
on lazy learning, for example the nearest-neighbor rule (or any of its generalizations), or on
any other supervised non-lazy learning algorithm. We emphasize again that the learning
bounds that we obtain in this paper (Theorems 6.1 and 6.2) apply to any hypotheses
regardless of the type of learning algorithm that produces it. As far as these bounds
are concerned, it is only the performance of h on the sample that counts and not on the
algorithmic procedure that obtained it.

The second point is the similarity that exists between our learning approach and the
non-parametric similarity based approach of CBR: we show that there is an important
notion of width of a hypothesis that can be used in a learning algorithm to select simpler
and more accurate hypotheses automatically and based only on the sample. The width is
actually defined based on discriminant functions (Section 4) that involve the computation
of distance functions (which are the opposite analog of similarity functions). They measure
the distance between the input problem instance and some other sets S in the metric space
which in general can be any subsets of the space, and in particular can be the elements
of the case-base. The fact that just calculation of distances is sufficient to give better
hypotheses (and hence improved prediction of credible solution sets) makes our learning
potentially of interest to the CBR research community.

We do not in the paper define one algorithmic scheme, but rather a general approach
based on the modelling of CBI as the learning of two related multi-category classification
problems (through the construction of two auxiliary samples). These problems can be
solved by any supervised learning algorithm: we do not stipulate any particular learning
algorithms, but provide generalization error bounds that apply to any algorithm.

We assume each space has a metric dX and dY associated with it (which, therefore,
in particular, satisfies the triangle inequality). We also assume that each of the two
metric spaces has a finite diameter diam(X ) := maxx,x′∈X dX (x, x′) < ∞, diam(Y) =
maxy,y′∈Y dY(y, y′) < ∞. Note, however, that the metric spaces need not be finite and
could consist of elements which are complex or highly-structured, as is typical in CBR.
Our idea is based on learning ‘hypotheses’ (multi-category classifiers) on each of the
metric spaces X and Y separately, and by taking account of the sample-width, an idea
we introduced in [7, 13] and applied in [14, 15]. This leads to favoring more regular
(or ‘smooth’) hypotheses, as much as the complexity of the sample permits. The fact
that the learning approach favors such simpler hypotheses is entirely compatible with
the underlying assumption of CBR that similarity in problem space implies similarity in
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solution space.

3. A probabilistic set-up for CBI

In this section we extend the CBI model of [4] described in Section 2. The underlying
assumption that similar problems must have similar solutions is represented here through
an automatic preference for, albeit not limited to, smooth hypotheses that map similar
problems to similar solutions (discussed in Section 4). Automatic means that the com-
plexity of the learnt hypothesis is dictated by the given case-base rather than by some
heuristic choice. Compared to the learning approach in [4], and in addition to the ad-
vantage of not assuming any particular class of mappings (see the previous section), our
approach also delivers rigorous error-bounds that depend on the particular sample (the
case-base) and are therefore more useful in practice. Such bounds are referred to in the
literature as sample-dependent error bounds.

We now describe our learning approach.

3.1. The probabilistic framework

In this framework, examples of problem-solutions pairs (all being positive examples, mean-
ing that each pair consists of a problem and a solution to it) are drawn according to an
unknown probability distribution Q(Z) := Q(X, Y ). We assume Q is multi-modal; that
is, it takes the form of a weighted sum with a finite number of terms as follows:

Q(Z) =
∑
k∈[K]

QZ|M(Z |k )QM(k) (3)

=
∑
k∈[K]

QY |M(Y |k )QX|Y,M(X|Y, k)QM(k),

where M is a random variable representing the mode whose possible values are in a set
[K] := {1, 2, . . . , K}. The mode-conditional distribution QZ|M(Z|k) is defined on Z,
and QY |M(Y |k) :=

∑
x∈X QZ|M((x, Y )|k) is a mode-conditional distribution defined on Y

with QX|Y,M a conditional distribution on X . We henceforth refer to the support of the
mode-conditional distribution QY |M in Y as a mode-region. (The support of a probability
distribution is the smallest closed set whose complement has measure zero.)
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For any probability distribution P on Y , denote by supp(P ) ⊆ Y the support of P . We
assume that there exists a τ > 0 such that Q belongs to a family Qτ of probability
distributions that satisfy the following properties on Y :

(A) For k 6= k′, we have supp
(
QY |M (Y |k)

)⋂
supp

(
QY |M (Y |k′)

)
= ∅.

(B) For any y, y′ in the support of the marginal distribution of Q on Y such that
dY(y, y′) ≤ τ , there exists k ∈ [K] such that y, y′ ∈ supp

(
QY |M(Y |k)

)
.

(C) For any α ∈ (0, 1), there is mQ
0 (α) such that if a sequence of m ≥ mQ

0 (α) elements of
Z, ξ(m) = {(xi, yi)}mi=1, is drawn according to the product probability measure Qm,
then, with probability at least 1−α, the following holds: for any yi1 , yi2 in the sample
which belong to the same mode-region, there is a sequence yj1 , yj2,, . . . , yjN in the
sample and in that same mode-region such that dY(yi1 , yj1) ≤ τ , dY(yjl , yjl+1

) ≤ τ
and dY(yjN , yi2) ≤ τ , 1 ≤ l ≤ N − 1.

Condition (A) says that the mode regions are disjoint (non-overlapping). Condition (B)
implies that mode regions must be at least distance τ apart. Thus both conditions imply
that cases drawn fall into non-overlapping ‘clusters’ that are at least distance τ apart in the
solution space. Condition (C) implies the following deterministic condition: any pair y,
y′ in a mode region (not necessarily sample points) is ’τ -connected’, that is, there exists a
sequence of points {yi}Ni=1 in the mode-region that satisfies dY(yi, yi+1) ≤ τ , dY(y, y1) ≤ τ
and dY(y′, yN) ≤ τ . Condition (C) essentially says that the mode conditional distribution
of points is ‘smooth’, to the extent that for any pair of random points, no matter how
far apart they are in a mode region, there is a high enough probability density to ensure
that with high probability there will be points drawn in between them that are not too
far apart.

The above conditions imply that, for a given x, if a solution y to x is in a mode re-
gion k, then it is acceptable to predict the whole region k as its credible solution set.
For, if this support region is small, then any solution contained in it is not too distant
from y and is therefore a good candidate for a solution for x. And if the region is not
small, then condition (C) captures the notion that the mode conditional distribution of
points is ‘smooth’ (not discontinuous), and the mode does not contain outlier solution
instances, and therefore may likely serve as a credible set. This is a natural constraint
on a mode-conditional distribution since, without it, a mode-region could further be split
into multiple (smaller) modes in which case the true number of modes K would be higher
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and Q would be different. (The intuition is that this indicates K as being as small as
possible.) Thus a mode region may serve as a credible set of candidate solutions which
can be further processed by the third and fourth stages of the R4 model to produce a
solution for x. (We note again that in this paper we only deal with the CBI part which
concerns the first two steps of the R4 model.) Thus, in this set-up, we infer a whole mode
region k as the inferred credible set for any problem x.

Learning CBI amounts to learning to map an x to a mode that, with high confidence (in
a sense to be defined shortly), contains a solution y, and then predict the corresponding
mode region as a credible set for x. We assume that τ is known to the learner but that
the number K of modes of Q is unknown.

Relating to Condition (C), it is intuitively plausible that for m larger than some finite
threshold value, the condition will hold. Related ideas have been studied in the context
of percolation theory (see [16], for instance). In particular, the following related problem
has been studied. Given a parameter τ , and a random sample from a given distribution,
if the graph Gτ has as vertices the points of the sample and two vertices are connected if
their distance is at most τ , is there a high probability that Gτ is connected? This has been
studied in particular when the distribution is uniform on the d-dimensional unit cube.

Before continuing to describe our model, let us define two probability functions that we
refer to in subsequent sections,

PX (X = x,M = k) : =
∑
y∈Y

QZ|M((x, y)|k)QM(k)

PY(Y = y,M = k) :=
∑
x∈X

QZ|M((x, y)|k)QM(k). (4)

3.2. Inference by hypothesis

Given a randomly drawn problem X ∈ X the inference task is to produce a set of credible
solutions for X. This inference can be represented by a mapping from X to 2Y in terms of
a pair of functions h1 : X → [K] and h2 : Y → [K] which map the problem and solution
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spaces into a finite set [K] := {1, 2, . . . , K} of natural numbers. We henceforth write

h(z) : = [h1(x), h2(y)] (5)

and refer to the vector-valued function h : Z → [K]2 as a hypothesis for case-based
inference. Note that [K] is the same set in (3) that defines the modes of Q. We later
show that h is learned based on a sample whose labels are equal to the mode-values (up
to some permutation). Thus while Q, and hence [K], are unknown, the above conditions
on Q ensure that information about the set [K] is available in the random sample, from
which it is possible to learn h as a mapping into [K]2.

Given a hypothesis h of this new type and a problem x, the credible solution set C(x)
predicted by h can now be defined as

C(x) := Ch(x) = {y ∈ Y : h2(y) = h1(x)}

or, equivalently,
Ch(x) = h−12 (h1(x)).

(We continue to use the notation of Hüllermeier, but have replaced his definitions by our
new ones.) In other words, if x ∈ X has h1(x) = k then C(x) is a set of solutions that
are classified by h2 as k. Thus, inference in this CBI setting amounts to classifying x into
one of a finite number of solution regions.

In Section 4 we discuss how to learn h by learning the two classifiers h1 and h2. We learn
each separately based on a labeled sample. Given a sample of cases, we prefer a simpler
h that has ‘smoother’ component mappings h1 and h2. Being smooth means that the
learning process prefers hypotheses h whose h1 maps similar (dX -close) problems x, x′ to
the same k ∈ [K]. For similar problems, h predicts the same credible set. Thus the CBR
assumption that similar problems map to similar credible solutions holds in our model.

In Section 5 we show that training samples for each of h1 and h2 can be constructed in
such a way that the labels are the values of the corresponding modes of Q. So learning h
amounts to learning the mode-regions and, thus, given a problem x the learnt hypothesis
h predicts the mode region (that contains a solution y of x) to be the credible solution set
for x. The intuition is that if h is sufficiently ‘accurate’ then, with a large confidence, the
predicted credible set consists of solutions y to x. More importantly, as explained above,
the conditions on Q ensure that the mode region (which is the predicted credible set) has
other solutions that are close to y or, at least, typical elements of the region that contains
y.
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Learning mode-regions is reminiscent of identifying clusters in unsupervised learning and
clustering research; for instance, unsupervised learning of mixture distributions or non-
parametric statistical density estimation where subgroups of the data are identified based
on the modes of the estimated density [17]. As in our framework, these areas of re-
search also assume the existence of some unknown underlying multi-modal probability
distribution.

Figure 1 shows an example of a distribution Q and hypothesis h. For illustrative purposes,
we have assumed that the metric spaces X and Y are one-dimensional. There are three
modes QY |M(Y |k), k = 1, 2, 3 with non-overlapping supports in Y (obeying condition
(A)). Associated with them are mode-conditional distributions QZ|M(Z|k), k = 1, 2, 3,
where the support of QZ|M(Z|2) splits into two regions in Z. In this example, when Q
is projected on X there is overlap between the modes (which is permitted by the above
conditions). This means that a problem may have multiple solutions, even in different
mode regions. The component hypotheses h1 and h2 partition X and Y , respectively, into
regions that are labeled with values in the set [K] = [3] = {1, 2, 3}. We denote these

regions by S
(1)
k and S

(2)
k , 1 ≤ k ≤ 3. Given an x, if x ∈ S(1)

k then h predicts a credible

solution set Ch(x) = S
(2)
k . Note that it is possible that dissimilar problems have similar

solutions. For instance, consider two different problems x in the left region of S
(1)
2 and

x′ in the right region of S
(1)
2 . Both have similar solutions y, y′ ∈ S

(2)
2 . Our learning

approach is applicable in general to probability distributions Q with mode regions that
are not necessarily circular as in this example and the mapping h from X to sets of Y can
be arbitrarily complex rather than box-shaped as in this example.

In the learning model that we introduce in Section 5 the number of modes K is not
assumed to be known. The value of K is estimated based on a training sample of problem-
solution pairs and on knowing the value of τ (which is given as domain knowledge). The
estimate of K may be as large as the sample size m.

3.3. Error of h

We define the error of a hypothesis h as the probability that for a randomly drawn
problem-solution pair Z = (X, Y ) ∈ Z, h mis-predicts Z, that is, h predicts a bad
credible solution set Ch(X) for X. This means that Y 6∈ Ch(X). We therefore denote the
error of h as

err (h) := Q (Y 6∈ Ch(X)) . (6)
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(a) Example of a distribution Q on X × Y. It has K
modes on Y, QY |M (Y |k), k = 1, . . . ,K = 3.

(b) a hypothesis h : Z → [K]2, with classification re-

gions S
(1)
k , in X , and S

(2)
k in Y, k = 1, . . . ,K, with ,

K = 3.

Figure 1: (a) Circular regions are mode regions of Q. Regions of different mode value
may overlap with respect to X but not on Y . (b) Rectangular regions are sets of problems
and their credible solutions that are inferred by h. There are three such sets: the kth set
is labeled (k) and is defined as S

(1)
k × S

(2)
k = {(x, y) : h1(x) = h2(y) = k}, k = 1, . . . , K,

with K = 3.
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Since the two components of h are classifiers, then the event that h mis-predicts (X, Y )
implies that the two component classifiers disagree on the category of the solution. We
can represent this as follows: denote by M ∈ [K] the mode from which the random (X, Y )
is drawn. Then the probability of mis-predicting is

Q ({(X, Y ) : Y 6∈ Ch(X)}) = Q ({(X, Y ) : h1(X) 6= h2(Y )})
=

∑
k∈[K]

QZ|M ({(X, Y ) : h1(X) 6= h2(Y )} |k )QM(k)

≤
∑
k∈[K]

QZ|M ({(X, Y ) : h1(X) 6= k or h2(Y ) 6= k} |k )QM (k)

which is bounded from above by∑
k

QZ|M ({(X, Y ) : h1(X) 6= k} |k )QM (k) +
∑
k

QZ|M ({(X, Y ) : h2(Y ) 6= k} |k )QM (k)

=
∑
k

∑
y∈Y

QZ|M ({(X, y) : h1(X) 6= k} |k )QM (k) (7)

+
∑
k

∑
x∈X

QZ|M ({(x, Y ) : h2(Y ) 6= k} |k )QM (k)

=
∑
k

∑
x:h1(x)6=k

∑
y∈Y

QZ|M ((x, y) |k )QM (k) +
∑
k

∑
y:h2(y)6=k

∑
x∈X

QZ|M ((x, y) |k )QM (k)

=
∑
k

∑
x:h1(x)6=k

PX (X = x,M = k) +
∑
k

∑
y:h2(y) 6=k

PY (Y = y,M = k)

= PX (h1(X) 6= M) + PY (h2(Y ) 6= M) . (8)

The first and second term in (8) are the probability of misclassifying a labeled example
(X,M) ∈ X×[K] and the probability of misclassifying a labeled example (Y,M) ∈ Y×[K]
by the classifier h1 and h2, respectively. We denote these misclassification probabilities
by

err(h1) := PX (h1(X) 6= M)

and
err(h2) := PY (h2(Y ) 6= M)

and therefore have
err(h) ≤ err(h1) + err(h2). (9)

In splitting the error of h into a sum of two errors we assumed that the mode set [K] is
fixed and is known to the learner. The errors (9) are implicitly dependent on the set [K].

14



In Section 5, we loosen this assumption and treat K as an unknown so that when a case
Z is drawn randomly according to Q(Z) the mode value k is not disclosed to the learner
as part of the information in the sample. It is therefore necessary to produce auxiliary
labeled samples that contain this mode information. We do that in Section 5.1.

We now proceed to present new results on learning multi-category classification on metric
spaces which we subsequently use for the analysis of CBI learning in Section 6.

4. Multi-category classification on a metric space

In this section we consider classification learning on a metric space. Our aim here is to
provide a bound on the error of each of the individual component hypotheses of Section
3; that is, on each of the two terms on the right side of (9). At this point, we consider a
general metric space X . (We will then apply the results to the case in which that metric
space is X or Y in the CBI framework.)

For a given x ∈ X , by a K-category classifier h we mean a function h : X → [K] =
{1, . . . , K}: every element x ∈ X has one definite classification according to h. (Note:
here, h is not the vector-valued hypothesis defined in Section 3.)

We can associate with h the regions S
(h)
k := {x :∈ X : h(x) = k}, k ∈ [K], where we drop

the superscript and write Sk when it is clear that h is the classifier. Note that these
regions are disjoint, Sk

⋂
Sk′ = ∅ for k 6= k′ and their union equals X . We define the

distance between a point x and a set S ⊆ X based on the metric dX as follows,

dist (x, S) := inf
x′∈S

dX (x, x′) .

As in [7] we define the notion of width of a classifier h at a point x as follows:

wh(x) := min
k 6=h(x)

dist (x, Sk) .

The width wh(x) measures how ‘definite’ the classification of x is according to h since the
further x is from the ‘border’ (the set of closest points to x that are not in Sh(x)), the higher
the width and the more definite the classification. Note that the width wh(x) is always
non-negative. For a labeled point (x, l), l ∈ [K], we define a real-valued discriminant
function [17] which we denote by fh : X × [K]→ R and which is defined as follows:

fh(x, l) := min
k 6=l

dist (x, Sk)− dist (x, Sl) .
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Note that if x ∈ Sl then by definition x 6∈ Sk for every k 6= l and so we have

fh(x, l) = wh(x).

If x 6∈ Sl then it must be that x ∈ Sk for some k 6= l and hence

fh(x, l) = −dist (x, Sl) .

For a fixed h and k ∈ [K] define the real-valued function g
(h)
k : X → R as

g
(h)
k (x) = fh(x, k)

where we will drop the superscript for brevity and write gk whenever the dependence on
h can be left implicit. We denote by g(h) the vector-valued function g(h) : X → RK given
by

g(h)(x) := [g
(h)
1 (x), . . . , g

(h)
K (x)].

We refer to g(h) as the margin function of the classifier h. Note that for a fixed h and
x ∈ X there is only a single component g

(h)
k of g(h) which is non-negative, and its value

equals the width wh(x), while the remaining components are all negative.

Thus we can express the decision of the classifier h in terms of g as follows:

h(x) = argmaxk∈[K]gk(x).

It is important to note at this point that a hypothesis h is completely specified in terms
of distances between the given input problem instance x and the subsets Sk in the metric
space. There is no parameters hence the class of hypotheses that our learning framework
uses is non-parametric. It is much richer than the class of nearest-neighbor classifiers
since the regions S

(h)
k can be any subsets of the metric space.

The event of misclassification of a labeled point (x, l) by h means that there exists some
component gk with k 6= l such that gl(x) < gk(x). So the event that h misclassifies a
labeled point (x, l) can be expressed as the event that gl(x) < maxk 6=l gk(x). Thus for a
randomly drawn pair (X,L) ∈ X × [K], we have

P (h(X) 6= L) = P (gL(X) < max
k 6=L

gk(X))

where g = g(h) is the margin function corresponding to h. We henceforth denote this by
the error err(h) of h,

err(h) := P (h(X) 6= L) .
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The empirical error of h is the average number of misclassifications that h makes on a
labeled sample χ(m) = {(xi, li)}mi=1. A more stringent measure is the average number of
examples which h does not classify to within some pre-specified minimal width level γ > 0;
that is, the average number of examples (xj, lj) for which gli(xi)−maxk 6=li gk(xi) < γ. We
call this the empirical margin error of h (at scale γ) and denote it as

êrrγ (h) :=
1

m

m∑
i=1

I
{
gli(xi)−max

k 6=li
gk(xi) < γ

}
.

(Here, I denotes the indicator function of an event.)

In [18], the general problem of learning multi-category classifiers defined on metric spaces
is investigated, and a generalization error bound is presented. In order to describe this,
we first need to define what we mean by covering numbers of a metric space.

Suppose, as above, that (X , dX ) is any metric space and that α > 0. Then an α-cover of
X (with respect to dX ) is a finite subset C of X such that, for every x ∈ X , there is some
c ∈ C such that dX (x, c) ≤ α. If such a cover exists, then the minimum cardinality of such
a cover is the covering number N (X , α, dX ). If the context is clear, we will abbreviate
this to Nα.

We will see that the covering numbers (for both X and Y) play a role in our analysis. So,
in practice, it would be useful to know these or to be able to estimate them.

For the moment, let us focus on the case in which we have a finite metric space X
of cardinality N . Then, the problem of finding a minimum γ-cover Cγ for X can be
phrased as a classical set-cover problem as follows: find a minimal cardinality collection
of sets Cγ := {Bγ(jl) : jl ∈ X , 1 ≤ l ≤ Nγ} whose union satisfies

⋃
lBγ(jl) = X . It is well

known that this problem is NP-complete. However, there is a simple efficient deterministic
greedy algorithm (see [19]) which yields a solution — that is, a set cover — of size which
is no larger than (1 + lnN) times the size of the minimal cover. Denote by Ĉγ this

almost-minimal γ-cover of X and denote by N̂γ its cardinality. Then N̂γ can be used to
approximate Nγ up to a (1 + lnN) accuracy factor:

Nγ ≤ N̂γ ≤ Nγ(1 + lnN).

We now present two results from [18]. The first bounds the generalization error in terms
of a width parameter γ for which the corresponding empirical margin error is zero. All
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results henceforth apply to any metric space, including infinite spaces. In these results, it
is assumed that the labeled examples (xi, li) in the training sample χ(m) have each been
generated randomly according to some fixed (but unknown) probability distribution P on
Z = X × [K]. Thus, a sample χ(m) of length m can be regarded as being drawn randomly
according to the product probability distribution Pm.

Theorem 4.1. Suppose that X is a metric space of diameter diam(X ) and that K is a
positive integer. Suppose P is any probability measure on Z = X × [K] and let Pm denote
the product probability measure on Zm. Let δ ∈ (0, 1). Then, with Pm-probability at least
1 − δ, the following holds for χ(m) ∈ Zm: for any function h : X → [K], and for any
γ ∈ (0, diam(X )], if êrrγ(h) = 0, then

err(h) ≤ 2

m

(
KNγ/12 log2

(
36 diam(X )

γ

)
+ log2

(
8 diam(X )

δγ

))
,

where Nγ/12 is the γ/12-covering number of X .

What this bound shows is that a hypothesis h that has a large width value γ on every
point of the sample is likely to obtain a low generalization error. An important point
of our work in this paper is the fact that we make this large-width advantage appear in
learning CBI; that is, the same conclusion holds in our CBI learning bounds, Theorem 6.1
and 6.2.

Note here that γ is not prescribed in advance, but can be chosen after learning and, in
particular, it can be set to be the largest value for which the corresponding empirical
margin error is zero.

The following result is more general than the one just presented, because it bounds the
error in terms of the empirical margin error (which may be nonzero). It has a better
dependence on K (being proportional to

√
K rather than K). However, in terms of m, it

is looser when applied to the case of zero empirical margin error (involving 1/
√
m rather

than 1/m.

Theorem 4.2. With the notation as above, with Pm-probability at least 1− δ, the follow-
ing holds for χ(m) ∈ Zm: for any function h : X → [K], and for any γ ∈ (0, diam(X)],

err(h) ≤ êrrγ(h) +

√
2

m

(
KNγ/12 ln

(
18 diam(X )

γ

)
+ ln

(
2 diam(X )

γδ

))
+

1

m
,

18



where Nγ/12 is the γ/12-covering number of X .

What we have in Theorem 4.2 is a high probability bound that takes the following form:
for all h and for all γ ∈ (0, diam(X)],

err(h) ≤ êrrγ(h) + ε(m, γ, δ),

where ε tends to 0 as m → ∞ and ε decreases as γ increases. The rationale for seeking
such a bound is that there is likely to be a trade-off between empirical margin error on
the sample and the value of ε: taking γ small so that the error term êrrγ(h) is zero might
entail a large value of ε; and, conversely, choosing γ large will make ε relatively small, but
lead to a large empirical error term. So, in principle, since the value γ is free to be chosen,
one could optimize the choice of γ on the right-hand side of the bound to minimize it.

5. From CBI to supervised learning

In Section 3, we have framed CBI as a multi-category classification learning problem
in which hypotheses are two-dimensional multi-category functions h = [h1, h2]. In the
current fairly technical section, we describe how from the case base we can derive the
training samples that are necessary for any supervised learning algorithm to learn h1 and
h2. These ‘auxiliary’ samples are defined from the cases by a labeling procedure that
we describe. One of these auxiliary samples consists of labeled problems and the other
consists of the corresponding labeled solutions. Each of the two components of h are
learned separately based on these auxiliary samples. Section 6 describes the learning
results that follow.

5.1. Two auxiliary samples

The learner is given a random sample, which is also referred to as a collection of problem-
solution cases (or case base),

ξ : = ξ(m) = {(xi, yi)}mi=1 . (10)

This sample is drawn i.i.d. according to some product probability measure Qm on Zm,
where Q ∈ Qτ for some τ > 0.
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Denote by
X|ξ := {xi ∈ X : ∃i ∈ {1, . . . ,m} , (xi, yi) ∈ ξ}

and
Y|ξ := {yi ∈ Y : ∃i ∈ {1, . . . ,m} , (xi, yi) ∈ ξ}

the sample projection sets of problems and solutions, respectively. Note that the sample
ξ may be ‘noisy’; that is, a sample problem x ∈ X|ξ may appear multiple times in the
sample with different solutions y ∈ Y|ξ and even solutions from different modes. In other
words, the modes of Q may overlap in problem space X , and hence cases drawn according
to Q may pair the same problems with different solutions. Needless to say, a solution
y ∈ Y|ξ may appear multiple times for different problems x ∈ X|ξ .

In addition to the sample ξ we assume that expert advice (or domain-knowledge) is
available in the form of knowing the value of τ , the parameter of the family Qτ satisfying
the properties in Section 3.1.

We now describe a procedure the learner can use to construct two auxiliary labeled sam-
ples ζX and ζY from the given sample ξ and the value τ .

Labeling Procedure: We use τ to partition the sample points of ξ into a finite number
of categories as follows. Let Dξ be the m×m matrix with entries as follows:

Dξ[i, j] = dY(yi, yj)

for all pairs of solution examples yi, yj ∈ Y|ξ . Based on Dξ, let us define the m×m {0, 1}
matrix

Aτ : = [a(i, j)] (11)

as follows:

a(i, j) :=

{
1 if Dξ[i, j] ≤ τ
0 otherwise.

The jth column a(j) of Aτ represents an incidence (binary) vector of a set, or a ball Bτ (j)
which consists of all the points i ∈ Y|ξ that are a distance at most τ from the point
j ∈ Y|ξ .

The matrix Aτ defined in (11) is an adjacency matrix of a graph Gτ = (Y|ξ , Eτ ), where
Eτ is the set of edges corresponding to all adjacent pairs of vertices according to Aτ ; that
is, we place an edge between any two vertices i, j such that Dξ[i, j] ≤ τ .
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Let {Hi}Kτi=1 be the set of Kτ connected components Hi ⊆ Y|ξ of the graph Gτ , where by a
connected component we mean a subset of vertices such that there exists a path (sequence
of edges) between every pair of vertices in the component. This set of components can be
easily found, for instance, by a hierarchical clustering procedure [20].

Note that Kτ := Kτ (ξ) is dependent on the sample ξ through Y|ξ and is no larger than
m since the number of connected components is no larger than the number of vertices of
Gτ . Let us partition the sample ξ into the subsets ξ(k) ⊆ ξ based on these components
Hk as follows:

ξ(k) := {(x, y) ∈ ξ : y ∈ Hk} , 1 ≤ k ≤ Kτ .

Then, define two auxiliary sets of samples as follows:

ζX := ζ
(m)
X =

{
(xi, k) : xi ∈ X|ξ , (xi, ·) ∈ ξ(k), 1 ≤ i ≤ m, 1 ≤ k ≤ Kτ

}
ζY := ζ

(m)
Y =

{
(yi, k) : yi ∈ Y|ξ , (·, yi) ∈ ξ(k), 1 ≤ i ≤ m, 1 ≤ k ≤ Kτ

}
. (12)

We use these samples for the classification learning problems in Section 5.2. Note that
both samples have Kτ possible categories for the labels of each of the sample points. Since
Kτ enters the learning bounds it is important to understand how large it can be. From
spectral graph theory [21, 22] the number of connected components of a graph G is equal
to the multiplicity µ0(G) of the zero eigenvalue of the Laplacian matrix L := Λ−A, where
Λ is a diagonal matrix of the degrees of each vertex and A is the adjacency matrix. It
follows that

Kτ = µ0(Gτ )

and clearly Kτ ≤ m.

We now state two lemmas that together imply that the labels li of pairs of examples (xi, li)
and (yi, li) in ζX and ζY equal the true unknown mode values of the unknown underlying
distribution Q(Z), up to a permutation. That is, under a permutation π of the set [K] a
label value j ∈ [K] is in one-to-one correspondence with a mode value π(j) ∈ [K].

Lemma 5.1. Let H be a connected component of Gτ .Then there exists a k ∈ [K] such
that H ⊆ supp

(
QY |M(Y |k)

)
.

Proof: Denote by Rk = supp(QY |M(y|k)), k ∈ [K], the mode regions. Suppose there does
not exist a j such that H ⊆ Rj. Then there is a connected pair y, y′ ∈ H such that y ∈ Rk
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and y′ ∈ Rk′ for some k′ 6= k. This means that on any path that connects y and y′ there
exists some edge e ∈ Eτ that connects two vertices u, v ∈ Y|ξ (which may be y or y′)
where u ∈ Rk and v ∈ Rk′ . But by condition (B) of Section 3 it follows that dY(u, v) > τ
hence by definition of Gτ the pair u, v is not connected. Hence y, y′ are disconnected.
This is a contradiction and hence the statement of the lemma holds. �

Lemma 5.2. Let α ∈ (0, 1) and suppose that the sample size m is at least mQ
0 (α). Let

{Hj}Kτj=1 be the connected components of the graph Gτ . Then, with probability at least
1−α, the sample is such that, for every k ∈ [K], there exist at most one single component
Hj ⊆ supp

(
QY |M(Y |k)

)
.

Proof: Suppose there are two distinct connected components H, H ′ of the graph contained
in a mode-region Rk = supp(QY |M(y|k)) for some k ∈ [K]. Then there exist two points
y ∈ H, y′ ∈ H ′ such that every path p = {y, y1, . . . , yn, y′} from y to y′ must have at least
one pair of consecutive points yi, yi+1 such that dY(yi, yi+1) > τ . But, by condition (C)
of Section 3, if m ≥ mQ

0 (α), with probability at least 1 − α, this cannot be. Hence the
statement of the lemma holds. �

From these two lemmas, the following observation follows.

Proposition 5.3. For any α ∈ (0, 1), with probability at least 1− α, provided m is large
enough (m ≥ mQ

0 (α)), a connected component Hk of the graph Gτ is always contained in
the support of a mode-conditional distribution QY |M and there is never more than a single
such component in a mode-region.

This implies that if an example (xi, li) ∈ ζX corresponds to a case (xi, yi) ∈ ξ with yi
in a connected component Hk of the graph Gτ then li equals k where k equals (up to a
permutation) the value of the true (unknown) mode from which the case was drawn from.
Similarly, if an example (yi, li) ∈ ζY is such that yi falls in a connected component Hk of
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the graph Gτ then li equals k where k equals (up to a permutation) the value of the mode
from which the case was drawn from.

Thus the labels li of the sample points of ζX and ζY are representative of the mode numbers
and thus these auxiliary samples are proper labeled samples needed for supervised learning
of the classifiers h1 and h2, respectively.

5.2. Two classification problems

Given the two auxiliary samples ζX and ζY of (12), we learn two multi-category clas-
sification problems, independently, by finding a component hypothesis h1 and h2. Any
supervised learning algorithms could be used to produce h1 and h2: we do not propose or
limit discussion to any particular ones, but derive performance results (Theorems 6.1 and
6.2) that apply to all algorithms. Based on h1 and h2 we form a hypothesis h = [h1, h2]
as in (5), where by (9) its error is bounded by the sum of the errors of h1 and h2.

As mentioned above, the number of categories Kτ (ξ) is dependent on the sample ξ, or
more specifically on the set Y|ξ. Thus we need to make the bounds of Section 4 apply for
any value K and not just for a K which is fixed in advance. To do that we use a ‘sieve’
method in the error-bound proof.

To be able to use the standard-learning theory bounds we need the auxiliary samples ζX
and ζY to be drawn i.i.d.. The next lemmas state that they are effectively drawn in an
i.i.d. manner.

Lemma 5.4. Let α ∈ (0, 1) and m ≥ mQ
0 (α). Let ξ be a random sample consisting of

i.i.d. pairs of problem-solution cases. Let ζY be a sample obtained by the labeling procedure
applied on ξ. Then, with probability at least 1 − α, ζY consists of m i.i.d. random pairs
of solution-mode values each drawn according to PY .

Proof: Let L(m) = [L1, . . . , Lm] denote the label vector random variable and Y (m) =
[Y1, . . . , Ym] the solution vector random variable, where {(Yi, Li)}mi=1 = ζY is a ran-
dom sample produced by the labeling procedure of Section 5.1. Denote by M (m) =
[M1, . . . ,Mm] ∈ [K]m where Mi is the mode index corresponding to the solution Yi.
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For any given sample realization ζY = {(y∗i , l∗i )}
m
i=1 with y∗(m) = [y∗1, . . . , y

∗
m] ∈ Ym and

l∗(m) = [l∗1, . . . , l
∗
m] ∈ [K]m we have

P ({(Yi, Li)}mi=1 = {(y∗i , l∗i )}
m
i=1) = P

(
L(m) = l∗(m)

∣∣Y (m) = y∗(m)
)
P
(
Y (m) = y∗(m)

)
=

∑
l(m)∈[K]m

P
(
L(m) = l∗(m)

∣∣M (m) = l(m), Y (m) = y∗(m)
)

·P
(
M (m) = l(m) | Y (m) = y∗(m)

)
P
(
Y (m) = y∗(m)

)
. (13)

Conditioned on Y (m) = y∗(m) being drawn from mode values M (m) = l(m), from Proposi-
tion 5.3, if m ≥ m0(α), then with probability at least 1 − α, the labels equal the mode
values; that is, L(m) = l(m). (In fact, as noted earlier, the labels are equal to the mode
values up to a permutation, by which we mean there is some fixed permutation π such
that L(m) = π(l(m)). However, without loss of any generality, we can assume that the
labels are the same as the mode values because what matters is that the labels on the
two auxiliary samples match.) Hence (13) equals∑

l(m)∈[K]m

I
{
l(m) = l∗(m)

}
P
(
M (m) = l(m) | Y (m) = y∗(m)

)
P
(
Y (m) = y∗(m)

)
= P

(
M (m) = l∗(m)

∣∣Y (m) = y∗(m)
)
P
(
Y (m) = y∗(m)

)
= P

(
Y (m) = y∗(m),M (m) = l∗(m)

)
=

∑
x(m)

P
(
X(m) = x(m), Y (m) = y∗(m),M (m) = l∗(m)

)
= P

(
M (m) = l∗(m)

)∑
x(m)

P
(
X(m) = x(m), Y (m) = y∗(m)

∣∣M (m) = l∗(m)
)

=
∑
x(m)

m∏
i=1

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )QM (Mi = l∗i ) (14)

=
m∏
i=1

QM (Mi = l∗i )
∑
xi∈X

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )

=
m∏
i=1

∑
xi∈X

QZ|M (Xi = xi, Yi = y∗i |Mi = l∗i )QM (Mi = l∗i )

=
m∏
i=1

PY (Yi = y∗i ,Mi = l∗i ) (15)

where (14) follows from the fact that the sample ξ is drawn i.i.d. according to
∏m

i=1Q(Zi) =
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∏m
i=1QZ|M(Zi|Mi)QM(Mi), and (15) follows from (4). Hence it follows that the random

sample ζY consists of m i.i.d. trials according to the distribution PY(Y,M). �

The next lemma shows that the sample ζX is also i.i.d..

Lemma 5.5. Let α ∈ (0, 1) and m ≥ mQ
0 (α). Let ξ be a random sample consisting of

i.i.d. pairs of problem-solution cases. Let ζX be a sample obtained by the labeling procedure
applied on ξ. Then, with probability at least 1 − α, ζX consists of m i.i.d. random pairs
of problem-mode values each drawn according to PX .

Proof: Let L(m) = [L1, . . . , Lm] denote the label vector random variable and X(m) =
[X1, . . . , Xm] the problem vector random variable. Denote by M (m) = [M1, . . . ,Mm] ∈
[K]m where Mi is the mode index corresponding to the problem Xi. For any sample
ζX = {(x∗i , l∗i )}

m
i=1 with x∗(m) = [x∗1, . . . , x

∗
m] ∈ Xm and l∗(m) = [l∗1, . . . , l

∗
m] ∈ [K]m we have

P ({(Xi, Li)}mi=1 = {(x∗i , l∗i )}
m
i=1) = P

(
X(m) = x∗(m), L(m) = l∗(m)

)
=

∑
l(m)∈[K]m

P
(
X(m) = x∗(m), L = l∗(m)

∣∣M (m) = l(m)
)
P
(
M (m) = l(m)

)
=

∑
l(m)∈[K]m

∑
y(m)

P
(
X(m) = x∗(m), L(m) = l∗(m), Y (m) = y(m)

∣∣M (m) = l(m)
)
P
(
M (m) = l(m)

)
=

∑
l(m)∈[K]m

∑
y(m)

P
(
L(m) = l∗(m) | X(m) = x∗(m), Y (m) = y(m),M (m) = l(m)

)
·P
(
X(m) = x∗(m)

∣∣Y (m) = y(m),M (m) = l(m)
)
P (Y (m) = y(m)

∣∣M (m) = l(m) )P
(
M (m) = l(m)

)
.

(16)

Conditioned on X(m) = x∗(m) being drawn from mode values M (m) = l(m), from Proposi-
tion 5.3, if m ≥ m0(α), then with probability at least 1−α, we can assume as before the
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labels are equal to the modes, that is, L(m) = l(m). Hence (16) equals∑
l(m)∈[K]m

∑
y(m)

I
{
l(m) = l∗(m)

}
P
(
X(m) = x∗(m)

∣∣Y (m) = y(m),M (m) = l(m)
)

·P (Y (m) = y(m) |M (m) = l(m))P
(
M (m) = l(m)

)
= P

(
M (m) = l∗(m)

)∑
y(m)

P
(
X(m) = x∗(m), Y (m) = y(m)

∣∣M (m) = l∗(m)
)

=
∑
y(m)

m∏
i=1

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )QM (Mi = l∗i ) (17)

=
m∏
i=1

QM (Mi = l∗i )
∑
yi∈Y

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )

=
m∏
i=1

∑
yi∈Y

QZ|M (Xi = x∗i , Yi = yi |Mi = l∗i )QM (Mi = l∗i )

=
m∏
i=1

PX (Xi = x∗i ,Mi = l∗i ) (18)

where (17) follows from the fact that the sample ξ is drawn i.i.d. according to
∏m

i=1Q(Zi) =∏m
i=1QZ|M(Zi|Mi)QM(Mi), and (18) follows from (4). Hence it follows that the random

sample ζX is drawn as m i.i.d. trials according to the distribution PX (X,M). �

6. Error bounds for learning CBI

In this section, we give bounds on the credible set prediction error of any hypothesis
h = [h1, h2]. In particular, if h1, h2 happen to have a large width value γ on every point
of the auxiliary samples, then the bounds indicate that the prediction will likely be a
good one. Having these bounds can serve as a guiding criterion for supervised learning
algorithms to learn to predict credible sets more accurately by producing hypotheses
which make these bounds small.

Recall that what we want to do is obtain a high-probability bound on the error err(h) of
a hypothesis h, which is the probability that for a randomly drawn problem-solution pair
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Z = (X, Y ) ∈ Z, h mispredicts Z; that is, h predicts a bad credible solution set Ch(X)
for X. Now, by (8), this error is bounded by the sum

PX (h1(X) 6= M) + PY (h2(Y ) 6= M) = err(h1) + err(h2).

We may use Theorem 4.1 and Theorem 4.2 to bound each of the two probabilities here.
This results in the following error bounds. To be clear, in these bounds, êrrγ1(h1) means
the empirical margin error of h1 at scale γ1 on sample ζX , and êrrγ2(h2) means the empirical
margin error of h2 at scale γ2 on sample ζY . The fact that the theorems below hold for
all K means that the number of modes of Q does not have to be known in order to apply
the theorems.

Theorem 6.1. With the notation as above, with probability at least 1 − δ, the following
holds for all integers m ≥ mQ

0 (δ/2). For all positive integers K for all γ1 ∈ (0, diam(X )]
and γ2 ∈ (0, diam(Y)], and for all h = [h1, h2] mapping X ×Y into [K]2: if êrrγ1(h1) = 0
and êrrγ2(h2) = 0, then the error of h is at most

2

m
(K(A+B + 2) + C + 10) ,

where

A = N (X , γ/12, dX ) log2

(
36 diam(X )

γ1

)
,

B = N (Y , γ/12, dY) log2

(
36 diam(Y)

γ2

)
,

C = log2

(
diam(X )diam(Y)

δ2γ1γ2

)
.

Proof: Fix K. We apply Theorem 4.1 simultaneously to both auxiliary samples. It is the
case, since m ≥ mQ

0 (δ/2), that with probability at least 1 − δ/2, each auxiliary sample
will be i.i.d., by Lemma 5.4 and Lemma 5.5. Call this event the ‘independence event’.
Assuming the independence event holds, Theorem 4.1 then shows that, with probability
at least 1− δ/2K+1, the sample will be such that we have both

err(h1) ≤
2

m
AK +

2

m
log2

(
32 2Kdiam(X )

γ1δ

)
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and

err(h2) ≤
2

m
BK +

2

m
log2

(
32 2Kdiam(Y)

γ2δ

)
.

This is for fixed K. It follows that, if the independence event holds, then with probability
at least 1−

∑∞
K=1 δ/2

K+1 = 1− δ/2, the error of h is at most

2

m
AK +

2

m
log2

(
32 2Kdiam(X )

γ1δ

)
+

2

m
BK +

2

m
log2

(
32 2Kdiam(Y)

γ2δ

)
.

So, the probability that either the independence event does not hold, or it does but the
stated error bound fails, is at most δ/2 + δ/2. The result follows. �

Theorem 6.2. With the notation as above, with probability at least 1 − δ, the following
holds for all integers m ≥ mQ

0 (δ/2). For all positive integers K for all γ1 ∈ (0, diam(X )]
and γ2 ∈ (0, diam(Y)], and for all h = [h1, h2] mapping X × Y into [K]2:

err(h) ≤ êrrγ1(h1) + êrrγ2(h2) +
2

m
+ (A+B)

√
2

m
,

where

A =

√
KN (X , γ1/6, dX ) ln

(
18 diam(X )

γ1

)
+ ln

(
8 diam(X )

γ1δ

)
+K

and

B =

√
KN (Y , γ2/6, dY) ln

(
18 diam(Y)

γ2

)
+ ln

(
8 diam(Y)

γ2δ

)
+K

Proof: The result follows from Theorem 4.2 in a similar way as the previous theorem
followed from Theorem 4.1, making the observation that

ln

(
8 2K diam(X )

γδ

)
≤ K + ln

(
8 diam(X )

γδ

)
.

�
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7. Conclusions

Hüllermeier introduced a framework of CBI whose goal is to predict a credible set of
solutions for a given input problem instance. In his framework, he has a specific learning
algorithm that produces a hypothesis function, from which one constructs a credible set
of solutions. Taking the goal of his framework, we introduce a new approach to learning
CBI which uses a different and much richer class of hypotheses to predict a credible set of
solutions. In our approach, a hypothesis is a pair of multi-category classifiers. We model
learning CBI as two multi-category learning problems. We provide and mathematically
justify an automatic procedure that transforms any given case-base into two sets of sam-
ples that can be used by any supervised learning algorithm to learn CBI. We then perform
an analysis of the error of a hypothesis that any algorithm may provide as output when
training on these samples. We provide bounds on this error that can serve as a guiding
criterion for the design of successful algorithms.

One main contribution has been to show how learning CBI over the wide spectrum of
complex and unstructured CBR domains can now be tackled by standard off-the-shelf
supervised-learning algorithms. Another contribution is in showing how the large-width
advantage (related to the branch of learning theory known as large margin-learning) can
also be realised for learning CBI.
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