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ON CERTAIN INTEGRAL FUNCTIONALS OF SQUARED BESSEL PROCESSES

UMUT ÇETIN

Abstract. For a squared Bessel process, X, the Laplace transforms of joint laws of (U,
∫Ry
0 Xp

s ds) are
studied where Ry is the first hitting time of y by X and U is a random variable measurable with respect

to the history of X until Ry . A subset of these results are then used to solve the associated small ball

problems for
∫Ry
0 Xp

s ds and determine a Chung’s law of iterated logarithm.
(∫Ry

0 Xp
s ds

)
is also considered

as a purely discontinuous increasing Markov process and its infinitesimal generator is found. The findings

are then used to price a class of exotic derivatives on interest rates and determine the asymptotics for the

prices of some put options that are only slightly in-the-money.

.

1. Introduction

Let X be a squared Bessel process which is the unique strong solution to

dXt = 2(ν + 1) dt+ 2
√
Xt dBt,

where ν ≥ −1 is a real constant and B is a standard Brownian motion. Letting δ = 2(ν + 1), X is called
a δ-dimensional squared Bessel process. We will denote such a process with X0 = z by BESQδ(z) and δ
and ν will be related by δ = 2(ν + 1) throughout the text. In this paper we are interested in the integral
functional

(1.1) Σδp,z,y :=

∫ Ry

0

Xp
s ds,

where p > −1 and Ry := inf{t ≥ 0 : Xt = y} for y ∈ [0,∞) and X is BESQδ(z). (In the sequel, we will
write Rδy only if we need to specify the dimension to avoid ambiguity.)

Squared Bessel processes have found wide applications especially in Finance Theory, see Chapter 6 in [8]
for a recent account. They can, e.g., be used to model interest rates in a Cox-Ingersoll-Ross framework. In
the above setting, if Xp models the spot interest rates, then exp

(
Σδp,z,y

)
refers to the cumulative interest

until the spot rate hits the barrier yp. As such, this random variable is related to certain exotic options on
interest rates (see [5] for some formulae regarding barrier options in a similar framework). Bessel processes

also appear often in the study of financial bubbles since 1/
√
X is the prime example of a continuous (strict)

local martingale when X is a BESQ3 (see, e.g., [14], [17] and [18] for how strict local martingales, and in
particular Bessel processes, appear in mathematical studies of bubbles).

In Section 2 we will determine the joint law of (U,Σδp,z,y) by martingale methods, where U is a random
variable measurable with respect to the evolution of X until Ry. In particular we will obtain the joint

distributions of (Ry,Σ
δ
p,z,y) and (maxt≤Ry Xt,Σ

δ
p,z,y). As a by-product of our findings, if |ν|p+1 = 1

2 , we have

a remarkable characterisation of the conditional law of Σδp,z,y given that the maximum (resp. minimum) of
X at Ry is below (resp. above) a fixed level in terms of the first hitting time distributions of a 3-dimensional
Bessel process when z ≥ y (resp. z ≤ y).

Date: March 9, 2015.
Key words and phrases. Bessel processes, modified Bessel functions, first passage times, small deviations, Chung’s law

of iterated logarithm, non-homogeneous Feller jump process, time reversal, last passage times, subordinator, interest rate

derivatives.
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2 UMUT ÇETIN

We will use the results of Section 2 in order to study small ball probabilities for Σδp,z,y in Section 3. Solving

the small ball problem for Σδp,z,y amounts to finding the asymptotic behaviour of − log Prob(Σδp,z,y < ε) as

ε → 0. We will then use this asymptotic form to determine a law of iterated logarithm for (Σδp,0,y)y≥0 as
y →∞.

Section 4 will analyse (Σδp,0,y)y≥0 as a Markov process indexed by y and compute its infinitesimal generator

when ν ≥ 0. We will also consider the process Zδ which is obtained via a ‘time reversal’ from (Σδp,0,y)y≥0.

More precisely, we will find the generator of Zδ defined by

Zδx =

∫ L1

L1−x

Xp
s ds ∀x ∈ [0, 1),

where Lx := sup{t ≥ 0 : Xt = x}. In particular, we will obtain that Z4 is identical in law to an increasing
family of hitting times of a linear Brownian motion.

Finally, in Section 5 we will apply our findings to the pricing of some exotic derivatives on interest rates.
The small ball probabilities will be used to find asymptotic behaviour of some put options with small strikes,
the options that are only slightly in-the-money.

2. Preliminaries

Let (Ω,F , (Ft)t≥0,P) be a stochastic base where F is completed with the P-null sets. Let X be an
R+-valued semimartingale which is the unique strong solution to

(2.1) dXt = 2(ν + 1) dt+ 2
√
Xt dBt,

where ν ≥ −1 is a real constant, B is a standard Brownian motion.
Let Qδz be the measure on the path space, i.e. C([0,∞), [0,∞)), induced by X starting at z. It is well-

known (see Section 1 of Chapter XI of [15]) that for ν ≥ 0 the set {0} is polar, otherwise it is reached a.s..
Moreover, the process is transient for ν > 0 and recurrent otherwise. We will denote the first hitting time
of 0 for X with R. The scale function, sν , for BESQδ is given by

sν(x) = −x−ν for ν > 0, s0(x) = log x, sν(x) = x−ν for ν ∈ [−1, 0).

We refer the reader to [15] and [6] for a comprehensive study of Bessel processes and relevant bibliography.
In subsequent computations we will follow a Feynman-Kac type approach as in, e.g., [7].

Lemma 2.1. Let p > −1, λ > 0 and suppose that u ∈ C2, solves the following ordinary differential equation
(ODE):

(2.2) x2y′′ + xy′ − y[ν2 + λx2(p+1)] = 0,

and is strictly positive on (0,∞). Then, (M
(u)
t∧R)t≥0 is a local martingale where

M
(u)
t := u(

√
Xt)X

− ν2
t exp

(
−λ

2

∫ t

0

Xp
s ds

)
.

In particular,

1[t<R]dM
(u)
t = 1[t<R]M

(u)
t

(
u′(
√
Xt)

u(
√
Xt)

− ν√
Xt

)
dBt.

Proof. If we let w(x) := u(
√
x)x−

ν
2 , it is easily seen that w solves

(2.3) 2xw′′ + 2(ν + 1)w′ − λ

2
xpw = 0.

Thus, on [t < R]

dM
(u)
t = 2M

(u)
t

w′

w
(Xt)

√
XtdBt = M

(u)
t

(
u′(
√
Xt)

u(
√
Xt)

− ν√
Xt

)
dBt.

�



ON CERTAIN INTEGRAL FUNCTIONALS OF SQUARED BESSEL PROCESSES 3

The solutions to (2.2) can easily be determined via the modified Bessel functions, Iα and Kα, of the first
and second kind. We next summarise some properties of these functions and we refer the reader to Section
3.7 of [19] or Section 9.6.1 of [1] for further results and proofs. For α ≥ 0, Iα (resp. Kα) is a positive and
increasing (resp. decreasing) solution to

(2.4) x2y′′ + xy′ − (x2 + α2)y = 0

when x is restricted to (0,∞). Moreover, Iα has the following series representation:

(2.5) Iα(x) =

∞∑
m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α

.

The above expansion can be used to define Iα for α < 0 when α is not an integer less than −1 since the
Gamma function is well defined and finite at non-integer negative values. For α ∈ Z∩(−∞, 0) one can define
it by taking limits and it turns out that for such an α I−α = Iα. It is also a simple matter to check that Iα
satisfies (2.3) for α < 0 as well. Moreover,

(2.6) Kα(x) =
π

2

I−α(x)− Iα(x)

sin(απ)
.

The above identity in particular entails Kα = K−α.
The asymptotic behaviour of the modified Bessel functions can be described in terms of known functions:

(2.7)
Iα(x) ∼ ( x2 )

α

Γ(α+1) as x→ 0, α 6= −1,−2, . . . ; Iα(x) ∼ ex√
2πx

as x→∞.
Kα(x) ∼ Γ(α)

2

(
x
2

)−α
as x→ 0, α > 0; Kα(x) ∼

√
π
2xe
−x as x→∞.

K0(x) ∼ − log x.

Then, it is easy to check that the solutions to (2.2) is of the form

(2.8) C1K |ν|
p+1

(
1

p+ 1

√
λxp+1

)
+ C2I |ν|

p+1

(
1

p+ 1

√
λxp+1

)
,

where C1 and C2 are arbitrary constants.

Remark 1. It is worth to observe some further monotonicity properties regarding modified Bessel functions
that will be useful in the sequel.

First consider x−νK |ν|
p+1

(
1
p+1

√
λxp+1

)
for ν ∈ R and p > −1. We will now see that this function is

decreasing. Indeed, differentiation with respect to x yields

−νx−ν−1K ν
p+1

(
1

p+ 1

√
λxp+1

)
+
√
λx−ν+pK ′ ν

p+1

(
1

p+ 1

√
λxp+1

)
.

When ν ≥ 0, utilising the recurrence elation (cf. Section 3.7 in [19])

K ′α(x) =
α

x
Kα(x)−Kα+1(x), α ∈ R,

one can see that the above derivative is negative since Kα is positive for all α ∈ R. If ν < 0, the other
recurrence relation, i.e.

K ′α(x) = −α
x
Kα(x)−Kα−1(x), α ∈ R,

yields the conclusion.

Similarly, the function x−νI ν
p+1

(
1
p+1

√
λxp+1

)
, has a positive derivative, i.e. is increasing, whenever

p > −1 and ν
p+1 > −2. This follows from the recurrence relation

I ′α(x) =
α

x
Iα(x) + Iα+1(x), α ∈ R,

and the positivity of Iα for α > −1. Note that ν
p+1 + 1 > −1 under our hypotheses.

We now return to determining the joint law of (U,Σδp,z,y) for arbitrary positive FRy -measurable random

variables U , where Σδp,z,y is as defined in (1.1). We will analyse the cases of negative and positive ν separately.
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2.1. The case ν ∈ (−1, 0).

Theorem 2.1. Suppose that ν ∈ (−1, 0), p > −1 and let u0(x) := K −ν
p+1

(
1
p+1

√
λxp+1

)
. Then,

0 < lim
x→0

u0(
√
x)x−

ν
2 <∞, lim

x→∞
u0(
√
z)x−

ν
2 <∞.

Consequently, (M
(u0)
t∧R )t≥0 is a strictly positive bounded martingale with

1[t<R]dM
(u0)
t = 1[t<R]M

(u0)
t

(
u′0(
√
Xt)

u0(
√
Xt)
− ν√

Xt

)
dBt.

Proof. Note that

lim
x→0

u0(
√
x)x−

ν
2 =

( √
λ

p+ 1

) ν
p+1

lim
x→0

x−
ν
p+1K− ν

p+1
(x) =

(
2
√
λ

p+ 1

) ν
p+1 Γ(− ν

p+1 )

2

in view of the asymptotic relations from (2.7). Asymptotic behaviour of K− ν
p+1

for large x yields u0(
√
x)x−

ν
2

has a finite limit at infinity, hence the boundedness of (M
(u0)
t∧R )t≥0 in view of Lemma 2.1. Strict positivity of

Kα on (0,∞) for all α completes the proof of that this martingale is strictly positive. �

It is well-known that (see, e.g. Section 2.8 in [13]) for ν > −1

Qδz

[
exp

(
−λ

2
Ry

)]
=

z−
ν
2Kν(

√
λz)

y−
ν
2Kν(

√
λy)

, y ≤ z;(2.9)

=
z−

ν
2 Iν(
√
λz)

y−
ν
2 Iν(
√
λy)

, y ≥ z.(2.10)

The above formulae are still valid when ν ≥ 0 and note that z−
ν
2 Iν(
√
λz) (resp. z−

ν
2Kν(

√
λz)) is increasing

(resp. decreasing) in view of Remark 1.
Since R <∞, a.s. when ν < 0, the following is a straightforward corollary to the theorem above for ν < 0

and y < z.

Corollary 2.1. Let u0 be the function defined in Theorem 2.1 and suppose that ν ∈ (−1, 0), p > −1 and
y < z. If U is FRy -measurable, then for r ≥ 0,

Qδz

[
exp

(
−rU − λ

2
Σδp,z,y

)]
=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2
P δ,u0
z [exp (−rU)] ,

where P δ,u0
z is defined by

dP δ,u0z

dQδz
= M

(u0)
R . Moreover, under P δ,u0

z , X solves

(2.11) dXt = 2

(
u′0(
√
Xt)
√
Xt

u0(
√
Xt)

+ 1

)
dt+ 2

√
Xt dβt, t ≤ R,

for some P δ,u0
z -Brownian motion β.

Proof. Since (M
(u0)
t∧R )t≥0 is a strictly positive martingale due to Theorem 2.1, Qδz is an equivalent probability

measure. The fact that X solves (2.11) follows from an application of Girsanov’s theorem. �

Remark 2. By taking U ≡ 0 Corollary 2.1 yields the law of Σδp,z,y for y < z. Comparing this Laplace

transform with (2.9) shows that Σδp,z,y
d
= Rδ

∗

y∗ where δ∗ = 2( ν
1+p + 1), y∗ = y1+p

(1+p)2 and Rδ
∗

y∗ is the first

hitting time of y∗ for some BESQδ
∗
(

z1+p

(1+p)2

)
. One can check by comparing the Laplace transforms that we

will obtain later in this section that this equality in law would be valid for y ≥ z, too. Moreover, the same
identities in distribution will hold for ν ≥ 0, too. These facts also follow from the time-change result given
in Proposition XI.1.11 in [15].
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Recall that if X is a one-dimensional regular diffusion on an interval (l0, l1) defined by its infinitesimal
generator, A, where

A =
1

2
σ2(x)

d2

dx2
+ b(x)

d

dx
for some locally bounded functions σ and b such that σ > 0 on the open interval (l0, l1), then for any r > 0
there exists a positive, and strictly decreasing (resp. increasing) function Φ (resp. Ψ), which solves

Au = rΦ (resp. rΨ)

on (l0, l1) satisfying certain boundary requirements depending on the nature of the behaviour of the diffusion
near l0 and l1. Moreover, any other solution of this equation with the above positivity and monotonicity
assumptions is a fixed multiple of Φ (resp. Ψ) (see, e.g., Proposition V.50.3 in [16]). Then, if Ry is the first
hitting time of y,

Pz [exp (−rRy)] =
Φ(z)

Φ(y)
, y ≤ z;

=
Ψ(z)

Ψ(y)
, y ≥ z,

where Pz is the law of the diffusion that started at z at t = 0.
Thus, if U = Ry, we obtain the following in view of the above discussion.

Corollary 2.2. Let u0 be the function defined in Theorem 2.1 and suppose that ν ∈ (−1, 0) and y < z.
Then for r ≥ 0,

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2 Φ(z)

Φ(y)
,

where Φ is a positive and decreasing solution of

(2.12) 2xv′′ + 2

(
u′0(
√
x)
√
x

u0(
√
x)

+ 1

)
v′ = rv.

Proof. The ODE in (2.12) corresponds to the diffusion, X, which follows

(2.13) dXt = 2

(
u′0(
√
Xt)
√
Xt

u0(
√
Xt)

+ 1

)
dt+ 2

√
Xt dβt,

where β is a Brownian motion, if a solution exists. Using the recursive relation

K ′α(x) = −α
x
Kα(x)−Kα−1(x),

we obtain

u′0(
√
x)
√
x

u0(
√
x)

= ν −
√
λx

p+1
2

K−ν−p−1
p+1

(
1
p+1

√
λx

p+1
2

)
K −ν

p+1

(
1
p+1

√
λx

p+1
2

) ≤ ν.

This shows that the drift of the above SDE is less than that of the SDE solved by a BESQδ. Thus, when
a solution exists, it never explodes due to the standard comparison results for SDEs. Moreover, using the
asymptotic relations for K as x tends to 0, we can directly verify that

lim
x→0

u′0(
√
x)
√
x

u0(
√
x)

= ν.

Thus, the solution is pushed towards the interior of (0,∞) as soon as it hits 0 since the diffusion coefficient
vanishes at 0. Finally, the existence of a solution taking values in [0,∞) follows easily since the drift term
is locally Lipschitz as Kα is strictly positive on [0,∞) and Kα is twice continuously differentiable for all α.
The solution is also unique due to drift coefficient being locally Lipschitz.

Recall that in view of Corollary 2.1 X solves (2.13) until the first time it hits 0. Since it cannot hit 0
before hitting y, the formula is a direct consequence of the discussion preceding the corollary. �
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Corollary 2.1 also allows us to compute the law of Σδp,z,y on the event that a certain boundary is yet to
be reached via the intimate relationship between the scale functions of diffusions and their exit probabilities
(see Sect.3 of Chap. VII in [15] for details).

Corollary 2.3. Let u0 be the function defined in Theorem 2.1 and suppose that ν ∈ (−1, 0), p > −1 and
y < z. Then, a scale function of the diffusion defined by (2.11) is

(2.14) s̃0(x) =

∫ x

1

1

yu2
0(
√
y)
dy, x ≥ 0.

Thus, for any a > x

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=
u0(
√
x)

u0(
√
y)

(
x

y

)− ν2 s̃0(x)− s̃0(a)

s̃0(y)− s̃0(a)
.

Proof. The representation of the scale function is due to the well-known formulas for the solutions of SDEs,
see, e.g., Exercise VII.3.20 in [15]. Note that the function is well-defined at x = 0. Indeed, it follows from
Theorem 2.1 that limy→0 u0(

√
y)y−

ν
2 > 0. Thus, yu2

0(
√
y) > Cy1+ν for some C > 0 for sufficiently small y.

Since y−(1+ν) is integrable for ν ∈ [−1, 0), the claim holds.
The second assertion follows from Corollary 2.1 after taking r = 1 and U = log 1[Ra>Ry ] via the defining

property of scale functions, see Definition VII.3.3 in [15]. �

Remark 3. The above result in fact gives us the joint law of (maxt≤Ry Xt,Σ
δ
p,z,y). Indeed, for any a ≥ z > y

[max
t≤Ry

Xt < a] = [Ra > Ry].

Since K 1
2
(x) =

√
π
2xe
−x, we have more explicit formulas when ν

p+1 = − 1
2 .

Corollary 2.4. Suppose that ν
p+1 = − 1

2 and p > −1. Then, for y ≤ z we have the following:

i)

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
= exp

(√
λ
z−ν − y−ν

2ν

)
Φ(z)

Φ(y)
,

where Φ is a positive and decreasing solution of

(2.15) 2xv′′ + 2
(
ν + 1−

√
λx−ν

)
v′ = rv

on (0,∞).

ii) The function s̃0 is, up to an affine transformation, given by exp
(
−
√
λx
−ν

ν

)
.

iii) For a > z,

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
= exp

(√
λ
z−ν − y−ν

2ν

) exp
(
−
√
λ z
−ν

ν

)
− exp

(
−
√
λa
−ν

ν

)
exp

(
−
√
λy
−ν

ν

)
− exp

(
−
√
λa
−ν

ν

)
=

sinh
(
−
√
λa
−ν−z−ν

2ν

)
sinh

(
−
√
λa
−ν−y−ν

2ν

) .(2.16)

Note that the expression in (2.16) yields

Qδz

[
exp

(
−λ

2
Σδp,z,y

) ∣∣∣∣Ra > Ry

]
=
a−ν − y−ν

a−ν − z−ν
sinh

(
−
√
λa
−ν−z−ν

2ν

)
sinh

(
−
√
λa
−ν−y−ν

2ν

)
using the scale function of X under Qδz. Comparing this with (2.10) for ν = 1/2 gives the following since

I 1
2
(x) =

√
2π
x sinh(x).
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Corollary 2.5. Suppose that ν
p+1 = − 1

2 , ν ∈ (−1, 0), and p > −1. Then, for y ≤ z < a we have that the

law of Σδp,z,y conditioned on the event [Ra > Ry] is that of the first hitting time of (a−ν − y−ν)2/4ν2 by a

3-dimensional squared Bessel process started at (a−ν − z−ν)2/4ν2.

Note that, since lima→0 = 1−xa
a = − log x, when y > 0, we obtain that the above conditional laws converge

as ν → 0 (and, thus, as p → −1) to that of the first hitting time of (log
√
a − log

√
y)2 by a 3-dimensional

squared Bessel process started at (log
√
a− log

√
z)2. This can be viewed as the analogous statement of the

above corollary when ν = 0 and p = −1.
Next we look at the case when y > z ≥ 0. Observe that the function u1 as defined in the theorem below

is still well defined and finite at z = 0 in view of, e.g., the series representation of Iα in (2.5).

Theorem 2.2. Suppose that p ≥ 0, y ≥ z, and ν ∈ (−1, 0). Let u1(x) := I ν
p+1

( √
λ

p+1x
p+1
)

. Then,

(M
(u1)
t∧Ry )t≥0 is a bounded martingale with

1[t<Ry ]dM
(u1)
t = 1[t<Ry ]M

(u1)
t

(
u′1(
√
Xt)

u1(
√
Xt)
− ν√

Xt

)
dBt,

for any y ≥ 0.

Proof. Note that [R < Ry] has a positive probability. Thus, we have to pay attention to the behaviour of
w(x) = u1(

√
x)x−

ν
2 at x = 0. Observe that under our assumptions, ν

p+1 > −1, thus it follows from the series

representation of Iα that w(0) > 0 and is finite since Iα(1) < ∞ for any α. Next, we will show that w has
an absolutely continuous derivative over [0,∞). Using the recurrence relations (see Section 3.7 in [19])

Iα−1(x) + Iα+1(x) = 2I ′α(x), and
x

2
(Iα−1(x)− Iα+1(x)) = αIα(x),

we obtain that

(2.17) I ′α(x) = Iα+1(x) +
α

x
Iα(x).

Using this identity it follows from direct calculations that

w′(x) =

√
λ

2
x
p−ν−1

2 Iγ

( √
λ

p+ 1
x
p+1
2

)
,

where γ = 1+ ν
p+1 . Since the leading term of Iγ

( √
λ

p+1x
p+1
2

)
as x→ 0 is x

ν+p+1
2 , we see that limx→0 w

′(x) = 0

when p > 0. Therefore, we obtain immediately from the ODE (2.3) that when p > 0 limx→0 xw
′′(x) = 0 for

ν ∈ (−1, 0). On the other hand, when p = 0 and ν > −1,

w′(x)

w(x)
=
λ

2

1√
λx

Iv+1(
√
λx)

Iv(
√
λx)

by another application of (2.17). Thus, in view of the asymptotics of Iα as x→ 0

lim
x→0

w′(x)

w(x)
=

λ

2
lim
x→0

Iv+1(x)

xIv(x)

=
λ

4

Γ(ν + 1)

Γ(ν + 2)
=

λ

4(ν + 1)
.

Consequently, limx→0 2(ν + 1)w′ − λ
2w = 0 since w(x) > 0 for all x ≥ 0. Again, it follows from the ODE

(2.3) that limx→0 xw
′′(x) = 0. However, this condition implies that

∫ x
0
w′′(y) dy exists and is finite. Since

this integral equals w′(x)−w′(0) for any x ∈ [0,∞), we conclude that w′ is absolutely continuous on [0,∞)
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and w′(x) = w′(0) +
∫ x

0
w′′(y) dy for any x ∈ [0,∞). Then, in view of Problem 3.7.3 in [9] we immediately

deduce that

w(Xt) = w(X0) +

∫ t

0

2w′(Xs)
√
Xs dBs +

∫ t

0

{2w′(Xs)(ν + 1) + 2w′′(Xs)Xs} ds

=

∫ t

0

2w′(Xs)
√
Xs dBs +

λ

2

∫ t

0

Xp
sw(Xs) ds.

A simple application of integration by parts formula now shows that M (u1) is a martingale with the claimed
representation. �

Remark 4. Observe that u1(x)x−ν is still monotone in view of Remark 1 since under our hypothesis ν
p+1 >

−2.

Corollary 2.6. Let u1 be the function defined in Theorem 2.2 and suppose that the hypotheses therein hold.
Then, we have the following for all z ≤ y:

i) If r ≥ 0 and U is FRy -measurable,

Qδz

[
exp

(
−rU − λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2
P δ,u1
z,y [exp (−rU)] ,

where P δ,u1
z,y is defined by

dP δ,u1z,y

dQδz
= M

(u1)
Ry

. Moreover, under P δ,u1
z,y , X solves

(2.18) dXt = 2

(
u′1(
√
Xt)
√
Xt

u1(
√
Xt)

+ 1

)
dt+ 2

√
Xt dβt, t ≤ Ry,

for some P δ,u1
z,y -Brownian motion β.

ii) For all r ≥ 0

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2 Ψ(z)

Ψ(y)
,

where Ψ is a positive and increasing solution of

(2.19) 2xv′′ + 2

(
u′1(
√
x)
√
x

u1(
√
x)

+ 1

)
v′ = rv

on (0,∞).
iii) A scale function of the diffusion defined in (2.18) is given by

(2.20) s̃1(x) =

∫ x

1

1

yu2
1(
√
y)
dy, x ≥ 0.

Thus, for any 0 ≤ a < z

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2 s̃1(z)− s̃1(a)

s̃1(y)− s̃1(a)
.

Proof. The proof follows the similar lines as in the proofs of analogous results for y ≤ z. The only difference
is that contrary to the previous case the drift term of the diffusion corresponding to the ODE in (2.19) is
only locally bounded. In particular, it is now larger than 2(ν + 1), which in turn implies that the solution
is immediately pushed to (0,∞) as soon as it hits 0 by comparison results for SDEs. Moreover, being only
locally bounded causes no concern for our purposes since the computations involve the law of the diffusion
until the first time it reaches y. �

Again, since I− 1
2
(x) =

√
2π
x cosh(x) we have

Corollary 2.7. p ≥ 0, ν ∈ (−1, 0) and ν
p+1 = − 1

2 . Then, for y ≥ z we have the following:
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i)

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=

cosh
(
−
√
λ

2ν z
−ν
)

cosh
(
−
√
λ

2ν y
−ν
) Ψ(z)

Ψ(y)
,

where Ψ is a positive and increasing solution of

(2.21) 2xv′′ + 2

(
ν + 1 +

√
λx−ν tanh

(
−
√
λ

2ν
x−ν

))
v′ = rv

on (0,∞).

ii) The function s̃1 is, up to an affine transformation, given by tanh
(
−
√
λx
−ν

2ν

)
.

iii) For 0 ≤ a < z,

(2.22) Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=

sinh
(
−
√
λ z
−ν−a−ν

2ν

)
sinh

(
−
√
λy
−ν−a−ν

2ν

) .
Proof. Only part iii) needs proof. Note that

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=

cosh
(
−
√
λ

2ν z
−ν
)

cosh
(
−
√
λ

2ν y
−ν
) tanh

(
−
√
λ

2ν x
−ν
)
− tanh

(
−
√
λ

2ν a
−ν
)

cosh
(
−
√
λ

2ν y
−ν
)
− tanh

(
−
√
λ

2ν a
−ν
) .

On the other hand,

cosh

(
−
√
λ

2ν
z−ν

){
tanh

(
−
√
λ

2ν
x−ν

)
− tanh

(
−
√
λ

2ν
a−ν

)}

=
sinh

(
−
√
λ

2ν z
−ν
)

cosh
(
−
√
λ

2ν a
−ν
)
− cosh

(
−
√
λ

2ν z
−ν
)

sinh
(
−
√
λ

2ν a
−ν
)

cosh
(
−
√
λ

2ν a
−ν
)

=
sinh

(
−
√
λ

2ν z
−ν
)

cosh
(√

λ
2ν a

−ν
)

+ cosh
(
−
√
λ

2ν z
−ν
)

sinh
(√

λ
2ν a

−ν
)

cosh
(
−
√
λ

2ν a
−ν
)

=
sinh

(√
λ

2ν (a−ν − z−ν)
)

cosh
(
−
√
λ

2ν a
−ν
) ,

which yields the claimed representation. �

Note that in fact we do not need to assume p > 0 for part iii) of the above result to hold, since X is never
0 before Ra for 0 < a < z. Moreover, (2.22) and (2.16) are the same. Thus,

Corollary 2.8. Suppose that ν
p+1 = − 1

2 , ν ∈ (−1, 0) and p > −1. Then, for y ≥ z > a we have that the

law of Σδp,z,y conditioned on the event [Ra > Ry] is that of the first hitting time of (a−ν − y−ν)2/4ν2 by a

3-dimensional squared Bessel process started at (a−ν − z−ν)2/4ν2.

We end this section with a scaling property which will be useful in the subsequent section. It is a direct
consequence of the scaling property of BESQδ applied to the definition of Σδp,0,y.

Proposition 2.1. Suppose that p ≥ 0, ν ∈ (−1, 0). Then, we have the following identity in law for any
y ≥ 0:

yp+1Σδp,0,1
d
= Σδp,0,y.
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2.2. The case ν ≥ 0. Recall that when ν ≥ 0 the point 0 is polar for X. Thus, one can prove without any
difficulty that M (u1), where u1 is as defined in Theorem 2.2, is a martingale stopped at Ry. Note that for
ν ≥ 0 the random variable Σδp,0,y is well-defined and finite even in the case p ∈ (−1, 0). Indeed, Corollary
XI.1.12 in [15] show that ∫ 1

0

Xp
s ds

d
=

(∫ 1

0

Y
− 2p

2+p
s ds

) 2+p
p

,

where X is a BESQ2(ν+1)(0) and Y is a BESQ2(ν 2
2+p+1)(0). Since − 2p

2+p > 0 whenever p ∈ (−1, 0) we

easily deduce that the random variable on the left-hand side of the above identity is finite. Since a Bessel
process with a positive dimension never comes back to 0 again this yields the finiteness of

∫ ε
0
Xp
s ds for all

ε > 0, which in turn implies the finiteness of Σδp,0,y.

Theorem 2.3. Suppose that p > −1, y ≥ z, and ν ≥ 0. Let u1 be the function defined in Theorem 2.2.

Then, (M
(u1)
t∧Ry )t≥0 is a bounded martingale.

Recall that BESQδ is transient when ν > 0, thus Qδz(Ry < ∞) = 1 whenever y ≥ z. Consequently, we
can deduce the following.

Corollary 2.9. Let u1 be the function defined in Theorem 2.2 and suppose that p > −1, ν ≥ 0. Then, we
have the following for all z ≤ y:

i) If r ≥ 0 and U is FRy -measurable,

Qδz

[
exp

(
−rU − λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2
P δ,u1
z,y [exp (−rU)] ,

where P δ,u1
z,y is defined by

dP δ,u1z,y

dQδz
= M

(u1)
Ry

. Moreover, under P δ,u1
z,y , X satisfies (2.18).

ii) For all r ≥ 0

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2 Ψ(z)

Ψ(y)
,

where Ψ is a positive and increasing solution of (2.19) on (0,∞).
iii) For any a < z

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=
u1(
√
z)

u1(
√
y)

(
z

y

)− ν2 s̃1(z)− s̃1(a)

s̃1(y)− s̃1(a)
,

where s̃1 is as defined in (2.20).

Analogous to Proposition 2.1 we have the following scaling property.

Proposition 2.2. Suppose that p > −1, ν ≥ 0. Then, we have the following identity in law for any y ≥ 0:

yp+1Σδp,0,1
d
= Σδp,0,y.

We now return to the case y ≤ z.

Proposition 2.3. Let u0 be the function defined in Theorem 2.1 and suppose that ν ≥ 0, p > −1. Then, we
have the following for all z ≥ y:

i) If r ≥ 0 and U is FRy -measurable,

Qδz

[
exp

(
−rU − λ

2
Σδp,z,y

)]
=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2
P δ,u0
z,y [exp (−rU)] ,

where P δ,u0
z,y is defined by

dP δ,u0z,y

dQδz
= M

(u0)
Ry

. Moreover, under P δ,u0
z,y , X satisfies (2.11) until Ry.
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ii) For all r ≥ 0

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2 Φ(z)

Φ(y)
,

where Φ is a positive and decreasing solution of (2.12) on (0,∞).
iii) For any a > z

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2 s̃0(z)− s̃0(a)

s̃0(y)− s̃0(a)
,

where s̃0 is as defined in (2.14).

Proof. We will only give the details for the parts of the proof that differ from the analogous results of the

previous section. Observe that (M
(u0)
t∧Ry )t≥0 is a uniformly integrable martingale when X starts at a value

larger than y. Thus, using the Optional Stopping Theorem, we obtain

u0(
√
z)z−

ν
2 P δ,u0

z,y [exp (−rU)] = Qδz

[
exp (−rU)M

(u0)
Ry

]
= Qδz

[
1[Ry<∞]u0(

√
y)y−

ν
2 exp

(
−rU − λ

2
Σδp,z,y

)]
+Qδz

[
1[Ry=∞]M

(u0)
∞

]
.

For ν = 0, Ry is finite a.s., hence the claim. In case of ν > 0, we still obtain the formula since, on the set
[Ry =∞], Σδp,z,y =∞ as well as u0(∞) = 0 due to the transience of X.

Using the recurrence relations for Kα as in Corollary 2.2, we can deduce that

u′0(
√
x)
√
x

u0(
√
x)

≤ −ν,

and the left-hand side of the above inequality converging to the right-hand side as x tends to 0. Thus,
solution of the SDE given by (2.11) until the first time it hits 0 is less than that of

dXt = 2(−ν + 1)dt+ 2
√
|Xt|dβt.

Note that if ν > 1 the drift of the above SDE is negative hence its solution corresponds to a squared Bessel
process of negative dimension. This SDE has a unique strong solution and it stays (−∞, 0] as soon as it
hits 0 (see Section 3 of [6]). Thus, we conclude by means of comparison results for SDEs that there exists a
solution to (2.11) until Ry for every y > 0.

The ODE (2.12) has increasing and decreasing solutions which can be determined as before via the Laplace
transforms of the first hitting times of the the diffusion on (0,∞) with the generator

A = 2x
d2

dx2
+ 2

(
u′0(
√
x)
√
x

u0(
√
x)

+ 1

)
d

dx
,

which is killed as soon as it reaches 0.
�

As before, using the explicit form of K 1
2
, one gets

Corollary 2.10. Suppose that ν
p+1 = 1

2 and p > −1. Then, for y ≤ z we have the following:

i)

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
yν

zν
exp

(
−
√
λ
zν − yν

2ν

)
Φ(z)

Φ(y)
,

where Φ is a positive and decreasing solution of

(2.23) 2xv′′ + 2
(
−ν + 1−

√
λxν

)
v′ = rv

on (0,∞).
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ii) The function s̃0 is, up to an affine transformation, given by exp
(√

λx
ν

ν

)
.

iii) For a > z

Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=

yν

zν
exp

(
−
√
λ
zν − yν

2ν

) exp
(√

λ z
ν

ν

)
− exp

(√
λa

ν

ν

)
exp

(√
λy

ν

ν

)
− exp

(√
λa

ν

ν

)
=

yν

zν

sinh
(√

λa
ν−zν
2ν

)
sinh

(√
λa

ν−yν
2ν

) .(2.24)

As in the case with ν
p+1 = − 1

2 we get

Qδz

[
exp

(
−λ

2
Σδp,z,y

) ∣∣∣∣Ra > Ry

]
=

yν

zν
y−ν − a−ν

z−ν − a−ν
sinh

(√
λa

ν−zν
2ν

)
sinh

(√
λa

ν−yν
2ν

)
=

1−
(
y
a

)ν
1−

(
z
a

)ν sinh
(√

λa
ν−zν
2ν

)
sinh

(√
λa

ν−yν
2ν

)
=

aν − yν

aν − zν
sinh

(√
λa

ν−zν
2ν

)
sinh

(√
λa

ν−yν
2ν

) ,
and hence

Corollary 2.11. Suppose that ν
p+1 = 1

2 and p > −1. Then, for y ≤ z < a we have that the law of Σδp,z,y
conditioned on the event [Ra > Ry] is that of the first hitting time of (aν − yν)2/4ν2 by a 3-dimensional
squared Bessel process started at (aν − zν)2/4ν2.

Similarly, since I 1
2
(x) =

√
2π
x sinh(x) we have

Corollary 2.12. p > −1 and ν
p+1 = 1

2 . Then, for y ≥ z we have the following:

i)

Qδz

[
exp

(
−rRy −

λ

2
Σδp,z,y

)]
=
yν sinh

(√
λ

2ν z
ν
)

zν sinh
(√

λ
2ν y

ν
) Ψ(z)

Ψ(y)
,

where Ψ is a positive and increasing solution of

(2.25) 2xv′′ + 2

(
−ν + 1 +

√
λxν coth

(√
λ

2ν
xν

))
v′ = rv

on (0,∞).

ii) The function s̃1 is, up to an affine transformation, given by coth
(√

λx
ν

2ν

)
.

iii) For 0 ≤ a < z,

(2.26) Qδz

[
1[Ra>Ry ] exp

(
−λ

2
Σδp,z,y

)]
=
yν

zν

sinh
(√

λ z
ν−aν
2ν

)
sinh

(√
λy

ν−aν
2ν

) .
Remark 5. Comparing parts i) of Corollary 2.4 and 2.10 immediately gives us that, for z ≥ y, the dis-
tributions of Σδp,z,y are different when ν has different signs. On the other hand, Corollaries 2.5 and 2.11
imply that they have the same distribution once they are conditioned on the event that the maximum of the
underlying squared Bessel process is less than a by time Ry. Same conclusion holds when z ≤ y.
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3. Small ball problem and Chung’s law of iterated logarithm

The small ball problem (also called small deviations) for a stochastic process Z = (Zt)t∈T consists in
finding the probability

P[‖Z‖ < ε] as ε→ 0,

‖·‖ is a given norm, usually Lp or L∞. It is connected to many other questions, such as the law of the iterated
logarithm of Chung’s type (Chung’s LIL for short), strong limit laws in statistics, metric entropy properties
of linear operators and several approximation quantities for stochastic processes. The determination of the
above probability is not feasible other than in a very few cases and one is inclined to consider the asymptotic
behaviour of

− logP[‖Z‖ < ε] as ε→ 0.

The solution to the latter problem is also not available in full generality. However, one can get this asymptotic
behaviour for Gaussian processes (see, e.g., [12] and [11]) or real-valued Lévy processes (see [2]). There is a
large amount of literature on small ball probabilities in the Gaussian setting and one can consult the survey
article [12].

As one can expect from the computations made in the previous section, we will be interested in the small
ball probabilities for the stochastic process (Xt)t≥0, and the “norm”

‖Z‖p,y =

(∫ Ry

0

|Zt|p dt

) 1
p

,

where p ∈ (0,∞) and Ry = inf{t > 0 : Xt = y}. Observe that the above definition is not a real norm unless
p ≥ 1, however, as the results in this section does not depend on whether ‖ · ‖p,y is a true norm, this is not
a problem. Our results and proofs are close in nature to the results of [10].

Interestingly, the small ball probabilities for X under the above norm does not depend on its index, ν, as
seen from the next theorem.

Theorem 3.1. Let X be a BESQδ as defined by (2.1) with δ > 0, and Ry = inf{t > 0 : Xt = y}. Then,
one has, for z ≥ 0 and y ≥ 0,

lim
λ→∞

λ−
1
2 logQδz

[
exp

(
−λ‖X‖pp,y

)]
= −

√
2

p+ 1

∣∣∣z p+1
2 − y

p+1
2

∣∣∣
lim
ε→0

εp logQδz [‖X‖p,y < ε] = − 1

2(p+ 1)2

(
z
p+1
2 − y

p+1
2

)2

.

Proof. Let w(x) = u(
√
x)x−

ν
2 where u = u0 (resp. u = u1) for y ≤ z (resp. y > z) and u0 and u1 are as

defined in Theorems 2.1 and 2.2, respectively. Then, it follows from the results of the previous section that

√
2λ−

1
2 logQδz

[
exp

(
−λ

2
‖X‖pp,y

)]
=
√

2
logw(z)√

λ
−
√

2
logw(y)√

λ
.

Moreover, when u = u0,

lim
λ→∞

logw(x)√
λ

= lim
λ→∞

log u0(
√
x)√

λ

=
x
p+1
2

p+ 1
lim
λ→∞

logK |ν|
p+1

( √
λ

p+1x
p+1
2

)
√
λ

p+ 1

x
p+1
2

=
x
p+1
2

p+ 1
lim
λ→∞

logK |ν|
p+1

(λ)

λ
.

However, using the asymptotic expansions in (2.7) we obtain that for any α ≥ 0,

lim
λ→∞

logKα(λ)

λ
= −1.
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This shows that when y ≤ z

lim
λ→∞

λ−
1
2 logQδz

[
exp

(
−λ‖X‖pp,y

)]
= −

√
2

p+ 1

∣∣∣z p+1
2 − y

p+1
2

∣∣∣ .
In order to show the above limit when y > x, it suffices to show that limx→∞

log I ν
p+1

(x)

x = 1, which again
follows from (2.7). This completes the proof of the first assertion of the theorem.

The second assertion follows by applying de Bruijn’s exponential Tauberian theorem (see Theorem 4.12.9

in [4]) to α = −1 and β = 1
2(p+1)2

(
z
p+1
2 − y

p+1
2

)2

. �

Observe that Σδp,0,y is an increasing process when indexed by y. We will next use the above theorem to

obtain Chung’s LIL for (Σδp,0,y)y≥0.

Theorem 3.2. Let φ(y) := yp+1

log log y . Then, for any ν > −1 and p > 0 one has

lim inf
y→∞

Σδp,0,y
φ(y)

=
1

2(p+ 1)2
, Qδ0-a.s..

Proof. It follows form Theorem 3.1 that

lim
ε→0

ε logQδ0
[
Σδp,0,1 < ε

]
= − 1

2(p+ 1)2
,

thus, for sufficiently small ε,

Qδ0
[
Σδp,0,1 < ε

]
≤ exp

(
−K
ε

)
,

where K is a fixed, but arbitrary, constant in (0, 1
2(p+1)2 ). Fix C > 1 and set yn = Cn. Next choose k > 0

so that kCp+1 < K, In view of Propositions 2.1 and 2.2, we get for all large n

Qδ0
[
Σδp,0,yn < kφ(yn+1)

]
= Qδ0

[
Σδp,0,1 <

kCp+1

log log yn+1

]
≤ exp

(
− K

kCp+1
log ((n+ 1) logC)

)
= (logC)−

K

kCp+1 (n+ 1)−
K

kCp+1 ,

which is summable in n. Therefore, by the first Borel-Cantelli lemma, we have that, a.s. for large n,
Σδp,0,yn
φ(yn+1) ≥ k. On the other hand, for y ∈ [yn, yn+1],

Σδp,0,y ≥ Σδp,0,yn ≥ kφ(yn+1) ≥ kφ(y),

which shows that

lim inf
y→∞

Σδp,0,y
φ(y)

≥ k, Qδ0-a.s.,

and thus

lim inf
y→∞

Σδp,0,y
φ(y)

≥ 1

2(p+ 1)2
, Qδ0-a.s.,

by the arbitrariness of C,K and k.
We now turn to prove the reverse inequality. First, let’s observe that

(3.1) lim inf
y→∞

Σδp,0,y
yp+1

<∞, Qδ0-a.s..

The above claim follows from a direct application of Fatou’s lemma since Σδp,0,y
d
= yp+1Σδp,0,1.

Next, fix an ε > 0, let yn = nn and consider the events

En :=

[∫ Ryn

Ryn−1

Xp
s ds ≤ (1 + 2ε)

1

2(p+ 1)2
φ(yn)

]
.
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It follows from the strong Markov property of X that Ens are independent, and we will now see that Ens
occur infinitely often due to the second Borel-Cantelli lemma. Indeed, by the definition of Σδp,0,yn , we obtain

Qδ0(En) ≥ Qδ0

[
Σδp,0,yn ≤ (1 + 2ε)

1

2(p+ 1)2
φ(yn)

]
= Qδ0

[
Σδp,0,1 ≤ (1 + 2ε)

1

2(p+ 1)2 log log yn

]
≥ exp

(
− 1 + ε

1 + 2ε
log log yn

)
≥ 1

log yn
,

where the second inequality is due to the fact that, for a given ε > 0, Qδ0
[
Σδp,0,1 ≤ η

]
≥ exp

(
−(1 + ε) 1

2(p+1)2
1
η

)
for sufficiently small η in view of the convergence result of Theorem 3.1. Since 1

n logn is not summable, it

follows from the Borel-Cantelli lemma that En occurs infinitely often. As ε was arbitrary this allows us to
conclude, a.s.,

lim inf
n→∞

∫ Ryn
Ryn−1

Xp
s ds

φ(yn)
≤ 1

2(p+ 1)2
.

Thus, Qδ0-a.s.,

(3.2) lim inf
n→∞

Σδp,0,yn
φ(yn)

≤ lim inf
n→∞

Σδp,0,yn−1

φ(yn)
+

1

2(p+ 1)2
= lim inf

n→∞

Σδp,0,yn−1

yp+1
n−1

yp+1
n−1

φ(yn)
+

1

2(p+ 1)2
.

On the other hand,

yp+1
n−1

φ(yn)
≤ log log nn(p+1)

np+1
,

which converges to 0 as n→∞. Therefore, in view of (3.1) and (3.2), we obtain

lim inf
n→∞

Σδp,0,yn
φ(yn)

≤ 1

2(p+ 1)2
, Qδ0-a.s..

�

Remark 6. We can in fact extend the above result so that for all z ≥ 0

lim inf
y→∞

Σδp,z,y
φ(y)

=
1

2(p+ 1)2
, Qδz-a.s..

Indeed, using the strong Markov property of X we have the decomposition

Σδp,0,y = Σδp,0,z + Σδp,z,y

where Σδp,0,z and Σδp,z,y are independent. Dividing both sides by φ(y) and letting y →∞ yields the result.
Another formal check to this result can be performed by observing

Σδp,z,y
d
= yp+1Σδp, zy ,1

d
= yp+1Σδp,0,1

Σδp, zy ,1

Σδp,0,1

d
= Σδp,0,y

Σδp, zy ,1

Σδp,0,1
,

and that
Σδp, z

y
,1

Σδp,0,1
converges to 1 as y →∞ once we identify Σδp, zy ,1

with∫ R1

R z
y

Xp
s ds,

where X is BESQδ(0).
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4. Feller property and ‘time reversal’

In the previous section we have proved a law of iterated logarithm for Σδp,0,y by considering it as a process
indexed by y. In this section we will see, for ν ≥ 0, that it is in fact an inhomogeneous Feller process and
find its infinitesimal generator.

First of all, it immediately follows from the strong Markov property of X that (Σδp,0,y,FRy )y≥0 is Markov.

Suppose Pz,y is the associated semigroup, i.e. Pz,yf(a) = Qδ0[f(Σδp,0,y)|Σδp,0,z = a]. Since the increments of

(Σδp,0,y)y≥0 are independent, we have for any bounded measurable f

(4.1) Pz,yf(a) =

∫ ∞
0

f(a+ b)Qδz(Σ
δ
p,z,y ∈ db).

Let C0 denote the class of continuous functions on R+ that vanish at 0 and ∞. (4.1) readily implies that
when f ∈ C0, Pz,yf ∈ C0 as well. Moreover, it follows from Corollary 2.9, and the observation that u1 is
finite at 0, that for each z ≥ 0 the measure Qδz(Σ

δ
p,z,y ∈ db) converges weakly to the Dirac point mass at

0 as y ↓ z since its Laplace transform converges to 1. Therefore, limy↓z Pz,yf(a) = f(a) and consequently
(Σδp,0,y,FRy )y≥0 is Feller.

The form of the infinitesimal generator of (Σδp,0,y,FRy )y≥0 will follow from the following theorem.

Theorem 4.1. Suppose that ν ≥ 0. Then, for every x ≥ 0 there exists a decreasing function π(x, ·) satisfying∫ ∞
0

e−
λ
2 bπ(x, b)db =

2

λ

w′(x)

w(x)
, λ ∈ (0,∞),

where w(x) := x−
ν
2 I ν

p+1

( √
λ

p+1x
p+1
2

)
. Moreover,

(4.2) lim
y↓z

Qδ0

[
exp

(
−λΣδp,0,y

) ∣∣∣∣Σδp,0,z = a

]
− e−λa

y − z
=

∫ ∞
0

{
e−λ(a+b) − e−λa

}
π(z, db),

where π(z, db) := −π(z, db) for b ≥ 0. In particular,∫ 1

0

bπ(z, db) <∞.

Proof. In view of the strong Markov property of X,

Qδ0

[
exp

(
−λ

2
Σδp,0,y

) ∣∣∣∣Σδp,0,z = a

]
= e−

λ
2 aQδz

[
exp

(
−λ

2
Σδp,z,y

)]
.

Thus, it follows from Corollary 2.9 that

lim
y↓z

Qδ0

[
exp

(
−λ2 Σδp,0,y

) ∣∣∣∣Σδp,0,z = a

]
− e−λ2 a

y − z
= e−

λ
2 a lim

y↓z

Qδx
[
exp

(
−λ2 Σδp,z,y

)]
− 1

y − z

= e−
λ
2 a lim

y↓z

w(x)
w(y) − 1

y − z
= −e−λ2 aw

′(z)

w(z)
.(4.3)

On the other hand, using integration by parts, we obtain

Qδx

[
exp

(
−λ

2
Σδp,z,y

)]
− 1 =

∫ ∞
0

e−
λ
2 bQδx(Σδp,z,y ∈ db)− 1

= −λ
2

∫ ∞
0

e−
λ
2 bQδx(Σδp,z,y > b) db.(4.4)

It is well-known (see Corollary 3.8 in Chap. VII of [15]) that

Qδz[Σ
δ
p,z,y] =

∫ y

0

xpG(z, x)m(dx),
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where m and G are the associated speed measure and Green’s function, respectively. In our case, these are
given by

m(dx) =
xν

2ν
dx; G(z, x) = −y−ν + (x ∨ z)−ν .

Consequently, the above formula yields

Qδz[Σ
δ
p,z,y] =

yp+1 − zp+1

2(p+ 1)(p+ ν + 1)
,

which in particular implies that Π(z, y, db) := 2(p+1)(p+ν+1)
yp+1−zp+1 Qδz(Σ

δ
p,z,y > b)db is a probability measure on

[0,∞) for each (z, y). However, (4.3) and (4.4) imply that Π(z, y, ·) converges weakly as y tends to z to some
probability measure, Π(z, ·) on [0,∞) which satisfies1

(4.5) L

(
λ

2

)
:=

∫ ∞
0

e−
λ
2 bΠ(z, db) =

4(p+ ν + 1)

λ
z−p

w′(z)

w(z)
.

Moreover, since Qδz(Σ
δ
p,z,y > b) is decreasing in b for each (z, y), the limiting measure Π is necessarily of the

form
cε0(db) + 2(p+ ν + 1)z−pπ(z, b) db,

where ε0 is the Dirac point mass at 0, c a nonnegative constant, and π(z, ·) is a decreasing function for each
x. In particular, π(z,∞) = 0. In order to find the constant c, it suffices to check the value of the function L
at ∞. However, using the explicit form of w,

c = lim
λ→∞

4(p+ ν + 1)

λ
z−p

w′(z)

w(z)
= lim
λ→∞

2
p+ ν + 1
√
λz

p+1
2

I ′ ν
p+1

( √
λ

p+1z
p+1
2

)
I ν
p+1

( √
λ

p+1z
p+1
2

) = 0

since

lim
x→∞

1

x

I ′α(x)

Iα(x)
= 2 lim

x→∞

log Iα(x)

x2
= 0

due to (2.7).
Thus, we have shown that

−w
′(z)

w(z)
= lim

y↓z

Qδz
[
exp

(
−λ2 Σδp,z,y

)]
− 1

y − z
= −λ

2

∫ ∞
0

e−
λ
2 bπ(z, b) db.

Since π is decreasing with π(z,∞) = 0, we obtain by integrating by parts

lim
y↓z

Qδ0

[
exp

(
−λ2 Σδp,0,y

) ∣∣∣∣Σδp,0,z = a

]
− e−λ2 a

y − z
= e−

λ
2 a

∫ ∞
0

{
e−

λ
2 b − 1

}
π(z, db)

where π(z, db) = −π(z, db). Finally, note that one necessarily has∫ 1

0

bπ(z, db) <∞,

since otherwise L, as defined in (4.5), would have been infinite. �

The above theorem yields that the sequence of measures

(
Qδz(Σδp,z,y>b)

y−z db

)
converges vaguely to a finite

measure on (0,∞) as y → z. Thus, for any f ∈ C1
K(R+,R), i.e. the space of continuously differentiable

functions with a compact support, we have

(4.6) lim
y↓z

Qδ0
[
f
(
Σδp,0,y

)
|Σδp,0,z = a

]
− f(a)

y − z
=

∫ ∞
0

{f(a+ b)− f(a)}π(z, db).

1Using the integral representation of Iα for α > − 1
2

, it is tedious but straightforward to check that this representation holds

for z = 0 as well by taking the limit as z → 0 and showing that L(λ) <∞ for λ > 0.
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In other words, letting B(R+) denote the bounded Borel functions defined on R+, if we define the operator
Az : B(R+) 7→ B(R+) by setting

Azf(a) :=

∫ ∞
0

{f(a+ b)− f(a)}π(z, db) for f ∈ C1
K(R+,R),

then we see that the process (Mf
y )y≥0 defined by

Mf
y := f(Σδp,0,y)−

∫ y

0

Azf(Σδp,0,z) dz

is a martingale with respect to the filtration (FRy )y≥0 whenever f belongs to the domain of Az for all z ≥ 0.

The form of the infinitesimal generator also reveals the fact that the increasing process (Σδp,0,y)y≥0 is purely
discontinuous, i.e. there is no interval (a, b) in which it is continuous.

Remark 7. It follows from the fact that (Ry)y≥0 is left continuous that (Σδp,0,y)y≥0 is a left-continuous
process. However, in view of the above Feller property one can obtain a càdlàg version of it when we
augment the filtration with the null sets. Existence of a right-continuous version can also be independently
verified by observing that

lim
y↓z

Qδ0
[
exp

(
−λΣδp,0,y

)]
= Qδ0

[
exp

(
−λΣδp,0,z

)]
.

We will end this section by analysing a specific ‘time reversal’ example. To this end let Lx := sup{t ≥ 0 :
Xt = x} and suppose that ν > 0 so that Qδ0(Lx < ∞) = 1 for all x ≥ 0. We will consider the process Zδ

defined by

(4.7) Zδx :=

∫ L1

L1−x

Xp
s ds ∀x ∈ [0, 1).

In view of the well-known time reversal results for diffusions, see, e.g., Exercise 1.23 in Chap. XI of [15], the
law of the process (XL1−t, t < L1) under Qδ0 is identical to that of (Xt, t < R0) under Q2−2ν

1 . Recall that
Q2−2ν

1 (R0 <∞) = 1. Thus, we can write

(4.8) Zδx =

∫ R1−x

0

Xp
s ds, X = BESQ2−2ν(1).

Note that the above equality is to be understood in the sense of equality between the laws of the processes.
Due to the strong Markov property of X we again have that (Zδx)x∈[0,1) is a Markov process with respect

to the filtration (
←
Fx)x∈[0,1) where

←
Fx := σ(Xs;L1−x ≤ s ≤ L1). Observe, more easily in view of (4.8), that

Zδ, too, has independent increments rendering its Feller property in view of the arguments that led to the
Feller property of (Σδp,0,z)z≥0 at the beginning of this section. The next theorem will yield the form of the
infinitesimal generator. Its proof will follow similar lines of the proof of Theorem 4.1 so we will only give the
details when it differs.

Theorem 4.2. Let Zδ be as defined in (4.7) and suppose ν ∈ (0, 1]. Then, for every x ∈ [0, 1) there exists
a decreasing function π̃(x, ·) satisfying∫ ∞

0

e−
λ
2 bπ̃(x, b)db = − 2

λ

w′(1− x)

w(1− x)
, λ ∈ (0,∞),

where w(x) := x
ν
2K ν

p+1

( √
λ

p+1x
p+1
2

)
. Moreover,

(4.9) lim
y↓x

Qδ0
[
exp

(
−λZδy

) ∣∣Zδx = a
]
− e−λa

y − x
=

∫ ∞
0

{
e−λ(a+b) − e−λa

}
ρ(x, db),

where ρ(x, db) := −π̃(x, db) for b ≥ 0. In particular,∫ 1

0

bρ(x, db) <∞.
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Proof. First observe that in view of (4.8) and the aforementioned independent increments property

Qδ0

[
exp

(
−λ

2
Zδy

) ∣∣∣∣Zδx = a

]
= e−

λ
2 aQβ1−x

[
exp

(
−λ

2
Σβp,1−x,1−y

)]
,

where β = 2− 2ν. Therefore, the same arguments in the beginning of the proof of Theorem 4.1 yields that

the measures
Qβ1−x(Σβp,1−x,1−y>b)db

y−x converges vaguely to some probability measure, Π̃(x, ·) on [0,∞) which

satisfies

(4.10) L

(
λ

2

)
:=

∫ ∞
0

e−
λ
2 bΠ̃(x, db) = − 1

λ

w′(1− x)

w(1− x)
.

Moreover, the limiting measure is necessarily of the form

cε0(db) + π̃(x, b) db,

where ε0 is the Dirac point mass at 0, c a nonnegative constant, and π̃(x, ·) is a decreasing function for each

x. Observe that since Qβ1−x(Σβp,1−x,1−y) =∞, the measures
Qβ1−x(Σβp,1−x,1−y>b)db

y−x are not finite and neither is

their vague limit. On the other hand, we can still conclude that c = 0 since, in view of (2.7), one has

lim
x→∞

1

x

K ′α(x)

Kα(x)
= 2 lim

x→∞

logKα(x)

x2
= 0.

Next, integrating (4.10) by parts yields

(4.11) π̃(x,∞)−
∫ ∞

0

(1− e−λ2 b)π̃(x, db) = −w
′(1− x)

w(1− x)
.

Thus, due to the dominated convergence theorem, taking the limit of the above as λ tends to 0 yields

π̃(x,∞) = − lim
λ→0

w′(1− x)

w(1− x)
.

Also note that using the asymptotic behaviour of K near 0 (2.7) one has that

lim
x→0

x
K ′α(x)

Kα(x)
= lim
x→0

logKα(x)

log x
= −α.

for any α ≥ 0. This in turn yields that

lim
λ→0

w′(x)

w(x)
=

ν

2x
+
p+ 1

2x
lim
λ→0

K ′ ν
p+1

( √
λ

p+1x
p+1
2

)
K ν

p+1

( √
λ

p+1x
p+1
2

) √λ
p+ 1

x
p+1
2 = 0,

and thus π̃(x,∞) = 0. As in the proof of Theorem 4.1

e−
λ
2 a
w′(1− x)

w(1− x)
= lim

y↓x

Qδ0
[
exp

(
−λ2Z

δ
y

) ∣∣Zδx = a
]
− e−λ2 a

y − x
.

Thus, combining above with (4.11) and plugging in the value of π̃(x,∞) yield

lim
y↓x

Qδ0
[
exp

(
−λ2Z

δ
y

) ∣∣Zδx = a
]
− e−λa

y − x
=

∫ ∞
0

{
e−

λ
2 (a+b) − e−λ2 a

}
ρ(x, db).

�

Example 4.1. As an application of the above theorem consider the case when ν ∈ (0, 1] and ν
p+1 = 1

2 . Then,

the associated π̃ is defined by ∫ ∞
0

e−
λ
2 bπ̃(x, b)db =

1√
λ

(1− x)ν−1

in view of the explicit form for K 1
2
. Thus, by inverting the above transform, we have

π̃(x, b) = (1− x)ν−1 1√
2πb

.
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This reveals that the infinitesimal generator, Ãx of Zδ is defined by

Ãx = (1− x)ν−1

∫ ∞
0

{f(a+ b)− f(a)} 1

2
√

2πb3
db

for any f in C1 with a compact support. Consequently,

f(Zδx)−
∫ x

0

(1− y)ν−1

∫ ∞
0

{
f(Zδy + b)− f(Zδy)

} 1

2
√

2πb3
db dy

is an
←
F-martingale for such f .

Example 4.2. Observe that although Zδ, or (Σδp,0,y), is an increasing process with independent increments, it
is not a subordinator (see [3] for a definition and further properties) since the increments are not stationary.
However, in the above example, if one takes ν = 1, then one sees that Zδ becomes time homogeneous, i.e.
Zδ is a subordinator. Observe that ν = 1 implies p = 1 in this framework. More precisely,

Zδx = Z4
x =

∫ L1

L1−x

Xs ds,

where X is BESQ4(1), is a subordinator. Moreover, Corollary 2.4 and (4.8) yield

Qδ0
(
exp

(
−λZ4

x

))
= exp

(
−
√
λ

2
x

)
.

Thus, Z4
x
d
= T x

2
, where Tx is the first hitting time of x for a Brownian motion starting at 0.

5. Applications to finance

Our aim in this section is to give some examples arising from some financial models and discuss how the
results from previous sections can be used to obtain prices of certain financial products.

As explained in Introduction the process X is commonly used in the finance literature to model interest
rates. Suppose the spot interest rate is given by Xp where p > −1 and X is BESQδ(z) and consider the
following exotic derivative on interest rates which pays one unit of a currency at time Ry if the accumulated
interest is less than k, i.e. Σδp,z,y ≤ log k. This is an example of a digital option and its price, as usual in the
Finance Theory, is given as an expectation of its discounted payoff:

D(k; δ, p, z, y) = Qδx

[
1[Σδp,z,y≤k] exp

(
−Σδp,z,y

)]
.

On the other hand, if one computes the Laplace transform of D(k; δ, p, z, y), one obtains∫ ∞
0

e−µkD(k; δ, p, z, y) dk = Qδz

[∫ ∞
Σδp,z,y

e−µk exp
(
−Σδp,z,y

)
dk

]
= Qδz

[
exp

(
−(µ+ 1)Σδp,z,y

)]
,

which is at our disposal due to the results from Section 2. In particular, the above identity implies∫ ∞
0

e−µkekD(k; δ, p, z, y) dk =

∫ ∞
0

e−µuQδz
[
Σδp,z,y ∈ du

]
,

hence

(5.1)

∫ u

0

ekD(k; δ, p, x, y) dk = Qδz
[
Σδp,z,y ≤ u

]
, ∀u ≥ 0.
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Moreover, once the function D is determined by inverting the corresponding Laplace transform, one can also
obtain the prices for put options written on the accumulated interest. Indeed, for any K > 1

P (δ; z, y,K) := Qδz

[(
K − exp

(
Σδp,z,y

))+
exp

(
−Σδp,z,y

)]
= Qδz

[∫ K

1

1[Σδp,z,y≤log k] dk exp
(
−Σδp,z,y

)]

=

∫ K

1

D(log k; δ, p, z, y) dk =

∫ logK

0

euD(u; δ, p, z, y) du.(5.2)

Note that for K = 1, i.e when the option is at-the-money since the cumulative interest at t = 0 is defined to be
1, the put option is worthless. We can in fact get how fast the option becomes worthless as K approaches to
1. Indeed, comparing (5.2) to (5.1) yields the following asymptotics for the option value in view of Theorem
3.1:

(5.3) lim
K↓1

logK logP (δ; z, y,K) = − 1

2(p+ 1)2

(
z
p+1
2 − y

p+1
2

)2

.

The above expression tells us how small the option price becomes when the option is slightly in-the-money,
i.e. when K is very close to 1.

Next, assume y < z and consider another type of a put option on the maximum of the short rate with
maturity Ry and payoff (K −maxt≤Ry Xt)

+ for K > z. The price of this option equals

Qδz

[
exp

(
−Σδp,z,y

) ∫ K

0

1[maxt≤Ry Xt<a] da

]
= Qδz

[
exp

(
−Σδp,z,y

) ∫ K

x

1[Ra>Ry ] da

]

=
u0(
√
z)

u0(
√
y)

(
z

y

)− ν2 ∫ K

x

s̃0(z)− s̃(a)

s̃0(y)− s̃0(a)
da,

in view of Corollary 2.3 and Proposition 2.3, where the pair (u0, s̃0) is computed by setting λ = 2.
Finally, if one is interested in pricing an Asian option on the short rate until time Ry, it suffices to use

the identity

Qδz

(K − Σδp,z,y
Ry

)+

exp
(
−Σδp,z,y

) = Qδz

[
exp

(
−Σδp,z,y

) ∫ K

0

1[Σδp,z,y<kRy ] dk

]

and invert the joint Laplace transform of Ry and Σδp,z,y obtained in Section 2.
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Lect. Notes in Maths 1717, Springer, Berlin.

[4] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987): Regular variation. Cambridge University Press, Cambridge.
[5] Davydov, D., Linetsky, V. (2001): The valuation and hedging of barrier and lookback options under the CEV process.

Manag. Sci., 47, pp. 949-965.
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