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Optimal Diversification in the Presence of Parameter Uncertainty for a Risk
Averse Investor∗

Mathieu S. Dubois† and Luitgard A. M. Veraart†

Abstract. We consider an investor who faces parameter uncertainty in a continuous-time financial market.
We model the investor’s preference by a power utility function leading to constant relative risk
aversion. We show that the loss in expected utility is large when using a simple plug-in strategy for
unknown parameters. We also provide theoretical results that show the trade-off between holding
a well-diversified portfolio and a portfolio that is robust against estimation errors. To reduce the
effect of estimation, we constrain the weights of the risky assets with an L1-norm leading to a sparse
portfolio. We provide analytical results that show how the sparsity of the constrained portfolio
depends on the coefficient of relative risk aversion. Based on a simulation study, we demonstrate
the existence and the uniqueness of an optimal bound on the L1-norm for each level of relative risk
aversion.

Key words. optimal investment, power utility, parameter uncertainty, risk aversion, L1-norm constraint, sparse
portfolio
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1. Introduction. We consider a financial market consisting of one risk-free asset and a
large number of risky assets following a multidimensional geometric Brownian motion. In this
market we assume that there is an investor with a power utility function seeking to maximize
the expected utility of her final wealth. If all parameters are known, [23] shows that the
optimal fraction of wealth allocated in each risky asset is characterized by the drift and the
volatility matrix of assets returns.1

These two quantities are not directly observable, and they are typically replaced by esti-
mates computed from historical data.2 For instance, we can plug simple estimators, such as
the sample or the maximum likelihood estimators, into the analytical expression of the opti-
mal portfolio weights. However, the resulting plug-in strategy is likely to differ considerably
from the true optimal strategy. The main source of error comes from the estimation of the
drift. Indeed, the accuracy of the estimator of the drift does not depend on the frequency of
observations but on the length of the observation interval. To obtain a reasonable precision

∗Received by the editors October 24, 2013; accepted for publication (in revised form) December 15, 2014;
published electronically March 26, 2015.

http://www.siam.org/journals/sifin/6/94282.html
†London School of Economics and Political Science, Department of Mathematics, Houghton Street, London

WC2A 2AE, UK (m.dubois@lse.ac.uk, l.veraart@lse.ac.uk). The first author gratefully acknowledges financial support
by the Jones/Markham scholarship.

1When all parameters are known, [23] shows that the utility maximization problem is reduced to a mean-
variance problem.

2It is also possible to use estimates of the covariance matrix or, equivalently, the volatility matrix, based
on forward-looking information; see the recent work of [19] for a successful application in portfolio selection.
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202 MATHIEU S. DUBOIS AND LUITGARD A. M. VERAART

for estimators of the drift, one needs to use a very long period of observation; see [24].
Moreover, when the number of risky assets is large, the problem becomes even more

prominent as estimation errors accumulate across the positions in the risky assets. Based
on [23] and restricted to a logarithmic utility function, [12] shows that the expected utility
associated with the plug-in strategy can degenerate to −∞ as the number of assets increases.3

In this paper we extend the approach of [12] to general power utility functions. By taking
into account the coefficient of relative risk aversion (RRA) explicitly, we are able to pin down
the influence of both risk aversion and estimation risk on the expected utility.

Next, we impose an L1-constraint on the portfolio weights. This constraint induces spar-
sity in the portfolio, i.e., most of the weights are set to zero, and it naturally reduces the
accumulation of estimation error. Our objective is to select the bound of the L1-constraint
which gives the optimal degree of sparsity in the portfolio.

Holding a sparse portfolio is known to be an efficient way to reduce exposure to estimation
risk.4 In a minimum-variance framework with a large number of risky assets (500 stocks),
[14] shows that the no-short sale constraint is likely to improve the performance of the plug-in
strategy based on the sample covariance matrix. In this case, the estimation error is large, and
constraining the amount of short positions can help because the associated plug-in strategy is
sparse. However, the authors of [14] also demonstrate that the portfolio has too many weights
set to zero. As a result, the poor performance of only a few assets can dramatically influence
the performance of the portfolio.

To overcome this problem [6], [3], and [11] generalize the no-short sale constraint to the
less restrictive L1-constraint. The L1-constraint is more flexible because it imposes an upper
bound on the proportion of short positions. Thus, the set of admissible portfolios is augmented
by relaxing the constraint while keeping a reasonable sparsity. With a suitable bound the
constrained plug-in strategy has a smaller out-of-sample variance than benchmark portfolios
such as the no-short sale minimum-variance portfolio and the equally weighted portfolio; see
[6], [3], and [11]. Moreover, it also outperforms strategies based on James–Stein estimators in
the static framework of [6] and in the dynamic framework of [12].

The identification of a good bound for the L1-constraint is decisive for the performance
of the constrained plug-in strategy. The empirical results of [11] demonstrate that the out-of-
sample variance of the constrained minimum-variance plug-in strategy is convex in the bound
of the L1-constraint. In particular, the variance can be reduced by half by moving from the
no-short sale constraint to the optimal L1-constraint. Relaxing the constraint further increases
the variance up to 25 percent. Therefore, a relatively small interval has to be identified for
the bound. Alternatively, [6] suggests selecting the bound, which minimizes the variance,
using the cross-validation method. None of these papers characterize the structure of the
constrained strategy or justify explicitly the existence of an optimal bound. We address these
problems as outlined below.

3In the static framework it is well known that plug-in mean-variance efficient portfolios perform poorly out-
of-sample. In particular, no standard plug-in strategy outperforms consistently the equally weighted portfolio
benchmark in terms of Sharpe ratio, certainty equivalence, and turnover; see [7] and references therein.

4Sparsity could also be induced by considering an optimal subset of available assets, i.e., by solving an L0-
norm problem. Even with a quadratic objective, this is an NP-hard problem; see [26] and [1]. In the portfolio
selection literature, simple convex constraints such as L1-constraints inducing sparsity are favored because of
their computational tractability.
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In section 2, we introduce the general setup and recall the optimal investment strategies
when parameters are assumed to be observable. We then drop the observability assumption
of the drift in section 3. We estimate the drift vector with the maximum likelihood estimator
(MLE) and assume that the volatility matrix is known. This assumption is justified by
assuming that prices are observed continuously, and hence the volatility is directly observable
from the quadratic variation of the logarithmic asset price, but the drift is not.

In section 3, Theorem 3.2, we show that the expected utility of the plug-in strategy is
equal to the theoretical expected utility of the optimal strategy with known parameters times
a loss factor. For a fixed investment horizon, this loss factor is increasing in the number of
risky assets. In particular, the expected utility can degenerate as the number of risky assets
increases. When the drift is estimated, the diversification of the plug-in strategy clearly hurts.

In section 4, we introduce the L1-norm as a way to constrain investment weights. We
demonstrate that the sparsity of the optimal L1-constrained strategy depends, to a large
extent, on the coefficient of RRA. To understand the relation between the structure of the
constrained strategy and the coefficient of RRA, we provide the analytical solution of the
optimal L1-constrained portfolio for independent risky assets in Theorem 4.4. In this case
only the assets with the largest absolute excess returns are selected. The L1-constrained
portfolio rule consists of shrinking the excess returns towards zero by an intensity which is
the same for all assets. If the absolute excess return of an asset is smaller than this constant,
we do not invest in it. The number of assets invested in and the shrinkage intensity depend
on both the bound of the L1-constraint and the level of risk aversion. The L1-constrained
strategy becomes less sparse, as the coefficient of RRA increases, for both the true and the
estimated drift. In terms of diversification, increasing the coefficient of RRA is similar to
relaxing the constraint.

When facing parameter uncertainty, we show, in Proposition 4.7, that imposing an L1-
constraint rules out degeneracy of the expected utility of the plug-in strategy. Indeed, even
if the number of assets goes to infinity, the L1-constrained portfolio remains sparse, which
prevents accumulation of estimation error.

With a fixed number of assets, the key point is to analyze the trade-off between the loss due
to the lack of diversification, introduced by the L1-constraint, and the loss due to estimation
error. As we relax the constraint, the loss due to under-diversification decreases, while the
loss due to estimation increases. These two losses move in opposite directions. Depending on
the structure of the drift, the volatility matrix, and the method of estimation, there can be
an L1-bound which minimizes the total loss of the constrained plug-in strategy for each level
of risk aversion.

For a general volatility matrix, we do not have closed form results for optimal L1-constrained
strategies. Therefore we use in section 5 a simulation study to investigate the properties and
the performance of the L1-constrained portfolio, when assets are correlated. Similarly to the
independent case, the L1-constrained strategy becomes less sparse as the coefficient of RRA
increases. We present numerical examples which show that the L1-bound can be chosen in an
optimal way to minimize the loss due to estimation. This optimal choice depends crucially on
the level of risk aversion.

Finally, in section 6 we consider a universe of stocks based on the S&P 500 from 2006
to 2011, and we investigate the out-of-sample performance of the unconstrained and the
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constrained plug-in strategies. We trade daily over one-month intervals to test the strategies.
We calibrate the optimal bound of the constrained strategy based on two different numeri-
cal methods. Our results confirm that the unconstrained strategy has very unstable returns.
We also demonstrate that imposing the appropriate L1-constraint improves greatly the per-
formance of the plug-in strategy. While, on average, the constrained strategy has a higher
variance than the equally weighted portfolio, it delivers a utility of terminal wealth which is
in the same range. Hence, the L1-constrained plug-in strategy has a comparable performance
to the equally weighted portfolio, even when the drift is estimated.

2. Model setup. We consider a financial market where trading takes place continuously
over a finite time interval [0, T ] for 0 < T < ∞. The market consists of one risk-free asset with
time-t price S0 (t) and d risky assets with time-t price Si (t) for i = 1, . . . , d. Their dynamics
are given by

dS0 (t) = S0 (t) rdt, S0 (0) = 1,

dSi (t) = Si (t)

⎛
⎝μidt+

d∑
j=1

σijdWj (t)

⎞
⎠ , Si (0) > 0 for i = 1, . . . , d,

where r ≥ 0 is the constant interest rate, μ = (μ1, . . . , μd)
� is the constant drift, and

σ = (σij)1≤i,j≤d is the constant d × d volatility matrix. We assume that σ is of full rank.

Furthermore, W = (W1, . . . ,Wd)
� is a standard d-dimensional Brownian motion on the prob-

ability space (Ω,F ,P).
We denote by Xπ (t) the investor’s wealth at time t when using strategy π, which is given

by

dXπ (t) =
d∑

i=0

πi (t)X
π (t)

dSi (t)

Si (t)
,

for a constant initial wealth Xπ (0) = X (0) > 0. Here, πi (t) denotes the fraction of wealth
invested in the ith asset at time t. Hence,

∑d
i=0 πi (t) = 1 for all t. Using π0 (t) = 1 −∑d

i=1 πi (t) and setting π (t) = (π1 (t) , . . . , πd (t))
�, we obtain

dXπ (t)

Xπ (t)
=
(
r + π (t)� (μ− r1)

)
dt+ π� (t) σdW (t) ,(2.1)

where 1 = (1, . . . , 1)� ∈ Rd. For strategies (π (t))t≥0 that are adapted to the filtration
(F (t))t≥0 with F (t) = σ (W (s) , s ≤ t) and that are sufficiently integrable, the solution of
(2.1) is

Xπ (T ) = X (0) exp

(∫ T

0

(
r + π (t)� (μ− r1)− 1

2
π (t)�Σπ (t)

)
dt+

∫ T

0
π (t)� σdW (t)

)
,

where Σ = σσ�. Note that Σ is positive definite.
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2.1. The investor’s objective and the classical solution. We consider an investor with a
constant relative risk aversion (CRRA) utility function of the type

Uγ (x) =

{
x1−γ

1−γ for γ > 1,

log (x) for γ = 1

for x > 0, where γ is the coefficient of RRA.
The investor’s goal is to maximize

Vγ (π|μ, σ) := E[Uγ (X
π (T ))](2.2)

over strategies π which are sufficiently integrable so that Vγ (π|μ, σ) is well defined. We call
such strategies admissible. We use the notation Vγ (π|μ, σ) to emphasize that the objective
function depends on γ, μ, and σ.

The paper [23] shows that the optimal strategy, denoted by π∗ and called the Merton
ratio, consists of holding a constant proportion in each asset:

π∗ (t) =
1

γ
Σ−1 (μ− r1) ∀t ∈ [0, T ].

Therefore, the Merton ratio also maximizes the mean-variance term

Mγ (π) = π� (μ− r1)− γ

2
π�Σπ.

Finally, the corresponding expected utility is given by

Vγ (π
∗|μ, σ) =

{
Kγ exp

(
(1−γ)T

2γ (μ− r1)� Σ−1 (μ− r1)
)
, γ > 1,

Kγ +
T
2 (μ− r1)�Σ−1 (μ− r) , γ = 1,

(2.3)

with

Kγ =

{
X(0)1−γ

1−γ exp ((1− γ) rT ) , γ > 1,

log (X (0)) + rT, γ = 1.
(2.4)

Regardless of the magnitude of the initial wealth X (0), Kγ is always strictly negative for
γ > 1.

2.2. The effect of diversification for known parameters. When the true parameters are
known, the investor optimally diversifies her portfolio by investing the corresponding Merton
ratio in each stock. As more stocks become available, one simply maximizes over a larger set
of strategies, and the expected utility increases at a rate which, by (2.3), depends on γ and the
growth of the quadratic form (μ− r1)�Σ−1 (μ− r1). Moreover, if the spectrum of the matrix
Σ−1 is bounded from above and away from zero, analyzing the convergence of the Euclidean
norm of excess returns ||μ − r1||2 is sufficient to characterize the asymptotic behavior of the
expected utility.

When studying the expected utility as a function of the number of risky assets d, we are
in effect considering a sequence of markets. This sequence is built with a market containing
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the first 1, . . . , d risky assets in the same order, and then a new risky asset is included and
considered as the (d+ 1)st asset. In this setting, the drift, the volatility matrix, the covariance
matrix, and the Brownian motion are denoted, for the market with d risky assets, by μ(d),
σ(d), Σ(d), and W (d), respectively. A portfolio strategy in the market with d risky assets is
denoted by π(d).

Proposition 2.1. Let
(
Σ(d)

)
d≥1

⊂ Rd×d be such that its eigenvalues λ
(d)
i , i = 1, . . . , d, satisfy

mλ = lim
d→∞

min
i=1,...,d

1/λ
(d)
i , mλ = lim

d→∞
max

i=1,...,d
1/λ

(d)
i .(2.5)

Suppose that mλ > 0 and mλ < ∞. Then, for γ > 1 and for all d we have that

Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)

≤ Vγ

(
(π∗)(d) |μ(d), σ(d)

)
≤ Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)
,

and for γ = 1,

K1 +
T

2
mλ||μ(d) − r1(d)||22 ≤ V1

(
(π∗)(d) |μ(d), σ(d)

)
≤ K1 +

T

2
mλ||μ(d) − r1(d)||22.

A proof is given in Appendix A. As ||μ(d)− r1(d)||2 is an increasing positive sequence in d,
it always admits a limit. If this limit is finite, the expected utility is bounded away from zero.
If the limit is infinite, the expected utility reaches zero and the positive effect of diversification
is fully exploited. The case γ = 1 is similar.

3. Performance of plug-in strategies. When asset prices are continuously observed, we
can obtain the true volatility matrix σ since the quadratic variation of the log-stock price is
observable. However, this is not the case for the drift μ. Indeed, the accuracy of the estimation
of the drift depends on the length of the estimation period and not on the frequency of
observations. We use the MLE of the drift over the observation period [−tobs, 0] for a constant
tobs > 0. The MLE for μi, i = 1, . . . , d, is given by

μ̂i =
log (Si (0))− log (Si (−tobs))

tobs
+

1

2

d∑
j=1

σ2
ij.(3.1)

Based on the estimator μ̂, one can implement the time-constant plug-in strategy

π̂ =
1

γ
Σ−1 (μ̂− r1) .(3.2)

π̂ is an unbiased Gaussian estimator of π∗, in particular,

π̂ ∼ N (
π∗, V 2

0

)
with V 2

0 =
1

γ2tobs
Σ−1.(3.3)
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Furthermore, the expected utility of the plug-in strategy is given by the moment generating
function of the mean-variance term Mγ (π̂), as the following lemma shows.

Lemma 3.1. Let γ > 1; then it holds that

Vγ (π̂|μ, σ) = KγE [exp ((1− γ)TMγ (π̂))] .(3.4)

The lemma is proved in Appendix B. We now characterize the loss in expected utility due
to estimation when implementing the plug-in strategy π̂, based on the MLE of the drift.

Theorem 3.2. Let γ > 1 and tobs > T . Then the expected utility of the plug-in strategy π̂
is given by

Vγ (π̂|μ, σ) = Lγ (π̂, π
∗)Vγ (π

∗|μ, σ)(3.5)

with

Lγ (π̂, π
∗) =

(
1 +

(1− γ)T

γtobs

)− d
2

.(3.6)

A proof is given in Appendix B. For the case γ = 1, [12] has shown that the loss is linear
in d:

V1 (π̂|μ, σ) = V1 (π
∗|μ, σ)− L1 (π̂, π

∗) with L1 (π̂, π
∗) =

T

2tobs
d > 0.(3.7)

While the loss factor does not depend on the value of the true parameters μ and Σ, it is an
increasing function of γ and d.

Since π̂ is a consistent estimator of π∗, the expected utility of the plug-in strategy converges
to the expected utility of the optimal strategy as the length of the observation period tobs → ∞.

By (3.3), the accuracy of the plug-in strategy depends on the length of the observation
period, and the rate of convergence in (3.5) is very slow. For instance, with T = 1, γ = 2,
and d = 200 risky assets, we need three centuries of observations, tobs = 300, to get a loss
factor close to one, Lγ (π̂, π

∗) ≈ 1.18. We will see from (3.9) that this corresponds to a 15.3%
loss in certainty equivalent. Therefore, the loss can be reduced significantly only by taking a
very long estimation period, and, for a feasible estimation period, using a plug-in strategy π̂
results in a poor expected utility.

The following corollary gives a sufficient condition for the expected utility to degenerate.
Corollary 3.3. Let γ ≥ 1, tobs > T and suppose that the sequence of eigenvalues of Σ(d)

verifies (2.5). If ||μ(d) − r1(d)||22 is in o (d), then

Vγ

(
π̂(d)|μ(d), σ(d)

)
→ −∞ as d → ∞.

A proof is given in Appendix B. For instance, with μ
(d)
i − r = 1/i, i = 1, . . . , d, the

sequence ||μ(d) − r1(d)||22 has a finite limit and the corollary applies.
It is already well known that strategies based on the MLE of the drift perform poorly.

It is common to obtain extreme positions due to estimation error, and, for high-dimensional
problems, the accumulation of error leads to a large loss in expected utility. What is new here
is a full description of the loss due to estimation as a function of the coefficient of RRA and
the number of risky assets. Additionally, we provide in Corollary 3.3 a sufficient condition for
the degeneracy of the expected utility as d → ∞.
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3.1. Measures of economic loss. Theorem 3.2 establishes an analytic relationship be-
tween the expected utility obtained from using the optimal strategy with known drift and
the expected utility from using a plug-in strategy. In general it is hard to interpret different
levels of expected utility, as utility functions describe a preference ordering which is invariant
to linear transformations. Therefore we provide some discussion on how one can measure
economic loss that is due to using a plug-in strategy rather than an optimal strategy.

3.1.1. Mean-variance loss function. For known parameters, problem (2.2) is equivalent
to maximizing the (instantaneous) mean-variance term. When deviating from the optimal
strategy, a standard choice to measure economic loss is the mean-variance loss function:5

LM
γ (π̂, π∗) = Mγ (π

∗)− E [Mγ (π̂)] .

The mean-variance loss is then given by

LM
γ (π̂, π∗) =

d

2γtobs
.(3.8)

LM
γ (π̂, π∗) captures the fact that a smaller fraction of wealth is invested in the risky assets as

γ increases.6

However, LM
γ (π̂, π∗) does not measure estimation risk consistently if one considers an

investor with CRRA power utility function for γ > 1. Indeed, by Lemma 3.1, the expected
utility of final wealth is proportional to the moment generating function of the mean-variance
term. In general there is a nonmonotonic relation between the moment generating function
and the expectation of the mean-variance term. Hence, the equivalence between our setting
and the mean-variance approach does not hold when the implemented strategy is random.

3.1.2. Certainty equivalents and efficiency. To account for both sources of risk consis-
tently, namely the risk due to the driving Brownian motions and the risk due to parameter
uncertainty, the loss due to estimation has be to be quantified in terms of expected utility. A
strategy π̂ is suboptimal if it generates a loss in expected utility, Vγ (π̂|μ, σ) ≤ Vγ (π

∗|μ, σ).
We now look at the loss in certainty equivalents and show its relation to the relative loss

in expected utility.
Definition 3.4. For the optimal strategy and the plug-in strategy, the certainty equivalents

are the scalar quantities CEπ̂
γ and CEπ∗

γ , respectively, such that

Uγ

(
CEπ̂

γ

)
= Vγ (π̂|μ, σ) and Uγ

(
CEπ∗

γ

)
= Vγ (π

∗|μ, σ) .
The certainty equivalents are the cash amounts delivering the same utility as the corre-

sponding strategies. From the definition of CRRA utility functions one obtains immediately
that, for the certainty equivalents CEπ̂

γ and CEπ∗
γ , the following relationship holds true:

CEπ̂
γ

CEπ∗
γ

=

{
Lγ (π̂, π

∗)
1

1−γ for γ > 1,
exp (−Lγ (π̂, π

∗)) for γ = 1.
(3.9)

5See, e.g., [16] or [31] and the references therein.
6Paper [15] uses the relative mean-variance loss function

LM
γ (π̂,π∗)
|Mγ(π∗)| . In this case, the loss function does not

depend on the coefficient of RRA.
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The ratio of certainty equivalents can also be interpreted in terms of the efficiency measure
that has been introduced in the literature to compare different expected utilities; see [29].
Along the lines of [29, Def. 1] we define the efficiency in our context as follows.

Definition 3.5. The efficiency Θγ (π) of an investor with relative risk aversion γ using
strategy π relative to the Merton investor (who uses the optimal strategy π∗) is the amount of
wealth at time 0 which the Merton investor would need to obtain the same maximized expected
utility at time T as the investor with strategy π who started at time 0 with unit wealth.

Using the results of Theorem 3.2 we obtain that, for CRRA utility functions, the ratio of
the certainty equivalents (3.9) is exactly the efficiency.

Theorem 3.6. The efficiency of the investor who uses the simple plug-in strategy (3.2) is
given by

Θγ (π̂) =

{
Lγ (π̂, π

∗)
1

1−γ for γ > 1,
exp (−L1 (π̂, π

∗)) for γ = 1.

A proof can be found in Appendix B.
We see that for γ > 1 the relative loss factor Lγ (π̂, π

∗) is the efficiency raised to power
1/ (1− γ) , and, for γ = 1, the absolute loss L1 (π̂, π

∗) is minus the logarithm of the corre-
sponding efficiency. Hence, there is a one-to-one monotonic relation between the relative loss
in expected utility and efficiency. Furthermore, for γ > 1, the loss factor Lγ (π̂, π

∗) is always
greater than one and the efficiency is always smaller than one. When there is no estimation
risk, both quantities are equal to one.

As the loss factor is increasing in the number of assets and the power 1/ (1− γ) is nega-
tive, the efficiency is sharply decreasing with the number of assets. Namely, the more assets
available, the lower the initial wealth of the Merton investor to obtain the same expected
utility as the plug-in investor. This is illustrated in Figure 1.

While the loss factor Lγ (π̂, π
∗) measures loss in expected utility consistently for a fixed

level of risk aversion, its magnitude should not be compared across different levels of risk
aversion. The expected utility of the plug-in investor is characterized as the product of the
loss factor and the expected utility of the Merton investor, but both quantities depend on the
investor’s risk aversion γ. Although the loss factor itself is an increasing function in γ, this
fact is not sufficient to draw conclusions on how expected utilities of plug-in investors with
different risk-aversion parameters relate to each other.

We therefore look at the efficiency of the plug-in investor as a function of γ. For a fixed
number of risky assets, the efficiency is an increasing function of γ. Hence, the plug-in strategy
becomes more efficient as γ increases. If we consider two plug-in investors with different
parameters of relative risk aversion γ1 and γ2, with γ1 > γ2, the more risk averse investor, i.e.,
the one with risk aversion γ1, will be more efficient relative to the Merton investor than the
plug-in investor, who is less risk averse with risk aversion γ2. The reason for this behavior is
that the more risk averse investor invests a smaller fraction of his wealth in the risky assets.
This is in line with the behavior of the mean-variance loss function in (3.8), in which the effect
of estimation is also reduced as the coefficient of RRA increases.

3.2. Drift versus covariance estimation. So far we have only considered the estimation
problem of the drift and assumed that the matrix Σ is observable. We have justified at the
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Figure 1. Plot of the efficiency of the plug-in investor relative to the Merton investor as a function of the
number of risky assets d for different levels of risk aversion γ. For a given γ, the efficiency depends only on
the number of risky assets, the investment horizon T = 1, and the observation period tobs = 10.

beginning of section 3 that as long as we are in continuous time, the quadratic variation of
the stock price is observable, and hence Σ is known.

As soon as we move to a discrete-time setting the situation changes. If we assume that
observing the asset prices continuously is no longer possible, the covariance matrix Σ also
needs to be estimated. Hence any discussion on estimating the covariance matrix is linked to
the discussion on discrete- versus continuous-time settings.

The effects of discrete trading have already been studied by [29], and a detailed analysis
on discrete trading and observations in the context of parameter uncertainty is available in [2].
Note that one cannot just suitably discretize a strategy that is optimal in continuous time to
obtain a strategy that is optimal in discrete time. A strategy that is optimal in discrete time
has different characteristics, e.g., short-selling is forbidden. Furthermore, [2] shows that, with
parameter uncertainty on the drift and the covariance, the expected utility of the “discrete
trader” does not converge to the expected utility of the “continuous trader,” as the time step
goes to zero.

Note that this is in contrast to the static Markowitz mean-variance approach, where there
is no rebalancing. In a static mean-variance context, the structure and the performance of
plug-in strategies using estimators for both the mean and the covariance matrix have been
studied in depth; see, e.g., [10]. Since these results are already available and we are studying
a continuous-time setting, we will not analyze the theoretical problem of the estimation of the
covariance matrix any further.

4. L1-restricted portfolio. To avoid the degeneracy of the expected utility due to param-
eter uncertainty, we reduce the dimension of the portfolio by imposing an L1-constraint on
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the investment strategies. For c ≥ 0, the L1-constrained problem is

max
π∈Ac

Vγ (π|μ, σ) ,(4.1)

where Ac is the set of admissible constrained strategies π such that

||π (t, w) ||1 =
d∑

i=1

|πi (t, w) | ≤ c for m⊗ P-a.e. (t, w)

and m is the Lebesgue measure on [0, T ].
Proposition 4.1. Problem (4.1) reduces to the static problem

{
max
π∈Rd

Vγ (π|μ, σ)
subject to ||π||1 ≤ c.

(4.2)

In particular, the optimal strategy π∗
c is deterministic and constant.

The proposition is proved in Appendix C.7

Remark 4.2. Note that the summation starts from i = 1, i.e., we only restrict the portfolio
weights in the risky assets. The bound c of the L1-constraint controls the level of sparsity
in the portfolio. Let π̃ = (π0, π1, . . . , πd)

�, with π0 = 1 −∑d
i=1 πi. With π+

i = max{πi, 0}
and π−

i = −min{πi, 0} we denote by π̃(l) and π̃(s) the total percentages of long and short
positions, respectively, and then

π̃(l) =

d∑
i=0

π+
i =

d∑
i=0

(|πi|+ πi) /2 =
1

2
(‖π̃‖1 + 1) ,

π̃(s) =

d∑
i=0

π−
i =

d∑
i=0

(|πi| − πi) /2 =
1

2
(‖π̃‖1 − 1) .

Then π̃(l) − π̃(s) = 1 and π̃(l) + π̃(s) = ‖π̃‖1 = ‖π‖1 + |π0|. Now with
∑d

i=1 |πi| ≤ c we obtain
that

π̃(s) =
d∑

i=0

π−
i =

d∑
i=0

(|πi| − πi) /2 =
1

2
(‖π̃‖1 − 1) =

1

2

(
‖π‖1 +

∣∣∣∣∣1−
d∑

i=1

πi

∣∣∣∣∣− 1

)

≤ 1

2

(
c+

∣∣∣∣∣1−
d∑

i=1

πi

∣∣∣∣∣− 1

)
≤ 1

2
(c− 1 + 1 + c) = c.

Hence, c is an upper bound on the total percentage of short positions held in the portfolio.

7See also the dual approach of [4] for power utility functions with γ < 1, and see [17] for γ > 1 and cone
constraints.
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4.1. Structure of the optimal strategy. We study the effect of the L1-constraint on the
optimal strategy for given parameters μ and σ. This allows us to understand how assets are
selected and to characterize the sparsity of the strategy as a function of γ. As the optimal
strategy of the initial constrained problem is constant and deterministic, the constrained
optimization reduces to the mean-variance problem with the same L1-constraint:{

max
π∈Rd

Mγ (π)

subject to ||π||1 ≤ c.
(4.3)

The mean-variance term can be rewritten as

Mγ (π) = π� (μ− r1)− γ

2
π�Σπ = −1

2

∥∥∥∥√γσ�π − 1√
γ
σ−1 (μ− r1)

∥∥∥∥
2

2

+K,(4.4)

where || · ||2 is the Euclidean norm and K does not depend on π. The L1-constraint holds only
on the weights of the risky assets. Therefore, we have a standard L1-constrained ordinary
least-square (OLS) problem; see [30].

Lemma 4.3. Problem (4.2) is equivalent to the constrained optimization of the quadratic
form ⎧⎨

⎩ min
π∈Rd

∥∥∥∥√γσ�π − 1√
γ
σ−1 (μ− r1)

∥∥∥∥
2

2
subject to ||π||1 ≤ c.

(4.5)

Note that (4.5) can be reduced to the case γ = 1 by considering the covariance matrix
Σ̃ = γΣ. In that sense, we can interpret the optimization problem for general RRA parameter
γ ≥ 1 as an optimization problem in which a higher level of RRA is treated equivalently to
larger entries in the covariance matrix for an investor with γ = 1.

To highlight the fundamental role of the coefficient of RRA γ on the sparsity of the
constrained strategy, we provide an analytical solution of (4.5) for diagonal volatility matrices.

Theorem 4.4. Suppose Σ = diag
(
σ2
1 , . . . , σ

2
d

)
and μ ∈ Rd with

|μ1 − r| > |μ2 − r| > · · · > |μd − r|.
Then π∗

i = 1
γσ2

i
(μi − r1), i = 1, . . . , d, is a solution to (4.3) if ||π∗||1 ≤ c. Otherwise, the

unique solution is

π∗
c =

(
sgn (μ1 − r)

γσ2
1

(|μ1 − r| − a) , . . . ,
sgn (μk − r)

γσ2
k

(|μk − r| − a) , 0, . . . , 0

)�
,(4.6)

where sgn is the sign function and

a =
1∑k

i=1
1
σ2
i

(
k∑

i=1

|μi − r|
σ2
i

− γc

)
,(4.7)

k = min

{
j = 1, . . . , d : c ≤

j∑
i=1

1

γσ2
i

(|μi − r| − |μj+1 − r|)
}
,(4.8)

and μd+1 = r.
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The theorem is proved in Appendix C. The argument to find the structure of the con-
strained weights is as follows. As the optimal unconstrained strategy π∗ does not satisfy the
L1-constraint in general, the weights have to be shrunk. For a diagonal volatility matrix, the
constrained solution is of the form

(π∗
c )i =

sgn (μi − r)

γσ2
i

(|μi − r| − a)+ for each i = 1, . . . , d,(4.9)

where a > 0 and (·)+ denotes the positive part (see the proof of Theorem 4.4 in Appendix
C).8 Because of the structure of (4.9), we invest only in assets with the highest absolute
excess returns, and we classify them by decreasing order of absolute excess return. The excess
returns are adjusted by the shrinking constant a. The shrinkage intensity has to be decreasing
in c to reflect the fact that the strategy is less constrained for a large c.

To satisfy the constraint, we have to deviate from π∗, but the shrinkage intensity should
not change the sign of the position, long or short.9 Therefore, the weight of an asset is set
to zero if its absolute excess return is smaller than a. The index k is then defined as the last
asset with an absolute excess return larger than a,

k = min
j=1,...,d

{|μj+1 − r| ≤ a} .(4.10)

Since the L1-constraint is binding, we obtain the expression (4.7) of the positive shrinkage
intensity a as a function of k.

We can also write k in terms of c and γ. By (4.7) and (4.10), k is the smallest index such
that the following inequality holds:

k∑
i=1

|μk+1 − r|
γσ2

i

≤
k∑

i=1

|μi − r|
γσ2

i

− c.(4.11)

The left-hand side of inequality (4.11) corresponds to the L1-norm of the weights of k risky
independent assets with a common drift μk+1 and volatility matrix σ. Therefore, the strategy
includes assets with largest excess returns until the difference between the L1-norm of the
corresponding unconstrained weights and the bound c exceeds the L1-norm of the weights of
these k fictitious assets. Rewriting inequality (4.11), we get the full characterization of k in
(4.8) and the constrained strategy in (4.6). The index k increases with γ, and the larger γ is,
the less sparse the constrained portfolio.

Finally, we establish some regularity properties of the optimal constrained strategy and
the corresponding expected utility as functions of the bound c.

Proposition 4.5. Let π∗
c be the optimal solution of problem (4.2).

1. The solution map c �→ π∗
c is continuous on R+.

2. The expected utility map c �→ Vγ (π
∗
c |μ, σ) is continuous and concave on R+.

8This structure was first characterized in [30] for orthogonal matrices. See also the corresponding result in
[12] for a multiple of the identity matrix.

9For a diagonal matrix, the constrained and the unconstrained solutions will have the same sign component-
wise. However, when there is enough correlation, the signs can be different; see [30, sect. 2.3].
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A proof is provided in Appendix C. This result holds for any volatility matrix, and it shows
that we can adjust continuously the sparsity of our strategy while keeping the continuity and
the concavity of the expected utility as a function of c. In particular, as we relax the constraint,
the expected utility of the constrained problem converges to the expected utility of the Merton
ratio; see Corollary C.4.

4.2. The constrained plug-in strategy: Sparsity and estimation. We first characterize
the expected utility for any time-constant L1-constrained strategy πc independent of W (T ).
Similarly to Lemma 3.1, the expected utility is given by the moment generating function of
the mean-variance term Mγ (πc).

Lemma 4.6. Assume that πc is a time-constant and possibly random strategy independent
of W (T ) such that ||πc||1 ≤ c. Then

Vγ (πc|μ, σ) = KγE [exp ((1− γ)TMγ (πc))] .(4.12)

For the unconstrained estimated strategy, the expected utility can degenerate to −∞ for
γ ≥ 1 as the number of available risky assets increases. The first advantage of using an L1-
norm is ruling out the degeneracy of the expected utility as the number of assets grows to
infinity.

Proposition 4.7. Assume that π
(d)
c is a time-constant and possibly random strategy inde-

pendent of W (d)(T ) such that ||π(d)
c ||1 ≤ c for each d. Suppose

lim
d→∞

max
i=1,...,d

|μ(d)
i − r| < ∞ and lim

d→∞
max

i,j=1,...,d
Σ
(d)
ij < ∞;

then Vγ(π
(d)
c |μ(d), σ(d)) is bounded from below for γ ≥ 1 as d → ∞.

The statement is proved in Appendix C.
Note that this statement is true for any type of constant L1-constrained strategy. Hence,

this does include plug-in strategies in which drift and possibly even covariances are replaced
by estimators.

We see that the L1-constraint is especially helpful when we face parameter uncertainty
for a large number of assets. Indeed, the loss due to estimation accumulates and is so large
that we can potentially gain from holding a sparse portfolio. The key to the performance of
the L1-constraint is the trade-off between the gain due to diversification and the loss due to
estimation error.

To understand this in terms of loss functions, let π∗ be the Merton strategy and π∗
c the

solution of the constrained problem with the true drift μ and bound c. When μ is known, the
sparsity of the constrained strategy, π∗

c , implies a loss in expected utility. We define the loss
factor Lγ (π

∗
c , π

∗) by the relationship

Vγ (π
∗
c |μ, σ) = Lγ (π

∗
c , π

∗)Vγ (π
∗|μ, σ) .

At the beginning of the investment period, the value of the MLE of the drift μ̂ is fixed,
and we obtain the constrained plug-in strategy π̂c by solving (4.5) with μ̂ and the bound c.
The resulting strategy π̂c is not normally distributed and is a biased estimator of π∗

c . Thus,
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there is loss due to estimation on the constrained strategy. The corresponding loss factor
Lγ (π̂c, π

∗
c ) is defined by

Vγ (π̂c|μ, σ) = Lγ (π̂c, π
∗
c )Vγ (π

∗
c |μ, σ) .

The total loss consists of both the loss due to insufficient diversification and the loss due to
estimation error; i.e., the total loss factor Lγ (π̂c, π

∗) is defined by

Lγ (π̂c, π
∗) = Lγ (π

∗
c , π

∗)Lγ (π̂c, π
∗
c ) ,

and then we obtain

Vγ (π̂c|μ, σ) = Lγ (π̂c, π
∗)Vγ (π

∗|μ, σ) .
By Proposition 4.5, the loss factor due to under-diversification, Lγ (π

∗
c , π

∗), is continuous
in c. The loss factor due to estimation, Lγ (π̂c, π

∗
c ), and the total loss factor, Lγ (π̂c, π

∗), are
also continuous functions in the bound c as the following proposition shows.

Proposition 4.8. Let tobs be large enough such that tobsγΣ + (1− γ)Td||Σ||∞Id is positive
definite. Then the maps

c �→ Lγ (π̂c, π
∗
c ) and c �→ Lγ (π̂c, π

∗)

are continuous on R+.
The statement is proved in Appendix C. The proof consists of showing that the map c �→

Vγ (π̂c|μ, σ) is continuous. Because the term (1− γ)Td||Σ||∞ is negative and grows linearly
with d, Proposition 4.8 can be applied only if tobs is roughly larger than d. If the L1-constraint
effectively shrinks all the weights towards zero, i.e., | (π̂c)i | ≤ |π̂i| for i = 1, . . . , d a.s., we can
get rid of the dependency on d. In this case, the continuity holds if tobsγΣ+ (1− γ)T ||Σ||2Id
is positive definite. This property is, in particular, true for a diagonal covariance matrix.

As we relax the constraint, the strategy π∗
c is more diversified and Lγ (π

∗
c , π

∗) converges
to one, i.e.,

Lγ (π
∗
c , π

∗) → 1 as c → ∞.(4.13)

The loss factor due to estimation error, Lγ (π̂c, π
∗
c ), behaves in an opposite way. As c in-

creases, more stocks are included in the strategy and the estimation error forces Lγ (π
∗
c , π̂c) to

move away from one. By Proposition 4.8, the loss factor Lγ (π̂c, π
∗
c ) and the total loss factor

Lγ (π̂c, π
∗) both converge to the loss factor of the unconstrained plug-in strategy,10 i.e.,

Lγ (π̂c, π
∗
c ) → Lγ (π̂, π

∗) and Lγ (π̂c, π
∗) → Lγ (π̂, π

∗) as c → ∞.(4.14)

For tobs and c finite, the loss factors are bigger than one and the aim is to find a bound such
that the total loss factor is closest to one. The existence of an optimal bound depends on the
structure of the true parameters and the accuracy of the estimator μ̂. We study the behavior
of the loss factors in more detail in the next section.

Remark 4.9. As in the unconstrained case, the measure of efficiency, introduced in Defini-
tion 3.5, is a function of the loss factor of the constrained plug-in strategy. Since the expected
utility is given by (4.12), the following relationship holds true for γ > 1:

Θγ (π̂c) = Lγ (π̂c, π
∗)

1
1−γ .

10See Corollary C.4 in Appendix C.
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5. Simulation study. In this section, we investigate the structure and the performance of
the L1-constrained portfolio when risky assets are correlated. We consider a volatility matrix
that is nondiagonal. For this situation we do not have an analytic form for the constrained
strategy, and therefore we use simulations to compute its expected utility. Our data set
consists of a random sample of d = 250 stocks that have been listed at least once on the S&P
500 and have had daily returns for all trading days between January 2001 and December 2011.
There is no problem of survivorship bias because our main goal is to show the existence and
the uniqueness of an optimal bound c for a given universe of stocks. Throughout this section,
we assume an initial normalized endowment of X (0) = 1, an annual risk-free rate of r = 0.02,
and an investment horizon of T = 1 year.

5.1. Methodology. Based on the daily log-returns of the stocks, we compute the following
unbiased estimators μ̃, Σ̃ of μ and Σ, respectively:

μ̃ =
1

Δ
ξ̃ +

1

2
diag

(
Σ̃
)
,(5.1)

Σ̃ij =
1

Δ(N − 1)

N−1∑
k=0

[
Ri (k)− ξ̃i

] [
Rj (k)− ξ̃j

]
for i, j = 1, . . . , d,(5.2)

with

ξ̃i =
1

N

N−1∑
k=0

Ri (k) and Ri (k) = log

(
Si ((k + 1)Δ)

Si (kΔ)

)
.

The time step is defined by Δ = tobs/N , with tobs = 11 years and N = 2767 days.
We then assume a standard Merton market as introduced in section 2, where we set μ = μ̃

for the drift and Σ = Σ̃ for the covariance matrix. Furthermore, we evaluate the estimator
of the drift μ̂ by sampling from its law; i.e., we use the fact that μ̂ ∼ Nd (μ,Σ/tobs). In this
setting, we compute the investment weights and the associated expected utility for

• π∗, the unconstrained strategy using the true μ;
• π̂, the unconstrained plug-in strategy using the estimator μ̂;
• π∗

c , the L1-constrained strategy using the true μ; and
• π̂∗

c , the L1-constrained plug-in strategy using the estimator μ̂.
For a nondiagonal volatility matrix, we do not have analytical results for the L1-constrained

strategy. Therefore, we compute the optimal weights numerically. To do so, we plug the true
or the estimated drift in (4.3) and solve the quadratic optimization problem with the least
angle regression (LARS) algorithm; see [9]. This algorithm generates the optimal portfolio
weights for all binding bounds.

5.2. Computation of the loss function. We want to compute the expected utility of
the unconstrained and the constrained strategies both when the drift is known and when it
is estimated. For the unconstrained case, we know the explicit form of the expected utility
associated with the Merton ratio (2.3) and with the plug-in strategy (3.2). For the constrained
case with known drift, the strategy is deterministic and the associated expected utility can be
computed directly by using (4.12).

When the drift is estimated, the constrained strategy π̂c is random, and we approximate its
expected utility using a Monte-Carlo method. More specifically, we sampleM independent and
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identically distributed (i.i.d.) realizations of the MLE of the drift. Then, for each realization,
we solve for the associated constrained strategy and obtain i.i.d. realizations Y 1

γ,c, . . . , Y
M
γ,c of

Yγ,c given by

Yγ,c = exp
(
(1− γ)T

(
π̂�
c (μ− r1)− γ

2
π̂�
c Σπ̂c

))
.

For Kγ given in (2.4), we define the Monte-Carlo estimator of the expected utility by

V̄γ,M (π̂c|μ, σ) = Kγ
1

M

M∑
i=1

Y i
γ,c,

which approximates Vγ (π̂c|μ, σ) = KγE (Yγ,c); see (4.12). The accuracy of the method is
measured by the standard deviation of the Monte-Carlo estimator given by√

Var
(
V̄γ,M (π̂c|μ, σ)

)
.

For a fixed c, the standard deviation of the random variable V̄γ,M (π̂c|μ, σ) is a function
of γ. Therefore, the number of realizations necessary to attain a given accuracy varies with
γ. In this section, the number of realizations, M , is fixed to 5000 for all γ ∈ [1, 7].11

Furthermore, the loss in expected utility due to estimation Lγ (π̂c, π
∗
c ) is approximated

by the ratio of the Monte-Carlo estimator V̄γ,M (π̂c|μ, σ) and the expected utility of the con-
strained strategy with known parameters Vγ (π

∗
c |μ, σ). To remove the influence of the multi-

plicative factor Vγ (π
∗
c |μ, σ) on the accuracy of the estimation of the loss factors, we apply the

logarithmic transformations

�γ (π
∗
c , π

∗) = log (Lγ (π
∗
c , π

∗)) , �γ (π̂c, π
∗
c ) = log (Lγ (π̂c, π

∗
c )) .

As mentioned in subsection 4.2, the total loss in expected utility is the product of the loss
due to under-diversification measured in terms of the factor Lγ (π

∗
c , π

∗), and the loss due to
estimation, measured in terms of the factor Lγ (π̂c, π

∗
c ). The logarithm of the total loss factor

is then given by

�γ (π̂c, π
∗) = �γ (π

∗
c , π

∗) + �γ (π̂c, π
∗
c ) .

Computing the logarithm enables us to have a natural interpretation of the loss factors.
Indeed, in this additive setting, the log-loss equals to zero when there is no loss in expected
utility. By (4.13) and (4.14), the log-loss factors converge to zero and to the log-loss factor of
the unconstrained plug-in strategy, respectively:

�γ (π
∗
c , π

∗) → 0, �γ (π̂c, π
∗
c ) → �γ (π̂, π

∗) and �γ (π̂c, π
∗) → �γ (π̂, π

∗) as c → ∞.

Finally, as the log-convexity implies the convexity of the loss function itself, it is sufficient to
study the convexity of the log-loss.

11See discussion in Appendix D.
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Figure 2. Plot of the logarithm of the loss factor due to under-diversification �γ (π
∗
c , π

∗), due to estimation
�γ (π̂c, π

∗
c ), and of the total loss factor �γ (π̂c, π

∗) as a function of the bound of the L1-constraint c with γ = 5.

Table 1
Comparison between the log-loss in expected utility and the efficiency in the constrained and unconstrained

case for different values of risk aversion γ. The log-loss factor is equal to zero when there is no loss.

RRA Optimal L1-constrained Unconstrained
γ c �γ (π̂c, π

∗) Θγ (π̂c) �γ (π̂, π
∗) Θγ (π̂)

2 29 2.88 0.06 5.82 0.003
3 20 3.86 0.15 7.82 0.02
5 12 4.63 0.31 9.44 0.10
7 8 4.97 0.44 10.14 0.19

5.3. Existence of an optimal bound. Figure 2 depicts the profile of the log-loss factor as
a function of c for γ = 5. We see that the log-loss factors are continuous in c. Furthermore,
the total log-loss, �γ (π̂c, π

∗), is convex in c and minimized at c∗ = 29. Hence, the total loss
factor Lγ (π̂c, π

∗) is also convex and minimized at c∗. Equivalently, the expected utility of the
constrained plug-in strategy is maximized at this optimal bound c∗.

Table 1 shows that the optimal bound decreases sharply with γ. Again, as γ increases, we
need to use a more restrictive bound to optimally control the loss factor. For each γ, the loss
due to under-diversification represents between 41% and 44% of the total loss factor, while
loss due to estimation represents between 56% and 59%. Moreover, the L1-constraint greatly
helps the log-loss to be closer to zero. The logarithm of the loss is reduced by roughly 50%
at the optimal bound, and the loss factor itself is reduced by at least 95.7%.

In terms of efficiency, the L1-constraint also helps significantly. For small levels of risk
aversion, e.g., γ = 2, 3, the efficiency is improved dramatically by imposing an L1-constraint.
For high levels of risk aversion, e.g., γ = 7, the effect of estimation is less important, as a
smaller fraction is invested in the risky assets. In this case, holding an L1-sparse portfolio
doubles the efficiency of the investor.D
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Figure 3. Number of stocks invested in as a function of the bound c of the L1-constraint for different RRA
coefficients γ. We have chosen r = 0.02 for the annual risk-free rate.

5.4. Structure and stability of the L1-constrained strategy. Regarding the sparsity of
the constrained strategy, the results of subsection 4.1 extend to our general covariance matrix.
Figure 3 shows that the number of stocks invested in increases with γ. For instance, at c = 7,
we invest in 44 stocks with γ = 2 and in 93 stocks with γ = 6.

On the one hand, if γ is large, we are less constrained, as a smaller fraction is invested
in each selected stock, and this enables us to hold a more diversified portfolio. On the other
hand, if γ is small, we still take some relatively strong positions at the cost of having a very
sparse portfolio.

As we relax the constraint, we notice that the number of stocks invested in increases
stepwise. The steps are especially long for small γ as we take large positions. In effect, c
needs to be increased significantly until new stocks are added to the portfolio.

For independent stocks, we should invest in stocks with the highest absolute excess re-
turns up to a certain index k, which is increasing in γ (Theorem 4.4). The weights of the
selected stocks are shrunk towards zero, while the other weights are set to zero. If stocks with
highest absolute returns have positive excess returns, the portfolio consists exclusively of long
positions. and the L1-constraint acts only as a restriction on the number of stocks.

Table 2 reports the composition on the L1-constrained portfolio for correlated stocks when
the drift μ is known. Because of the structure of the covariance matrix, stocks with negative
returns are selected, although their absolute excess return is close to zero. Indeed, the L1-
constraint selects the stocks with the highest returns and then jumps to stocks with negative
excess returns. In contrast to the no-short sale constraint, we still keep a limited proportion
of short positions. The short positions represent 47% of the amount of the L1-norm of the
unconstrained portfolio, while they are reduced to 30% for the constrained case when we use
L1-bound c = 3. Hence, the constraint controls both the sparsity and the proportion of short
positions; see also Remark 4.2.D
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Table 2
Characteristics of the 21 stocks selected for the constrained strategy π∗

c with known parameters. The first
column corresponds to the general index of stock i. The second column corresponds to the global rank in term
of excess returns. The third column shows the associated excess return. The fourth and fifth columns report
the weights. Parameters: Bound of the L1-constraint c = 3, coefficient of RRA γ = 2, annual risk-free rate
r = 0.02.

Stock Excess return Unconstrained weight Constrained weight
index i Rank μi − r π∗

i (π∗
c )i

238 1 0.60 0.57 0.39
216 2 0.43 0.18 0.13
199 3 0.41 0.57 0.33
150 4 0.39 0.52 0.18
234 5 0.37 0.66 0.21
224 6 0.36 0.57 0.14
112 7 0.34 0.40 0.18
211 8 0.33 0.52 0.02
168 9 0.32 1.00 0.28
9 12 0.29 0.48 0.04

183 15 0.27 0.58 0.17
175 17 0.25 1.44 0.06
219 222 0.01 −0.27 −0.03
64 236 −0.02 −1.19 −0.17
177 238 −0.02 −0.55 −0.08
245 240 −0.03 −1.06 −0.25
93 241 −0.03 −0.18 −0.03
120 242 −0.03 −0.10 −0.02
249 245 −0.03 −0.09 −0.02
198 249 −0.08 −0.17 −0.11
222 250 −0.10 −0.38 −0.17

Table 3
This table reports the expected value (and standard deviation) of the number of stocks invested in, the num-

ber of shorts positions, the fraction in L1-norm of short positions, and the average of the standard deviation of
the weights. The quantities presented are the sample mean and standard deviation over M = 5000 realizations.
The optimal bound c of the L1-constrained strategy is chosen as in Table 1. The unconstrained Merton plug-in
strategy corresponds to c = ∞. Parameters: Coefficient of RRA γ = 2, annual risk-free rate r = 0.02.

Expected value of Weights
γ = 2 #{i : (π̂c)i �= 0} #{i : (π̂c)i < 0} ||π̂−

c ||1/|||π̂c||1 (%) Std. dev.

Merton 250 (0.00) 120.92 (4.81) 48.36 (0.47) 0.66
L1, c = 29 86.39 (5.78) 40.70 (4.27) 45.75 (1.71) 0.21

In Table 3, we compare the structure of the plug-in strategies when the drift is estimated
using (5.1) and γ = 2. For the L1-constrained strategy, the bound c is chosen to be the
optimal bound minimizing the loss in expected utility, as in Table 1. We report the expected
value of the number of stocks invested in, the number of shorts positions, and the fraction in
L1-norm of short positions. At the optimal bound, the number of stocks and short positions
is reduced from 250 to approximately 86 stocks and from approximately 121 to 41 positions,
respectively.

For the unconstrained strategy, the number and the fraction in L1-norm of short positions
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both represent 48.36% of the positions and the L1-norm, respectively. We demonstrated
in Table 2 that, by taking a restrictive bound, the proportion of short positions is reduced
substantially. At the optimal bound, this is not the case. Indeed, the number of short
positions and the fraction of short positions represents 47.11% and 45.75% of the L1-norm.12

Therefore, at the optimal level of diversification, the magnitude of the short positions between
the unconstrained and the constrained strategies is essentially the same. This shows the
superiority of the L1-norm over the no-short sale constraint. We are able to control parameter
uncertainty while keeping short positions, representing almost half of the portfolio in L1-norm.

To measure the stability of the previous quantities, we also report their standard devi-
ation. The unconstrained strategy invests in all available, i.e., here 250, stocks. For the
L1-constrained strategy with a fixed bound, the number of stocks invested in is random as it
depends on the values of μ̂. The standard deviation of stocks invested in is 5.78 or, equiva-
lently, it represents 6.7% of the expected number of stocks held in the portfolio. Compared
to the unconstrained strategy, the variability of the number and the fraction in L1-norm of
short positions is proportionally higher for the L1-constrained strategy. While the structure
of the portfolio is more sensitive to the estimation of the drift, the overall stability of the
portfolio is improved. Indeed, the average standard deviation of the weights is 68.2% smaller
for the constrained strategy. Since the L1-norm of the weights is bounded, extreme positions
are forbidden, and in turn variability is reduced.

6. Out-of-sample study. Our goal is to investigate the out-of-sample structure and per-
formance of the unconstrained and the optimally constrained plug-in strategies using empirical
data. Therefore we will no longer make any parametric assumptions about the evolution of
the asset prices.

From the theoretical considerations in the previous sections we have learned the following:
We should rebalance our portfolio as frequently as possible (i.e., continuously in the best case).
We will therefore trade daily on daily data. To reduce the effect of parameter uncertainty,
we should choose a suitable bound c for the L1-constraint. This is what we do by selecting
the bound maximizing the utility, as we will discuss in detail in subsection 6.2. Finally, we
measure the performance of the strategies in terms of (expected) utility of terminal wealth.

When looking at the out-of-sample results we need to keep in mind that the performance of
the strategies is now also affected by the effects of discrete trading and discrete observations,
which was not the case in the previous sections. This is a problem that arises with all
continuous-time models.

6.1. The data and general methodology. Our data set consists of the stocks that have
been listed at least once in the S&P 500 and have had daily returns for all trading days
between January 2001 and December 2011.

We test our method between 2006 and 2011. At the beginning of each year we select
randomly a sample of 250 stocks and fix it as the universe of stocks in which to invest. Based
on the five previous years of daily returns, we estimate the drift and volatility matrix of these
stocks. We calibrate the optimal bound of the L1-constraint as outlined in subsection 6.2.

Trading now takes place over intervals of a length of one month. At the beginning of

12We find similar results for γ = 3, 5, 7.

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

222 MATHIEU S. DUBOIS AND LUITGARD A. M. VERAART

Table 4
This table reports the summary statistics of the optimal bounds c for the leave-one-block-out (LOB) and

the cross-validation (CV) methods for the three time periods that we consider. Parameters: Coefficient of RRA
γ = 2, investment horizon T = 1/12, and annual risk-free rate r = 0.02.

Optimal L1-bound
1st quartile Median (mean) 3rd quartile

2006–2007
LOB 0.78 21.65 (65.00) 68.42
CV 10.85 12.00 (13.39) 15.02

2008–2009
LOB 0.00 1.80 (29.78) 23.20
CV 3.93 10.90 (12.82) 20.32

2010–2011
LOB 0.65 5.10 (44.63) 91.15
CV 2.20 3.25 (3.27) 4.60

each month, we assume a normalized initial endowment of one unit of cash and an annual
risk-free rate of r = 0.02. At the end of the month we record the terminal utility. We average
the terminal utilities that we obtain from trading 24 times consecutively over a one-month
interval, i.e., a two-year period. We consider three consecutive two-year time periods and
compare the performance of the plug-in strategies to the equally weighted portfolio, which is
a hard benchmark to beat; see [7].

6.2. Choosing the L1-bound. To find a suitable (and ideally optimal) bound for the
L1-constraint c, we present two alternative methods, namely a method we call the leave-one-
block-out (LOB) method and another called a cross-validation (CV) method.

For both methods we start as follows. On the first trading day of each month, we divide
the multivariate time series of daily returns of the five previous years into 60 blocks of one
month. Based on the 59 first blocks, we estimate the drift and the volatility matrix using
(5.1) and (5.2). Next, we compute the constrained plug-in strategy in the interval [0, ||π̂||1]
for each value of the bound c that is on a grid with grid size Δc = 0.1. Finally, we invest
(rebalancing daily) on the remaining block with respect to the constrained plug-in strategy
(see also (6.1)).

In the LOB method, we select the bound c maximizing the utility of final wealth. In the
CV method, we repeat this procedure 1000 times by taking a random sample with replacement
of the 60 blocks, and we select the bound c maximizing the average utility of final wealth.

As the method of estimation is the same for all months, estimation risk is constant through
time, and the variation of the optimal bound depends mainly on the market conditions of the
calibration period.

Table 4 contains the numerical results for the optimal L1-bounds using the two different
methods. For the LOB method, the optimal bound varies widely. While the first quartile stays
small over all periods, the median (mean) and the third quartile are of different magnitude
within and across each period. Moreover, there are five months in 2008, and three months
in 2009, with an optimal bound equal to zero. During these months, the strategy consists of
holding only the risk-free asset.
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In 2006–2007 and 2010–2011, the evolution of the optimal bound calibrated with the CV
method is stable as the difference between the first and third quartiles is small. In 2008–2009,
there is a large variation of the optimal bound because it is a period of transition. Indeed,
the mean over time of the optimal bound is 20.62 in 2008 and 5.03 in 2009. Furthermore, we
observe a substantial drop in the median (mean) of the optimal bound, from 12.00 (13.39) in
2006–2007 to 3.25 (3.27) in 2010–2011. In 2010–2011, the CV method incorporates the fact
that preceding years were very volatile, and it delivers a more conservative and restrictive
bound.

6.3. Performance of the plug-in strategies. At the beginning of each month we pick the
optimal L1-bound which was identified with one of our two methods. We estimate the drift
and the volatility matrix using (5.1) and (5.2) based on the past five years of daily returns.
Then we compute the unconstrained and constrained plug-in strategies. The strategies are
then held constant over a period of one month, i.e., T = 1/12. This means we rebalance
the positions daily to keep the weights constant over the investment period. For each month
M and strategy πM , which is constant in time over the month, the dynamics of the wealth
denoted by XM is given by

XM (t+ 1) = XM (t)

(
1 + r +

d∑
i=1

πM
i (ri(t+ 1)− r)

)
,(6.1)

where ri(t + 1) is the simple net return of asset i between t and t + 1. Since there are 21
trading days in one month, we have t = 0, . . . , 20. At the end of each month M , we obtain a
utility of final wealth Uγ

(
XM (21)

)
.

In Table 5, we report the summary statistics of the utility of final wealth for three blocks
of two years, i.e., M = 1, . . . , 24 in each block. Over all periods, the unconstrained plug-in
strategy performs poorly because of its extreme variance. For instance, the unconstrained
strategy gives its highest return in August 2007 and directly leads to bankruptcy a month
later. Furthermore, the standard deviation of monthly returns of the wealth is at its peak in
2006–2007 with a magnitude of 1219.95%. However, on a smaller scale, its remains between
89.61% and 120.02% over the subsequent periods. As a result, from January 2008 to May
2009, the wealth reaches zero in almost every month. As we measure the performance with a
power utility function with γ > 1, hitting zero for the wealth translates into infinitely negative
utility.

The constrained plug-in strategy calibrated with a bound with the LOB method is halfway
between the unconstrained strategy and the constrained strategy calibrated with the CV
method. It is the most successful strategy for two periods, with a utility of −0.74 in 2006–
2007 and of −0.81 in 2010–2011. This performance comes at the cost of a very large variance
of monthly returns. In terms of standard deviation of utility of final wealth and monthly
returns, the strategy is similar to the unconstrained portfolio. Therefore, amidst the financial
crisis of 2008–2009, the wealth also hits zero.

The constrained plug-in strategy calibrated with the CV method performs better than
the unconstrained strategy in all periods, and it is more stable over time than both the
unconstrained and the L1-constrained with LOB strategies. Although, on average, its returns
have a larger standard deviation than the equally weighted portfolio, the mean utility of final
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Table 5
This table reports the summary statistics of the utility and the monthly returns of final wealth out-of-

sample. The quantities presented are computed over each block of 24 months. The optimal bounds c of the
L1-constrained strategies are calibrated using the leave-one-block-out (LOB) and cross-validation (CV) methods.
Parameters: Coefficient of RRA γ = 2, initial wealth XM (0) = 1, investment horizon T = 1/12, and annual
risk-free rate r = 0.02.

Utility of final wealth Return of portfolio (%)

Min. Mean (std. dev.) Max Min. Mean (std. dev.) Max.

2006–2007

Merton −∞ −∞ −0.02 −100 290.84 (1219.95) 5765.79
L1, c with LOB −1.00 −0.74 (0.32) −0.02 0.17 355.86 (1201.51) 5765.79
L1, c with CV −1.38 −0.97 (0.26) −0.43 −27.36 12.88 (41.37) 134.02
EWE −1.08 −0.99 (0.03) −0.95 −7.44 1.01 (3.14) 5.09

2008–2009

Merton −∞ −∞ −0.29 −100 −60.07 (89.61) 245.44
L1, c with LOB −∞ −∞ −0.12 −100 66.57 (170.09) 744.64
L1, c with CV −4.95 −1.46 (0.99) −0.29 −79.81 0.55 (72.24) 242.19
EWE −1.27 −1.01 (0.13) −0.74 −21.35 0.59 (12.95) 34.50

2010–2011

Merton −10.11 −2.43 (2.55) −0.20 −90.11 6.39 (120.02) 398.11
L1, c with LOB −1.00 −0.81 (0.24) −0.20 0.17 48.25 (99.01) 398.11
L1, c with CV −1.17 −0.99 (0.08) −0.86 −14.28 1.48 (8.22) 15.72
EWE −1.13 −0.99 (0.06) −0.87 −11.56 1.07 (6.19) 15.21

wealth is comparable in all periods. The utility of the constrained strategy is higher in 2006–
2007, measuring −0.97 versus −0.99. In 2008–2009, the large proportion of estimated short
positions hurts the performance of the constrained strategy and has a smaller mean utility of
−1.46 versus −1.01. Finally, the mean utility of final wealth is equal for both strategies in
2010–2011 with a value of −0.99.

Given the nature of the out-of-sample study, trading takes place in discrete time. It is
well known that strategies that are optimal in continuous time cannot just be discretized to
obtain strategies that are optimal in discrete time; see [29] and [2] for extensive discussions. In
particular, short-selling is never optimal when trading takes place in discrete time. Since in our
study the L1-constraint does not rule out short-selling, the superiority of the L1-constrained
portfolio over the unconstrained portfolio is not just a consequence of no short-selling.

6.4. Structure and stability of the strategies. In Table 6, we report the mean and stan-
dard deviation of stocks invested in, of the short positions, of the fraction of short positions in
L1-norm, and the mean of the monthly portfolio turnover for four different investment strate-
gies: the unconstrained Merton strategy, referred to as Merton in Table 6, the L1-constrained
strategy where the bound was computed using the LOB method, the L1-constrained strategy
where the bound was computed using the CV method, and the equally weighted portfolio,
referred to as EW.
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Table 6
This table reports the mean value (standard deviation) of the number of stocks invested in, of the number

of shorts positions, of the fraction in L1-norm of short positions, and the mean monthly turnover for four
different investment strategies. The mean is computed over each block of 24 months. The optimal bound c
of the L1-constrained strategy is calibrated with the LOB and CV methods. Parameters: Coefficient of RRA
γ = 2, investment horizon T = 1/12, and annual risk-free rate r = 0.02.

Mean value of
#{i : πi �= 0} #{i : πi < 0} ||π−||1/||π||1 (%) Turnover

2006–2007

Merton 250 (0.00) 123.13 (5.01) 47.92 (0.71) ∞
L1, LOB 90.67 (95.38) 42.58 (47.22) 32.25 (19.38) 12.31
L1, CV 43.58 (9.82) 17.96 (4.84) 35.48 (4.00) 0.78
EW 250 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01

2008–2009

Merton 250 (0.00) 120.08 (5.73) 49.39 (0.36) ∞
L1, LOB 48.75 (75.00) 22.58 (36.21) 34.82 (21.39) ∞
L1, CV 32.46 (18.69) 14.67 (8.46) 44.74 (5.39) 1.66
EW 250 (0.00) 0.00 (0.00) 0.00 (0.00) 0.02

2010–2011

Merton 250 (0.00) 121.71 (5.75) 49.14 (0.24) 28.65
L1, LOB 83.79 (99.88) 41.38 (50.08) 31.58 (19.66) 4.95
L1, CV 18.92 (8.73) 9.67 (4.48) 33.47 (10.95) 0.08
EW 250 (0.00) 0.00 (0.00) 0.00 (0.00) 0.01

The monthly portfolio turnover is defined as

monthly turnover =
1

20

21∑
t=2

d∑
i=1

(|πi − πi
(
t−
) |) ,

where πi is the constant target weight for asset i, and πi (t
−) is the fraction of wealth (i.e.,

the weight) invested in asset i just before rebalancing at time t. All portfolios are rebalanced
daily, and 21 corresponds to the number of trading days in a month. If the wealth hits zero
during the month, we set the turnover to ∞ and stop the rebalancing.

For the unconstrained strategy, the structure remains unchanged throughout the whole
test period. The mean fraction of short positions of the L1-norm stays between 120 and 124,
the mean ratio ||π−||1/||π||1 stays between 47% and 50%, and the portfolio turnover is infinite
in both 2006–2007 and 2008–2009. It is finite in 2010–2011 but still large.

For the constrained plug-in strategy with the LOB method, the mean number of risky
assets invested in and that of short positions are the largest in 2006–2007 and 2010–2011. In
2008–2009, these quantities are significantly smaller because there are actually several months
where there is no investment in risky assets; see also Table 4. Nevertheless, on average, the
mean ratio ||π−||1/||π||1 stays stable over each period, with a larger standard deviation in
2008–2009. In terms of turnover, the strategy performs poorly. The turnover is very high
in 2006–2007 and is infinite in 2008–2009. In 2010–2011, it is reduced but still much larger
than the turnover of the constrained plug-in strategy calibrated with the CV method and the
equally weighted portfolio. This turnover is high because of the variability of the optimal
bound to different market conditions.
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For the constrained plug-in strategy calibrated with the CV method, the mean number
of risky assets invested in and that of short positions decrease in each period. The mean
fraction of short positions of the L1-norm does not. The mean ratio ||π−||1/||π||1 is actually
the largest in 2008–2009, with a value of 44.74%, and it is similar in 2006–2007 and 2010–
2011, with 35.48% and 33.47%, respectively. For 2008–2009, the mean of estimated excess
returns decreases sharply during the year 2008 and implies a significantly larger fraction of
short positions in the constrained portfolio. The constrained plug-in strategy calibrated with
the CV method is more stable than the constrained plug-in strategy calibrated with the
LOB method. The standard deviation of each measure is reduced by at least 40%. Finally,
although its turnover is much larger than the equally weighted portfolio turnover in 2006–2007
and 2008–2009, the turnovers are comparable during the period 2010–2011.

6.5. Transaction costs. For a complete analysis of the out-of-sample performance it is
interesting to consider transaction costs as well. It is well known that if transaction costs are
included, holding the Merton ratio, and hence having to continuously rebalance the portfolio,
is no longer optimal. In particular, the investor can find herself in a position where it is
optimal to not trade at all. This would happen if her positions would be within the so-called
no-trading region, which is used to characterize the optimal trading strategies; see, e.g., [5].
Nevertheless, we can still investigate what transaction costs one would have to pay when using
the trading strategies that we have derived in our setting without transaction costs.

Paper [18] distinguishes between implicit costs such as bid-ask spreads, which are pro-
portional to the cash amount of shares traded, and explicit trading costs such as brokerage
commissions, which are fixed costs per share traded. This paper measures both types of
trading costs as a percentage of the face value of investment. However, [13] argues that bro-
kerage commissions should not be measured as a percentage of face value. Indeed, brokers
ignore most available prices and charge commissions in exact cents per share. Moreover, large
trades tends to have higher commission fees per share and may also have larger proportional
transaction costs because of their potential price impact.

Assuming that proportional trading costs are constant and equal for long and short posi-
tions, the total trading costs for one month are defined as

monthly trading costs =

21∑
t=2

d∑
i=1

κSi (t) |Ni (t)−Ni

(
t−
) |+ C ·#{i : Ni (t) �= 0},

where κ is the coefficient of charged proportion, Ni (t) is the number of stock i held at time t,
Ni (t

−) is number of stocks i held just before rebalancing at time t, and C is the commission
price per share.

On average, κ represents 0.3% of the face value invested in each stock, and fixed cost
commissions C vary between 2 and 5 cents per share. For simplicity, we take κ = 0.3% and
C = 0.025. As a benchmark, we consider a small investor, with a coefficient of RRA γ = 2
and an initial wealth of XM

0 = 25000, so that trades do not have any price impact. Note that
total trading costs are not proportional to the initial wealth invested. Their dependence on
the initial wealth is especially important for the plug-in strategies as the number of shares
varies widely.
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During the financial crisis of 2008–2009, the volatility of the markets leads to a large vari-
ability of the positions held in the portfolio even for the constrained plug-in strategies; see
Table 6. As a result, the proportional transaction costs are much higher for these strategies
compared to the equally weighted portfolio. During 2006–2007 and 2010–2011, the constrained
strategies perform, on average, at least as well as the equally weighted portfolio.13 While hav-
ing a significantly higher performance during these years, the constrained strategy calibrated
with the LOB method faces large transaction costs. For instance, the average total trading
costs are 6625.08 and 9963.01 units of cash in 2006 and 2010, respectively. In the same years,
the total transaction costs of the constrained strategy calibrated with CV and the equally
weighted portfolio are 664.34 and 140.35 in 2006, and 95.42 and 140.68 in 2010. Hence, in
2010, both strategies deliver the same average utility and the transaction costs are, on average,
smaller for the constrained strategy.

In summary, outside the financial crisis, L1-constrained strategies deliver, on average, a
higher utility than the equally weighted portfolio. Regarding transaction costs, the constrained
strategies have large proportional costs and low fixed commissions. Furthermore, because of
fixed commissions, the equally weighted portfolio and the unconstrained portfolio suffer from
complete diversification. The trade-off between the two types of costs depends on the size of
the positions and the sparsity of the strategies. For the constrained strategy with LOB, total
trading costs remain large, while the constrained strategy with CV can have lower trading
costs than the equally weighted portfolio. Note that the effect of proportional trading costs
will be reduced for a higher level of risk aversion, as the weights in the risky assets, and in
turn the number of shares, decrease with γ.

6.6. A note on the estimation of the covariance matrix. In our out-of-sample study
we need to estimate the covariance matrix as well. A numerical problem emerges here, since
the sample covariance matrix tends to be ill-conditioned, and therefore the computation of
Σ−1 can be numerically unstable. Successful regularization techniques such as the shrinkage
approach of [20] have been proposed to control the conditioning of the matrix.

In our out-of-sample study, we have therefore also investigated the performance of the
plug-in strategy based on the covariance estimator proposed by [20]. While it performs better
than the simple unconstrained plug-in strategy in 2010–2011, the wealth also hits zero in
2006–2007 and 2008–2009, as it does for the simple unconstrained plug-in strategy.

In certain months, the method of estimation of [20] can have a positive first order effect.
For example, in the period 2010–2011, the minimum utility is reached in both cases in January
2011, with a utility of −10.11 without shrinkage and −6.52 with shrinkage. However, with the
measure of average utility, there is no difference during 2006–2007 and 2008–2009 because the
wealth hits zero at least once. As our measure of performance is nonsymmetric, it smooths
the difference between good realizations and assigns very low values to bad realizations.

We also tested the performance of the L1-constrained strategies with the covariance esti-
mator of [20]. The values of the optimal bound are very close to the results reported earlier,
and the performance of the strategy is essentially the same.

For both types of plug-in strategies (i.e., unconstrained and L1-constrained), we start with

13In Table 5, the utilities are given for an investor with a normalized initial wealth XM (0) = 1. For
XM (0) = 25000, the results differ by the multiplicative factor (X(0))1−γ .
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Table 7
This table reports the minimum, mean, and maximum of utility of terminal wealth averaged over 24 months

for three time periods. Four different strategies are considered: the unconstrained plug-in strategy using (5.1)
and (5.2), denoted by Unconst; the unconstrained plug-in strategy using (5.1) and the method proposed by [20]
for the covariance matrix, denoted by Unconst, L&W; and the two corresponding strategies where we imposed
an L1-constraint, denoted by L1 and L1, L&W, respectively.

Minimum/mean/maximum of utility over 24 months

γ = 2 2006–2007 2008–2009 2010–2011

Unconst −∞/ −∞/−0.02 −∞/−∞/−0.29 −10.11/−2.43/−0.20
Unconst, L&W −∞/−∞/−0.03 - ∞/−∞/−0.11 −6.52/−1.80/−0.20
L1 −1.38/−0.97/−0.43 −4.95/ −1.46/−0.29 −1.17/−0.99/−0.86
L1, L&W −1.36/−0.97/−0.43 −4.80/ −1.48/−0.26 −1.16/−0.99/−0.85

the sample covariance matrix of log-returns, and it is shrunk towards the covariance matrix
based on the constant correlation model as discussed in [20]. We provide our numerical results
in Table 7.

7. Conclusion. For a coefficient of RRA bigger than one, we have shown that the loss
in expected utility due to parameter uncertainty depends on the coefficient of RRA and the
number of risky assets in a highly nonlinear fashion. In particular, as the number of risky
assets increases, the loss can become infinite. Therefore, the challenge is to reduce the number
of risky assets to limit the exposure to estimation risk when implementing the plug-in strategy.
Putting an L1-constraint on the weights of the plug-in strategy induces sparsity in the portfolio
and is an efficient method for reducing the negative effect of parameter uncertainty on its
performance.

By characterizing the structure of the L1-constrained strategy for independent stocks,
we show that the level of sparsity is determined by the coefficient of RRA. For a general
covariance matrix structure, we demonstrate, based on a simulation study, that there exists
an optimal bound minimizing the loss due to estimation for each level of risk aversion. Hence,
estimation risk can be efficiently controlled with the L1-constraint by taking into account the
level of risk aversion of the investor.

Based on a CRRA utility maximization framework, we provide an economical justification
for using the L1-constraint as a way to reduce estimation risk. Indeed, for each level of risk
aversion, we choose the appropriate level of sparsity and attain the optimal trade-off between
the gain of diversification and the loss due to estimation risk. Finally, we show that L1-
constrained strategies can be applied successfully on empirical data.

Appendix A. Proof for section 2.
Proof of Proposition 2.1. The matrix (Σ−1)(d) is symmetric positive definite with spectrum

(1/λ
(d)
i )i=1,...,d and can be diagonalized. Since the change of basis of this matrix is orthogonal,

the following inequalities hold for each x ∈ Rd:

mλ||x||22 ≤ min
i=1,...,d

1

λ
(d)
i

||x||22 ≤ x�
(
Σ−1

)(d)
x ≤ max

i=1,...,d

1

λ
(d)
i

||x||22 ≤ mλ||x||22.
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Thus,

mλ||μ(d) − r1(d)||22 ≤
(
μ(d) − r1(d)

)� (
Σ−1

)(d) (
μ(d) − r1(d)

)
≤ mλ||μ(d) − r1(d)||22,

and, for γ > 1,

Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)

≤ Vγ

(
(π∗)(d) |μ(d), σ(d)

)
≤ Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)
.

The argument is similar for γ = 1.

Appendix B. Proofs for section 3.
Lemma B.1. Let π be constant in time, sufficiently integrable, and independent of W (T );

then

Vγ (π|μ, σ) = KγE [exp ((1− γ)TMγ (π))] .

Proof of Lemma B.1. For γ > 1, we rewrite the expected utility

Vγ (π|μ, σ)=X (0)1−γ

1− γ
E

[
exp

(
(1− γ)

(
r+π� (μ− r1)− 1

2
π�Σπ

)
T + (1− γ)π�σW (T )

)]

as

Vγ (π|μ, σ) = KγE

[
exp

(
(1− γ)T

(
π� (μ− r1)− γ

2
π�Σπ

))
Z (T )

]
with

Z (T ) = exp

(
(1− γ) π�σW (T )− (1− γ)2

2
π�ΣπT

)
and E [Z (T )|π] = 1.

Hence,

Vγ (π|μ, σ) = KγE

[
exp

(
(1− γ)T

(
π� (μ− r1)− γ

2
π�Σπ

))]
.

Lemma B.2. Let π be constant in time, sufficiently integrable, and independent of W (T );
then

Vγ (π|μ, σ) = E

[
exp

(
−(1− γ) γT

2
(π − π∗)�Σ (π − π∗)

)]
Vγ (π

∗|μ, σ) .

Proof of Lemma B.2. From Lemma B.1 we obtain

Vγ (π|μ, σ) = KγE[exp ((1− γ)TMγ (π))].(B.1)
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We write the mean-variance term as

Mγ (π) = π� (μ− r1)− γ

2
π�Σπ

= π� (μ− r1)− γ

2
(π − π∗)�Σ (π − π∗) +

γ

2
π∗�Σπ∗ − γπ�Σπ∗

= π� (μ− r1)− γ

2
(π − π∗)�Σ (π − π∗) +

γ

2
π∗�Σπ∗ − π� (μ− r1)

= −γ

2
(π − π∗)�Σ (π − π∗) +

γ

2
π∗�Σπ∗

= −γ

2
(π − π∗)�Σ (π − π∗) +

1

2γ
(μ− r1)� Σ−1 (μ− r1) .

Therefore, by (2.3) and (B.1),

Vγ (π|μ, σ) = Lγ (π, π
∗)Vγ (π

∗|μ, σ) ,
with

Lγ (π, π
∗) = E

(
exp

(
−(1− γ) γT

2
(π − π∗)�Σ (π − π∗)

))
.

Proof of Lemma 3.1. By (3.1) and (3.2), μ̂ and π̂ are independent of W (T ). Hence, we
can apply Lemma B.1, and the result follows.

Lemma B.3. Let Y ∼ Nd (0,Λ), where Λ is symmetric and positive definite. Let B ∈ Rd,
and let C ∈ Rd×d be a symmetric positive definite matrix such that Λ and C commute. Let
t ∈ R and suppose that Λ−1 − tC is symmetric and positive definite. Then

E

[
exp

(
t

(
B�Y +

1

2
Y �CY

))]
= exp

(
1

2
t2B� (Λ−1 − tC

)−1
B

)
1√|I − tΛC| .

Proof of Lemma B.3.

E

[
exp

(
t

(
B�Y +

1

2
Y �CY

))]

=
1√|Λ|

1

(2π)d/2

∫
Rd

exp

(
t

(
B�y +

1

2
y�Cy

))
exp

(
−1

2
y�Λ−1y

)
dy

=
1√|Λ|

1

(2π)d/2

∫
Rd

exp
(
tB�y

)
exp

(
−1

2
y�

(
Λ−1 − tC

)
y

)
dy

=

√
| (Λ−1 − tC)−1|√|Λ| E

[
exp

(
tB�Z

)]
with Z ∼ Nd

(
0,
(
Λ−1 − tC

)−1
)

=
1√|I − tΛC| exp

(
1

2
t2B� (Λ−1 − tC

)−1
B

)
.

Proof of Theorem 3.2. By (3.1) and (3.2), π̂ is independent of W (T ). By Lemma B.2, we
need to compute the loss factor

E

(
exp

(
−(1− γ) γT

2
(π̂ − π∗)�Σ (π̂ − π∗)

))
.
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Since π̂−π∗ ∼ N
(
0, V 2

0

)
, we can apply Lemma B.3 with Λ = V 2

0 = 1
γ2tobs

Σ−1, B = 0, C = Σ,

and t = − (1− γ) γT , and we obtain

Vγ (π̂|μ, σ) = 1√
|I + (1− γ) γTV 2

0 Σ|
Vγ (π

∗|μ, σ) = 1√(
1 + (1−γ)

γtobs
T
)dVγ (π

∗|μ, σ) .

Note that Λ and C do indeed commute here. For γ > 1, the term 1+ (1−γ)
γtobs

T is strictly positive
because of the assumption tobs > T .

Proof of Corollary 3.3. Assume tobs > T so that the expected utility of the plug-in strategy
is well defined. For γ > 1 we see from (3.6) that

lim
d→∞

Lγ

(
π̂(d), (π∗)(d)

)
= ∞.

By Proposition 2.1 and because the loss factor is positive, the expected utility of the plug-in
strategy is bounded above as follows:

Vγ

(
π̂(d)|μ(d), σ(d)

)
≤ Lγ

(
π̂(d), (π∗)(d)

)
Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)
.

If the right-hand side of the inequality goes to −∞, the expected utility Vγ (π̂|μ, σ) degenerates.
We have the following equivalences:

lim
d→∞

Lγ

(
π̂(d), (π∗)(d)

)
Kγ exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)
= −∞

⇔ lim
d→∞

Lγ

(
π̂(d), (π∗)(d)

)
exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

)
= ∞

⇔ lim
d→∞

log

(
Lγ

(
π̂(d), (π∗)(d)

)
exp

(
(1− γ)T

2γ
mλ||μ(d) − r1(d)||22

))
= ∞

⇔ lim
d→∞

−d

2
log

(
1 +

(1− γ)T

γtobs

)
+

(1− γ)T

2γ
mλ||μ(d) − r1(d)||22 = ∞

⇔ lim
d→∞

−d

2
log

(
1 +

(1− γ)T

γtobs

)
− (γ − 1)T

2γ
mλ||μ(d) − r1(d)||22 = ∞.

We set

xd = −d

2
log

(
1 +

(1− γ)T

γtobs

)
, yd =

(γ − 1)T

2γ
mλ||μ(d) − r1(d)||22.

Hence, as ||μ− r1||22 is in o (d), limd→∞ xd − yd = ∞.
Proof of Theorem 3.6. Using the results of Theorem 3.2, and the expressions (2.3) and

(2.4), we obtain

Θγ (π̂)
1−γ

1− γ
exp ((1− γ) rT ) exp

(
(1− γ)T

2γ
(μ− r1)�Σ−1 (μ− r1)

)

= Lγ (π̂, π
∗)

11−γ

1− γ
exp ((1− γ) rT ) exp

(
(1− γ)T

2γ
(μ− r1)� Σ−1 (μ− r1)

)

⇐⇒ Θγ (π̂) = Lγ (π̂, π
∗)

1
1−γ
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for γ > 1, and for γ = 1 we obtain

log (Θ1 (π̂)) + rT +
T

2
(μ− r1)�Σ−1 (μ− r)

= log (1) + rT +
T

2
(μ− r1)� Σ−1 (μ− r)− L1 (π̂, π

∗)

⇐⇒ Θ1 (π̂) = exp (−L1 (π̂, π
∗)) .

Remark B.4. Because of Lemma B.2, Theorem 3.6 remains true for any (possibly random)
strategy constant in time, sufficiently integrable and independent of W (T ). In particular, this
is the case of the constrained strategies considered in section 4.

Appendix C. Proofs for section 4. We will use the following lemma to prove Proposi-
tion 4.1.

Lemma C.1. Suppose w (t, x) is a regular solution of the Hamilton–Jacobi–Bellman (HJB)
equation

wt (t, x) + sup
{ν∈Rd:||ν||1≤c}

{Lνw (t, x)} = 0 with w (T, x) = Uγ (x) , x ≥ 0,(C.1)

where Lν is the differential operator given by

Lνw (t, x) =
(
r + ν� (μ− r1)

)
xwx +

1

2
ν�Σνx2wxx.

Then, the stochastic integral∫ t

0
wx (s,X

π (s))Xπ (s)π� (s)σdW (s)(C.2)

is a martingale for any admissible portfolio weight process π ∈ Ac.
Proof. We use the ansatz14 that the solution of the HJB equation is of the form

w (t, x) = φ (t)Uγ (x) ,

with

φ′ (t)
1− γ

+ ρφ (t) = 0, φ (T ) = 1, and ρ = sup
{ν∈Rd:||ν||1≤c}

{
r + ν� (μ− r1)− γ

2
ν�Σν

}
.

To prove that the stochastic integral (C.2) is a true martingale for any admissible portfolio
weight process π ∈ Ac, we show that

E

(∫ T

0
(wx (s,X

π (s))Xπ (s))2 π� (s)Σπ (s) ds

)
< ∞.

Let p = 1− γ < 0; then

(wx (s,X
π (s))Xπ (s))2 = φ2 (t) (Xπ (s))2p .

14See [28, subsect. 3.6.1] for a related one-dimensional version of the problem.
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Since φ is continuous on [0, T ] and the process π ∈ Ac, we have

E

(∫ T

0
(wx (s,X

π (s)))2 (Xπ (s))2 π� (s)Σπ (s) ds

)

≤ c2||Σ||∞ max
t∈[0,T ]

|φ2 (t) |E
(∫ T

0
(Xπ (s))2p ds

)
,

where ||Σ||∞ = max
{||Σx||∞ : x ∈ Rd with ||x||∞ = 1

}
. Hence, as (Xπ (s))2p is positive, by

Fubini’s theorem it remains to show that E((Xπ (s))2p) is bounded by a continuous function
of time and the result will follow:

(Xπ (s))2p = X2p (0) exp

(
2p

(∫ s

0
π�
u (μ− r1)− 1

2
π�
u Σπudu+

∫ s

0
π�
u σdWu

))

= X2p (0) exp

(
2p

(∫ s

0
π�
u (μ− r1) +

(
p− 1

2

)
π�
u Σπudu

))
E
(
2pπ�σ

)
(s) .

For π ∈ Ac, the process
(E (2pπ�σ

)
(t)
)
(0≤t≤T )

is an exponential martingale, as it verifies the

Novikov condition. Hence, we define the probability measure Q on (Ω,FT ) as the Radon–
Nikodym derivative

dQ

dP
|FT = E

(
2pπ�σ

)
(T ) .

As Q is equivalent to P and π ∈ Ac, we have for p < 0,

E

(
(Xπ (s))2p

)
= EQ

(
X2p (0) exp

(
2p

(∫ s

0
π�
u (μ− r1) +

(
p− 1

2

)
π�
u Σπudu

)))

≤ X2p (0) exp

(
2p

((
p− 1

2

)
c2||Σ||∞ − c||μ − r1||∞

)
s

)
.

The last term is continuous in the variable s and this concludes the proof.
Proof of Proposition 4.1. Let v (t, x) be the value function

v (t, x) = sup
π∈Ac

E[U
(
Xπ,t,x (T )

)
].

We want to show that the value function of problem (4.1) is equal to the solution of the
associated HJB equation w (t, x). Since w (t, x) is a regular solution, we can apply Itô’s
formula; we have the following decomposition for π ∈ Ac:

Uγ

(
Xπ,t,x (T )

)
= w

(
T,Xπ,t,x (T )

)
= w (t, x) +

∫ T

t
wt

(
s,Xπ,t,x (s)

)
+ Lπ(s)w

(
s,Xπ,t,x (s)

)
ds

+

∫ T

t
wx

(
s,Xπ,t,x (s)

)
Xπ,t,x (s)π� (s)σdW (s) .
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Note that the first integral is negative, as w (t, x) is the solution of the HJB equation. By
Lemma C.1 we know that the stochastic integral is a true martingale. Hence

E
(
U
(
Xπ,t,x (T )

)) ≤ w (t, x) ⇒ v (t, x) ≤ w (t, x) ∀(t, x) ∈ [0, T ]× [0,∞).

Furthermore, the optimal control of the HJB equation is given by

π∗
c = arg max

||ν||1≤c

{
r + ν� (μ− r1)− γ

2
ν�Σν

}
.

By definition of the value function, we have

w (t, x) = E

(
U
(
Xπ∗

c ,t,x (T )
))

≤ v (t, x) ∀(t, x) ∈ [0, T ] × [0,∞).

This implies v = w. Therefore the original optimization problem (4.1) is equivalent to the
HJB equation. As the optimal control is deterministic and constant in (C.1), the dynamic
problem (4.1) reduces to the static problem (4.2).

Proof of Theorem 4.4. The proof of this result is divided into two parts. First, we identify
the shape of the optimal constrained weights. Second, we characterize the shrinkage intensity.

Since the constraint is binding, it is equivalent to the minimization of the Lagrangian:

min
π

1

2

∥∥∥∥√γσ�π − 1√
γ
σ−1 (μ− r1)

∥∥∥∥
2

2

+ a||π||1, a ≥ 0.

As the matrix σ is diagonal, we can optimize term by term. For each i = 1, . . . , d,

min
πi

1

2

(√
γσiπi − μi − r√

γσi

)2

+ a|πi| = min
πi

γ

2
σ2
i

(
πi − μi − r

γσ2
i

)2

+ a|πi|.

Therefore, for each i = 1, . . . , d, the optimal solution (π∗
c )i is the proximal mapping of the

previous minimization problem. For the absolute value function | · |, the proximal mapping
corresponds to the soft-thresholding operator.15 It is given by computing the stationary point
of the objective function for πi > 0 and πi < 0, and we get

(π∗
c )i =

sgn (μi − r)

γσ2
i

(|μi − r| − a)+ for each i = 1, . . . , d.

We can now compute the parameter a. The argument follows from a discussion of [27]
(section 5.2) on L1-constrained regression with an orthogonal matrix. We order the absolute
excess returns by decreasing order

|μ1 − r| ≥ |μ2 − r| ≥ · · · ≥ |μd − r|.
15The notion of proximal mapping is due to [25]. The terminology of “soft” threshold was first introduced

in [8].
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Let k = mini=1,...,d{|μi+1 − r| ≤ a}; we have that

||π∗||1 − c =

d∑
i=1

|μi − r|
γσ2

i

−
d∑

i=1

(|μi − r| − a)+

γσ2
i

=

d∑
i=1

|μi − r|
γσ2

i

I (|μi − r| ≤ a) +

d∑
i=1

a

γσ2
i

I (|μi − r| > a)

=
d∑

i=k+1

|μi − r|
γσ2

i

+
k∑

i=1

a

γσ2
i

.

Using the expression of ||π∗||1 again, we obtain a.
Remark C.2. Note that if the volatility is a multiple of the identity matrix, the result

follows directly from [12, Thm. 5.2] by considering σ̃ =
√
γσ rather than σ in the optimization

problem, which is solved for a logarithmic utility function. Hence, the novelty of this result
relies on the more general structure of the volatility matrix and not on the type of utility
function considered.

Proof of Proposition 4.5. The domain of both maps is R+. Indeed, c has to be nonnegative
for the constrained problem to be well defined.

1. From Lemma 4.3 it is sufficient to consider problem (4.5). By changing the signs of the
objective function and (4.4), problem (4.5) is equivalent to the following minimization
problem: {

min
π

1

2
π�Dπ + π�b

subject to ||πc||1 ≤ c,

where, in our case, D = γΣ and b = − (μ− r1).
Next, we represent the L1-constraint as a set of linear inequality constraints. The
L1-constraint is equivalent to the 2d constraints of the type

(±1, . . . ,±1) π ≤ c.

Let 1 = (1, . . . , 1)� be the 2d-dimensional vector of ones. In matrix form, we have

Aπ ≤ c1,

where A = (Aij) with Aij ∈ {1,−1}, i = 1, . . . , 2d, j = 1, . . . , d, and each possible
combination of signs appears only once as a row of A. Therefore, the constrained OLS
problem is equivalent to the standard quadratic programming problem{

min
π

1

2
π�Dπ + π�b

subject to Aπ ≤ c1.

Since the matrix D is positive definite, the solution map c �→ π∗
c is continuous, by [21,

Cor. 3.1].
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2. Let v (x) = Kγ exp ((1− γ)Tx), x ∈ R. The function v and the mean-variance term
function Mγ are both continuous on R and Rd, respectively. Since the map c �→ π∗

c

is continuous, the map c �→ Vγ (π
∗
c |μ, σ) is continuous as a composition of continuous

functions:

c �→ π∗
c �→ Mγ (π

∗
c ) �→ v (Mγ (π

∗
c )) = Vγ (π

∗
c |μ, σ) .

Note that since π∗
c is deterministic the last equality holds.

To show the concavity of the expected utility as a function of c, we define the functions

f (π) =

∥∥∥∥√γσ�π − 1√
γ
σ−1 (μ− r1)

∥∥∥∥
2

and G (π) = ||π||1.

Both functions are convex on Rd. This implies by [22, sect. 8.3, Prop. 1] that the
function w (c) = f (π∗

c ) is convex in c. Moreover, by (4.4), Mγ (π
∗
c ) = −1

2w (c)+K and
the map c �→ Mγ (π

∗
c ) is concave in c. Finally, as γ > 1 and Kγ < 0, the function v is

concave and increasing. Hence, the expected utility map c �→ Vγ (π
∗
c |μ, σ) is concave

in c as a composition of a concave and increasing function with a concave function,
Vγ (π

∗
c |μ, σ) = v (Mγ (π

∗
c )).

Proof of Lemma 4.6. The expected utility of any L1-constrained strategy πc is well defined
because the L1-norm of πc is bounded by c. The result then follows from Lemma B.2.

Proof of Proposition 4.7. Let m = −c||μ(d) − r1(d)||∞ − γc2

2 ||Σ(d)||∞. Since ||π(d)
c ||1 ≤ c,

m ≤ (π(d)
c )�

(
μ(d) − r1(d)

)
− γ

2

(
π(d)
c

)�
Σ(d)π(d)

c ,

where ||Σ(d)||∞ = max
{||Σ(d)x||∞ : x ∈ Rd with ||x||∞ = 1

}
.

Thus, for γ �= 1, we have, using Lemma 4.6,

Vγ

(
π(d)
c |μ(d), σ(d)

)
≥ 1

1− γ
X (0)1−γ exp ((1− γ)T (r +m)) .

For γ = 1,

V1

(
π(d)
c |μ(d), σ(d)

)
≥ log (X (0)) + T (r +m) .

Proof Proposition 4.8. By (3.1), the maximum likelihood of the drift μ̂ is an Rd-valued
random variable on the probability space (Ω,F ,P). To compute the plug-in constrained
strategy, we solve problem (4.5) with μ̂. In Proposition 4.5 we showed that for a fixed value
of the drift, the solution map is continuous. Hence, the solution map of the plug-in strategy
(ω, c) �→ π̂c is F-measurable and continuous in c a.s.

As in Proposition 4.5, let v (x) = Kγ exp ((1− γ)Tx), with Kγ < 0. Our objective is to
show that |v (Mγ (π̂c)) | ∈ L1 (Ω,F ,P). Indeed, since the map c �→ v (Mγ (π̂c)) is continuous,
we can then establish the continuity of the map c �→ E (v (Mγ (π̂c))) = Vγ (π̂c|μ, σ) by the
dominated convergence theorem.
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We start by computing a lower bound for the mean-variance term Mγ (π̂c) (inequalities
hold a.s.):

Mγ (π̂c) = π̂�
c (μ− r1)− γ

2
π̂�
c Σπ̂c ≥ −||π̂c||1||μ− r1||∞ − γ

2
||Σ||∞||π̂c||21.

Since ||π̂c||1 ≤ ||π̂||1, we deduce that

Mγ (π̂c) ≥ −||π̂||1||μ − r1||∞ − γ

2
||Σ||∞||π̂||21,

and we define

Y = −||π̂||1||μ − r1||∞ − γ

2
||Σ||∞||π̂||21.(C.3)

Because the function v is increasing and negative, v (Y ) ≤ v (Mγ (π̂c)) and |v (Mγ (π̂c)) | ≤
|v (Y ) |.

To apply the dominated convergence theorem, we need to show that |v (Y ) | ∈ L1 (Ω,F ,P).
Note that

E (|v (Y ) |) = −KγE

[
exp

(
(γ − 1)T

(
||π̂||1||μ− r1||∞ +

γ

2
||Σ||∞||π̂||21

))]

and by the Cauchy–Schwarz inequality in L2 (Ω,F ,P) we obtain

(E[|v (Y ) |])2 ≤ K2
γE [exp (2 (γ − 1)T ||π̂||1||μ− r1||∞)]E

[
exp

(
(γ − 1) γT ||Σ||∞||π̂||21

)]
.

(C.4)

Therefore we have to show that the two expectations on the right-hand side of the inequality
are finite. Recall that π̂ ∼ Nd

(
π∗, V 2

0

)
. We set V 2

0 = Ṽ Ṽ � with Ṽ ∈ Rd×d. For γ > 1 the
first expectation in (C.4) can be bounded as follows:

E [exp (2 (γ − 1)T ||π̂||1||μ − r1||∞)]

= E
[
exp

(
2 (γ − 1)T ||Ṽ Z + π∗||1||μ− r1||∞

)]
with Z ∼ Nd (0, Id)

≤ CE

[
exp

(
2 (γ − 1)T ||μ− r1||∞||Ṽ ||∞||Z||1

)]
with C=exp (2 (γ − 1)T ||μ− r1||∞||π∗||1)

= C
(
E

[
exp

(
2 (γ − 1)T ||μ− r1||∞||Ṽ ||∞|z|

)])d
with z ∼ N (0, 1)

= C

(
2 exp

(
a2

2

)
Φz (a)

)d

with Φz the CDF of z and a = 2 (γ − 1)T ||μ− r1||∞||Ṽ ||∞
< ∞.

Since ||π̂||21 ≤ d||π̂||22, the second expectation in (C.4) can be bounded as follows:

E
[
exp

(
(γ − 1) γT ||Σ||∞||π̂||21

)] ≤ E
[
exp

(
(γ − 1) γTd||Σ||∞||π̂||22

)]
,

D
ow

nl
oa

de
d 

02
/2

6/
16

 to
 1

58
.1

43
.1

97
.1

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

238 MATHIEU S. DUBOIS AND LUITGARD A. M. VERAART

which is finite by Lemma B.3 because
(
V 2
0

)−1 − (γ − 1) γTd||Σ||∞Id is positive definite as(
V 2
0

)−1
= γ2tobsΣ. This condition is equivalent to tobsγΣ+(1− γ)Td||Σ||∞||Id being positive

definite.
Remark C.3. If ||π̂c||2 ≤ ||π̂||2 a.s., then

π̂�
c Σπ̂c ≤ λmax (Σ) ||π̂c||22 ≤ λmax (Σ) ||π̂||22 a.s.,

with λmax (Σ) = max
{||Σx||2 : x ∈ Rd with ||x||2 = 1

}
. Therefore, we can set the lower bound

in (C.3) as

Y = −||π̂||1||μ − r1||∞ − γ

2
λmax (Σ) ||π̂||22.

Then |v (Y ) | ∈ L1 (Ω,F ,P) if tobsγΣ+ (1− γ)Tλmax (Σ) Id is positive definite.
Corollary C.4. Under the assumptions of Proposition 4.8, we have the following convergence

properties of the loss factors:

Lγ (π
∗
c , π

∗) → 1 as c → ∞,

Lγ (π̂c, π
∗
c ) → Lγ (π̂, π

∗) and Lγ (π̂c, π
∗) → Lγ (π̂, π

∗) as c → ∞.

Proof Corollary C.4. Note that π∗
c → π∗ as c → ∞. Since π∗

c and π∗ are deterministic,
by Lemma B.1, Vγ (π

∗
c |μ, σ) = v (Mγ (π

∗
c )) and Vγ (π

∗|μ, σ) = v (Mγ (π
∗)), where v (x) =

Kγ exp ((1− γ)Tx) is continuous. Hence,

Vγ (π
∗
c |μ, σ) → Vγ (π

∗|μ, σ) as c → ∞

and

Lγ (π
∗
c , π

∗) → 1 as c → ∞.

For the constrained plug-in strategy, π̂c → π̂ as c → ∞, and the proof boils down to
showing that

Vγ (π̂c|μ, σ) = E (v (Mγ (π̂c))) → E (v (Mγ (π̂))) = Vγ (π̂|μ, σ) as c → ∞.

This is true, as we have shown in the proof of Proposition 4.8 that, for all c ≥ 0, |v (Mγ (π̂c)) | ≤
|v (Y ) | ∈ L1 (Ω,F ,P), where Y is given in (C.3). Therefore, the dominated convergence
theorem can be applied to the sequence of random variables vn = v (Mγ (π̂cn)), where cn is
any sequence converging to +∞.

Appendix D. Number of paths for the Monte-Carlo method. Suppose that we are to
estimate μY = E (Y ) by ȲM = 1

M

∑M
i=1 Y

i, where Y i, i = 1, . . . ,M , are i.i.d. realizations of
Y . By the central limit theorem, the approximate (1 − ε)-confidence interval (for 0 < ε < 1)
for μY is given by [

ȲM − a
σY√
M

, ȲM + a
σY√
M

]
,
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where Φ (a) = 1− ε
2 and σ2

Y = Var (Y ). Now suppose that we want to estimate μZ = E (Z),
with Z = kY , k being a constant. In this case, the accuracy of the Monte-Carlo estimator of
μZ , is given by |k|σY√

M
. Indeed, the (1− ε)-confidence interval is

[
Z̄M − a

σZ√
M

, Z̄M + a
σZ√
M

]
=

[
kȲM − a

|k|σY√
M

,kȲM + a
|k|σY√

M

]
.

Therefore, the constant k is shrinking or widening the confidence interval of the Monte-Carlo
estimation, depending on whether it is smaller or bigger than one. Furthermore,

P

(
μZ ∈

[
kȲM − a

|k|σY√
M

,kȲM + a
|k|σY√

M

])
= P

(
μY ∈

[
ȲM − a

σY√
M

, ȲM + a
σY√
M

])
.

For k large, μZ is a larger quantity than μY , as μZ = kμY . For a fixed number of realizations,
we just estimate a bigger quantity with a bigger error.

If we want to estimate the expected utility for a plug-in strategy, we sample M i.i.d.
realizations Y 1, . . . , Y M of

Yγ = exp
(
(1− γ)T

(
π̂� (μ− r1)− γ

2
π̂�Σπ̂

))
.

Next, for Kγ given in (2.4), we define the Monte-Carlo estimator of the expected utility by

V̄γ,M (π̂|μ, σ) = Kγ Ȳ

with

Ȳ =
1

M

M∑
i=1

Y i.

The variance of the Monte-Carlo is then given by

Var
(
V̄γ,M

)
= K2

γVar (Yγ) /M.

The constant and the random variable depend nonlinearly on the parameter γ, and the vari-
ance of V̄γ,M is nonmonotonic in γ. Hence, the number of realizations to reach a given level
of accuracy varies greatly with γ.

As we do not know Var (Yγ), we have to replace it in the confidence interval by an
estimator. We choose

s2M =
1

M − 1

M∑
i=1

(
Y i − Ȳ

)2
.

s2M is an unbiased estimator of Var (Yγ). In our case, we take M = 5000, so that the level of
accuracy is such that, for all γ ∈ [1, 7],

KγsM√
M

≈ V̄γ,M (π̂c|μ, σ) /100.
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The same type of issue occurs for the computation of the loss. We define the loss factor
by

Vγ (π̂|μ, σ) = Lγ (π̂, π
∗)Vγ (π

∗|μ, σ)
or, equivalently, by

Lγ (π̂, π
∗) =

Vγ (π̂|μ, σ)
Vγ (π∗|μ, σ) .

Then to compute this loss numerically, one would use the estimate

L̄γ,M (π̂, π∗) =
V̄γ,M (π̂|μ, σ)
Vγ (π∗|μ, σ) .

Again, here the accuracy of L̄γ,M (π̂, π∗) is very different from the accuracy of the estimation
of the expected utility. As |Vγ (π

∗|μ, σ) | � 1,

1

|Vγ (π∗|μ, σ) |
√

Var
(
V̄γ,M

)�√
Var

(
V̄γ,M

)
,

and the necessary number of steps would have to be changed accordingly. It could be that, even
if the expected utility is accurately estimated, the loss factor is not. Hence, we compute the
logarithm of L̄γ,M (π̂, π∗). In this case, the logarithm of the ratio is equal to the difference of the
logarithms, and the expected utility V̄γ,M (π̂|μ, σ) is estimated independently of Vγ (π

∗|μ, σ).
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