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1 Introduction

The recent financial turmoil has renewed the academic interest in understanding whether,

and how, financial risk is endogenously generated in the marketplace. Moreover, policies

intended to reduce financial market volatility, and possibly increase market liquidity, have

come to the forefront of the economic and political discourse. In particular, in the form

of a financial transaction tax – aka a Tobin tax – as a device for throwing sand in the

wheels of the financial market. We contribute to this discourse by developing a (dynamic)

equilibrium theory of financial market volatility, liquidity, and limit order book, in which

stochastic volatility is endogenously generated (even if economic fundamentals and infor-

mation flows have constant variance) by the strategic interaction of agents endowed with

different information about the fundamental value of a financial asset.

In the (noisy rational expectation) equilibrium setting we consider, volatility, liquidity (in

terms of tightness, depth, and resilience), and the limit order book, are jointly determined

by the degree of asymmetric information and trading frictions on the market. Moreover, the

equilibrium price process of the traded risky assets is characterised by self-exciting dynamics

even though fundamental values are not.

Our model provides micro foundations for a large set of financial markets empirical reg-

ularities such as: a) the presence of time varying, and clustering, volatility for the price of

risky assets; b) a large set of stylised facts on the link between return volatility and market

volume, as well as between volatility and number of trades; c) the evidence that market

volatility is increasing, and liquidity decreasing, in the degree of trading costs and adverse

selection; d) the contemporaneous occurrence of volatility spikes and liquidity dry-ups; e)

the empirical link between frequency of trading activity, price impact of trades, and the

dynamics of price adjustments to new information releases.1

We consider an asymmetric information sequential trading framework à la Glosten and

Milgrom (1985) (see also e.g. Easley and O’Hara (1987), Glosten (1989), Brunnermeier and

Pedersen (2009)), with several additional novel, and salient, features. First, we allow for

the endogenous determination of the volume of trade by considering a (competitive) market

maker that can post a complete price schedule as a function of the order size of each trader’s

demand. In this formulation, the market maker can be thought of as representing the total

limit order book of the market. Second, we let (informed, and less informed – aka “noisy”)

traders to freely choose whether and how much to trade with the market maker. Third, we

consider both dynamic information and trade frictions (the latter in the form of a propor-

1See e.g. Gallant, Rossi, and Tauchen (1992), Jones, Kaul, and Lipson (1994), Ané and Geman (2000),
Benston and Hagerman (1974), Amihud and Mendelson (1989), Keim and Madhavan (1996), Loeb (1983),
Kavajecz (1999), Umlauf (1993), Hiemstra and Jones (1994), Andersen (1996), Chan and Fong (2000),
Hausman, Lo, and MacKinlay (1992), Farmer and Lillo (2004), Dufour and Engle (2000), Jones and Seguin
(1997).
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tional trading cost i.e. analogous to a financial transaction tax and/or an order processing

cost). Fourth, we relax the canonical sequential trading assumption of financial markets

being observed at discrete exogenous intervals by considering a limiting market in which the

potential traders arrival rate goes to infinity, hence approximating a continuously observed

financial market, but with trading activity still happening at discrete – endogenously deter-

mined, yet stochastic – points in time, as in real world markets. Fifth, we characterise the

equilibrium dynamics of the price process in both trade and calendar time scales, and at

several frequencies (the tick-by-tick, medium, low and ultra-low frequencies), by developing

a novel approach that relies on the asymptotic characterisation of the equilibrium market dy-

namics sampled at different frequencies and on different time scales. This allows us to show

that the equilibrium has market invariance properties in the sense of Kyle and Obizhaeva

(2011a, 2001b).

In the market we consider, two assets are traded: a riskless security, and a risky one

with final payoff determined by a continuous stochastic process. The market is populated

by three types of agents. First a (risk neutral) specialist dealer (market maker) that, at any

point in time, can post a complete price schedule (for any order size) at which she stands

ready to trade the risky security – i.e. she chooses the entire limit order book. The specialist

does not observe directly the stochastic process driving the fundamental value of the assets,

and has to infer it from the history of prices, numbers, and volume of trade. Second, there is

a continuum with unit mass of (market order) traders that sequentially arrive to the market

according to a weakly exogenous stochastic counting process2 (characterised by an arrival

intensity parameter that we will be sending to infinity in order to approximate a continuously

observed market). The (risk neutral) market order traders are of two types. A fraction q

of them is of the uninformed (noisy trader) type, while 1 − q of them observe directly the

continuous stochastic process determining the fundamental value of the risky asset. The

share of uninformed traders, as well as agents’ preferences and all the past history of trade

price, time, and volume, are common knowledge.

Upon arrival, a trader observes the price schedule posted by the market maker and,

based on her valuation of the asset, decides whether to trade, and how much, at the posted

prices. If a trade occurs, the market maker updates her valuation of the asset based on

the information that can be inferred from the market order posted by the last trader (i.e.

the trader’s valuation and the posterior probability of her being of the informed type) and,

consequently, she updates the bid and ask pricing schedules. Like in real world markets, the

market maker observes the trader’s arrival if and only if the trader decides to trade (i.e. she

2We require the arrival process to be independent only conditional on the information revealed by the
last trade, i.e. we require only weak exogeneity of the arrival process rather than the strong exogeneity (or
process independence) commonly assumed in sequential trading models. This implies that, in principle, the
arrival process could depend on the past trading history.
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does not observe directly the arrival process) and does not know whether a trader is of the

informed or noisy type (hence she has to form posterior beliefs about the trader’s type).

In order to introduce a trading friction in this market, we assume that a (small) propor-

tional trading cost is associated with each trade (as e.g. in Stambaugh (2014)). Without

loss of generality, we assume that this trading cost is incurred by the market maker. Al-

ternatively, we could have modelled the friction in the form of a minimum order size, and

this would have preserved all the key equilibrium mechanics. Nevertheless, the proportional

trade cost formulation has two important advantages. First, it is analogous to a Tobin Tax

for financial transactions, hence it allows us to study the equilibrium effect of such a tax.

Second, it makes the theoretical predictions of our model comparable with the empirical

literature that has extensively modelled and estimated transaction cost specifications of this

form.

The presence of a trade friction is crucial in order to generate a bid-ask spread for small

orders: without such friction the limit of the ask and bid (equilibrium) price functions, as

the order size approaches zero, would be identical i.e. there would be no a bid-ask spread

in the proximity of zero even though the market maker faces an adverse selection problem

when trading with informed traders.3 Note that the equilibrium bid-ask spread is, as one

would expect, increasing in the degree of adverse selection faced by the market maker. In

turn, the bid-ask spread is crucial for endogenously generating time varying volatility. The

reason behind this mechanism is quite intuitive in our settings. Prices are, in equilibrium, a

mapping from the market maker’s valuation process of the asset to the real line. Therefore,

for asset returns to exibit heteroscedasticity, one needs the conditional and unconditional

distributions of information, revealed by the trading activity, to be different. The bid-ask

spread delivers this by generating an inertia region for an informed trader since, whenever her

valuation is within the bid-ask spread, she optimally decides not to trade. As a consequence,

the pool of information incorporated into prices changes depending of whether informed

agents are in the inertia region or not.

The above implies that, changing the bid and ask price schedules, the market maker

changes the distribution of information incorporated into prices. Moreover, since the market

maker, upon receiving an order, never knows for certainty whether the trader is informed

or uninformed, her evaluation of the asset evolves gradually (and stochastically, since it is

“noised up” by both the noisy traders’ activity and the continuous processes driving the fun-

damental value). This in turn generates an equilibrium price process that is autocorrelated

and that shows stochastic clustering of volatility.

A natural way of forming intuition about the equilibrium dynamics of the model is to

3In Glosten and Milgrom (1985) the friction that, in the presence of adverse selection, generates the
bid-ask spread, is the assumption of a fixed order size for all trades.
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Figure 1: Market time scales.

consider the three different time scales underlying our market. These are depicted in Figure

1. The first (uppermost) time scale is the arrival time one, on which potential traders arrive

to the market and observe the limit order book posted by the market maker. Upon arrival,

based on their valuation and the current available price schedules, traders decide whether to

trade or not. Trades then occur sequentially on the trade time scale (the middle one in the

figure). If they decide to trade, agents reveal their own valuation of the asset via the order

size they post, and this information gets incorporated into prices and into the updated bid

and ask price schedules that the market maker posts. Note that, on the trade time scale,

prices are adapted to overall information process in the market. Therefore, if there is no

stochastic and clustering volatility in the fundamental information process, there won’t be

stochastic and clustering volatility on the trade time scale. Nevertheless, on the calendar

time scale, due to the traders’ endogenous decision of whether to trade or not upon arrival,

the price process will be a time change of the process on the trade by trade time scale – i.e.

price movements on the calendar time scale are characterised by stochastic volatility, due to

the clustering of information revealed by the trading process.4

We show that, at the tick-by-tick (high) frequency, price movements and volatility are

driven (in a non-linear fashion) by the (equilibrium) volume of trade process. This result

is quite intuitive since, at very high frequency (i.e. trade by trade) the market maker’s

4For the representation of a price process with stochastic volatility via time change (aka time deformation)
see e.g. Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), Yor, Madan, and Geman
(2002), Andersen, Bollerslev, and Dobrev (2007).
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valuation update (hence the information that is incorporated into prices) is driven by the

order size posted by traders. Moreover, the link between price movements and volume, as

well as the closed form relationship between these quantities that we obtain, are consistent

with the empirical findings of a large body of literature.5

Considering the sequence of market equilibria as the (possibly time varying) intensity of

traders’ arrival approaches infinity, we identify what we refer to as the medium frequency

equilibrium price process. This is the frequency at which the market is close to being

continuously observed by potential traders. Obviously, in the real world, this frequency

will be asset specific (e.g., in a given calendar time interval, blue chip stocks are closer to

being continuously observed by traders than a stock at the bottom of the NYSE market

capitalisation distribution), and will be driven by the stock specific characteristic business

time. That is, sending the arrival intensity to infinity we identify an equilibrium price process

that is of the market microstructure invariance type (see e.g. Kyle and Obizhaeva (2011a,

2001b)). More precisely, financial assets with the same level of transaction costs, asymmetric

information, fundamental volatility and drift will have the same equilibrium price process

distributions at medium frequency. Nevertheless, what this frequency will correspond to in

calendar time (hours, days, moths, etc.) will be asset specific and will depend upon the level

of market attention dedicated to the assets.

At this medium frequency the trade by trade volatility is increasing in both the level

of transaction costs and the degree of adverse selection faced by the market maker. This

is due to the fact that, as these market frictions increase, market tightness and resilience

reduce. The first effect reduces the amount of trading (via reduced liquidity and increased

no trade region) while the second makes large departures from fundamental values more

likely and persistent. These effects imply that, when informed traders choose to trade, price

corrections are more severe. From a Tobin Tax perspective, this result implies that such a

tax: a) increases trade by trade variance overall, and its effect is more severe in markets

with a high level of adverse selection; b) reduces volatility in periods of small shocks to the

fundamental value (i.e. in tranquil times), since conditional on small shocks the market will

be more often in the no trade region; c) substantially increases volatility in hectic periods

i.e. when large shocks to fundamental values occur.

Even though, as our sequential framework approaches a continuously observed market,

the trade by trade volatility becomes constant, the calendar time scale volatility is time

varying in a stochastic manner. Intuitively, this is due to the fact that, as depicted in Figure

5See e.g. Gallant, Rossi, and Tauchen (1992) that, using a non linear specification, find a strong link
between volume of trade and price movements, as well as Farmer and Lillo (2004) and Farmer, Lillo, and
Mantegna (2003), that identify a log-linear relationship between gross price growth and changes in volume,
and Potters and Bouchaud (2003), that identify a log-log relationship between gross price growth and volume
changes. We show that in our framework all these relationships between price growth and volume can arise
in equilibrium depending on the market’s fundamental characteristics.
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1, trades in the calendar time scale are endogenously clustered. This intuition is confirmed by

our (asymptotic) closed form solution that shows that, at low frequency (i.e. the frequency

characterised by a large number of trades per time interval), the stochastic volatility of the

price process is driven by the number of trades process, and this dependency is exactly of

the type identified empirically by Ané and Geman (2000).

Our framework also delivers a (closed form) equilibrium characterisation of the drivers of

market liquidity in terms of tightness, deepness, and resilience. In particular, we find that,

as the degree of adverse selection increases, tightness is reduced, market impact increases

(for small order sizes), and departures of the price from the fundamental value are expected

to last longer. Moreover, since volatility (on all time scales), increases with adverse selection,

our framework can rationalise the joint occurrence of liquidity dry-ups and volatility spikes

(as e.g. during the subprime crises).

Given the ability of our model to rationalise several salient features of asset price dy-

namics – such as the empirical link between volatility and volume and number of trades, the

common dynamics of volatility and liquidity, as well as the relationship between market fric-

tions and trading activity – it constitutes a natural laboratory for analysing the equilibrium

effects of the introduction of a Tobin Tax. On this front, we show that the introduction of

a Tobin tax has strong effects on both volatility and liquidity. In particular, our model pre-

dicts, consistently with the empirical literature,6 that such a tax would substantially reduce

liquidity (in terms of tightness and resilience), increase volatility, and slow down the business

clock of the market. Furthermore, these effects are stronger in markets characterised by a

high degree of adverse selection – i.e. the effect of a Tobin Tax would be more dramatic

in already illiquid and highly volatile markets. Moreover, we show that such a tax would

reduce volatility in “good times” (i.e. when only small shocks to fundamental are realised)

and increase volatility in “hectic times” (i.e. when large fundamental shocks occur).

More broadly, our work is also related to the large literature on information aggregation

in financial market and noisy rational expectation equilibria (see e.g. Grossman and Stiglitz

(1980), Hellwig (1980), Admati (1985), Kyle (1985), and Wang (1993, 1994), Easley and

O’Hara (1987, 2004)). In particular, since we study a sequence of market equilibria as the

intensity of potential traders arrival goes to infinity, our work is related to Back and Baruch

(2004) that studies the limiting behaviour of a Glosten and Milgrom (1985) type model

as uninformed trades become smaller and arrive more frequently, while the (single) insider

chooses optimally when to trade. In this setting, the authors show, there is an equilibrium

in which informed and uninformed traders arrive probabilistically, as we assume. Our model

departs from their setting in that we do not restrict the order size to be constant (and

shrinking to zero as the intensity of arrivals goes to infinity). This allows us to obtain, in

6See e.g. Umlauf (1993), Jones, Kaul, and Lipson (1994), Jones and Seguin (1997), and Hau (2006).
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closed form, the equilibrium order book and market depth as a function of the order size.

Moreover, we consider dynamic information and characterise the behaviour of the equilibrium

price and volatility processes at different frequencies.

Furthermore, given our focus on the role of financial frictions and transaction taxes, our

work is closely connected, respectively, to Vayanos and Wang (2012), and Subrahmanyam

(1998) and Buss, Uppal, and Vilkov (2014).

The reminder of the paper is organised as follows. Section 2 introduces the trading and

information structure of the market, as well as the agents’ optimisation problems. Section

3 solves for the market equilibrium and characterises the resulting properties of the order

book, the optimal trading behaviours, and the prices process on different time scales and at

various frequencies. In Section 4 we analyse the equilibrium properties of market liquidity

and volatility, while Section 5 concludes. Additional proofs and technical results are reported

in the Appendix.

2 Model Primitives

All random variables are defined on a filtered probability space
(
Ω,F , (Fs)s≤T ,P

)
satisfying

the usual conditions. A remark about the notation used throughout the paper is worth

making at this point. Since we are dealing with three different time scales – calendar time,

number of arrival time, and number of trade time – processes need to be defined accordingly.

For all processes we follow the convention that: i) upper case Latin letters, such as Xt,

denote processes considered on the calendar time scale; ii) lower case Latin letters, such as

xi, denote processes considered on the number of arrivals time scale, that is xi = Xθi , where

θi denotes the stopping time of the arrival process (i.e. the i-th arrival time); iii) lower case

Latin letters with ˜ superscript, such as x̃i, denote processes considered on the number of

trade time scale, that is x̃i = Xτi , where τi denotes the stopping time of the trade process

(i.e. the i-th trade time).

2.1 Market Structure

We consider a finite trading horizon T . There are two assets: a riskless bond that yields the

instantaneous return r, and a risky asset – a stock – with final value given by eDT where D

is the continuous log profit process of the firm and follows the diffusion process

dDt = μdt+ σdW d
t , D0 = const,
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where W d is a Brownian Motion with respect to (Ft), and μ and σ are, respectively, the drift

and volatility parameters. Note that the framework considered in this paper can be easily

extended to allow for time varying μ and σ, and/or allow D to represent a best estimate,

rather than the true process.

The risky asset is traded in a competitive specialist (“market maker”) market. The

trading structure is a sequential one as in Glosten and Milgrom (1985). Traders arrive to the

market and meet the specialist according to a stochastic counting process, N , with associated

stopping times θi = inf {t ≥ 0 : Nt = i} where θi is the time of the i-th arrival. We assume

that the total number of arrivals is finite, and that future arrivals are independent from the

past events.7 We will refer to this assumption as:

A1. NT < ∞ a.s. and σ {Nθi+t −Nθi , t ≥ 0} ⊥ Fθi for all i.

When the trader arrives to the market at time θi, she observes bid, Bθi (·), and ask,

Aθi (·), prices per-share posted by the specialist. We allow the bid and ask prices per-share

to depend on the order size (v). The specialist is allowed to change bid prices, Bt (v
−) (where

v− ∈ R+ is the sell order size) and ask prices, At (v
+) (where v+ ∈ R+ is the buy order size),

at any point except at the time at which the trader arrives. That is, as in real markets,

the ask and bid quotes posted by the market maker constitute a non renegotiable trading

commitment at the time at which traders decide to trade.

Given the above formulation, the market maker’s posted prices can also be interpreted

as orders place by competitive limit order traders, and the posted price schedules Bt (v
−)

and At (v
+) can be interpreted as the time t limit order book.

We assume that the market maker has to incur a (small) proportional order processing

cost for each transaction, δ. That is, if at time t the trader submitted the order to buy v+

(or order to sell v−) then the market maker would receive v+At (v
+) (1− δ) (or spend the

amount v−Bt (v
−) (1 + δ)).

After observing the posted bid and ask prices, the trader that arrived at time θi has to

decide her order size, vi. Obviously, the trader can choose an order size of zero – in which

case no trade occurs, and the specialist does not observe the i-th arrival. That is, as in the

real world, the market maker will observe only the trades and not the arrivals of traders

per se. The cumulative number of realised trades by time t defines the stochastic counting

process

Lt =
∞∑
i=1

1{θi≤t}∩{vi �=0}

where 1{.} is the indicator function defined over a set. We define the stopping time associated

with the number of trade process, L, as τi = inf {t ≥ 0 : Lt = i} – that is, τi is the time of

7Additional assumptions on the Nt process will be outlined later. For instance, a Poisson process (with
constant or time varying intensity) would satisfy these assumptions.
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the i-th trade. Similarly, we define the cumulative volume of trade by time t as

Vt =
∞∑
i=1

vi1{θi≤t}. (1)

Let ṽi indicate the order size of the i-th trade that is:8 ṽi =
∑∞

j=1 vj1{θj=τi}. Since trades

always have to happen either at the bid price, Bτi (·), or at the ask price, Aτi (·), the price

at which the i-th trade is executed is given by9

p̃i = Aτi

(
ṽ+i
)
1{ṽi>0} +Bτi

(
ṽ−i
)
1{ṽi<0}, (2)

since the trade has to occur either at the ask or at the bid price, and the price at time t is

given by

Pt = p̃max{i≥1: τi≤t}1{τ1≤t} + p̃01{τ1>t}. (3)

Note that the above formulation of Pt is needed to accommodate the case of no trades before

time t, and p̃0 is an equilibrium price that we will derive below.

2.2 Information Structure

Beside the specialist – the “market maker” – there are two types of traders: informed ones

and uninformed noisy traders. Jointly, informed and noisy traders constitute a continuum

with unit mass, are assumed to act competitively. The informational advantage of the first

group is that it observes directly the D process.

To characterise the different information sets we introduce the following notation: for any

given process X, we denote by FX
t = σ {Xs, s ≤ t} ∨ N , where σ {.} is the sigma algebra

generated by its argument, N is the set of P-null sets, and x ∨ y indicates the minimum

sigma algebra generated by the union of x and y.

At time t all the agents observe: a) all the past history of market prices (that is the

filtration FP
t generated by the price process P up to time t), and b) all the past history of

the cumulative volume (that is the filtration FV
t generated by the volume process V ). This

implies that the cumulated number of trade at time t, Lt, is also known to all the market

participant since it is equal to the number of jumps of {Vs}s≤t. We denote this common

knowledge filtration as

GM
t = FP

t ∨ FV
t .

We use the superscript M to denote the fact that GM
t is also the information set of the

specialist market maker.

8Note that Vt =
∑∞

i=1 ṽi1{τi≤t}.
9Recall that, by definition, ṽi 	= 0.
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For future convenience, we also define the market maker’s information set at the time

of the i-th trade: H̃M
i = GM

τi
. Note that through the paper we use the letter G to denote

information sets in calendar time, the letter H̃ to denote information sets in trading time,

and H to denote information sets in the arrival time scale (i.e. Hi = GM
θi
).

The trader who arrived at time θi is of the (uninformed) noisy type (U) with probability

q and of the informed type (I) with probability 1 − q. We define the cumulative number

of informed and uninformed traders arrival processes (N I and NU) and associated stopping

times as (θIi and θUi ), respectively, as

NU
t =

∞∑
i=1

1{θi≤t}∩{Ui}, θUi = inf
{
t ≥ 0 : NU

t = i
}

and

N I
t = Nt −NU

t =
∞∑
i=1

1{θi≤t}∩{Ii}, θIi = inf
{
t ≥ 0 : N I

t = i
}

where Ui (Ii) denotes the event of the time θi trader being of the uninformed (informed)

type.10

Since the informed trader also observes the process D , her information set upon arrival

(time θIi ) is HI
i = GI,i

θIi
, where GI,i

t = GM
t ∨FD

t ∨σ
{
θIi ∧ s, s ≤ t

}
, and ∧ denotes the minimal

element.

The noisy traders demand is parametrized indirectly, through their information set. In

particular, we assume that, in addition to observing the market filtration GM
t at time t, noisy

traders receive a private signal St. That is, upon arrival at time θUi , the noisy trader receive

the private signal si = SθUi
and has therefore the information set HU

i = GU,i

θUi
∨ σ {si}, where

GU,i

θUi
= GM

t ∨σ
{
θUi ∧ s, s ≤ t

}
. This indirect modelling of the noisy traders demand simplifies

exposition because: a) since the market maker will, in equilibrium, filter the information of

each trader’s demand, we are defining the noisy traders demand in the relevant domain

for the filtering problem (rather than having to invert what a particular noisy demand

schedule would imply in terms of filtered information from the market maker point of view);

b) as we will show below, the requirement of noisy and informed traders’ demands being

indistinguishable given the market maker information set, can be very easily formulated

using this indirect modelling of the noise traders’ demand.

In what follows, we postulate that the following assumptions are satisfied:

A2. FW
T ,FN

T and Sθi are conditionally independent given Hi−1for all i, where Hi = Gθi ,

Gt = FV
t ∨ FN

t .

A3. Ii is independent of FN,S,D
T ∨ σ (Uk)k �=i.

10Obviously Ui ∪ Ii = Ω.
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A4. P (vi ∈ C|Hi−1, Ii, θi) = P (vi ∈ C|Hi−1, Ui, θi) for C ∈ B (R), where B (R) denotes the

Borel σ-algebra.

Assumption A2 has the following implications. First, that – as typically assumed in

sequential trading models (see O’Hara (1995) for a discussion) – trader’s arrival time is

exogenous and independent from movements in the fundamentals. This, as in Glosten and

Milgrom (1985), rules out a strategic timing of agents arrival but, differently from them,

does not rule out all other dimensions of strategic behavior since the traders will be free to

chose whether to trade or not and their order size. Note also that the only restriction that

Assumption A2 imposes on the arrival process is that it should be conditionally independent –

that is, it could in principle depend on the past trading history (summarized by Hi). Second,

A2 implies that the signal received by noisy traders does not carry more information about

the fundamental than what could be inferred from the current history of past order sizes

and arrival times.

Remark 1 Note that Hi is the σ-algebra generated by {vj}ij=0 and {θj}ij=0.

Informed traders can potentially benefit from any departures of the stock price from the

fundamental value, and so informed traders could decide to trade as much as possible – but

such a behaviour would quickly reveal the information of the informed to the market maker.

Assumption A3 prevents this from happening by not allowing informed traders to decide

when to arrive to the market. This can be seen as imposing an equilibrium behaviour, as

the one studied in Easley and O’Hara (1987), in which informed agents mimic uninformed

agents behaviour to avoid detection.

Jointly, assumptions A2 and A3 guarantee that the actual population of traders that the

market maker faces is always the same as the potential population of traders, since none of

the traders can endogenously decide when to arrive to the market.

Assumption A4 restricts the signal process received by uninformed traders. It imposes

that the distribution of order size submitted by the investor (conditionally on lagged infor-

mation) is independent of the type of trader, therefore guaranteeing that informed traders

are inconspicuous, in the sense that they cannot be detected by the market maker. This

basically imposes a “pooled” equilibrium, as the one discussed in Easley and O’Hara (1987),

in which informed agents optimally decide to be pooled together with the uninformed ones.

We will show later that this is equivalent to the requirement that the uninformed traders

valuations of the assets do not excessively deviate from the fundamental value of the asset.

Note that the above assumptions on the signal received by the uninformed investor do

not imply that these agents can only act in a purely noisy fashion. For example, it is easy to

show that a setting in which noisy traders receive a noisy estimate of Dt would satisfy the

above assumptions.

11



We also assume that agents’ preferences, to be presented below, are common knowledge.

2.3 Agents’ Preferences

2.3.1 Traders’ Preferences

The preferences of all agents are common knowledge. Since there is a continuum of potential

traders and the arrival process is exogenous, upon arrival the conditional probability of

experiencing a second arrival is zero. Therefore, an agent that arrives to the market at time

θi faces a basically static problem. Nevertheless, using the standard utility maximisation

approach, a closed form solution for the market equilibrium can be provided only under

the assumption of risk neutrality. As a consequence, as it is customary in the market

microstructure models of information based trading, we will assume that all agents are

risk neutral.

Recall that the final payoff of holding v+ shares is simply v+eDT . Assuming that traders

are risk neutral and that the inter-temporal discount factor is equal to the risk-free interest

and both are equal to zero,11 the expected utility from holding v+ shares until time T for an

agent of type k ∈ {I, U} that arrived to the market at time θki is

E
[
v+eDT

∣∣Hk
i

]
=: v+zki (4)

where zki is the expected utility from owning one stock for a type k trader. Moreover, under

the above assumptions, the expected utility from investing in the risk free asset the amount

needed to buy v+ shares at time θki is simply

v+Aθki

(
v+
)
. (5)

The expected utilities in equations (4) and (5) can be viewed as the outcome of two

alternative investment strategies – buying v+ stocks or investing v+Aθki
(v+) in the risk free

asset. Since a similar expression is associated with sell orders, v−, the optimisation problem

of the agent of type k that arrives at time θki can be expressed as

max
v+,v−

v+
[
zki − Aθki

(
v+
)]

+ v−
[
Bθki

(
v−
)− zki

]
. (6)

Note that in the above expression the first term refers to buying the stock while the second

refers to selling the stock. As we will show later, in equilibrium it will never be optimal for

the agent to choose both v+ and v− different from zero, that is the agent will either buy,

11Generalizing our results to allow the inter-temporal discount and the risk-free rate to be non-zero and
different form each other is straightforward, we don’t do so in order to simplify the exposition.
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sell, or not trade.

For later usage, let define zi as the expected value of holding one share of the asset for

the agent that arrives at time θi, that is

zi = 1{Ii}z
I
i + 1{Ui}z

U
i . (7)

2.3.2 The Specialist’s Preferences

We complete the model assuming the presence of a specialist market maker. The market

maker faces a small proportional cost, δ, to execute the orders placed by traders. That is,

if a trader at time t submits the buying order v+ at the posted ask price At (v
+), the mar-

ket maker will receive, upon completion of the transaction, the amount v+At (v
+) (1− δ).

Similarly, for executing a selling order of size v− the specialist would face a cost of12

v−Bt (v
−) (1 + δ). Assuming that it is the trader that incurs a transaction cost is with-

out loss of generality: we could have attributed the transaction cost to the traders without

changing the equilibrium dynamics of the model. The presence of a small transaction cost is

necessary to generate interesting dynamics since, in equilibrium, this will generate a bid ask

spread even in proximity of the zero order size, that is limv↓0 At (v)− limv↑0 Bt (v) > 0. This

implies that the weakly exogenous (and unobservable) process of arrivals of traders, N , and

the endogenous (and observable) counting process of trades, L, will not necessarily coincide.

This also implies that, in a given time interval, the difference in number of arrivals

and trades will carry relevant information for the market maker. Nevertheless, the market

maker cannot observe Nt nor, generally, to infer it from the observed number of trades.

For example, if the exogenous arrival process is characterised by time varying intensity, an

observed increase in the number of trades can be attributed either to a) a change in the

intensity of the arrival process or to b) the fact that the market maker’s estimate of the

true value is incorrect and more informed traders choose to trade at the posted prices. We

therefore are in need of specifying the market marker’s prior beliefs about the connection

between Nt and Lt. We assume that the market maker believes that Nt = Lt ∀t. This choice
makes the problem tractable and has the advantage that, from the market maker’s point of

view, this belief is unfalsifiable under the assumption of unobservable time varying intensity

of the arrival process. Moreover, this has the advantage of focusing the equilibrium market

dynamic on the market maker’s filtering of the agents information instead that around the

filtering of the arrival process.13

12It is straightforward, in our setting, to allow for a different (and time varying) transaction costs for ask
and bid orders. However, we focus on the constant symmetric cost case to simplify exposition.

13Note that preventing the market maker from inferring information contained in the time between arrivals
is also the approach taken by Glosten and Milgrom (1985). For a framework in which the market maker
learns from the time between trades, and hence updates quotes continuously, see Back and Baruch (2004).
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The market maker, as the traders, is risk neutral, implying that her utility form owning

one share of the stock until time T is

ZM
t = E

[
eDT
∣∣GM

t , Nt = Lt

]
. (8)

As in Glosten and Milgrom (1985), the specialist sets up bid and ask prices under a

zero utility gain constraint – that is, the market can be thought of as being populated by a

continuum of competitive (in Bertrand’s sense) market makers. This assumption implies two

restrictions of the market maker’s behaviour. First, as in a competitive market, carrying out

a trade at the posted price will not deliver a utility gain to the specialist (in her filtration).

Second, the specialist should not regret, ex post, having executed the trade at the posted

price. That is, if a trader submits an order of size v, the market maker utility should not

decrease after carrying out the order. More precisely, the time t bid and ask prices, as a

function of the order size v, must satisfy the following conditions

At

(
v+
)
(1− δ) =

∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=v+,τi=t

, (9)

Bt

(
v−
)
(1 + δ) =

∞∑
i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=−v−,τi=t

. (10)

Note that in the above summations there is only one non zero value of the index function for

any realisation of history, implying that these expressions are simple certainty equivalence

conditions that bid and ask prices must satisfy.

Remark 2 Since the market maker sets ask and bid as a function of the volume, and the

price of a transaction can only be at either the ask or the bid, we have that once the volume,

Vt, is observed, the transaction price has no residual information content. That is GM
t =

FV
t ∨ FL

t , implying that H̃M
i = σ

{
{ṽ}ij=0 , {τj}ij=0

}
.

Additionally, we impose the following regularity conditions on bid and ask functions:

C1. For a fixed v, the processes B (v−) and A (v+) are left continuous with right limits.

C2. For a fixed t, At (v
+) : R+ → R̄+\ {0} is continuous, nondecreasing and limv+→∞ At(v

+) =

+∞.

C3. For a fixed t, Bt (v
−) : R+ → R̄+ is continuous, non increasing and limv−→∞ Bt(v

−) = 0.

C4. For a fixed t, At (0) ≥ Bt (0) for all ω ∈ Ω.
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C5. For any fixed t, At (·) continuously differentiable, and Bt (·) is continuously differentiable
on the set {v : Bt (v) > 0}

C6. For a fixed t, vAt (v) is strictly convex, and vBt (v) is strictly concave on the set

{v : Bt (v) > 0}
Condition C1 formalises the idea that, as in the real world, the specialist can change the

bid and ask functions at any point in time except at the time at which the trade occurs.

Condition C2 for the ask price implies that: i) the specialist will never dispose of the

assets for free; ii) the price per-share at which the specialist will agree to sell will not

decrease in the order size; iii) the specialist will refuse to trade infinite quantities. The

first two implications are meant to match the real world ask price behaviour, while the last

one rules out degenerated cases. Condition C3 for the bid price per-share is the analog of

condition C2 for the ask price.

Condition C4 is a technical one, and is meant to rule out the degenerate case of ask prices

being below the bid price, while Condition C5 simply assume that the bid and ask function

are sufficiently smooth.

Condition C6 ensures that the traders’ demand functions are uniquely determined by

their valuations (i.e. it ensures strict concavity of the traders’ objective function in equation

(6)). This is equivalent to imposing a single crossing condition for the demand and supply

functions of the asset.

Also, in order to avoid the degenerated case of no trade ever occurring due to a system-

atically too large bid ask spread, we require the transaction cost δ to be sufficiently small.

In particular, we have the following condition.

A5. δ ∈ (0, q).

The connection, in the above condition, between the maximum size of the transaction

cost, δ, and the share of uninformed agents, q, is intuitive. The market maker will make

profits, on average, only when dealing with uniformed agents. Therefore, if the transaction

cost that the market maker faces is too large, relative to the share of uniformed agents in

the economy, it will not be optimal for her to trade and she will choose an infinite bid ask

spread.

3 Market Equilibrium

3.1 Existence and uniqueness of the equilibrium

In what follows we prove existence and uniqueness of the equilibrium. We define a market

equilibrium as follows.
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Definition 1 (Equilibrium) A market equilibrium is a set of policy functions At (v
+),

Bt (v
−), vi (Aθi (v

+) , Bθi (v
−)) such that:

1. Conditions C1-C6 are satisfied;

2. At (v
+) and Bt (v

−) solve the specialist optimisation problem characterised by equations

(9) and (10) for any v, t;

3. vi (Aθi (v
+) , Bθi (v

−)) solves the trader’s problem in equation (6).

To prove existence and uniqueness of the market equilibrium, it is first useful to establish

two intermediate results. The first Lemma states the solution of the trader’s optimisation

problem for any ask and bid prices that satisfy conditions C1-C6.

Lemma 1 (Trader’s optimal demand) Suppose At (v
+), Bt (v

−) satisfy conditions C1-

C6. Consider a trader who arrives on the market at time θi and observes the posted prices

Aθi (v
+) and Bθi (v

−). Then

• if zi > Aθi (0), the optimal order size, v∗, is strictly positive and is the unique solution

of

zi = Aθi (v) + vA′
θi
(v) (11)

• if zi < Bθi (0), the optimal order size, v∗, is strictly negative and is the unique solution

of

zi = Bθi (−v)− vB′
θi
(−v) (12)

• if Bθi (0) ≤ zi ≤ Aθi (0), then the optimal order size is v∗ = 0.

Proof of Lemma 1. Follows from the first order conditions of the trader’s problem in

equation (6) and the observation that conditions C2 and C3 ensure existence and finiteness

of the global maximum, while condition C6 ensures uniqueness of the maximum. Moreover,

condition C4 rules out different cases from the ones considered in the Lemma.

It is important to stress that the trader’s expected utility from owning the stock is

revealed upon submission of the order v∗. This allows us to solve the filtering problem of

the market maker.

The above result allows us to make an important remark on Assumption A4.

Remark 3 (Remark on Assumption A4.) Note that the optimality conditions in Lemma

1 identify a one to one correspondence between the order size, vi, and the agent’s valuation,
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zi. Denote this invertible map by f : vi → zi. Hence, for C ∈ B (R)

P (zi ∈ C|Hi−1, Ii, θi) = P (f (vi) ∈ C|Hi−1, Ii, θi) = P
(
vi ∈ f−1C|Hi−1, Ii, θi

)
,

P (zi ∈ C|Hi−1, Ui, θi) = P (f (vi) ∈ C|Hi−1, Ui, θi) = P
(
vi ∈ f−1C|Hi−1, Ui, θi

)
.

Therefore, assumption A4 is equivalent to P (zi ∈ C|Hi−1, Ui, θi) = P (zi ∈ C|Hi−1, Ii, θi).

The above reformulation makes clear that Assumption A4 is a requirement on the type of

information that the uniformed agents receives. In a nutshell, it requires that the uninformed

traders’ valuations of the asset do not excessively deviate from the fundamental value of the

asset that is observed by the informed agent.

In the next proposition we characterise the optimal ask and bid price function from the

market maker’s standpoint.

Proposition 4 (Optimal ask and bid functions) Suppose assumptions A1-A5 are sat-

isfied. Then there exist optimal ask, At (v
+), and bid, Bt (v

−) , prices that satisfy conditions

C1-C5 and the market maker’s optimality conditions (9) and (10). Moreover, the optimal

At (v) and Bt (v) have the following forms:

A∗
t (v) =

q

q − δ

(
1 + αv

q−δ
1−q

) ∞∑
i=0

1{i=Lt−+1}ZM
τi−1

(13)

B∗
t (v) =

{
q

q+δ

(
1− βv

q+δ
1−q

)∑∞
i=0 1{i=Lt−+1}ZM

τi−1
if βv

q+δ
1−q ≤ 1

0 otherwise
(14)

where α and β are strictly positive arbitrary constants, and ZM
t is given in equation (8).

Proof. The proof, being technical, is reported in Appendix A.1. Nevertheless, the steps

of the proof are quite intuitive. First, we show that, in the market maker filtration, the

probability of a trader being of the uninformed type is simply q independently from the

order size. Second, from the order size and Lemma 1, the market maker can recover the

asset valuation of the trader. Third, combining the probability of trader types, and the

valuations corresponding to each order size, together with the market maker’s indifference

conditions (9) and (10), give rise to an ordinary differential equation (ODE) for the ask price

function, and one for the bid price function. Each of these ODEs admits two solutions, but

only one solution per equation satisfies conditions C2 and C3.

The equilibrium bid and ask price function, depicted in Figure 2 for different values of

q, have important implication for market liquidity in terms of depth and tightness. These

properties are discussed in detail in section 4.2. One thing to notice in the figure is that,

overall, as q – the share of noisy agents – increases, the bid-ask curves become steeper (for
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Figure 2: Ask and Bid equilibrium prices for different shares (q) of uninformed traders.

large orders), while the bid-ask spread at zero reduces. This is due to the fact that, when q is

high, informed trades happen less often, hence the price process experiences bigger deviations

from the fundamental value. Hence, the market maker’s potential losses from executing a

large order are substantially larger when q is large.

Note that, in a real world market, the arbitrary constants α and β would be uniquely

identified by the tick size. Note also that ZM
t is always positive, and represents the market

maker’s valuation of owning the stock conditional on all the information available before the

last trade and the fact that a trade is occurring at time t. The next remark defines the

updating mechanism for the market maker’s valuation of the asset z̃Mi = ZM
τi
.

Remark 5 (Update of Market Maker’s estimation of the asset value) Note that if

Assumptions A1-A5, as well as Conditions C2-C5, are satisfied, the same steps used in

proving Proposition 4 can be used to show that ZM
t =

∑∞
i=0 1{i=Lt−}z̃Mi with

z̃Mi = (1− q) z̃i + qz̃Mi−1. (15)

The above equation states that, in updating her valuation, the market maker will assign

a weight q (the probability of the last trader being uninformed) to her previous valuation,

and weight 1−q (the probability of the trader being informed) to the last trader’s valuation.

We can now establish the equilibrium result in the following Theorem

Theorem 6 Suppose Assumptions A1-A5 are satisfied. For strictly positive constants α and

β, there is a unique market equilibrium, A∗
t (v), B

∗
t (v) , v

∗
i , where A

∗
t (v) and B∗

t (v) are given,
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respectively, by equations (13) and (14), and

v∗i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
1−q

α(1−δ)

(
q−δ
q

zi
zMi

− 1
)] 1−q

q−δ
if q

q−δ
zMi < zi,

−
[

1−q
β(1+δ)

(
1− q+δ

q
zi
zMi

)] 1−q
q+δ

if zi <
q

q+δ
zMi ,

0 if q
q+δ

zMi ≤ zi ≤ q
q−δ

zMi

where zMi := ZM
θi

Proof of Theorem 6. Due to Proposition (4) we know that, for strictly positive con-

stants α and β, equilibrium ask and bid functions are unique and given by equations (13) and

(14). Using these expressions for A∗
t (v) and B∗

t (v) in the optimality conditions in Lemma

(1) and solving for v completes the proof.

Note that the above equilibrium solution for the order size, v∗, when δ = 0, implies that

traders will buy (sell) the asset if and only if their valuation, zi, is larger (smaller) than the

market maker’s valuation, zMi . When instead the δ > 0, the difference in valuation necessary

for a trade to occur needs to be larger in order to account for the trading cost δ. Therefore,

in the presence of trading costs, there is an interval of inaction in which no trade occurs even

if the valuations of the market maker and the trader differ. This implies that in equilibrium,

with δ > 0, number of arrivals and number of trades will be different with strictly positive

probability. Nevertheless, one can show that this probability is strictly less than one. Thus,

the market maker’s (non falsifiable) belief, that number of trades and number of arrivals are

the same, is not irrational.

3.2 The high frequency (tick-by-tick) equilibrium price process

Given the above characterisations of equilibrium ask and bid pricing functions and the equi-

librium trading strategies, we can now characterise the equilibrium price process.

Recall form equation (2) that, since the i-th trade has to occur either at the ask or at

the bid price, the price will be

p̃i = Aτi

(
ṽ+i
)
1{ṽi>0} +Bτi

(
ṽ−i
)
1{ṽi<0}

and given the zero utility gain conditions for the market maker (9) and (10) this is

p̃i = z̃Mi

[
1{ṽi>0}
(1− δ)

+
1{ṽi<0}
(1 + δ)

]
. (16)

Since, by normalisation, trades start at times after time zero, we need to define the time

zero price – that is the price of the asset before any trade as happened. Since the form of
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the log profit process is common knowledge, we normalise p̃0 to be equal to the expected

value, for any agent, of holding the asset at time zero. That is p̃0 = eD0+(μ+ 1
2
σ2)T .

From the solutions for the equilibrium ask and bid (13) and (14) we know that

p̃i = z̃Mi−1

[
q

q − δ

(
1 + αṽ

q−δ
1−q

i

)
1{ṽi>0} +

q

q + δ

(
1− β |ṽi|

q+δ
1−q

)
1{ṽi<0}

]
.

Putting together the last two expressions we have

p̃i = p̃i−1c1,ic2,i−1 (1 + ξi |ṽi|γi) (17)

where

c1,i =

{
q

q−δ
if the i-th trade occurs at ask

q
q+δ

if the i-th trade occurs at bid

c2,i =

⎧⎪⎨
⎪⎩

1− δ if the i-th trade occurs at ask and i > 0

1 + δ if the i-th trade occurs at bid and i > 0

1 if i = 0

γi =

{
q−δ
1−q

if the i-th trade occurs at ask
q+δ
1−q

if the i-th trade occurs at bid

ξi =

{
α if the i-th trade occurs at ask

−β if the i-th trade occurs at bid

(18)

The above implies that at very high frequency the log price process should be autocor-

related. Moreover, using the relation between order size and cumulated trading volume (1)

we have

log
Pt+s

Pt

=

Lt+s∑
i=Lt

{
log
(
1 + ξi

∣∣Vτi − Vτi−1

∣∣γi)+ log c1,i + log c2,i−1

}
. (19)

That is, there is a direct relationship between price changes and changes in the volume of

trade. In particular, the above equation implies that, at high frequency, the volatility of

log returns is i) stochastic, and ii) a function of trade volume
∣∣Vτi − Vτi−1

∣∣. Moreover, the

relationship in equation (19), discussed in detail in Section 4.2, is consistent with a large

body of empirical evidence on the joint behaviour of volume, prices, and volatility.14

The characterisations of the high frequency price process provided in equations (17) and

(19) are a function of endogenous variables – respectively of order size, and volume and

number of trades. In the next Lemma we characterise the price process as a function of the

exogenous fundamental value of the asset.

14See e.g. Gallant, Rossi, and Tauchen (1992), Farmer and Lillo (2004), Farmer, Lillo, and Mantegna
(2003), Potters and Bouchaud (2003).
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Lemma 2 (price process and trading times as a function of fundamentals) Suppose

that Assumptions A1-A5 are satisfied and that the market is at the equilibrium. We can de-

fine the price process and the time of trades as a function of the exogenous process Z as

follows.

First, normalise τ0 and p̃0 as follows

τ0 = 0, P0 = p̃0 = eD0+(μ+ 1
2
σ2)T , c2,0 = 1.

Second, define recursively the trading times

τi = inf {θj > τi−1 : log zj − log p̃i−1 /∈ (b (c2,i−1) , a (c2,i−1))} , (20)

where

a (x) = log

(
qx

q − δ

)
, b (x) = log

(
qx

q + δ

)
, (21)

and prices are given by

p̃i =
1

c2,i
[(1− q) zi + qp̃i−1c2,i−1] , (22)

where c2,i in equation (18) can be redefined as

c2,i =

{
1− δ if log z̃i − log p̃i−1 > a (c2,i−1) and i > 0

1 + δ if log z̃i − log p̃i−1 < b (c2,i−1) and i > 0
(23)

Proof of Lemma 2. Setting τ0 = 0 is an innocuous normalisation of the time scale.

The definition of the equilibrium τi in equation (20), as well as c2,i in equation (23), follow

from: the agent’s optimality conditions in Lemma 1; the form of the equilibrium bid and ask

function in Proposition 4; and equation (16), that allows us to replace the market maker’s

valuation, z̃Mi , with the price, p̃i. The definition of the equilibrium price process, p̃i, in

equation (22) follows from the market maker’s valuation update in Remark 5 and equation

(16).

In a nutshell, the above Lemma follows from the observation that, in equilibrium, the

trade will occur at the ask price if and only if the valuation of the agent is sufficiently

higher than the last recorded market price (log zj− log p̃i−1 > a (c2,i−1)), and at the bid price

if instead the agent’s valuation is sufficiently lower than the last recorded price (log zj −
log p̃i−1 < b (c2,i−1)). This inter-temporal link with the lagged price is due to the fact that

the current price is just a linear function of the current market maker’s valuation, and this

valuation is updated recursively (see Remark 5) due to the presence of uninformed agents.

Note that if there were no trading costs we would have a (.) = b (.) = 0, implying that agents

would always decide to trade either at the ask or bid price.
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Since in the above Lemma we have defined the equilibrium trading times and prices as

a function on the log valuation (log z), we now turn to the identification of the distribution

of this quantity. This is a necessary step to be able to characterise the equilibrium volatility

process. In particular, we will look at the distribution of log zi conditional on the information

set Hi−1 ∨ σ {θi} – the information set that contains all the past history of prices, volume of

trades, arrivals, and the time of the next arrival. For this task it is convenient to define Dtr
t

as the value of the log profit that could be inferred observing the valuation of the last agent

that arrived on the market. That is

dtri =

{
log zi −

(
μ+ σ2

2

)
(T − θi) ∀i ≥ 1

D0 i = 0
, Dtr

t =
∞∑
i=0

1{i=Nt}d
tr
i . (24)

Note that the value of Dtr
τi

can be always inferred from the last occurred trade due to the

fact that agents preferences are common knowledge. The distribution of dtri is characterised

in the following lemma.

Lemma 3 Suppose that Assumptions A1-A5 are satisfied. Then

P
[
dtri ≤ x|Hi−1, θi

]
= P [Dθi ≤ x|Hi−1, θi]

= (1− q)
i−1∑
j=1

qi−1−j
P
[
dtrj + εi,j ≤ x|dtrj ,Δi,j

]
+ qi−1

P
[
dtr0 + εi,0 ≤ x|dtr0 ,Δi,0

]

where Δi,j := θi− θj, εi,j := μΔi,j +σ
√

Δi,jηi,j, and ηi,j ∼ N (0, 1) is independent of dtrj and

Δi,j for all j < i.

The proof of the above Lemma is quite involved, and we therefore report it in Appendix

A.1. The rationale behind it is nevertheless quite intuitive. At each point in time either

an informed (with probability 1 − q) or an uniformed (with probability q) agent arrives to

the market and, from equation (24), her dtri is simply a (log) linear function of her expected

payoff (zi) from holding the asset. Recall that Hi−1 contains all the past history of arrivals

and volume of trade, and based on this information and the knowledge of the time of the last

arrival (θi) only, informed and uninformed agents are indistinguishable. This implies that

P [dtri ≤ x|Hi−1, θi, Ii] = P [dtri ≤ x|Hi−1, θi, Ui]. Moreover, only the arrival of an informed

agent can add new relevant information about the fundamental. Therefore, the last relevant

information is revealed by the last informed arrival, and the probability of this being the j-th

arrival is simply (1− q) qi−1−j. Moreover, if no informed agent ever arrived to the market

before the i-th arrival, the only relevant information is the common knowledge dtr0 , and this

event might occur with probability qi−1. Furthermore, since the innovations in D are simple

independent Brownian motion differences, the ε terms appear.
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Note that since prices are uniquely determined by Dtr (through Lemma (2) and equation

(24)), Lemma 3 also characterises the distribution of prices. Therefore, if the Dtr process

were to converge in distribution, this would also imply (by continuos mapping theorem), the

convergence in distribution of the price process. This limiting distribution is the focus of the

next sub section.

3.3 The medium frequency equilibrium price process

Having characterised the price process and the distribution of agents’ valuations on the tick-

by-tick time scale, we now turn to the analysis of the equilibrium price process at lower

frequencies. This is needed in order to establish the link between information based trading

and, as an equilibrium outcome, endogenous stochastic volatility.

In this section we make one simplifying assumption regarding the arrival process: we

consider a Poisson process. The assumption of a Poisson arrival process is not strictly

necessary, since all that we need to derive our results is that the arrival process satisfies a

set of properties (described in detail below) that hold almost surely for a Poisson process.

In order to simplify exposition, we consider a process with constant intensity but we could

as well handle a process with time varying intensity. Considering a fixed intensity arrival

process has also the advantage that the only channel through which stochastic volatility

will arise is the information based trading. Moreover, assuming constant intensity is a very

minor restriction since, as we will show, the equilibrium medium and low frequency price

and volatility processes, as well as the number of trades process, will be independent of the

arrival process.

By medium frequency we mean a time interval in which the number of arrivals is vey

large. To model this mathematically, we send the intensity of arrivals to infinity. This

modelling approach has the advantage that, as the intensity of arrivals goes to infinity, the

constraint to trade due to the exogenous arrival times will disappear.

The key result established in this section is summarised in the following Theorem.

Theorem 7 (Limiting Price Process) Suppose the process D is given by

dDt = μdt+ σdW d
t , D0 = const

with W d being a standard Brownian motion with respect to (Fs)s≥0. Suppose also that Λ

is a Poisson process, with intensity parameter λ, defined on [0,+∞), and FΛ
∞ is inde-

pendent of FW
∞ . Then there exists a sequence of Poisson arrival processes Nn, satisfying

P [Nn
t = Λtn, t ∈ [0, T ]] = 1, such that the equilibrium price process P n resulting from any

sequence of markets Mn (Nn, D , Sn, Un) satisfying Assumptions A2-A6, weakly converges
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in Skorokhod topology. The limit price process P is a functional of W , a standard Brownian

Motion, independent of the number of arrivals process, Λ. Moreover, this functional has the

form

Pt
d
=

Lp
t∏

i=1

φi

(
q

φi−1

+ 1− q

)
(25)

where φ0 = 1, τ0 = 0 and, for any i ≥ 1

φi :=

⎧⎨
⎩

q
q−δ

if σ
(
Wτi −Wτi−1

)− σ2

2
(τi − τi−1) = a

(
q

φi−1
+ 1− q

)
q

q+δ
if σ

(
Wτi −Wτi−1

)− σ2

2
(τi − τi−1) = b

(
q

φi−1
+ 1− q

) .

τi = inf

{
t ≥ τi−1 : σ

(
Wt −Wτi−1

)− σ2

2
(t− τi−1) /∈

[
b

(
q

φi−1

+ 1− q

)
, a

(
q

φi−1

+ 1− q

)]}

Lp
t =

∞∑
j=1

1{τj≤t}

and a (.) and b(.) are defined in equation (21).

The rest of this section is dedicated to prove the above theorem. But before undertaking

this task, we can use the above result to characterise the first two moments of the price

process in the following corollary.

Corollary 1 (Volatility of the Limiting Price Process) The distribution of φi is, for

i > 1

φi :=

⎧⎨
⎩

q/ (q − δ) w.p. 1{φi−1=
q

q−δ}
(q−δ)(1+q)
2q(1−δ)

+ 1{φi−1=
q

q+δ}
(q−δ)(1−q)
2q(1+δ)

q/ (q + δ) w.p. 1{φi−1=
q

q−δ}
(q+δ)(1−q)
2q(1−δ)

+ 1{φi−1=
q

q+δ}
(q+δ)(1+q)
2q(1+δ)

.

and for i = 1

φ1 :=

{
q/ (q − δ) w.p. q−δ

2q

q/ (q + δ) w.p. q+δ
2q

.

Implying the conditional moments for i > 1

E

[
p̃i
p̃i−1

|FW
τi−1

]
= 1, V ar

(
p̃i
p̃i−1

|FW
τi−1

)
=

δ2(1− q2)

q2 − δ2
.

Proof. The proof is reported in Appendix A.1.

Remark 8 (Ergodic Distribution) The two state Markov process for φi defined above

has the following ergodic distribution:

φi :=

{
q/ (q − δ) w.p. (q−δ)(1−δ)

2(q+δ2)

q/ (q + δ) w.p. (q+δ)(1+δ)
2(q+δ2)

.
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The above corollary makes clear that, on the trade time scale, the price process, is char-

acterised by constant volatility. Since trade and calendar time differ (due to the inaction

region generated by the bid ask spread), this implies that the volatility on the calendar time

scale will be driven by the number of trades process and, since this process is stochastic, the

calendar time volatility itself is stochastic. The properties of the trade by trade volatility

characterised above are discussed in detail in section 4.2.

To prove Theorem 7 we first construct a new process (Y ) that has exactly the same

distribution as the shadow valuation of the asset (Dtr) in Lemma 3. Then, we establish

weak convergence of this process in Skorokhod topology. And finally, to complete the proof

via the Continuous Mapping Theorem, we establish the continuity of the mapping between

the shadow valuation process and trade prices.

In order to define a sequence of markets as in the above Theorem, we need to define the

processes Nn, Sn, and Un. Given these processes, the price process P n is obtained from

Theorem 6 and Equation 17.

First, we define the process of traders’ arrival Nn. Consider any given Poisson process

Λ, with intensity λ, and corresponding arrival times γi := inf {t ≥ 0 : Λt ≥ i} that are inde-

pendent of FW
∞ . The arrival intensity of the n-th market is constructed as nλ. For any of

these Λ processes, we introduce regularity conditions by considering the following sets:

Ω1 =

{
ω ∈ Ω : lim

i→+∞

∑�xi
j=1 (γj − γj−1)

2∑i
j=1 (γj − γj−1)

2 = x for any x ∈ [0, 1]

}
,

Ω2 =

{
ω ∈ Ω : max

i≤k
(γi − γi−1) < ∞ for all k ∈ N+

}
,

Ω3 = ∪∞
k=1 ∩∞

i=k {ω ∈ Ω : (γi − γi−1) ≤ 2 log (i)} ,

Ω4 =

{
ω ∈ Ω : lim

n→∞
Λtn

n
= tλ for any t ∈ [0, T ]

}
,

Ω5 =

{
ω ∈ Ω : lim

n→∞

∑Λtn

i=1 (γ̄i − γ̄i−1)

Λtn

= λ−1 for any t ∈ [0, T ]

}
,

where the operator �·� returns the largest integer smaller than its argument. Note that the

above regularity conditions are satisfied by the Poisson process almost surely since: a) from

the strong Law of Large Numbers P (Ωi) = 1 for i = 1, 4; b) P (Ω3) = 1 from the Borel-

Cantelli Lemma; c) P (Ω2) = 1 is a property of the Poisson process; d) condition Ω5 is simply

a strong law of large number requirement; e) P (Ω5) = 1 for a Poisson process. Nevertheless,

the fact that these regularity conditions are satisfied almost surely does not guarantee that

they will be satisfied for every ω ∈ Ω, since on some zero probability sets they could be

violated. Therefore, since we will be conditioning on paths of Λ, we need to modify the Λ
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process on the zero probability sets to ensure that these properties will hold for every ω ∈ Ω.

The modification of the Poisson process Λ, denoted Λ̄, that satisfies the above regularity

conditions for each ω ∈ Ω, is given by15

γ̄0 (ω) = 0, γ̄i (ω) =

{
γi (ω) if ω ∈ ∩4

j=1Ωj

γ̄i−1 (ω) +
1
λ

if ω ∈ Ω\ (∩4
j=1Ωj

) , Λ̄t =
∞∑
i=1

1{γ̄i≤t}.

The corresponding sequence of traders arrival processes can now be defined as

Nn
t = Λ̄tn, (26)

θni =
γ̄i
n
. (27)

Note that the intensity of the counting process Nn is simply λn. So, as n → ∞, the

intensity of arrivals goes to infinity. Moreover, note that the arrival process just defined

satisfies Assumption A1.

Second, the above Theorem requires us to consider a sequence of markets. Nevertheless,

we have established that, in equilibrium, market prices are uniquely determined by Dtr

through Lemma (2) and equation (24), and we have already characterised in Lemma 3 the

distribution of Dtr. As a consequence, since we are aiming to prove only weak convergence

of the price process, it is enough to construct a sequence of processes, Y n, that have the

same distribution as the Dtr process that results from the market equilibrium.

In the following Lemma we construct the Y n process such that L (Dtr,n|F Λ̄
∞
)
= L (Y n|F Λ̄

∞
)
,

where L (·|F Λ̄
∞
)
denotes the finite dimensional distribution and Dtr,n denotes the Dtr process

in the market Mn. Therefore, for any fixed n, Y n
t has the same information content as the

value of the log profit that could be inferred observing the valuation of the last agent that

arrived (before time t) on the market Mn. That is, the process Y n can be thought of as a

value process of the log profit at arrival times.

Lemma 4 Fix a process Nn given by Equation (26), and any market Mn (Nn, D , Sn, Un)

satisfying Assumptions A1-A6. Let Dtr,n be the resulting value of the log profit from the

agents’ point of view, given in equation (24), and that uniquely determines the equilibrium

price process (through Lemma (2) and equation (24)).

Consider the process Y n, on the interval [0, T ], given by

Y n
t =

∞∑
j=0

1{Nn
t =j}ynj , (28)

yn0 = D0, (29)

15Note that Λ̄ is an adapted process since the filtration we use satisfies the usual conditions.
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yni =
i−1∑
j=0

ζi−1,j

(
ynj + εni,j

)
, (30)

where εni,j := μΔn
i,j + σ

√
Δn

i,jηi,j, Δ
n
i,j := θni − θnj , ηi,j is an independent standard Gaussian,

and ζi−1,j is a 0 or 1 random variable such that:
∑i−1

j=0 ζi−1,j = 1;

P (ζi−1,j = 1) =

{
(1− q) qi−1−j for j > 0

qi−1 for j = 0
; (31)

and σ {ζi−1,j}i−1
j=0 ⊥ ∨i′ �=iσ {ζi′−1,j}i

′
j=0; ∨iσ {ζi−1,j}i−1

j=0 ⊥ F Λ̄
∞. Then we have

L
(
Y n|F Λ̄

∞
)
= L (Y n|FNn

T

)
= L (Dtr,n|FNn

T

)
= L

(
Dtr,n|F Λ̄

∞
)

(32)

L
(
PY n|F Λ̄

∞
)
= L (PY n|FNn

T

)
= L (P n|FNn

T

)
= L

(
P n|F Λ̄

∞
)

(33)

where P is the mapping from the value process of log profits at arrival times to equilibrium

prices (defined in Lemma 2 and equation (24)), and P n is the equilibrium price process of

the Mn market.

Proof. Equation (32) follows from direct comparison of the distribution of Y n and the

one of Dtr in Lemma 3 and the fact that Y n and Dtr are defined on [0, T ]. Equation (33)

follows from the fact that equations (2) and (24) identify a unique mapping between Dtr

and the equilibrium price process, and the fact that prices are defined on [0, T ] .

The above Lemma makes clear that, to establish and characterise the convergence of the

Equilibrium price process, it is enough to establish and characterise the convergence of the

Law of Y n and the continuity of the mapping P .

For convenience and clarity of exposition (and to avoid some technical issues arising

from zero probability sets) we define a new (random) probability measure P̄ to remove the

conditioning in equations (32) and (33). That is, let P̄ be a measure on F Λ̄
∞ ∨n FY n

T , given

by the regular version of the kernel P
(
G|F Λ̄

∞
)
, i.e. for any G ⊂ F Λ̄

∞ ∨n FY n

T we have that

P̄ (G) = P
(
G|F Λ̄

∞
)
. Such a P̄ measure exist and is unique due to Theorem 6.4 of Kallenberg

(2002). Therefore, convergence under P̄ (i.e. L̄ (Y n) → L̄ (Y )) implies convergence under

the original P measure (i.e. L (Y n) → L (Y )).

Using the definition of Y n (in Lemma 4) and P̄, we can establish the first convergence

result needed to prove Theorem 7.

Proposition 9 Consider Ȳ n
t :=

∑∞
i=0 1{Nn

t =i} [yni + μ (T − θni )]. Then the sequence of pro-

cesses
(
Ȳ n, eȲ

n
, θ̄n, F̄n)

, where F̄n

t := F Λ̄
∞ ∨ F Ȳ n

t and θ̄nt := θnNn
t
, weakly converges in Sko-

rokhod topology on D ([0, T ]) (the space of cádlág processes in the [0, T ] interval), as n → ∞,
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to
(
Ȳ , eȲ , θ̄, F̄), where F̄t := F Λ̄

∞ ∨ F Ȳ
t , θ̄t = t, and Ȳt = σWt where W is a standard

Brownian motion on its own augmented filtration and it is independent of F Λ̄
∞.

The proof of the above proposition is quite technical, and requires establishing some

intermediate results, and is therefore reported in Appendix A.2. Nevertheless, its core is

quite simple to grasp. The Ȳ n process is, by construction, a long memory process. Therefore,

to establish the above limiting results, we show that its serial correlation decays at a fast

enough rate to ensure mixingale convergence. With this result at hand, we then prove that

Ȳ is proportional to a standard Brownian motion by showing that it is a local martingale

with quadratic variation equal to σ2t.

Since, by definition, Y n
t ≡ Ȳ n

t + μ
(
θ̄nt − T

)
, and the above Proposition states the joint

convergence of Ȳ n and θ̄n, we have that a similar convergence result holds for Y n.

Corollary 2 The sequence of processes
(
Y n, eY

n
, θ̄n, F̄n)

, weakly converges in Skorokhod

topology on D ([0, T ]), as n → ∞, to
(
Y, eY , θ̄, F̄), and Yt = μ (t− T ) + σWt where W is a

standard Brownian motion on its own augmented filtration and it is independent of F Λ̄
∞

Given the above convergence result for Y n, and since (from Lemma 4) L (PY n|F Λ̄
∞
)
=

L (P n|F Λ̄
∞
)
, all we need to complete the proof of Theorem 7 is to establish that the sequence

of processes PY n converges – that is, we need to establish the convergence of the sequence

of equilibrium price processes (P n). We do so by i) breaking the map P into two maps, P1

and P2, and establishing ii) the convergence of the processes P1Y
n and iii) the continuity

of the map P2.

First, the map P1 : D( [0, T ]) → D( [0, T ]) is given by

(P1f) (t) := f(t) +

(
μ+

σ2

2

)
(T − sup {s ≤ t : f(s−) 	= f(t)}) , ∀f ∈ D [0, T ] .

Note that P1 identifies the arrival times. In particular, the sup component returns the

previous period arrival time, when f is a path of (the piecewise constant) process Y n, and

it is equal to t if f is a path of the (limiting) continuous process Y . Thus we have

(P1Y
n)t = Y n

t +

(
μ+

σ2

2

)(
T − θ̄nt

)
=: Hn

t . (34)

where H is the valuation of the agent that last arrived on the market (note that P1Y
n
t is

just the log of the expectation of eY
n
T ).

It follows from Corollary 2 (and Corollary VI.3.33.b of Jacod and Shiryaev (2003)) that(
Hn, θ̄n, F̄n)

, weakly converges in Skorokhod topology on D ([0, T ]), as n → ∞, to
(
H, θ̄, F̄),

and

Ht =
σ2

2
(T − t) + σWt, t ∈ [0, T ] (35)
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where W is a standard Brownian motion on its own augmented filtration.

Second, note that the price process can be recovered as P n ≡ P2P1Y
n, where P2 :

D( [0, T ]) → D( [0, T ]) is defined by (P2f) (t) := g(τ f
Lf
t

) for any f ∈ D [0, T ], where Lf
t :=∑

i≥0 1{τfi ≤t}, and g (·) and τ f are obtained through the following recursion

τ f0 = 0, g0 = ef(0), cf2,0 = 1,

τ fi = inf
{
t > τ fi−1 : f (t)− ln g

(
τ fi−1

)
/∈
(
b
(
cf2,i−1

)
, a
(
cf2,i−1

))}
, (36)

where a(.) and b(.) are defined in Equation (21),

cf2,i =

⎧⎨
⎩

1− δ if f
(
τ fi

)
− ln g

(
τ fi−1

)
> a

(
cf2,i−1

)
and i > 0

1 + δ if f
(
τ fi

)
− ln g

(
τ fi−1

)
< b

(
cf2,i−1

)
and i > 0

(37)

and

g
(
τ fi

)
=

1

cf2,i

[
(1− q) ef(τ

f
i ) + qg

(
τ fi−1

)
cf2,i−1

]
. (38)

Note that the above recursion is analogous to the one defining the price process and trading

times as a function of fundamentals in Lemma 2 where, in particular, the equation for

stopping times τ fi corresponds to the times of trades in equation (20), and the equation for

the update of the function g(·) is nothing but the price evolution defined in equation (22).

Consider the following set of functions C

C :=
{
f ∈ C [0, T ] : Lf

T < ∞, τ fi = τ f+i , Lf
T− = Lf

T , ∀i = 1, . . . , Lf
T , Kτ > 0, τ f1 	= 0

}
(39)

where

τ f+i := inf
{
t ≥ τ fi−1 : f (t)− ln g

(
τ fi−1

)
/∈
[
b
(
cf2,i−1

)
, a
(
cf2,i−1

)]}

Kτ := min

{
min

i=1,...,Lf
T

(
τ fi − τ fi−1

)
;T − τ f

Lf
T

}

that is, the set of continuous functions characterised by spaced apart hitting times, and that

cross the boundaries, defined by a(·) and b(·), upon reaching them. Note that when f belong

to the set C, we have that (P2f) (t) = exp
{
f
(
τ f
Lf
t

)}
where Lf

t :=
∑

i≥0 1{τfi ≤t}, and τ f , are

obtained through the following recursion

τ f0 = 0, cf2,0 = 1,

τ f+i = τ fi = inf
{
t > τ fi−1 : f (t)− f

(
τ fi−1

)
/∈
(
b
(
cf2,i−1

)
, a
(
cf2,i−1

))}
, (40)
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where

cf2,i =

⎧⎨
⎩

1− δ if f
(
τ fi

)
− f

(
τ fi−1

)
= a

(
cf2,i−1

)
and i > 0,

1 + δ if f
(
τ fi

)
− f

(
τ fi−1

)
= b

(
cf2,i−1

)
and i > 0.

(41)

Note that a path of Brownian motion (with or without a constant drift) belongs to the set

C almost surely (since
∣∣∣b(cf2,i−1

)∣∣∣ , a(cf2,i−1

)
> 0 for all i, i.e. since, at any given hitting

time, the distance between the current value of the function and the next hitting bound is

strictly positive).

To establish the convergence in distribution of the equilibrium price processes (P n), we

need to establish the continuity of the map P2 (on the set C), which is done in Lemma 5

below (the proof of the Lemma is reported in Appendix A.1).

Lemma 5 For any function f belonging to the set C defined in equation (39), the map P2

defined by equations (36)-(38) is continuous in Skorokhod topology at f .

With the above result at hand, we can complete the proof of Theorem 7.

Proof of Theorem 7. Observe that

lim
n→∞

L
(
P n|F Λ̄

∞
)
= lim

n→∞
L
(
PY n|F Λ̄

∞
)
= lim

n→∞
L
(
P2H

n|F Λ̄
∞
)
= L

(
P2H|F Λ̄

∞
)

where the first equality is due to equation (33), the second equality is due to the definition

of the map P2, and the last equality is due to the convergence of Hn established in Corollary

2 and the continuity of the map P2 proved in Lemma 5.

The conclusion of the Theorem follows once we observe that H ∈ C. Therefore the

limiting price process, P , exists and is given by

Pt
d
:= (P2H) (t) = exp

{
HτH

LH
t

}
=

LH
t∏

i=1

cH2,i−1φi, (42)

where

φi :=

{
q/ (q − δ) if HτHi

−HτHi−1
= a

(
cH2,i−1

)
and i > 0

q/ (q + δ) if HτHi
−HτHi−1

= b
(
cH2,i−1

)
and i > 0

.

The statement of the theorem follows upon observing the form of H in equation (35), and

that: cH2,i ≡ q/φi + 1− q, τH ≡ τ , Lp ≡ LH .

Note that the medium frequency price process in equation (42) clearly does not depend

on the volume of trade, nor on the traders’ arrival process, but only on the number of trades,

LH
t . Moreover, the above shows that the volatility of the price process is affected by the

parameters q and δ.
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3.4 The low, and ultra-low, frequency equilibrium price processes

In order to characterise the low frequency price process behaviour, we will send the number

of trades between time s and t, that is Lp
t −Lp

s, to infinity, and we will study the volatility of

the limiting distribution of the (appropriately scaled) log return. This task is complicated by

the fact that a) the sequence of φ’s, that drives the price process, is serially dependent (from

Corollary 1), and b) the time between arrivals is also dependent (from Theorem 7, since this

quantity too depends upon the sequence of φ’s). Note also that, although we have already

obtained the limiting trade by trade volatility in Corollary 3.3, on the calendar time scale

the volatility of the price process is also affected by the average time between consecutive

trades, thus altering the limiting distribution on this time scale.

In what follows, we establish that the (centred) calendar time of trades is a mixingale

and that the sample mean of times between consecutive trades (i.e. the inter-arrival time of

trades) converges almost surely to a constant. Based on this result, we construct a (novel)

central limit type argument to characterise the limiting volatility of the price process on the

calendar time scale.

Lemma 6 (Expected Inter-arrival Time of Trades) Let τn denote the stopping time

defined in Theorem 7. Then

τn
n

−→
n→∞

μτ :=
2

σ2

[
log

q − δ

q(1− δ)
+

(q + δ)(1 + δ)

2 (q + δ2)
log

(1− δ)(q + δ)

(1 + δ)(q − δ)

]
a.s.. (43)

Moreover, for any ω ∈ Ω such that limn→∞
τn(ω)
n

= μτ , we have

Lp
t

t
(ω) −→

t→∞
1

μτ

. (44)

The proof of the above Lemma is technical and we therefore confine it to Appendix

A.1. Nevertheless, its mechanic is simple since it is based on establishing that the serial

dependence of inter-arrival times decays exponentially, therefore the sequence of (centred)

inter-arrival times is a (L2) mixingale. This result allows us to characterise the low frequency

distribution of log returns in the following proposition.

Proposition 10 (Low, and Ultra-low, Frequency Return Distributions) Let μτ be

as defined in Lemma 6. The asymptotic distributions of log returns are:

log Pt

Ps
− σ2

2
(s− t)√

Lp
t − Lp

s

d−→
t−s→∞

N (
0, σ2μτ

)
, (45)

log Pt

Ps
− σ2

2
(s− t)√

t− s

d−→
t−s→∞

N (
0, σ2

)
. (46)
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Proof. Define τ ′k := inf {n ∈ N : n ≥ τk}. Fix an s ≥ 0 and an ω ∈ C where C :={
ω ∈ Ω : limn→∞, τn(ω)

n
= μτ

}
, and observe that

τ ′
Lp
t

t
(ω) ≡

(
τ ′
Lp
t
− τLp

t

Lp
t

(ω) +
τLp

t

Lp
t

(ω)

)
Lp
t

t
(ω).

By Lemma 6, for any ω ∈ C, we have that limt→∞
Lp
t

t
(ω) = 1

μτ
, implying that

0 ≤ lim
t→∞

τ ′
Lp
t
− τLp

t

Lp
t

(ω) ≤ lim
t→∞

1

Lp
t

(ω) = 0.

Hence (
τ ′
Lp
t
− τLp

t

Lp
t

Lp
t

t

)
(ω) −→

t→∞
0.

Similarly, from Lemma 6 and the definition of C, we have that for ω ∈ C
(
τLp

t

Lp
t

Lp
t

t

)
(ω) −→

t→∞
1.

Moreover, since P (C) = 1 by Lemma 6, we have
τ ′
L
p
t

t
−→
t→∞

1 a.s., which implies
τ ′
L
p
t
−τ ′

Ls
t

t−s
−→

t−s→∞
1

a.s.. Thus, it follows from the Anscombe’s Theorem (see e.g. Gut (2009), Theorem 1.3.1)

that

Wτ ′
L
p
t

−Wτ ′
L
p
s√

t− s
≡
∑τ ′

L
p
t
−τ ′

L
p
s
−1

i=0

(
Wi+1+τ ′

L
p
s
−Wi+τ ′

L
p
s

)
√
t− s

d−→
t−s→∞

N (0, 1) .

Note that

− W ∗
√
t− s

d∼ inf
u∈

[
τ
L
p
t
,τ

L
p
t
+1

]
Wu −Wτ

L
p
t√

t− s
≤

Wτ ′
L
p
t

−Wτ
L
p
t√

t− s
≤ sup

u∈
[
τ
L
p
t
,τ

L
p
t
+1

]
Wu −Wτ

L
p
t√

t− s

d∼ W ∗
√
t− s

,

where the equivalence in distribution follows from the strong Markov property of brownian

motion and W ∗ := supu∈[0,1]Wu. Since P (W ∗ < ∞) = 1 we have that
Wτ ′

L
p
t

−Wτ
L
p
t√

t−s
−→

t−s→∞
0

a.s.. Similarly,
Wτ ′

L
p
s
−Wτ

L
p
s√

t−s
−→

t−s→∞
0 a.s.. Hence, from Slutsky’s theorem (see e.g. Hayashi

(2000), Lemma 2.4), it follows that

Wτ
L
p
t

−Wτ
L
p
s√

t− s

d−→
t−s→∞

N (0, 1) ,
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and a further application of Slutsky’s theorem delivers

Wτ
L
p
t

−Wτ
L
p
s√

Lp
t − Lp

s

≡
Wτ

L
p
t

−Wτ
L
p
s√

t− s

√
t− s√

Lp
t − Lp

s

d−→
t−s→∞

N (0, μτ ) .

Since, from the proof of Theorem 7 we know that logPt has the same law as Hτ
L
p
t

(see

equation (42)) defined in equation (35), the conclusion of the proposition follows.

Equation (45) implies that, at low frequency, the log return process on the calendar

time scale is characterised by stochastic volatility, and that the driver of time variation in

volatility is the number of trades that occur between time t and s. Moreover, the fact that

log returns are Gaussian, after a stochastic time change with respect to number of trades,

is exactly the empirical finding of Ané and Geman (2000). Last but not least, this result

implies that periods of high trading activity will tend to coincide with periods of increased

return volatility and is consistent with the Wall St. wisdom that “it takes volume to move

the price” (since, at low frequency, volume of trade is simply proportional to the number of

trades).

The ultra-low frequency result in equation (46) arises due to the fact that, at this fre-

quency, the number of trades per time interval converges, hence the stochastic volatility

driven by the number of trades disappears (hence at this frequency fundamental and price

volatility coincide as e.g. in Bernhardt and Taub (2008)). This finding is consistent with the

fact that volatility clustering is, in the data, very evident at high and medium frequency,

but typically harder to detect at extremely low frequency.

4 The Equilibrium Determinants of Liquidity and

Volatility

Based on the results of the previous section, we can now analyse how the degree of asymmetric

information and market frictions affect the equilibrium market liquidity and volatility, and

how these quantities would be affected by the introduction of a Tobin Tax.

4.1 Equilibrium liquidity

Kyle (1985) defines a liquid market as one in which: a) the costs of trading small amounts are

themselves small (bid-ask spreads are small) i.e. the market is tight ; b) the costs of trading

large amounts are small (big trades don’t cause large price movements) i.e. the market is

deep; c) discrepancies between prices and true values of assets are small and are corrected

quickly i.e. the market is resilient.
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Figure 3: Market tightness. Bid-ask spread as a percentage of the market maker’s estimate of the fun-
damental value as the order size approaches zero, i.e. 2qδ

q2−δ2 , as a function of δ (Panel A) and q (Panel

B).

In our model, tightness, depth, and resilience are all determined in equilibrium, and they

are all functions (that can be expressed in closed form) of adverse selection in the market

(pinned down by the parameter 1− q) and the magnitude of market frictions (embodied by

the parameter δ). Moreover, an increase in the parameter δ can be interpreted as analogous

to the introduction of a proportional financial transaction tax – aka Tobin Tax – of the type

implemented in several countries and currently being under discussion within the European

Union.

The tightness of the market can be obtained from the ask and bid price schedules in

equations (13) and (14) of Proposition 4 as the order size approaches zero. The resulting

percentage bid-ask spread (as a percentage of the market maker’s estimate of the fundamental

value) is equal to 2qδ
q2−δ2

and is depicted in Figure 3. Note that, in our setting, the bid-ask

spread is a function of only the degree of adverse selection (1− q) and the order processing

cost (δ). This is consistent with the empirical literature that finds that about 86-100% of the

spread is generated by these two forces (see e.g. Stoll (1989), George, Kaul, and Nimalendran

(1991), and Huang and Stoll (1996)), with the remaining fraction (if any) being driven by

inventory costs. Panel A of Figure 3 shows that, as the degree of market friction δ increases,

the bid-ask spread becomes wider, hence market tightness is decreasing in δ. This is simply

due to the fact that increasing δ the trading cost incurred by the market maker becomes

larger, hence, in order to compensate for this, the mark-up on the market maker valuation

needed to break even in a trade increases. More interestingly, the rate at which market
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Figure 4: Inverse market depth i.e. Kyle’s λ. Panels A and B depict the slope of the ask price schedule,

normalised by the market maker valuation, i.e. q
1−qα(v

+)
2q−δ−1

1−q as a function of the order size for different

q, and different q and δ, respectively (Panel B considers the same values for q as in Panel A but adds
perturbations to the value of δ). Panels C and D depict the analogous quantities for the bid price schedule

i.e. q
1−qβ(v

−)
2q+δ−1

1−q . In all panels the constants α and β are fixed to the same value equal to 0.01.

tightness decreases in δ is higher when there are more informed traders (q is small) i.e. when

the adverse selection problem faced by the market maker is more severe. Panel B shows

that the tightness increases as the share of uninformed agents increases, since the degree of

adverse selection in the market is reduced. These results imply that the introduction of a

Tobin Tax would: a) reduce market tightness; b) exacerbate the adverse selection problem

from the market maker (or limit order traders) perspective; and c) have more severe effects

in markets with a high degree of adverse selection i.e. markets already characterised by low

tightness.

The market depth can be elicited from the first derivative with respect to the order

size of the ask and bid price schedules in equations (13) and (14) of Proposition 4, and is

summarised in Figure 4. These derivatives (that in the figure are normalised by the market

maker’s valuation) are analogous to Kyle’s lambda i.e. they represent the sensitivity of prices

to order flows, and are thus inversely related to market depth. The first important thing to

notice is that, in our setting, market depth is generally not constant – it is instead a function
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of the order size.16 This is consistent with the empirical finding of Keim and Madhavan

(1996) that the price impact per unit trade is itself a function of the order size (see also Loeb

(1983) and Kavajecz (1999)).

Panels A and C show that there is a q∗ threshold such that the market depth is increasing

in the order size for q < q∗ and decreasing in the order size for q > q∗.17 This is due to the

fact that when q is high most of the traders are of the uninformed type hence, in this case,

the price will be more likely to deviate substantially from the fundamental value. Therefore,

the potential loss that the market maker would incur executing a large informed order is

high. On the contrary, when q is low, most traders are of the informed type, and the price

will be unlikely to deviate substantially from the fundamental value. Hence, the market

maker’s potential losses from executing a large order are substantially smaller. Given these

considerations, the market maker chooses a decreasing or increasing market depth depending

on the value of q.

Panels B and D show that, in the empirically relevant parameter range,18 variations in

δ have a very small effect on market depth. Hence, the introduction of a Tobin Tax is not

likely to affect this dimension of liquidity. This result is intuitive given that the concept

of market depth is about the relative willingness of executing small vs. large orders, and

this willingness is unlikely to be substantially affected by a proportional, and small, trade

tax. Moreover, this result, taken together with the observation that trading costs have a

large impact on market tightness, suggests that the degree of asymmetric information in the

market could be better inferred empirically form its depth rather than the tightness.

The degree of market resilience can be inferred combining the trade-by-trade market

maker’s valuation update function in equation (15), with the limiting number of trades per

unit of time, limt→∞ Lp
t/t ≡ 1/μτ , in equation (44). The former has an half-life of deviations

from the fundamental value – on the trade-by-trade time scale – equal to log .5/ log q i.e. it

is decreasing in q and unaffected by δ.19 Scaling this quantity by the number of trades per

unit of time, we obtain the half-life of deviations from the fundamental value on the calendar

time scale i.e.
log 1/2

log q
μτ (47)

where μτ is the (limiting) expected inter-arrival time of trades defined in equation (43).

16The derivative of the ask price with respect to the order size is constant if and only if q = .5 (1 + δ), and
the one of the bid price is constant if and only if q = .5 (1− δ).

17The q∗ threshold is equal to 1/2 + .5δ at ask and 1/2− .5δ at bid.
18See e.g. Stambaugh (2014) AFA presidential address.
19Rewriting equation (15) in deviation from the fundamental value, one obtains an AR(1) process for the

deviation of the market maker’s valuation from the fundamental value, with autoregressive coefficient q and
shock proportional to the deviation of the i-th trader’s valuation from the fundamental one. Hence, the
h-period ahead impulse response function of a valuation shock is equal to qh times the shock, delivering the
half-life on the trade-by-trade time scale reported above.
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Figure 5: Expected inter-arrival time of trades (μτ , defined in equation (43)) as a function of δ (Panel A)
and q (Panel B).

Since μτ is itself a function of q and δ, and resilience will inherit some of its properties (in

particular with respect to δ), it is useful to understand first how the former varies when

parameters change.

Figure 5 depicts the expected inter-arrival time of trades as a function of δ (Panel A)

and q (Panel B). As one would intuit, the inter-arrival time is increasing in the transaction

friction δ (Panel A). This is simply due to the fact that bid-ask spreads are widening in

this quality, hence reducing the fraction of potential traders that, upon arrival, will decide

to trade (since an increase in this quantity widens the no trade region of informed, as well

as uninformed, traders). This is consistent with Umlauf (1993) that documents that the

introduction of a Tobin Tax in the Swedish stock market in the 80’s induced a reduction in

turnover i.e. in the average number of trades per unit time, 1/μτ .

More interestingly, the marginal effect of an increase in δ is larger when q is lower, that

is when the market maker faces an higher degree of adverse selection. This is due to the fact

that, as outlined before, the rate at which market tightness decreases in δ is higher when

there are more informed traders (q is small). Panel B makes also clear that the expected

inter-arrival time is decreasing in q. This is due to the fact that, as the degree of adverse

selection is reduced, the market maker is more willing to trade, hence she increases market

tightness (see Panel B of Figure 3), therefore increasing the share of potential traders that,

upon arrival, choose to trade. Since the half-life of deviations of the specialist’s valuation

from the fundamental value in equation (47) depends upon δ only through μτ , the behaviour

of resilience as a function of δ mimics the one of the expected inter-arrival time. Hence,

resilience is decreasing in the degree of market friction δ, and this effect is more pronounced
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Figure 6: Market resilience. Half life of the market maker’s valuation update in calendar time (i.e. inverse
market resilience) defined in equation (47).

when the degree of adverse selection in the market is high (i.e. q is low) as depicted in Panel

A of Figure 6.

The effect of a change in q on market resilience results from two counteracting forces. On

one hand, the speed of the trade-by-trade valuation update of the market maker in equation

(15) is accelerated as the share of informed agents increase (i.e. when q decreases). Hence, on

the trade time scale, half-life reduces and resilience increases. On the other hand, in response

to an increase in the degree of adverse selection, the specialist dealer reduces market tightness

(see Panel B of Figure 3). This in turn increases the average time between trades μτ (see

Panel B of Figure 5), hence it increases the calendar time half-life in equation (47), therefore

reducing resilience. The net effect of these two opposing mechanisms, depicted in Panel B of

Figure 6, is dominated by the adverse selection motive. That is, the calendar time half-life

is decreasing, and resilience increasing, in q.

4.2 Equilibrium prices and volatility on different time scales

We have already shown in equation (19), reported below for the reader’s convenience, that, at

very high frequency, there is an equilibrium relationship between log returns and movements

in volume:

log
Pt+s

Pt

=

Lt+s∑
i=Lt

{
log
(
1 + ξi

∣∣Vτi − Vτi−1

∣∣γi)+ log c1,i + log c2,i−1

}
(48)
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where c, γ and ξ are defined in equation (18). This equation implies that, at high frequency,

the volatility of log returns is stochastic and is a function of
∣∣Vτi − Vτi−1

∣∣.
Note that the above equilibrium result is consistent with the seminal works of Epps

and Epps (1976) and Tauchen and Pitts (1983) on the price-volume relationship and the

empirical findings of (among others) Gallant, Rossi, and Tauchen (1992), Andersen (1996),

and Chan and Fong (2000), that find a strong (often non-linear) link between volume of trade

and price movements and between volume and price volatility.20 Furthermore, equation (19)

implies that if |ξi|
∣∣Vτi − Vτi−1

∣∣γi is small (i.e. if the typical transaction size is small), than a

Taylor expansion would yield a power law relationship between order size and price growth

rates. This is coherent with the empirical findings of Farmer and Lillo (2004) and Farmer,

Lillo, and Mantegna (2003) that identify a log-linear relationship between gross price growth

and changes in volume. On the other hand, if the typical transaction size is large (i.e. if

|ξi|
∣∣Vτi − Vτi−1

∣∣γi is large), a log-log relationship between gross price growth and volume

changes holds, which is consistent with the empirical findings of Potters and Bouchaud

(2003).

As the intensity of arrivals approaches infinity – i.e. the medium time frequency – the

equilibrium price process is characterised in Theorem 7 and Corollary 1. In particular, the

limiting trade-by-trade variance of gross returns is δ2(1−q2)
q2−δ2

. This quantity is depicted in

Panels A and B of Figure 7 as a function, respectively, of δ and q. The figure shows that

trade-by-trade volatility is increasing in the degree of trading friction δ, and that the marginal

effect of an increase in δ is stronger when the degree of adverse selection faced by the market

maker is high (i.e. when q is low). This behaviour is consistent Jones and Seguin (1997) that

studies the effect of the lowering of the 1975 negotiated commission on the U.S. national

stock exchange, and finds that the reduction in transaction cost is associated with a decline

in stock market volatility. Moreover, Panel B shows that this variance is also decreasing

in q. These behaviours are quite intuitive: as δ (q) increases (decreases) the market maker

reduces market tightness (and resilience), and this mechanically increases volatility of trade

prices.

Note that the trade-by-trade constant volatility does not imply constant volatility on the

calendar time scale, since: a) trade times – hence number of trades in a given time period

– are stochastic and endogenous, and b) prices (from equation (25) and Corollary 1) are

serially correlated. Indeed, equation (45) in Proposition 10 shows that at low frequency the

variance (between time s and t) is stochastic and given by (Lp
t − Lp

s) σ
2μτ – that is, number

of trades is the driver of stochastic volatility at this frequency as found in the empirical

works of Jones, Kaul, and Lipson (1994).21 Or, more precisely, in our setting low frequency

20See also Hausman, Lo, and MacKinlay (1992) and, for a survey of the empirical studies on the price,
volume, and volatility relation, Karpoff (1987).

21See also Dufour and Engle (2000).
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Figure 7: Limiting Variances. Variance on the trade by trade (upper panels) and number of trades (lower
panels) time scales as a function of δ (left panels) and q (right panels).

log returns follow a Brownian motion time changed by the number of trades process. This is

analogous to the empirical finding of Ané and Geman (2000) that find empirically that the

distribution of log returns conditional on the number of trades is Gaussian and has constant

volatility – this is precisely our result in equation (45) of Proposition 10, and the resulting

(low frequency) constant volatility on the trade time scale (μτσ
2) is depicted in Panels C

and D of Figure 7. The two Panels show that the volatility of the price process, scaled by

the (square root of) the number of trades has an almost identical behaviour as the trade-by-

trade volatility in Panels A and B. Moreover, the rationale of this behaviour is analogous to

the one described above for Panels A and B. One thing worth stressing is that the variances

in the upper and lower panels of the figure, although very similar, are not identical – this

discrepancy is due to the equilibrium autocorrelation of log returns.

Note that the above results on the equilibrium volatility have been obtained in a setting

in which the fundamental was assumed to have constant volatility. This suggests that, if

the fundamental volatility where to be time varying, the endogenous stochastic volatility

mechanism outlined in our model would amplify this time variation.
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4.3 Liquidity and volatility co-movements

We have seen above that the deep parameters of the model – namely, the degree of adverse

selection on the market (measured by 1 − q) and the degree of other transaction frictions

(captured by the parameter δ) – have first order effects on the equilibrium liquidity and

volatility of the market that are consistent with the empirical literature. Therefore, a natural

question is whether changes in these market fundamental characteristics can explain the co-

movements of the liquidity measures and volatility documented in the empirical literature.

Indeed, the equilibrium liquidity measures discussed in Section 4.1 are not only individu-

ally, but also jointly consistent with the empirical evidence on the co-movement of different

liquidity measures and trading activity. For instance, Dufour and Engle (2000) document

a systematic comovement of the time duration between transactions, the price impact of

trades, and the speed of price adjustment to trade-related information, and interpret the re-

sulting reduction in liquidity as being induced by an increased presence of informed traders.

In our setting, a change in the degree of adverse selection in the market (measured by 1− q),

manifests itself via exactly these joint changes in the behaviour of equilibrium liquidity.22

Furthermore, in our model, an increase in adverse selection alsos cause an increase in volatil-

ity on both the trade-by-trade and number of trades time scale as illustrated in Figure 7.

That is, our model is capable of generating joint liquidity dry-ups and volatility spikes in

response to an increase in the degree of market adverse selection as, for instance, during the

subprime crises.

Moreover, in our equilibrium characterisation, an increase in trading costs – as e.g. the

introduction of a Tobin Tax or an increase in trading fees – reduces both market tightness

and resilience, and increases volatility on the various time scales, as documented empirically

e.g. by Jones and Seguin (1997), Jones, Kaul, and Lipson (1994) and Umlauf (1993). And

this effect, as outlined in previous sections, is stronger in markets characterised by a higher

degree of adverse selection.

5 Conclusion

This paper develops a tractable, asymmetric information based, equilibrium trading model,

in which the distribution of the prices process, its volatility, the limit order book, the trad-

ing activity, as well as the various dimensions of market liquidity, are all characterised as

functions of fundamental (trading and informational) frictions. The results derived provide

micro-foundations for, and a rationalisation of, a large set of empirical findings including

22E.g. Dufour and Engle (2000) find that “as the time duration between transactions decreases, the price
impact of [large] trades, the speed of price adjustment to trade-related information [...] all increase,” and
exactly this joint behaviour would arise in our setting in response to an increase in q.

41



the presence of (stochastic) volatility clustering, and a price volatility, volume, and trading

activity link. Moreover, the framework developed constitute a natural laboratory for the

analysis of the equilibrium impact of a Tobin tax, and delivers predictions consistent with

the empirical evidence on this topic, as well as novel insights.

Methodologically, the multiple time scales and the limiting characterisation approach of

the corresponding market equilibria, developed in this paper, could also be extended (with

appropriate modifications) to study very different economic problems: e.g. from the effect

of high frequency trading in financial markets, to the modelling of time and state contingent

price setting in sticky prices, wages, and information, macroeconomic models.

Furthermore, our characterisation of the equilibrium price process, liquidity, trading ac-

tivity, and volatility, at different frequencies, and as a function of the fundamental trading

and informational frictions, naturally opens two important directions for future research.

First, our asymptotic characterisations, that are in nature of the market microstructure

invariance type (see e.g. Kyle and Obizhaeva (2011a, 2001b)), raise a natural question: at

what (calendar time) speed do the equilibrium processes converge (on the different time

scales considered) to the equilibria that we have derived? These speeds of convergence

should be functions of the fundamental trading (δ) and informational (q) frictions on the

market. Hence these frictions should, also through this channel, influence the (calendar)

time series of market dynamics and risk. The task of analysing these speeds of convergence

is complicated by the fact that an obvious metric for quantifying the speed of convergence

between distributions is not readily available. Nevertheless, a potentially promising metric

is the relative entropy, as a function of the fundamental frictions, between the equilibrium

price distributions at any given frequency and the next, lower frequency, distribution. For

instance, the half-life of the relative entropy (or generalised variance) discrepancy would be

a relevant statistic to construct in order to understand how financial risk is generated.23

Second, our closed form characterisations of the price process, liquidity, trading activity,

limit order book, and volatility, as a function of the fundamental frictions, offer a natural

approach for the investigation of the empirical relevance of these channels in driving financial

market dynamics, and for the estimation of the fundamental market characteristics that

generates them. Moreover, for a richer empirical analysis, the framework derived in this

paper could be generalized to accommodate time varying fundamental volatility, time varying

degree of adverse selection, and time varying trading costs (as e.g. the time varying margins

– aka “haircuts” – studied in Brunnermeier and Pedersen (2009)).

Both of the above extensions are promising, although demanding, tasks, and we defer

them to future work.

23For an application of relative entropy divergences to the analysis of risk measures see e.g. Julliard and
Ghosh (2012) and Ghosh, Julliard, and Taylor (2011).
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A Appendix

A.1 Additional Proofs and Lemmas

Proof of Proposition 4. Given the market maker’s indifference conditions (9) and (10) and

Lemma 1, it follows from Bayes rule that

At
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v+
)
(1− δ) =

∞∑
i=1

1{i=1+Lt−}
{
P

[
Ĩi|H̃M

i , Nτi = Lτi

]
E
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i , Nτi = Lτi , Ĩi

]
+
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]
E
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]}∣∣∣
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,

=
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+ qt
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(
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where Ĩi (Ũi) denotes the event of the i-th trader being informed (uninformed) and

qt (v) =
∞∑
i=1

1{i=1+Lt−} P
[
Ũi|H̃M

i , Nτi = Lτi

]∣∣∣
ṽi=v,τi=t

Xt (v) =
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i=1

1{i=1+Lt−} E
[
eDT |H̃M

i , Nτi = Lτi , Ũi

]∣∣∣
ṽi=v,τi=t

where qt (v) is the probability of the time t trader being uninformed and Xt (v) is the time t market

maker valuation given that the current trader is uninformed. Note that in the above equation the

market maker uses the trader’s valuation of the asset (from Lemma 1) only in the case of the trader

being informed.

Recall that, from Remark (1) and (2), we have that H̃M
i = σ

{
{ṽ}ij=0 , {τj}ij=0

}
and Hi =

σ
{
{v}ij=0 , {θj}ij=0

}
. This observation allows us to rewrite the marker maker’s probability of the

trader being uninformed as P
[
Ũi|H̃M

i , Nτi = Lτi

]
= P

[
Ũi|H̃M

i−1, ṽi, τi, Nτi = Lτi

]
.

Note that from Bayes rule, for any C ∈ B (R) we have

P

[
Ũi|H̃M

i−1, ṽi ∈ C, τi, Nτi = Lτi

]
=
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. (51)

From A4 and the fact that

{
H̃M

i−1 ∨ σ
{
τi, Ũi

}}
∩ {Nτi = Lτi} = {Hi−1 ∨ σ {θi, Ui}} ∩ {Nτi = Lτi} (52)
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it follows that Equation (51) simplifies to
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.

Finally, from Assumption A3 and the equality (52), we have that the arrival of an uninformed

agent, Ũi, is independent from H̃i−1 and τi, therefore

qt (v) := P

[
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]
= q.

Using equality(52), and the fact that the signal received by the uniformed trader is conditionally

independent (A2), we have that Xt (v) = ZM
t since
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ṽi=v,τi=t

=
∞∑
i=1

1{i=1+Lt−}E
[
eDT |H̃M

i−1, Nt = Lt

]
=

∞∑
i=0

1{i=Lt−+1}E
[
eDT

∣∣GM
τi−1

, Nt = Lt

]

=
∞∑
i=0

1{i=Lt−+1}ZM
τi−1

Therefore Equations (49) and (50) simplify to the following ordinary differential equations
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These, up to a generic constant, have three solutions each, but only one solution per equation

satisfies conditions C2 and C3. These solutions are the ones in equations (13) and (14). These

solutions clearly satisfy conditions C2-C5, and C1 is satisfied because
∑∞

i=0 1{i=Lt−+1}ZM
τi−1

is a

cádlág process.

Proof of Lemma 3. The proof is by induction on i.

I. i = 1. Then

P
[
dtr1 ≤ x|H0, θ1

]
= qP

[
dtr1 ≤ x|H0, θ1, U1

]
+ (1− q)P

[
dtr1 ≤ x|H0, θ1, I1

]
since, due to A3, P [U1|H0, θ1] = q. From equation (24) and Remark 3 it follows that
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On the other hand, we have
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]
since Dθ1 −D0 is a Brownian motion increment and, due to assumption A3, this Brownian

motion is independent of θ and I. Note also that Equations (53) and (54) imply
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II. Suppose the statement is true for i = n. Consider i = n+ 1, then
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since, due to A3, P [Un+1|Hn, θn+1] = q, and from Remark 3 we know that
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Note that the above and Equation (56) imply P
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Moreover

P
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Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
(58)

where the last equality simply follows from Bayes rule and that Assumption A3, and the fact

that Hn ∨ σ {θn+1} ⊂ FN,D,S
T ∨ (Uj)j �=n+1, imply that P [Un|Hn, θn+1] = q.

Note that the In agent knows Dθn , therefore

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
= P

[
dtr
n
+Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
= P

[
dtr
n
+ σ

(
Wθn+1 −Wθn

)
+ μΔn+1,n ≤ x|Hn, θn+1, In

]
= P

[
dtr
n
+ σ

(
Wθn+1 −Wθn

)
+ μΔn+1,n ≤ x|Hn, θn+1

]
.

where the last equality follows from assumption A3 and the fact that Hn ∨ σ {θn+1} ∨
σ
{
Wθn+1 −Wθn

} ⊂ FN,D,S
T ∨ (Uj)j �=n+1, hence we can use use once more Proposition 6.6

and 6.8 of Kallenberg (2002).

Let define W̃n
t := Wθn+t −Wθn and Ñn

t := Nθn+t − Nθn . From Assumption A2, and the

fact that W is a Brownian motion with respect to (Ft)t≥0, we have FW̃n ⊥
Hn

F Ñn
, and

FW̃n ⊥ Hn. Therefore, from Proposition 6.8 of Kallenberg (2002) the above is equivalent

to FW̃n ⊥ F Ñn ∨ Hn. Since from Assumption A1 F Ñn ⊥ Hn, it follows from the defi-

nition of independence that F Ñn ∨ FW̃n ⊥ Hn. Since σ
{
Wθn+1 −Wθn

} ∨ σ {Δn+1,n} ⊂
F Ñn ∨ FW̃n

, the above independence and Proposition 6.8 of Kallenberg (2002) implies

σ
{
Wθn+1 −Wθn

} ⊥
σ{Δn+1,n}

Hn. Thus, we have by Proposition 6.6 of Kallenberg (2002)

that

P
[
dtr
n
+ σ

(
Wθn+1 −Wθn

)
+ μΔn+1,n ≤ x|Hn, θn+1

]
= P

[
dtr
n
+ εn+1,n ≤ x|dtr

n
,Δn+1,n

]
where εn+1,n := μΔn+1,n + σ

√
Δn+1,nηn+1,n and ηn+1,n ∼ N (0, 1) is independent of dtrn and

Δn+1,n for all n. Therefore

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, In

]
= P

[
dtr
n
+ εn+1,n ≤ x|dtr

n
,Δn+1,n

]
. (59)

To complete the characterisation of Equation (55) we now simplify P
[
dtrn+1 ≤ x|Hn, θn+1, Un+1

]
.

Observe that

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= E

[
P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn−1, θn+1, θn, Un, Sn

] |Hn, θn+1, Un

]
= P

[
Dθn +Dθn+1 −Dθn ≤ x|Hn−1, θn+1, θn

]

49



where the last equality is due to Assumptions A2 and A3. Using Propositions 6.6 and 6.8 of

Kallenberg (2002) in the same fashion as above, we have

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= P [Dθn + εn+1,n ≤ x|Hn−1, θn+1, θn] (60)

where εn+1,n := μΔn+1,n+σ
√

Δn+1,nηn+1,n and ηn+1,n ∼ N (0, 1) is independent ofHn−1, θn+1, θn

and FD
θn
.

To complete the induction recall that in Assumption A2 FW
T ⊥

Hi−1

FN
T . Since σ {θn} ∨

σ {θn+1} ⊂ FN
T we have FW

T ⊥
Hi−1

σ {θn}∨σ {θn+1}. Thus, from Proposition 6.8 and Corollary

6.7 of Kallenberg (2002) we have that FW
T ∨ σ {θn} ⊥

Hi−1,σ{θn}
σ {θn+1}, and since σ {Dθn} ⊂

FW
T ∨ σ {θn}, we have σ {Dθn} ⊥

Hi−1,σ{θn}
σ {θn+1}. Therefore, for any χ

P [Dθn ≤ χ|Hn−1, θn+1, θn] = P [Dθn ≤ χ|Hn−1, θn] = P
[
dtrn ≤ χ|Hn−1, θn

]
= (1− q)

n−1∑
j=1

qn−1−j
P
[
dtrj + εn,j ≤ x|dtrj ,Δn,j

]
+

+ qn−1
P
[
dtr0 + εn,0 ≤ x|dtr0 ,Δn,0

]
where the last two equalities are due to the induction assumption that also imply εn,j :=

μΔn,j + σ
√

Δn,jηn,j , and ηn,j ∼ N (0, 1) is independent of dtrj and Δn,j for all j < n.

Thus Equation (60) becomes

P
[
Dθn +Dθn+1 −Dθn ≤ x|Hn, θn+1, Un

]
= (1− q)

n−1∑
j=1

qn−1−j
P
[
dtrj + εn,j + εn+1,n ≤ x|dtrj ,Δn,j ,Δn+1,n

]
+

+ qn−1
P
[
dtr0 + εn,0 + εn+1,n ≤ x|dtr0 ,Δn,0,Δn+1,n

]
= (1− q)

n−1∑
j=1

qn−1−j
P
[
dtrj + εn+1,j ≤ x|dtrj ,Δn+1,j

]
+ qn−1

P
[
dtr0 + εn+1,0 ≤ x|dtr0 ,Δn+1,0

]

since all the ε’s are independent Gaussians.

Combining the above equation with equations (59), (58), and (56) yields

P
[
dtrn+1 ≤ x|Hn, θn+1

]
= (1− q)

n∑
j=1

qn−j
P
[
dtrj + εn+1,j ≤ x|dtrj ,Δn+1,j

]
+

+ qnP
[
dtr0 + εn+1,0 ≤ x|dtr0 ,Δn+1,0

]
.

By the principle of mathematical induction the proof is complete.
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Proof of Corollary 1. To prove the corollary we need to compute the probability that, given

that a trade occurred, it is at ask or bid. Let
(FW

t

)
be the natural filtration of W augmented in

the usual way. Since W is a Brownian motion with respect to a (potentially) larger filtration, it is

also a Brownian motion with respect to
(FW

t

)
. Then,

P

[
σ
(
Wτi −Wτi−1

)− σ2

2
(τi − τi−1) = a

(
q

φi−1
+ 1− q

)
|FW

τi−1

]
= P

[
σWτ − σ2

2
τ = a (x)

]
x= q

φi−1
+1−q

where the equality follows from the strong Markov property of Brownian motion, and where

τ := inf

{
t ≥ 0 : σWt − σ2

2
t /∈ [b (x) , a (x)]

}
.

Note that Mt := exp
{
σWt − σ2

2 t
}

is a martingale and τ ∧ s is a bounded stopping time for every

fixed s. Thus, EMτ∧s = 1 by Doob’s optional sampling theorem (see Revuz and Yor (1999) Th.

3.2 Ch. II). Since Mτ∧s is bounded for all s, we can use the dominated convergence theorem to

obtain that EMτ = 1. Thus we have

P

[
σWτ − σ2

2
τ = a (x)

]
=

1− eb(x)

ea(x) − eb(x)
=
q2 − δ2 − q (q − δ)x

2qδx

since Mτ can take only value exp {a (x)} or exp {b (x)} . Hence φi has the stated distribution and

the conditional moments follow from simple direct calculations.

Proof of Lemma 5. To show the continuity of the map over the set C, we need to show

that for any fn → f ∈ C in Skorokhod topology, we’ll have P2f
n → P2f in Skorokhod topol-

ogy. Due to Theorem VI.1.14 of Jacod and Shiryaev (2003), to establish the result it is enough to

demonstrate that there exist a sequence of continuos functions ρn : R+ → R+ that are strictly

increasing with ρn (0) = 0 and limt→∞ ρn (t) = ∞, such that: supt∈R+
|ρn (t)− t| → 0, and

supt∈R+
|P2f

n (ρn (t))− P2f (t)| → 0.

Suppose that, for any ε̃ > 0 we can show that there exists N̄ such that, for any n ≥ N̄ , we have

Ln
T := Lfn

T = Lf
T , (61)

max
i=0,...,Lf

T

∣∣∣τni − τ fi

∣∣∣ ≤ ε̃Kτ

4T
(62)

max
i=0,...,Lf

T

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ < ε̃ (63)

where τn := τ f
n
, gn := gf

n
. Under the above conditions, we can define

ρn (t) :=

⎧⎨
⎩

τni −τni−1

τfi −τfi−1

(
t− τ fi−1

)
+ τni−1, for t ∈

[
τ fi−1, τ

f
i

]
, i = 1, ..., Lf

T + 1,

t, for t ≥ T
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with the convention that τn
Lf
T+1

= τ f
Lf
T+1

= T . Note that this ρn is continuous and strictly increasing

on [0, T ], ρn (0) = 0, limt→∞ ρn (t) = ∞, and that

sup
t∈R+

|ρn (t)− t| = max
i=1,...,Lf

T+1

∣∣∣∣∣τ
n
i − τni−1

τ fi − τ fi−1

(
t− τ fi−1

)
+ τni−1 − t

∣∣∣∣∣ ≤ 4T
ε

Kτ
< ε̃

and

sup
t∈R+

|P2f
n (ρn (t))− P2f (t)| = max

i=0,...,Lf
T

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ < ε̃,

since that both P2f
n and P2f are constant, respectively, on

(
τni−1, τ

n
i

)
and

(
τ fi−1, τ

f
i

)
, as well as

after τn
Lf
T

and τ f
Lf
T

. Thus, P2 would satisfy the convergence requirement if conditions (61)-(63) are

fulfilled.

To show that conditions (61)-(63) are indeed satisfied for big enough n, consider

K1 =
1

2
min

{
log

q + δ

q − δ
;− log

q (1− δ)

q + δ
; log

q (1 + δ)

q − δ

}
.

Since the function f is continuos, for any i there exist strictly positive constants εli and εri such

that:

• if i ≥ 1 and f
(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1) (i.e. the bound is crossed at the ask)

min
t∈

[
τfi −εli, τfi +εri

] f (t) ≥ f
(
τ fi−1

)
+ a (c2,i−1)−K1

• if i ≥ 1 and f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1) (i.e. the bound is crossed at the bid)

max
t∈

[
τfi −εli, τfi +εri

] f (t) ≤ f
(
τ fi−1

)
+ a (c2,i−1)−K1

• if i = 0, max
t∈

[
τf0 ,τ

f
0 +εr0

] |f (t)− f (0)| < K1.

Choose ετ = min

{
min

i∈1,...,Lf
T

{
εli; ε

r
i

}
; εr0;

1
3Kτ ;

1
2
ε̃Kτ
4T

}
and define

K2 = min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
i=1,...,Lf

T
min

⎧⎪⎨
⎪⎩

inf
t∈

[
τfi−1+ετ , τfi −ετ

] ∣∣∣f(t)− f
(
τ fi−1

)
− a

(
cf2,i−1

)∣∣∣ ;
inf

t∈
[
τfi−1+ετ , τfi −ετ

] ∣∣∣f(t)− f
(
τ fi−1

)
− b

(
cf2,i−1

)∣∣∣
⎫⎪⎬
⎪⎭ ;

min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
t∈

[
τf

L
f
T

+ετ ,T

]
∣∣∣∣f(t)− f

(
τ f
Lf
T

)
− a

(
cf
2,Lf

T

)∣∣∣∣ ;
inf

t∈
[
τf

L
f
T

+ετ ,T

]
∣∣∣∣f(t)− f

(
τ f
Lf
T

)
− b

(
cf
2,Lf

T

)∣∣∣∣

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
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κi :=

⎧⎪⎨
⎪⎩

inf
t∈

[
τfi −ετ , τfi +ετ

] (f (τ fi )+ a
(
cf2,i

)
− f(t)

)
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1)

inf
t∈

[
τfi −ετ , τfi +ετ

] (f(t)− f
(
τ fi

)
− b

(
cf2,i

))
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1)

,

K3 := min
i=1,...,Lf

T

κi,

χi :=

⎧⎪⎨
⎪⎩

sup
t∈

[
τfi , τfi +ετ

] (f(t)− f
(
τ fi−1

)
− a

(
cf2,i−1

))
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1)

sup
t∈

[
τfi , τfi +ετ

] (f (τ fi−1

)
+ b

(
cf2,i−1

)
− f(t)

)
, if f

(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1)

K4 := min
i=1,...,Lf

T

χi.

Note that Kj > 0, j = 1, .., 4, given our choice of ετ and since f ∈ C.
Define the constants

M := max
[0,T ]

ef(t)
2 (1 + δq)

1− δ
, m := max

{
max
[0,T ]

e−f(t); 1

}
,

K :=
1

4
min

{
K4; K2;

K1

2Mm+ 1
; log 2;

1

Mm
;

K3

2Mm+ 1

}
,

Ci :=
i∑

j=1

max {(2Mm) , 1}j +max
{
(2Mm)i , 1

}
, i = 0, ..., Lf

T ,

C := CLf
T+1

Let εf = 1
4 min {ε̃, 1}min

{
K

C+1 , 1
}
.

Since fn → f ∈ C in Skorokhod topology, therefore in uniform topology over [0, T ], there exists

a N̄ such that, for any n > N̄ , sup
t∈[0,T ]

|fn (t)− f (t)| < εf . For such n, conditions (61)-(63) are

indeed satisfied as we are about to show. To prove this we are left to show by induction that, for

all i,

∣∣∣τ fi − τni

∣∣∣ < ετ , τni > τ fi−1 + ετ , (64)

cf2,i = cn2,i := cf
n

2,i (65)∣∣∣f (τ fi )− log gn (τni )
∣∣∣ ≤ Ciεf (66)∣∣∣∣gn (τni )− e

f
(
τfi

)∣∣∣∣ < 2MCiεf (67)

and that Ln
T = Lf

T .
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Consider i = 0. We have τ f0 = τn0 = 0, cf2,0 = cn2,0 = 1, and

∣∣∣f (τ f0 )− log gn (τn0 )
∣∣∣ ≤ C0εf (since log gn (τn0 ) = fn (τn0 ) ),∣∣∣∣gn (τn0 )− e

f
(
τf0

)∣∣∣∣ ≤M

∣∣∣∣elog gn(τn0 )−f
(
τf0

)
− 1

∣∣∣∣ ≤ 2Mεf .

To show that τn1 > τ f0 + ετ note that, for t ∈ [0, ετ ]

a (1) + fn (0)− fn (t) ≥ a (1)− 2εf −K1 ≥ a (1)− 9

8
K1

= log
q

q − δ
− 9

8
K1 ≥ 7

8
log

q

q − δ

due to the choice of εf and K1. Similarly

fn (t)− b (1)− fn (0) ≥ 7

8
log

q

q + δ
for t ∈ [0, ετ ] .

Thus, τn1 > τ f0 + ετ .

Suppose the assumptions of induction hold for i− 1.

• To show that τni > τ fi − ετ , observe that, for t ∈
[
τ fi−1 + ετ , τ fi − ετ

]
,

a (c2,i−1) + fn
(
τni−1

)− fn (t) ≥ K2 − 2εf ≥ 7

8
K2

fn (t)− b
(
τni−1

)− fn
(
τni−1

) ≥ 7

8
K2

due to the choice of εf and K2. Thus τ
n
i > τ fi − ετ .

• Next, to show that τni ∈
[
τ fi − ετ , τ fi + ετ

]
, we need two observations. First, note that if

f
(
τ fi

)
= f

(
τ fi−1

)
+ a (c2,i−1) (i.e. the bound is crossed at ask), then

inf
t∈

[
τfi −ετ , τfi +ετ

] [a (c2,i−1) + log gn
(
τni−1

)− fn (t)
]

≤ inf
t∈

[
τfi −ετ , τfi +ετ

]
[
a (c2,i−1) + f

(
τ fi−1

)
+ Ci−1εf − f (t) + εf

]

≤ Cεf + εf −K4 ≤ 1

4
K −K4 ≤ −15

16
K4 < 0,

hence fn crosses its upper boundary in this interval whenever f crossed at ask.

Second, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1) (i.e. the bound is crossed at bid), we have

inf
t∈

[
τfi −ετ , τfi +ετ

] [fn (t)− b (c2,i−1)− log gn
(
τni−1

)] ≤ −15

16
K4 < 0.

Hence, fn crosses its lower boundary in this interval whenever f crossed at bid.
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As a consequence, fn crosses one of its bounds over this interval i.e. τni ∈
[
τ fi − ετ , τ fi + ετ

]
,

and obviously
∣∣∣τ fi − τni

∣∣∣ < ετ .

• To show that cf2,i = cn2,i i.e. that fn crosses at ask (bid) whenever f does so, we need two

observations. First, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+a (c2,i−1), then for t ∈

[
τ fi − ετ , τ fi + ετ

]

fn (t)− b (c2,i−1)− log gn
(
τni−1

) ≥ f (t)− 2εf − b (c2,i−1)− Ci−1εf − f
(
τ fi−1

)
≥ f (t)− 2εf + log

q + δ

q − δ
− a (c2,i−1)− Ci−1εf − f

(
τ fi−1

)
≥ 13

16
K1 > 0.

That is the i-th trade at time τni cannot happen at bid in this case.

Second, note that if f
(
τ fi

)
= f

(
τ fi−1

)
+ b (c2,i−1), then for t ∈

[
τ fi − ετ , τ fi + ετ

]

a (c2,i−1) + log gn
(
τni−1

)− fn (t) ≥ 13

16
K1 > 0,

hence the i-th trade at time τni cannot happen at ask in this case.

Therefore, cf2,i = cn2,i.

• To verify the induction statements (66) and (67) we need to consider two cases. First, if

fn (τni ) > a (c2,i−1) + log gn
(
τni−1

)
(i.e. fn crossed its bound at ask), then

fn (τni ) > a (c2,i−1) + log gn
(
τni−1

) ≥ f
(
τ fi

)
− 2Ci−1εf .

Moreover, since fn cannot have jumps larger than 2εf (since otherwise its distance from f

would become more than εf ), and since fn should be below its upper bound before crossing

it, we have

fn (τni ) ≤ a (c2,i−1) + log gn
(
τni−1

)
+ 2εf ≤ f

(
τ fi

)
+ 2

(
Ci−1 + 1

)
εf .

Therefore, |fn (τni )− f (τni )| ≤ 2
(
Ci−1 + 1

)
εf . This implies that

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ = 1

c2,i

∣∣∣∣
[
(1− q)

(
ef

n(τni ) − e
f
(
τfi

))
+ q

(
gn
(
τni−1

)− e
f
(
τfi−1

))
c2,i−1

]∣∣∣∣
≤ 1

c2,i

[
(1− q) e

f
(
τfi

) ∣∣∣∣efn(τni )−f
(
τfi

)
− 1

∣∣∣∣+ qe
f
(
τfi

) ∣∣∣∣elog gn(τni−1)−f
(
τfi−1

)
− 1

∣∣∣∣ c2,i−1

]

≤ 2e
f
(
τfi

)

c2,i

[
(1− q)

∣∣∣fn (τni )− f
(
τ fi

)∣∣∣+ q
∣∣∣log gn (τni−1

)− f
(
τ fi−1

)∣∣∣ c2,i−1

]

≤ 4e
f
(
τfi

)

1− δ
[1 + qδ] εf

(
Ci−1 + 1

) ≤ 2Mεf
(
Ci−1 + 1

)

where the third inequality is due to the fact that |ex − 1| < 2 |x| whenever |x| ≤ εf
(
Ci−1 + 1

)
<
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log 2. Hence

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ < 2MCiεf as claimed in the induction. Furthermore

∣∣∣log gn (τni )− f
(
τ fi

)∣∣∣ =
∣∣∣∣∣∣log

⎛
⎝1 +

gn (τni )− e
f
(
τfi

)

e
f
(
τfi

)
⎞
⎠
∣∣∣∣∣∣ ≤ 2

∣∣∣∣∣∣
gn (τni )− e

f
(
τfi

)

e
f
(
τfi

)
∣∣∣∣∣∣

≤ 2Mm
(
Ci−1 + 1

)
εf ≤ Ciεf

since |log (1 + x)| ≤ 2 |x| for |x| ≤ 2Mm
(
Ci−1 + 1

)
εf ≤ Ciεf < 1/2.

Second, if fn (τni ) < b (c2,i−1)+log gn
(
τni−1

)
(i.e. fn crossed its bound at bid), then fn (τni ) ≤

f
(
τ fi

)
+ 2Ci−1εf . Moreover, we have that fn (τni ) ≥ f

(
τ fi

)
− 2

(
Ci−1 + 1

)
εf . Therefore,

|fn (τni )− f (τni )| ≤ 2
(
Ci−1 + 1

)
εf . This implies that

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ ≤ 2Mεf
(
Ci−1 + 1

)
,

therefore

∣∣∣∣gn (τni )− e
f
(
τfi

)∣∣∣∣ < 2MCiεf as claimed in the induction. Hence, as before,

∣∣∣log gn (τni )− f
(
τ fi

)∣∣∣ ≤ Ciεf .

• To show that fn does not cross more than once one of its boundaries on the interval[
τ fi − ετ , τ fi + ετ

]
, i.e. τni+1 > τ fi + ετ , we need the following two observations.

First, if fn (τni ) > a (c2,i−1) + log gn
(
τni−1

)
, this implies that (as shown above) f

(
τ fi

)
=

a (c2,i−1) + f
(
τ fi−1

)
, therefore for t ∈

[
τ fi − ετ , τ fi + ετ

]

fn (t)− b (c2,i)− log gn (τni ) ≥ f (t)− εf − b (c2,i)− f
(
τ fi

)
− Ciεf

≥ f
(
τ fi−1

)
− f

(
τ fi

)
+ a (c2,i−1)− b (c2,i)−K1 −

(
Ci + 1

)
εf

= − log
q (1− δ)

q + δ
−K1 −

(
Ci + 1

)
εf ≥ 15

16
K1 > 0.

Hence, if τni+1 ∈
[
τ fi − ετ , τ fi + ετ

]
, it cannot happen at bid. On the other hand,

a (c2,i) + log gn (τni )− fn (t) ≥ a (c2,i) + f
(
τ fi

)
− f (t)− εf − Ciεf

≥ K3 −
(
Ci + 1

)
εf ≥ 15

16
K3 > 0.

Hence, if τni+1 ∈
[
τ fi − ετ , τ fi + ετ

]
, it cannot happen at ask either. Thus, τni+1 /∈

[
τ fi − ετ , τ fi + ετ

]
.

Second, if fn (τni ) < b (c2,i−1) + log gn
(
τni−1

)
, this implies that (as shown above) f

(
τ fi

)
=
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b (c2,i−1) + f
(
τ fi−1

)
, therefore for t ∈

[
τ fi − ετ , τ fi + ετ

]

a (c2,i) + log gn (τni )− fn (t) ≥ a (c2,i) + f
(
τ fi

)
− f (t)− εf − Ciεf

≥ a (c2,i) + f
(
τ fi−1

)
+ b (c2,i−1)− f (t)− (Ci + 1

)
εf

≥ log
q (1 + δ)

q − δ
−K1 −

(
Ci + 1

)
εf ≥ 15

16
K1 > 0.

Also

fn (t)− b (c2,i)− log gn (τni ) ≥ f (t)− b (c2,i)− f
(
τ fi

)
− εf − Ciεf ≥ 15

16
K3 > 0.

Therefore, τni+1 /∈
[
τ fi − ετ , τ fi + ετ

]
in this case too.

• Thus, by the principle of mathematical induction, the statements (64)-(65) hold for i =

1, ..., Lf
T .

To complete the proof of the Lemma, we need to establish that Lf
T = Ln

T for n > N̄ . By

the above we have that Lf
t = Ln

t for any t ≤ τ f
Lf
T

+ ετ , thus the only thing left to show is that

τn
Lf
T+1

/∈
[
τ f
Lf
T

+ ετ , T

)
. Observe that, for t ∈

[
τ f
Lf
T

+ ετ , T

)
, and i = Lf

T

a (c2,i) + fn (τni )− fn (t) ≥ K2 − 2εf ≥ 7

8
K2,

fn (t)− b (c2,i)− fn (τni ) ≥
7

8
K2.

Thus τn
Lf
T+1

≥ T .

Proof of Lemma 6. We first derive the conditional expectation of time between two consec-

utive trades. In particular we will prove that the following conjecture holds for all i > j ≥ 1

E

[
τi − τi−1 − μτ | FW

τi−j

]
=

⎧⎨
⎩

S(q + δ)(1 + δ)
(

q2−δ2

q(1−δ2)

)j−1
, if φi−j =

q
q−δ

−S(q − δ)(1− δ)
(

q2−δ2

q(1−δ2)

)j−1
, if φi−j =

q
q+δ

(68)

where μτ is defined in Lemma 6 and

S :=
1

σ2(q + δ2)

[
q2 − δ2

q(1− δ2)
log

q − δ

q + δ
+ log

1 + δ

1− δ

]
.

The proof is by induction on j. First, consider j = 1. We have, for any t ∈ R+,

E

[
τi ∧ t− τi−1 ∧ t | FW

τi−1

]
= − 2

σ
E

[
Wτi∧t −Wτi−1∧t −

σ

2
(τi ∧ t− τi−1 ∧ t) | FW

τi−1

]

by Theorem 7.29 Kallenberg (2002). Observe that the left hand side is monotonically increasing in

t and the right hand side takes values in the interval
[
− 2

σ2a
(

q
φi−1

+ 1− q
)
,− 2

σ2 b
(

q
φi−1

+ 1− q
)]
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and is therefore bounded. Thus, taking the limit as t→ ∞ and applying the Monotone Convergence

Theorem (to the left hand side) and the Dominated Convergence Theorem (to the right hand side)

yields:

E

[
τi − τi−1 | FW

τi−1

]
= − 2

σE

[
Wτi −Wτi−1 − σ

2 (τi − τi−1) | FW
τi−1

]
= − 2

σ2E

[
a
(

q
φi−1

+ 1− q
)
1{

φi=
q

q−δ

} + b
(

q
φi−1

+ 1− q
)
1{

φi=
q

q+δ

} | FW
τi−1

]
= − 2

σ2

[
a
(

q
φi−1

+ 1− q
)
P

[
φi =

q
q−δ | φi−1

]
+ b

(
q

φi−1
+ 1− q

)
P

[
φi =

q
q+δ | φi−1

]]
= μτ +

{
S(q + δ)(1 + δ), if φi−1 =

q
q−δ

−S(q − δ)(1− δ), if φi−1 =
q

q+δ

,

where the second equality is due to the definition of τi in Theorem 7, the third one is due to the fact

that φ is Markov, and the last one is obtained via direct calculations by employing the conditional

probabilities of Corollary 1.

Next, suppose that the statement of the induction is true for j = n. Let j = n+ 1 and observe

that for any i > j we have

E

[
τi − τi−1 | FW

τi−(n+1)

]
= E

[
E

[
τi − τi−1 | FW

τi−n

]
| FW

τi−n−1

]
= μτ + S

(
q2−δ2

q(1−δ2)

)n−1
E

[
(q + δ)(1 + δ)1{

φi−n=
q

q−δ

} − (q − δ)(1− δ)1{
φi−n=

q
q+δ

} | φi−n−1

]
,

where the last equality is due to the assumption of the induction and the fact that φ is Markov.

Using as before the conditional probabilities given in Corollary 1, direct calculation proves that the

conjecture holds.

Next, note that τn − τn−1 − μτ is a L2 mixingale since24

∥∥∥E [τi − τi−1 − μτ | FW
τi−n

]∥∥∥
2

= S
(

q2−δ2

q(1−δ2)

)n−1
[
E

(
(q + δ)(1 + δ)1{

φi−n=
q

q−δ

}

−(q − δ)(1− δ)1{
φi−n=

q
q+δ

}
)2
] 1

2

≤ S
√
2(q + δ)(1 + δ)

(
q2−δ2

q(1−δ2)

)n−1
,

where the first equality is due to the result above and the inequality is due the fact that (a+ b)2 ≤
2(a2 + b2). Moreover, let cn = c = S

√
2(q + δ)(1 + δ) and Ψ(n) =

(
q2−δ2

q(1−δ2)

)n−1
and observe that

Ψ(n) = o(log−2(n)). Hence, by Corollary 1 of de Jong (1995), we have that

τn
n

−→
n→∞ μτ a.s.

The second statement of the Lemma is proved by contradiction. Fix an ω ∈ {ω ∈ Ω :

limn→∞
τn(ω)
n = μτ}. Suppose that for this ω there exists a sequence {ti}∞i=1 such that limi→∞ ti =

∞ and limi→∞
Lp
ti
(ω)

ti
= K 	= 1

μτ
, where K can take infinity as a value.

24For a definition of mixingales see e.g. de Jong (1995).
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If K = +∞, then for any M ∈ R+ there exists an N ∈ N such that for any n ≥ N we have

Lp
tn(ω)

tn
> M ⇔ τ�Mtn(ω) < tn ⇔ τ�Mtn(ω)

�Mtn� <
tn

�Mtn�

where the operator �·� returns the largest integer smaller than its argument. Taking the limit yields

that limn→∞
τ�Mtn�(ω)
�Mtn ≤ 1

M for any M ∈ R+ and, therefore, is equal to zero, which contradicts the

choice of ω as, evidently, μτ 	= 0.

If K < +∞, we have two possibilities: either K < 1
μτ

or K > 1
μτ

. We will consider only the

first case as the second one can be dealt with in similar manner.

Fix an ε = 1
4

(
1
μτ

−K
)
. As limi→∞

Lp
ti
(ω)

ti
= K there exists an N ∈ N such that, for any n ≥ N ,

we have
Lp
tn

(ω)

tn
−K < ε. Observe that we have

Lp
tn(ω) < tn(ε+K) ⇔ τ�tn(ε+K)+1(ω) > tn ⇔ τ�tn(ε+K)+1(ω)

�tn(ε+K)�+ 1
>

tn
�tn(ε+K)�+ 1

.

Taking the limit yields that limn→∞
τ�tn(ε+K)�+1(ω)

�tn(ε+K)+1 ≥ 1
ε+K > μτ due to the choice of ε, which

contradicts the choice of ω .

Thus, for any ω ∈ {ω ∈ Ω : limn→∞
τn(ω)
n = μτ} we have limt→∞

Lt(ω)
t = 1

μτ
.

A.2 Proof of Proposition 9

To prove Proposition 9 we first need to establish a few auxiliary results.

Definition 2 (Most Recent Common Ancestor) Consider yni defined in Equations (28)-(31).

We define the most recent common ancestor of yni and ynj , A
(
yni , y

n
j

)
, recursively as follows

A (yni , y
n
i ) = i,

A (yni , ynj ) = A (ynj , yni ) = 1{i>j}
i−1∑
k=0

ζi−1,kA
(
ynj , y

n
k

)
+ 1{i<j}

j−1∑
k=0

ζj−1,kA (ynk , y
n
i ) .

Lemma 7 Suppose q < 1, then for any i ≥ j ≥ k ≥ 0, and any a ∈
(
max

{√
q,
√

q4

4 + 2q − q2

2

}
, 1

)
we have

P̄
(A (yni , ynj ) = k

) ≤ ca2j−i−k.

where c = a−2M > 1, andM is the smallest nonnegative integerm such that qs+qs+(1−2s)m
(
1− qs+1

)
<

1,25 with s < 1/2 being the solution of a = qs.

25Such M exists since
lim

m→∞ qs + qs+(1−2s)m
(
1− qs+1

)
= qs < 1.

Moreover, note that for all m ≥M

qs + qs+(1−2s)m
(
1− qs+1

)
< 1
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Proof. The proof is by induction on the maximum of i and j.

Suppose that max {i, j} = n ≤M . Then the assumption of mathematical indiction holds since

P̄
(A (yni , ynj ) = k

) ≤ 1 ≤ ca2j ≤ ca2j−i−k

due to the definition of c.

Suppose that for max {i, j} = m ≥ M the assumption of induction holds. Consider max {i, j} =

i = m+ 1, then we have the following four cases.

1. k 	= 0, k 	= j.

P̄
(A (ynm+1, y

n
j

)
= k

)
= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= k

)
=

m∑
l=0

P̄
(A (ynl , ynj ) = k

)
P̄ (ζm,l = 1)

=

m∑
l=k

P̄
(A (ynl , ynj ) = k

)
P̄ (ζm,l = 1) =

m∑
l=k

P̄
(A (ynl , ynj ) = k

)
(1− q) qm−l

where the third equality is due to the fact that the common ancestor A
(
ynl , y

n
j

)
≤ min {l, j},

and the fourth follows from the definition of ζ in Equation (31). Then

P̄
(A (ynm+1, y

n
j

)
= k

)
=

j−1∑
l=k

P̄
(A (ynl , ynj ) = k

)
(1− q) qm−l +

m∑
l=j+1

P̄
(A (ynl , ynj ) = k

)
(1− q) qm−l

≤ (1− q) c

⎛
⎝ j∑

l=k

a2l−j−kqm−l +
m∑

l=j+1

a2j−l−kqm−l

⎞
⎠

=
(1− q) c

(1− aq) (a2 − q)

⎧⎪⎪⎨
⎪⎪⎩a

2j−m−k
(
a2 − q

)
+ ak−jqm+1−k (aq − 1)

negative for a<1

+
[
qm−jaj−k

(−aq2 + 2q − a2
)]

negative for a>

√
q4

4
+2q− q2

2

⎫⎪⎪⎬
⎪⎪⎭

≤ (1− q) c

(1− aq) (a2 − q)

{
a2j−m−k

(
a2 − q

)}
=

(1− q) c

(1− aq)
a2j−m−k ≤ ca2j−m−k−1

where the first equality comes from k 	= j, the first inequality follows from the principle of

mathematical induction and the last inequality follows from the conditions on a.26

2. k 	= 0, k = j.

P̄
(A (ynm+1, y

n
j

)
= k

)
= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= k

)
=

m∑
l=0

P̄
(A (ynl , ynj ) = k

)
P̄ (ζm,l = 1)

=
m∑
l=j

P̄
(A (ynl , ynj ) = k

)
P̄ (ζm,l = 1) =

m∑
l=j+1

P̄
(A (ynl , ynj ) = k

)
(1− q) qm−l + (1− q) qm−k

since the left hand side is monotone in m.

26Since
√

q4

4 + 2q − q2

2 < 1 there exists an a satisfying the conditions in Lemma 7.
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where the last equality is due to P̄ (A (ynk , y
n
k ) = k) = 1. By induction we have

(1− q)

⎡
⎣ m∑
l=j+1

P̄
(A (ynl , ynj ) = k

)
qm−l + qm−k

⎤
⎦ ≤ c (1− q)

⎧⎨
⎩

m∑
l=j+1

a2j−l−kqm−l + qm−k

⎫⎬
⎭

= c (1− q) ak−m−1

{
a− a−k+m+2qm−k+1

(1− aq)

}
≤ a (1− q)

(1− aq)
cak−m−1 ≤ cak−m−1

3. k = 0, k 	= j.

P̄
(A (ynm+1, y

n
j

)
= 0
)
= P̄

(
m∑
l=0

ζm,lA
(
ynl , y

n
j

)
= 0

)
=

m∑
l=0

P̄
(A (ynl , ynj ) = 0

)
P̄ (ζm,l = 1)

=

j−1∑
l=1

P̄
(A (ynl , ynj ) = 0

)
(1− q) qm−l +

m∑
l=j+1

P̄
(A (ynl , ynj ) = 0

)
(1− q) qm−l

+ P̄
(A (yn0 , ynj ) = 0

)
qm

where the last term follows from the definition of ζ in Equation (31). By induction

P̄
(A (ynm+1, y

n
j

)
= 0
) ≤ c (1− q)

⎧⎨
⎩

j−1∑
l=1

a2l−jqm−l +
m∑

l=j+1

a2j−lqm−l

⎫⎬
⎭+ ca−jqm

= c (1− q)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
qm−jaj

qja2−2j (aq − 1)− aq2 − a2 + 2q

(a2 − q) (1− aq)

negative for: 1>a>

√
q4

4
+2q− q2

2

+
a2j−m

1− aq

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ ca−jqm

≤ c

{
(1− q)

a2j−m

1− aq
+ a−jqm

}
= ca2j−m−1

{
(1− q)

a

1− aq
+ am−3j+1qm

}

The proof of this case is completed by showing that the last term above is smaller than 1,

and this is the case if

a+ am−3j+1qm − am−3j+2qm+1 < 1.

Note that a = qs, for some s < 1/2, hence

a+ am−3j+1qm − am−3j+2qm+1 < qs + qs+(1−2s)m
(
1− qs+1

)
< 1

where the first inequality is due to m ≥ j, and the second is due to m ≥M .

4. k = j = 0.

P̄
(A (ynm+1, y

n
0

)
= 0
)
= 1 < ca−m−1 = a−2M−m−1.

Hence by the principle of mathematical induction the statement of the Lemma holds for all m.

61



Lemma 8 Let ψ denote

ψn
i = E

[
Ȳ n
T |Hn

i

]− E
[
Ȳ n
T |Hn

i−1

]
(69)

where E denotes expectations taken with respect to the measure P̄ and Hn
i := Fn

θni
with Fn

t :=

σ
{
Ȳ n
s≤t

}
. Denote the variance of ψ with

(
σψn,i

)2
= E

[
(ψn

i )
2
]
. The following holds for any t ≥ 0:

1. limn→∞ max
i≤Nn

t

σψn,i = 0.

2. The set

Kψ :=

⎧⎪⎨
⎪⎩

(ψn
i )

2(
σψn,i

)2 , n ∈ N, i ≤ Nn
t

⎫⎪⎬
⎪⎭

is uniformly integrable.

3. For any k > 0

lim
n→∞ P̄

[
max
i≤Nn

t

|ψn
i | > k

]
= 0

Proof of Lemma 8. We prove the assertions of the Lemma in the same order as stated.

1. Note that from Lemma 4 and the definition of Ȳ we have

E
[
Ȳ n
T |Hn

i

]
= (1− q) [yni + μ (T − θni )] + qE

[
Ȳ n
T |Hn

i−1

]
,

from which it follows that

ψn
i

1− q
= [yni − μθni −D0]−

i−1∑
j=1

ψn
j , (70)

therefore (
σψn,i

)2
(1− q)2

= σ2θni −
i−1∑
j=1

(
σψn,j

)2
.

Thus, by induction (
σψn,i

)2
(1− q)2

= σ2
i∑

j=1

{
[q (2− q)]i−j Δn

j,j−1

}
(71)

where Δn
j,j−1 := θnj − θnj−1and note that q (2− q) < 1 for all q ∈ [0, 1].

Fix any ω ∈ Ω, than from Ω3 it follows that there exists a k (ω) such that nΔn
j,j−1 <

2 log (j) for any j ≥ k. Moreover, from Ω4 we have that limn→∞
Nn

T
n = λT . Therefore from
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equation (71) we have

(
σψn,i

)2
= (1− q)2 σ2

i∑
j=1

{
[q (2− q)]i−j Δn

j,j−1

}

< (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

{
[q (2− q)]i−j Δn

j,j−1

}
+

2

n

i∑
j=k

[q (2− q)]i−j log (j)

⎫⎬
⎭

< (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δn
j,j−1 +

2

n
log (i)

i∑
j=k

[q (2− q)]i−j

⎫⎬
⎭

= (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δn
j,j−1 +

2

n
log (i)

i∑
j=k

[q (2− q)]i−j

⎫⎬
⎭

= (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δn
j,j−1 +

2

n
log (i)

1− [q (2− q)]i−k+1

1− [q (2− q)]

⎫⎬
⎭

< (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δn
j,j−1 +

2

n
log (Nn

T )
1

1− [q (2− q)]

⎫⎬
⎭

= (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δj,j−1

n
+

2

n
log (Nn

T )
1

1− [q (2− q)]

⎫⎬
⎭

∴
(
σψn,i

)2
= (1− q)2 σ2

i∑
j=1

{
[q (2− q)]i−j Δn

j,j−1

}
(72)

≤ (1− q)2 σ2

⎧⎨
⎩

k−1∑
j=1

Δj,j−1

n
+

2

n
log (Nn

T )
1

1− [q (2− q)]

⎫⎬
⎭

Note that the right hand side does not depend on i and its limit as n → ∞ is zero. Thus

limn→∞ max
i≤Nn

t

σψn,i = 0.

2. Consider
(
κψn,i

)4
:= E

[
(ψn

i )
4
]
and note that from Equation (70) at arrival i and i − 1, it

follows that (
κψn,i

)4 ≤ (1− q)4 E
[(
yni − yni−1 − μΔn

i,i−1

)4]
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= σ4 (1− q)4
i−1∑
j=0

P̄
(A (yni , yni−1

)
= j
)
E

[(√
Δn

i,jηi,j −
√
Δn

i−1,jηi−1,j

)4]

= 3σ4 (1− q)4
i−1∑
j=0

P̄
(A (yni , yni−1

)
= j
)⎡⎣θni − θni−1 + 2

i−1∑
k=j+1

(
θnk − θnk−1

)⎤⎦
2

≤ 12σ4 (1− q)4
i−1∑
j=0

P̄
(A (yni , yni−1

)
= j
)
(i− j − 1)

i∑
k=j+1

(
θnk − θnk−1

)2

≤ 12σ4 (1− q)4 c
i−1∑
j=0

i∑
k=j+1

ai−j−2 (i− j)
(
θnk − θnk−1

)2

= 12σ4 (1− q)4 ca−2
i∑

k=1

(
θnk − θnk−1

)2 k−1∑
j=0

ai−j (i− k − (j − k))

≤ 12σ4 (1− q)4 ca−2
i∑

k=1

(
θnk − θnk−1

)2
ai−k

⎡
⎣(i− k)

k∑
j=0

ak−j −
k∑

j=0

ak−j (j − k)

⎤
⎦

= 12σ4 (1− q)4 ca−2
i∑

k=1

(
θnk − θnk−1

)2
ai−k

[
(i− k)

k∑
l=0

al +
k∑

l=0

all

]

where the first equality follows form the definition of yni , the second from the fact that ηi,j

is and iid standard normal and the definition of Δn
i,j , while the second inequality comes for

the observation that
(
1
n

∑n
i=1 ai

)2 ≤ 1
n

∑n
i=1 a

2
i and the third inequality follows from Lemma

7, the third equality is simply a change in the summations order, the third inequality comes

from having added one nonnegative element to the sum over j, and finally the last equality

is obtained setting l = k − j.

Note that for any b ∈ (a, 1) there exists a constant c1 such that

(
x+

a

1− a

)(a
b

)x ≤ c1 ∀x ∈ [0,∞).

Therefore

(
κψn,i

)4 ≤ 12σ4 (1− q)4 ca−2

1− a

i∑
k=1

(
θnk − θnk−1

)2
ai−k

[
(i− k) +

a

1− a

]
≤ c2

i∑
k=1

(
θnk − θnk−1

)2
bi−k

(73)

where c2 := 12σ4 (1− q)4 ca−2c1/ (1− a) .

Now to prove that the set Kψ is almost surely uniformly integrable we need to show

sup
n,i

(
κψn,i

)4
(
σψn,i

)4 <∞.
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From Equations (71) and (73) we have

(
κψn,i

)4
(
σψn,i

)4 ≤ c3

∑i
j=1

(
θnj − θnj−1

)2
bi−j

{∑i
j=1 [q (2− q)]i−j

(
θnj − θnj−1

)}2 ≤ c3

∑i
j=1 b

i−j
(
θnj − θnj−1

)2
∑i

j=1 b
i−j
1

(
θnj − θnj−1

)2 (74)

= c3

∑i
j=1 b

i−j (γ̄j − γ̄j−1)
2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)

2
(75)

where c3 := c2/ (1− q)4 σ4 and b1 := [q (2− q)]2 and the last equality follows from Equa-

tion (27).

Now consider a random variable Xi with distribution given by

P̄

(
Xi =

i− j

i

)
=

(γ̄j − γ̄j−1)
2∑i

j=1 (γ̄j − γ̄j−1)
2
.

Then, for any s ∈ [0, 1], we have the cumulative distribution function

Fi (s) = P̄ (Xi ≤ s) =

∑�si
j=1 (γ̄j − γ̄j−1)

2∑i
j=1 (γ̄j − γ̄j−1)

2

and, given the regularity condition Ω1, this cdf is such that limi→∞ Fi (s) = s. Therefore,

from Theorem III.1.2 of Shiryaev (1996) we have that Xi weakly converges to a uniform

random variable, i.e. Xi
w−→

i→∞
X ∼ U (0, 1), and in particular

lim
i→∞

E

[
e−kXi

]
=

1− e−k

k
∀k > 0.

Now notice that, using the definition of Xi, the ratio in Equation (75) can be rewritten as

∑i
j=1 b

i−j (γ̄j − γ̄j−1)
2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)

2
=

E
[
eiXi ln b

]
E [eiXi ln b1 ]

where ln b and ln b1 are both negative. Therefore, to establish uniform integrability ofKψ it is

sufficient to show uniform convergence of E
[
e−kXi

]
in k. To do so consider the following class

of equicontinuous, uniformly bounded functions S :=
{
s : R+ → R+ : s (x) = e−kx

k , k ∈ [1,∞)
}
.

Then, from Theorem III.8.3 of Shiryaev (1996), we have that

lim
i→∞

sup
k∈[1,∞)

∣∣∣∣E
[
e−kXi

k

]
−
(
1− e−k

)∣∣∣∣ = 0.

Therefore, for any ε ∈ (0, 1), there exists a ı̄ such that for any i ≥ ı̄

∑i
j=1 b

i−j (γ̄j − γ̄j−1)
2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)

2
≤ ln b

ln b1
(1 + ε) .
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Thus

sup
n,i

(
κψn,i

)4
(
σψn,i

)4 ≤ c3 sup
i

∑i
j=1 b

i−j (γ̄j − γ̄j−1)
2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)

2

≤ c3max

{
ln b

ln b1
(1 + ε) ,max

i≤ı̄

∑i
j=1 b

i−j (γ̄j − γ̄j−1)
2∑i

j=1 b
i−j
1 (γ̄j − γ̄j−1)

2

}
<∞,

implying that Kψ is uniformly integrable.

3. To prove that for any k > 0, limn→∞ P̄

[
max
i≤Nn

t

|ψn
i | > k

]
= 0, first observe that from Equa-

tion (73), due to the regularity condition Ω3, there exists an ı̄ <∞ such that

E

[
(ψn

i )
4
]
≡
(
κψn,i

)4 ≤ c2

i∑
k=1

(
θnk − θnk−1

)2
bi−k =

c2
n2

i∑
k=1

(γ̄k − γ̄k−1)
2 bi−k

≤ c2
n2

[
ı̄∑

k=1

(γ̄k − γ̄k−1)
2 bi−k + 4

i∑
k=ı̄+1

(ln k)2 bi−k

]
≤ c2
n2

[
ı̄∑

k=1

(γ̄k − γ̄k−1)
2 +

4 (ln i)2

1− b

]
.

(76)

Consider a random variable χ (n) given by χ (n) := argmax
j≤n

∣∣∣ψn
j

∣∣∣ . Then

P̄

[
max
i≤Nn

t

|ψn
i | > k

]
=
∑
i≤Nn

t

P̄ [ψn
i > k|χ (Nn

t ) = i] P̄ (χ (Nn
t ) = i)

≤
∑
i≤Nn

t

E

[
(ψn

i )
2 |χ (Nn

t ) = i
]
P̄ (χ (Nn

t ) = i)

k2
=
∑
i≤Nn

t

E

[
(ψn

i )
2 1{χ(Nn

t )=i}
]

k2

≤
∑
i≤Nn

t

{
E

[
(ψn

i )
4
]
P̄ (χ (Nn

t ) = i)
}1/2

k2
≤ c

1/2
2

k2

[
1

Nn
t

ı̄∑
k=1

(γ̄k − γ̄k−1)
2 +

4 (lnNn
t )

2

Nn
t (1− b)

]1/2
Nn

t

n

Where the first inequality is the Chebyshev’s inequality, the second inequality is the Cauchy-

Buniakovsky inequality, the third inequality comes from Equation (76) and the observation

that
∑n

i=1 x
1/2
i ≤ √

n (
∑n

i=1 xi)
1/2 .

Hence from Ω2, Ω4 and the fact that limx→∞ (lnx)2 /x = 0, we finally have

lim
n→∞ P̄

[
max
i≤Nn

t

|ψn
i | > k

]
= 0

as claimed.
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Lemma 9 Consider yni defined in defined in Equations (28)-(31). Then

P̄
[
yni ≤ y|yni−k, ..., y

n
0

]
= (1− q)

i−k∑
j=1

qi−k−j
P̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−k

P̄
[
yn0 + εni,0 ≤ y|yn0

]
.

Proof. The proof is by the principle of mathematical induction. For k = 1 the statement is

trivially true given the definition of yni . Suppose the statement holds for k = m, that is

P̄
[
yni ≤ y|yni−m, ..., y

n
0

]
= (1− q)

i−m∑
j=1

qi−m−j
P̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−m

P̄
[
yn0 + εni,0 ≤ y|yn0

]
.

We than have that for k = m+ 1

P̄
[
yni ≤ y|yni−m−1, ..., y

n
0

]
= E

[
E

[
1{yni ≤y}

∣∣∣ yni−m, ..., y
n
0

]∣∣∣ yni−m−1, ..., y
n
0

]

= E

⎡
⎣(1− q)

i−m∑
j=1

qi−m−j
P̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−m

P̄
[
yn0 + εni,0 ≤ y

∣∣ yn0 ]
∣∣∣∣∣∣ yni−m−1, ..., y

n
0

⎤
⎦

= (1− q)E
[
E

[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m

]∣∣∣ yni−m−1, ..., y
n
0

]
(77)

+ (1− q)

i−m−1∑
j=1

qi−m−j
P̄
[
ynj + εni,j ≤ y

∣∣ ynj ]+ qi−m
P̄
[
yn0 + εni,0 ≤ y

∣∣ yn0 ] .
Note that

E

[
E

[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m

]∣∣∣ yni−m−1, ..., y
n
0

]
= E

[
E

[
1{yni−m+εni,i−m≤y}

∣∣∣ yni−m, ..., y
n
0

]∣∣∣ yni−m−1, ..., y
n
0

]
= E

[
E

[
1{yni−m≤y−εni,i−m}

∣∣∣ yni−m−1, ..., y
n
0 , ε

n
i,i−m

]∣∣∣ yni−m−1, ..., y
n
0

]

= (1− q)

i−m−1∑
j=1

qi−m−1−j
P̄
[
ynj + εni−m,j + εni,i−m ≤ y|ynj

]
+ qi−m−1

P̄
[
yn0 + εni,0 ≤ y|yn0

]

= (1− q)

i−m−1∑
j=1

qi−m−1−j
P̄
[
ynj + εni,j ≤ y|ynj

]
+ qi−m−1

P̄
[
yn0 + εni,0 ≤ y|yn0

]
,

where the first two equalities come from the independence of ε, the third comes form the statement

of the induction with i = i −m, m = 1 and y = y − ε, and the last comes from the Gaussianity

and independence of ε. Combining this result with equation (77) yields

P̄
[
yni ≤ y|yni−m−1, ..., y

n
0

]
= (1− q)

i−m−1∑
j=1

qi−m−1−j
P̄
[
ynj + εni,j ≤ y|ynj

]
+qi−m−1

P̄
[
yn0 + εni,0 ≤ y|yn0

]
.

QED.

We now can establish Proposition 9.
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Proof of Proposition 9. The proof of the proposition proceeds as follows. First, we establish

the tightness of Ȳ n in Skorokhod topology, and the fact that the limiting process is a continuos

local martingale. Second, we establish the joint tightness of the processes Ȳ n, eȲ
n
, and θ̄n, where

θ̄nt := θnNn
t
. Third, we identify the limiting processes.

To establish tightness of Ȳ n, consider Mn
t :=

∑Nn
t

i=1 ψ
n
i where ψn

i is defined in Lemma 8. Due

to Lemma 8 and Theorem 2.4 of McLeish (1977), the sequence of processes (Mn,Fn) is tight27

in Stone (1963) topology for q ∈ (0, 1). Since by definition Stone’s topology is equivalent to

Skorokhod topology on D ([0, T ]) (the space of cádlág processes in the [0, T ] interval), (Mn,Fn) is

tight in Skorokhod topology as well.

Moreover, since by Lemma 8

lim
n→∞ P̄

(
max
t≤K

|ΔMn
t | > k

)
= lim

n→∞ P̄

(
max
i≤Nn

k

|ψn
i | > k

)
= 0, (78)

and the sequence Mn is tight we have that it is C-tight, that is all limit points of the sequence{L̄ (Mn)
}
are laws of continuos processes (see Proposition VI.3.26 Jacod and Shiryaev (2003)).

Furthermore, consider any convergent subsequence of Mn, Mnk , then by Equation (78) and

the Borel-Cantelli Lemma there exist a further subsequence, denoted for simplicity by n, such

that maxt≤Nn
T
|ΔMn

t | → 0 a.s. P̄. Therefore, it there exists m and c such that for all n ≥ m,

|ΔMn
t | ≤ c ∀t ∈ [0, T ]. Hence, the limit process of (Mn,Fn) is a local martingale (see Proposition

IX.1.17 Jacod and Shiryaev (2003)). Finally, since the choice of the converging subsequence was

arbitrary, we have that all the limits of (Mn,Fn) are continuos local martingales.

Note that from Lemma 4 and the definition of Ȳ we have

E
[
Ȳ n
T |Hn

i

]
= (1− q) [yni + μ (T − θni )] + qE

[
Ȳ n
T |Hn

i−1

]
.

Since
Nn

t∑
i=1

ψn
i = E

[
Ȳ n
T |Hn

Nn
t

]
− E

[
Ȳ n
T |Hn

0

]
= E

[
Ȳ n
T |Hn

Nn
t

]
− μT

it follows that

Ȳ n
t − μT =

Nn
t −1∑
i=1

ψn
i +

q

1− q
ψn
Nn

t
=Mn

t +
2q − 1

1− q
ψn
Nn

t
.

Due to condition (78), and the fact thatMn
t is C-tight and its limit is a continuous local martingale,

we have from Lemma VI.3.31 and Proposition VI.3.17 of Jacod and Shiryaev (2003), that Ȳ n
t is

also C-tight and its limit is a continuous local martingale.

We now turn to the joint tightness of Ȳ n, eȲ
n
and θ̄n. Observe that θ̄n, given the definition of

θn, is such that

θ̄nt =

Nn
t∑

i=1

γ̄i − γ̄i−1

n
→ t for all t ∈ [0, T ] , ω ∈ Ω.

27See page 309 of Kallenberg (2002).
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Moreover,
Nn

t∑
i=1

(γ̄i − γ̄i−1)
2

n2
→ 0 for all t ∈ [0, T ] , ω ∈ Ω.

Thus, by Theorem VI.2.2.15 of Jacod and Shiryaev (2003) we have that θ̄n → θ̄ in Skorokhod

topology where θ̄t = t.

Consider now any convergent subsequence of Ȳ n, without loss of generality let it be denoted

by n, then it follows form the tightness result that there exist a continuous local martingale Ȳ

such that L (Ȳ n
) → L (Ȳ ) . Since g : D ([0, T ]) → D ([0, T ]) : g (xt) = ext is a continuos map

for continuos processes in Skorokhod topology,28 by Proposition VI.3.8.II of Jacod and Shiryaev

(2003), we have that L
(
eȲ

n
)
→ L

(
eȲ
)
. By Corollary VI.3.33b of Jacod and Shiryaev (2003),

we then have that the sequence
(
Ȳ n, eȲ

n
, θ̄n
)
is C-tight, and for any converging subsequence Ȳ n,

L
(
Ȳ n, eȲ

n
, θ̄n
)
→ L

(
Ȳ , eȲ , θ̄

)
.

We can finally identify the limiting processes. Form the above it is clear that the only part

left to identify is Ȳ . Assume, wlog, that Ȳ n is a converging subsequence. Theorem III.8.1 of

Shiryaev (1996) states that we can define a probability space, and a sequence of processes Xn,

such that Xn → X almost surely in Skorokhod topology, and such that L (Ȳ n
)
= L (Xn) and

L (Ȳ ) = L (X). Therefore, since we are only interested in the distribution of Ȳ we can assume,

wlog, that Ȳ n converges to Ȳ not only in law, but also almost surely in Skorokhod topology.

By Lemma 9, we have that for any t > s > 0

P̄

[
Ȳ n
t ≤ y|F Ȳ n

s

]
= P̄

[
ynNn

t
≤ y − μ

(
T − θ̄nt

)∣∣∣ ynNn
s
, ..., yn0

]

= (1− q)

Nn
s∑

j=1

qN
n
s −j

P̄

[
ȳnj + σ

√
Δn

Nn
t ,jηNn

t ,j ≤ y|ȳnj
]
+ qN

n
s P̄

[
ȳn0 + σ

√
Δn

Nn
t ,0ηNn

t ,0 ≤ y|ȳn0
]

= (1− q)

Nn
s∑

j=1

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

−∞
e−

x2

2√
2π
dx+ qN

n
s P̄

[
ȳn0 + σ

√
Δn

Nn
t ,0ηNn

t ,0 ≤ y|ȳn0
]

=
(
1− qN

n
s
) ∫ y−Ȳ n

s

σ
√

Δn
Nn
t ,Nn

s

−∞
e−

x2

2√
2π
dx+ (1− q)

Nn
s −1∑
j=1

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx

+ qN
n
s P̄

[
ȳn0 + σ

√
Δn

Nn
t ,0ηNn

t ,0 ≤ y|ȳn0
]
,

where the second equality comes from the definition of ε and ȳ, the third equality comes from the

fact that η is an independent standard Gaussian. Note that, as n goes to infinity, the last term

vanishes and

(
1− qN

n
s
) ∫ y−Ȳ n

s

σ
√

Δn
Nn
t ,Nn

s

−∞
e−

x2

2√
2π
dx −→

n→∞

∫ y−Ȳs
σ
√

t−s

−∞
e−

x2

2√
2π
dx (79)

28Since the Skorohod topology becomes uniform for continuous processes, see e.g. Proposition VI.1.17b of
Jacod and Shiryaev (2003).
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due to the almost sure convergence of Ȳ n and Ω4 and Ω5.

Note also that

Nn
s −1∑
j=1

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx

=

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx+

Nn

s− 1√
n

−1∑
j=1

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx

≤
Nn

s −1∑
j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx+

qΛ̄sn−√
n

1− q
,

where the last term goes to zero, as n goes to infinity, due to Ω4 and the first term above can be

rewritten as

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
Nn
s

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx

=

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,Nn

s

y−Ȳs

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx+

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
j

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx. (80)

To show that the above vanishes in the limit, fix an ω and consider any κ1, κ2 > 0. Notice that by

the continuity of Ȳ , there exists a κ3 ∈ (0, s) such that
∣∣Ȳs − Ȳu

∣∣ ≤ κ1 for all u ∈ [s− κ3, s].

Observe that, for n big enough and j ∈
[
Nn

s− 1√
n

, Nn
s − 1

]
, we have

ȳnj = Ȳ n
u , u ∈ [s− κ3, s]

and, since Ȳ n converges almost surely in Skorokhod topology to a continuos process Ȳ , it also

converges in uniform topology on compact sets,

sup
u∈[s−κ3,s]

∣∣Ȳ n
u − Ȳu

∣∣ ≤ κ2.

Therefore,

ȳnj ∈ [Ȳs − κ2 − κ1, Ȳs + κ2 + κ1
] ∀j ∈

[
Nn

s− 1√
n

, Nn
s − 1

]
.
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To show that the first term in equation (80) vanishes, notice that the above implies that

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,Nn

s

y−Ȳs

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx ≤

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j (κ1 + κ2)

σ
√
2πΔn

Nn
t ,Nn

s

−→
n→∞

κ1 + κ2

σ (1− q)
√
2πt

due to Ω4 and Ω5. Since κ1 and κ2 are arbitrary, we have that

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,Nn

s

y−Ȳs

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx −→

n→∞ 0. (81)

To show that the second term in equation (80) vanishes, notice that for the same κ1, κ2 and κ3

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∫ y−ȳnj

σ
√

Δn
Nn
t ,j

y−ȳn
j

σ
√

Δn
Nn
t ,Nn

s

e−
x2

2√
2π
dx ≤ 1

σ
√
2π

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j

∣∣y − ȳnj
∣∣
∣∣∣∣∣∣

1√
Δn

Nn
t ,j

− 1√
Δn

Nn
t ,Nn

s

∣∣∣∣∣∣

≤ |y|+ ∣∣Ȳs∣∣+ κ1 + κ2

σ
√
2πΔn

Nn
t ,Nn

s− 1√
n

Δn
Nn

t ,Nn
s

∣∣∣∣∣Δn
Nn

t ,Nn
s
−Δn

Nn
t ,Nn

s− 1√
n

∣∣∣∣∣√
Δn

Nn
t ,Nn

s− 1√
n

+
√
Δn

Nn
t ,Nn

s

Nn
s −1∑

j=Nn

s− 1√
n

qN
n
s −j −→

n→∞ 0 (82)

Since, due to Ω4 and Ω5, Δ
n
Nn

t ,Nn
s
→ t− s, Δn

Nn
t ,Nn

s− 1√
n

→ t− s, and∑Nn
s −1

j=Nn

s− 1√
n

qN
n
s −j → 1/ (1− q).

Collecting the results in equations (79), (81) and (82) we have

P̄

[
Ȳ n
t ≤ y|F Ȳ n

s

]
−→
n→∞

∫ y−Ȳs
σ
√
t−s

−∞
e−

x2

2√
2π
dx = P̄

[
Ȳt ≤ y|F Ȳ

s

]
.

We also trivially have that

P̄
[
Ȳ n
t ≤ y

] −→
n→∞

∫ y−Ȳ0
σ
√
t

−∞
e−

x2

2√
2π
dx = P̄

[
Ȳt ≤ y

]
.

Thus, by direct calculation we have

E

[
eȲt−σ2

2
t|F Ȳ

s

]
= eȲ s−σ2

2
s ∀0 ≤ s ≤ t ≤ T,

hence eȲt−σ2

2
t is a martingale. By Exercise 3.3.38.ii of Karatzas and Shreve (1991), we have that〈

Ȳ
〉
t
= σ2t. Therefore, by the Levy characterization of the Brownian motion (see e.g. Theorem

3.3.16 of Karatzas and Shreve (1991)), Ȳt = σWt where W is a standard Brownian motion. Since

the converging subsequence of Ȳ n was arbitrary, and sinceW is clearly independent of the particular

realisation of Λ̄, QED.
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